

1 **Title:**

2 Sugar co-ordinates plant defence signalling

3

4 **Authors:**

5 Kohji Yamada<sup>1,2\*</sup> and Akira Mine<sup>2,3</sup>

6

7 **Affiliations:**

8 <sup>1</sup> Graduate School of Technology, Industrial and Social Sciences, Tokushima University,  
9 Tokushima, Japan

10 <sup>2</sup> JST, PRESTO, Kawaguchi, Japan

11 <sup>3</sup> Graduate School of Agriculture, Kyoto University, Kyoto, Japan.

12

13 \*Corresponding author. Email: kohjiyamada226@gmail.com (K.Y.)

14

15

16 **Abstract**

17 Recognition of microbial molecules triggers energy-intensive defence systems. Although  
18 successful defence should therefore depend on energy availability, whether and, if so,  
19 how cellular metabolic information is molecularly input into defence remains unclear.  
20 We show that sugar, especially glucose-6-phosphate (G6P), plays a key role in regulating  
21 the types and amplitudes of defence outputs in *Arabidopsis thaliana*. Under sugar-  
22 sufficient conditions, protein and phosphorylation levels of calcium-dependent protein  
23 kinase 5 (CPK5) are elevated by induced expression and G6P-mediated suppression of  
24 protein phosphatases, priming defence responses. Furthermore, recognition of bacterial  
25 flagellin activates sugar transporters, leading to increased cellular G6P, which elicits  
26 CPK5-independent signalling promoting synthesis of the phytohormone salicylic acid  
27 (SA) involved in anti-bacterial defence. In contrast, while perception of fungal chitin does  
28 not promote sugar influx or SA accumulation, chitin-induced synthesis of the anti-fungal  
29 compound camalexin requires basal sugar influx activity. These results suggest that, by  
30 monitoring G6P levels, plants determine defence priming levels and execute appropriate  
31 outputs against bacterial and fungal pathogens. Together, our findings provide a  
32 comprehensive view of the roles of sugar in plant defence.

33

34

35 **Introduction**

36 In plants, perception of pathogen-associated molecular patterns (PAMPs) on the  
37 plasma membrane triggers a cascade of defence responses, including extensive  
38 transcriptional reprogramming and *de novo* synthesis of metabolites such as phytoalexins  
39 and phytohormones (Couto and Zipfel, 2016). Despite the energy-intensive nature of  
40 defence signalling, the molecular link between defence signalling and cellular metabolic  
41 status remains largely unknown. For example, defence signalling should be suppressed  
42 under low nutritional conditions and enhanced under sufficient nutritional conditions. Of  
43 primary metabolites, sugar is known to affect various signal pathways not only as an  
44 energy precursor and a carbon skeleton but also as a signal molecule (Jang and Sheen,  
45 1994). Sugar has been proposed to stimulate plant defence, by a mechanism whose  
46 molecular basis has remained unclear for over two decades (Sheen et al., 1999). In  
47 addition, exogenous application of sugars to plants is reported to enhance defence  
48 responses against bacterial and fungal pathogens (Gómez-Ariza et al., 2007; Tsutsui et  
49 al., 2015). Glucose (Glc) is recognized by hexokinase 1(HXK1) (Moore et al., 2003), a  
50 dual-function enzyme with both catalytic and sensory activity for Glc, in the model plant  
51 *Arabidopsis thaliana*. Sensing of Glc via HXK1 triggers down-regulation of  
52 photosynthetic genes (Moore et al., 2003). On the other hand, Glc catalysis mediated by  
53 HXK1 induces defence signalling. Overexpression of not only *Arabidopsis* HXK1 but  
54 also yeast HXK2 elevated expression of defence-responsive genes (Xiao et al., 2000).  
55 Furthermore, cell death induced from loss of the *myo*-inositol 1-phosphatase synthase 1  
56 gene was attenuated in the absence of HXK1's enzymatic activity (Bruggeman et al.,  
57 2015). Therefore, a Glc-derived metabolite(s) catalysed by HXK, rather than Glc *per se*,  
58 is thought to stimulate defence signalling (Sheen et al., 1999).

59 In this study, we focused on how cellular sugar conditions are molecularly input  
60 into plant defence signalling. We showed that Glc-6-phosphate (G6P), not Glc, affects  
61 multiple signal branches that orchestrate defence outputs, using genetic and  
62 pharmacological analyses. First, calcium-dependent protein kinase 5 (CPK5), which  
63 stimulates expression of sugar-responsive genes, is suppressed by clade A protein  
64 phosphatase 2Cs (PP2Cs). We found that G6P inhibits their phosphatase activities,  
65 leading to de-suppression of CPK5 activity. Therefore, defence responses are primed  
66 under sugar-sufficient conditions. Furthermore, after perception of bacterial and fungal  
67 PAMPs, sugar influx transporters regulate cellular G6P amounts, which elicits CPK5-  
68 independent signal pathways that co-operatively or antagonistically act on CPK5-mediated  
69 signalling for executing appropriate defence outputs against bacterial and fungal  
70 pathogens. Thus, this work provides a comprehensive view of the roles of sugar in co-

71 coordinating plant defence signalling.

72

### 73 **Results**

#### 74 **Sugar activates expression of defence-related genes via HXK-mediated Glc 75 phosphorylation**

76 We first demonstrated that the application of sucrose (Suc) to *Arabidopsis*  
77 seedlings induced defence-related genes by RNA-seq analysis (Figure S1A, S1B, cluster  
78 III). In addition, we showed that Glc application also induced expression of the defence  
79 marker gene *NDR1/HIN1-LIKE 10* (*NHL10*) and the camalexin synthetic gene  
80 *PHYTOALEXIN DEFICIENT 3* (*PAD3*) (Figure S1C, S1D), showing that sugar stimulates  
81 defence signalling in *Arabidopsis*. On the other hand, expression of the photosynthesis-  
82 related gene *CHLOROPHYLL A/B BINDING PROTEIN 1* (*CAB1*) was repressed (Figure  
83 S1C, S1D), which confirmed the activation of sugar signalling under these experimental  
84 conditions (above 25 mM of Glc or Suc). We next investigated whether sugar also  
85 promotes gene expression during pattern-triggered immunity (PTI). Seedlings were  
86 treated with flg22 peptide, a derivative of bacterial flagellin, for 8 h with or without Glc,  
87 Suc or mannitol (Mtl) (Figure 1A). Flg22-triggered expression of *NHL10* and *PAD3* was  
88 higher in the presence of Glc or Suc, but unaffected by Mtl (Figure 1B). These data  
89 suggested that the recognition of metabolizable sugars and/or sugar metabolism affects  
90 defence signalling, and this effect is not due to alteration of osmotic pressure. Since Suc  
91 effects were sometimes stronger than Glc effects as for *PAD3* expression (Figure 1B), we  
92 next asked whether Glc and Suc differentially activate defence signalling. In *Arabidopsis*,  
93 two cytoplasmic HXKs, HXK1 and HXK2 (Moore et al., 2003), phosphorylate Glc but  
94 not Suc. To explore the involvement of HXKs in Glc- and/or Suc-mediated stimulation  
95 of defence signalling, we established *hxk1 hxk2* (*hxk1/2*) mutants (Figure S2F). The *hxk2*  
96 mutant was presumed to express HXK2 with a C-terminal 13-aa deletion (Figure S2C).  
97 The activity of HXK2 $\Delta$ C13 was significantly weaker than that of HXK2 *in vitro* (Figure  
98 S2D). Therefore, the *hxk2* mutant was used in this study although HXK2 activity was not  
99 completely absent. We found that both Glc- and Suc-induced expression of *NHL10* and  
100 *PAD3* were reduced in *hxk1/2* plants (Figure 1C), suggesting that Glc, hydrolysed from  
101 Suc, stimulates their expression under Suc conditions. Suc accumulates to high levels in  
102 the cytoplasm of plant cells, while Glc is mainly compartmentalized in the vacuole  
103 (Leidreiter et al., 1995). Therefore, Suc may stimulate gene expression more easily than  
104 Glc, although both sugars act through HXKs.

105 Next, to explore the detailed mechanisms by which Glc activates defence  
106 signalling, we applied two non-metabolizable Glc analogues, 3-*O*-methyl-D-glucose

107 (3OMG) and 2-deoxy-D-glucose (2DG), to plants for 24 h. Although both Glc analogues  
108 are imported into the cytoplasm via transporters (Boorer et al., 1994), only 2DG is  
109 phosphorylated by HXK (Jang and Sheen, 1994). *NHL10* expression was not affected by  
110 3OMG but was significantly induced by 2DG (Figure 1D). Furthermore, RNA-seq  
111 analyses revealed that defence-related genes, including flg22-responsive genes, were  
112 overrepresented among 2DG-responsive genes (Figure S1A, S1B). Not only camalexin  
113 synthetic genes such as *PAD3*, but also SA-synthetic genes such as *AVRPPHB*  
114 *SUSCEPTIBLE 3 (PBS3)* and *SALICYLIC ACID INDUCTION DEFICIENT 2 (SID2)*  
115 were strongly induced in response to 2DG (Figure S1A, S3A). Consistently, camalexin  
116 and SA accumulated 24 h after 2DG application (Figure 1E). *PBS3* expression also  
117 responded to Glc and Suc. While Glc and Suc alone did not activate *PBS3* expression,  
118 they promoted flg22-triggered *PBS3* expression (Figure 1B).

119 2DG is a more potent inducer of many defence-related genes than Glc (Figure  
120 1D, S1A). However, simultaneous application of excess Glc suppressed 2DG-induced  
121 expression to the levels under Glc conditions (Figure S3C), indicating competitive effects  
122 between 2DG and Glc on cellular activities such as transport and metabolism. Because  
123 2DG is not further catabolized in glycolysis after HXK-mediated phosphorylation, 2DG-  
124 6-phosphate (2DG6P) accumulates following 2DG application (Figure S3D). However,  
125 we showed that cellular 2DG and 2DG6P decreased dramatically following simultaneous  
126 application of excess amounts of Glc (Figure S3D). Therefore, the amounts of cellular  
127 2DG and/or 2DG6P appeared to correlate with the amplitude of defence signalling in  
128 response to 2DG. 2DG and 2DG6P act as inhibitors of HXK and phosphoglucose  
129 isomerase, respectively (Sols and Crane, 1954; Wick et al., 1957), thereby causing  
130 inhibition of glycolysis. We therefore deduced that glycolysis-derived energy is  
131 dispensable for 2DG-induced defence stimulation. In addition, we concluded that energy  
132 depletion caused by 2DG treatment does not lead to defence stimulation either, because  
133 the mitochondrial electron transport inhibitor antimycin A (AMA), the mitochondria  
134 uncoupler 2,4-dinitrophenol (DNP) and the photosynthesis inhibitor 3-(3,4-  
135 dichlorophenyl)-1,1-dimethylurea (DCMU) did not induce camalexin or SA (Figure S3E).

136 The results described above suggested contributions of sugar transporters and  
137 HXK to 2DG-induced defence signalling. We focused on 8h after 2DG application, as at  
138 this time point 2DG responsiveness of most genes was observable (Figure S3A) and the  
139 secondary effect of SA accumulation was minimized because SA had not yet accumulated  
140 (Figure S3B). Of 14 *SUGAR TRANSPORT PROTEIN (STP)* genes that mainly transport  
141 monosaccharides in *Arabidopsis*, *STP1*, *STP4*, and *STP13* are the most abundantly  
142 expressed (Yamada et al., 2011). Therefore, we established *stp1 stp4 stp13 (stp1/4/13)*

143 triple mutants by introducing a 17 bp deletion in the *STP4* locus into *stp1/13* plants using  
144 CRISPR-Cas9 (Figure S4A-S4F). As expected, *stp1/4/13* plants exhibited a significant  
145 reduction in 2DG influx activity (Figure S4D). We found that *stp1/4/13* plants displayed  
146 no induction of *NHL10* or *PBS3* in response to 2DG (Figure 1F). Moreover, *hxk1/2* plants  
147 also showed reduced expression of *NHL10* and *PBS3* in response to 2DG (Figure 1G).  
148 Introduction of a *HXK1* cDNA complemented the reductions in 2DG-induced defence  
149 gene expression and 2DG6P production in *hxk1/2* plants (Figure 1H, S2H). On the other  
150 hand, introduction of *HXK1(G104D)* (Moore et al., 2003), which acts only as a Glc sensor  
151 and lacks catalytic activity, did not complement these phenotypes (Figure 1H, S2H). Thus,  
152 *HXK*-mediated 2DG phosphorylation is required for 2DG-induced defence signalling.  
153 However, we noticed that 2DG-induced *SID2* expression appeared to be restored by  
154 *HXK1(G104D)*, implying that *HXK1*'s sensor activity also contributes to 2DG-induced  
155 defence signalling (Figure S2G). We found that 2DG amounts increased in *hxk1/2* plants  
156 while 2DG6P decreased; *stp1/4/13* plants showed a reduction of both 2DG and 2DG6P  
157 (Figure 1I). Therefore, 2DG6P levels correlated with expression levels of defence-related  
158 genes in *hxk1/2* plants in response to 2DG. Together, these data suggested that 2DG6P,  
159 which *HXK1/2* generate, primarily mediates defence signalling after 2DG application.  
160

## 161 **Sugar stimulates the protein and phosphorylation levels of calcium-dependent 162 protein kinase 5**

163 Calcium-dependent protein kinases (CPKs/CDPKs), particularly CPK4/5/6/11  
164 belonging to subgroup I, activate *NHL10* expression in response to flg22 (Boudsocq et  
165 al., 2010); moreover, CPK5/6 induce *PAD3* during fungal infection (Zhou et al., 2020).  
166 We found that loss of *CPK5/6* attenuated the induction of *NHL10* and *PAD3* in response  
167 to 2DG, while 2DG-induced expression of *PBS3* and *SID2* was enhanced in *cpk5/6* plants  
168 (Figure 2A). Consistently, accumulation of camalexin was almost abolished but that of  
169 SA was further increased in *cpk5/6* plants in response to 2DG (Figure 2B). CPK4/11  
170 partially contributes to suppression of SA biosynthesis because *cpk4/5/6/11* plants showed  
171 higher SA accumulation than *cpk5/6* plants in response to 2DG, although 2DG-induced  
172 SA accumulation did not differ between WT and *cpk4/11* plants (Figure 2B). Introduction  
173 of a C-terminally GFP-fused *CPK5* genomic fragment containing its promoter region  
174 (gCPK5-GFP) fully complemented 2DG-induced gene expression in *cpk5/6* plants  
175 (Figure S5A). Therefore, CPK5/6, especially CPK5, affect 2DG-induced signalling by  
176 positively and negatively regulating the expression of *NHL10/PAD3* and *PBS3/SID2*,  
177 respectively, downstream of *HXK1/2*. Previously, plasma membrane-localised tobacco  
178 CDPKs, similar to *Arabidopsis* CPK5, were reported to be stimulated by application of

179 Glc or Suc (Ohto and Nakamura, 1995). This is consistent with our data showing a  
180 relationship between sugar and CPKs. In addition, 2DG-induced *CAB1* attenuation was  
181 not affected by loss of CPK5/6, suggesting the presence of a CPK5/6-independent sugar  
182 signalling pathway(s) in *Arabidopsis* (Figure 2A).

183 *NHL10* expression was similar in *cpk5/6* and *cpk5/6/sid2* plants (Figure 2C, S5B),  
184 indicating that enhanced SA levels in *cpk5/6* plants did not reduce 2DG-induced *NHL10*  
185 expression. CPK5/6 phosphorylate the transcription factors WRKY33 (group I) and  
186 WRKY8/28/48 (group IIc), transducing signals to downstream pathways (Gao et al.,  
187 2013; Zhou et al., 2020). Expression of *NHL10* and *PAD3* in response to 2DG was reduced  
188 in *wrky33* plants, but not *wrky8* plants, (Figure S5C), suggesting that WRKY33 acts as a  
189 downstream factor of CPK5/6 in 2DG-induced signalling.

190 We next asked if 2DG application affects CPK5 status. An immunoblot showed  
191 three bands of CPK5-GFP (Figure 2D). Of these, the uppermost band (B1) completely  
192 disappeared after treatment with lambda protein phosphatase ( $\lambda$ PPase) (Figure 2D),  
193 indicating that B1 represents the major phosphorylated form of CPK5-GFP. CPKs are  
194 rapidly activated upon PAMP perception following  $\text{Ca}^{2+}$  influx (Boudsocq et al., 2010).  
195 We found that flg22 application increased the intensity of B1 and reduced that of the  
196 middle band (B2), but did not affect the lowest band (B3) of CPK5-GFP after transient  
197 elevation of the cytosolic  $\text{Ca}^{2+}$  concentration (Figure S6A). These data indicated that the  
198 B2 form of CPK5-GFP becomes phosphorylated and shifts to the B1 form in response to  
199 flg22. We found that the B3 form is an alternative splicing variant because it was only  
200 faintly observable in plants expressing CPK5(cDNA)-GFP from the constitutive 35S  
201 promoter (Figure S6B). We evaluated the dynamics of CPK5 phosphorylation by  
202 calculating the B1/B3 ratio of CPK5-GFP. The B2 intensity was sometimes too weak to  
203 use for normalization, so instead we used the stable signal of B3 as an indicator of CPK5  
204 protein abundance. The CPK5 phosphorylation level (B1/B3 ratio) indeed increased  
205 under 2DG treatment (Figure 2D), but there was no such increase in *stp1/4/13* plants,  
206 indicating that 2DG uptake leads to CPK5 phosphorylation.

207 Next, we investigated the phosphorylation status of CPK5-GFP in the presence  
208 of Glc. Consistent with the 2DG experiments, phosphorylation levels of CPK5-GFP  
209 increased under higher Glc conditions (Figure 2E). The protein abundance of CPK5-GFP  
210 was elevated in a Glc-dependent manner (Figure 2E). We found that *CPK5* expression  
211 was induced by Glc application (Figure 2F), likely contributing to an increase in CPK5  
212 protein amounts. On the other hand, flg22-triggered CPK5 phosphorylation occurred even  
213 in the absence of Glc (Figure 2E), suggesting that Glc is dispensable for flg22-triggered  
214 CPK5 phosphorylation. However, a Glc-dependent increase in basal phosphorylation

215 levels supported higher flg22-triggered phosphorylation levels of CPK5-GFP (Figure 2E).  
216 Indeed, *NHL10* expression 0.5 h after flg22 application appeared to correlate with protein  
217 and phosphorylation levels of CPK5-GFP (Figure 2F). Taken together, these data  
218 suggested that Glc primes CPK5 activity for defence gene expression by increasing its  
219 protein and phosphorylation levels.

220

221 **Dephosphorylation of CPK5 by clade A protein phosphatase 2Cs is suppressed by**  
222 **glucose-6-phosphate**

223 Despite inducing CPK5 phosphorylation, 2DG treatment did not trigger  
224 discernible elevation of  $[Ca^{2+}]_{cyt}$  (Figure 3A). This prompted us to explore  $Ca^{2+}$ -  
225 independent CPK5 regulatory mechanisms. CPK6 and CPK11 were previously reported  
226 to bind to clade A PP2Cs (Brandt et al., 2015; Lynch et al., 2012). We asked if CPK5 also  
227 interacts with clade A PP2Cs in yeast two-hybrid and split-luciferase assays. Of clade A  
228 PP2Cs we tested, we found that ABI1 and PP2CA strongly, and HAI1 weakly, bound to  
229 CPK5, whereas HAB1 did not (Figure 3B, S6C). On the other hand, AP2C1 (clade B)  
230 and PP2C6-6 (clade E) did not bind to CPK5 (Figure S6D), suggesting that CPK5  
231 interacted specifically with clade A PP2Cs. Consistent with the protein interaction data,  
232 *in vitro* CPK5 phosphorylation levels, detected by anti-phosphothreonine (anti-pThr)  
233 antibody, were massively reduced by ABI1 and PP2CA, but not by HAB1 (Figure S6E).  
234 Furthermore, CPK5 *trans*-phosphorylation activity on an N-terminal fragment of  
235 RBOHD (RBOHD-NT) (Kadota et al., 2014) and a WRKY33 wbox1 fragment (Zhou et  
236 al., 2020) was weakened in the presence of ABI1 (Figure 3C, S6F). Consistent with  
237 previous reports (Geiger et al., 2010; Lynch et al., 2012), *in vitro* *trans*-phosphorylation  
238 activity of the protein kinase OPEN STOMATA 1 (OST1) was also suppressed in the  
239 presence of ABI1 (Figure S6G). Importantly, when we added ABI1 to the reaction after  
240 stopping CPK5 activity using the kinase inhibitor staurosporine, the phosphorylation  
241 levels of CPK5 substrates were not reduced (Figure 3C, S6F). Therefore, we can exclude  
242 the possibility that ABI1 directly dephosphorylated CPK5 substrates. Interestingly, this  
243 ABI1 effect on CPK5 activity was alleviated in the presence of  $Ca^{2+}$  (Figure 3C),  
244 indicating that  $Ca^{2+}$ -activated CPK5 can overcome ABI1-mediated suppression. We  
245 inferred from these data that clade A PP2Cs suppress CPK5 activity, especially before  
246 PAMP-triggered  $Ca^{2+}$  influx.

247 We next asked if sugar affects ABI1-mediated CPK5 regulation. Because we  
248 found that 2DG6P is involved in 2DG-induced defence signalling, we investigated  
249 whether 2DG6P and G6P which is the natural counterpart of 2DG6P affect ABI1-  
250 mediated CPK5 dephosphorylation. We demonstrated here that application of 2DG6P and

251 G6P but not 2DG or Glc reduced ABI1-mediated CPK5 dephosphorylation *in vitro*  
252 (Figure 3D). We found that G6P suppressed the *in vitro* protein phosphatase activities of  
253 ABI1 and HAB1 (Figure 3E, 3F, S6I), while the activity of PP2C6-6 (clade E) was not  
254 affected (Figure 3F). In addition, λPPase-mediated CPK5 dephosphorylation was not  
255 reduced by G6P (Figure S6H), implying that G6P specifically influences the activity of  
256 clade A PP2Cs. Furthermore, we revealed that the application of 2DG6P and G6P, but not  
257 2DG or Glc, dissociated protein interactions between CPK5 and ABI1 (Figure 3G).  
258 Together, these results suggest that both 2DG6P and G6P restored CPK5 phosphorylation  
259 levels by suppressing the activity of clade A PP2Cs and dissociating clade A PP2Cs from  
260 CPK5.

261 Other hexose-phosphates including hexose-1-phosphates, but not the sugar  
262 nucleotide UDP-Glc, also inhibited ABI1-mediated CPK5 dephosphorylation, whereas  
263 Glc-1-phosphate had a weaker effect than G6P (Figure 3D, S6J). In contrast, sorbitol-6-  
264 phosphate did not affect ABI1 activity (Figure 3D), suggesting that the phosphate group  
265 did not directly inhibit ABI1 activity. G6P concentration was previously reported to be  
266 around 3-5 mM in the cytoplasm of plant cells (Leidreiter et al., 1995). G6P at this  
267 concentration may not be enough to suppress PP2C activity; G6P above 10 mM inhibited  
268 ABI1 activity *in vitro* (Figure S6I). We speculate that combinations of G6P and other  
269 sugar phosphates may lead to suppression of PP2C activity in plant cells under sugar-  
270 sufficient conditions.

271 We next investigated the relationship between CPK5/6 and ABI1/2 in plants.  
272 While camalexin synthesis in response to 2DG was similar in WT and *abi1/2* plants, 2DG-  
273 induced SA was reduced in *abi1/2* plants, compared with WT plants (Figure 3H). On the  
274 other hand, SA accumulation in response to 2DG was elevated in *abi1/2/cpk5/6* plants to  
275 a similar extent as in *cpk5/6* plants (Figure 3H), implying that enhanced CPK5/6 activity  
276 caused a reduction in 2DG-induced SA synthesis in *abi1/2* plants.  
277

## 278 **Sugar influx contributes to pattern-triggered immunity**

279 We have reported that elevated sugar influx activity in response to flg22  
280 interrupts pathogens' sugar acquisition (Yamada et al., 2016). Given that, while  
281 apoplasmic sugar amounts decrease, cytoplasmic sugar should concomitantly increase in  
282 the cytoplasm during flg22-triggered immunity. Indeed, we found that G6P amounts were  
283 elevated in response to flg22 under 25 mM Suc conditions, dependent on the activation  
284 of sugar transporter STPs (Figure 4A, 4B). Flg22-triggered expression of defence-related  
285 genes decreased in *hxk1/2* plants in the presence of 25 mM Glc or Suc (Figure 1C). Flg22-  
286 triggered synthesis of SA and camalexin was also reduced in *hxk1/2* plants under these

287 sugar conditions (Figure S7A), suggesting that G6P, which HXK1/2 generate, affects  
288 flg22-triggered defence responses. Together, we hypothesized that STP-mediated sugar  
289 influx contributes to flg22-triggered signalling. We showed that sugar influx activity was  
290 enhanced 8 and 24 h, but not 3h, after flg22 application (Figure S7B). Therefore, to focus  
291 on the contribution of STP-mediated sugar influx to flg22-triggered signalling during  
292 these later time points, we treated plants with flg22 under 25 mM Suc conditions.  
293 Whereas possible differences in cellular sugar amounts before PAMP recognition would  
294 cause different CPK5 priming effects between WT and *stp1/4/13* plants, this effect can be  
295 minimized under sugar-sufficient conditions. In addition, Suc influx is likely unaffected  
296 when the monosaccharide transporters STPs are absent. Notably, RNA-seq analyses  
297 revealed that transcriptional profiles in response to flg22 in the presence of 25 mM Suc  
298 were substantially altered in *stp1/4/13* plants compared with WT plants (Figure 4C, S7C).  
299 As expected, these differences in transcriptional profiles increased at the later stage of  
300 flg22-triggered signalling (Figure 4C), correlating with the timing of enhancement of  
301 sugar uptake activity in response to flg22 (Figure S7B). Of particular interest was the  
302 observation that STP-dependent genes largely overlapped with 2DG-responsive genes  
303 during flg22-triggered defence (Figure 4C). This suggests that sugar signalling activated  
304 by STP-mediated sugar influx stimulates defence signalling in response to flg22. In  
305 addition, *stp1/4/13* plants showed higher susceptibility to the less virulent strain of the  
306 pathogenic bacterium *Pseudomonas syringae* pv. *tomato* (*Pst*) DC3000, *Pst* DC3000  
307 ( $\Delta$ *avrPto* $\Delta$ *avrPtoB*) (Figure 4F).

308 We found that, in the presence of 25 mM Suc, loss of *CPK5/6* reduced flg22-  
309 triggered expression of *NHL10* and *PAD3* to a similar extent as loss of *STP1/4/13* (Figure  
310 4D). In addition, flg22-triggered camalexin synthesis was also reduced in *cpk5/6* and  
311 *stp1/4/13* plants. We expected that STP-mediated sugar influx would contribute to flg22-  
312 triggered defence gene expression by enhancing CPK5/6 activity. However, CPK5  
313 phosphorylation levels were not altered between WT and *stp1/4/13* plants 8h after flg22  
314 application (Figure S7D), at which time G6P accumulates via sugar influx (Figure 4A,  
315 4B). We showed that  $\text{Ca}^{2+}$ -activated CPK5 overcomes ABI1-mediated dephosphorylation  
316 (Figure 3C). Although flg22-triggered  $\text{Ca}^{2+}$ -influx has already returned to baseline by 8h  
317 after flg22 application (Figure 3A), CPK5, once activated by  $\text{Ca}^{2+}$ , may not be affected  
318 by G6P for some time. Next, to dissect the relationship between CPK5/6-mediated and  
319 STP-mediated signalling during PTI, we established *stp1/4/13/cpk5/6* quintuple mutants  
320 (Figure S8A). These *stp1/4/13/cpk5/6* plants showed almost no response to 2DG, like  
321 *stp1/4/13* plants (Figure S8B). Thus, *stp1/4/13* mutations are epistatic to *cpk5/6* mutations  
322 with respect to 2DG response because 2DG influx is essential to trigger 2DG-induced

323 signalling. On the other hand, in response to flg22, *stp1/4/13/cpk5/6* plants showed an  
324 additive phenotype relative to *cpk5/6* and *stp1/4/13* plants. *stp1/4/13/cpk5/6* plants  
325 exhibited a further reduction in flg22-triggered expression of *NHL10* and *PAD3*,  
326 compared with *cpk5/6* and *stp1/4/13* plants (Figure 4D). These additive effects suggested  
327 that STP-mediated sugar influx stimulates CPK5/6-independent signalling, which  
328 promotes flg22-triggered expression of *NHL10* and *PAD3* together with  $\text{Ca}^{2+}$ -activated  
329 CPK5/6-mediated signalling.

330 Expression of *PBS3* and *SID2* in response to flg22 were also reduced in *stp1/4/13*  
331 plants (Figure 4E). Consistently, flg22-induced SA amounts were less induced in  
332 *stp1/4/13* plants (Figure 4D), indicating that sugar influx activates SA biosynthesis  
333 pathway in response to flg22. On the other hand, we found that SA-synthetic gene  
334 expression and SA accumulation were highly induced in *cpk5/6* plants in response to flg22  
335 as well as 2DG (Figure 4D, 4E), although CPK5 was previously reported to promote SA  
336 synthesis during effector-triggered immunity (Gao et al., 2013; Liu et al., 2017). We  
337 confirmed that enhanced SA amounts in *cpk5/6* plants were also detected in mature leaves  
338 after flg22 application or inoculation of *Pst* DC3000 (Figure S9A). In addition, although  
339 *cpk5/6* plants were less susceptible to spray-inoculated *Pst* DC3000 than WT plants, an  
340 SA-deficient *sid2* mutation conferred higher susceptibility to *Pst* DC3000 to *cpk5/6* plants  
341 (Figure S9B), suggesting that high SA levels elevated anti-bacterial resistance in *cpk5/6*  
342 plants under our experimental conditions. Interestingly, we demonstrated that *cpk5/6*  
343 mutations were epistatic to *stp1/4/13* mutations with respect to flg22-triggered SA  
344 synthesis. In response to flg22, *stp1/4/13/cpk5/6* plants showed high SA accumulation  
345 similar to *cpk5/6* plants, whereas SA levels were reduced in *stp1/4/13* plants (Figure 4E).  
346 These results revealed that CPK5/6-mediated SA suppression becomes dominant in  
347 *stp1/4/13* plants, and suggested that STP-mediated sugar signalling promote SA synthesis  
348 by attenuating this CPK5/6 effect in WT plants. However, we guess that STP-mediated  
349 sugar influx does not lead to inhibition of CPK5/6 activity, because flg22-triggered SA  
350 synthesis was not altered between WT and *cpk5/6* plants under sugar-deficient conditions  
351 (Figure S9C), which indicates that loss of CPK5/6 activity was not a direct trigger for SA  
352 synthesis. Therefore, we concluded that STP-mediated sugar influx enhances SA-  
353 synthetic signalling which antagonistically acts on CPK5/6-mediated SA suppression  
354 during flg22-triggered immunity. On the other hand, elevated susceptibility to *Pst*  
355 DC3000 ( $\Delta\text{avrPto}\Delta\text{avrPtoB}$ ) in *stp1/4/13* plants was not significantly reduced in  
356 *stp1/4/13/cpk5/6* plants despite higher SA accumulation, whereas it decreased mildly  
357 (Figure 4F). Because an increase in apoplastic sugar amounts by loss of STPs elevates  
358 bacterial virulence (Yamada et al., 2016), it could cancel SA-mediated immunity from

359 loss of CPK5/6.

360 We found that, unlike flg22, application of the fungal cell wall component chitin  
361 did not stimulate sugar influx activity or increase G6P amounts (Figure 4A, 4B). *STP13*,  
362 a gene responsible for flg22-induced sugar influx activity (Yamada et al., 2016), was less  
363 induced in response to chitin than in response to flg22 (Figure S10A, S10B). Moreover,  
364 CERK1, the co-receptor for chitin receptors, did not phosphorylate the STP13 T485  
365 residue (Yamada et al., 2016) which is the important residue for elevation of sugar influx  
366 activity (Figure S10C), although BAK1, the co-receptor for the flagellin receptor, did *in*  
367 *vitro* (Yamada et al., 2016). Therefore, we wondered if sugar influx activity does not  
368 contribute to chitin-triggered signalling. However, chitin-triggered *PAD3* expression and  
369 camalexin synthesis were reduced in *stp1/4/13* plants (Figure 4E, 5A), indicating that  
370 basal sugar influx activity mediated by STPs is required for chitin-triggered signalling.  
371 On the other hand, chitin-triggered *NHL10* expression was not reduced, while flg22-  
372 triggered expression was reduced, in *stp1/4/13* plants (Figure 5A), suggesting that the  
373 contribution of STP-mediated sugar influx to chitin-triggered signalling is lower than to  
374 flg22-triggered signalling. STP-mediated sugar influx led to activation of CPK5-  
375 independent signalling pathways in response to chitin as well as flg22. *PAD3* expression  
376 and camalexin accumulation were further reduced in *stp1/4/13/cpk5/6* plants in response  
377 to chitin, compared to *cpk5/6* and *stp1/4/13* plants (Figure 4E, 5A). Furthermore, anti-  
378 fungal defence against the necrotrophic fungus *Alternaria brassicicola* was massively  
379 reduced in *stp1/4/13/cpk5/6* plants (Figure 5B). Taken together, these data show that STP-  
380 mediated sugar influx contributes to defence against both bacterial and fungal pathogens,  
381 although it differentially affects these PAMP receptor signalling processes.

382

### 383 **Cellular sugar amounts determine SA synthesis during pattern-triggered immunity**

384 We found that chitin application did not induce SA-synthetic gene expression or  
385 SA synthesis under our experimental conditions (25 mM Suc) (Figure 5A). Previous  
386 studies also reported that chitin treatment did not induce expression of the SA marker  
387 gene *PR1* (Gust et al., 2007). However, chitin treatment induced SA accumulation in  
388 *cpk5/6* plants (Figure 5C). This result suggests that chitin signalling can stimulate SA-  
389 synthetic signalling, but is too weak to overcome CPK5/6-mediated suppression. We  
390 noticed that it resembles flg22-triggered SA accumulation patterns in *stp1/4/13* and  
391 *stp1/4/13/cpk5/6* plants. Therefore, unincreased cytoplasmic sugar levels (Figure 4B), due  
392 to unenhanced sugar influx activity (Figure 4A), may cause undetectable chitin-triggered  
393 SA synthesis. To investigate this hypothesis, we treated plants with chitin under higher  
394 sugar conditions (100 mM Suc) to elevate basal cellular sugar amounts. Notably, chitin-

395 triggered SA accumulation was observable even in WT plants under these conditions  
396 (Figure 5C). Taken together, these data suggested that cellular sugar levels are key factors  
397 for SA synthesis during PTI.

398

399 **Discussion**

400 In this study, we provide evidence that cellular sugar level is a critical factor  
401 regulating defence outputs. We found that G6P, not Glc, contributes to defence activation  
402 in *Arabidopsis*. Likewise, G6P has been reported to stimulate sugar signalling in animals,  
403 for instance via promoting the nuclear localization of the transcription factor MondoA  
404 (Stoltzman et al., 2008). Because Glc is rapidly phosphorylated by HXK in the cytoplasm,  
405 Glc amounts are limited in the cytoplasm; Glc is mainly compartmentalized into the  
406 vacuole in plant cells (Leidreiter et al., 1995). Therefore, cytoplasmic G6P sensory  
407 mechanisms may have evolved in various organisms. However, the mode of action of  
408 these G6P sensors has been elusive. We propose a mechanism by which G6P suppresses  
409 the activity of clade A PP2Cs and dissociates the PP2Cs from CPK5, leading to an  
410 increase in CPK5 phosphorylation levels. This contributes to defence priming for stronger  
411 PTI responses.

412 After recognition of PAMPs, STP-mediated sugar influx activates CPK5-  
413 independent signalling. We showed that at least two CPK5-independent pathways are  
414 stimulated by sugar influx during PTI. One stimulates *NHL10* and *PAD3*, like the CPK5/6  
415 pathway (Figure 5D). The other acts antagonistically on the CPK5/6 pathway which  
416 represses *PBS3* and *SID2* (Figure 5D). The later signal pathway is required to synthesize  
417 SA during PTI. The sugar sensor SnRK1 becomes active, prioritizing the catabolic rather  
418 than the anabolic pathway under sugar-starved conditions. It was reported that *SnRK1*  
419 overexpression led to suppression of Glc-induced *PR1* (Jossier et al., 2009). Because G6P  
420 is a candidate molecule for suppression of SnRK1 activity (Toroser et al., 2000),  
421 enhanced G6P levels via STPs could inhibit SnRK1 activity for SA synthesis in response  
422 to flg22.

423 SA signalling is critical for anti-bacterial defence although it can have negative  
424 effects on anti-fungal defence, especially against necrotrophic fungal pathogens (Flors et  
425 al., 2008). Our study demonstrated that flg22-triggered signalling forces sugar  
426 transporters to elevate cellular sugar amounts, activating SA synthesis. In contrast, basal  
427 sugar amounts determined SA synthesis during chitin-triggered signalling. Chitin  
428 signalling did increase SA synthesis only in the presence of high levels of sugar. We  
429 inferred from these data that flg22 and chitin receptor signalling differentially affect sugar  
430 influx activity, promoting appropriate defence outputs against pathogens with different

431 sensitivities to SA-mediated defence. However, sugar influx activity was reported to be  
432 enhanced during infection by necrotrophic fungal pathogens (Veillet et al., 2017),  
433 suggesting that fungal PAMPs other than chitin could activate sugar influx activity. As  
434 the synthesis of not only SA but also camalexin in response to chitin was elevated under  
435 higher Suc conditions (Figure 5C), sugar influx also contributes to increasing the  
436 amplitude of anti-fungal defence.

437 We showed qualitative differences between flg22-triggered and chitin-triggered  
438 defence outputs in a manner that depends on cellular sugar amounts. Although  
439 recognition of each PAMP immediately induces similar sets of defence-related genes  
440 (Bjornson et al., 2021), transcriptional profiles triggered by each PAMP during later  
441 phases were reported to be different (Kim et al., 2014). We expected that sugar influx  
442 might cause these differences during the later PTI phases. In fact, the contribution of STPs  
443 became larger during the late phase of flg22-triggered signalling, apparently correlating  
444 with the timing of enhancement of STP-mediated sugar influx activity (Figure S7B).  
445 Because nutrient competition occurs at the interface of host-pathogen interactions, we  
446 previously described sugar uptake by STPs as contributing to interruption of pathogen  
447 sugar acquisition (Yamada et al., 2016). We now highlight it again as an important plant  
448 defence system that not only suppresses the pathogen but also co-ordinates the plant  
449 defence. Altogether, we provide a comprehensive view of how sugar contributes to  
450 defence signalling in plants. Because defence signalling is energy-intensive, estimating  
451 sugar availability by monitoring cellular G6P amounts may allow fine-tuning of defence  
452 outputs. Furthermore, we propose that host metabolic conditions are involved in  
453 activating appropriate plant defence outputs. Environmental cues such as light, humidity,  
454 and temperature dynamically influence cellular sugar levels (Gibon et al., 2004;  
455 Maruyama et al., 2009). These environments were also reported to affect plant defence  
456 signalling. For example, dark-induced sugar-starvation elevated susceptibility to  
457 pathogens (Engelsdorf et al., 2013). In addition, cold and drought conditions, which  
458 increase cellular sugar amounts in plants, induced *PRI* expression (Kim et al., 2017; Liu  
459 et al., 2013). It will be interesting to analyse whether sugar plays a role in molecular  
460 integration of environmental conditions into defence signalling.

461

## 462 Acknowledgements

463 We thank Dr. Ryo Matsumoto (Tokushima University) for technical assistance, and  
464 Advanced Radiation Research, Education, and Management Centre (Tokushima  
465 University) for radioisotope experiments. This work was supported by JST PRESTO  
466 (JPMJPR17Q9, K.Y.; JPMJPR17Q6, A.M.), JSPS KAKENHI (20K21280, 21H02157,

467 K.Y.), the Sumitomo Foundation (K.Y.) and the Mitsubishi Foundation (K.Y.).

468

469 **Author contributions**

470 **Kohji Yamada:** Conceptualization, Resources, Formal analysis, Data curation,  
471 Validation, Funding acquisition, Investigation, Writing-original draft, Project  
472 administration. **Akira Mine:** Formal analysis, Data curation, Funding acquisition,  
473 Investigation.

474

475 **Disclosure and competing interests statement**

476 The authors declare that they have no conflict of interest.

477

478

479 **References**

480 Bjornson, M., Pimprikar, P., Nürnberg, T., Zipfel, C., 2021. The transcriptional  
481 landscape of *Arabidopsis thaliana* pattern-triggered immunity. *Nat. Plants* 7, 579–  
482 586. <https://doi.org/10.1038/s41477-021-00874-5>

483 Boorer, K.J., Loo, D.D., Wright, E.M., 1994. Steady-state and presteady-state kinetics of  
484 the H<sup>+</sup>/hexose cotransporter (STP1) from *Arabidopsis thaliana* expressed in  
485 *Xenopus* oocytes. *J. Biol. Chem.* 269, 20417–20424.  
486 [https://doi.org/10.1016/S0021-9258\(17\)32008-2](https://doi.org/10.1016/S0021-9258(17)32008-2)

487 Boudsocq, M., Willmann, M.R., McCormack, M., Lee, H., Shan, L., He, P., Bush, J.,  
488 Cheng, S.-H., Sheen, J., 2010. Differential innate immune signalling via Ca<sup>2+</sup>  
489 sensor protein kinases. *Nature* 464, 418–422. <https://doi.org/10.1038/nature08794>

490 Brandt, B., Munemasa, S., Wang, C., Nguyen, D., Yong, T., Yang, P.G., Poretsky, E.,  
491 Belknap, T.F., Waadt, R., Alemán, F., Schroeder, J.I., 2015. Calcium specificity  
492 signaling mechanisms in abscisic acid signal transduction in *Arabidopsis* guard  
493 cells. *eLife* 4, e03599. <https://doi.org/10.7554/eLife.03599>

494 Bruggeman, Q., Prunier, F., Mazubert, C., de Bont, L., Garmier, M., Lugan, R., Benhamed,  
495 M., Bergounioux, C., Raynaud, C., Delarue, M., 2015. Involvement of  
496 *Arabidopsis* Hexokinase1 in Cell Death Mediated by *Myo*-Inositol Accumulation.  
497 *Plant Cell* 27, 1801–1814. <https://doi.org/10.1105/tpc.15.00068>

498 Couto, D., Zipfel, C., 2016. Regulation of pattern recognition receptor signalling in plants.  
499 *Nat. Rev. Immunol.* 16, 537–552. <https://doi.org/10.1038/nri.2016.77>

500 Engelsdorf, T., Horst, R.J., Pröls, R., Pröschel, M., Dietz, F., Hückelhoven, R., Voll, L.M.,  
501 2013. Reduced Carbohydrate Availability Enhances the Susceptibility of  
502 *Arabidopsis* toward *Colletotrichum higginsianum*. *Plant Physiol.* 162, 225–238.  
503 <https://doi.org/10.1104/pp.112.209676>

504 Flors, V., Ton, J., Van Doorn, R., Jakab, G., García-Agustín, P., Mauch-Mani, B., 2008.  
505 Interplay between JA, SA and ABA signalling during basal and induced resistance  
506 against *Pseudomonas syringae* and *Alternaria brassicicola*. *Plant J.* 54, 81–92.  
507 <https://doi.org/10.1111/j.1365-313X.2007.03397.x>

508 Gao, X., Chen, X., Lin, W., Chen, S., Lu, D., Niu, Y., Li, L., Cheng, C., McCormack, M.,  
509 Sheen, J., Shan, L., He, P., 2013. Bifurcation of *Arabidopsis* NLR Immune  
510 Signaling via Ca<sup>2+</sup>-Dependent Protein Kinases. *PLoS Pathog.* 9, e1003127.  
511 <https://doi.org/10.1371/journal.ppat.1003127>

512 Geiger, D., Scherzer, S., Mumm, P., Marten, I., Ache, P., Matschi, S., Liese, A., Wellmann,  
513 C., Al-Rasheid, K.A.S., Grill, E., Romeis, T., Hedrich, R., 2010. Guard cell anion  
514 channel SLAC1 is regulated by CDPK protein kinases with distinct Ca<sup>2+</sup>

515 affinities. Proc. Natl. Acad. Sci. 107, 8023–8028.  
516 <https://doi.org/10.1073/pnas.0912030107>

517 Gibon, Y., Bläsing, O.E., Palacios-Rojas, N., Pankovic, D., Hendriks, J.H.M., Fisahn, J.,  
518 Höhne, M., Günther, M., Stitt, M., 2004. Adjustment of diurnal starch turnover to  
519 short days: depletion of sugar during the night leads to a temporary inhibition of  
520 carbohydrate utilization, accumulation of sugars and post-translational activation  
521 of ADP-glucose pyrophosphorylase in the following light period. *Plant J.* 39, 847–  
522 862. <https://doi.org/10.1111/j.1365-313X.2004.02173.x>

523 Gómez-Ariza, J., Campo, S., Rufat, M., Estopà, M., Messeguer, J., Segundo, B.S., Coca,  
524 M., 2007. Sucrose-Mediated Priming of Plant Defense Responses and Broad-  
525 Spectrum Disease Resistance by Overexpression of the Maize Pathogenesis-  
526 Related PRms Protein in Rice Plants. *Mol. Plant-Microbe Interactions®* 20, 832–  
527 842. <https://doi.org/10.1094/MPMI-20-7-0832>

528 Gust, A.A., Biswas, R., Lenz, H.D., Rauhut, T., Ranf, S., Kemmerling, B., Götz, F.,  
529 Glawischnig, E., Lee, J., Felix, G., Nürnberger, T., 2007. Bacteria-derived  
530 Peptidoglycans Constitute Pathogen-associated Molecular Patterns Triggering  
531 Innate Immunity in *Arabidopsis*. *J. Biol. Chem.* 282, 32338–32348.  
532 <https://doi.org/10.1074/jbc.M704886200>

533 Jang, J., Sheen, J., 1994. Sugar Sensing in Higher Plants 6, 1665–1679.

534 Jossier, M., Bouly, J.-P., Meimoun, P., Arjmand, A., Lessard, P., Hawley, S., Grahame  
535 Hardie, D., Thomas, M., 2009. SnRK1 (SNF1-related kinase 1) has a central role  
536 in sugar and ABA signalling in *Arabidopsis thaliana*. *Plant J.* 59, 316–328.  
537 <https://doi.org/10.1111/j.1365-313X.2009.03871.x>

538 Kadota, Y., Sklenar, J., Derbyshire, P., Stransfeld, L., Asai, S., Ntoukakis, V., Jones, J.D.,  
539 Shirasu, K., Menke, F., Jones, A., Zipfel, C., 2014. Direct Regulation of the  
540 NADPH Oxidase RBOHD by the PRR-Associated Kinase BIK1 during Plant  
541 Immunity. *Mol. Cell* 54, 43–55. <https://doi.org/10.1016/j.molcel.2014.02.021>

542 Kim, Y., Tsuda, K., Igarashi, D., Hillmer, R.A., Sakakibara, H., Myers, C.L., Katagiri, F.,  
543 2014. Mechanisms Underlying Robustness and Tunability in a Plant Immune  
544 Signaling Network. *Cell Host Microbe* 15, 84–94.  
545 <https://doi.org/10.1016/j.chom.2013.12.002>

546 Kim, Y.S., An, C., Park, S., Gilmour, S.J., Wang, L., Renna, L., Brandizzi, F., Grumet, R.,  
547 Thomashow, M.F., 2017. CAMTA-Mediated Regulation of Salicylic Acid  
548 Immunity Pathway Genes in *Arabidopsis* Exposed to Low Temperature and  
549 Pathogen Infection. *Plant Cell* 29, 2465–2477.  
550 <https://doi.org/10.1105/tpc.16.00865>

551 Leidreiter, K., Kruse, A., Heineke, D., Robinson, D.G., Heldt, H.-W., 1995. Subcellular  
552 Volumes and Metabolite Concentrations in Potato (*Solanum tuberosum* cv.  
553 Désirée) Leaves <sup>1</sup>. *Bot. Acta* 108, 439–444. <https://doi.org/10.1111/j.1438-8677.1995.tb00518.x>

555 Liu, N., Hake, K., Wang, W., Zhao, T., Romeis, T., Tang, D., 2017. CALCIUM-  
556 DEPENDENT PROTEIN KINASE5 Associates with the Truncated NLR Protein  
557 TIR-NBS2 to Contribute to *exo70B1*- Mediated Immunity. *Plant Cell* 29, 746–  
558 759. <https://doi.org/10.1105/tpc.16.00822>

559 Liu, W.-X., Zhang, F.-C., Zhang, W.-Z., Song, L.-F., Wu, W.-H., Chen, Y.-F., 2013.  
560 *Arabidopsis* Di19 Functions as a Transcription Factor and Modulates PR1, PR2,  
561 and PR5 Expression in Response to Drought Stress. *Mol. Plant* 6, 1487–1502.  
562 <https://doi.org/10.1093/mp/sst031>

563 Lynch, T., Erickson, B.J., Finkelstein, R.R., 2012. Direct interactions of ABA-  
564 insensitive(ABI)-clade protein phosphatase(PP)2Cs with calcium-dependent  
565 protein kinases and ABA response element-binding bZIPs may contribute to  
566 turning off ABA response. *Plant Mol. Biol.* 80, 647–658.  
567 <https://doi.org/10.1007/s11103-012-9973-3>

568 Maruyama, K., Takeda, M., Kidokoro, S., Yamada, K., Sakuma, Y., Urano, K., Fujita, M.,  
569 Yoshiwara, K., Matsukura, S., Morishita, Y., Sasaki, R., Suzuki, H., Saito, K.,  
570 Shibata, D., Shinozaki, K., Yamaguchi-Shinozaki, K., 2009. Metabolic Pathways  
571 Involved in Cold Acclimation Identified by Integrated Analysis of Metabolites  
572 and Transcripts Regulated by DREB1A and DREB2A. *Plant Physiol.* 150, 1972–  
573 1980. <https://doi.org/10.1104/pp.109.135327>

574 Moore, B., Zhou, L., Rolland, F., Hall, Q., Cheng, W.-H., Liu, Y.-X., Hwang, I., Jones, T.,  
575 Sheen, J., 2003. Role of the *Arabidopsis* Glucose Sensor HXK1 in Nutrient, Light,  
576 and Hormonal Signaling. *Science* 300, 332–336.  
577 <https://doi.org/10.1126/science.1080585>

578 Ohto, M., Nakamura, K., 1995. Sugar-Induced Increase of Calcium-Dependent Protein  
579 Kinases Associated with the Plasma Membrane in Leaf Tissues of Tobacco. *Plant*  
580 *Physiol.* 109, 973–981. <https://doi.org/10.1104/pp.109.3.973>

581 Sheen, J., Zhou, L., Jang, J.-C., 1999. Sugars as signaling molecules. *Curr. Opin. Plant*  
582 *Biol.* 2, 410–418. [https://doi.org/10.1016/S1369-5266\(99\)00014-X](https://doi.org/10.1016/S1369-5266(99)00014-X)

583 Sols, A., Crane, R.K., 1954. SUBSTRATE SPECIFICITY OF BRAIN HEXOKINASE.  
584 *J. Biol. Chem.* 210, 581–595. [https://doi.org/10.1016/S0021-9258\(18\)65384-0](https://doi.org/10.1016/S0021-9258(18)65384-0)

585 Stoltzman, C.A., Peterson, C.W., Breen, K.T., Muoio, D.M., Billin, A.N., Ayer, D.E.,  
586 2008. Glucose sensing by MondoA:Milx complexes: A role for hexokinases and

587 direct regulation of thioredoxin-interacting protein expression. Proc. Natl. Acad.  
588 Sci. 105, 6912–6917. <https://doi.org/10.1073/pnas.0712199105>

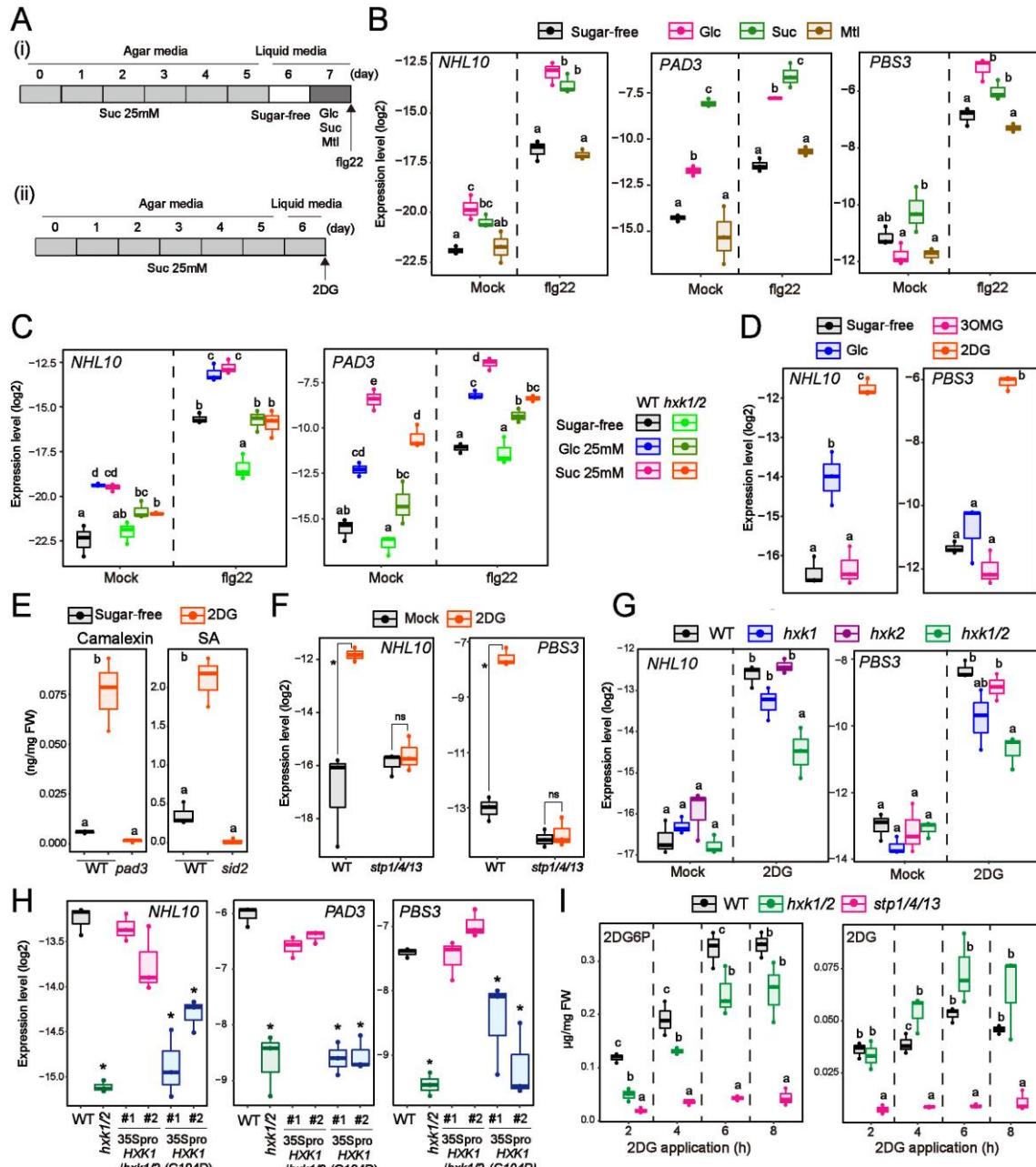
589 Toroser, D., Plaut, Z., Huber, S.C., 2000. Regulation of a Plant SNF1-Related Protein  
590 Kinase by Glucose-6-Phosphate. Plant Physiol. 123, 403–412.  
591 <https://doi.org/10.1104/pp.123.1.403>

592 Tsutsui, T., Nakano, A., Ueda, T., 2015. The Plant-Specific RAB5 GTPase ARA6 is  
593 Required for Starch and Sugar Homeostasis in *Arabidopsis thaliana*. Plant Cell  
594 Physiol. 56, 1073–1083. <https://doi.org/10.1093/pcp/pcv029>

595 Veillet, F., Gaillard, C., Lemonnier, P., Coutos-Thévenot, P., La Camera, S., 2017. The  
596 molecular dialogue between *Arabidopsis thaliana* and the necrotrophic fungus  
597 *Botrytis cinerea* leads to major changes in host carbon metabolism. Sci. Rep. 7, 17121.  
598 <https://doi.org/10.1038/s41598-017-17413-y>

599 Wick, A.N., Drury, D.R., Nakada, H.I., Wolfe, J.B., Britton, B., Grabowski, R., 1957.  
600 LOCALIZATION OF THE PRIMARY METABOLIC BLOCK PRODUCED BY  
601 2-DEOXYGLUCOSE. J. Biol. Chem. 224, 963–969.  
602 [https://doi.org/10.1016/S0021-9258\(18\)64988-9](https://doi.org/10.1016/S0021-9258(18)64988-9)

603 Xiao, W., Sheen, J., Jang, J.-C., 2000. The role of hexokinase in plant sugar signal  
604 transduction and growth and development. Plant Mol. Biol. 44, 451–461.  
605 <https://doi.org/10.1023/A:1026501430422>


606 Yamada, K., Kanai, M., Osakabe, Y., Ohiraki, H., Shinozaki, K., Yamaguchi-Shinozaki,  
607 K., 2011. Monosaccharide absorption activity of *Arabidopsis* roots depends on  
608 expression profiles of transporter genes under high salinity conditions. J. Biol.  
609 Chem. 286, 43577–43586. <https://doi.org/10.1074/jbc.M111.269712>

610 Yamada, K., Saijo, Y., Nakagami, H., Takano, Y., 2016. Regulation of sugar transporter  
611 activity for antibacterial defense in *Arabidopsis*. Science 354, 1427–1430.  
612 <https://doi.org/10.1126/science.aah5692>

613 Zhou, J., Wang, X., He, Y., Sang, T., Wang, P., Dai, S., Zhang, S., Meng, X., 2020.  
614 Differential Phosphorylation of the Transcription Factor WRKY33 by the Protein  
615 Kinases CPK5/CPK6 and MPK3/MPK6 Cooperatively Regulates Camalexin  
616 Biosynthesis in *Arabidopsis*. Plant Cell 32, 2621–2638.  
617 <https://doi.org/10.1105/tpc.19.00971>

618

619



620

621 **Figure 1, Sugar promotes plant defence signalling via HXK-mediated Glc**  
 622 **phosphorylation.**

623 **A**, A schematic description of experimental procedures for flg22 application in the  
 624 presence of glucose (Glc), sucrose (Suc), or mannitol (Mtl) (i) or 2DG treatment (ii).

625 **B** and **C**, qRT-PCR analysis of defence-related gene expression in *Arabidopsis* seedlings  
 626 exposed to mock or 1  $\mu$ M flg22 for 8 h in the presence of 25 mM Glc, 25 mM Suc, or  
 627 25 mM Mtl (n = 3, biologically independent samples).

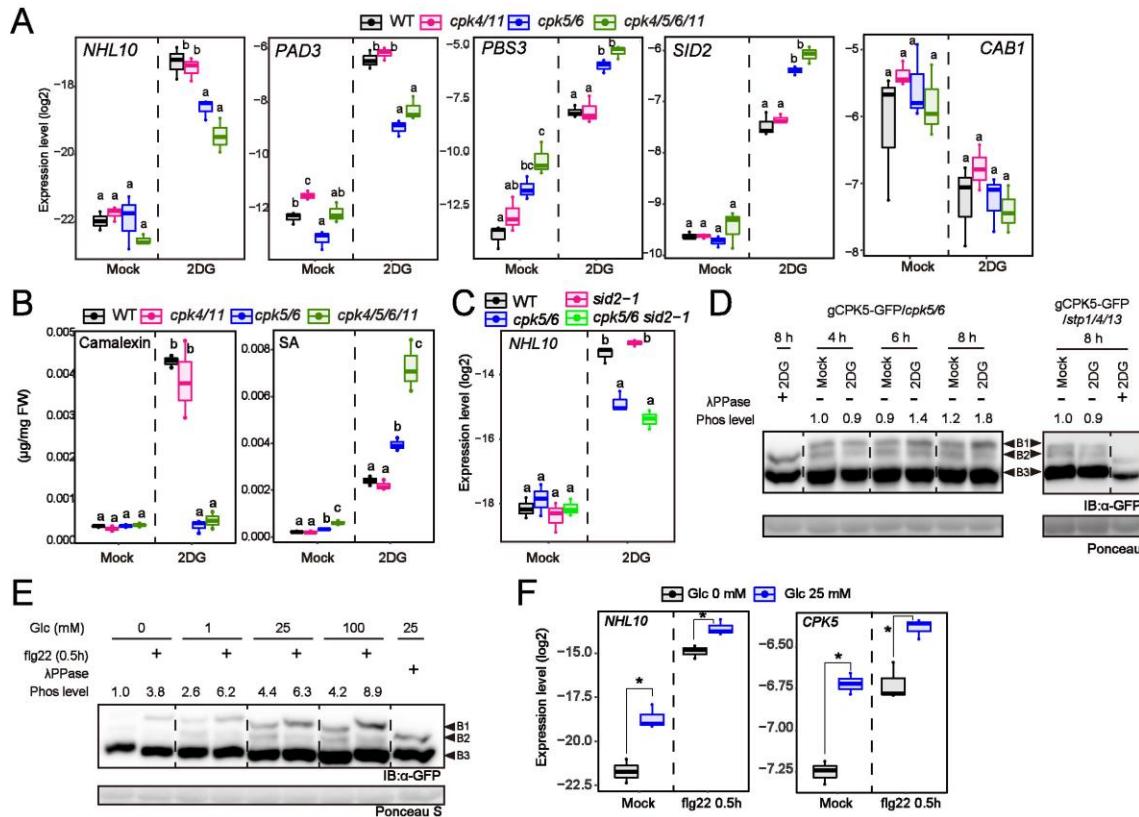
628 **D**, qRT-PCR analysis of defence-related gene expression in *Arabidopsis* seedlings

629 exposed to 25 mM Glc, 25 mM 3OMG or 0.5 mM 2DG for 24 h (n = 3, biologically  
630 independent samples).

631 **E**, Quantification of camalexin and SA 24 h after 0.5 mM 2DG treatment (n = 3,  
632 biologically independent samples). FW indicates fresh weight.

633 **F** and **G**, qRT-PCR analysis of defence-related gene expression in *Arabidopsis* seedlings  
634 exposed to mock or 0.5 mM 2DG for 8 h (n = 3, biologically independent samples).

635 **H**, qRT-PCR analysis of defence-related gene expression in *Arabidopsis* seedlings  
636 exposed to 0.5 mM 2DG for 8 h (n = 3, biologically independent samples).


637 **I**, Quantification of 2DG6P and 2DG after 0.5 mM 2DG treatment (n = 3, biologically  
638 independent samples). FW indicates fresh weight.

639 Statistically significant differences among samples were determined using the two-tailed  
640 Welch's t test ( $P < 0.05$ ) (E) or one-way ANOVA with multiple comparison tests (Tukey  
641 HSD) and are represented by asterisks or different letters ( $P < 0.05$ ). ns indicates non-  
642 significant.

643

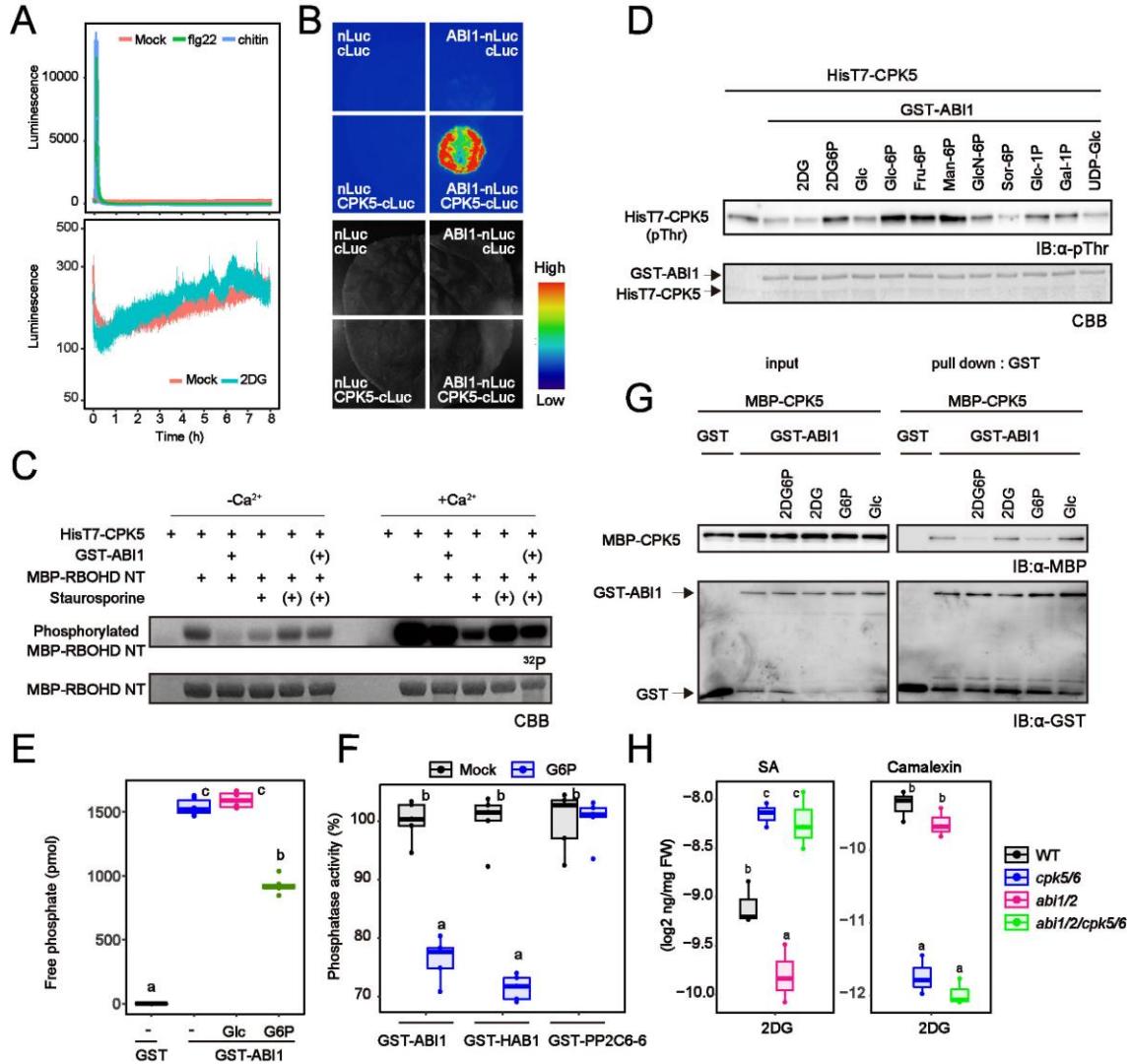
644

645



646

647 **Figure 2, Clade A protein phosphatase C suppresses the activity of calcium-  
648 dependent protein kinase in a glucose-6-phosphoate-dependent manner.**


649 **A** and **C**, qRT-PCR analysis of defence-related gene expression in *Arabidopsis* seedlings  
650 exposed to mock or 0.5 mM 2DG for 8 h (n = 3, biologically independent samples).  
**B**, Quantification of camalexin and SA 24 h after mock or 0.5 mM 2DG treatment (n = 3,  
651 biologically independent samples). FW indicates fresh weight.  
**D** and **E**, Immunoblot analysis of CPK5-GFP in *Arabidopsis* seedlings after 0.5 mM 2DG  
652 application (D) or 1 μM flg22 application (E) (Mn<sup>2+</sup>-Phos-tag SDS-PAGE). Phospho  
653 levels were calculated as the ratios of intensities of B1 and B3. The phospho levels of  
654 mock 4h (D) and mock in the absence of Glc (E) were set to 1.0. IB denotes  
655 immunoblotting with anti-GFP antibodies. Ponceau S-stained membranes are shown  
656 below.

657 **F**, qRT-PCR analysis of defence-related gene expression in *Arabidopsis* seedlings  
658 exposed to mock or flg22 for 0.5 h in the absence/presence of 25 mM Glc (n = 3,  
659 biologically independent samples).

660 Individual data points are plotted. In box plots, centre lines represent the medians, box  
661 edges delimit lower and upper quartiles and whiskers show the highest and lowest data  
662 points. Experiments in this figure were repeated at least three times with similar trends.

665 Statistically significant differences among samples were determined using the two-tailed  
666 Welch's t test ( $P < 0.05$ ) (A, F) or one-way ANOVA with multiple comparison tests  
667 (Tukey HSD) and are represented by asterisks or different letters ( $P < 0.05$ ). ns indicates  
668 non-significant.

669



670

671 **Figure 3, Glucose-6-phosphate suppresses dephosphorylation of CPK5 by clade A**  
672 **protein phosphatase 2Cs**

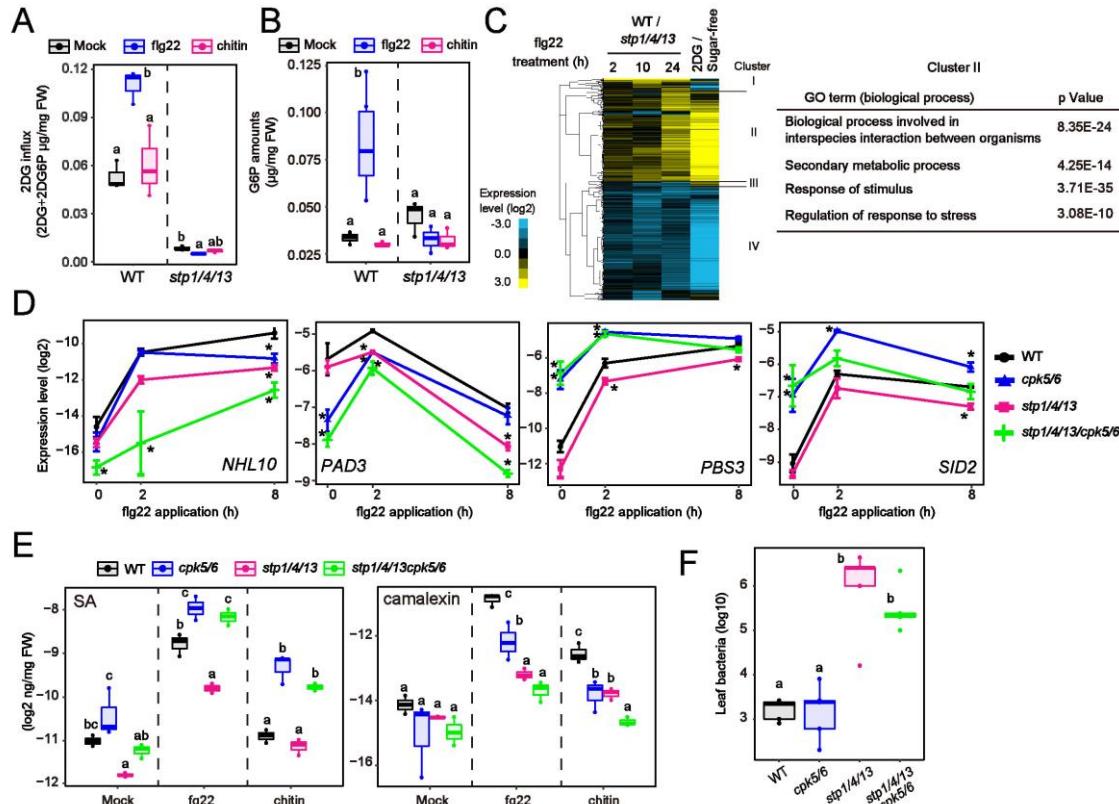
673 **A**, Cytosolic Ca<sup>2+</sup> concentrations were measured via aequorin-mediated luminescence in  
674 response to PAMPs (left) or 2DG (right) (mean  $\pm$  SE, n = 8, biologically independent  
675 samples).

676 **B**, Split-luciferase assay for protein interactions between ABI1 and CPK5 in *N.*  
677 *benthamiana* leaves.

678 **C**, Autoradiograph of RBPHD-NT phosphorylation by CPK5 *in vitro* for 30 min with [ $\gamma$ -  
679  $^{32}$ P] ATP (upper images). Parentheses indicate addition 15 min after the reaction was  
680 started. CBB-stained gels are shown below.

681 **D**, ABI1 dephosphorylates CPK5 *in vitro*. Phosphorylation of CPK5 was detected by anti-  
682 phospho-threonine antibody. 10 mM sugars were applied. IB denotes immunoblotting.  
683 Fru-6P, Man-6P, GlcN-6P, Sor-6P, Glc-1P, Gal1P, and UDP-Glc indicate fructose-6-

684 phosphate, mannose-6-phosphate, glucosamine-6-phosphate, sorbitol-6-phosphate,  
685 glucose-1-phosphate, galactose-6-phosphate, and UDP-glucose, respectively.


686 **E** and **F**, *in vitro* phosphatase activity of ABI1. 10 mM sugars were applied.

687 **G** *in vitro* protein interaction between CPK5 and ABI1. 10 mM sugars were applied.

688 IB denotes immunoblotting with anti-MBP or anti-GST antibodies.

689 **H**, Quantification of camalexin and SA 24 h after mock or 0.5 mM 2DG treatment (n =  
690 3, biologically independent samples). FW indicates fresh weight.

691 Statistically significant differences among samples were determined using one-way  
692 ANOVA with multiple comparison tests (Tukey HSD) and are represented by different  
693 letters ( $P < 0.05$ ). ns indicates non-significant.



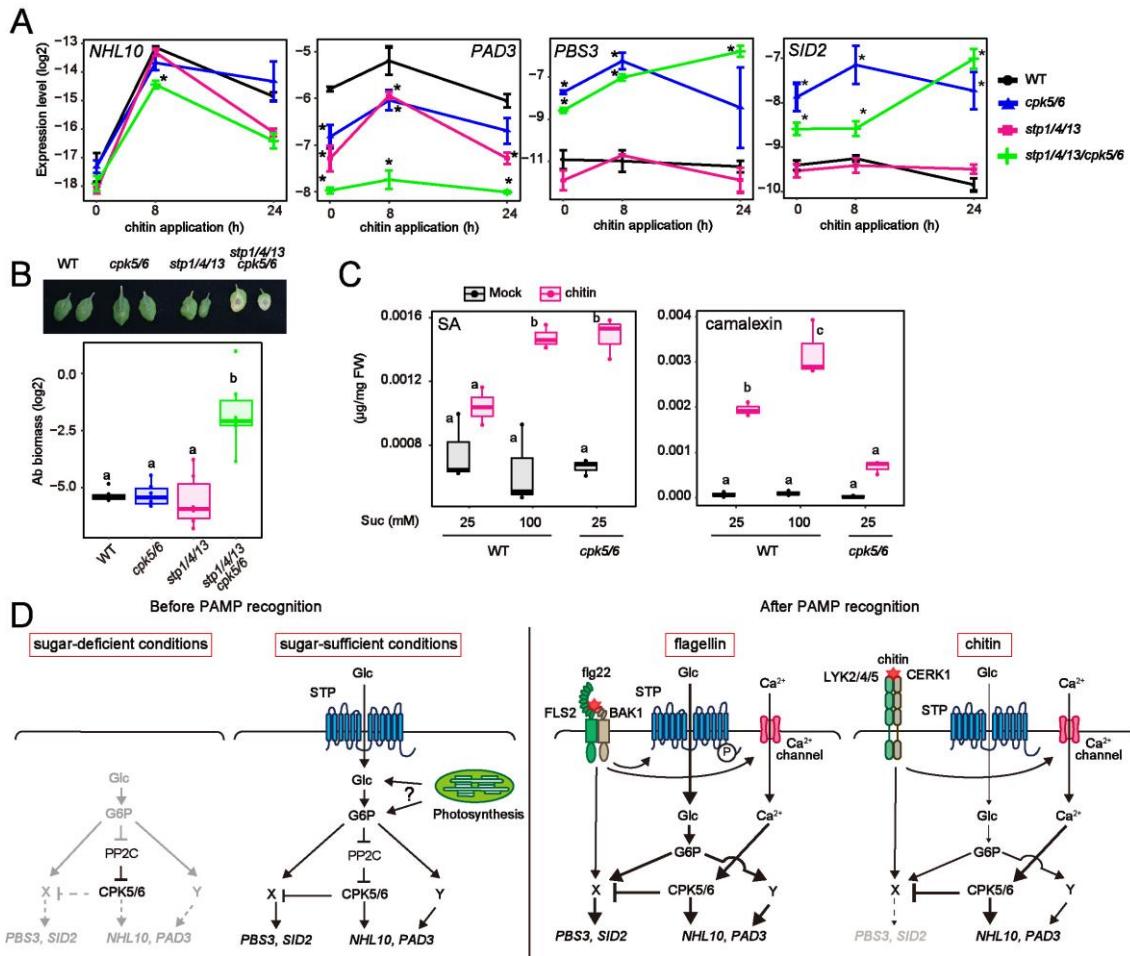
694  
695 **Figure 4, Sugar influx contributes to pattern-triggered signalling.**

696 A, Glucose influx activity in *Arabidopsis* seedlings 8 h after 1  $\mu$ M flg22 treatment (n = 3, 697 biologically independent samples). Glucose influx activity was measured by 698 calculating the mixed amounts of 2DG and 2DG6P 1h after 0.5 mM 2DG application.

699 B, Quantification of G6P in *Arabidopsis* seedlings 8 h after 1  $\mu$ M flg22 treatment under 700 25 mM Suc conditions (n = 3, biologically independent samples). FW indicates fresh 701 weight.

702 C, Heat maps displaying expression patterns of genes that show significant expression 703 changes in *stp1/4/13* plants, relative to WT plants, in response to 1  $\mu$ M flg22 in the 704 presence of 25 mM Suc (q < 0.01 and  $|\log_2\text{FC}| > 1$ ). The log2 fold changes relative 705 to WT were subjected to hierarchical clustering analysis (left). Overrepresented GO 706 terms in cluster II are presented (right).

707 D, qRT-PCR analysis of defence-related gene expression in *Arabidopsis* seedlings 708 exposed to 1  $\mu$ M flg22 under 25 mM Suc conditions (n = 3, biologically independent 709 samples).


710 E, Quantification of SA and camalexin in *Arabidopsis* seedlings 8 h after 1  $\mu$ M flg22 711 treatment under 25 mM Suc conditions (n = 3, biologically independent samples). FW 712 indicates fresh weight.

713 F, Growth of *Pst* DC3000( $\Delta$ avrPto $\Delta$ avrPtoB) spray-inoculated onto rosette leaves of 4-

714 week-old *Arabidopsis*. Bacterial titres were determined 3 days post-inoculation (n =  
715 5, biologically independent samples).

716 Statistically significant differences among samples were determined using one-way  
717 ANOVA with multiple comparison tests (Tukey HSD or Dunnett's test between WT and  
718 other genotypes at each time point (D)) and are represented by asterisks or different letters  
719 ( $P < 0.05$ ).

720



721

**Figure 5, Cellular sugar level is key to co-ordinating defence outputs during PTI**

722 A, qRT-PCR analysis of defence-related gene expression in *Arabidopsis* seedlings  
 723 exposed to chitin under 25 mM Suc conditions (n = 3, biologically independent  
 724 samples).

725 B, Biomass of *A. brassicicola* on detached rosette leaves of 4-week-old *Arabidopsis* after  
 726 5 days (n = 4, biologically independent samples).

727 C, Quantification of SA and camalexin in *Arabidopsis* seedlings 8 h after chitin treatment  
 728 under 25 mM or 100 mM Suc conditions (n = 3, biologically independent samples).  
 729 FW indicates fresh weight.

730 D, A model proposed in this study. An increase in cellular G6P, possibly through sugar  
 731 influx and photosynthesis, results in suppression of clade A PP2Cs to prime CPK5/6.  
 732 During PTI, sugar influx triggers CPK5-independent signalling. One pathway (Y) is  
 733 antagonistic to CPK5/6 which suppress PBS3/SID2. Sugar influx activity is enhanced  
 734 in response to flg22, leading to SA accumulation that promotes anti-bacterial defence.  
 735 On the other hand, chitin recognition only promotes camalexin synthesis, because

738 sugar influx activity is not affected.

739 Statistically significant differences among samples were determined using one-way  
740 ANOVA with multiple comparison tests (Tukey HSD or Dunnett's test between WT and  
741 other genotypes at each time point (A)) and are represented by asterisks or different letters  
742 ( $P < 0.05$ ).

743

744 **Supporting Information**

745

746 **Materials and Methods**

747 **Plant materials and growth conditions**

748 The Columbia-0 (Col-0) ecotype of *Arabidopsis thaliana* was used as wild type. Col-0  
749 mutants *stp1* (SALK\_048848)<sup>9</sup>, *stp13* (SALK\_045494)<sup>11</sup>, *cpk4* (SALK\_000685)<sup>35</sup>, *cpk5*  
750 (SAIL\_657\_C06)<sup>15</sup>, *cpk6* (SALK\_025460)<sup>15</sup>, *cpk11* (SALK\_054495)<sup>12</sup>, *wrky33-1*  
751 (SALK\_006603)<sup>36</sup>, *wrky8-1* (SALK\_107668C)<sup>15</sup>, *hxk1* (WiscDsLoxHs044\_02E), *hxk2*  
752 (WiscDsLox289\_292O3), *sid2-1*<sup>37</sup> and *pad3-1*<sup>38</sup> were used. To establish the *stp1 stp4*  
753 *stp13* mutant, a 17 bp deletion in the *STP4* locus was introduced into *stp1 stp13* plants  
754 using CRISPR-Cas9. To establish *stp4*, *stp1 stp4*, and *stp4 stp13* plants, *stp1 stp4 stp13*  
755 plants were crossed with Col-0 plants, and the desired genotypes were detected from the  
756 F2 progeny. pMAQ2<sup>39</sup> plants were used to measure  $[\text{Ca}^{2+}]_{\text{cyt}}$ . Plants were grown on soil  
757 or 0.5× Murashige and Skoog (MS) agar medium (0.5× MS salt (Wako), 0.5× Gamborg's  
758 vitamins (Sigma), 25 mM sucrose, 0.5 g/l 2-Morpholinoethanesulfonic acid monohydrate  
759 (MES) (pH 5.7), 0.8% agar) at 22 °C under 10 h light / 14 h dark or 16 h light / 8 h dark  
760 conditions, respectively.

761

762 **Plasmid construction**

763 The 35S *GFP NosT* fragment was amplified from pRI 35S-GFP<sup>20</sup>, and inserted into the  
764 *Hind*III/*Eco*RI sites of pCAMBIA1300. This plasmid was named pCAMBIA 35S-GFP.  
765 To establish transgenic *Arabidopsis*, a genomic fragment including the upstream and  
766 coding regions of *CPK5* or *STP13* was inserted into the *Hind*III/*Sal*II sites of pCAMBIA  
767 35S-GFP, or a *CPK5* cDNA fragment was inserted into the *Xba*I/*Sal*II site of pCAMBIA  
768 35S-GFP. A cDNA fragment of *HXK1* or *HXK1(G104D)* was inserted into the *Xba*I/*Sal*II  
769 sites of pCAMBIA 35S-GFP. For obtaining recombinant proteins, cDNA fragments of  
770 *CPK5* or *OST1* were inserted into the *Bam*HI/*Hind*III sites of pET-28a(+). cDNA  
771 fragments of *ABI1*, *HAB1*, *PP2C6-6*, *ABF1*, *HXK2*, or *HXK2AC13* were inserted into the  
772 *Bam*HI/*Sal*II sites of pGEX-6P-1. cDNA fragments of *PP2CA*, N-terminal truncated  
773 *RBOHD*, and *WRKY33* wbox1 were inserted into the *Eco*RI/*Sal*II site of pMAL-c2. For  
774 yeast two-hybrid assays, cDNA fragments of *ABI1*, *HAB1*, *PP2CA*, or *HAI1* were inserted  
775 into the *Nde*I/*Sal*II sites of pGADT7. cDNA fragments of full-length *CPK5*, N-terminal  
776 truncated *CPK5(D221A)*, or C-terminal truncated *CPK5* were inserted into the  
777 *Nde*I/*Eco*RI sites of pGADT7. For split-luciferase assays, a *CPK5* cDNA fragment was  
778 inserted into the *Bam*HI/*Sal*II sites of pCAMBIA cLuc. cDNA fragments of *ABI1*, *AP2C1*,

779 or *PP2C6-6* were inserted into the *Bam*HI/*Sal*I sites of pCAMBIA nLuc. For  
780 CRISPR/Cas9, a gRNA sequence of *STP4* was inserted into the *Aar*I sites of pKIR1.1<sup>40</sup>.  
781 All cloning reactions except pKIR1.1 were performed using SLiCE<sup>41</sup> as described  
782 previously. For pKIR1.1, a gRNA fragment was ligated using Ligation high Ver. 2  
783 (TOYOBO). Primers used for plasmid construction are listed in Expanded View Table 1.  
784

### 785 **Pathogen inoculation**

786 *Alternaria brassicicola* (NBRC 31226) was cultured on potato-dextrose agar (PDA)  
787 medium and incubated at 25 °C. Single 10 µl drops of spore suspension (5 × 10<sup>5</sup>  
788 spores/ml) were applied to detached 4-week-old *Arabidopsis* leaves. Inoculated leaves  
789 were then incubated on wet paper in petri dishes for 5 days. Six leaf discs from six  
790 independent inoculated leaves were pooled into a tube for genomic DNA extraction. The  
791 biomass of *A. brassicicola* on inoculated leaves was assessed by measuring DNA amounts  
792 of the fungus (ABU03393) and *Arabidopsis* (*At5g26751*)<sup>42</sup>. Strains of *Pseudomonas*  
793 *syringae* pv. *tomato* (*Pst*) DC3000 and *Pst* DC3000(*avrPtoavrPtoB*) were cultured in  
794 NYGA medium (5 g/l Bacto Peptone, 3 g/l yeast extract, 20 ml/l glycerol) with 50 µg/ml  
795 rifampicin at 30 °C overnight. The cells were washed twice and resuspended in 10 mM  
796 MgCl<sub>2</sub>. These bacteria (OD<sub>600</sub> = 0.02) in 0.02% Silwet L-77 were sprayed onto 4-week-  
797 old plants, which were then placed under plastic covers for 2 (*Pst* DC3000) or 3 days (*Pst*  
798 DC3000(*avrPtoavrPtoB*)). Four leaf discs obtained from four independent leaves were  
799 pooled. Serially diluted suspensions in 10 mM MgCl<sub>2</sub> were plated on NYGA agar medium  
800 and incubated at 30 °C for 2 days to enumerate colonies.  
801

### 802 ***In vitro* kinase assay**

803 The *in vitro* kinase assay followed a previously described method<sup>20</sup> with some  
804 modifications. Recombinant proteins were purified from *Escherichia coli* BL21 (DE3)  
805 with TALON Metal Affinity Resin (Takara), Pierce Glutathione Agarose (Thermo  
806 scientific), or Amylose Resin (NEB). Kinases (300 ng), their substrates (2000 ng), and  
807 phosphatases (1000 ng) were incubated in kinase reaction buffer (100 mM Tris-HCl pH  
808 8.0, 10 mM MgCl<sub>2</sub>, 2 mM EGTA, 1 mM DTT) in the absence or presence of 1.5 mM  
809 CaCl<sub>2</sub> with 100 µM non-radiolabelled ATP containing 370 kBq of [ $\gamma$ -<sup>32</sup>P]ATP  
810 (PerkinElmer; NEG002A) for 30 min at 25 °C. Its Ca<sup>2+</sup> concentration was estimated at  
811 approximately 120 µM by MaxChelator (Ca/Mg/ATP/EGTA Calculator 2.2b)  
812 (<https://somapp.ucdmc.ucdavis.edu/pharmacology/bers/maxchelator/>) To investigate if  
813 clade A PP2Cs dephosphorylate kinase substrates, kinase reactions were stopped by  
814 addition of 100 µM staurosporine (Wako) for 15 min. Then, clade A PP2Cs were added

815 to the reactions, and incubated for a further 15 min. The reactions were finally stopped  
816 by the addition of SDS sample buffer, and incubated at 95 °C for 5 min. The proteins were  
817 separated in 10 % polyacrylamide gels. The gels were dried after visualization with  
818 Coomassie Brilliant Blue (CBB). Radioactivity in the dried gel was detected by FLA5000  
819 (Fujifilm).

820

### 821 **qRT-PCR analysis**

822 *Arabidopsis* seedlings were grown on agar medium containing 25 mM sucrose for 6 days,  
823 and transferred into 2 ml of liquid medium (Suc 25 mM) in 24-well plates to acclimate  
824 plants to liquid medium. The next day, after the medium was replaced with fresh liquid  
825 medium with 25 mM sucrose for flg22/chitin treatment or without sugars for 2DG  
826 treatment. 1  $\mu$ M flg22 peptide (QRLSTGSRINSAKDDAAGLQIA, synthesized by  
827 Genscript), chitin (250  $\mu$ g/ml), or 0.5 mM 2DG were applied. Chitin solution was  
828 prepared by repeatedly grinding crab or shrimp shell powder (Sigma; C9752) in water  
829 with a pestle, and heating to 60 °C. Undissolved particles were removed by centrifugation  
830 and filtration. Or, seedlings were grown on agar medium containing 25 mM sucrose for  
831 6 days, and transferred into 2 ml of liquid medium without sugars in 24-well plates to  
832 reset cellular sugar conditions. The next day, after changing to fresh medium with the  
833 indicated sugars, plants were further incubated for 24 h. Harvested plant samples were  
834 frozen and ground in liquid N<sub>2</sub>. Total RNA was isolated using Sepasol RNA I Super G  
835 reagent (Nacalai Tesque), followed by treatment with RQ1 RNase-Free DNase (Promega),  
836 and reverse-transcribed using ReverTra Ace qPCR RT Master Mix with gDNA remover  
837 (TOYOBO) following the manufacturer's instructions. Quantitative PCR was performed  
838 with GoTaq qPCR Master Mix (Promega) on a LightCycler 96 (Roche). The expression  
839 levels of genes of interest were normalized relative to those of a reference gene, *UBQ10*.  
840 Relative expression ( $\log_2$ ) was calculated by subtracting Ct values of genes of interest  
841 from those of *UBQ10*.

842

### 843 **Metabolite quantification**

844 For camalexin and salicylic acid (SA) measurement, frozen and ground samples were  
845 homogenized with 500  $\mu$ l of 80% methanol with 3-indolepropionic acid (TCI; I0032) and  
846 d4-SA (Toronto Research; S088127) (0.5  $\mu$ g each) as internal controls for camalexin and  
847 SA, respectively. Mixtures were incubated for 30 min at 65 °C. After centrifugation, 400  
848  $\mu$ l of the supernatant was transferred to a new tube. Metabolites were repeatedly extracted  
849 from the pellets with 80% methanol without internal controls. For sugar measurement,  
850 frozen and ground samples were homogenized with 1 ml of extraction buffer

851 (methanol:water:chloroform = 5:2:2) with 10  $\mu$ g ribitol (Wako) as an internal control.  
852 Mixtures were incubated for 30 min at 37 °C. After centrifugation, 900  $\mu$ l of the  
853 supernatant was transferred to a new tube, and 400  $\mu$ l of water was added. After  
854 centrifugation, the upper phase was retrieved. These samples were evaporated using a  
855 spin dryer at 50 °C, and subsequently freeze-dried. Samples were sonicated in 30  $\mu$ l of  
856 methoxyamine (Sigma) (20 mg/ml dissolved in pyridine (Wako)), and incubated for 90  
857 min at 30 °C. Subsequently, 30  $\mu$ l of MSTFA + 1% TMCS (Thermo Fisher Scientific)  
858 was added and incubation was continued for 30 min at 37 °C. After centrifugation, the  
859 supernatants were subjected to gas chromatography–mass spectrometry analysis. Each  
860 sample (1  $\mu$ l) was separated on a gas chromatograph (7820A; Agilent Technologies)  
861 combined with a mass spectrometric detector (5977B; Agilent Technologies). For  
862 quantitative determination of metabolites, peaks that originated from selected ion  
863 chromatograms (camalexin 272, SA 267, 3-indolepropionic acid 333, d4-SA 271, Glc 319,  
864 G6P 387, 2DG 319, 2DG6P 387, ribitol 319) were used.

865

#### 866 **Detection of CPK5 phosphorylation**

867 *Arabidopsis* seedlings were grown on agar medium containing 25 mM sucrose for 6 days,  
868 and then transferred into 2 ml of liquid medium with 25 mM sucrose in 24-well plate.  
869 The next day, the medium was replaced with fresh liquid medium with 25 mM sucrose  
870 for flg22 treatment or without sugars for 2DG treatment. Plants were treated with 1  $\mu$ M  
871 flg22 peptide or 0.5 mM 2DG. In addition, for Glc treatment, seedlings were grown on  
872 agar medium containing 25 mM sucrose for 6 days, and transferred into 2 ml of liquid  
873 medium without sugars in 24-well plates to reset cellular sugar conditions. The next day,  
874 the medium was replaced with fresh medium containing the indicated concentrations of  
875 Glc. Plants were incubated for 24 h, then treated with 1  $\mu$ M flg22. After freezing samples  
876 and grinding them in liquid N<sub>2</sub>, proteins were extracted with lysis buffer (50 mM Tris-  
877 HCl pH 7.5, 300 mM NaCl, 15% glycerol, 1% Triton X-100, 2 mM DTT). Lambda  
878 protein phosphatase (BioAcademia) treatment was for 30 min at 30 °C. Proteins were  
879 separated in 8% polyacrylamide gels containing 50  $\mu$ M Phos-tag Acrylamide (Wako) and  
880 100  $\mu$ M MnCl<sub>2</sub>. CPK5-GFP was detected with anti-GFP antibody (B-2, Santa Cruz  
881 Biotechnology). Band intensity was measured using ImageJ. For detecting *in vitro* CPK5  
882 phosphorylation status, HisT7-CPK5 (250 ng) and GST-ABI1 (500 ng) were incubated  
883 with reaction buffer (100 mM Tris-HCl pH 8.0, 10 mM MgCl<sub>2</sub>, 2 mM EGTA, 1 mM DTT,  
884 1 mM ATP, 1 mM MnCl<sub>2</sub>, protease inhibitor cocktail (EDTA-free)(Nacalai)) in the  
885 absence or presence of the indicated sugars for 45 min at 30 °C. The reactions were  
886 stopped by addition of SDS sample buffer, and incubated at 95 °C for 5 min. The proteins

887 were separated in 10% polyacrylamide gels. CPK5 phosphorylation status was detected  
888 using anti-phosphothreonine (p-Thr) antibody (9381S, Cell Signalling Technology). The  
889 membranes were stained with CBB.

890

### 891 **Hexokinase activity assay**

892 Hexokinase activity was measured using an enzyme-linked assay following a previously  
893 described method<sup>43</sup> with some modifications. GST-fused recombinant hexokinases were  
894 purified from *E. coli* BL21 (DE3) with Pierce Glutathione Agarose (Thermo Fisher  
895 Scientific), and incubated in reaction buffer (50 mM HEPES-NaOH, pH 7.5, 2 mM MgCl<sub>2</sub>,  
896 1 mM EDTA, 9 mM KCl, 1 mM NAD, 1 mM ATP, 2 mM glucose, and 0.8 units NAD-  
897 dependent glucose-6-phosphate dehydrogenase (TOYOBO; G6D-321)) at room  
898 temperature. Absorbance at 340 nm was monitored continuously with a  
899 spectrophotometer (MULTISKAN FC; Thermo Fisher Scientific) to detect NADH  
900 production.

901

### 902 **Protein interaction assay**

903 Yeast two-hybrid assays were performed using strain AH109 (Takara). Vectors pGADT7  
904 and pGBT7 were sequentially transformed into this strain. Transformants were  
905 incubated on medium without histidine, leucine, and tryptophan to detect protein  
906 interactions. In addition, 1 mM 3-AT was optionally added to medium to investigate  
907 strong protein interactions. For split-luciferase assays, Agrobacterium strains (GV3101)  
908 transformed with nLuc or cLuc plasmids in infiltration buffer (10 mM MES-KOH pH5.5,  
909 10 mM MgCl<sub>2</sub>) were simultaneously infiltrated into *N. benthamiana* leaves. After 2 days,  
910 10 mM luciferin (P1041, Promega) in infiltration buffer was infiltrated into the  
911 Agrobacterium-infected leaves. Luminescence was detected using LAS4000 (Cytiva).  
912 Luminescence data were coloured using Image J. For pull down assays, MBP-CPK5  
913 (5000 ng) and GST or GST-ABI1 (1000 ng) were added into 100 µl of reaction buffer  
914 (100 mM HEPES pH 7.5, 10 mM MgCl<sub>2</sub>, 2 mM EGTA, 2 mM DTT) in the  
915 presence/absence of 10 mM of the indicated sugars. After incubation for 30 min at 25 °C,  
916 900 µl of interaction buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 1 mM EGTA, 1 mM  
917 EDTA, 2 mM DTT, 15 % Glycerol, 1 % Triton-X100) was added to the reactions with  
918 MagneGST Glutathione Particles (Promega) in the presence/absence of 10 mM of the  
919 indicated sugars. After mixing the tubes at 4 °C for 1 h 15 min, the beads were washed  
920 with 1 ml interaction buffer 3 times. SDS sample buffers were added and the tubes were  
921 incubated at 95 °C for 5 min. The proteins were separated in 10 % polyacrylamide gels.  
922 MBP-tagged and GST-tagged proteins were detected using anti-MBP (E8032S, NEB) and

923 anti-GST antibody (60-021, BioAcademia), respectively.

924

## 925 **Aequorin luminescence measurement**

926 Six-day-old *Arabidopsis* seedlings expressing p35S-apoaequorin (pMAQ2)<sup>39</sup> grown on  
927 MS agar medium with 25 mM sucrose were transferred into 200 µl of liquid medium with  
928 20 µM coelenterazin h (Wako) in 96-well plates. The next day, after transfer to fresh  
929 medium with 20 µM coelenterazin h, luminescence was recorded using a luminometer  
930 (LUMINOSKAN; Thermo Fisher Scientific).

931

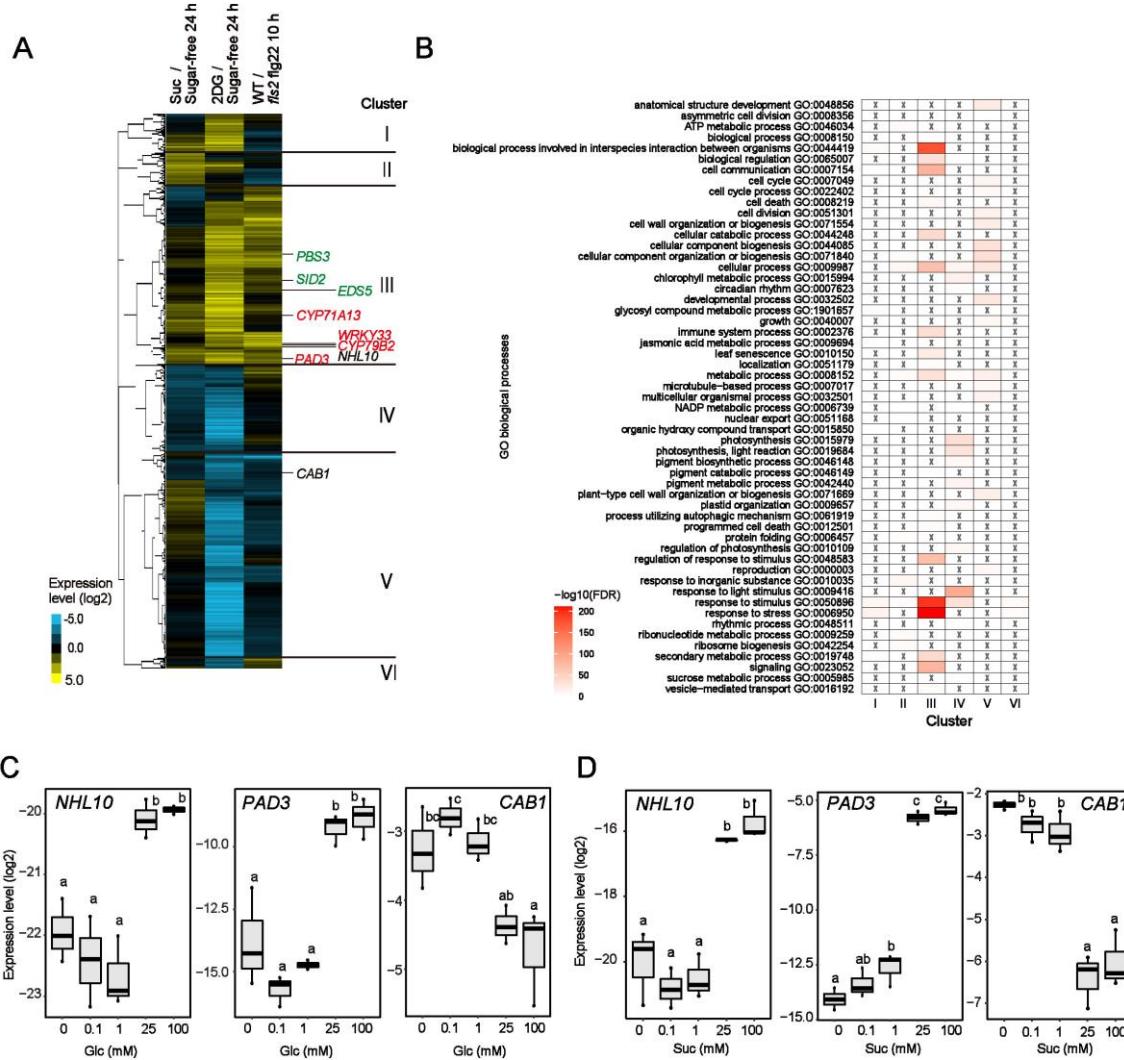
## 932 **RNA-seq and data analysis**

933 Total RNAs were extracted using Sepazol-RNA I Super G (Nacalai Tesque), followed by  
934 treatment with RQ1 RNase-Free DNase (Promega). These DNase-treated RNAs (500 ng)  
935 were used for library preparation using BrAD-seq to create strand-specific 3' digital gene  
936 expression libraries<sup>44</sup>. The libraries were sequenced on a HiSeq X Ten platform at  
937 Macrogen (Tokyo, Japan), producing 150-base paired end reads. Since the quality of  
938 reverse reads was poor due to the poly(A) sequence, only forward reads were used for the  
939 analysis. The first 8 bases and adaptors were trimmed and quality filtering was performed  
940 by fastp (ver. 0.19.7)<sup>45</sup>. The trimmed and quality-filtered reads were mapped to the  
941 *Arabidopsis* genome (TAIR10) using STAR (ver. 2.6.1b)<sup>46</sup> and transformed to a count per  
942 gene per library using featureCounts (ver. 1.6.0)<sup>47</sup>. Statistical analysis of the RNA-seq  
943 data was performed in the R environment (version 3.5.3). Since BrAD-seq involves  
944 poly(A) enrichment, mitochondrial and chloroplast genes were excluded. Genes with  
945 mean read counts of fewer than 10 per library were considered to be expressed at low  
946 levels and were excluded from the analysis. The resulting count data were subjected to  
947 trimmed-mean of M-values normalization using the function calcNormFactors in the  
948 package edgeR, followed by log-transformation by the function voom in the package  
949 limma to yield log<sub>2</sub> counts per million. To each gene, a linear model was fit by the function  
950 lmFit in the limma package with the following terms: Sg = Gg + Rr + εg, where S is log<sub>2</sub>  
951 expression value, G is genotype, R is biological replicate and ε is residual; or Sgt = GTgt  
952 + Rr + εgt, where S is log<sub>2</sub> expression value, GT is genotype:treatment interaction, R is  
953 biological replicate and ε is residual. For variance shrinkage in the calculation of p-values,  
954 the eBayes function in the limma package was used; the resulting p-values were then  
955 corrected for multiple hypothesis testing by calculating Storey's q-values using the  
956 function qvalue in the package qvalue. To extract genes with significant expression  
957 changes, cutoffs of q-value < 0.01 and |log2FC| > 1 were applied. To create heatmaps,  
958 average linkage hierarchical clustering with uncentred Pearson correlation as a distance

959 measure was carried out using CLUSTER<sup>48</sup>, followed by visualization using  
960 TREEVIEW<sup>48</sup>.

961

## 962 **Data availability**


963 The RNA-seq data used in this study were deposited in the National Center for  
964 Biotechnology Information Gene Expression Omnibus database (accession no.  
965 GSE169473). Details of the parameters used for quality filtering, mapping and counting  
966 are available in the GEO submission.

967

## 968 **Statistics**

969 All data displayed in this study were analysed using R. No statistical methods were used  
970 to predetermine sample sizes, but our sample sizes are similar to those generally used in  
971 the field. For plant studies, plants were rotated several times in growth chambers to  
972 minimize allocation effects. Samples were not blinded for allocation or data analyses. In  
973 box plots, centre lines represent the medians, box edges delimit lower and upper quartiles  
974 and whiskers show the highest and lowest data points. Experiments in this study were  
975 repeated at least three times with similar trends.

976



**Figure S1, Sugar treatments activate the expression of defence-related genes**

**A**, Heat maps displaying expression patterns of genes that show significant expression changes under 1 mM 2DG or 25 mM Suc treatment, relative to sugar-free conditions ( $q < 0.01$  and  $|\log_2\text{FC}| > 1$ ). The  $\log_2$  fold changes were subjected to hierarchical clustering analysis. Camalexin-related genes and SA-related genes were coloured red and green, respectively.

**B**, GO analysis of genes in each cluster (C).  $P$  values were coloured.

**C** and **D**, qRT-PCR analysis of the expression of *NHL10* and *CAB1* in *Arabidopsis* seedlings in the presence of Glc (C) or Suc (D) for 24 h ( $n = 3$ , biologically independent samples). Individual data points are plotted. Statistically significant differences among samples were determined using one-way ANOVA with multiple comparison tests (Tukey HSD) and are represented by different letters ( $P < 0.05$ ).

977

978

979

980

981

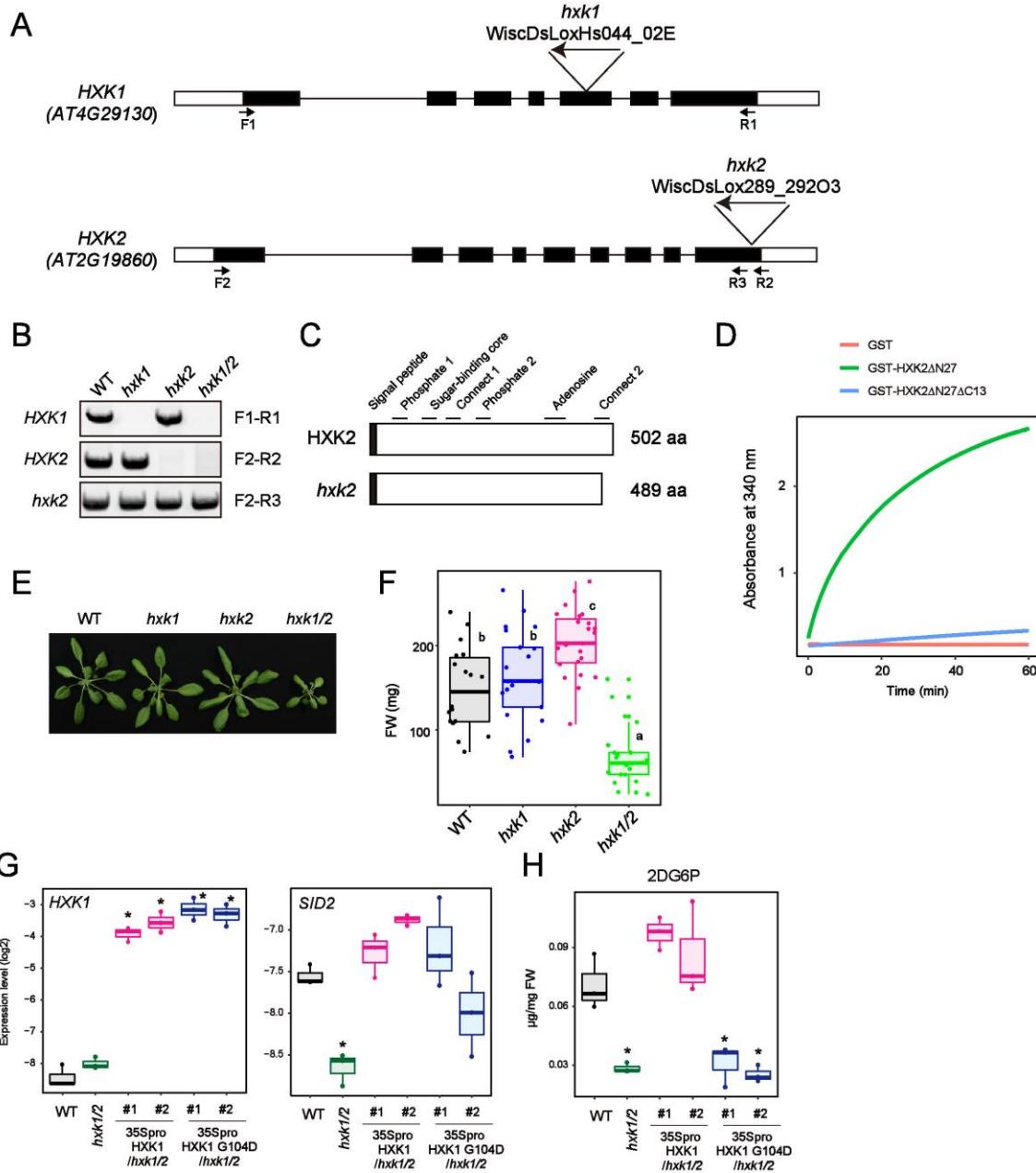
982

983

984

985

986


987

988

989

990

991



992

**Figure S2, Establishment of *hxk1* *hxk2* mutants**

993 **A**, T-DNA insertion mutants of *HXK1* and *HXK2*. Rectangles and lines indicate exons  
 994 and introns, respectively. Coding regions are coloured black. T-DNA is inserted at  
 995 each labelled position.  
 996

997 **B**, RT-PCR analysis of *hxk1*, *hxk2* and *hxk1/2* mutants. Primers are indicated on the right  
 998 and their positions are marked in (a).

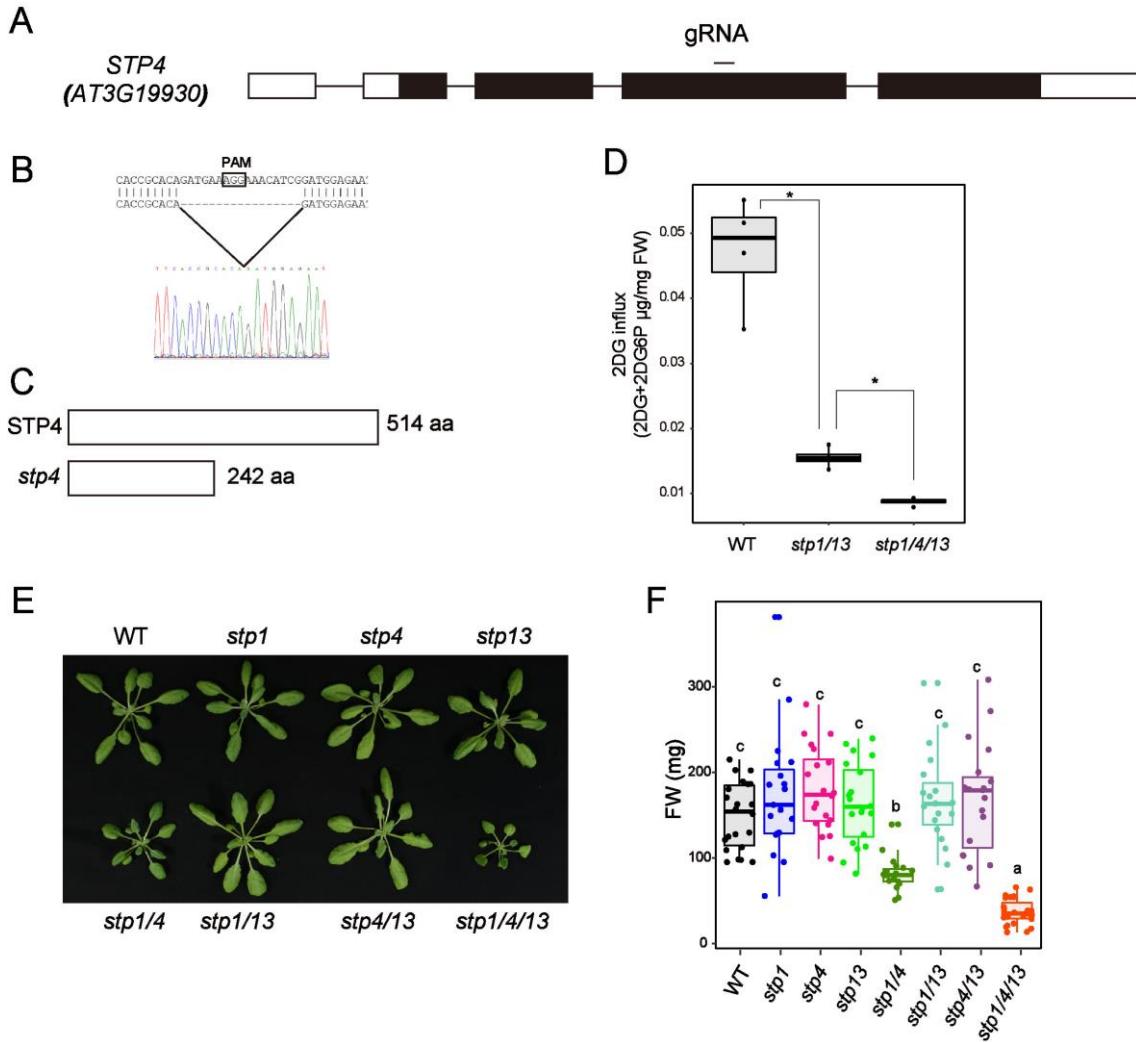
999 **C**, Presumptive C-terminally truncated *HXK2* protein expressed in *hxk2* plants.  
 1000 Conserved regions are labelled above.

1001 **D**, Glc phosphorylation activity of *HXK2* and 13-aa-deleted *HXK2* (mean  $\pm$  SE, n = 3).

1002 Experiments were repeated at least three times with similar trends.  
1003 **E** and **F**, Growth of *hxk1/2* mutants.  
1004 **G**, qRT-PCR analysis of defence-related gene expression in *Arabidopsis* seedlings  
1005 exposed to 0.5 mM 2DG for 8h (n = 3, biologically independent samples).  
1006 **H**, Quantification of 2DG6P in *Arabidopsis* seedlings 2 h after 0.5 mM 2DG treatment (n  
1007 = 3, biologically independent samples). FW indicates fresh weight.  
1008 Statistically significant differences among samples were determined using one-way  
1009 ANOVA with multiple comparison tests (Tukey HSD (F) or Dunnett's test between WT  
1010 and other genotypes (G and H)) and are represented by asterisks or different letters (P  
1011 <0.05).



**Figure S3, 2DG treatment induces defence signalling**


A, qRT-PCR analysis of defence-related gene expression in *Arabidopsis* seedlings in the presence or absence of 0.5 mM 2DG (n = 3, biologically independent samples).

B, SA quantification at the indicated time points after 0.5 mM 2DG treatment (mean  $\pm$  SE, n = 3, biologically independent samples). FW indicates fresh weight.

C and D, qRT-PCR analysis of the expression of defence-related genes (c) and quantification of metabolites (D) in *Arabidopsis* seedlings exposed to 1 mM 2DG and/or 25 mM Glc for 24 h (n = 3, biologically independent samples). 2DG + Glc indicates simultaneous application of 1 mM 2DG and 25 mM Glc. FW indicates fresh weight.

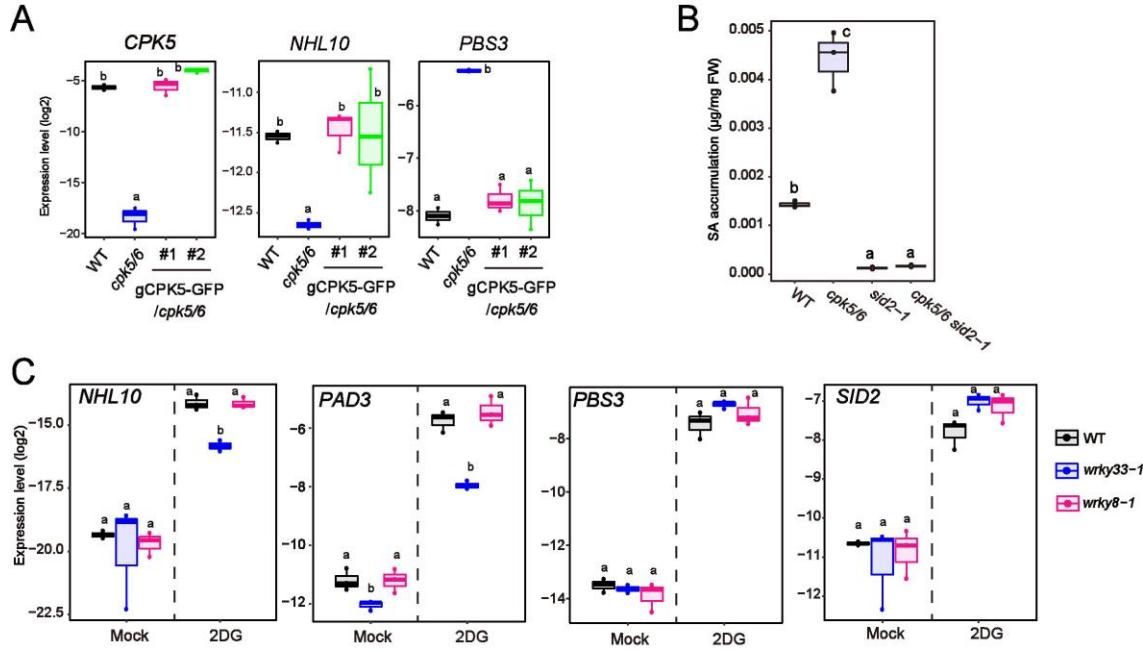
E, Metabolite quantification 24 h after treatment with 1 mM 2DG, 25  $\mu$ M AMA, 100  $\mu$ M DPN, or 40  $\mu$ M DCMU (n = 3, biologically independent samples). FW indicates fresh weight.

Statistically significant differences among samples were determined using the two-tailed Welch's t test ( $P < 0.05$ ) (A) or one-way ANOVA with multiple comparison tests (Tukey HSD) and are represented by asterisks or different letters ( $P < 0.05$ ). ns indicates non-significant.



**Figure S4, Establishment of *stp1 stp4 stp13* mutants by CRISPR/Cas9**

**A**, Genomic structure of *STP4*. Rectangles and lines indicate exons and introns, respectively; the coding region is coloured black. The gRNA for CRISPR/Cas9 was designed at the labelled position.


**B**, A 17 bp-deletion occurs in *stp4* mutants.

**C**, Predicted length of *STP4* proteins in WT and *stp4* mutants.

**D**, Glucose influx activity in *Arabidopsis* seedlings 8 h after 1 µM flg22 treatment (n = 3, biologically independent samples). Glucose influx activity was measured by calculating the mixed amounts of 2DG and 2DG6P 1h after 0.5 mM 2DG application.

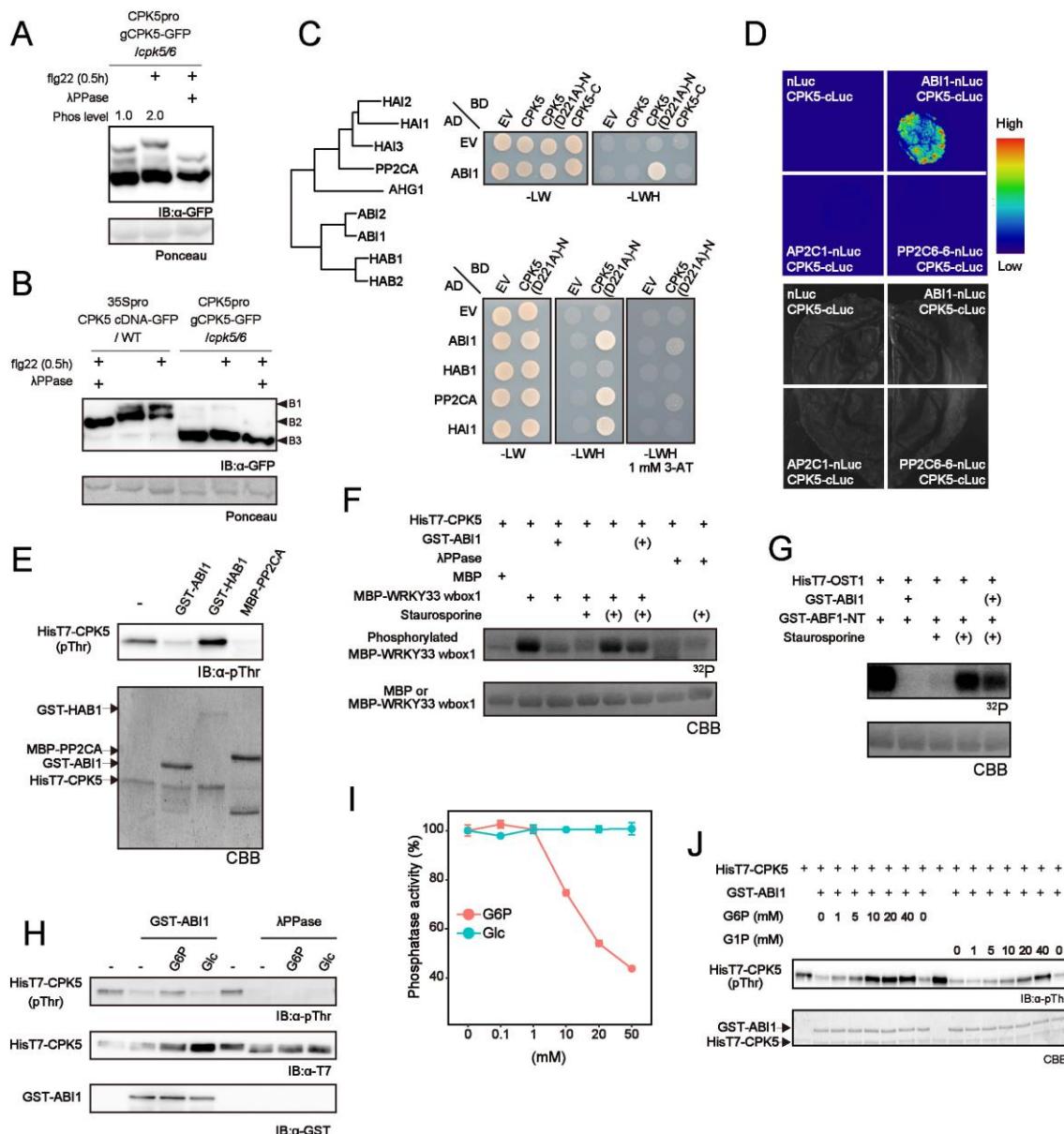
**E** and **F**, Growth of *stp1 stp4 stp13* mutants.

Statistically significant differences among samples were determined using the two-tailed Welch's t test (P <0.05) (D) or one-way ANOVA with multiple comparison tests (Tukey HSD) (F) and are represented by asterisks or different letters (P <0.05).



1044

1045 **Figure S5, CPK5/6 positively and negatively regulate camalexin and SA synthesis,**  
1046 **respectively**


1047 A, qRT-PCR analysis of defence-related gene expression in *Arabidopsis* seedlings  
1048 exposed to 0.5 mM 2DG for 8 h (n = 3, biologically independent samples).

1049 B, SA quantification in *Arabidopsis* seedlings exposed to 0.5 mM 2DG for 24 h (n = 3,  
1050 biologically independent samples). FW indicates fresh weight.

1051 C, qRT-PCR analysis of defence-related gene expression in *Arabidopsis* seedlings  
1052 exposed to mock or 0.5 mM 2DG for 8 h (n = 3, biologically independent samples).

1053 Statistically significant differences among samples were determined using one-way  
1054 ANOVA with multiple comparison tests (Tukey HSD) and are represented by asterisks  
1055 or different letters (P < 0.05).

1056



1057

**Figure S6, Glucose-6-phosphate suppresses the activity of clade A protein phosphatase 2Cs, leading to elevation of CPK5 phosphorylation**

1058 **A**, Immunoblot analysis of CPK5-GFP in *Arabidopsis* seedlings 30 min after 1  $\mu$ M flg22 application ( $Mn^{2+}$ -Phos-tag SDS-PAGE). IB denotes immunoblotting with anti-GFP antibodies. Ponceau S-stained membranes are shown below.

1059 **B**, Immunoblot analysis of CPK5-GFP in *Arabidopsis* seedlings expressing CPK5(cDNA)-GFP driven by the 35S promoter and a genomic fragment of CPK5 fused with GFP driven by its own promoter 30 min after 1  $\mu$ M flg22 application ( $Mn^{2+}$ -Phos-tag SDS-PAGE). IB denotes immunoblotting with anti-GFP antibodies. Ponceau S-stained membranes are shown below.

1060

1061

1062

1063

1064

1065

1066

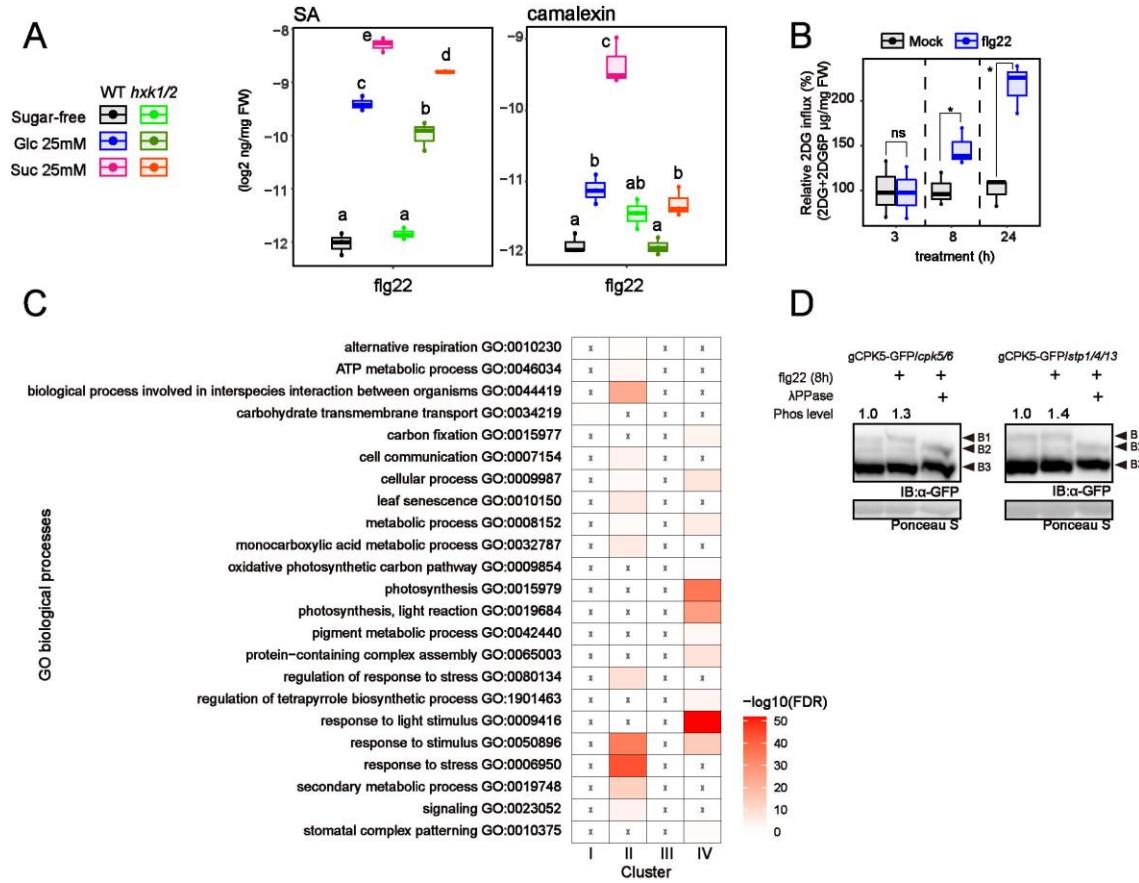
1067

1068 **C**, Protein interactions between CPK5 and clade A PP2Cs by yeast 2-hydrd analysis. The  
1069 kinase and EF-hand domains are in the N-terminus and C-terminus of CPK5,  
1070 respectively. CPK5(D221A) is a kinase-dead mutant. Left panel shows a phylogenetic  
1071 tree for *Arabidopsis* clade A PP2Cs.

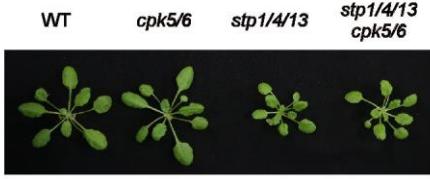
1072 **D**, Split-luciferase assay for protein interactions between PP2Cs and CPK5 in *N.*  
1073 *benthamiana* leaves.

1074 **E**, ABI1 and PP2CA, but not HAB1, dephosphorylate CPK5 *in vitro*. IB denotes  
1075 immunoblotting with anti-pThr antibodies. CBB-stained membranes are shown below.

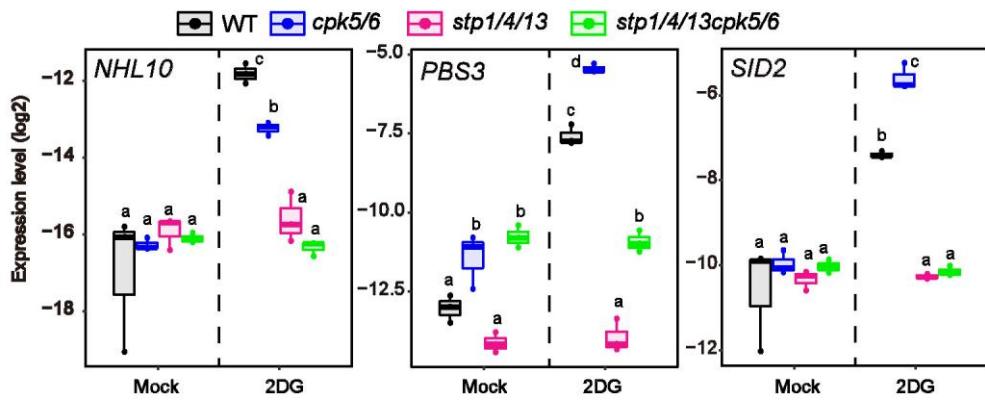
1076 **F** and **G**, Autoradiograph of a WRKY33 wbox1 phosphorylation by CPK5 *in vitro* or an  
1077 N-terminal ABF1 by OST1 for 30 min with [ $\gamma$ -<sup>32</sup>P] ATP (upper images). Parentheses  
1078 indicate addition after 15 min. CBB-stained gels are shown below.


1079 **H**,  $\lambda$ PPase-mediated CPK5 dephosphorylation is not suppressed by G6P. Phosphorylation  
1080 of CPK5 was detected by anti-phopsho-threonine antibody. 10 mM sugars were  
1081 applied. IB denotes immunoblotting.

1082 **I**, *in vitro* ABI1 phosphatase activity in the presence of G6P or Glc.


1083 **J**, ABI1-mediated CPK5 dephosphorylation in the presence of G6P or G1P.

1084 Statistically significant differences among samples were determined using one-way  
1085 ANOVA with multiple comparison tests (Tukey HSD) and are represented by different  
1086 letters ( $P < 0.05$ ).


1087



A



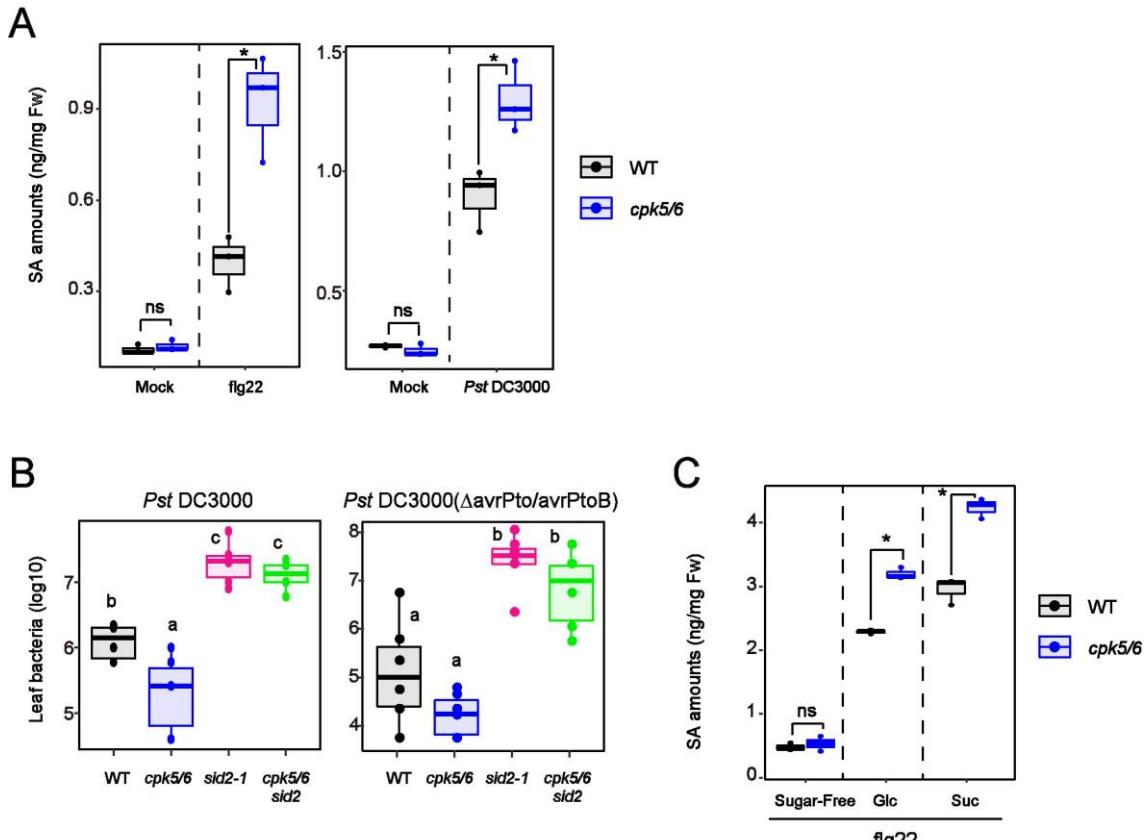
B



1107 **Figure S8, Establishment of *stp1/4/13/cpk5/6* plants**

1108 A, Growth of *stp1/4/13/cpk5/6* plants

1109 B, qRT-PCR analysis of defence-related gene expression in *Arabidopsis* seedlings


1110 exposed to mock or 0.5 mM 2DG for 8 h (n = 3, biologically independent samples).

1111 Statistically significant differences among samples were determined using one-way

1112 ANOVA with multiple comparison tests (Tukey HSD) and are represented by asterisks

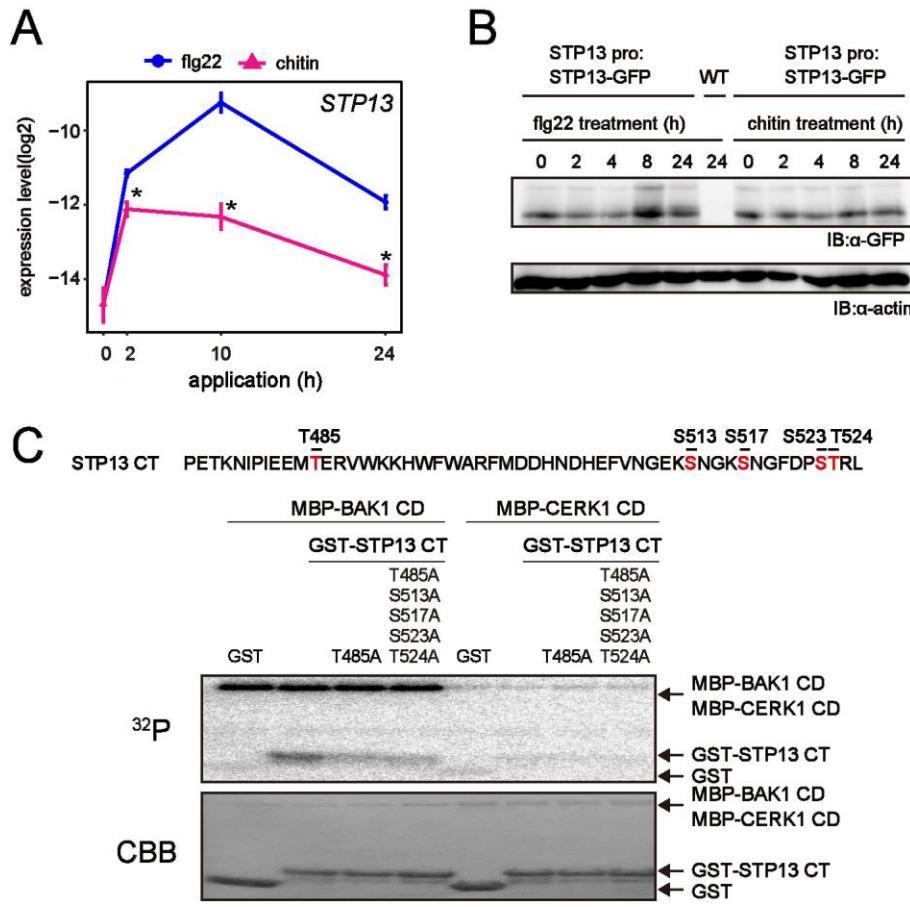
1113 or different letters (P <0.05).

1114



1115  
1116 **Figure S9, Enhanced SA synthesis decreases susceptibility to pathogenic bacteria in**  
1117 ***cpk5/6* plants**

1118 **A**, SA quantification in mature leaves of 4-week-old *Arabidopsis* exposed to 1  $\mu$ M flg22  
1119 or syringe-inoculated *Pst* DC3000 for 24 h (n = 3, biologically independent samples).  
1120 FW indicates fresh weight.


1121 **B**, Growth of *Pst* DC3000 (left) or *Pst* DC3000( $\Delta$ avrPto $\Delta$ avrPtoB) (right) spray-  
1122 inoculated onto rosette leaves of 4-week-old *Arabidopsis*. Bacterial titres were  
1123 determined 2 (left) or 3 days (right) post-inoculation (n = 6, biologically independent  
1124 samples).

1125 **C**, SA quantification in *Arabidopsis* seedlings exposed to 1  $\mu$ M flg22 for 8 h in the  
1126 absence/presence of sugars (n = 3, biologically independent samples). FW indicates  
1127 fresh weight.

1128 Statistically significant differences among samples were determined using the two-tailed  
1129 Welch's t test ( $P < 0.05$ ) or one-way ANOVA with multiple comparison tests (Tukey  
1130 HSD) and are represented by asterisks or different letters ( $P < 0.05$ ). ns indicates non-  
1131 significant.

1132

1133



**Figure S10, CERK1 does not phosphorylate the T485 residue of STP13**

1136 A, qRT-PCR analysis of *STP13* expression in *Arabidopsis* seedlings exposed to flg22 or  
 1137 chitin (n = 3, biologically independent samples).

1138 B, Immunoblot analysis of STP13-GFP in *Arabidopsis* seedlings exposed to flg22 or  
 1139 chitin. IB denotes immunoblotting with anti-GFP or anti-actin antibodies.

1140 C, Autoradiographs of *in vitro* kinase assays performed by incubating MBP-BAK1  
 1141 cytoplasmic domain (CD) or MBP-CERK1 CD with GST-STP13 C-terminus (CT)  
 1142 for 30 min with [ $\gamma$ -<sup>32</sup>P]ATP (upper images). CBB-stained gels are shown below.

1143 Statistically significant differences among samples were determined using the two-tailed  
 1144 Welch's t test between flg22 and chitin treatment and are represented by asterisks (P  
 1145 <0.05).  
 1146