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Abstract 

 

Gut microbes shape many aspects of organismal biology, yet how these key bacteria transmit among 

hosts in natural populations remains poorly understood. Recent work in mammals has emphasized either 

transmission through social contacts or indirect transmission through environmental contact, but the 

relative importance of different routes has not been directly assessed. Here, we used a novel RFID-based 

tracking system to collect long-term high resolution data on social relationships, space use and 

microhabitat in a wild population of mice (Apodemus sylvaticus), while regularly characterising their gut 

microbiota. Through probabilistic modelling of the resulting data, we identify positive and statistically 

distinct signals of social and environmental transmission, captured by social networks and overlap in 

home ranges respectively. Strikingly, microbes with distinct biological attributes drove these different 

transmission signals. While aerotolerant spore-forming bacteria drove the effect of shared space use, a 

mix of taxa but especially anaerobic bacteria underpinned the social network’s effect on gut microbiota 

similarity. These findings provide the first evidence for parallel social and environmental transmission 

of gut microbes that involve biologically distinct subsets of the mammalian gut microbiota.  
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Introduction 

 

Host-associated microbiotas, especially the diverse communities inhabiting the vertebrate gut, are 

increasingly recognised as key influencers of their host’s biology, affecting the development (1–3), 

physiology (4,5), behaviour (6–8) and ultimately ecology and evolution of their host (9–12). Many 

biological effects of the microbiota depend on community composition, which can show vast 

multidimensional variation among individuals, populations and species, as well as strong temporal 

dynamics within individuals.  

Although gut microbiota variation is thought to have important effects on animal fitness, our 

understanding of how different processes come together to shape microbiota in natural populations 

remains limited. As with any ecological community, fundamental ecological processes will govern 

community assembly of the microbiota (13–15). These include processes operating inside hosts, such as 

microbe-microbe and host-microbe interactions (10), but importantly also processes operating outside 

the host, which affect how microbes come to colonise hosts in the first place. Host-associated microbes 

live an inherently patchy landscape, with hosts forming habitat islands in a sea of less suitable habitat 

through which they must disperse. As such, microbiotas are well conceptualised as metacommunities 

(16) whereby microbial transmission from other hosts and the environment constitute potentially 

powerful forces shaping composition of individual microbiotas (17).  

Gut microbes can colonise hosts through various routes. In mammals, transmission starts at birth 

with colonisation by microbes in the birth canal and from the mother’s gut microbiota (18), and continues 

throughout life as microbes spread through contacts with conspecifics as well as the wider ecosystem. 

Recent research has specifically emphasized the importance of animal social behavior in the spread of 

gut microbes (19). Host-to-host transmission can occur either via direct contact during social behaviours, 

or indirectly through host microbial shedding to and acquisition from a shared environment. The host 

social network has been framed as an important microbial transmission landscape, “a social archipelago 

of host islands” that shapes microbial community structure (19). In humans, sharing a living space 

predicts sharing of gut microbes (20–24), typically much more so than genetic relatedness (21,24). The 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 20, 2023. ; https://doi.org/10.1101/2023.07.20.549849doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.20.549849
http://creativecommons.org/licenses/by/4.0/


 

intimacy of social interaction also appears to be important, with friends and spouses sharing more gut 

microbes than strangers, with the effect strongest among spouses self-reporting a physically close 

relationship (25). Social group membership in other group-living mammals also predicts gut microbiota 

composition (26–34) and within social groups, stronger pairwise social relationships can predict a higher 

degree of microbiota similarity (26–28). Such effects have also been recently documented in less social 

species that do not form social groups. In wild wood mice, we recently showed that social networks 

predicted the sharing of gut microbes more strongly than genetic relatedness, seasonality and spatial 

proximity (35).  

A separate body of research has emphasised that microbiotas can also be shaped by contact with the 

broader natural environment, such as soil and food. For example, the gut and skin microbiota of human 

children was shown to be markedly influenced by variable physical contact with local biodiversity and 

natural soils (36–39), and experimental soil exposure can change the gut microbiota of laboratory mice 

(40,41). Gut and skin microbes have also been shown to spread between humans through their shared 

environment. For example, sharing a room was associated with gradual homogenisation of microbiota 

between students paralleled with microbiota of the room surfaces becoming gradually more similar to 

that of the people living in it (42). A recent study also found that human gut microbes can persist on 

built environment surfaces long enough to be transmitted between people: majority of viable human-

derived microbiota detected on bathroom floors were aerobic taxa, though some methanogenic 

anaerobes could also stay alive on building surfaces for up to 6 hours (43). Studies such as these 

challenge the idea of microbiomes as strict metacommunities (akin to oceanic island systems), as some 

gut-dwelling microbes clearly persist and perhaps even flourish outside hosts (42–46). 

Despite evidence that both social interaction and environmental transmission can shape 

vertebrate gut microbiotas, the influence of these different routes have rarely been studied together and 

directly compared. For example, although environmental exposure (the degree of contact with natural 

soils and local environments) has been implicated in driving healthy microbiota development and 

immune function in human children (36–39), the role of socially transmitted bacteria in the same 

processes has not been examined. The opposite bias prevails in studies of social transmission, with most 
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non-human studies ignoring the potential impact of environmental transmission (but see (47)). 

Consequently, we know little about the relative importance of social and environmental transmission in 

shaping the gut microbiota.  

Importantly, bacteria vary in many attributes that may affect their propensity to transmit via 

different routes. Traits that influence their ability to persist and grow outside the host, such as 

aerotolerance and spore formation, may be particularly important in this regard (48). For example, 

aerotolerant microbes may persist and even grow outside terrestrial host organisms (49), spore-formers 

may be able to persist long enough outside hosts to transmit indirectly via environmental contact (50), 

while anaerobic, non-spore forming bacteria may instead rely on intimate physical contact to pass from 

host to host (51). Consistent with such ideas, among Firmicutes spore-forming taxa are more prevalent 

among humans than non-spore-forming taxa, implying they may be more readily transmitted through 

shared environments (52). Aerotolerant and spore-forming bacteria in the human gut were also found to 

have broader geographic range, suggesting they can spread across larger distances than those less tolerant 

of oxygen-rich environments (21). However, to date no empirical work has formerly tested whether gut 

bacterial phenotypes predict which transmission routes are most responsible for spreading them. 

To bridge this gap, here we use a tractable wild mammal system to dissect how both social 

and environmental transmission shape gut microbiota composition, and ask which types of microbial 

taxa are shared via each route. Delineating separate signals of social and environmental transmission can 

be challenging in some species including humans (53), particularly those that form tight social groups 

where social interactions, spatial location and other factors that shape the microbiota (such as diet) are 

highly correlated. We therefore opted to use a semi-social model species, the wood mouse (Apodemus 

sylvaticus) for this purpose. These nocturnal woodland rodents inhabit small, stable home ranges and 

have non-modular social networks in which social relationships are only partially related to the sharing 

of space (35),  making them well-suited to disentangling social and environmental transmission effects 

on microbiota composition. In this species, social transmission of microbes could occur through physical 

contact behaviours (e.g., mating, huddling, grooming, licking, fighting, see Supplementary Figure S1), 

whereas environmental transmission could happen through contact with microbes present in natural 

surfaces, soil, food items or other’s faeces (though coprophagy behaviour has not been observed in this 

species). Within a single population over a 10-month period, we used a passive tracking system based 
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on radio-frequency identification (RFID) technology to intensively monitor home ranges, social 

networks and microhabitat use, while in parallel repeatedly profiling individuals’ gut microbiota from 

faecal samples. With the resultant data, we then dissect how sharing of gut microbial taxa among 

individuals varies as a function of their social association, overlap in space use, and similarity in habitat, 

and how microbial traits (aerotolerance and spore-forming ability) predict the extent to which microbes 

drive distinct transmission signals.  

 

 

Results 

The wood mouse gut microbiota is highly individualised and temporally variable 

We first explored the taxonomic composition of wood mouse gut microbiota, which we found to be 

dominated by bacteria belonging to the families Lachnospiraceae (37% amplicon sequence variants, 

hereafter ASVs), Muribaculaceae, (formerly known as S24-7; 20% ASVs), Oscillopiraceae (8% ASVs) 

and Ruminococcaceae (4% ASVs). The most common genera were Lactobacillus, Lachnospiraceae 

NK4A136, Ligilactobacillus and Limosilactobacillus (Supplementary Figure S2A). Using a set of 

repeat-sampled mice (mice with ³2 samples, 255 samples from 82 individuals), we found microbiota 

composition to be highly individualised, with individual identity explaining 52% variation in community 

composition (marginal PERMANOVA on Jaccard Index, R2=0.52, F=2.38, p=0.001). Microbiota 

composition also varied temporally, with sampling month explaining 5% of compositional variation in 

the same analysis (R2= 0.05, F=1.67, p=0.001; Supplementary Figure S2B).  

 

Wood mice have weakly correlated social and spatial population structure 

 

To identify different transmission pathways for microbiota, we used logger data to derive home ranges 

and microhabitat profiles for each individual mouse, and social networks for the population. Social 

networks were constructed using the “Adjusted Simple Ratio Index” (Adjusted SRI) as a measure of 

social association, which reflects how often two mice were observed in the same location within 12h of 

each other at times they were both alive, during a specified period of time (see Methods). Individual 
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home ranges (space-utilisation distributions) were calculated from logger data and used to calculate 

pairwise home range overlap using the Bhattacaryya index. To measure whether mice were exposed to 

similar microhabitats, we used data from a ground-cover vegetation survey to calculate an index of 

vegetation community similarity (Bray-Curtis index) across each pairs home ranges. The mouse social 

network displayed a non-modular structure, with no clustering into social groups (Figure 1). Across the 

entire 10-month monitoring period, mice had a mean of 6.4 social connections (i.e. 6.4 other mice with 

which they occurred in the same location at least once within a 12 h window, range 0-24), though these 

varied considerably in association strength (mean non-zero social association index=0.10, sd=0.15, 

range=0.005-1). We also constructed separate social networks for spring (Feb-Jun) and Fall (Jul-Nov) to 

assess how social associations changed across the annual reproductive cycle and with the sex of pair 

members. In spring, average social association strength was comparable across different sex categories 

(female-female, female-male and male-male pairs) but tended to be stronger in spring compared to fall, 

especially in male-male pairs (Supplementary Figure S3A). Home range overlap also varied according 

to season and sex; in spring, home range overlap was greatest among males, intermediate among male-

female pairs and lowest among females, while during Fall all sex-categories had similar levels of range 

overlap (Supplementary Figure S3A). Although habitat similarity varied widely across pairs of mice 

(mean Bray-Curtis habitat similarity=0.39, sd=0.16, range=0-0.98), it did not differ significantly 

between sex categories or seasons. Across the entire dataset, social association strength, spatial (home 

range) overlap and habitat similarity among mouse pairs were all partially correlated with each other, 

with the correlation between social networks and home range overlap much weaker than that between 

home range overlap and habitat similarity (Mantel tests: social association-spatial overlap, r=0.26, spatial 

overlap-habitat similarity r=0.50, Social association-habitat similarity r=0.12, all p<0.001, 

Supplementary Figure S3B). 

 

Figure 1 

 

Social association, spatial overlap and habitat similarity predict gut microbiota 

similarity among mice 
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We constructed a dyadic Bayesian betaregression model to predict the level of microbiota similarity as 

a function of our measures of social association, spatial overlap and habitat similarity across all pairs of 

mice. Microbiota similarity was calculated as the proportion of shared 16S amplicon sequence variants 

(Jaccard index) among samples. Model results revealed that social association, spatial overlap and habitat 

similarity all positively predicted the proportion of microbial ASVs shared by pairs of mice, while 

controlling for other covariates (Figure 2). Social association had by far the strongest effect on gut 

microbe sharing – over eight times stronger than the effects of spatial overlap or habitat similarity (Figure 

2, Supplementary Table S1A).  

 

Figure 2 

 

To further explore the nature of the social, spatial and habitat signals in the data, we ran the same model 

with two alternate response variables capturing different elements of microbiota similarity: Bray-Curtis 

similarity (1-Bray-Curtis distance) and the count of shared taxa between a sample pair, modelling using 

betaregression and a poisson model respectively. While effects were of similar magnitude in all models, 

social and spatial effects appeared notably more uncertain (displaying doubly as wide credible intervals) 

when using Bray-Curtis similarity compared to the Jaccard Index or count of shared taxa (Supplementary 

Figure S4, Supplementary Tables S1B-C).  

 
 
We next explored whether the social, spatial and habitat effects on microbiota similarity varied according 

to the sex of individuals involved. For all three effects, we detected significant interactions with sex 

category (Supplementary Table S2), which showed that social association and home range overlap most 

strongly predicted gut microbe sharing among female-only pairs, while the habitat effect was strongest 

for male-male pairs (Figure 3). Because wood mouse social behaviour may be expected to vary across 

breeding and non-breeding seasons, we further explored whether the sex-dependent social association 

effect varied between spring and fall. This revealed that in the spring (Feb-Jun) the effect of social 

association on gut microbe sharing was only significant for female-only pairs, while in the fall (Jul-Nov), 
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the social effect was driven by same-sex (both male-male and female-female) pairs (Supplementary 

Figure S5, Supplementary Table S3). Across all models, the effect of social association was strongest in 

female-only pairs during spring, where in real terms it meant that while female pairs that were never 

observed together shared on average 30% of their gut microbial taxa (ASVs), pairs with strong social 

associations (mice that were associated in over 50% of the instances they were observed) were predicted 

to share on average 60% of their combined gut microbial taxa.  

 

Figure 3 

 

Microbial phenotypes predict influence on transmission signals  

We used Bergey’s Manual of Systematics of Archaea and Bacteria (54) to classify the aerotolerance 

and sporulation phenotypes of bacterial genera detected in faecal samples. Since we found that home 

range overlap predicted gut microbe sharing among mice (Figure 2), we first examined which types of 

bacteria are detectable in both the local environment and the gut, and thus have the potential for 

transmission between these two environments. To do this we profiled the soil microbiota from 25 sites 

across our study area using the same methods used to characterise the gut microbiota, and classified 

aerotolerance and spore-formation ability for bacterial genera present in the soil. Soil microbiota was 

more diverse than mouse gut microbiota with 3450 ASVs and 502 genera found from soil compared to 

1289 ASVs and 188 genera in the mouse gut (Supplementary Figure S2). We searched for phenotype 

information for all genera present in mice or in both mice and soil. Of taxa present only in the soil we 

searched phenotype information for genera found from at least 50% of the soil samples. We found that 

while few taxa overall were shared between mouse faeces and local soil, with just 6% ASVs and 24% 

of genera detected in faecal samples also found in local soil, nearly all shared taxa were aerotolerant 

(Supplementary Figure S6). 

 

Overall, we could reliably infer phenotypic information for 60% of gut microbial genera (Supplementary 

Table S4). Using this subset, we then used two analytical approaches to assess which kind of bacteria 

spread through each transmission route in this population. First, we repeated our probabilistic models 
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using Jaccard indices calculated from one of four phenotypic subsets: (i) strict anaerobes (ii) aerotolerant 

(iii) spore-forming and (iv) non-spore-forming taxa. As these subsets contain varying numbers of ASVs 

and differ in the mean proportion shared among hosts, we cannot directly compare the strength of a 

specific effect across models. However, we can assess how the relative strength and credibility of key 

effects within each model varies according to the subset of microbes being considered. When considering 

only aerotolerant taxa, the social network’s effect on ASV sharing became weaker and less certain 

compared to the effects of spatial overlap and habitat similarity, to the extent it was no longer significant 

(Figure 4, Supplementary Table S5). In contrast, when only strictly anaerobic taxa were considered, the 

relative magnitude of effects mirrored that observed for all taxa, with the social network predicting 

sharing of ASVs among mice more strongly than shared use of space or habitat similarity (Figure 4; 

Supplementary Table S5). Overall, these results suggest that anaerobic taxa predominantly drive the 

effect of social association observed. In contrast, subsetting microbes by their ability to form spores did 

not appreciably alter the relative magnitude of any of the effects (Supplementary Table S5, 

Supplementary Figure S7).  

 

Figure 4 

 

Second, for each bacterial genus we calculated “importance scores”, which capture the impact of their 

inclusion on the model’s ability to detect social, spatial and habitat effects respectively. We did this by 

dropping each genus in turn from the data, re-calculating the Jaccard index, re-running our main model 

and measuring the extent to which uncertainty (credible interval width) increased around each effect. 

'Important’ genera for a given effect are therefore those which increase the signal-to-noise ratio. In all 

models where a single genus was excluded, we found social, spatial and habitat effects that were 

significant and similar in magnitude to those detected in the full model. This indicates that no single 

genus drove these effects, but rather each genus has a small contributory effect that varies in magnitude 

and direction. For all three effects (social, spatial, and habitat) importance scores showed no strong 

phylogenetic clustering, suggesting taxa from across the bacterial phylogeny contribute to each (Figure 

5). However, spatial and habitat importance scores were significantly positively correlated (r=0.35, 
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p<0.001), suggesting some overlap in the taxa that are most important in generating these two effects 

(Figure 6A). By contrast, neither spatial nor habitat importance scores correlated with social importance 

scores, implying different set of taxa were influenced by social vs environmental associations among 

mice (Figure 6A). Indeed, most of the ten most socially important genera belonged to the phylum 

Firmicutes and none were from Proteobacteria, while most of the ten most important genera for both 

spatial and habitat signals belonged to Proteobacteria (Supplementary Figure S8).  

 

Figure 5 

 

We next used Bayesian generalised linear models to formally test whether aerotolerance or spore-

forming ability predict the importance of bacterial genera for social, spatial and habitat signals, while 

controlling for any phylogenetic structure. This revealed that, consistent with the earlier modelling 

approach, social importance was negatively associated with aerotolerance, (Posterior mean: -0.07, CI 

from -0.14 to -0.00; Supplementary Table S6A, Figure 6B). Habitat importance was also negatively 

predicted by sporulation (Posterior mean: -0.17, CI from -0.31 to -0.02). To further explore effects of 

phenotype interactions, we then ran additional models predicting importance scores with a more detailed 

combination phenotype as a 4-level factor (aerotolerant spore-formers, aerotolerant non-spore-formers, 

anaerobic spore-formers, anaerobic non-spore-formers), and post hoc models to determine whether the 

most important phenotypes had significantly different importance compared to other genera. This 

revealed that spatial importance scores were in fact significantly higher in aerotolerant spore-formers 

than other genera (Supplementary Tables S7B, S8B, Figure 6C), while controlling for bacterial 

phylogenetic relatedness. Social importance was on average highest in anaerobic non-spore-formers but 

this effect was not significant (Supplementary Tables S7A, S8A Figure 6C). Furthermore, compared to 

other phenotypes, anaerobic spore-formers had significantly lower importance for the habitat signal 

(Supplementary Tables S7C, S8C, Figure 6C).  

 

Figure 6 
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Discussion 

 

Recent research has shown that mammalian gut microbiota can be influenced by transmission through 

social behaviours (19) or environmental contact (55), but the relative contributions of social vs 

environmental transmission pathways have not been explored simultaneously. Here we find evidence 

for parallel and distinct effects of environmental and social contact transmission in shaping the gut 

microbiota composition of wild mice. The microbiota of wood mice was affected by both their shared 

use of space and by social associations with other conspecifics, with these transmission pathways 

generating effects that differed both in magnitude and in the microbial taxa involved. Specifically, the 

social signal in wood mouse gut microbiota was over eight times stronger than effects of either spatial 

overlap or habitat similarity, meaning that mice who were often observed together (in the same place 

close in time) shared many more gut microbial taxa than those who only shared living space or were 

exposed to similar microhabitats. Social contacts have been found to homogenise the microbiotas of 

interacting individuals of many social species (25–28), but the fact that social transmission can have 

such a strong effect independent of shared space and even in a relatively non-social species such as the 

wood mouse, is striking. These results concord well with earlier findings on microbiota transmission 

from another wood mouse population, where with more sparse behavioural monitoring (using only 9 

loggers across a similar sized area) we showed that social networks strongly predicted gut microbiota 

composition, independent of spatial proximity (a simple distance between each mouse’s average point 

location) (35). Notably, unlike in that earlier study, the findings here are based on spatiotemporal co-

occurrence data collected with completely unbaited RFID loggers recording completely natural space 

use behaviour, suggesting that strong social effects on the gut microbiota are general across wood 

mouse populations and readily detectable using different tracking methods. The finding that home 

range overlap and habitat similarity had generally small effects on microbiota sharing is also in line 

with earlier findings from other wood mouse populations, suggesting that geographic locations 1-6 

miles apart explained a relatively small amount of microbiota variation (56,57). 
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These social and spatial effects we believe reflect transmission processes, while the effect of habitat 

similarity may reflect a mixture of transmission and selective forces imposed by the environment on 

microbiota (such as effects of diet or stress on microbiota). Since transmission processes are expected to 

affect which taxa colonise a host but not necessarily how well they subsequently grow, we expected 

social and spatial signal to be more readily captured using binary measures of microbiota sharing whereas 

habitat signal might be captured well by abundance-weighted measure of microbiota similarity (Bray-

Curtis similarity). In line with this hypothesis, social and spatial signals were doubly as uncertain in 

model predicting abundance-weighted Bray-Curtis similarity compared to the model predicting Jaccard 

microbiota similarity. While habitat signal was also less uncertain, this difference was less striking. 

 

When gut microbes are transmitted through social contact, their distribution across the host population 

can reflect patterns of social behaviour among hosts. Consistent with this, we found that the social 

network’s effect on microbiota composition varied between sexes and across seasons. The social effect 

on microbiota composition was strongest for female-female pairs, weakest in female-male pairs with 

male-male pairs having an intermediate effect size. The social effect was particularly strong in female-

female pairs during spring (Feb-Jun), when social associations were stronger on average. This seasonal 

difference in the effect of social association on the microbiota may be linked to behavioural differences 

of wood mice across their breeding cycle. During the breeding season (approx. June-November in 

Wytham), wood mice, especially females, are more solitary and territorial compared to the non-breeding 

season, when multiple mice may co-nest together in same-sex groups (58–61). Interestingly, the pattern 

of sex-dependency in the social transmission effect detected here differed from earlier findings from 

another wood mouse population, where social association predicted microbiota similarity only in male-

male and male-female, but not female-female pairs (35). While more detailed behavioural data would be 

needed to understand which specific social behaviours are involved in gut microbial transmission, these 

findings already emphasize that differences in the ecological and social environment among populations 

of the same species can change the way individuals exchange microbes, as microbial transmission may 

depend on fine-scale variation in social relationships, even among individuals utilizing the same space.  
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Our results clearly showed that not all microbes are equally spread by different transmission routes. 

Through two complimentary analytical approaches, we found that different microbial taxa underpinned 

social effects on the microbiota compared to effects of spatial overlap and habitat similarity. This means 

that different members of the gut microbial community may be transmitted through social contacts and 

a shared environment respectively. Indeed, we found the social transmission signal was specifically 

driven by sharing of anaerobic bacteria, as it was no longer significant when they were removed from 

the analysis, whereas the spatial transmission signal was detectable among both aerotolerant and 

anaerobic taxa, and if anything was slightly stronger for aerotolerant bacteria. Deconstructing the whole-

community-level effects into genus-level contributions further revealed that spatial signal in the 

microbiota was driven most strongly by aerotolerant spore-forming genera, while the social signal was 

most influenced by anaerobic genera, most strongly anaerobic non-spore-formers. Sampling the 

microbiota of the environment (soil), also revealed that the microbes present in both soil and mouse gut 

were rather exclusively aerobes. We do not expect these soil microbes to represent a full picture of 

microbes present in the mouse environment, but the fact that only aerobic bacteria seemed to spread 

between soil and mice supports the idea that aerotolerance is important for environmental transmission 

of gut microbes and that anaerobic taxa may need a different mode of transmission. In future, more 

thorough sampling and source-tracking approaches could identify through which substrates indirect host-

to-host transmission happens. Similar evidence supporting either social transmission spreading less 

oxygen-tolerant taxa, or environmental exposure spreading more oxygen-tolerant bacteria exists in the 

literature. Studies of wild baboons, for instance, found that social associations based on the grooming 

social network predicted microbiota similarity and this effect was driven by anaerobic and non-spore 

forming bacteria (28). A follow-up study further showed that baboon populations living in different 

geographic locations differed specifically in the aerobic microbiota they hosted (47). Studies on the 

human gut microbiota have also reported findings that suggest links between bacterial phenotypes and 

transmission ecology. For example, gut microbial taxa which can form spores are more prevalent among 

people than those which cannot, consistent with them more readily transmitting among hosts (50) and 

microbial strains shared among people from geographically distant locations (i.e., between populations) 

were more likely to be aerotolerant and spore-forming than those shared among household members 

(21). Alternative evidence comes from a laboratory rodent experiment, where aerotolerance was shown 
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to be associated with transmission pathways of gut microbes among 17 inbred laboratory mouse lines 

derived from geographically distinct wild populations (62). Here, microbial transmission between adult 

mice (“horizontal transmission”) was driven by aerotolerant taxa, while obligate anaerobes were found 

to be only vertically transmitted (passed from mothers to offspring in birth). However, in this study, 

horizontal transmission of microbes was mostly limited to transmission through the aerobic environment, 

as caged mice did not socially interact with each other. Future research could usefully assess whether 

vertically transmitted gut bacteria overlap with those taxa transmitted horizontally through intimate 

social contacts later in life. If so, this would mean that the same (perhaps anaerobic, non-spore-forming) 

microbial taxa spread through both social contacts and from mother to offspring. Over evolutionary 

timescales, this kind of transmission ecology might lead to anaerobic and/or non-spore-forming microbes 

getting stuck not just inside a host social network but also the branching tree of host lineages, such that 

those microbes which are transmitted through the most intimate interactions become most specialised in 

their host species. Supporting this, the most host-specific gut microbial taxa were recently found to be 

enriched in anaerobic phenotypes across mammalian hosts (63). A recent simulation study also suggested 

that gut microbial transmission mode (horizontal vs vertical) could predict the level at which the bacteria 

may establish a stable host-microbe relationship across evolutionary time, with microbes less able to 

persist outside the host evolving more host-specialist life-style (64). However, like the above-mentioned 

laboratory mouse study (52), this simulation study contrasted maternal “vertical transmission” with 

general “horizontal transmission”, pooling together all microbial transmission processes among adult 

animals, thus not considering the separate effects of social and environmental pathways. Rather than 

contrasting vertical and horizontal transmission, future research might benefit from categorising 

transmission processes into maternal, social and environmental pathways. This way we can separate 

environmental transmission that may spread more generalist gut microbes from more intimate 

transmission routes (maternal and social) which may spread more host-specialised gut microbes. 

Consistent with the idea that maternal and social transmission may spread similar bacteria, our recent 

study on wood mice found that as young mice age, maternal transmission processes are gradually 

replaced by social transmission processes (65), with maternal and social effect in these mice both driven 

by microbes in the same family Muribaculaceae (35,65).  
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If aerobic and spore-forming vs. anaerobic and non-spore-forming microbes spread from host to host 

through somewhat different transmission pathways as our data suggest, this has two important 

implications. First, anaerobic non-spore-forming microbes that require more intimate transmission routes 

may be more likely to evolve a more stable relationship with their host (as suggested by Leftwich et al., 

(64)) and perhaps more mutualistic relationship as well, since they are more dependent on their host 

species (as suggested by Moeller et al., (62) based on Brown et al., (66)). Compared to environmental 

transmission, social transmission may therefore be expected to spread microbes with greater functional 

significance for the host, for example in nutrition (67) or protection against pathogenic infection, as has 

been shown in some insect systems (68). Social transmission of key symbionts is an important possibility 

to consider when weighing the pros and cons of social lifestyle in theory concerning the evolution of 

sociality, especially if socially acquired microbes are among those that influence social behaviour (7), as 

this could potentially lead to positive feedback loops in which social behaviours spread social behaviour-

boosting microbes (6). Second, the fact that some microbes only live in and transmit between hosts while 

others readily spread between the host and the external environment calls in question the relevance of 

viewing host associated microbiotas as classic metacommunities, like island ecosystems. While some 

assumptions in classic metacommunity ecology (such as the idea of completely inhabitable matrix 

separating habitat patches) have been updated to better model the microbiota (46), assuming that all 

members of a microbiota can similarly persist in the environment between hosts seems unrealistic. 

Microbial taxa may vary greatly in the extent to which they experience the host as a true island. For 

instance, anaerobic microbes may well live in a strict metacommunity, structured by the host social 

network, while the aerotolerant microbes may experience a much more continuous landscape, more 

analogous to valleys amidst hills than islands in the sea. Similar variation among species in how they 

experience a metacommunity landscape of course also exists in macroecological metacommunities, for 

example due to varying dispersal abilities (69). However, in microbiotas a key difference may be that 

this variation arises not only from varying abilities to cross the matrix but rather a gradient of abilities to 

persist and live within it.  

 

Going forward, to better understand the transmission ecology of different members of microbiota will 

require further work to characterise microbial phenotypes associated with the ability to persist outside 
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the host. Data on aerotolerance and spore-formation is still lacking from many gut microbial genera of 

wild animals. For example, the most common genus in our dataset was an unnamed group of 

Muribaculaceae, a family which has itself only recently been named and characterised (70). In reality, 

this group may consist of multiple different genera, but with current taxonomic profiling tools, it is 

impossible to delineate them. Furthermore, aerotolerance and spore-formation are probably not the only 

relevant phenotypes determining gut microbial transmission pathways. For instance, persistent states 

mediated by toxin-antitoxin system, metabolically sparing “viable but non-culturable” (VBNC) states, 

or morphological adaptations in the cell wall could all potentially affect the environmental 

transmissibility ability of gut microbes (50). In fact, a recent thorough exploration of the human gut 

microbiota transmission landscape found that cell wall properties (as described by gram stain) were 

associated with human-to-human transmissibility of gut microbes (21). As culture-based phenotypic 

information can be limited, especially in wild host species, there is also a lot of promise in the growing 

number of tools developed for predicting bacterial phenotypes from genomic data (See for example 

TRAITAR (71)). Here, a potentially useful but so far unexplored method for classifying aerotolerance 

phenotypes from bacterial sequence data could involve characterising Ribonucleotide Reductase enzyme 

genes (72). 

 

Based on our findings, it seems that while gut microbes can be shared among hosts via multiple 

independent routes (social interactions, and shared space use), the subset of using each of these 

transmission pathways differ both taxonomically and in traits that affect their ability to persist outside a 

host. This highlights the need for further research on the transmission dynamics of not only pathogens 

but also commensal members of the microbiota. Humans are a socially flexible species capable of large-

scale modification of their own social contact network, as evidenced by widespread social isolation 

practises implemented during the SARS-CoV-2 pandemic.  Reducing social contact is an effective way 

to reduce pathogen spread, but multiple studies have also highlighted that we know essentially nothing 

about the consequences of social isolation for our commensal microbiota and microbiota-mediated health 

(19,73,74). At the same time, a growing body of evidence emphasizes how diminishing contacts with 

the natural environment among urbanised human populations can have negative health consequences 

through a lack of natural microbiota transmission from biotic environments and consequent disruptions 
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to immune development (36–39,75). If isolation from natural sources of environmental microbiota 

transmission can compromise host health through immune disruptions, what might be the consequence 

of isolating from natural sources of social microbiota transmission? More research is needed to answer 

this important question. Notably, both reduced natural contact and reduced social contact are common 

aspects of modern lifestyles. Such isolation from social and ecological environment may independently 

disrupt the co-evolved transmission networks of human microbiota (74), reflected by the observation 

that modern lifestyles are linked with a range of immune disorders (76,77)and seem to be depleting the 

diversity of human gut microbiota (78,79). 

 

 

Methods 

 

Field data collection 

During July-November 2019, we collected faecal samples and tracked the movements of 164 wild wood 

mice living within a woodland plot (Holly Hill) in Wytham Woods, Oxford, UK (51.77 °N, -1.33°S). 

This involved fortnightly trapping to tag mice and collect samples, alongside continuous passive tracking 

of tagged individuals using RFID technology. The focus study area, where mouse behavior was tracked, 

was a 2.56 ha (160m x 160m) “core grid”, but to minimise edge effects mice were trapped and tagged 

from an area larger than this core grid, from a 4 ha (200m x 200m) “extended grid” spanning up to 40 

meters outside of the core. Trapping sessions were carried out in the area from November 2018 to 

November 2019, with captured mice aged and sexed, and injected with a subcutaneous PIT-tag for 

permanent identification and tracking. After processing, all individuals were immediately released at the 

exact location they were trapped. Faecal samples for microbiota analysis were collected from the traps 

of identified individuals into sterile sample tubes with sterile tweezers and frozen at -80oC within 4 hours 

of collection. All traps showing signs of rodent presence were carefully washed and sterilised in bleach 

solution before the next trapping session, to eliminate cross-contamination. Additionally, in the 

beginning of the study period (between November 2018-February 2019), 25 soil samples were collected 

from around the 4 ha extended grid to serve as a general reference to the local soil microbiota. A soil 
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sample was collected by digging a spoonful of soil (~200 mg) from 3 cm underground, creating a mix 

from three digging spots within a meter of a mouse trapping location.  

Mouse behaviour was monitored with a set of 60 custom-built RFID-loggers distributed across the study 

site, recording the time-stamped presence of any individual that came within its read range (~1m2). 

Loggers were unbaited, positioned evenly across the grid and rotated fortnightly to ensure even spatial 

coverage of the area. This scheme meant that each 10 x 10 m grid cell of the study site was covered by 

a logger for a fortnight every two months, i.e., 25% of the time. In addition to these evenly spaced 

“above-ground” loggers used to derive social networks, to derive home range estimates we also included 

data from an extra set of 60 loggers positioned at entrances to mouse burrows between July-November. 

These “burrow loggers” were not rotated but were distributed approximately evenly across the study 

area. Further details of logger devices and the tracking protocol can be found in Supplementary Figure 

S9.  

Shortly after the study (May, 2020), we completed a thorough survey of vegetation and microhabitat 

variation across the study site, in which the percentage cover by each of the eight main ground cover 

types in the area was recorded for each 10 x 10m grid cell of the plot (Supplementary Figure S10). 

 

Social network construction 

Social networks were constructed using data from all 60 above-ground loggers for the full 10-month 

period (‘Full Social Network’) as well as separately for spring (Feb-Jun) and Fall (Jul-Nov) (‘seasonal 

networks’). This division of the year into “seasons” was done based on cutting the whole study period 

in two equal halves, but it also approximately mirrors the natural seasons of wood mouse breeding; wood 

mice are reproductively more inactive during late fall/early spring and become increasingly 

reproductively active during late spring and breed until early fall. Consistent with this, juveniles started 

appearing in the data only in early September and stopped appearing in turn of November-December, 

meaning that females were typically pregnant from August onwards. While reproductively active, female 

wood mice are less social and more territorial (60,61,80). Networks were constructed and visualized 

using our custom social network inference and plotting functions in R (see github: 
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https://github.com/nuorenarra/Social-Network-Analysis) with the help of R package igraph (81). These 

functions took the logger data, consisting of time-stamped observations of tagged individuals in fixed 

locations, and calculated a pairwise association index for all mouse pairs based on the frequency with 

which they were observed at the same location during the same short time window. Logger data was first 

filtered to include only the normal hours of activity for this nocturnal species (16.00-08.00). Each of 

these 16hr logging ‘nights’ formed the primary units for social association inference. For each night, a 

pair of mice were considered ‘associated’ if they were observed at the same location within 12 hours of 

each other, consistent with our previous work (Raulo et al. 2021). These instances of association were 

then used to calculate an association index defined as: 

 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑	𝑆𝑅𝐼	 = 	
𝑋

[𝑋 +	𝑦!"		 + 	𝑦𝐴	 + 	𝑦𝐵],
 

 

where X = the number of nights in which individuals A and B were observed associated (in the same 

location within 12 h of each other), yAB is the number of nights in which A and B were both observed but 

not associated (observed at the same location but more than 12h apart), yA and yB are the number of nights 

in which both were known to be alive but only A or B was observed respectively. Accounting for lifespan 

overlap in this metric allows us to more accurately summarize the temporally fluctuating social structure 

of the mouse population in one static social network.  

 

Estimating home range overlap  

An animals’ home range can be defined as “the area, usually around a home site, over which the animal 

normally travels in search of food” (Burt, 1943) and is commonly presented as a utilization distribution 

describing the probability of space use with respect to time (Powell & Mitchell, 2012). We quantified 

home ranges from logger data using an autocorrelated kernel density estimator (“AKDE”; (Fleming et 

al., 2015) implemented using the ctmm package (Calabrese et al., 2016). Home range boundaries were 

delineated at the 75% level to provide an estimate of the core home range, the smallest area that one 

could expect to find a given individual inside, with 75% probability. In other words, each individual 

mouse’s home range was described as a three-dimensional probability distribution of space utilization, 
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where the two base dimensions were actual space and the third dimension was utilization intensity, i.e. 

how frequently the mouse used a given region within its range. Home ranges were calculated only for 

individuals satisfying our criteria for a complete and stable observation record, based on variograms 

estimating temporal autocorrelation in spatial records (Supplementary Appendix S1). Under these 

criteria, home ranges could be estimated for 104 of the 157 mice recorded on loggers. Among these 104, 

we calculated home range overlap for each mouse pair using the “overlap” function in ctmm and the 

Bhattacaryya coefficient, defined as: 

 

𝐵𝐶(ℎ, 𝑔) = 9:ℎ(𝑥)𝑔(𝑥) 	𝑑𝑥 

 

, where h and g are two probability distributions of value x respectively. 

 

Since reliable home range estimation requires a considerable amount of tracking data, home ranges were 

estimated using all available logger data from both above-ground and burrow loggers. To ensure that 

higher logger density in the fall (when burrow loggers were deployed) did not bias home range estimates, 

we used a subset of well sampled mice from the fall to show that home ranges calculated from the sparser 

above-ground logger data were overlapping and comparable in size to home ranges based on all logger 

data pooled for the same individuals (see Supplementary appendix S1).  

 

Estimating habitat similarity 

Habitat similarity between mice was estimated using data on the percentage cover by each of the eight 

main ground cover types within each mouse’s home range (75% core kernel density area). The main 

ground cover types were defined as: 1) open ground (OG; no plant coverage), 2) dog’s mercury (DM; 

covered by Mercurialis perennis), 2) bluebell (BB; covered by Hyacinthoides non-scripta), 3) bramble 

(BR; covered by Rubus fruticosus),4)  grass (G; covered by grass species in family Poaceae), 5) sedge 

(S, covered by Carex pendula), 6) Enchanter’s night shade (EN; covered by Circaea lutetiana), 7) wild 

garlic (WG; covered in Allium ursinum) and 8) Currant (RI, covered by Ribes spicatum)  (see 

Supplementary Figure S10). For each mouse, we calculated normalized abundance for each ground cover 
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type, as the sum of its coverage across the home range (in m2) divided by home range area. Using these 

values, we then used package vegan to calculate habitat similarity for all pairs of mice, using the Bray 

Curtis Index (82). 

 

Microbiota profiling 

We profiled microbial communities by extracting DNA from faecal and soil samples and using primers 

515F and 926R (83) to amplify and sequence the V4-V5 region of the 16S rRNA gene in 

bacteria/archaea. Full details of the laboratory work, library preparation and sequence data 

bioinformatics can be found in Supplementary appendix S2. In brief, we used the DADA2 algorithm to 

infer microbial sequence variants (ASV) from the sequence data and assigned taxonomy using the 

SILVA database (version 138) after which the data was decontaminated (84) and filtered to remove non-

gut-microbial taxa and samples with low read counts. Finally, abundance data was normalized to 

proportions of each ASV per sample.  

 

Statistical analyses 

Describing microbiota variation 

To characterise variation in microbiota composition among individuals (beta diversity), we used the 

Jaccard index, which captures the proportion of microbial ASVs detected across a pair of individuals, 

that are shared between them. This metric provides an intuitive way to capture transmission signals (as 

transmission should affect the presence/absence, but not necessarily the relative abundance of taxa within 

a host. Previous work suggested that abundance-weighted measures of beta diversity (e.g. Bray-Curtis 

dissimilarity) do not provide better detection of microbiota transmission signals compared to the Jaccard 

Index (35). To ensure Jaccard index was the most optimal beta diversity metric for picking up 

transmission signals in the data, we also modelled alternative measures of microbiota sharing: abundance 

weighted Bray-Curtis microbiota similarity and the raw count of shared ASVs between a pair (scaled 

between 0 and 1). 
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To estimate the amount of gut microbiota variation accounted for by stable differences between host 

individuals vs. temporal fluctuations within host individuals, we used Principal Coordinates Analysis 

(PCoA) and marginal PERMANOVAs (implemented with the adonis2 function of package vegan (85) 

to predict the Jaccard Index across samples from repeatedly sampled individuals (n=255 samples from 

82 individuals with a mean 3.1 samples per individual, range 2-10), using host ID and sampling month 

(as a factor) as fixed effects.  

 

Modelling the effect of different transmission pathways on microbiota 

To test the effects of social and environmental transmission on microbiota composition, we constructed 

a model in which microbiota sharing among pairs of mice is predicted by their social association strength, 

spatial (home range) overlap, and habitat similarity. Here, the effect of social association while 

controlling for the effects of spatial overlap and habitat similarity is meant to capture the effect of social 

contact transmission on microbiota. Similarly, the effect of spatial overlap controlled against the other 

two main predictors is meant to capture the effect of microbial transmission from and through shared 

space, and the effect of habitat similarity controlled against the other two predictors is meant to capture 

the effect of convergent exposure to similar environmental pools of microbes (those predicted by similar 

vegetation) and similar selective forces shaping microbiota (e.g., diet). To build this model we used a 

dyadic Bayesian multilevel model framework implemented in package brms (86), as validated and 

described in (35) (See also https://github.com/nuorenarra/Analysing-dyadic-data-with-brms). This 

model framework allows “multi-membership” random effect structures that can account for the types of 

dependence inherent to pairwise comparisons as well as repeated sampling of the same individuals (87). 

Models used dyadic measures of microbiota similarity (Jaccard index, Bray-Curtis similarity or number 

of shared taxa) as the response variable, including all sample pairs except those from the same individual 

mouse. These values were modelled as a function of the predictor variables described above together 

with a set of technical and biological covariates: host age class similarity (same vs different), sex 

similarity (same vs different), time interval in days between samples, sample extraction distance (the 

physical distance between two samples on plates during DNA-extraction, as described in Supplementary 

Appendix S2), read depth difference and PCR plate similarity). Models with Jaccard index of Bray-

Curtis as the response used beta regression (likelihood family = Beta) where the response is a proportion. 
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Where number of shared taxa was the response, a poisson regression was used (likelihood family = 

Poisson). The models included a multi-membership random effect (random intercept) for the identity of 

samples (Sample A + Sample B) as well as individuals (Individual A + Individual B) involved in each 

pairwise comparison. In addition to this primary model, we ran one additional pair of models to explore 

seasonal and sex-specific differences in social and environmental influences on the microbiota. Here, we 

modelled Jaccard Index as a function of the same set of predictors but for each of the seasonal data 

subsets of the social network (spring or fall), and included an interaction term between sex-combination 

(3-level factor: female-female, female-male, male-male) and social association. The brms model uses a 

Markov chain Monte Carlo sampler (Hamiltonian MC sampler, implemented with RStan (88) a wrapper 

for Stan, (89) to estimate posterior distributions (87). We ran the models with 4 parallel chains, each with 

1000 warm-up samples preceding 4000 actual iterations and used posterior checks to ensure reliable 

model performance (90). Specifically, we ensured that the chains converged, Rhat values were <1.05, 

Bulk effective sample sizes were no smaller than 10% total posterior draws, and the sampler took small 

enough steps (adapt_delta=0.98, max_treedepth=13) to avoid excess (>10) divergent transitions after 

warm-up. 

 

Transmission signals and microbial phenotypes 

We used Bergey’s Manual of Systematics of Archaea and Bacteria (54) to classify the aerotolerance 

(aerotolerant or strictly anaerobic) and sporulation (spore-forming or non-spore forming) of each 

bacterial genus identified. When this information could not be found in Bergey’s Manual (for example, 

as for some newly named taxa), we sought it from original research papers describing the genus or 

specifically assessing aerotolerance or sporulation of bacterial genera. Full phenotypic trait data for each 

genus and data sources are presented in Supplementary Table S1. In our analyses including bacterial 

phenotypes, we only included ASVs belonging to the 188 genera (out of 234 genera in the full dataset) 

where aerotolerance and sporulation were both well known. For unknown genera in a given family, we 

only included in the analyses if there was substantial evidence that all members of that family were of a 

given phenotype. All genera with unknown, uncertain, or variable phenotypes in terms of either 

aerotolerance of sporulation were excluded from the analysis. We used this data in two analyses to 

examine how different transmission signals (social, spatial, and habitat) were related to microbial 
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phenotypes. First, we calculated additional Jaccard indices that reflected the proportion of shared ASVs 

among those belonging to four phenotypic subsets: (i) strict anaerobes (ii) aerotolerant (iii) spore-

forming and (iv) non-spore-forming. These Jaccard Indices were then used as response variables in brms 

models with social, spatial and habitat variables together with covariates, as described above. The 

different phenotypic subsets of microbiota contained varying numbers of ASVs and differed in their 

mean similarity across hosts (See Figures 4 & S7). Thus, we cannot directly compare the effects between 

models predicting these different versions of Jaccard, because they come from data sets with inherently 

different uncertainty, intercepts and slopes. However, we can assess how the relative strength and 

certainty of key effects within each model, varies across models. Because these phenotype-specific 

Jaccard values also included a few zeros (no taxa shared between two samples), to meet beta-regression 

criteria, Jaccard values were scaled by (Jaccard * (n−1) + 0.5) / n where n is the sample size. 

Second, we quantified the importance of each bacterial genus in driving each transmission signal, and 

then asked whether microbial phenotypes predicted variation among genera in this importance.  

‘Importance’ scores for each of the 188 bacterial genera were calculated by dropping each in turn from 

the microbiota data, recalculating the full Jaccard Index and re-running the above-described brms model 

(see https://github.com/nuorenarra/Analysing-dyadic-data-with-brms). The “importance score” for each 

effect of interest (social association, spatial overlap and habitat similarity) reflected the extent to which 

dropping a genus from the analysis reduced the precision of that effect estimate. Specifically, the 

Importance of genus G for effect E was calculated as the increase in the 95% credible interval width 

(CIw) when G is excluded (CIwexcl -CIwincl) relative to the baseline credible interval width when G is 

included (CIwincl), divided by the square root of the number of ASVs (n.ASV) assigned to genus G:  

 

𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒#$ =
(𝐶𝐼%&'( − 𝐶𝐼)*'()/𝐶𝐼)*'(

√𝑛. 𝐴𝑆𝑉
 

 

The resulting values were approximately normally distributed, and were scaled between 0 and 1 to create 

importance scores that were on the same scale as other binary predictors in each model.  Across the 188 

genera, we tested whether aerotolerance (0/1) or sporulation ability (0/1) predicted importance scores for 

each effect of interest (social, spatial or habitat), using a brms gaussian multilevel model. To control for 
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phylogenetic non-independence among genera in these phenotypes, we also ran the model including the 

phylogeny among genera (in form of a variance-covariance matrix) as a random structure in the model. 
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Figure 1. Social network of wood mice. Nodes are individual mice, either males (blue) or females (red). 

Edges are measures of social association (Adjusted SRI, see Methods). Node size reflects an individual’s 

degree i.e., the number of social connections (larger = more connections), and line thickness denotes 

social association strength (thicker = higher Adjusted SRI). Nodes are arranged in a standard spring 

layout forced into a circular fit. 
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Figure 2. Effects of different predictors on microbiota similarity. A) Posterior means (points) and 

their 95% credible intervals (coloured lines) are plotted from Bayesian beta regression (brms) models 

(Supplementary Table S1A) with pairwise microbiota similarity among hosts (Jaccard Index) as the 

response. Where credible intervals do not overlap zero, a variable significantly predicts microbiota 

similarity while controlling for all other terms shown. B) Slopes of the three main predictors from the 

same model: habitat similarity (green), Spatial overlap (purple), social association (blue). 
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Figure 3. Social, spatial and habitat effects on microbiota across sex combinations. Effects on 

Jaccard microbiota similarity (x-axis) in pairs with different sex-combinations (colours: FF=female-

female, MM=male-male, FM=female-male). Posterior means (points) and their 95% credible intervals 

(coloured lines) are plotted from Bayesian regression (brms) models (Supplementary Table S2). Where 

credible intervals do not overlap zero, a social association significantly predicts microbiota similarity.  
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Figure 4. Effects of social association, spatial overlap and habitat similarity on the sharing of either 

anaerobic or aerotolerant gut microbial taxa. Posterior means (points) and their 95% credible 

intervals (coloured lines) are plotted from Bayesian regression (brms) models (Supplementary Table 

S1A, S5A-B) with pairwise the degree of microbial ASV sharing among hosts (Jaccard Index) as the 

response. Where credible intervals do not overlap zero, a variable significantly predicts microbiota 

similarity while controlling for other predictors and covariates. 
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Figure 5. Phylogenetic distribution of bacterial phenotypes and importance values for 

transmission signals across gut microbial genera. Figure is covering the genera that were included in 

the models, i.e., the 110 genera with complete phenotype information available out of 188 found in the 

mouse gut.  
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Figure 6. Distribution of importance scores and bacterial phenotypes. A) Correlations among 

importance scores of social, spatial and habitat signal. B) Statistical Effects of aerotolerance on social, 

spatial and habitat importance values (y-axis), based on a phylogenetically controlled Bayesian 

regression model (Supplementary Table S6), predicting importance scores with aerotolerance, 

sporulation and their interaction across bacterial genera. C) Statistical Effects of phenotype combinations 

(colours, AE-SF= Aerotolerant spore-former, AE-NSF= Aerotolerant non-spore-former, AN-SF= 

Anaerobic spore-former, AN-NSF= Anaerobic non-spore-former) on social, spatial and habitat 

importance values (y-axis), based on a phylogenetically controlled Bayesian regression model 

(Supplementary Table S7), predicting importance scores with phenotype combination categories across 

bacterial genera. Phenotypes marked with an asterix differ significantly from other taxa in their values 

of given importance (Post hoc model, Supplementary Table S8).  
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