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Abstract. Single particle tracking is an important image analysis tech-
nique widely used in biomedical sciences to follow the movement of sub-
cellular structures, which typically appear as individual particles in flu-
orescence microscopy images. In practice, the low signal-to-noise ratio
(SNR) of fluorescence microscopy images as well as the high density and
complex movement of subcellular structures pose substantial technical
challenges for accurate and robust tracking. In this paper, we propose
a novel Transformer-based single particle tracking method called Mo-
tion Transformer Tracker (MoTT). By using its attention mechanism
to learn complex particle behaviors from past and hypothetical future
tracklets (i.e., fragments of trajectories), MoTT estimates the match-
ing probabilities between each live/established tracklet and its multiple
hypothesis tracklets simultaneously, as well as the existence probability
and position of each live tracklet. Global optimization is then used to
find the overall best matching for all live tracklets. For those tracklets
with high existence probabilities but missing detections due to e.g., low
SNRs, MoTT utilizes its estimated particle positions to substitute for the
missed detections, a strategy we refer to as relinking in this study. Ex-
periments have confirmed that this strategy substantially alleviates the
impact of missed detections and enhances the robustness of our tracking
method. Overall, our method substantially outperforms competing state-
of-the-art methods on the ISBI Particle Tracking Challenge datasets. It
provides a powerful tool for studying the complex spatiotemporal be-
havior of subcellular structures. The source code is publicly available at
https://github.com/imzhangyd/MoTT.git.

Keywords: Single particle tracking · Transformer · Multi-object track-
ing.

1 Introduction

A commonly used method to observe the dynamics of subcellular structures,
such as microtubule tips, receptors, and vesicles, is to label them with fluores-
cent probes and then collect their videos using a fluorescence microscope. Since
these subcellular structures are often smaller than the diffraction limit of visible
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(a) Microtubule, ground truth (b) Microtubule, our method (c) Receptor, ground truth (d) Receptor, our method

Fig. 1. Tracking performance of our method. (a-b) ground truth trajectories of mi-
crotubule tips in (a) versus trajectories recovered by our method in (b). (c-d) ground
truth trajectories of receptors in (c) versus trajectories recovered by our method in (d).
(a-d) colors are chosen randomly to differentiate between individual trajectories.

light, they often appear as individual particles with Airy disk-like patterns in
fluorescence microscopy images, as shown e.g., in Fig 1. To quantitatively study
the dynamic behavior of these structures in live cells, these trajectories need to
be recovered using single particle tracking techniques [14].

Most single particle tracking methods follow a two-step paradigm: particle
detection and particle linking. Specifically, particles are detected first in each
frame of the image sequence. The detected particles are then linked between
consecutive frames to recover their complete trajectories. The contributions of
this paper focus on particle linking. Classical particle linking methods [5, 14, 9]
are usually based on joint probability data association (JPDA) [10, 20], multi-
ple hypothesis tracking (MHT) [19, 16], etc. Many classical methods have been
developed and evaluated in the 2012 International Symposium on Biomedical
Imaging (ISBI) Particle Tracking Challenge [6]. However, classical methods re-
quire manual tuning of many model parameters and are usually designed for
a specific type of dynamics, making it difficult to apply to complex dynamics.
In addition, the performance of these methods tends to degrade when tracking
dense particles.

Deep learning provides a technique for automatically learning feature pat-
terns and has been bringing performance improvements to many tasks. Recently,
many deep learning-based single particle tracking methods have been developed.
Many methods [30, 26, 25, 21] use long short-term memory (LSTM) [13] modules
to learn particle behavior. However, in [30], the matching probabilities between
each tracklet and its multiple candidates are calculated independently, and there
is no information exchange between multiple candidates. In [30, 26], only detec-
tions in the next frame are used as candidates, which contain fewer motion
features compared to hypothetical future tracklets. In [25, 21], the number of
their subnetworks grows exponentially with the depth of the hypothesis tree,
making the network huge. And the trajectories will be disconnected due to miss-
ing detections. In addition, the source codes of most deep learning-based single
particle tracking methods are not available, making them difficult to use for
non-experts.

Cell tracking is closely related to particle tracking. There are different classes
of cell tracking methods. An important category is tracking-by-evolution [7],
which assumes spatiotemporal overlap between corresponding cells. It is not
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suitable for tracking particle because they generally do not overlap between
frames. Another important category is tracking-by-detection. Some methods [29,
18] in this category assume coherence in motion of adjacent cells, which is not
suitable for tracking particles that move independently from each other. There
are also cell tracking methods [2] that rely on appearance features, which are
not suitable for tracking particles because they lack appearance features.

Transformer [27] is originally proposed for modeling word sequences in ma-
chine translation tasks and has been used in various applications [4, 3]. Recently,
there have been many Transformer-based methods for motion forecasting [11,
17, 23], which improve the performance of motion forecasting in natural scenes
(e.g., pedestrians, cars.). Compared to LSTM, Transformer shows advantages in
sequence modeling by using the attention mechanism instead of sequence mem-
ory. However, to the best of our knowledge, Transformer has not been used for
single particle tracking in fluorescence microscopy images.

In this paper, we propose a Transformer-based single particle tracking method
MoTT, which is effective for different motion modes and different density levels
of subcellular structures. The main contributions of our work are as follows: (1)
We have developed a novel Transformer-based single particle tracking method
MoTT. The attention mechanism of the Transformer is used to model complex
particle behaviors from past and hypothetical future tracklets. To the best of
our knowledge, we are the first to introduce Transformer-based networks to sin-
gle particle tracking in fluorescence microscopy images; (2) We have designed
an effective relinking strategy for those disconnected trajectories due to missed
detections. Experiments have confirmed that the relinking strategy substantially
alleviates the impact of missed detections and enhances the robustness of our
tracking method; (3) Our method substantially outperforms competing state-of-
the-art methods on the ISBI Particle Tracking Challenge dataset [6]. It provides
a powerful tool for studying the complex spatiotemporal behavior of subcellular
structures.

2 Method

Our particle tracking approach follows the two-step paradigm: particle detection
and particle linking. We first use the detector DeepBlink [8] to detect particles
at each frame. The detections of the first frame are initialized as the live track-
lets. On each subsequent frame, we execute our particle linking method in four
steps as follows. First (2.1), for each live tracklet, we construct a hypothesis tree
to generate its multiple hypothesis tracklets. Second (2.2), all tracklets are pre-
processed and then fed into the proposed MoTT network to predict matching
probabilities between each live tracklet and its multiple hypothesis tracklets, as
well as the existence probability and position of each live tracklet in the next
frame. Third (2.3), we formulate a discrete optimization model to find the over-
all best matching for all live tracklets by maximizing the sum of the matching
probabilities. Finally (2.4), we design a track management scheme for trajectory
initialization, updating, termination, and relinking.
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Fig. 2. An example of hypothesis tree construction with m = 2 and d = 2.
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Fig. 3. MoTT network structure. ∆t is the constant length of live tracklets, n + 1 is
the dimension number with the existence flag, d is the extended depth of hypothesis
trees, m + 1 is the number of hypothesis tracklets. See supplementary material for the
details of the MoTT structure.

2.1 Hypothesis tree construction

Assuming that the particle linking has been processed up to frame t. In order
to find correspondence between the current live tracklets and the detections of
frame t + 1, we will build a hypothesis tree of depth d for each live tracklet,
with its detection at frame t as the root node. To build the tree beyond the root
node, we select m (real) detections of the next frame nearest to the current node
as well as another null detection that represents a missing detection as children
of the current node. If the current node is null, m (real) detections of the next
frame nearest to the parent of the current node are selected. From the hypothesis
tree, (m+ 1)d hypothesis tracklets will be obtained. Fig. 2 shows an example of
the hypothesis tree construction with m = 2 and d = 2.

2.2 MoTT network

As shown in Fig. 3, We have designed a Transformer-based network, which con-
tains a Transformer and two prediction head modules: classification head and
regression head. Compared to the original Transformer, both the query masking
and the positional encoding on the decoder are removed, since the input of the
decoder is an unordered tracklet set. The classification head and regression head
are constructed by fully connected layers.
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For the generated tracklets from the previous step, the preprocessing is per-
formed to make the length of all live tracklets equal to ∆t, to convert position
sequence to velocity sequence, and to add the existence flag making the coordi-
nate dimension n+1. See supplementary material for the details of preprocessing.
Then the preprocessed live tracklet is fed into the Transformer encoder, while the
(m+1)d preprocessed hypothesis tracklets are fed into the Transformer decoder.
The self-attention modules in the encoder and decoder are used to extract fea-
tures of live tracklets and hypothesis tracklets, respectively. The cross-attention
module is used to calculate the affinity between the live tracklet and its multi-
ple candidate tracklets. The classification head outputs the predicted matching
probabilities between the live tracklet and (m + 1)d hypothesis tracklets. The
regression head outputs the predicted existence probability and velocity of each
live tracklet in the next frame. The existence probability represents the proba-
bility of the live tracklet existence in the next frame. The predicted velocity can
be easily converted to the predicted position.

Training. We train the MoTT network in a supervised way, using the cross-
entropy (CE) loss to supervise the output of the classification head and the
mean square error (MSE) loss to supervise the output of the regression head.
The target of classification head output is a class index in the range [0, (m+1)d)
where (m + 1)d is the number of hypothesis tracklets. The target of regression
head output is the ground truth of the concatenation of normalized velocity and
the existence flag.

Inference. In inference, we add a 1D max-pooling layer following the clas-
sification head to select the highest probability of the hypothesis tracklets with
the same detection at frame t+1 as the matching probabilities between the live
tracklet and the candidate detection at frame t+1. Then the (m+1) predicted
matching probabilities are normalized by softmax. The matching probabilities
between the live tracklet and other detections besides the m + 1 candidate de-
tections are set to zero.

2.3 Modeling discrete optimization problem

To find a one-to-one correspondence solution, we construct a discrete optimiza-
tion formulation as (1), where pij is the predicted match probabilities between
the live tracklet i and the detection j, and aij ∈ {0, 1} is the indicator variable.
In particular, j = 0 represents the null detection.

max
a

M∑
i=1

N∑
j=0

pijaij

s.t.
N∑
j=0

aij = 1, i = 1, 2, ...,M

M∑
i=1

aij ⩽ 1, j = 1, 2, ...N

(1)
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The objective function aims at maximizing the sum of matching probabilities
under the constraints that each live tracklet is matched to only one detection
(real or null), and each real detection is matched by at most one tracklet. This
optimization problem is solved by using Gurobi (a solver for mathematical pro-
gramming) [12] to obtain a one-to-one correspondence solution.

2.4 Track management

The one-to-one correspondence solution generally includes three situations. For
each tracklet matched to a real detection, we add the matched real detection
to the end of the live tracklet for updating. For each tracklet matched to a null
detection, if the predicted existence probability is greater than a threshold p the
predicted position is used to substitute for the null detection, else the live tracklet
is terminated. In this way, the disconnected tracklets due to missing detections
will be kept and be relinked when their detections emerge. For each detection
that is not matched to any of the tracklets, a new live tracklet is initialized with
this detection. After finishing particle linking on a whole movie, we remove the
trajectories of length one, because they are considered false positive detections.
See supplementary material for the details of track management.

3 Experimental Results

Datasets. The performance of our method is evaluated on ISBI Particle Track-
ing Challenge datasets (ISBI PTC, http://bioimageanalysis.org/track/) [6], which
consist of movies of biological particles of four subcellular structures: microtubule
tips, vesicles, receptors, and viruses. These movies cover three different particle
motion modes, four different SNR levels, three different particle density levels,
and two different coordinate dimensions. For each movie in the training set, we
use the first 70% frames for training and the last 30% frames for validation.

Metrics. Metrics α, β, JSCθ, JSC are used to evaluate the method perfor-
mance[6]. Metric α ∈ [0, 1] quantifies the matching degree of ground truth and
estimated tracks, while β ∈ [0, α] is penalized by false positive tracks addition-
ally compared to α. JSCθ ∈ [0, 1] and JSC ∈ [0, 1] are the Jaccard similarity
coefficient for entire tracks and track points, respectively. Higher values of the
four metrics indicate better performance.

Implementation details. In the following experiments, we set the length of
live tracklets ∆t+ 1 = 7, the extension number m = 4, the depth of hypothesis
tree d = 2, and the existence probability threshold p equals the mean of predicted
existence probabilities of all live tracklets of current frame. See supplementary
material for the ablation study on hyperparameters. We retrained the deepBlink
network using simulated data generated by ISBI Challenge Track Generator. The
MoTT model is implemented using PyTorch 1.8 and is trained on 1 NVIDIA
GEFORCE RTX 2080 Ti with a batch size of 64 and an optimizer of Adam with
an initial learning rate lr = 10−3, as well as betas = (0.9, 0.98) and eps = 10−9.
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Table 1. Comparison with SOTA methods on microtubule movies of ISBI PTC
datasets. Method 5, Method 1, and Method 2 are the overall top-three approaches
in the 2012 ISBI Particle Tracking Challenge. See [6] for details of these three meth-
ods. ”−” denotes that results are not reported in the papers. Bold represents the best
performance. Trackpy [1], SORT [28], Bytetrack [31] and Ours use the same detections.

SNR = 4 SNR = 7

Density Method α β JSCθ JSC α β JSCθ JSC

Low

Method5 0.750 0.728 0.917 0.874 0.803 0.787 0.939 0.894
Method1 0.541 0.495 0.874 0.792 0.657 0.621 0.902 0.837
Method2 0.562 0.259 0.356 0.369 0.694 0.686 0.959 0.954
PMMS [22] − − − − − − − −
DPT [26] − − − − − − − −
SEF-GF-DPHT [25] 0.803 0.776 0.928 0.890 0.861 0.848 0.970 0.936
DetNet-DPHT [21] 0.811 0.788 0.915 0.884 0.870 0.852 0.945 0.936
Trackpy [1] 0.762 0.657 0.749 0.694 0.853 0.789 0.854 0.808
SORT [28] 0.661 0.612 0.844 0.658 0.708 0.664 0.851 0.692
Bytetrack [31] 0.800 0.793 0.955 0.840 0.801 0.792 0.955 0.813
Ours 0.835 0.772 0.823 0.839 0.904 0.870 0.932 0.896

Med

Method5 0.460 0.402 0.696 0.523 0.511 0.450 0.739 0.558
Method1 0.353 0.264 0.550 0.373 0.400 0.326 0.646 0.448
Method2 0.465 0.225 0.363 0.341 0.564 0.535 0.847 0.763
PMMS [22] 0.440 0.390 0.700 0.580 − − − −
DPT [26] 0.488 0.373 0.556 0.449 − − − −
SEF-GF-DPHT [25] 0.655 0.618 0.839 0.723 − − − −
DetNet-DPHT [21] − − − − − − − −
Trackpy [1] 0.535 0.432 0.667 0.459 0.563 0.469 0.713 0.486
SORT [28] 0.544 0.478 0.733 0.528 0.583 0.523 0.757 0.558
Bytetrack [31] 0.555 0.495 0.717 0.552 0.582 0.528 0.721 0.567
Ours 0.814 0.719 0.760 0.769 0.869 0.792 0.829 0.823

High

Method5 0.314 0.264 0.602 0.371 0.343 0.279 0.613 0.378
Method1 0.272 0.210 0.544 0.299 0.293 0.231 0.582 0.322
Method2 0.396 0.194 0.361 0.306 0.465 0.427 0.754 0.627
PMMS [22] 0.350 0.300 0.630 0.460 − − − −
DPT [26] 0.414 0.313 0.524 0.389 − − − −
SEF-GF-DPHT [25] 0.548 0.501 0.758 0.605 − − − −
DetNet-DPHT [21] − − − − − − − −
Trackpy [1] 0.410 0.311 0.603 0.340 0.410 0.315 0.622 0.335
SORT [28] 0.432 0.354 0.645 0.407 0.465 0.390 0.664 0.436
Bytetrack [31] 0.385 0.313 0.558 0.377 0.425 0.354 0.593 0.407
Ours 0.732 0.611 0.660 0.659 0.814 0.718 0.759 0.753

3.1 Quantitative Performance

Comparison with the SOTA methods. We compared our single particle
tracking method with other SOTA methods, and the quantitative results on the
microtubule scenario are shown in Table 1. Generally, our method outperforms
other methods. Example visualization of tracking results can be found in Fig. 1.
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Table 2. Comparison using the same ground truth detections on the microtubule,
vesicle, and receptor scenarios.

Microtubule Vesicle Receptor

Density Method α β JSCθ α β JSCθ α β JSCθ

Low
LAP [14] 0.850 0.852 0.923 0.953 0.947 0.979 0.940 0.931 0.962
KF [15] 0.972 0.962 0.971 0.937 0.924 0.959 0.964 0.955 0.972
Ours 0.988 0.985 0.993 0.926 0.891 0.925 0.949 0.921 0.943

Med
LAP [14] 0.486 0.394 0.662 0.753 0.703 0.704 0.742 0.686 0.826
KF [15] 0.827 0.798 0.859 0.673 0.609 0.787 0.824 0.794 0.867
Ours 0.992 0.987 0.992 0.800 0.733 0.874 0.930 0.894 0.935

High
LAP [14] 0.305 0.215 0.486 0.568 0.490 0.515 0.557 0.471 0.666
KF [15] 0.679 0.616 0.735 0.477 0.389 0.643 0.658 0.591 0.724
Ours 0.987 0.980 0.988 0.652 0.544 0.748 0.903 0.851 0.910

Comparison under the same ground truth detections. Under the
ground truth detections, we compare our particle linking method with LAP [14]
and KF (Kalman filter) [15]. The results in Table 2 show that our method gener-
ally outperforms other methods in both medium-density and high-density cases.

Effectiveness for all scenarios. We perform our particle linking method
using ground truth detections on the four scenarios with three density levels in
the ISBI PTC dataset. The results (see the supplementary material) demonstrate
the effectiveness of our method for both 2D and 3D single particle tracking.
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Fig. 4. Robustness analysis under different levels of FN detection. The performance
with the relinking strategy (orange) is better than that without the relinking strategy
(green) under different FN levels.

3.2 Robustness analysis

There are false positives (FPs) and false negatives (FNs) in actual detection
results. Early study shows that FNs affect performance more than FPs [24]. We
evaluated the robustness of our method under different FN levels. The receptor
particle with medium density is used in this experiment. We randomly drop
5%, 10%, 15%, 20%, 30%, 40%, 50% detections from ground truth detections.
As Fig. 4 shows, the tracking performance with the relinking strategy is better
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than that without the relinking strategy under different FN levels. Therefore,
the proposed relinking strategy alleviates the impact of missed detections and
enhances the robustness of our tracking method.

4 Conclusion

In this paper, we proposed a novel Transformer-based method for single particle
tracking in fluorescence microscopy images. We exploited the attention mech-
anism to model complex particle behaviors from past and hypothetical future
tracklets. We designed a relinking strategy to alleviate the impact of missed
detections due to e.g., low SNRs, and to enhance the robustness of our track-
ing method. Our experimental results show that our method is effective for all
subcellular structures of ISBI Particle Tracking Challenge datasets, which cover
different motion modes and different density levels. And our method achieves
state-of-the-art performance on the microtubule movies of ISBI PTC datasets.
In the future, we will test our method on other live cell fluorescence microscopy
image sequences.
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