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Abstract

Pang et al. (2023) present novel analyses demonstrating that brain dynamics can be
understood as resulting from the excitation of geometric modes, derived from the shape
of the brain. Notably, they demonstrate that linear combinations of geometric modes can
reconstruct patterns of fMRI data more accurately, and with fewer dimensions, than
comparable connectivity-derived modes. Equipped with these results, and underpinned
by neural field theory, the authors contend that the geometry of the cortical surface
provides a more parsimonious explanation of brain activity than structural brain
connectivity. This claim runs counter to prevailing theories of information flow in the brain,
which emphasize the role of long-distance axonal projections and fasciculated white
matter in relaying signals between cortical regions (Honey et al. 2009; Deco et al. 2011;
Seguin et al., 2023). While we acknowledge that cortical geometry plays an important role
in shaping human brain function, we feel that the presented work falls short of establishing
that the brain’s geometry is “a more fundamental constraint on dynamics than complex
interregional connectivity” (Pang et al. 2023). Here, we provide 1) a brief critique of the
paper’s framing and 2) evidence showing that their methodology lacks specificity to the
brain’s orientation and shape. Ultimately, we recognize that the geometric mode approach
is a powerful representational framework for brain dynamics analysis, but we also believe
that there are key caveats to consider alongside the claims made in the manuscript.
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The claim made by Pang et al. rests largely on a comparison between brain shape and
structural connectivity, in which modes derived from cortical surface geometry can more
succinctly reconstruct functional brain maps than analogous connectivity modes. With
these results in hand, the authors make claims that can be perceived as winner-takes-all,
such as “if we prioritize spatial and physical constraints on brain anatomy, we only need
to consider the shape of the brain, and not its full array of topologically complex axonal
interconnectivity, to understand spatially patterned activity” and “while our findings cannot
rule out a role for complex interregional connectivity they do indicate that such
connectivity is not necessary for the emergence of these macroscale dynamics”. These
claims raise the question: If cortical geometry shapes brain activity, what is the role of
long-range structural connectivity?

A reconstruction of activation maps (Figs. 1 and 2 in Pang et al.) predicated on geometry
must be reconciled with a century’s worth of observations wherein direct insults to white-
matter pathways leave surface geometry intact but nonetheless result in acute changes
in function, behavior, and cognition (Catani & ffytche, 2005; Filley & Fields, 2016). For
example, how can the authors conciliate their framework with observations of acute
functional changes following a callosotomy (O’Reilly et al. 2013), or distributed alterations
to cortical activity following targeted pharmacogenetic disconnections of deep subcortical
structures (Grayson et al. 2016)? Such questions illustrate some of the limitations of an
account of brain activity that does not consider complex interregional white matter
connectivity.

The authors’ model of cortical wave propagation (e.g., Fig. 4 in Pang et al.) does consider
long-rage axonal projections, albeit via the inclusion of isotropic distance-dependent
connectivity (see equations S6-S9 in their Supplementary Material). Although structural
connection weights decay exponentially with distance (Roberts et al., 2016), a simple
proximity rule fails to account for the marked heterogeneity and specificity of macroscale
white matter connectivity (Markov et al. 2013; Betzel & Bassett 2018).

We recognize that an understanding of spatially patterned brain activity will be centered
on different objectives, like the reconstruction of data or a model’s corroboration of
neuroanatomy, for example. We look forward to research that brings these objectives
further into alignment. Such work could focus on integrating geometric constraints with
the detailed topography of macroscale white matter tracts (Jbabdi et al. 2015). Such a
synergistic approach might better reconcile the model’'s accuracy in reconstructing
observed phenomena, such as the segregation of the dorsal and ventral processing
streams in Fig. 4, with the underlying reality of precise and heterogeneous anatomical
connectivity (Passingham et al., 2002).

A second concern relates to the specificity of the basis sets for explaining brain function.
Imagine that we accept the results of Pang et al. as conveyed in the manuscript—that
excitation of geometric modes provides a more accurate and parsimonious explanation
of brain function. We would expect that these modes exhibit specificity—i.e., while they
should be well-suited for explaining observed patterns of brain activity, they should
perform poorly in explaining randomly oriented activity patterns, uncoupled from the
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69 underlying cortical anatomy. Conversely, we might expect that modes derived from non-
70 brain-like shapes, such as a spherical or bulbous surface, would be less accurate
71  descriptors of brain activity than the cortical geometric modes. However, we find that
72 neither of these expectations are met.

73 The modes derived by the authors are equally adept at explaining randomly rotated
74  activation maps of brain activity (Fig. 1; see Supplementary Methods for details of these
75 analyses). Notably, the connectome eigenmodes similarly lack specificity
76  (Supplementary Fig. 1), demonstrating that high dimensional eigenmodes, geometric or
77  otherwise, are flexible tools for modeling data generally. These observations suggest that
78 modes derived from cortical geometry may be tuned generically to the spatial frequencies
79  of smooth and continuous maps inherent to functional magnetic resonance imaging data
80 but exhibit relatively little specificity to the orientation of the brain activation maps (but see
81 also Supplementary Fig. 3 for evidence of geometric modes’ effectiveness of
82 reconstruction at high spatial frequencies).

83  Furthermore, geometric modes derived from the sphere, other brain shapes, or randomly
84  perturbed surfaces explain brain activation maps as well as the modes used by the
85 authors (Fig. 2 and Supplementary Fig. 2). This suggests that the actual shape of the
86 brain, including the contours of its folding patterns, is not necessary to parsimoniously
87 describe brain activity maps, using the framework employed by Pang et al (see also
88 Robinson et al. 2016, for example). The authors’ analyses (Supplementary Fig. 4 in Pang
89 et al.) also demonstrate that individual-specific geometric eigenmodes contribute
90 nominally to differences in reconstruction accuracy. Collectively, these observations
91 suggestthat the modeling approach may be insensitive to the specific shape of the cortex,
92 and likely more adapted to the spatial adjacency or smoothness of the data.

93 In conclusion, Pang et al. (2023) present an interesting framework for representing brain
94 function based on well-established physical models and with clear applications for
95 neuroscience. The remarkable reconstruction accuracy of the geometric eigenmodes,
96 using only a fraction of the available dimensionality, demonstrates that these methods
97 can describe patterns of fMRI data in a compact manner. We do not doubt that this
98 approach, and similar frameworks (Atasoy et al. 2016; Cabral et al. 2023; Luppi et al.
99  2023), can provide insight into spatio-temporal brain dynamics, particularly as they relate
100 to the tradeoffs shaping brain evolution. However, we are concerned how the model of
101  brain dynamics put forth in Pang et al. inadvertently overlooks topologically complex and
102 long-distance white matter connectivity, beyond what can be captured by a non-specific
103 exponential distance rule. Our critique extends to the apparent flexibility of the
104 methodology, which as we show, does not seem to depend uniquely on the orientation
105 and shape of the brain.
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169 Geometric eigenmodes used for reconstruction

170 Figure 1 Using surface-based geometric eigenmodes to explain randomized
171 contrast maps. (a) Schematic illustrating the procedure for generating randomized
172  maps; task contrast maps are initially represented on midthickness surface, projected
173 onto a sphere, which is randomly rotated before projecting the map back onto the
174  midthickness surface. The resulting randomized map preserves the spatial statistics of
175 the original map, but varies their locations. (b) We then use the geometric modes
176  described by Pang et al. (2023) to explain the randomized maps for each of the seven
177  task contrasts. The top row corresponds to reconstruction accuracy, which is the product-
178 moment correlation between the empirical contrast data and the reconstructed contrast
179 data with increasing numbers of eigenmodes. The red line indicates the reconstruction
180 accuracy of the non-randomized data, as presented in Pang et al. (2023), whereas the
181 blue shading indicates the percentile interval of the randomized data. The bottom row
182  corresponds to p-value, the proportion of times that the empirical reconstruction accuracy
183 exceeded the randomized reconstruction accuracy magnitudes, associated with each
184 amount of modes; orange diamonds and counts indicate instances where p<0.05
185  (uncorrected for multiple comparisons).
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186 Geometric eigenmodes used for reconstruction

187  Figure 2. Evaluating the reconstruction accuracy of geometric eigenmodes derived
188 from other surfaces. (a) Visualization of 32k surface meshes made available by the
189 Human Connectome Project and which are commonly used in fMRI applications; surfaces
190 are colored according to the absolute local curvature of the mesh. b) We use geometric
191 eigenmodes derived from the five surfaces in panel a to reconstruct each of the seven
192 task contrasts; text colors of the labels in panel a correspond to the plots’ line colors in
193 panel b. ¢) Schematic of workflow to randomly generate 100 bulbous shapes, compute
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194 200 geometric eigenmodes for each shape, and reconstruct the seven unperturbed task
195 contrast maps. d) Results of the data reconstruction using the bulbous shape geometric
196 eigenmodes, following the same layout as in Figure 1, panel b.

197


https://doi.org/10.1101/2023.07.20.549785
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.20.549785; this version posted July 22, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

198 Supplementary Methods

199  Spin-test null modeling

200  We downloaded 200 geometric eigenmodes employed in Pang et. al, which were derived
201 from the triangular surface mesh representation of the midthickness human cortical
202 surface (left hemisphere). We additionally downloaded the seven key task activation
203  contrast maps projected to the cortical surface as depicted in Figure 1e of Pang et. al,
204  which were processed and openly shared by the Human Connectome Project (Elam,
205 2021). For each of the seven maps, data was randomly rotated in a spherical manner
206 (5000 iterations) using the BrainSpace toolbox (Vos de Wael, 2020). This method of null
207 modeling randomizes vertex location, yet preserves spatial structure, of the data on the
208 cortical surface (Alexander-Bloch, 2018; Fig. 1a). The unperturbed geometric
209 eigenmodes were used to predict the spun data (excluding vertices corresponding to the
210  spun medial wall) with increasing numbers of eigenmode dimensionality, as performed in
211  Pang et. al. We show in Fig. 1b that geometric eigenmodes predict randomized contrast
212 maps similarly to the unperturbed contrast maps. We performed an analogous analysis
213  asdescribed here, using the connectome eigenmodes to predict the randomized contrast
214  maps. In Supplemental Figure 1 we show that the unperturbed connectome eigenmodes
215  predict randomized contrast maps similarly to the unperturbed contrast maps.

216  Additional brain map null modeling

217  We applied two additional null modeling approaches for spatial maps. The first additional
218 method uses the BrainSpace toolbox (Vos de Wael, 2020) to create randomized maps
219 using the Moran randomization approach. This method was initialized with eigenvectors
220 of the inverse geodesic distance (i.e., closeness) between all vertices of the 32k
221  midthickness mesh, with no thresholding applied. Sampling was performed using the
222 singleton procedure implemented in the BrainSpace toolbox. The second method also
223  utilizes these eigenvectors, but only the first 5000 dimensions (sorted by descending
224  eigenvalue). These 5000 modes were used as a basis set to fit to the empirical brain map
225 data, using the same approach as Pang et al. when fitting the geometric modes to the
226  empirical data. Following this fitting, 2500 randomly selected coefficients were sign flipped
227 and then multiplied by the 5000-mode basis set to create surrogate data. For each method
228 5000 iterations were performed. Results from the additional null modeling exercises show
229 that the low-frequency geometric modes predict random data as well as empirical data,
230 whereas geometric modes’ reconstruction accuracy outperforms null data reconstruction
231  after including higher frequency modes (Supplementary Figure 3). All three null modeling
232 methods produced surrogate data that is arbitrarily correlated with the empirical data, with
233 correlation distributions centered at zero, with ranges approximately from -0.5 to 0.5
234 (Supplemental Figure 4).

235 Alternative brain shape eigenmodes

236  The midthickness human cortical surface captures the geometry of an average brain by
237 rendering the cortical conformations in the space between the white and pial surfaces
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238 (Glasser 2013). This surface is one of several widely distributed 32k template meshes
239  from the WashU-Minn Human Connectome Project commonly used for surface-based
240 fMRI processing and visualization. Other commonly used surface templates with 32k
241  vertices include the white matter, pial, very inflated, and spherical meshes, which are
242  depicted in Fig. 2a—colored according to the absolute local curative (Cohen-Steiner &
243  Morvan, 2003) to highlight subtle differences between their shapes. While each surface
244  represents the brain with varying levels of smoothness and geometric contouring, the
245  topology for all surfaces is equivalent. This means that the neighborhood relationships
246  between vertices remain constant across these surfaces. Here, we computed 200
247 geometric eigenmodes from these alternative surfaces using LaPy (Wachinger, 2015;
248  Reuter, 2006) version 0.4.1. Following Pang et al., we excluded the medial wall vertices
249 from the geometric eigenmode construction. This operation can be performed
250 equivalently for all shapes—even though the sphere, for example, does not technically
251 have a medial wall-because the topology of all meshes is the same. We then
252  subsequently used the alternative geometric eigenmodes to predict the seven key task
253  activation contrast maps. As shown in Fig. 2b, the performance of eigenmodes derived
254  from alternative surfaces, including the sphere, perform similarly to the midthickness
255 surface. We also used the midthickness and spherical geometric eigenmodes to predict
256 10,000 contrast maps (as shown in Pang et al. Fig. 3) from the NeuroVault database
257  (Supplemental Fig. 2)

258  Arbitrarily shaped eigenmodes

259 We generated random bulbous shape meshes, to see if their associated geometric
260 eigenmodes could similarly reconstruct the seven key task activation contrast maps. We
261  started with the 32k midthickness mesh and computed Moran eigenvectors of this mesh
262  (Vos de Wael, 2020). Briefly, this involved calculating the inverse geodesic distance (i.e.,
263  closeness) between all vertices, retraining only values with distances less than the 20%
264 distance percentile. We then computed an eigen-decomposition on the thresholded
265 closeness matrix to recover 10 modes of variation. A random selection (with replacement)
266  of the modes normalized between -1 and 1 were used to modulate the X, y, and z
267 coordinates of the spherical mesh (times a constant of 15% of the x, y, or z coordinate
268 range), to render a new shape with wavy contours (Fig. 2c). This process was repeated
269 100 times and 200 geometric eigenmodes were computed for each of the shapes using
270 LaPy (excluding the medial wall vertices as described previously). These modes were
271  then used to predict the seven key task activation contrast maps, as shown in Fig. 2d.
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272

273 Supplemental Figure 1. Reconstruction accuracy of connectome eigenmodes. (a)
274  Results of the data reconstruction using the connectome eigenmodes on spun empirical
275 data, following the same layout as in Figure 1, panel b.

276
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278  Supplemental Figure 2. Reconstruction accuracy of 10,000 contrast maps from the
279 NeuroVault database. We visualize the reconstruction accuracy using the geometric
280 eigenmodes (up to 150 modes) of the midthickness (blue) or spherical (yellow) mesh to
281  reconstruct 10,000 NeuroVault contrast maps downloaded from the repository provided
282 by Pang et al., where the plots are shaded according to the density of the data; the far-
283  right plot visualizes the middle 50% of distribution each overlaid, with mean values
284  represented by thick lines.
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286  Supplemental Figure 3. Reconstruction accuracy of geometric eigenmodes for
287 Moran and sign-flipped surrogate data. (a) Results of the data reconstruction using the
288 Moran (top) and sign-flipped (bottom) surrogate data, following the same layout as in
289  Figure 1, panel b. These results show that geometric eigenmodes predict empirical data
290 data as accurately as randomized data when using a low number of modes (up to
291 approximately 50-100 modes), whereas geometric eigenmodes reconstruct empirical
292 data more accurately when incorporating more modes. These results demonstrate the
293 effectiveness of geometric modes to capture low spatial frequency signals (empirical or
294 randomized), and further suggest that geometric modes can capture empirical structure
295 at higher spatial frequencies more effectively.
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297 Supplemental Figure 4. Correlation of surrogate data to empirical data. Product
298 moment correlation of empirical data to 5000 instances of surrogate data, for each map,
299  for each null modeling method. Note that for the spin nulls method, correlation excluded
300 datapoints corresponding to the new placement of the medial wall.
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