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Abstract 8 

Pang et al. (2023) present novel analyses demonstrating that brain dynamics can be 9 
understood as resulting from the excitation of geometric modes, derived from the shape 10 
of the brain. Notably, they demonstrate that linear combinations of geometric modes can 11 
reconstruct patterns of fMRI data more accurately, and with fewer dimensions, than 12 
comparable connectivity-derived modes. Equipped with these results, and underpinned 13 
by neural field theory, the authors contend that the geometry of the cortical surface 14 
provides a more parsimonious explanation of brain activity than structural brain 15 
connectivity. This claim runs counter to prevailing theories of information flow in the brain, 16 
which emphasize the role of long-distance axonal projections and fasciculated white 17 
matter in relaying signals between cortical regions (Honey et al. 2009; Deco et al. 2011; 18 
Seguin et al., 2023). While we acknowledge that cortical geometry plays an important role 19 
in shaping human brain function, we feel that the presented work falls short of establishing 20 
that the brain’s geometry is “a more fundamental constraint on dynamics than complex 21 
interregional connectivity” (Pang et al. 2023). Here, we provide 1) a brief critique of the 22 
paper’s framing and 2) evidence showing that their methodology lacks specificity to the 23 
brain’s orientation and shape. Ultimately, we recognize that the geometric mode approach 24 
is a powerful representational framework for brain dynamics analysis, but we also believe 25 
that there are key caveats to consider alongside the claims made in the manuscript.  26 
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The claim made by Pang et al. rests largely on a comparison between brain shape and 27 
structural connectivity, in which modes derived from cortical surface geometry can more 28 
succinctly reconstruct functional brain maps than analogous connectivity modes. With 29 
these results in hand, the authors make claims that can be perceived as winner-takes-all, 30 
such as “if we prioritize spatial and physical constraints on brain anatomy, we only need 31 
to consider the shape of the brain, and not its full array of topologically complex axonal 32 
interconnectivity, to understand spatially patterned activity” and “while our findings cannot 33 
rule out a role for complex interregional connectivity they do indicate that such 34 
connectivity is not necessary for the emergence of these macroscale dynamics”. These 35 
claims raise the question: If cortical geometry shapes brain activity, what is the role of 36 
long-range structural connectivity?  37 

A reconstruction of activation maps (Figs. 1 and 2 in Pang et al.) predicated on geometry 38 
must be reconciled with a century’s worth of observations wherein direct insults to white-39 
matter pathways leave surface geometry intact but nonetheless result in acute changes 40 
in function, behavior, and cognition (Catani & ffytche, 2005; Filley & Fields, 2016). For 41 
example, how can the authors conciliate their framework with observations of acute 42 
functional changes following a callosotomy (O’Reilly et al. 2013), or distributed alterations 43 
to cortical activity following targeted pharmacogenetic disconnections of deep subcortical 44 
structures (Grayson et al. 2016)? Such questions illustrate some of the limitations of an 45 
account of brain activity that does not consider complex interregional white matter 46 
connectivity.  47 

The authors’ model of cortical wave propagation (e.g., Fig. 4 in Pang et al.) does consider 48 
long-rage axonal projections, albeit via the inclusion of isotropic distance-dependent 49 
connectivity (see equations S6-S9 in their Supplementary Material). Although structural 50 
connection weights decay exponentially with distance (Roberts et al., 2016), a simple 51 
proximity rule fails to account for the marked heterogeneity and specificity of macroscale 52 
white matter connectivity (Markov et al. 2013; Betzel & Bassett 2018). 53 

We recognize that an understanding of spatially patterned brain activity will be centered 54 
on different objectives, like the reconstruction of data or a model’s corroboration of 55 
neuroanatomy, for example. We look forward to research that brings these objectives 56 
further into alignment. Such work could focus on integrating geometric constraints with 57 
the detailed topography of macroscale white matter tracts (Jbabdi et al. 2015). Such a 58 
synergistic approach might better reconcile the model’s accuracy in reconstructing 59 
observed phenomena, such as the segregation of the dorsal and ventral processing 60 
streams in Fig. 4, with the underlying reality of precise and heterogeneous anatomical 61 
connectivity (Passingham et al., 2002).  62 

A second concern relates to the specificity of the basis sets for explaining brain function. 63 
Imagine that we accept the results of Pang et al. as conveyed in the manuscript—that 64 
excitation of geometric modes provides a more accurate and parsimonious explanation 65 
of brain function. We would expect that these modes exhibit specificity—i.e., while they 66 
should be well-suited for explaining observed patterns of brain activity, they should 67 
perform poorly in explaining randomly oriented activity patterns, uncoupled from the 68 
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underlying cortical anatomy. Conversely, we might expect that modes derived from non-69 
brain-like shapes, such as a spherical or bulbous surface, would be less accurate 70 
descriptors of brain activity than the cortical geometric modes. However, we find that 71 
neither of these expectations are met.  72 

The modes derived by the authors are equally adept at explaining randomly rotated 73 
activation maps of brain activity (Fig. 1; see Supplementary Methods for details of these 74 
analyses). Notably, the connectome eigenmodes similarly lack specificity 75 
(Supplementary Fig. 1), demonstrating that high dimensional eigenmodes, geometric or 76 
otherwise, are flexible tools for modeling data generally. These observations suggest that 77 
modes derived from cortical geometry may be tuned generically to the spatial frequencies 78 
of smooth and continuous maps inherent to functional magnetic resonance imaging data 79 
but exhibit relatively little specificity to the orientation of the brain activation maps (but see 80 
also Supplementary Fig. 3 for evidence of geometric modes’ effectiveness of 81 
reconstruction at high spatial frequencies). 82 

Furthermore, geometric modes derived from the sphere, other brain shapes, or randomly 83 
perturbed surfaces explain brain activation maps as well as the modes used by the 84 
authors (Fig. 2 and Supplementary Fig. 2). This suggests that the actual shape of the 85 
brain, including the contours of its folding patterns, is not necessary to parsimoniously 86 
describe brain activity maps, using the framework employed by Pang et al (see also 87 
Robinson et al. 2016, for example). The authors’ analyses (Supplementary Fig. 4 in Pang 88 
et al.) also demonstrate that individual-specific geometric eigenmodes contribute 89 
nominally to differences in reconstruction accuracy. Collectively, these observations 90 
suggest that the modeling approach may be insensitive to the specific shape of the cortex, 91 
and likely more adapted to the spatial adjacency or smoothness of the data. 92 

In conclusion, Pang et al. (2023) present an interesting framework for representing brain 93 
function based on well-established physical models and with clear applications for 94 
neuroscience. The remarkable reconstruction accuracy of the geometric eigenmodes, 95 
using only a fraction of the available dimensionality, demonstrates that these methods 96 
can describe patterns of fMRI data in a compact manner. We do not doubt that this 97 
approach, and similar frameworks (Atasoy et al. 2016; Cabral et al. 2023; Luppi et al. 98 
2023), can provide insight into spatio-temporal brain dynamics, particularly as they relate 99 
to the tradeoffs shaping brain evolution. However, we are concerned how the model of 100 
brain dynamics put forth in Pang et al. inadvertently overlooks topologically complex and 101 
long-distance white matter connectivity, beyond what can be captured by a non-specific 102 
exponential distance rule. Our critique extends to the apparent flexibility of the 103 
methodology, which as we show, does not seem to depend uniquely on the orientation 104 
and shape of the brain.  105 
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 169 

Figure 1 Using surface-based geometric eigenmodes to explain randomized 170 
contrast maps. (a) Schematic illustrating the procedure for generating randomized 171 
maps; task contrast maps are initially represented on midthickness surface, projected 172 
onto a sphere, which is randomly rotated before projecting the map back onto the 173 
midthickness surface. The resulting randomized map preserves the spatial statistics of 174 
the original map, but varies their locations.  (b) We then use the geometric modes 175 
described by Pang et al. (2023) to explain the randomized maps for each of the seven 176 
task contrasts. The top row corresponds to reconstruction accuracy, which is the product-177 
moment correlation between the empirical contrast data and the reconstructed contrast 178 
data with increasing numbers of eigenmodes. The red line indicates the reconstruction 179 
accuracy of the non-randomized data, as presented in Pang et al. (2023), whereas the 180 
blue shading indicates the percentile interval of the randomized data. The bottom row 181 
corresponds to p-value, the proportion of times that the empirical reconstruction accuracy 182 
exceeded the randomized reconstruction accuracy magnitudes, associated with each 183 
amount of modes; orange diamonds and counts indicate instances where p<0.05 184 
(uncorrected for multiple comparisons).  185 
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 186 

Figure 2. Evaluating the reconstruction accuracy of geometric eigenmodes derived 187 
from other surfaces. (a) Visualization of 32k surface meshes made available by the 188 
Human Connectome Project and which are commonly used in fMRI applications; surfaces 189 
are colored according to the absolute local curvature of the mesh. b) We use geometric 190 
eigenmodes derived from the five surfaces in panel a to reconstruct each of the seven 191 
task contrasts; text colors of the labels in panel a correspond to the plots’ line colors in 192 
panel b. c) Schematic of workflow to randomly generate 100 bulbous shapes, compute 193 
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200 geometric eigenmodes for each shape, and reconstruct the seven unperturbed task 194 
contrast maps. d) Results of the data reconstruction using the bulbous shape geometric 195 
eigenmodes, following the same layout as in Figure 1, panel b.  196 

  197 
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Supplementary Methods 198 

Spin-test null modeling 199 

We downloaded 200 geometric eigenmodes employed in Pang et. al, which were derived 200 
from the triangular surface mesh representation of the midthickness human cortical 201 
surface (left hemisphere). We additionally downloaded the seven key task activation 202 
contrast maps projected to the cortical surface as depicted in Figure 1e of Pang et. al, 203 
which were processed and openly shared by the Human Connectome Project (Elam, 204 
2021). For each of the seven maps, data was randomly rotated in a spherical manner 205 
(5000 iterations) using the BrainSpace toolbox (Vos de Wael, 2020). This method of null 206 
modeling randomizes vertex location, yet preserves spatial structure, of the data on the 207 
cortical surface (Alexander-Bloch, 2018; Fig. 1a). The unperturbed geometric 208 
eigenmodes were used to predict the spun data (excluding vertices corresponding to the 209 
spun medial wall) with increasing numbers of eigenmode dimensionality, as performed in 210 
Pang et. al. We show in Fig. 1b that geometric eigenmodes predict randomized contrast 211 
maps similarly to the unperturbed contrast maps. We performed an analogous analysis 212 
as described here, using the connectome eigenmodes to predict the randomized contrast 213 
maps. In Supplemental Figure 1 we show that the unperturbed connectome eigenmodes 214 
predict randomized contrast maps similarly to the unperturbed contrast maps. 215 

Additional brain map null modeling 216 

We applied two additional null modeling approaches for spatial maps. The first additional 217 
method uses the BrainSpace toolbox (Vos de Wael, 2020) to create randomized maps 218 
using the Moran randomization approach. This method was initialized with eigenvectors 219 
of the inverse geodesic distance (i.e., closeness) between all vertices of the 32k 220 
midthickness mesh, with no thresholding applied. Sampling was performed using the 221 
singleton procedure implemented in the BrainSpace toolbox. The second method also 222 
utilizes these eigenvectors, but only the first 5000 dimensions (sorted by descending 223 
eigenvalue). These 5000 modes were used as a basis set to fit to the empirical brain map 224 
data, using the same approach as Pang et al. when fitting the geometric modes to the 225 
empirical data. Following this fitting, 2500 randomly selected coefficients were sign flipped 226 
and then multiplied by the 5000-mode basis set to create surrogate data. For each method 227 
5000 iterations were performed. Results from the additional null modeling exercises show 228 
that the low-frequency geometric modes predict random data as well as empirical data, 229 
whereas geometric modes’ reconstruction accuracy outperforms null data reconstruction 230 
after including higher frequency modes (Supplementary Figure 3). All three null modeling 231 
methods produced surrogate data that is arbitrarily correlated with the empirical data, with 232 
correlation distributions centered at zero, with ranges approximately from -0.5 to 0.5 233 
(Supplemental Figure 4).  234 

Alternative brain shape eigenmodes 235 

The midthickness human cortical surface captures the geometry of an average brain by 236 
rendering the cortical conformations in the space between the white and pial surfaces 237 
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(Glasser 2013). This surface is one of several widely distributed 32k template meshes 238 
from the WashU-Minn Human Connectome Project commonly used for surface-based 239 
fMRI processing and visualization. Other commonly used surface templates with 32k 240 
vertices include the white matter, pial, very inflated, and spherical meshes, which are 241 
depicted in Fig. 2a—colored according to the absolute local curative (Cohen-Steiner & 242 
Morvan, 2003) to highlight subtle differences between their shapes. While each surface 243 
represents the brain with varying levels of smoothness and geometric contouring, the 244 
topology for all surfaces is equivalent. This means that the neighborhood relationships 245 
between vertices remain constant across these surfaces. Here, we computed 200 246 
geometric eigenmodes from these alternative surfaces using LaPy (Wachinger, 2015; 247 
Reuter, 2006) version 0.4.1. Following Pang et al., we excluded the medial wall vertices 248 
from the geometric eigenmode construction. This operation can be performed 249 
equivalently for all shapes–even though the sphere, for example, does not technically 250 
have a medial wall–because the topology of all meshes is the same.  We then 251 
subsequently used the alternative geometric eigenmodes to predict the seven key task 252 
activation contrast maps. As shown in Fig. 2b, the performance of eigenmodes derived 253 
from alternative surfaces, including the sphere, perform similarly to the midthickness 254 
surface. We also used the midthickness and spherical geometric eigenmodes to predict 255 
10,000 contrast maps (as shown in Pang et al. Fig. 3) from the NeuroVault database 256 
(Supplemental Fig. 2) 257 

Arbitrarily shaped eigenmodes 258 

We generated random bulbous shape meshes, to see if their associated geometric 259 
eigenmodes could similarly reconstruct the seven key task activation contrast maps. We 260 
started with the 32k midthickness mesh and computed Moran eigenvectors of this mesh 261 
(Vos de Wael, 2020). Briefly, this involved calculating the inverse geodesic distance (i.e., 262 
closeness) between all vertices, retraining only values with distances less than the 20% 263 
distance percentile. We then computed an eigen-decomposition on the thresholded 264 
closeness matrix to recover 10 modes of variation. A random selection (with replacement) 265 
of the modes normalized between -1 and 1 were used to modulate the x, y, and z 266 
coordinates of the spherical mesh (times a constant of 15% of the x, y, or z coordinate 267 
range), to render a new shape with wavy contours (Fig. 2c). This process was repeated 268 
100 times and 200 geometric eigenmodes were computed for each of the shapes using 269 
LaPy (excluding the medial wall vertices as described previously). These modes were 270 
then used to predict the seven key task activation contrast maps, as shown in Fig. 2d.  271 
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 272 

Supplemental Figure 1. Reconstruction accuracy of connectome eigenmodes. (a) 273 
Results of the data reconstruction using the connectome eigenmodes on spun empirical 274 
data, following the same layout as in Figure 1, panel b. 275 
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 277 

Supplemental Figure 2. Reconstruction accuracy of 10,000 contrast maps from the 278 
NeuroVault database. We visualize the reconstruction accuracy using the geometric 279 
eigenmodes (up to 150 modes) of the midthickness (blue) or spherical (yellow) mesh to 280 
reconstruct 10,000 NeuroVault contrast maps downloaded from the repository provided 281 
by Pang et al., where the plots are shaded according to the density of the data; the far-282 
right plot visualizes the middle 50% of distribution each overlaid, with mean values 283 
represented by thick lines.   284 
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Supplemental Figure 3. Reconstruction accuracy of geometric eigenmodes for 286 
Moran and sign-flipped surrogate data. (a) Results of the data reconstruction using the 287 
Moran (top) and sign-flipped (bottom) surrogate data, following the same layout as in 288 
Figure 1, panel b. These results show that geometric eigenmodes predict empirical data 289 
data as accurately as randomized data when using a low number of modes (up to 290 
approximately 50-100 modes), whereas geometric eigenmodes reconstruct empirical 291 
data more accurately when incorporating more modes. These results demonstrate the 292 
effectiveness of geometric modes to capture low spatial frequency signals (empirical or 293 
randomized), and further suggest that geometric modes can capture empirical structure 294 
at higher spatial frequencies more effectively.  295 
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Supplemental Figure 4. Correlation of surrogate data to empirical data. Product 297 
moment correlation of empirical data to 5000 instances of surrogate data, for each map, 298 
for each null modeling method. Note that for the spin nulls method, correlation excluded 299 
datapoints corresponding to the new placement of the medial wall.  300 
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