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Abstract 

How genomic differences contribute to phenotypic differences across species is a major question 

in biology. The recently characterized genomes, isolation environments, and qualitative patterns 

of growth on 122 sources and conditions of 1,154 strains from 1,049 fungal species (nearly all 

known) in the subphylum Saccharomycotina provide a powerful, yet complex, dataset for 

addressing this question. In recent years, machine learning has been successfully used in diverse 

analyses of biological big data. Using a random forest classification algorithm trained on these 

genomic, metabolic, and/or environmental data, we predicted growth on several carbon sources 

and conditions with high accuracy from presence/absence patterns of genes and of growth in 

other conditions. Known structural genes involved in assimilation of these sources were 

important features contributing to prediction accuracy, whereas isolation environmental data 

were poor predictors. By further examining growth on galactose, we found that it can be 

predicted with high accuracy from either genomic (92.6%) or growth data in 120 other 

conditions (83.3%) but not from isolation environment data (65.7%). When we combined 

genomic and growth data, we noted that prediction accuracy was even higher (93.4%) and that, 

after the GALactose utilization genes, the most important feature for predicting growth on 

galactose was growth on galactitol. These data raised the hypothesis that several species in two 

orders, Serinales and Pichiales (containing Candida auris and the genus Ogataea, respectively), 

have an alternative galactose utilization pathway because they lack the GAL genes. Growth and 

biochemical assays of several of these species confirmed that they utilize galactose through an 

oxidoreductive D-galactose pathway, rather than the canonical GAL pathway. We conclude that 

machine learning is a powerful tool for investigating the evolution of the yeast genotype-

phenotype map and that it can help uncover novel biology, even in well-studied traits.  

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 23, 2023. ; https://doi.org/10.1101/2023.07.20.549758doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.20.549758
http://creativecommons.org/licenses/by-nc/4.0/


Introduction 

Yeasts in the subphylum Saccharomycotina (hereafter referred to as yeasts) are genomically 

diverse, geographically widely distributed, found in diverse habitats, and utilized for diverse 

purposes by humans – the baker’s yeast Saccharomyces cerevisiae is the cornerstone of the 

winemaking, brewing, baking, and biotech industries; Candida albicans is a human commensal 

that thrives in the human gut and occasionally becomes a serious pathogen; Candida auris is an 

emerging fungal pathogen of great concern because of its innate resistance to available 

antifungal drugs; and Lipomyces starkeyi produces lipids and has several biotechnology 

applications (Hittinger et al. 2018 Yaguchi et al. 2017, Case et al. 2022).  

 

Yeast ecological diversity is thought to be intimately tied to the vast diversity in their diets, i.e., 

the diversity of primary metabolic capabilities that allow them to grow on many different sources 

of carbon and nitrogen (Opulente et al. 2018). However, we currently lack a comprehensive 

understanding of how variation in yeast gene content or regulation is related to the metabolic 

diversity and environmental adaptation of the ~1,200 species found across the subphylum. 

Recently, the Y1000+ Project (http://y1000plus.org/) published draft genome sequences of 1,086 

representative strains (mostly taxonomic type strains) from nearly 1,016 and 62 novel candidate 

species of yeasts (Shen et al. 2018, Opulente et al. 2023, Hittinger et al. 2015). The Y1000+ 

Project has also systematically recorded (from the literature) and / or experimentally generated 

the isolation environments and qualitative and quantitative patterns of growth on diverse carbon 

sources, nitrogen sources, and environmental conditions (e.g., temperature and salinity) for a 

very large fraction of the same set of strains (Opulente et al. 2018, Opulente et al. 2023). The 

availability of a comprehensive dataset that captures the vast genomic, environmental, and 
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metabolic diversity of yeasts provides a unique testbed for understanding how adaptation to 

unique environments occurs in eukaryotic genomes (Hittinger et al. 2015). 

 

Several of the pathways that allow yeasts to grow on certain sources are well-characterized 

(Riley et al 2016). For example, sucrose assimilation depends on the invertase Suc2p, and 

maltose assimilation depends on the maltose permease Mal31p and maltase (α-D-glucosidase) 

Mal32, which can also act on sucrose (Ostergaard et al. 2000, Brown et al. 2010). Arguably the 

best studied pathway is the Leloir or GALactose utilization pathway (Fig. 1), which has become a 

model not only for understanding gene regulation in eukaryotes (Ptashne & Gann 2001, Johnston 

1987), but also for how evolutionary changes in gene sequences, arrangement, and regulation 

contribute to ecological adaptation (Harrison et al. 2022, Sun et al. 2023, Haase et al. 2021, 

Venkatesh et al. 2021, Boocock et al. 2021, Hittinger et al. 2010, Slot & Rokas 2010). In the 

GAL pathway of the baker’s yeast Saccharomyces cerevisiae, Gal2p or an Hxt transporter protein 

imports D-galactose into the cell, where the mutarotase domain of Gal10p acts on the sugar, if 

necessary. Then, Gal1p converts it to galactose-1-phosphate, representing the first energy-

consuming step of the pathway (Sellick et al. 2008). Gal7p then converts galactose-1-phosphate 

to UDP-galactose. Gal10p acts on UDP-galactose using its epimerase domain, resulting in the 

production of UDP-glucose. Finally, Gal7p converts UDP-glucose to glucose-1-phosphate, 

which Pgm1p/Pgm2p then converts to glucose-6-phosphate, which enters glycolysis to produce 

energy for the cell (Sellick et al. 2008).   

 

Galactose abundance varies widely across yeast environments. For example, due to both the 

dietary influx of galactose and the synthesis of the sugar, galactose is abundant in the gut, 
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bloodstream, and urine of most mammals (including humans) in the form of oligosaccharides, 

glycoproteins, and glycolipids, as well as in milk and other dairy products in the form of lactose 

(a disaccharide composed of galactose and glucose subunits) (Brown et al. 2009). Galactose is 

also found in a variety of fruit, vegetable, and other plant products, such as legumes; levels of 

galactose in common fruits and vegetables range from <0.1 mg / 100 g to 34 mg / 100 g (Gross 

& Acosta 1991, Acosta & Gross 1995, Marsilio et al. 2001). Galactose is also part of 

oligosaccharides, such as lactose, raffinose, and melibiose, as well as glycoproteins and 

glycolipids, that vary in their distribution across environments (Acosta & Gross 1995, Marsillo et 

al. 2001); hydrolysis of these molecules by microbial enzymes can release free galactose.  

 

The substantial variation in abundance of galactose in different environments is reflected in the 

evolution of the GAL pathway and its regulation across the subphylum Saccharomycotina. 

Numerous instances of wholesale pathway loss and gain, including by horizontal gene transfer, 

have been discovered (Slot & Rokas 2010, Haase et al. 2021, Harrison et al. 2022, Venkatesh et 

al. 2021), as well as striking instances of ancient, multi-locus polymorphisms within species 

(Venkatesh et al. 2021, Hittinger et al. 2010, Boocock et al. 2021). Different regulatory systems 

that lead to different modes of induction and rates of growth have also evolved in different 

lineages. For example, C. albicans exhibits an earlier graded induction in response to galactose, 

while S. cerevisiae has a more bimodal expression (Dalal et al. 2016, Ricci-Tam et al. 2021, Sun 

et al. 2023). 
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The rich genomic, environmental, and metabolic data of the Y1000+ Project, coupled with 

extensive genetic and biochemical knowledge of yeast primary metabolism, provide a unique 

opportunity to explore the evolution of the genotype-phenotype map, which models the 

interaction between an organism’s genes and its traits, across a subphylum. However, the 

enormity and complexity of the Y1000+ Project’s data make standard statistical analyses less 

suitable. In recent years, machine learning tools, such as support vector machines, random forest 

algorithms, and convolutional neural networks, have emerged as powerful tools for analyzing 

biological big data (Zou et al. 2019). Examples include predicting genes involved in specialized 

metabolism (Moore et al. 2019), predicting protein expression and function from regulatory and 

protein sequences (Zirmec et al. 2020, Capra et al. 2009, Ma et al. 2018), and distinguishing 

fungal ecological lifestyles, such as saprobes from plant pathogens (Haridas et al. 2020) or 

generalists from specialists (Opulente et al. 2023).  

 

In this study, we used a random forest algorithm trained on environmental, metabolic, and/or 

genomic data to predict growth of nearly all known species of Saccharomycotina on different 

carbon sources. Predicting growth on 29 different carbon sources tended to be highly accurate 

when the algorithm was trained on gene presence/absence and/or on presence/absence of growth 

on other carbon sources, which shows that both metabolic genes and the structure of the 

metabolic network are highly informative for understanding the evolution of yeast primary 

metabolism; in contrast, the predictive ability of isolation environment data was weak. Although 

the most important features associated with prediction accuracy were well-known genes and 

carbon sources associated with the source of interest, our machine learning approach also 

identified novel features not previously known to be associated with growth on a given carbon 
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source. To illustrate the predictive ability of our approach, we used growth on galactose as a test 

case because our machine learning approach suggested a possible novel alternative pathway for 

galactose assimilation in the genus Ogataea and a clade containing C. auris, which both lack 

GAL genes. Growth and biochemical assays validated that these species assimilate galactose 

through a hypothesized oxidoreductive D-galactose pathway, demonstrating the power of 

machine learning analysis for studying the relationship between genomic and phenotypic 

variation across vast evolutionary timescales.   
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Methods  

Genomic data matrix 

Using the KEGG (Kanehisa & Goto 2000, Kanehisa et al. 2023) and InterProScan (Jones et al. 

2014) gene functional annotations generated by the Y1000+ Project (Opulente et al. 2023), a data 

matrix was built with presence and absence of each unique KEGG Ortholog (KO) and counts of 

each unique InterPro ID number in each genome. Each genome was its own row, and each 

unique KO (N = 5,043) or InterPro ID (N = 12,242) present in one or more of the 1,154 yeast 

genomes was its own column. A python script recorded the presence and absence of KO 

annotations (Table S1), the number of each InterPro ID for each genome (Table S2), and put 

them in the appropriate cells of the data matrix. Upon observing that accuracy was typically 

similar for predicting growth on 29 carbon sources between a random forest algorithm trained 

just on the KO dataset and the combined KO and InterPro dataset, the KO genomic dataset was 

used for all subsequent analyses, and the InterPro data was dropped from the genomic analyses 

following Figure 2. Comparison of our own GAL gene searches with the KO dataset revealed 

that GAL1 was misannotated, and that the mutarotase and epimerase domains of GAL10 were 

annotated separately by KEGG. 

 

Metabolic data matrix 

Our metabolic data matrix contained 122 traits from 893 yeast strains from 885 species in the 

subphylum. The list of traits included growth on different carbon and nitrogen sources, such as 

galactose, raffinose, and urea, as well as on environmental conditions, such as growth at different 

temperatures and salt concentrations (Table S3). The metabolic data were sourced from 

information available for each of the sequenced strains from the CBS strain database. These data 
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were gathered from strains studied as part of the in the published descriptions of species, 

additional data on strains obtained by previous studies done in the Westerdijk Fungal 

Biodiversity Institute (CBS), or additional data provided by the depositors of the strains in the 

CBS culture collection. The data matrix contained metabolic data for 893 / 1,154 species. The 

percentage of missing data in the data matrix was 37.5% (40,906 missing values out of 108,946 

total). Less thoroughly studied traits tended to have more missing data than more commonly 

found and/or thoroughly studied traits. For example, our data matrix included data on melibiose 

fermentation, which was estimated to be present in 12% (28/234) of yeasts, but only 26.2% 

(234/893 of strains have been tested for growth on this substrate. In contrast, our data matrix 

included data on galactose assimilation, which was estimated to be present in 64.2% (558/868), 

but 97.2% (868/893) of strains have been tested. Since there were 25 strains for which growth on 

galactose was not characterized, the total number of strains for which we have both genomic data 

and galactose assimilation data was 868.  

 

Environmental data matrix and ontology 

The isolation environments for 1,088 (94%) out of the 1,154 yeasts examined were gathered 

from strain databases, species descriptions, or from The Yeasts: A Taxonomic Study (Opulente et 

al. 2023, Kurtzman et al. 2011). Strains without isolation environments either had been 

significantly domesticated via crossing or subculturing or were lacking information in our 

searches. Written descriptions of the environments were converted into a hierarchical trait matrix 

using a controlled vocabulary. The ontology was built with Web Protégé 

(https://webprotege.stanford.edu/), with two broader categories: Organic (Fungi, Soil, Animal, 

and Plant) and Inorganic (Industrial and Soil). Within these categories, more specific controlled 
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vocabulary annotations were connected to each strain: for example, an isolation environment 

reported as “Drosophila hibisci on Hibiscus heterophyllus” was associated in our ontology with 

the animal subclass “Drosophila hibisci” and the plant subclass “Hibiscus heterophyllus”. This 

ontology was converted to a binary trait matrix containing all the unique environmental 

descriptors (Table S4). The same ontology was used in the recent Y1000+ manuscript (Opulente 

et al. 2023), but that manuscript only considered the first subclass in subsequent analyses; our 

analyses here used all connections in the ontology for training a random forest algorithm.  

 

Predicting growth on different carbon sources using machine learning algorithms trained 

on genomic, metabolic, and / or environmental data 

To test whether we could predict growth on 29 different carbon sources from genomic, 

environmental, and / or (the rest of the) metabolic data, we used a random forest algorithm. 

These 29 traits were selected because they were measured in at least 743 strains and were present 

in 20%-80% of strains included in this analysis. For each trait, a random forest algorithm was 

trained separately on environmental, metabolic, or genomic datasets to evaluate the accuracy of 

prediction and identify the most important predictive features (Table S5).   

 

We trained a machine learning algorithm built by an XGBoost (1.7.3) random forest classifier 

(XGBRFClassifier()) with the parameters “ max_depth=12, n_estimators=100, 

use_label_encoder =False,  eval_metric=’mlogloss’, n_jobs = 8” on 90% of the data, and used 

the remaining 10% for cross-validation, using RepeatedStratifiedKFold from 

sklearn.model_selection (1.2.1) (Chen & Guestrin 2016,  Pedregosa et al. 2011). We used 

RepeatedStratifiedKFold to generate accuracy measures (including balanced accuracy) and 
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Receiver Operator Characteristic (ROC)/Area Under Curve (AUC) curves for each prediction 

analysis. We used the cross_val_predict() function from Sci-Kit Learn to generate the confusion 

matrixes; these matrices show the numbers of strains correctly predicted to grow or not grow on 

a specific carbon source (True Positives and True Negatives, respectively) and incorrectly 

predicted (False Positives, predicted to grow but do not; and False Negatives, not predicted to 

grow but do). Top features were automatically generated by the XGBRFClassifier using Gini 

importance, which uses node impurity (the amount of variance in growth on a given carbon 

source for strains that either have or do not have this trait/feature). 

 

In each prediction analysis, we note that we excluded from each training dataset growth and 

fermentation data for each of the 29 carbon sources under investigation. For example, we 

excluded growth on galactose and galactose fermentation from the training dataset for predicting 

growth on galactose; thus, the final metabolic data matrix used in the training contained data 

from 120 sources and conditions, instead of the total 122. Similarly, we excluded growth on 

sucrose and sucrose fermentation from the training dataset for predicting growth on sucrose; we 

excluded xylose and xylose fermentation from the training dataset for predicting growth on 

xylose.   

 

GAL1, GAL7, GAL10, and GAL102 gene searches 

To determine presence / absence of genes in the GAL pathway in each of the genomes of the 

1,154 strains included in our study, we conducted sequence similarity searches for the GAL1, 

GAL7, GAL102, and GAL10 genes using the jackhmmer function from the HMMER software, 

version 3.3.2 (Eddy 2009). Using the representative GAL gene sequences from the Candida 
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albicans genome, jackhmmer searched for all hits above a similarity score of 200, which 

captured genes from all 12 Saccharomycotina taxonomic orders, and then used these results to 

build a new profile to search for the gene throughout the phylogeny. jackhmmer repeated this 

method until the results converged, which was three rounds for all genes except GAL10, which 

required five rounds, likely because the mutarotase and epimerase domains are part of the same 

protein in some yeast orders (e.g., Saccharomycetales and Serinales) but belong to two separate 

proteins (encoded by GALM and GALE, respectively) in others (e.g., Lipomycetales) (Haase et 

al. 2021, Slot & Rokas, 2010). In analyses where only the GAL gene dataset was used as 

genomic data, both the presence / absence and similarity score produced by jackhammer for 

GAL1, GAL7, and GAL10 were included in the dataset; hits with similarity scores below 200 

were considered absent and were entered as 0 (Table S6). As noted above, comparison of our 

own GAL gene searches with the KO dataset revealed that GAL1 was misannotated, and that the 

mutarotase and epimerase domains of GAL10 were annotated separately by KEGG. 

 

Quantification of galactose utilization in strains lacking the GAL pathway 

To validate galactose utilization by certain strains lacking the GAL genes that were identified in 

our qualitative metabolic data matrix, we quantified growth and galactose consumption in liquid 

culture.  Standard undefined yeast lab media was prepared as previously described (Sherman 

2002). YPD medium for culturing yeasts contained 10 g/L yeast extract, 20 g/L peptone, 20 g/L 

glucose, and 18 g/L agar (US Biological). Cells were streaked onto YPD plates, and single 

colonies were picked. Cells were inoculated into 5 mL of YP (10 g/L yeast extract, 20 g/L 

peptone) + 2% galactose (Amresco) and grown to mid-log phase (48 – 55 hours depending on 

the strain, see Table S10 for further information) on a tissue culture wheel at room temperature. 
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The optical density of the cells was measured at 600 nm (OD600) using an OD600 

DiluPhotometer (Implen). Cells were inoculated into 50 mL YP + 2% galactose at a starting 

OD600 0.05 for all species except for the negative control species, Saccharomycopsis malanga, 

which was inoculated at starting OD600 0.01 due to the low cell density caused by the absence of 

its GAL pathway. The cultures were shaken in non-baffled 150-mL Erlenmeyer flasks (Fisher 

Scientific) at 250 rpm at room temperature for seven days. 1 mL of culture was collected every 

24 hours and spun down; 600 µL of supernatant were used for extracellular sugar quantification 

via high performance liquid chromatography and refractive index detection (HPLC-RID). OD600 

readings were also taken at each 24-hour timepoint. All samples taken for HPLC-RID were 

stored at -20 ºC until the end of the experiment. Extracellular galactose concentrations were 

determined by HPLC-RID as previously described using a galactose standard (Schwalbach et al. 

2012, Lee et al. 2021). The strain S. cerevisiae gre3∆::loxP-kanMX-loxP (Parreiras et al. 2014) 

served as a positive control for galactose utilization because it has an intact GAL pathway; the 

deletion of GRE3, which encodes a promiscuous aldose reductase that could conceivably have 

some activity on galactose (Masuda et al. 2008), also allowed this strain to serve as a negative 

control for the hypothesized oxidoreductive pathway. Galactose concentrations were expressed 

as g/L, and the results correspond to the mean value of biological triplicate timepoints. All 

extracellular galactose quantification data visualization was performed using R (v4.1.2) in the 

RStudio platform (v2022.07.01+554) and with the package ggplot2 (v3.4.2) (R Core Team 2021, 

RStudio Team 2022, Wickham 2016). 

 

 Assay for galactose- and NADPH-dependent enzymatic activity 
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To determine whether galactose utilization in strains lacking the GAL genes but able to grow in 

galactose occurred through a hypothesized oxidoreductive D-galactose pathway, we tested 

NADPH-dependent enzymatic activity on galactose as a sole carbon source. Yeast cells were 

pregrown in YPD, single colonies were inoculated into 5 mL YP + 2% galactose, cultures were 

grown to mid-log phase, and they were inoculated into 50 mL YP + 2% galactose using the same 

methods as described above. Candida duobushaemulonii, Candida ruelliae, and Ogataea 

methanolica cells were harvested at mid-log phase along with their respective S. cerevisiae 

gre3∆::loxP-kanMX-loxP negative controls for whole-cell lysate protein extraction using Y-PER 

(Thermo Fisher Scientific). 1 mL of culture was sampled, and cells were centrifuged at 3,000 x g 

at 4 ºC for 5 minutes. 250 mg of wet cell pellet were resuspended in 1,250 µL of Y-PER and 

homogenized by pipetting. The mixture was left to agitate at room temperature for 50 minutes to 

ensure successful cell lysis and soluble protein extraction. Cell debris was pelleted at 14,000 x g 

for 10 minutes at room temperature. Finally, 1 mL of supernatant was removed for analysis and 

protein concentration determination. Protein concentrations were determined using the Pierce 

BCA protein assay kit and protocol (Pierce Biotechnology), and absorbance at 562 nm was 

measured using The Infinite M1000 microplate reader (Tecan). Galactose-dependent enzymatic 

activity was determined by monitoring the oxidation of the cofactor NADPH to NADP+ by 

absorbance measurement at 340 nm at 25 ºC (Cadete et al. 2016). The assay mixture (200 µL) 

contained 200 mM Tris-HCl (pH 7.5), 5 mM of NADPH, 200 mM of galactose, 200 µg of 

undefined cell-free protein extract, and deionized water in 96-well plates (Corning 96 Well Clear 

Flat Bottom UV-Transparent). In addition, each assay contained a protein extract blank and a 

substrate (without galactose) blank to account for protein and substrate noise, cofactor 

degradation, and off-target cofactor oxidation. Enzyme assays were performed in biological 
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quadruplicate. Data analyses and plots were performed and visualized using the methods 

described above. 
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Results  

Machine learning accurately predicts growth on 29 different carbon sources from metabolic 

and genomic data but not from environmental data 

A random forest algorithm (Figure 1) trained on the metabolic data matrix had high balanced 

accuracy (on average, 82%) for predicting growth of the 893 strains representing 885 of the 

Y1000+ yeast species on 29 different carbon sources. This result indicates that variation in the 

content and structure of the primary metabolic network in different strains informs patterns of 

growth on these substrates (Figure 2, Table S5). A random forest algorithm trained on the 

genomic data matrices (comprised of InterPro and/or KEGG Orthology (KO) annotations) was 

similarly accurate for predicting growth on these 29 sources (on average, 80-81% balanced 

accuracy). In contrast, when the random forest algorithm was trained on environmental datasets, 

the balanced accuracy was between 48-61% (on average, 55%), which is only marginally above 

random accuracy (Figure 2, Table S5). This result suggests that our environmental dataset does 

not provide useful predictors for growth on these sources. Examination of the ROC/AUC curves, 

confusion matrixes, and most important features for predicting growth on xylose, sucrose, and 

galactose supports this hypothesis: accuracy is only marginally above random using 

environmental data, and the most important features concern isolation environments not known 

to have high amounts of these sugars (Figure S1).  

 

Top features for predicting growth on a specific carbon source are related sources and 

metabolic genes 

The top features for predicting growth on the 29 carbon sources examined were often 

biologically relevant (Figure 2, Figure 3, Table S5). For example, for xylose, the most important 
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feature was growth on xylitol, a metabolic intermediate in the typical xylose-degrading pathway 

in yeasts and other fungi (Wohlbach et al. 2011, Meng et al. 2022), while for sucrose, the most 

important feature was maltose, another disaccharide containing a glucose moiety (Brown et al. 

2011) (Figure 3). For galactose, the top features included 2-keto-D-gluconate and L-sorbose, 

which are generated from glucose or galactose, respectively, by the enzymes acting on an 

alternative galactose-degrading pathways in some bacteria and fungi (Fekete et al. 2004, 

Tanimura et al. 2003, Meng et al. 2022, Sun et al. 2020), as well as lactose and melibiose, 

polysaccharides that contain galactose (Figure 3).  

 

A random forest algorithm trained on KEGG Orthology (KO) annotations was similarly accurate 

for predicting growth on xylose (85%), sucrose (88%), and galactose (92%) to the combined KO 

and InterPro genomic dataset (Figure 2, Figure 3). Despite the larger size of the genomic data 

matrix (over 5,000 features compared to the metabolic data matrix of 122 features), the top 

features of the genomic data matrix were still often related to genetic pathways or enzymes 

known to be involved in the utilization of each source. The top features for the highly accurate 

prediction of growth on galactose were GAL7 and GAL10 (specifically the mutarotase domain), 

which are parts of the yeast GAL pathway (Harrison et al. 2022). Despite the mis-annotation of 

the yeast GAL1 by KO (see Methods), the algorithm was still nearly as accurate when trained on 

the entire genomic data matrix as when trained on the manually curated GAL gene orthologs 

(Figure 5). The top feature for the algorithm predicting growth on sucrose was oligo-1,6-

glucosidase (K01182), which corresponds to the α-glucosidases encoded by MAL32 and MAL12, 

as well as IMA1-IMA5, which indeed do act on sucrose, as well as maltose in some yeasts 

(Brown et al. 2010, Ostergaard et al. 2000). The distribution of XYL1, XYL2, and XYL3 does not 
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always correlate with yeast growth on xylose (Riley et al. 2016, Nalabothu et al. 2023). Even 

though the XYL genes were present in the KO database (with the exception of XYL3, which was 

misannotated), they were not among the top features contributing to the 85% prediction 

accuracy, but an α-xylosidase (K01811) was the fifth most important feature (Figure 3).  Since 

galactose metabolism and its associated genetic pathway has been thoroughly studied in yeasts, 

the remainder of this paper is focused on using growth on galactose as a test case for the utility 

of this machine-learning pipeline. 

 

The GAL genes are highly predictive of growth on galactose in most, but not all, strains 

Plotting the presence / absence of the GAL genes jointly with the presence / absence of growth 

on galactose on genome-scale phylogeny of 1,154 yeast strains showed that the distributions of 

the GAL genes were tightly correlated with the distribution of growth on galactose. Specifically, 

526 / 558 strains that can grow on galactose have the GAL genes, and 277 / 310 strains that 

cannot grow on galactose lack the GAL genes. Notably, there are two lineages in the orders 

Serinales and Pichiales that can grow on galactose but lack the GAL genes (Figure 4). One 

lineage contains species closely related to the emerging opportunistic pathogen Candida auris in 

the order Serinales. The second lineage contains species belonging to the genus Ogataea in the 

order Pichiales. Isolation environments, such as isolation from plants, showed no significant 

association with growth on galactose (Figure 4).  

 

Using the scores from the sequence similarity searches (from the jackhmmer software) of GAL1, 

GAL7, GAL102, and GAL10, growth on galactose was even more accurately predicted, at 92.6%. 

When the metabolic dataset was added to the training data, the accuracy increased even further to 
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93.4% (Figure 5). This increase in accuracy suggests that there are strains for which presence or 

absence of the GAL genes cannot accurately predict growth on galactose; if that were the case, 

then the increase in accuracy due to the inclusion of the rest of the metabolic dataset raises the 

possibility that there might be an alternative galactose-degrading pathway in some yeasts. After 

the GAL genes, the most predictive feature was growth on galactitol, pointing to a possible role 

for this metabolite as an intermediate in a potential alternative pathway (Figure 5). Previous 

work in filamentous fungi identified a galactose-degrading pathway that involves galactitol as an 

intermediate (Chroumpi et al. 2022, Fekete et al. 2004), leading us to hypothesize that a similar 

pathway may be present in these yeasts and contribute to the increase in accuracy.  

 

Machine learning predicts an alternative galactose-degrading pathway in two yeast lineages 

that lack GAL genes  

To further explore the possibility of an alternative galactose utilization pathway that uses 

galactitol as an intermediate, we trained our random forest algorithm just on the GAL genes and 

growth on galactitol. We found that this algorithm was just as accurate as when the rest of the 

metabolic dataset was added (93.6% versus 93.4%). Examination of the confusion matrices when 

the algorithm was trained using just the GAL gene data versus when trained on the GAL gene 

data and metabolic data suggested that the increase in accuracy came from 15 species that were 

previously classified as false negatives and were now true positives (Figure 6). Since these 

species lack the GAL genes, our original algorithm predicted that they could not grow on 

galactose; when growth on galactitol was added, however, they were correctly predicted to grow 

on galactose, further supporting the hypothesis that they have an alternative galactose-degrading 

pathway (Figure 6). These 15 species are all able to grow on galactitol and belong to the two 
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lineages that lack GAL genes, as noted previously in Figure 4: the lineage of species closely 

related to Candida auris in Serinales and the genus Ogataea in Pichiales. Even with this highly 

accurate algorithm, there were several species that were still not correctly predicted: 18 false 

negatives (strains that are predicted not to grow, but do) (Table S7) and 39 false positives (strains 

that are predicted to grow, but do not) remained (Table S8). These species warrant further 

investigation as they may contain other alternative pathways, grow weakly on galactose or only 

under specific conditions, use galactose in glycosylation but not for assimilation (as the fission 

yeast Schizosaccharomyces pombe) (Suzuki et al. 2010), or have pseudogenized GAL genes 

(Hittinger et al. 2004). We note that the GAL genes of yeasts that were false positives in our 

classification exhibited, on average, lower sequence similarity scores in our GAL gene searches 

than the GAL genes of yeasts that were true positives (Table S9), which is consistent with 

reduced purifying selection.  

 

Some Pichiales and Serinales species utilize galactose through an oxidoreductive galactose 

utilization pathway 

To test the hypothesis that some species lacking GAL pathways can indeed utilize galactose, we 

tested three species (Table S10) from two different orders, C. ruelliae and C. duobushaemulonii 

from Serinales and O. methanolica from Pichiales, for growth on galactose as the sole carbon 

source and measured galactose consumption (Groenewald et al. 2023). All three species grew to 

high cell densities and accumulated more biomass than the S. cerevisiae positive control (Figure 

S3A), which contains an intact GAL pathway. Sugar quantification indicated galactose 

consumption in all three species (Figure 7A). The first step of the known oxidoreductive 

galactose pathway utilizes an aldose reductase, which reduces galactose to the sugar alcohol 
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galactitol while oxidizing NADPH to NADP+ (Seiboth & Metz 2011) (Figure 7B). Thus, we 

developed a biochemical assay for NADPH-dependent enzymatic activity on galactose as the 

sole carbon source. In this assay, species that exhibit the hypothesized enzymatic activity are 

predicted to show a decrease in NADPH absorbance at 340 nm over time, while species that do 

not exhibit enzymatic activity are predicted to show no decrease in NADPH over time (Figure 

7C). All three species displayed decreases in absorbance of NADPH compared to their respective 

negative controls with no substrate (Figure 7D) and no extracted protein (Figure S3B), which 

indicates that the cells express NADPH-dependent enzymatic activity that is dependent on the 

presence of galactose. The S. cerevisiae negative control used for this experiment possessed an 

intact GAL pathway and did not show a decrease in NADPH absorbance over time, indicating a 

lack of NADPH-dependent enzymatic activity on galactose as the sole carbon source. Thus, we 

conclude that these three species possess at least the first step of an oxidoreductive pathway. 

 

 

Discussion 

In this study, we employed machine learning on the rich environmental, metabolic, and genomic 

data from nearly all known species of an entire eukaryotic subphylum to predict each strain’s 

growth on different carbon sources. We found that we could accurately predict growth on diverse 

sources of carbon from genomic and / or metabolic data but not from environmental data (Figure 

2). Previous research showed that many yeast traits are connected in a trait-trait network, likely 

due to shared genes in different metabolic pathways (Opulente et al. 2018, Opulente et al. 2023). 

These connections and overlap in gene functions likely explain the high accuracy of prediction 

from metabolic and / or genomic data. Interestingly, accuracy of prediction was high, even for 
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carbon sources for which enzyme specificity was lacking, such as xylose (Figure 3) (Nalabothu 

et al. 2023). However, accuracy for xylose growth was lower than for predicting growth on 

sources, such as galactose, whose utilization pathways contain dedicated enzymes (Figure 3).  

 

 

In contrast, the accuracy of prediction of growth on different carbon sources from isolation 

environment data was marginally better than random (Figure 3). There are two possible 

explanations for this finding. The first is that isolation environments may be heterogenous in 

their carbon sources, supporting metabolically diverse yeasts. An alternative, not necessarily 

mutually exclusive explanation, is that isolation environments can be informative with respect to 

yeast diets, but that our current environmental data are incomplete. Notably, our isolation 

environmental data for each yeast included in the data matrix stem from information present in 

the taxonomic description of the type strain of each species. A dataset that contains the range of 

isolation environments of each yeast species would potentially be much more informative but is 

currently unavailable. 

 

We also found that machine learning accuracy for predicting growth on galactose was higher 

when both the presence / absence of GAL genes and growth on galactitol were used in training 

compared to just the presence / absence of the GAL genes alone (Figure 5), suggesting the 

presence of a rare alternative galactose-degrading pathway. We discovered that this alternative 

galactose-degrading pathway is found in two distinct lineages that grow in galactose in the 

absence of GAL genes; we further proposed that this alternative pathway involves galactitol as a 

metabolic intermediate (Figures 4-6). Enzyme assays validated the oxidoreductive activity of 
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three species in these two lineages when grown on galactose, providing additional support for the 

hypothesized mechanism of utilization (Figure 7). We are currently investigating the genes 

involved in this alternative pathway. This work illustrates the remarkable breadth of yeast 

metabolic diversity and how machine learning approaches can help uncover novel biology, even 

in well-studied traits, such as galactose assimilation.  

 

The potential for additional discoveries using machine learning is further highlighted by 

considering the several yeasts that appear as false positives or false negatives in our machine 

learning predictions. There are several possible explanations for why we currently cannot 

accurately predict growth on galactose for every strain in the subphylum. One explanation for 

some of the false positives could be that the GAL pathway is inactivated in some of the strains 

examined, but that their genomes contain GAL pseudogenes. Examples of GAL pseudogenes are 

known from several different species (Hittinger et al. 2004, Hittinger et al. 2010, Venktesh et al. 

2021), but strains with pseudogenes would still give positive hits in our ortholog detection 

analyses. In support of this hypothesis, the average sequence similarity scores for the GAL genes 

in yeasts classified as false positives were lower than the scores for GAL genes in yeasts 

classified as true positives (Tables S8 and S9). Another possible explanation for false positives 

could be that some yeasts may contain GAL genes that are used in other processes, such as 

glycosylation, but not in assimilation; although such examples are not currently known from the 

Saccharomycotina, the fission yeast Schizosaccharomyces pombe (subphylum 

Schizosaccharomycotina) is a case in point (Matsuzawa et al. 2011). They may also be growing 

very weakly or under specific conditions not tested here. Also, since growth on galactitol is 

predictive of this alternative pathway of galactose utilization, the algorithm now predicts that any 
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strain that grows on galactitol can also grow on galactose, which may not always true (e.g., they 

may be still missing the gene to convert galactose to galactitol). In fact, there are six yeasts in the 

list of false positives that grow in galactitol but do not grow in galactose. Finally, since more 

false positives are in  lineages other than the more extensively studied Serinales and 

Saccharomycetales, fewer strains to train on may lead to less accurate gene characterization by 

jackhmmer; alternatively, the induction of GAL genes or use of the pathway may be different in 

these lineages(Table S8).  

 

Yeasts that appear as false negatives in our analyses, which indicates that they can indeed grow 

on galactose but are predicted to not be able to do so by the random forest algorithm, may be 

growing weakly or they may have other alternative pathways that do not involve galactitol. 

These may also lack the correct inducing conditions to test positive for growth on galactitol since 

they are often closely related to our documented alternative pathway species (Table S7). 

Additionally, seven (out of 18) of these have GAL genes that are highly divergent in their 

sequences, indicating that they may have homologs that do not reach the sequence similarity 

threshold (Table S7). These yeasts could have very divergent, but still functional, GAL genes or 

they may have been misannotated or have incomplete genomes that are missing the complete 

version of the GAL genes, which would cause a lower sequence similarity score.   

 

These results demonstrate that machine learning, particularly random forests, is a powerful 

approach to find important traits in genomic and metabolic datasets and for investigating the 

evolution of the yeast genotype-phenotype map. This tool is likely to prove useful for looking at 
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many different pathways and phenotypes, including non-metabolic ones (e.g., cactophily, cell 

morphology), in the future.  
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Figures 

 

 

Figure 1. Workflow for machine learning prediction of how diet influences the evolution of 

primary metabolism in the subphylum Saccharomycotina. Using the phenotype of “grows on 

substrate” or “does not grow on substrate” for each yeast strain, we trained an XGBoost random 

forest algorithm on 90% of environmental, qualitative trait, and/or genetic features (893 strains 

containing 885 species). Using the 10% of remaining data, we tested model performance by 

looking at accuracy, confusion matrixes, and ROC-AUC curves, and we repeated this assessment 

9 more times using cross-validation. Feature importance was calculated using Gini importance as 

automatically generated by the XGBoost random forest algorithm. Created with BioRender.com.  
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Figure 2. Prediction accuracy of growth on different substrates was high when the random 

forest algorithm was trained on metabolic data (blue) or genomic data (orange and grey) 

but low when the algorithm was trained on isolation environment data (yellow).  Note that 

data on growth (and, where applicable, on fermentation) of the condition tested were removed 

prior to each analysis (e.g., prediction of growth on xylose from metabolic data was conducted 

using data for growth on all other substrates, but it excluded data for growth on xylose and 

xylose fermentation). Balanced accuracy was assessed by RepeatedStratifiedKFold(n_splits=10, 

n_repeats=3) after training the random forest algorithm on either the remainder of the metabolic 
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data, the InterPro and/or KEGG genomic data matrices, or the environmental data. Traits are 

ordered from most frequent to least frequent in the dataset from left to right. The most important 

feature for each random forest algorithm, as well as the precision of the algorithm, is shown in 

Supplementary Table 1.  
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Figure 3. Prediction accuracy of growth on different sugars was high when the random 

forest algorithm was trained on genomic data (A, C, E), and similarly high when the 

algorithm was trained on metabolic data (B, D, F). Panels A and B: prediction of growth on 

xylose from genomic (A) or metabolic data (B). Panels C and D: prediction of growth on sucrose 

from genomic (C) or metabolic (D) data. Panels E and F: prediction of growth on galactose from 

genomic (E) or metabolic (F) data. Note that data on growth (and, where applicable, on 

fermentation) of the carbon source tested were removed prior to each analysis (e.g., prediction of 

growth on xylose from metabolic data was conducted using data for growth on all other 

substrates and conditions, but it excluded data for growth on xylose and xylose fermentation). 

Also note that KEGG Ontology misannotated GAL1, likely leading GAL1 to not be in the top 

features, and that the epimerase and mutarotase domains encoded by GAL10 were annotated 

separately by this program. Accuracy is shown in the form of confusion matrices, which show 

strains predicted correctly to not grow on the sugar (true negatives, top left), strains predicted to 

grow on the sugar that do not (false positives, top right), strains correctly predicted to grow on 

the sugar (true positives, bottom right), and strains predicted to not grow on the sugar that do 

(false negatives, bottom left), as well as Receiver Operating Characteristic (ROC) curves, which 

show the true positive rate over false positive rate with changing classification thresholds. 

Feature importance graphs are also included to show the input features that are most useful for 

predicting growth on this sugar. XGBoost random forest was used to generate feature 

importance, and cross_val_predict() from sklearn.model_selection was used to generate 

confusion matrices. ROC curves were generated using the roc_curve function from 

sklearn.metrics. The prediction accuracies of growth on xylose, sucrose, and galactose from 

isolation environment data are shown in Supplemental Figure 1.    
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Figure 4. Distribution of GAL genes and plant isolation environments across the yeast 

phylogeny. The ability of the different strains to grow on galactose, the presence of genes GAL1, 

GAL7, GAL10, and GAL102, and whether they were isolated from plant environments are plotted 

as circles around the yeast phylogeny. Strain names are omitted for easier visualization, but they 
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can be found in Figure S2. The colors of the different branches of the phylogeny correspond to 

the 12 taxonomic orders (Groenewald et al. 2023). 
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Figure 5.  GAL gene presence / absence and ability to grow on galactitol are highly 

predictive of growth on galactose across the subphylum Saccharomycotina.  A. Using the 

presence / absence patterns of the genes GAL1, GAL7, GAL10, and GAL102 as input data, the 

XGBoost random forest algorithm predicted growth on galactose with high accuracy, as shown 

by the confusion matrix, the ROC/AUC curve, and the individual feature importance. B. Using 

both the presence / absence patterns of GAL genes (from panel A) and metabolic data, the 

algorithm predicted growth on galactose with even higher accuracy, shown by the confusion 

matrix, the ROC/AUC curve, and the individual feature importance. Note that, after GAL1, 

GAL7, and GAL102 genes, growth on galactitol is the next most important feature for predicting 

growth on galactose.  
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Figure 6. Adding the galactitol growth data to presence / absence of the GAL genes 

increased prediction accuracy by correctly classifying several false negatives as true 

positives. On the left is the confusion matrix for predicting growth on galactose using just GAL1, 

GAL7, GAL10, and GAL102 presence / absence. Note the presence of 32 false negatives; the 

algorithm predicted that these 32 species would be unable to grow on galactose because they 

lack the GAL genes, but they are known to grow on galactose. When the metabolic trait “Growth 

on Galactitol” was added to the training data, 15 of these species were now correctly predicted to 

grow on galactose and were moved to the “True Positive” category, while 17 remained false 

negatives. One additional species that has low sequence similarity scores for the presence of 

GAL genes in its genome (Kuraishia hungarica) also became a new false negative, bringing the 

total up to 18 false negatives, as shown in the confusion matrix on the right. The taxonomy 

(order) (Groenewald et al. 2023), quantitative growth on galactose (which is normalized to 

growth on glucose), and qualitative ability to grow on galactitol for these 15 species are listed in 

the table.   
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Figure 7. All three species showed galactose consumption and NADPH-dependent 

enzymatic activity on galactose. A. Average and standard deviation across three biological 

replicates of galactose concentrations present in medium with galactose as the sole carbon source 

(blue) and OD600 growth measurements (orange) for C. ruelliae (i), O. methanolica (ii), and C. 

duobushaemulonii (iii) over 168 hours. B. Schematic diagram of the first step of a hypothesized 

oxidoreductive galactose pathway using an aldose reductase to reduce galactose to galactitol by 

oxidizing NADPH to NADP+. C. Illustration of the expected results for different levels of 

enzymatic activity. As the amount of NADPH present in the assay mixture decreases, absorbance 

at 340 nm decreases. D. Average and standard deviation across four biological replicates of 
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NADPH absorbance at 340 nm over time comparing the complete assay mixture (red) to a 

substrate blank with no galactose added (blue) for C. ruelliae (i), O. methanolica (ii), and C. 

duobushaemulonii (iii). 
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Supplementary Figures and Tables 

Supplementary Figure 1. Prediction accuracy of growth on different sugars was low when 
the random forest algorithm was trained on environmental data. Prediction of growth on 
xylose (panel A), sucrose (panel B), and galactose (panel C) from environmental data. The right 
side of each panel shows the relative importance of different features (feature importance), i.e., 
the input features that are most useful for predicting growth on a given sugar. The top right graph 
of each panel is the receiver operating characteristic (ROC) curve, which shows the true positive 
rate over false positive rate with changing classification thresholds. At the bottom right of each 
panel is the accuracy of classification in the form of a confusion matrix. Each confusion matrix 
shows strains predicted correctly to not grow on the sugar (true negatives, top left), strains 
predicted to grow on the sugar that do not (false positives, top right), strains correctly predicted 
to grow on the sugar (true positives, bottom right), and strains predicted to not grow on the sugar 
that do (false negatives, bottom left). Xgboost random forest used to generate feature importance, 
and cross_val_predict() from sklearn.model_selection used to generate confusion matrixes. ROC 
curves were generated using the roc_curve function from sklearn.metrics.  
 

Supplementary Figure 2. Distribution of GAL genes and plant isolation environments 
across the Saccharomycotina yeast phylogeny. The ability of the different strains to grow on 
galactose, the presence of genes GAL1, GAL7, GAL10, and GAL102, and whether they were 
isolated from plant environments are plotted as circles (from innermost to outermost) around the 
Saccharomycotina yeast phylogeny. The colors of the different branches of the 
Saccharomycotina phylogeny correspond to the 12 taxonomic orders. 

Supplementary Figure 3. Positive and negative control data for experiments in Figure 7. A. 
Average and standard deviation across three biological replicates of galactose concentrations in 
the medium (blue) and OD600 growth measurements (orange) for the positive control species S. 
cerevisiae (i) and the negative control species Saccharomycopsis malanga (ii). B. Average and 
standard deviation across four biological replicates of NADPH absorbance at 340 nm over time 
for the negative control S. cerevisiae (red), the substrate blank for the negative control (blue), 
and protein blank for all species (yellow). The same protein blanks were used for all species 
included in the enzyme assay since each replicate of the enzyme assay included all four species 
on one 96-well plate and the protein blank possessed reagents which were the same across all 
species (Tris-HCl, galactose, NADPH, and deionized water). Note that S. cerevisiae is a positive 
control for growth (Panel A) and a negative control for galactose reductase activity (Panel B). 

 

Supplementary Table 1. InterPro genomic data matrix.  

Supplementary Table 2. KEGG Orthology genomic data matrix.  

Supplementary Table 3. Metabolic data matrix.  

Supplementary Table 4. Isolation environmental data matrix.  
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Supplementary Table 5. Accuracy, precision, and most important trait of a random forest 
algorithm trained on metabolic, genomic, and environmental data to predict growth on 29 
substrates.  

Supplementary Table 6. Jackhmmer GAL gene sequence similarty score for every strain 
used to train the random forest algorithm.  

Supplementary Table 7. Strains classified as false negative for algorithms trained on the 
GAL genes and metabolic data. 

Supplementary Table 8. Strains classified as false positives for algorithms trained on the 
GAL genes and metabolic data.  

Supplementary Table 9. Jackhmmer GAL gene sequence similarity scores for false positives 
were on average lower than correctly classified strains.  

Supplementary Table 10. All of the species used for functional experiments. 
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