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Abstract

How genomic differences contribute to phenotypic differences across species is a major question
in biology. The recently characterized genomes, isolation environments, and qualitative patterns
of growth on 122 sources and conditions of 1,154 strains from 1,049 fungal species (nearly all
known) in the subphylum Saccharomycotina provide a powerful, yet complex, dataset for
addressing this question. In recent years, machine learning has been successfully used in diverse
analyses of biological big data. Using a random forest classification algorithm trained on these
genomic, metabolic, and/or environmental data, we predicted growth on several carbon sources
and conditions with high accuracy from presence/absence patterns of genes and of growth in
other conditions. Known structural genes involved in assimilation of these sources were
important features contributing to prediction accuracy, whereas isolation environmental data
were poor predictors. By further examining growth on galactose, we found that it can be
predicted with high accuracy from either genomic (92.6%) or growth data in 120 other
conditions (83.3%) but not from isolation environment data (65.7%). When we combined
genomic and growth data, we noted that prediction accuracy was even higher (93.4%) and that,
after the GALactose utilization genes, the most important feature for predicting growth on
galactose was growth on galactitol. These data raised the hypothesis that several species in two
orders, Serinales and Pichiales (containing Candida auris and the genus Ogataea, respectively),
have an alternative galactose utilization pathway because they lack the GAL genes. Growth and
biochemical assays of several of these species confirmed that they utilize galactose through an
oxidoreductive D-galactose pathway, rather than the canonical GAL pathway. We conclude that
machine learning is a powerful tool for investigating the evolution of the yeast genotype-

phenotype map and that it can help uncover novel biology, even in well-studied traits.
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Introduction

Yeasts in the subphylum Saccharomycotina (hereafter referred to as yeasts) are genomically
diverse, geographically widely distributed, found in diverse habitats, and utilized for diverse
purposes by humans — the baker’s yeast Saccharomyces cerevisiae is the cornerstone of the
winemaking, brewing, baking, and biotech industries; Candida albicans is a human commensal
that thrives in the human gut and occasionally becomes a serious pathogen; Candida auris is an
emerging fungal pathogen of great concern because of its innate resistance to available
antifungal drugs; and Lipomyces starkeyi produces lipids and has several biotechnology

applications (Hittinger et al. 2018 Yaguchi et al. 2017, Case et al. 2022).

Yeast ecological diversity is thought to be intimately tied to the vast diversity in their diets, i.e.,
the diversity of primary metabolic capabilities that allow them to grow on many different sources
of carbon and nitrogen (Opulente et al. 2018). However, we currently lack a comprehensive
understanding of how variation in yeast gene content or regulation is related to the metabolic
diversity and environmental adaptation of the ~1,200 species found across the subphylum.
Recently, the Y1000+ Project (http://y1000plus.org/) published draft genome sequences of 1,086
representative strains (mostly taxonomic type strains) from nearly 1,016 and 62 novel candidate
species of yeasts (Shen et al. 2018, Opulente et al. 2023, Hittinger et al. 2015). The Y1000+
Project has also systematically recorded (from the literature) and / or experimentally generated
the isolation environments and qualitative and quantitative patterns of growth on diverse carbon
sources, nitrogen sources, and environmental conditions (e.g., temperature and salinity) for a
very large fraction of the same set of strains (Opulente et al. 2018, Opulente et al. 2023). The

availability of a comprehensive dataset that captures the vast genomic, environmental, and
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metabolic diversity of yeasts provides a unique testbed for understanding how adaptation to

unique environments occurs in eukaryotic genomes (Hittinger et al. 2015).

Several of the pathways that allow yeasts to grow on certain sources are well-characterized
(Riley et al 2016). For example, sucrose assimilation depends on the invertase Suc2p, and
maltose assimilation depends on the maltose permease Mal31p and maltase (a-D-glucosidase)
Mal32, which can also act on sucrose (Ostergaard et al. 2000, Brown et al. 2010). Arguably the
best studied pathway is the Leloir or G4Lactose utilization pathway (Fig. 1), which has become a
model not only for understanding gene regulation in eukaryotes (Ptashne & Gann 2001, Johnston
1987), but also for how evolutionary changes in gene sequences, arrangement, and regulation
contribute to ecological adaptation (Harrison et al. 2022, Sun et al. 2023, Haase et al. 2021,
Venkatesh et al. 2021, Boocock et al. 2021, Hittinger et al. 2010, Slot & Rokas 2010). In the
GAL pathway of the baker’s yeast Saccharomyces cerevisiae, Gal2p or an Hxt transporter protein
imports D-galactose into the cell, where the mutarotase domain of Gall0p acts on the sugar, if
necessary. Then, Gallp converts it to galactose-1-phosphate, representing the first energy-
consuming step of the pathway (Sellick et al. 2008). Gal7p then converts galactose-1-phosphate
to UDP-galactose. Gall0p acts on UDP-galactose using its epimerase domain, resulting in the
production of UDP-glucose. Finally, Gal7p converts UDP-glucose to glucose-1-phosphate,
which Pgm1p/Pgm2p then converts to glucose-6-phosphate, which enters glycolysis to produce

energy for the cell (Sellick et al. 2008).

Galactose abundance varies widely across yeast environments. For example, due to both the

dietary influx of galactose and the synthesis of the sugar, galactose is abundant in the gut,
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bloodstream, and urine of most mammals (including humans) in the form of oligosaccharides,
glycoproteins, and glycolipids, as well as in milk and other dairy products in the form of lactose
(a disaccharide composed of galactose and glucose subunits) (Brown et al. 2009). Galactose is
also found in a variety of fruit, vegetable, and other plant products, such as legumes; levels of
galactose in common fruits and vegetables range from <0.1 mg/ 100 g to 34 mg / 100 g (Gross
& Acosta 1991, Acosta & Gross 1995, Marsilio et al. 2001). Galactose is also part of
oligosaccharides, such as lactose, raffinose, and melibiose, as well as glycoproteins and
glycolipids, that vary in their distribution across environments (Acosta & Gross 1995, Marsillo et

al. 2001); hydrolysis of these molecules by microbial enzymes can release free galactose.

The substantial variation in abundance of galactose in different environments is reflected in the
evolution of the GAL pathway and its regulation across the subphylum Saccharomycotina.
Numerous instances of wholesale pathway loss and gain, including by horizontal gene transfer,
have been discovered (Slot & Rokas 2010, Haase et al. 2021, Harrison et al. 2022, Venkatesh et
al. 2021), as well as striking instances of ancient, multi-locus polymorphisms within species
(Venkatesh et al. 2021, Hittinger et al. 2010, Boocock et al. 2021). Different regulatory systems
that lead to different modes of induction and rates of growth have also evolved in different
lineages. For example, C. albicans exhibits an earlier graded induction in response to galactose,
while S. cerevisiae has a more bimodal expression (Dalal et al. 2016, Ricci-Tam et al. 2021, Sun

et al. 2023).
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The rich genomic, environmental, and metabolic data of the Y1000+ Project, coupled with
extensive genetic and biochemical knowledge of yeast primary metabolism, provide a unique
opportunity to explore the evolution of the genotype-phenotype map, which models the
interaction between an organism’s genes and its traits, across a subphylum. However, the
enormity and complexity of the Y1000+ Project’s data make standard statistical analyses less
suitable. In recent years, machine learning tools, such as support vector machines, random forest
algorithms, and convolutional neural networks, have emerged as powerful tools for analyzing
biological big data (Zou et al. 2019). Examples include predicting genes involved in specialized
metabolism (Moore et al. 2019), predicting protein expression and function from regulatory and
protein sequences (Zirmec et al. 2020, Capra et al. 2009, Ma et al. 2018), and distinguishing
fungal ecological lifestyles, such as saprobes from plant pathogens (Haridas et al. 2020) or

generalists from specialists (Opulente et al. 2023).

In this study, we used a random forest algorithm trained on environmental, metabolic, and/or
genomic data to predict growth of nearly all known species of Saccharomycotina on different
carbon sources. Predicting growth on 29 different carbon sources tended to be highly accurate
when the algorithm was trained on gene presence/absence and/or on presence/absence of growth
on other carbon sources, which shows that both metabolic genes and the structure of the
metabolic network are highly informative for understanding the evolution of yeast primary
metabolism; in contrast, the predictive ability of isolation environment data was weak. Although
the most important features associated with prediction accuracy were well-known genes and
carbon sources associated with the source of interest, our machine learning approach also

identified novel features not previously known to be associated with growth on a given carbon
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source. To illustrate the predictive ability of our approach, we used growth on galactose as a test
case because our machine learning approach suggested a possible novel alternative pathway for
galactose assimilation in the genus Ogataea and a clade containing C. auris, which both lack
GAL genes. Growth and biochemical assays validated that these species assimilate galactose
through a hypothesized oxidoreductive D-galactose pathway, demonstrating the power of
machine learning analysis for studying the relationship between genomic and phenotypic

variation across vast evolutionary timescales.
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Methods

Genomic data matrix

Using the KEGG (Kanehisa & Goto 2000, Kanehisa et al. 2023) and InterProScan (Jones et al.
2014) gene functional annotations generated by the Y1000+ Project (Opulente et al. 2023), a data
matrix was built with presence and absence of each unique KEGG Ortholog (KO) and counts of
each unique InterPro ID number in each genome. Each genome was its own row, and each
unique KO (N = 5,043) or InterPro ID (N = 12,242) present in one or more of the 1,154 yeast
genomes was its own column. A python script recorded the presence and absence of KO
annotations (Table S1), the number of each InterPro ID for each genome (Table S2), and put
them in the appropriate cells of the data matrix. Upon observing that accuracy was typically
similar for predicting growth on 29 carbon sources between a random forest algorithm trained
just on the KO dataset and the combined KO and InterPro dataset, the KO genomic dataset was
used for all subsequent analyses, and the InterPro data was dropped from the genomic analyses
following Figure 2. Comparison of our own GAL gene searches with the KO dataset revealed
that GAL was misannotated, and that the mutarotase and epimerase domains of GAL10 were

annotated separately by KEGG.

Metabolic data matrix

Our metabolic data matrix contained 122 traits from 893 yeast strains from 885 species in the
subphylum. The list of traits included growth on different carbon and nitrogen sources, such as
galactose, raffinose, and urea, as well as on environmental conditions, such as growth at different
temperatures and salt concentrations (Table S3). The metabolic data were sourced from

information available for each of the sequenced strains from the CBS strain database. These data
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were gathered from strains studied as part of the in the published descriptions of species,
additional data on strains obtained by previous studies done in the Westerdijk Fungal
Biodiversity Institute (CBS), or additional data provided by the depositors of the strains in the
CBS culture collection. The data matrix contained metabolic data for 893 / 1,154 species. The
percentage of missing data in the data matrix was 37.5% (40,906 missing values out of 108,946
total). Less thoroughly studied traits tended to have more missing data than more commonly
found and/or thoroughly studied traits. For example, our data matrix included data on melibiose
fermentation, which was estimated to be present in 12% (28/234) of yeasts, but only 26.2%
(234/893 of strains have been tested for growth on this substrate. In contrast, our data matrix
included data on galactose assimilation, which was estimated to be present in 64.2% (558/868),
but 97.2% (868/893) of strains have been tested. Since there were 25 strains for which growth on
galactose was not characterized, the total number of strains for which we have both genomic data

and galactose assimilation data was 868.

Environmental data matrix and ontology

The isolation environments for 1,088 (94%) out of the 1,154 yeasts examined were gathered
from strain databases, species descriptions, or from The Yeasts: A Taxonomic Study (Opulente et
al. 2023, Kurtzman et al. 2011). Strains without isolation environments either had been
significantly domesticated via crossing or subculturing or were lacking information in our
searches. Written descriptions of the environments were converted into a hierarchical trait matrix
using a controlled vocabulary. The ontology was built with Web Protégé
(https://webprotege.stanford.edu/), with two broader categories: Organic (Fungi, Soil, Animal,

and Plant) and Inorganic (Industrial and Soil). Within these categories, more specific controlled
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vocabulary annotations were connected to each strain: for example, an isolation environment
reported as “Drosophila hibisci on Hibiscus heterophyllus” was associated in our ontology with
the animal subclass “Drosophila hibisci” and the plant subclass “Hibiscus heterophyllus™. This
ontology was converted to a binary trait matrix containing all the unique environmental
descriptors (Table S4). The same ontology was used in the recent Y1000+ manuscript (Opulente
et al. 2023), but that manuscript only considered the first subclass in subsequent analyses; our

analyses here used all connections in the ontology for training a random forest algorithm.

Predicting growth on different carbon sources using machine learning algorithms trained
on genomic, metabolic, and / or environmental data

To test whether we could predict growth on 29 different carbon sources from genomic,
environmental, and / or (the rest of the) metabolic data, we used a random forest algorithm.
These 29 traits were selected because they were measured in at least 743 strains and were present
in 20%-80% of strains included in this analysis. For each trait, a random forest algorithm was
trained separately on environmental, metabolic, or genomic datasets to evaluate the accuracy of

prediction and identify the most important predictive features (Table S5).

We trained a machine learning algorithm built by an XGBoost (1.7.3) random forest classifier
(XGBRFClassifier()) with the parameters “ max_depth=12, n_estimators=100,

use label encoder =False, eval metric="mlogloss’, n_jobs = 8" on 90% of the data, and used
the remaining 10% for cross-validation, using RepeatedStratifiedKFold from
sklearn.model_selection (1.2.1) (Chen & Guestrin 2016, Pedregosa et al. 2011). We used

RepeatedStratifiedKFold to generate accuracy measures (including balanced accuracy) and
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Receiver Operator Characteristic (ROC)/Area Under Curve (AUC) curves for each prediction
analysis. We used the cross_val predict() function from Sci-Kit Learn to generate the confusion
matrixes; these matrices show the numbers of strains correctly predicted to grow or not grow on
a specific carbon source (True Positives and True Negatives, respectively) and incorrectly
predicted (False Positives, predicted to grow but do not; and False Negatives, not predicted to
grow but do). Top features were automatically generated by the XGBRFClassifier using Gini
importance, which uses node impurity (the amount of variance in growth on a given carbon

source for strains that either have or do not have this trait/feature).

In each prediction analysis, we note that we excluded from each training dataset growth and
fermentation data for each of the 29 carbon sources under investigation. For example, we
excluded growth on galactose and galactose fermentation from the training dataset for predicting
growth on galactose; thus, the final metabolic data matrix used in the training contained data
from 120 sources and conditions, instead of the total 122. Similarly, we excluded growth on
sucrose and sucrose fermentation from the training dataset for predicting growth on sucrose; we
excluded xylose and xylose fermentation from the training dataset for predicting growth on

xylose.

GALI, GAL7, GAL10, and GAL102 gene searches

To determine presence / absence of genes in the GAL pathway in each of the genomes of the
1,154 strains included in our study, we conducted sequence similarity searches for the GAL I,
GAL7, GAL102, and GAL10 genes using the jackhmmer function from the HMMER software,

version 3.3.2 (Eddy 2009). Using the representative GAL gene sequences from the Candida
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albicans genome, jackhmmer searched for all hits above a similarity score of 200, which
captured genes from all 12 Saccharomycotina taxonomic orders, and then used these results to
build a new profile to search for the gene throughout the phylogeny. jackhmmer repeated this
method until the results converged, which was three rounds for all genes except GAL 10, which
required five rounds, likely because the mutarotase and epimerase domains are part of the same
protein in some yeast orders (e.g., Saccharomycetales and Serinales) but belong to two separate
proteins (encoded by GALM and GALE, respectively) in others (e.g., Lipomycetales) (Haase et
al. 2021, Slot & Rokas, 2010). In analyses where only the GAL gene dataset was used as
genomic data, both the presence / absence and similarity score produced by jackhammer for
GALI, GAL7, and GAL10 were included in the dataset; hits with similarity scores below 200
were considered absent and were entered as 0 (Table S6). As noted above, comparison of our
own GAL gene searches with the KO dataset revealed that GAL/ was misannotated, and that the

mutarotase and epimerase domains of GAL (0 were annotated separately by KEGG.

Quantification of galactose utilization in strains lacking the GAL pathway

To validate galactose utilization by certain strains lacking the GAL genes that were identified in
our qualitative metabolic data matrix, we quantified growth and galactose consumption in liquid
culture. Standard undefined yeast lab media was prepared as previously described (Sherman
2002). YPD medium for culturing yeasts contained 10 g/L yeast extract, 20 g/L peptone, 20 g/L
glucose, and 18 g/L agar (US Biological). Cells were streaked onto YPD plates, and single
colonies were picked. Cells were inoculated into 5 mL of YP (10 g/L yeast extract, 20 g/L
peptone) + 2% galactose (Amresco) and grown to mid-log phase (48 — 55 hours depending on

the strain, see Table S10 for further information) on a tissue culture wheel at room temperature.
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The optical density of the cells was measured at 600 nm (ODso0) using an OD600
DiluPhotometer (Implen). Cells were inoculated into 50 mL YP + 2% galactose at a starting
ODs0o 0.05 for all species except for the negative control species, Saccharomycopsis malanga,
which was inoculated at starting ODeoo 0.01 due to the low cell density caused by the absence of
its GAL pathway. The cultures were shaken in non-baffled 150-mL Erlenmeyer flasks (Fisher
Scientific) at 250 rpm at room temperature for seven days. 1 mL of culture was collected every
24 hours and spun down; 600 pL of supernatant were used for extracellular sugar quantification
via high performance liquid chromatography and refractive index detection (HPLC-RID). ODsoo
readings were also taken at each 24-hour timepoint. All samples taken for HPLC-RID were
stored at -20 °C until the end of the experiment. Extracellular galactose concentrations were
determined by HPLC-RID as previously described using a galactose standard (Schwalbach et al.
2012, Lee et al. 2021). The strain S. cerevisiae gre3A::loxP-kanMX-loxP (Parreiras et al. 2014)
served as a positive control for galactose utilization because it has an intact GAL pathway; the
deletion of GRE3, which encodes a promiscuous aldose reductase that could conceivably have
some activity on galactose (Masuda et al. 2008), also allowed this strain to serve as a negative
control for the hypothesized oxidoreductive pathway. Galactose concentrations were expressed
as g/L, and the results correspond to the mean value of biological triplicate timepoints. All
extracellular galactose quantification data visualization was performed using R (v4.1.2) in the
RStudio platform (v2022.07.01+554) and with the package ggplot2 (v3.4.2) (R Core Team 2021,

RStudio Team 2022, Wickham 2016).

Assay for galactose- and NADPH-dependent enzymatic activity
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To determine whether galactose utilization in strains lacking the GAL genes but able to grow in
galactose occurred through a hypothesized oxidoreductive D-galactose pathway, we tested
NADPH-dependent enzymatic activity on galactose as a sole carbon source. Yeast cells were
pregrown in YPD, single colonies were inoculated into 5 mL YP + 2% galactose, cultures were
grown to mid-log phase, and they were inoculated into 50 mL YP + 2% galactose using the same
methods as described above. Candida duobushaemulonii, Candida ruelliae, and Ogataea
methanolica cells were harvested at mid-log phase along with their respective S. cerevisiae
gre3A::loxP-kanMX-loxP negative controls for whole-cell lysate protein extraction using Y-PER
(Thermo Fisher Scientific). 1 mL of culture was sampled, and cells were centrifuged at 3,000 x g
at 4 °C for 5 minutes. 250 mg of wet cell pellet were resuspended in 1,250 pL of Y-PER and
homogenized by pipetting. The mixture was left to agitate at room temperature for 50 minutes to
ensure successful cell lysis and soluble protein extraction. Cell debris was pelleted at 14,000 x g
for 10 minutes at room temperature. Finally, 1 mL of supernatant was removed for analysis and
protein concentration determination. Protein concentrations were determined using the Pierce
BCA protein assay kit and protocol (Pierce Biotechnology), and absorbance at 562 nm was
measured using The Infinite M1000 microplate reader (Tecan). Galactose-dependent enzymatic
activity was determined by monitoring the oxidation of the cofactor NADPH to NADP" by
absorbance measurement at 340 nm at 25 °C (Cadete et al. 2016). The assay mixture (200 pL)
contained 200 mM Tris-HCI (pH 7.5), 5 mM of NADPH, 200 mM of galactose, 200 pug of
undefined cell-free protein extract, and deionized water in 96-well plates (Corning 96 Well Clear
Flat Bottom UV-Transparent). In addition, each assay contained a protein extract blank and a
substrate (without galactose) blank to account for protein and substrate noise, cofactor

degradation, and off-target cofactor oxidation. Enzyme assays were performed in biological
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quadruplicate. Data analyses and plots were performed and visualized using the methods

described above.
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Results

Machine learning accurately predicts growth on 29 different carbon sources from metabolic
and genomic data but not from environmental data

A random forest algorithm (Figure 1) trained on the metabolic data matrix had high balanced
accuracy (on average, 82%) for predicting growth of the 893 strains representing 885 of the

Y 1000+ yeast species on 29 different carbon sources. This result indicates that variation in the
content and structure of the primary metabolic network in different strains informs patterns of
growth on these substrates (Figure 2, Table S5). A random forest algorithm trained on the
genomic data matrices (comprised of InterPro and/or KEGG Orthology (KO) annotations) was
similarly accurate for predicting growth on these 29 sources (on average, 80-81% balanced
accuracy). In contrast, when the random forest algorithm was trained on environmental datasets,
the balanced accuracy was between 48-61% (on average, 55%), which is only marginally above
random accuracy (Figure 2, Table S5). This result suggests that our environmental dataset does
not provide useful predictors for growth on these sources. Examination of the ROC/AUC curves,
confusion matrixes, and most important features for predicting growth on xylose, sucrose, and
galactose supports this hypothesis: accuracy is only marginally above random using
environmental data, and the most important features concern isolation environments not known

to have high amounts of these sugars (Figure S1).

Top features for predicting growth on a specific carbon source are related sources and
metabolic genes
The top features for predicting growth on the 29 carbon sources examined were often

biologically relevant (Figure 2, Figure 3, Table S5). For example, for xylose, the most important
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feature was growth on xylitol, a metabolic intermediate in the typical xylose-degrading pathway
in yeasts and other fungi (Wohlbach et al. 2011, Meng et al. 2022), while for sucrose, the most
important feature was maltose, another disaccharide containing a glucose moiety (Brown et al.
2011) (Figure 3). For galactose, the top features included 2-keto-D-gluconate and L-sorbose,
which are generated from glucose or galactose, respectively, by the enzymes acting on an
alternative galactose-degrading pathways in some bacteria and fungi (Fekete et al. 2004,
Tanimura et al. 2003, Meng et al. 2022, Sun et al. 2020), as well as lactose and melibiose,

polysaccharides that contain galactose (Figure 3).

A random forest algorithm trained on KEGG Orthology (KO) annotations was similarly accurate
for predicting growth on xylose (85%), sucrose (88%), and galactose (92%) to the combined KO
and InterPro genomic dataset (Figure 2, Figure 3). Despite the larger size of the genomic data
matrix (over 5,000 features compared to the metabolic data matrix of 122 features), the top
features of the genomic data matrix were still often related to genetic pathways or enzymes
known to be involved in the utilization of each source. The top features for the highly accurate
prediction of growth on galactose were GAL7 and GAL10 (specifically the mutarotase domain),
which are parts of the yeast GAL pathway (Harrison et al. 2022). Despite the mis-annotation of
the yeast GALI by KO (see Methods), the algorithm was still nearly as accurate when trained on
the entire genomic data matrix as when trained on the manually curated GAL gene orthologs
(Figure 5). The top feature for the algorithm predicting growth on sucrose was oligo-1,6-
glucosidase (K01182), which corresponds to the a-glucosidases encoded by MAL32 and MALI2,
as well as IMA1-IMAS5, which indeed do act on sucrose, as well as maltose in some yeasts

(Brown et al. 2010, Ostergaard et al. 2000). The distribution of XYL/, XYL2, and XYL3 does not
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always correlate with yeast growth on xylose (Riley et al. 2016, Nalabothu et al. 2023). Even
though the XYL genes were present in the KO database (with the exception of XYL3, which was
misannotated), they were not among the top features contributing to the 85% prediction
accuracy, but an a-xylosidase (K01811) was the fifth most important feature (Figure 3). Since
galactose metabolism and its associated genetic pathway has been thoroughly studied in yeasts,
the remainder of this paper is focused on using growth on galactose as a test case for the utility

of this machine-learning pipeline.

The GAL genes are highly predictive of growth on galactose in most, but not all, strains
Plotting the presence / absence of the GAL genes jointly with the presence / absence of growth
on galactose on genome-scale phylogeny of 1,154 yeast strains showed that the distributions of
the GAL genes were tightly correlated with the distribution of growth on galactose. Specifically,
526 / 558 strains that can grow on galactose have the GAL genes, and 277 / 310 strains that
cannot grow on galactose lack the GAL genes. Notably, there are two lineages in the orders
Serinales and Pichiales that can grow on galactose but lack the GAL genes (Figure 4). One
lineage contains species closely related to the emerging opportunistic pathogen Candida auris in
the order Serinales. The second lineage contains species belonging to the genus Ogataea in the
order Pichiales. Isolation environments, such as isolation from plants, showed no significant

association with growth on galactose (Figure 4).

Using the scores from the sequence similarity searches (from the jackhmmer software) of GALI,
GAL7, GAL102, and GAL10, growth on galactose was even more accurately predicted, at 92.6%.

When the metabolic dataset was added to the training data, the accuracy increased even further to
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93.4% (Figure 5). This increase in accuracy suggests that there are strains for which presence or
absence of the GAL genes cannot accurately predict growth on galactose; if that were the case,
then the increase in accuracy due to the inclusion of the rest of the metabolic dataset raises the
possibility that there might be an alternative galactose-degrading pathway in some yeasts. After
the GAL genes, the most predictive feature was growth on galactitol, pointing to a possible role
for this metabolite as an intermediate in a potential alternative pathway (Figure 5). Previous
work in filamentous fungi identified a galactose-degrading pathway that involves galactitol as an
intermediate (Chroumpi et al. 2022, Fekete et al. 2004), leading us to hypothesize that a similar

pathway may be present in these yeasts and contribute to the increase in accuracy.

Machine learning predicts an alternative galactose-degrading pathway in two yeast lineages
that lack GAL genes

To further explore the possibility of an alternative galactose utilization pathway that uses
galactitol as an intermediate, we trained our random forest algorithm just on the GAL genes and
growth on galactitol. We found that this algorithm was just as accurate as when the rest of the
metabolic dataset was added (93.6% versus 93.4%). Examination of the confusion matrices when
the algorithm was trained using just the GAL gene data versus when trained on the GAL gene
data and metabolic data suggested that the increase in accuracy came from 15 species that were
previously classified as false negatives and were now true positives (Figure 6). Since these
species lack the GAL genes, our original algorithm predicted that they could not grow on
galactose; when growth on galactitol was added, however, they were correctly predicted to grow
on galactose, further supporting the hypothesis that they have an alternative galactose-degrading

pathway (Figure 6). These 15 species are all able to grow on galactitol and belong to the two
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lineages that lack GAL genes, as noted previously in Figure 4: the lineage of species closely
related to Candida auris in Serinales and the genus Ogataea in Pichiales. Even with this highly
accurate algorithm, there were several species that were still not correctly predicted: 18 false
negatives (strains that are predicted not to grow, but do) (Table S7) and 39 false positives (strains
that are predicted to grow, but do not) remained (Table S8). These species warrant further
investigation as they may contain other alternative pathways, grow weakly on galactose or only
under specific conditions, use galactose in glycosylation but not for assimilation (as the fission
yeast Schizosaccharomyces pombe) (Suzuki et al. 2010), or have pseudogenized GAL genes
(Hittinger et al. 2004). We note that the GAL genes of yeasts that were false positives in our
classification exhibited, on average, lower sequence similarity scores in our GAL gene searches
than the GAL genes of yeasts that were true positives (Table S9), which is consistent with

reduced purifying selection.

Some Pichiales and Serinales species utilize galactose through an oxidoreductive galactose
utilization pathway

To test the hypothesis that some species lacking GAL pathways can indeed utilize galactose, we
tested three species (Table S10) from two different orders, C. ruelliae and C. duobushaemulonii
from Serinales and O. methanolica from Pichiales, for growth on galactose as the sole carbon
source and measured galactose consumption (Groenewald et al. 2023). All three species grew to
high cell densities and accumulated more biomass than the S. cerevisiae positive control (Figure
S3A), which contains an intact GAL pathway. Sugar quantification indicated galactose
consumption in all three species (Figure 7A). The first step of the known oxidoreductive

galactose pathway utilizes an aldose reductase, which reduces galactose to the sugar alcohol
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galactitol while oxidizing NADPH to NADP" (Seiboth & Metz 2011) (Figure 7B). Thus, we
developed a biochemical assay for NADPH-dependent enzymatic activity on galactose as the
sole carbon source. In this assay, species that exhibit the hypothesized enzymatic activity are
predicted to show a decrease in NADPH absorbance at 340 nm over time, while species that do
not exhibit enzymatic activity are predicted to show no decrease in NADPH over time (Figure
7C). All three species displayed decreases in absorbance of NADPH compared to their respective
negative controls with no substrate (Figure 7D) and no extracted protein (Figure S3B), which
indicates that the cells express NADPH-dependent enzymatic activity that is dependent on the
presence of galactose. The S. cerevisiae negative control used for this experiment possessed an
intact GAL pathway and did not show a decrease in NADPH absorbance over time, indicating a
lack of NADPH-dependent enzymatic activity on galactose as the sole carbon source. Thus, we

conclude that these three species possess at least the first step of an oxidoreductive pathway.

Discussion

In this study, we employed machine learning on the rich environmental, metabolic, and genomic
data from nearly all known species of an entire eukaryotic subphylum to predict each strain’s
growth on different carbon sources. We found that we could accurately predict growth on diverse
sources of carbon from genomic and / or metabolic data but not from environmental data (Figure
2). Previous research showed that many yeast traits are connected in a trait-trait network, likely
due to shared genes in different metabolic pathways (Opulente et al. 2018, Opulente et al. 2023).
These connections and overlap in gene functions likely explain the high accuracy of prediction

from metabolic and / or genomic data. Interestingly, accuracy of prediction was high, even for
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carbon sources for which enzyme specificity was lacking, such as xylose (Figure 3) (Nalabothu
et al. 2023). However, accuracy for xylose growth was lower than for predicting growth on

sources, such as galactose, whose utilization pathways contain dedicated enzymes (Figure 3).

In contrast, the accuracy of prediction of growth on different carbon sources from isolation
environment data was marginally better than random (Figure 3). There are two possible
explanations for this finding. The first is that isolation environments may be heterogenous in
their carbon sources, supporting metabolically diverse yeasts. An alternative, not necessarily
mutually exclusive explanation, is that isolation environments can be informative with respect to
yeast diets, but that our current environmental data are incomplete. Notably, our isolation
environmental data for each yeast included in the data matrix stem from information present in
the taxonomic description of the type strain of each species. A dataset that contains the range of
isolation environments of each yeast species would potentially be much more informative but is

currently unavailable.

We also found that machine learning accuracy for predicting growth on galactose was higher
when both the presence / absence of GAL genes and growth on galactitol were used in training
compared to just the presence / absence of the GAL genes alone (Figure 5), suggesting the
presence of a rare alternative galactose-degrading pathway. We discovered that this alternative
galactose-degrading pathway is found in two distinct lineages that grow in galactose in the
absence of GAL genes; we further proposed that this alternative pathway involves galactitol as a

metabolic intermediate (Figures 4-6). Enzyme assays validated the oxidoreductive activity of
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three species in these two lineages when grown on galactose, providing additional support for the
hypothesized mechanism of utilization (Figure 7). We are currently investigating the genes
involved in this alternative pathway. This work illustrates the remarkable breadth of yeast
metabolic diversity and how machine learning approaches can help uncover novel biology, even

in well-studied traits, such as galactose assimilation.

The potential for additional discoveries using machine learning is further highlighted by
considering the several yeasts that appear as false positives or false negatives in our machine
learning predictions. There are several possible explanations for why we currently cannot
accurately predict growth on galactose for every strain in the subphylum. One explanation for
some of the false positives could be that the GAL pathway is inactivated in some of the strains
examined, but that their genomes contain GAL pseudogenes. Examples of GAL pseudogenes are
known from several different species (Hittinger et al. 2004, Hittinger et al. 2010, Venktesh et al.
2021), but strains with pseudogenes would still give positive hits in our ortholog detection
analyses. In support of this hypothesis, the average sequence similarity scores for the GAL genes
in yeasts classified as false positives were lower than the scores for GAL genes in yeasts
classified as true positives (Tables S8 and S9). Another possible explanation for false positives
could be that some yeasts may contain GAL genes that are used in other processes, such as
glycosylation, but not in assimilation; although such examples are not currently known from the
Saccharomycotina, the fission yeast Schizosaccharomyces pombe (subphylum
Schizosaccharomycotina) is a case in point (Matsuzawa et al. 2011). They may also be growing
very weakly or under specific conditions not tested here. Also, since growth on galactitol is

predictive of this alternative pathway of galactose utilization, the algorithm now predicts that any
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strain that grows on galactitol can also grow on galactose, which may not always true (e.g., they
may be still missing the gene to convert galactose to galactitol). In fact, there are six yeasts in the
list of false positives that grow in galactitol but do not grow in galactose. Finally, since more
false positives are in lineages other than the more extensively studied Serinales and
Saccharomycetales, fewer strains to train on may lead to less accurate gene characterization by
jackhmmer; alternatively, the induction of GAL genes or use of the pathway may be different in

these lineages(Table S8).

Yeasts that appear as false negatives in our analyses, which indicates that they can indeed grow
on galactose but are predicted to not be able to do so by the random forest algorithm, may be
growing weakly or they may have other alternative pathways that do not involve galactitol.
These may also lack the correct inducing conditions to test positive for growth on galactitol since
they are often closely related to our documented alternative pathway species (Table S7).
Additionally, seven (out of 18) of these have GAL genes that are highly divergent in their
sequences, indicating that they may have homologs that do not reach the sequence similarity
threshold (Table S7). These yeasts could have very divergent, but still functional, GAL genes or
they may have been misannotated or have incomplete genomes that are missing the complete

version of the GAL genes, which would cause a lower sequence similarity score.

These results demonstrate that machine learning, particularly random forests, is a powerful
approach to find important traits in genomic and metabolic datasets and for investigating the

evolution of the yeast genotype-phenotype map. This tool is likely to prove useful for looking at
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many different pathways and phenotypes, including non-metabolic ones (e.g., cactophily, cell

morphology), in the future.

Acknowledgements

Thank you to Tony Capra, the Hittinger Lab, the Rokas Lab, and Y1000+ Project team members
for helpful discussions throughout the duration of this project; Trey K. Sato for the control strain
of S. cerevisiae; and Mick McGee and the GLBRC Metabolomics Facility for metabolite
quantification. This work was performed using resources contained within the Advanced
Computing Center for research and Education at Vanderbilt University in Nashville, TN. X.X.S.
was supported by the National Science Foundation for Distinguished Young Scholars of
Zhejiang Province (LR23C140001), the Fundamental Research Funds for the Central
Universities (226-2023-00021), and the key research project of Zhejiang Lab (2021PE0ACO04).
This work was supported by the National Science Foundation (grants DEB-2110403 to C.T.H.
and DEB-2110404 to A.R.). Research in the Hittinger Lab is also supported by the USDA
National Institute of Food and Agriculture (Hatch Project 1020204), in part by the DOE Great
Lakes Bioenergy Research Center (DOE BER Office of Science DE-SC0018409, and an H. 1.
Romnes Faculty Fellowship (Office of the Vice Chancellor for Research and Graduate Education
with funding from the Wisconsin Alumni Research Foundation). Research in the Rokas lab is
also supported by the National Institutes of Health/National Institute of Allergy and Infectious

Diseases (RO1 AI153356), and the Burroughs Wellcome Fund.

Conflict of Interest


https://doi.org/10.1101/2023.07.20.549758
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.20.549758; this version posted July 23, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

A. R. is a scientific consultant for LifeMine Therapeutics, Inc. The authors declare no other

competing interests.


https://doi.org/10.1101/2023.07.20.549758
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.20.549758; this version posted July 23, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

References
Acosta, P. B., & Gross, K. C. (1995). Hidden sources of galactose in the environment. European

Journal of Pediatrics, 154(2), S87—-S92. https://doi.org/10.1007/BF02143811

Boocock, J., Sadhu, M. J., Durvasula, A., Bloom, J. S., & Kruglyak, L. (2021). Ancient balancing
selection maintains incompatible versions of the galactose pathway in yeast. Science (New York,

N.Y.), 371(6527), 415-419. https://doi.org/10.1126/science.aba0542

Brown, C. A., Murray, A. W., & Verstrepen, K. J. (2010). Rapid Expansion and Functional
Divergence of Subtelomeric Gene Families in Yeasts. Current Biology, 20(10), 895-903.

https://doi.org/10.1016/j.cub.2010.04.027

Brown, V., Sabina, J., & Johnston, M. (2009). Specialized Sugar Sensing in Diverse Fungi. Current

Biology, 19(5), 436—441. https://doi.org/10.1016/1.cub.2009.01.056

Cadete, R. M., de las Heras, A. M., Sandstrom, A. G., Ferreira, C., Girio, F., Gorwa-Grauslund, M.-
F.,Rosa, C. A., & Fonseca, C. (2016). Exploring xylose metabolism in Spathaspora species:
XYL1.2 from Spathaspora passalidarum as the key for efficient anaerobic xylose fermentation in

metabolic engineered Saccharomyces cerevisiae. Biotechnology for Biofuels, 9(1), 167.

https://doi.org/10.1186/s13068-016-0570-6

Capra, J. A., Laskowski, R. A., Thornton, J. M., Singh, M., & Funkhouser, T. A. (2009). Predicting
Protein Ligand Binding Sites by Combining Evolutionary Sequence Conservation and 3D
Structure. PLOS Computational Biology, 5(12), e1000585.

https://doi.org/10.1371/journal.pcbi.1000585

Case, N. T., Berman, J., Blehert, D. S., Cramer, R. A., Cuomo, C., Currie, C. R., Ene, I. V., Fisher, M.
C., Fritz-Laylin, L. K., Gerstein, A. C., Glass, N. L., Gow, N. A. R., Gurr, S. J., Hittinger, C. T.,

Hohl, T. M., Iliev, I. D., James, T. Y., Jin, H., Klein, B. S., ... Cowen, L. E. (2022). The future of


https://doi.org/10.1101/2023.07.20.549758
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.20.549758; this version posted July 23, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

fungi: Threats and opportunities. G3 (Bethesda, Md.), 12(11), jkac224.

https://doi.org/10.1093/¢3journal/jkac224

Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785—

794. https://doi.org/10.1145/2939672.2939785

Chroumpi, T., Martinez-Reyes, N., Kun, R. S., Peng, M., Lipzen, A., Ng, V., Tejomurthula, S.,
Zhang, Y., Grigoriev, . V., Mikeld, M. R., de Vries, R. P., & Garrigues, S. (2022). Detailed
analysis of the D-galactose catabolic pathways in Aspergillus niger reveals complexity at both
metabolic and regulatory level. Fungal Genetics and Biology, 159, 103670.

https://doi.org/10.1016/1.feb.2022.103670

Dalal, C. K., Zuleta, I. A., Mitchell, K. F., Andes, D. R., El-Samad, H., & Johnson, A. D. (2016).
Transcriptional rewiring over evolutionary timescales changes quantitative and qualitative

properties of gene expression. ELife, 5, e18981. https://doi.org/10.7554/eLife.18981

Eddy, S. R. (2009). A new generation of homology search tools based on probabilistic inference.
Genome Informatics. International Conference on Genome Informatics, 23(1), 205-211.

Fekete, E., Karaffa, L., Sandor, E., Banyai, I., Seiboth, B., Gyémant, G., Sepsi, A., Szentirmai, A., &
Kubicek, C. P. (2004). The alternative d-galactose degrading pathway of Aspergillus nidulans

proceeds via l-sorbose. Archives of Microbiology, 181(1), 35—44. https://doi.org/10.1007/s00203-

003-0622-8
Groenewald, M., Hittinger, C. T., Bensch, K., Opulente, D. A., Shen, X.-X., Li, Y., Liu, C., LaBella,
A. L., Zhou, X., Limtong, S., Jindamorakot, S., Gongalves, P., Robert, V., Wolfe, K. H., Rosa, C.

A., Boekhout, T., Cade, N., Péter, G., Sampaio, J. P., ... Rokas, A. (2023). A genome-informed


https://doi.org/10.1101/2023.07.20.549758
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.20.549758; this version posted July 23, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

higher rank classification of the biotechnologically important fungal subphylum

Saccharomycotina. Studies in Mycology. https://doi.org/10.3114/sim.2023.105.01

Gross, K. C., & Acosta, P. B. (1991). Fruits and vegetables are a source of galactose: Implications in
planning the diets of patients with Galactosaemia. Journal of Inherited Metabolic Disease, 14(2),

253-258. https://doi.org/10.1007/BF01800599

Haase, M. A. B., Kominek, J., Opulente, D. A., Shen, X.-X., LaBella, A. L., Zhou, X., DeVirgilio, J.,
Hulfachor, A. B., Kurtzman, C. P., Rokas, A., & Hittinger, C. T. (2021). Repeated horizontal
gene transfer of GALactose metabolism genes violates Dollo’s law of irreversible loss. Genetics,

217(2), iyaa012. https://doi.org/10.1093/genetics/iyaa012

Haridas, S., Albert, R., Binder, M., Bloem, J., LaButti, K., Salamov, A., Andreopoulos, B., Baker, S.
E., Barry, K., Bills, G., Bluhm, B. H., Cannon, C., Castanera, R., Culley, D. E., Daum, C., Ezra,
D., Gonzélez, J. B, Henrissat, B., Kuo, A., ... Grigoriev, I. V. (2020). 101 Dothideomycetes
genomes: A test case for predicting lifestyles and emergence of pathogens. Studies in Mycology,

96, 141-153. https://doi.org/10.1016/j.simyc0.2020.01.003

Harrison, M.-C., LaBella, A. L., Hittinger, C. T., & Rokas, A. (2022). The evolution of the
GALactose utilization pathway in budding yeasts. Trends in Genetics: TIG, 38(1), 97-106.

https://doi.org/10.1016/1.t1.2021.08.013

Hittinger, C. T., Gongalves, P., Sampaio, J. P., Dover, J., Johnston, M., & Rokas, A. (2010).
Remarkably ancient balanced polymorphisms in a multi-locus gene network. Nature, 464(7285),

54-58. https://doi.org/10.1038/nature08791

Hittinger, C. T., Rokas, A., Bai, F.-Y., Boekhout, T., Gongalves, P., Jeffries, T. W., Kominek, J.,

Lachance, M.-A., Libkind, D., Rosa, C. A., Sampaio, J. P., & Kurtzman, C. P. (2015). Genomics


https://doi.org/10.1101/2023.07.20.549758
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.20.549758; this version posted July 23, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

and the making of yeast biodiversity. Current Opinion in Genetics & Development, 35, 100—109.

https://doi.org/10.1016/j.ede.2015.10.008

Hittinger, C. T., Rokas, A., & Carroll, S. B. (2004). Parallel inactivation of multiple GAL pathway
genes and ecological diversification in yeasts. Proceedings of the National Academy of Sciences,

101(39), 14144—14149. https://doi.org/10.1073/pnas.0404319101

Hittinger, C. T., Steele, J. L., & Ryder, D. S. (2018). Diverse yeasts for diverse fermented beverages
and foods. Current Opinion in Biotechnology, 49, 199-206.

https://doi.org/10.1016/j.copbio.2017.10.004

Johnston, M. (1987). A model fungal gene regulatory mechanism: The GAL genes of Saccharomyces

cerevisiae. Microbiological Reviews, 51(4), 458-476. https://doi.org/10.1128/mr.51.4.458-

476.1987

Jones, P., Binns, D., Chang, H.-Y ., Fraser, M., Li, W., McAnulla, C., McWilliam, H., Maslen, J.,
Mitchell, A., Nuka, G., Pesseat, S., Quinn, A. F., Sangrador-Vegas, A., Scheremetjew, M., Yong,
S.-Y., Lopez, R., & Hunter, S. (2014). InterProScan 5: Genome-scale protein function

classification. Bioinformatics, 30(9), 1236—1240. https://doi.org/10.1093/bioinformatics/btu03 1

Kanehisa, M. (2019). Toward understanding the origin and evolution of cellular organisms. Protein
Science: A Publication of the Protein Society, 28(11), 1947-1951.

https://doi.org/10.1002/pro.3715

Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M., & Ishiguro-Watanabe, M. (2023). KEGG for
taxonomy-based analysis of pathways and genomes. Nucleic Acids Research, 51(D1), D587—

D592. https://doi.org/10.1093/nar/gkac963

Kanehisa, M., & Goto, S. (2000). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids

Research, 28(1), 27-30. https://doi.org/10.1093/nar/28.1.27



https://doi.org/10.1101/2023.07.20.549758
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.20.549758; this version posted July 23, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Kurtzman, C., Fell, J. W., & Boekhout, T. (2011). The Yeasts: A Taxonomic Study. Elsevier.

Lee, S.-B., Tremaine, M., Place, M., Liu, L., Pier, A., Krause, D. J., Xie, D., Zhang, Y., Landick, R.,
Gasch, A. P., Hittinger, C. T., & Sato, T. K. (2021). Crabtree/Warburg-like aerobic xylose
fermentation by engineered Saccharomyces cerevisiae. Metabolic Engineering, 68, 119—-130.

https://doi.org/10.1016/j.ymben.2021.09.008

Ma, W., Qiu, Z., Song, J., Li, J., Cheng, Q., Zhai, J., & Ma, C. (2018). A deep convolutional neural
network approach for predicting phenotypes from genotypes. Planta, 248(5), 1307-1318.

https://doi.org/10.1007/s00425-018-2976-9

Marsilio, V., Campestre, C., Lanza, B., & De Angelis, M. (2001). Sugar and polyol compositions of
some European olive fruit varieties (Olea europaea L.) suitable for table olive purposes. Food

Chemistry, 72(4), 485-490. https://doi.org/10.1016/S0308-8146(00)00268-5

Masuda, C. A., Previato, J. O., Miranda, M. N., Assis, L. J., Penha, L. L., Mendonca-Previato, L., &
Montero-Lomeli, M. (2008). Overexpression of the aldose reductase GRE3 suppresses lithium-
induced galactose toxicity in Saccharomyces cerevisiae. FEMS Yeast Research, 8(8), 1245—

1253. https://doi.org/10.1111/5.1567-1364.2008.00440.x

Matsuzawa, T., Fujita, Y., Tanaka, N., Tohda, H., Itadani, A., & Takegawa, K. (2011). New insights
into galactose metabolism by Schizosaccharomyces pombe: Isolation and characterization of a
galactose-assimilating mutant. Journal of Bioscience and Bioengineering, 111(2), 158—166.

https://doi.org/10.1016/1.jbiosc.2010.10.007

Meng, J., Németh, Z., Peng, M., Fekete, E., Garrigues, S., Lipzen, A., Ng, V., Savage, E., Zhang, Y.,
Grigoriev, I. V., Mikeld, M. R., Karaffa, L., & de Vries, R. P. (2022). GalR, GalX and AraR co-
regulate d-galactose and I-arabinose utilization in Aspergillus nidulans. Microbial

Biotechnology, 15(6), 1839—1851. https://doi.org/10.1111/1751-7915.14025



https://doi.org/10.1101/2023.07.20.549758
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.20.549758; this version posted July 23, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Moore, B. M., Wang, P., Fan, P., Leong, B., Schenck, C. A., Lloyd, J. P., Lehti-Shiu, M. D., Last, R.
L., Pichersky, E., & Shiu, S.-H. (2019). Robust predictions of specialized metabolism genes
through machine learning. Proceedings of the National Academy of Sciences, 116(6), 2344—

2353. https://doi.org/10.1073/pnas.1817074116

Nalabothu, R. L., Fisher, K. J., LaBella, A. L., Meyer, T. A., Opulente, D. A., Wolters, J. F., Rokas,
A., & Hittinger, C. T. (2023). Codon Optimization Improves the Prediction of Xylose
Metabolism from Gene Content in Budding Yeasts. Molecular Biology and Evolution, 40(6),

msadl11. https://doi.org/10.1093/molbev/msad111

Opulente, D. A., LaBella, A. L., Harrison, M.-C., Wolters, J. F., Liu, C., Li, Y., Kominek, J.,
Steenwyk, J. L., Stoneman, H. R., VanDenAvond, J., Miller, C. R., Langdon, Q. K., Silva, M.,
Gongalves, C., Ubbelohde, E. J., Li, Y., Buh, K. V., Jarzyna, M., Haase, M. A. B., ... Hittinger,

C. T. (2023). Genomic and ecological factors shaping specialism and generalism across an

entire subphylum (p. 2023.06.19.545611). bioRxiv. https://doi.org/10.1101/2023.06.19.545611

Opulente, D. A., Rollinson, E. J., Bernick-Roehr, C., Hulfachor, A. B., Rokas, A., Kurtzman, C. P., &

Hittinger, C. T. (2018). Factors driving metabolic diversity in the budding yeast subphylum.

BMC Biology, 16(1), 26. https://doi.org/10.1186/s12915-018-0498-3

Ostergaard, S., Olsson, L., & Nielsen, J. (2000). Metabolic Engineering of Saccharomyces cerevisiae.
Microbiology and Molecular Biology Reviews, 64(1), 34-50.

Parreiras, L. S., Breuer, R. J., Avanasi Narasimhan, R., Higbee, A. J., La Reau, A., Tremaine, M.,
Qin, L., Willis, L. B., Bice, B. D., Bonfert, B. L., Pinhancos, R. C., Balloon, A. J., Uppugundla,
N., Liu, T., Li, C., Tanjore, D., Ong, I. M., Li, H., Pohlmann, E. L., ... Sato, T. K. (2014).

Engineering and two-stage evolution of a lignocellulosic hydrolysate-tolerant Saccharomyces


https://doi.org/10.1101/2023.07.20.549758
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.20.549758; this version posted July 23, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

cerevisiae strain for anaerobic fermentation of xylose from AFEX pretreated corn stover. PloS

One, 9(9), €107499. https://doi.org/10.1371/journal.pone.0107499

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher,
M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python. Journal of
Machine Learning Research, 12(85), 2825-2830.

Ptashne, M., & Gann, A. (2001). Genes and Signals (1st edition). Cold Spring Harbor Laboratory
Press.

R Core Team (2021). R: A language and environment for statistical computing. Foundation for
Statistical Computing, Vienna, Austria. URL: https://www.R-project.org/.

RStudio Team (2022). RStudio: Integrated Development Environment for R. RStudio, PBC, Boston,

MA URL: http://www.rstudio.com/.

Ricci-Tam, C., Ben-Zion, 1., Wang, J., Palme, J., Li, A., Savir, Y., & Springer, M. (2021). Decoupling

transcription factor expression and activity enables dimmer switch gene regulation. Science,

372(6539), 292-295. https://doi.org/10.1126/science.aba7582

Riley, R., Haridas, S., Wolfe, K. H., Lopes, M. R., Hittinger, C. T., Goker, M., Salamov, A. A.,
Wisecaver, J. H., Long, T. M., Calvey, C. H., Aerts, A. L., Barry, K. W., Choi, C., Clum, A.,
Coughlan, A. Y., Deshpande, S., Douglass, A. P., Hanson, S. J., Klenk, H.-P., ... Jeffries, T. W.
(2016). Comparative genomics of biotechnologically important yeasts. Proceedings of the

National Academy of Sciences, 113(35), 9882—9887. https://doi.org/10.1073/pnas.1603941113

Schwalbach, M. S., Keating, D. H., Tremaine, M., Marner, W. D., Zhang, Y., Bothfeld, W., Higbee,

A., Grass, J. A., Cotten, C., Reed, J. L., da Costa Sousa, L., Jin, M., Balan, V., Ellinger, J., Dale,


https://doi.org/10.1101/2023.07.20.549758
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.20.549758; this version posted July 23, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

B., Kiley, P. J., & Landick, R. (2012). Complex Physiology and Compound Stress Responses
during Fermentation of Alkali-Pretreated Corn Stover Hydrolysate by an Escherichia coli
Ethanologen. Applied and Environmental Microbiology, 78(9), 3442-3457.

https://doi.org/10.1128/AEM.07329-11

Seiboth, B., & Metz, B. (2011). Fungal arabinan and l-arabinose metabolism. Applied Microbiology

and Biotechnology, 89(6), 1665—1673. https://doi.org/10.1007/s00253-010-3071-8

Sellick, C. A., Campbell, R. N., & Reece, R. J. (2008). Galactose metabolism in yeast-structure and
regulation of the leloir pathway enzymes and the genes encoding them. International Review of

Cell and Molecular Biology, 269, 111-150. https://doi.org/10.1016/S1937-6448(08)01003-4

Shen, X.-X., Opulente, D. A., Kominek, J., Zhou, X., Steenwyk, J. L., Buh, K. V., Haase, M. A. B.,
Wisecaver, J. H., Wang, M., Doering, D. T., Boudouris, J. T., Schneider, R. M., Langdon, Q. K.,
Ohkuma, M., Endoh, R., Takashima, M., Manabe, R.-I., CadeZ, N., Libkind, D., ... Rokas, A.
(2018). Tempo and Mode of Genome Evolution in the Budding Yeast Subphylum. Cell, 175(6),

1533-1545.€20. https://doi.org/10.1016/j.cell.2018.10.023

Sherman, F. (2002). Getting started with yeast. Methods in Enzymology, 350, 3—41.

https://doi.org/10.1016/s0076-6879(02)50954-x

Slot, J. C., & Rokas, A. (2010). Multiple GAL pathway gene clusters evolved independently and by

different mechanisms in fungi. Proceedings of the National Academy of Sciences of the United

States of America, 107(22), 10136—-10141. https://doi.org/10.1073/pnas.0914418107
Sun, L., Wang, D.-M., Sun, W.-J., Cui, F.-J., Gong, J.-S., Zhang, X.-M., Shi, J.-S., & Xu, Z.-H.
(2020). Two-Stage Semi-Continuous 2-Keto-Gluconic Acid (2KGA) Production by

Pseudomonas plecoglossicida JUIMO1 From Rice Starch Hydrolyzate. Frontiers in

Bioengineering and Biotechnology, 8, 120. https://doi.org/10.3389/tbioe.2020.00120


https://doi.org/10.1101/2023.07.20.549758
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.20.549758; this version posted July 23, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Sun, X., Yu, J., Zhu, C., Mo, X., Sun, Q., Yang, D., Su, C., & Lu, Y. (2023). Recognition of galactose
by a scaffold protein recruits a transcriptional activator for the GAL regulon induction in

Candida albicans. ELife, 12, e84155. https://doi.org/10.7554/eLife.84155

Suzuki, S., Matsuzawa, T., Nukigi, Y., Takegawa, K., & Tanaka, N. (2010). Characterization of two
different types of UDP-glucose/-galactose4-epimerase involved in galactosylation in fission

yeast. Microbiology, 156(3), 708—718. https://doi.org/10.1099/mic.0.035279-0

Tanimura, R., Hamada, A., Ikehara, K., & Iwamoto, R. (2003). Enzymatic synthesis of 2-keto-d-
gluconate and 2-keto-d-galactonate from d-glucose and d-galactose with cell culture of
Pseudomonas fluorescens and 2-keto-galactonate from d-galactono 1,4-lactone with partially
purified 2-ketogalactonate reductase. Journal of Molecular Catalysis B: Enzymatic, 23(2), 291—

298. https://doi.org/10.1016/S1381-1177(03)00092-4

Venkatesh, A., Murray, A. L., Coughlan, A. Y., & Wolfe, K. H. (2021). Giant GAL gene clusters for
the melibiose-galactose pathway in Torulaspora. Yeast (Chichester, England), 38(1), 117-126.

https://doi.org/10.1002/yea.3532

Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer International Publishing.

Wohlbach, D. J., Kuo, A., Sato, T. K., Potts, K. M., Salamov, A. A., LaButti, K. M., Sun, H., Clum,
A., Pangilinan, J. L., Lindquist, E. A., Lucas, S., Lapidus, A., Jin, M., Gunawan, C., Balan, V.,
Dale, B. E., Jeffries, T. W., Zinkel, R., Barry, K. W., ... Gasch, A. P. (2011). Comparative
genomics of xylose-fermenting fungi for enhanced biofuel production. Proceedings of the

National Academy of Sciences, 108(32), 13212—13217. https://doi.org/10.1073/pnas.1103039108

Yaguchi, A., Rives, D., & Blenner, M. (2017). New kids on the block: Emerging oleaginous yeast of
biotechnological importance. AIMS Microbiology, 3(2), 227-247.

https://doi.org/10.3934/microbiol.2017.2.227



https://doi.org/10.1101/2023.07.20.549758
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.20.549758; this version posted July 23, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Zou, J., Huss, M., Abid, A., Mohammadi, P., Torkamani, A., & Telenti, A. (2019). A primer on deep

learning in genomics. Nature Genetics, 51(1), Article 1. https://doi.org/10.1038/s41588-018-

0295-5

Zrimec, J., Borlin, C. S., Buric, F., Muhammad, A. S., Chen, R., Siewers, V., Verendel, V., Nielsen,
J., Topel, M., & Zelezniak, A. (2020). Deep learning suggests that gene expression is encoded in
all parts of a co-evolving interacting gene regulatory structure. Nature Communications, 11(1),

Article 1. https://doi.org/10.1038/s41467-020-19921-4



https://doi.org/10.1101/2023.07.20.549758
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.20.549758; this version posted July 23, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Figures

—

Prediction framework

Model:

Random Forest

Environmental, metabolic
and/or genetic features

Strain 1
Strain 2
Strain 3

Strainn

Xi X2 ... Xq
1 0 L
0 0 1
0 1 0
1T 1 L

Training (90%)

_| Testing (10%)

]

Growth
Phenotype

Grows on

substrate
or

Does not grow
on substrate

Figure 1. Workflow for machine learning prediction of how diet influences the evolution of

primary metabolism in the subphylum Saccharomycotina. Using the phenotype of “grows on

substrate” or “does not grow on substrate” for each yeast strain, we trained an XGBoost random

forest algorithm on 90% of environmental, qualitative trait, and/or genetic features (893 strains

containing 885 species). Using the 10% of remaining data, we tested model performance by

looking at accuracy, confusion matrixes, and ROC-AUC curves, and we repeated this assessment

9 more times using cross-validation. Feature importance was calculated using Gini importance as

automatically generated by the XGBoost random forest algorithm. Created with BioRender.com.
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Figure 2. Prediction accuracy of growth on different substrates was high when the random
forest algorithm was trained on metabolic data (blue) or genomic data (orange and grey)
but low when the algorithm was trained on isolation environment data (yellow). Note that
data on growth (and, where applicable, on fermentation) of the condition tested were removed
prior to each analysis (e.g., prediction of growth on xylose from metabolic data was conducted
using data for growth on all other substrates, but it excluded data for growth on xylose and
xylose fermentation). Balanced accuracy was assessed by RepeatedStratifiedKFold(n_splits=10,

n_repeats=3) after training the random forest algorithm on either the remainder of the metabolic
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data, the InterPro and/or KEGG genomic data matrices, or the environmental data. Traits are
ordered from most frequent to least frequent in the dataset from left to right. The most important
feature for each random forest algorithm, as well as the precision of the algorithm, is shown in

Supplementary Table 1.
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Figure 3. Prediction accuracy of growth on different sugars was high when the random
forest algorithm was trained on genomic data (A, C, E), and similarly high when the
algorithm was trained on metabolic data (B, D, F). Panels A and B: prediction of growth on
xylose from genomic (A) or metabolic data (B). Panels C and D: prediction of growth on sucrose
from genomic (C) or metabolic (D) data. Panels E and F: prediction of growth on galactose from
genomic (E) or metabolic (F) data. Note that data on growth (and, where applicable, on
fermentation) of the carbon source tested were removed prior to each analysis (e.g., prediction of
growth on xylose from metabolic data was conducted using data for growth on all other
substrates and conditions, but it excluded data for growth on xylose and xylose fermentation).
Also note that KEGG Ontology misannotated GALI, likely leading GAL! to not be in the top
features, and that the epimerase and mutarotase domains encoded by GAL 0 were annotated
separately by this program. Accuracy is shown in the form of confusion matrices, which show
strains predicted correctly to not grow on the sugar (true negatives, top left), strains predicted to
grow on the sugar that do not (false positives, top right), strains correctly predicted to grow on
the sugar (true positives, bottom right), and strains predicted to not grow on the sugar that do
(false negatives, bottom left), as well as Receiver Operating Characteristic (ROC) curves, which
show the true positive rate over false positive rate with changing classification thresholds.
Feature importance graphs are also included to show the input features that are most useful for
predicting growth on this sugar. XGBoost random forest was used to generate feature
importance, and cross_val predict() from sklearn.model selection was used to generate
confusion matrices. ROC curves were generated using the roc_curve function from
sklearn.metrics. The prediction accuracies of growth on xylose, sucrose, and galactose from

isolation environment data are shown in Supplemental Figure 1.
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Figure 4. Distribution of GAL genes and plant isolation environments across the yeast
phylogeny. The ability of the different strains to grow on galactose, the presence of genes GALI,
GAL7, GALI0, and GAL102, and whether they were isolated from plant environments are plotted

as circles around the yeast phylogeny. Strain names are omitted for easier visualization, but they
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can be found in Figure S2. The colors of the different branches of the phylogeny correspond to

the 12 taxonomic orders (Groenewald et al. 2023).
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Figure 5. GAL gene presence / absence and ability to grow on galactitol are highly
predictive of growth on galactose across the subphylum Saccharomycotina. A. Using the
presence / absence patterns of the genes GALI, GAL7, GALI10, and GAL102 as input data, the
XGBoost random forest algorithm predicted growth on galactose with high accuracy, as shown
by the confusion matrix, the ROC/AUC curve, and the individual feature importance. B. Using
both the presence / absence patterns of GAL genes (from panel A) and metabolic data, the
algorithm predicted growth on galactose with even higher accuracy, shown by the confusion
matrix, the ROC/AUC curve, and the individual feature importance. Note that, after GALI,
GAL7, and GAL102 genes, growth on galactitol is the next most important feature for predicting

growth on galactose.
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Candida galis Phaffomycetales 0 Yes
Saccharomycopsis babjevae Ascoideales NA Yes
Kazachstania bovina Saccharomycetales NA Yes

Figure 6. Adding the galactitol growth data to presence / absence of the GAL genes
increased prediction accuracy by correctly classifying several false negatives as true
positives. On the left is the confusion matrix for predicting growth on galactose using just GALI,
GAL7, GAL10, and GAL102 presence / absence. Note the presence of 32 false negatives; the
algorithm predicted that these 32 species would be unable to grow on galactose because they
lack the GAL genes, but they are known to grow on galactose. When the metabolic trait “Growth
on Galactitol” was added to the training data, 15 of these species were now correctly predicted to
grow on galactose and were moved to the “True Positive” category, while 17 remained false
negatives. One additional species that has low sequence similarity scores for the presence of
GAL genes in its genome (Kuraishia hungarica) also became a new false negative, bringing the
total up to 18 false negatives, as shown in the confusion matrix on the right. The taxonomy
(order) (Groenewald et al. 2023), quantitative growth on galactose (which is normalized to
growth on glucose), and qualitative ability to grow on galactitol for these 15 species are listed in

the table.
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Figure 7. All three species showed galactose consumption and NADPH-dependent

enzymatic activity on galactose. A. Average and standard deviation across three biological

replicates of galactose concentrations present in medium with galactose as the sole carbon source

(blue) and ODeoo growth measurements (orange) for C. ruelliae (i), O. methanolica (ii), and C.

duobushaemulonii (iii) over 168 hours. B. Schematic diagram of the first step of a hypothesized

oxidoreductive galactose pathway using an aldose reductase to reduce galactose to galactitol by

oxidizing NADPH to NADP". C. Illustration of the expected results for different levels of

enzymatic activity. As the amount of NADPH present in the assay mixture decreases, absorbance

at 340 nm decreases. D. Average and standard deviation across four biological replicates of
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NADPH absorbance at 340 nm over time comparing the complete assay mixture (red) to a
substrate blank with no galactose added (blue) for C. ruelliae (i), O. methanolica (i1), and C.

duobushaemulonii (iii).
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Supplementary Figures and Tables

Supplementary Figure 1. Prediction accuracy of growth on different sugars was low when
the random forest algorithm was trained on environmental data. Prediction of growth on
xylose (panel A), sucrose (panel B), and galactose (panel C) from environmental data. The right
side of each panel shows the relative importance of different features (feature importance), i.e.,
the input features that are most useful for predicting growth on a given sugar. The top right graph
of each panel is the receiver operating characteristic (ROC) curve, which shows the true positive
rate over false positive rate with changing classification thresholds. At the bottom right of each
panel is the accuracy of classification in the form of a confusion matrix. Each confusion matrix
shows strains predicted correctly to not grow on the sugar (true negatives, top left), strains
predicted to grow on the sugar that do not (false positives, top right), strains correctly predicted
to grow on the sugar (true positives, bottom right), and strains predicted to not grow on the sugar
that do (false negatives, bottom left). Xgboost random forest used to generate feature importance,
and cross_val predict() from sklearn.model selection used to generate confusion matrixes. ROC
curves were generated using the roc_curve function from sklearn.metrics.

Supplementary Figure 2. Distribution of GAL genes and plant isolation environments
across the Saccharomycotina yeast phylogeny. The ability of the different strains to grow on
galactose, the presence of genes GALI, GAL7, GALI10, and GAL102, and whether they were
isolated from plant environments are plotted as circles (from innermost to outermost) around the
Saccharomycotina yeast phylogeny. The colors of the different branches of the
Saccharomycotina phylogeny correspond to the 12 taxonomic orders.

Supplementary Figure 3. Positive and negative control data for experiments in Figure 7. A.
Average and standard deviation across three biological replicates of galactose concentrations in
the medium (blue) and ODsoo growth measurements (orange) for the positive control species S.
cerevisiae (1) and the negative control species Saccharomycopsis malanga (i1). B. Average and
standard deviation across four biological replicates of NADPH absorbance at 340 nm over time
for the negative control S. cerevisiae (red), the substrate blank for the negative control (blue),
and protein blank for all species (yellow). The same protein blanks were used for all species
included in the enzyme assay since each replicate of the enzyme assay included all four species
on one 96-well plate and the protein blank possessed reagents which were the same across all
species (Tris-HCI, galactose, NADPH, and deionized water). Note that S. cerevisiae is a positive
control for growth (Panel A) and a negative control for galactose reductase activity (Panel B).

Supplementary Table 1. InterPro genomic data matrix.
Supplementary Table 2. KEGG Orthology genomic data matrix.
Supplementary Table 3. Metabolic data matrix.

Supplementary Table 4. Isolation environmental data matrix.
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Supplementary Table 5. Accuracy, precision, and most important trait of a random forest
algorithm trained on metabolic, genomic, and environmental data to predict growth on 29
substrates.

Supplementary Table 6. Jackhmmer GAL gene sequence similarty score for every strain
used to train the random forest algorithm.

Supplementary Table 7. Strains classified as false negative for algorithms trained on the
GAL genes and metabolic data.

Supplementary Table 8. Strains classified as false positives for algorithms trained on the
GAL genes and metabolic data.

Supplementary Table 9. Jackhmmer GAL gene sequence similarity scores for false positives
were on average lower than correctly classified strains.

Supplementary Table 10. All of the species used for functional experiments.
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