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1. Identification, introgression, and frequency increase of large effect loci are important for cultivar

development.

2. The Sst1 locus has a significant effect on cutting score in fields exposed to sawfly infestation.

3. Historical genetic information can be utilized to predict haplotypes for lines which have

genome-wide genetic data.

4. An R package, HaploCatcher, has been developed to facilitate this analysis in other programs.
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ABSTRACT

Wheat (Triticum aestivum L.) is crucial to global food security, but is often threatened by
diseases, pests, and environmental stresses. Wheat stem sawfly (Cephus cinctus Norton) poeses a
major threat to food security in the United States, and solid-stem varieties, which carry the stem-
solidness locus (Sstl), are the main source of genetic resistance against sawfly. Marker-assisted
selection uses molecular markers to identify lines possessing beneficial haplotypes, like that of the
Sstl locus. In this study, an R package titled "HaploCatcher" was developed to predict specific
haplotypes of interest in genome-wide genotyped lines. A training population of 1,056 lines
genotyped for the Sstl locus, known to confer stem solidness, and genome-wide markers was
curated to make predictions of the Sst1 haplotypes for 292 lines from the Colorado State University
wheat breeding program. Predicted Sst1 haplotypes were compared to marker derived haplotypes.
Our results indicated that the training set was substantially predictive, with kappa scores of 0.83
for k-nearest neighbors and 0.88 for random forest models. Forward validation on newly developed
breeding lines demonstrated that a random forest model, trained on the total available training data,
had comparable accuracy between forward and cross-validation. Estimated group means of lines
classified by haplotypes from PCR-derived markers and predictive modeling did not significantly
differ. The HaploCatcher package is freely available and may be utilized by breeding programs,
using their own training populations, to predict haplotypes for whole genome sequenced early

generation material.
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INTRODUCTION

Common bread wheat (Triticum aestivum L.) consumption represents nearly 20% of
human caloric intake; however, current genetic gain of wheat grain yield is insufficient to meet the
rise in demand as the global population increases (Poole et al., 2021; Ray et al., 2013; Shiferaw et
al., 2013). Two major threats to grain yield stability in wheat are diseases and pests. One such pest,
which presents a major risk to yield stability in the United States northern Great Plains and
Mountain West regions, is wheat stem sawfly (Cephus cinctus Norton). In terms of domestic
losses, the Colorado winter wheat growing region lost approximately 32.7 and 31.2 million dollars’
worth of wheat in the years 2020 and 2021, respectfully (Erika et al., 2023). Yield losses for
infested hollow-stem varieties can be anywhere from 90-120 kg ha™ for spring wheats, potentially
resulting in multi-million dollar losses annually (Beres et al., 2007). Furthermore, Beres et al
(2011) estimated that sawfly infestation may cost 350 million dollars annually to the United States
northern Great Plains and Canadian provinces, making it a major concern of consumers and

producers alike.

The wheat stem sawfly is an insect native to North America that infests wheat by
ovipositing eggs within the stem of wheat plants from late May to early June (Weiss & Morrill,
1992). Once the egg has been deposited into the stem, the larva emerges and feeds upon the
parenchyma and vascular tissue inside the stem (Weiss & Morrill, 1992). After receiving the
correct combination of physical and photoperiodic signals (Holmes, 1975), the larvae will migrate
downward from its hatching site to an area of the stem near the soil surface and create a notch,
which is known as a hibernaculum, that it fills with the excrement of digested plant material (frass)

(Weiss & Morrill, 1992). The wheat stem tends to break at the notch development site, causing the
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substantial lodging of affected plants that gives the pest its common name. The larvae will enter a
period of diapause to then pupate and emerge from the hibernaculum in the following year (Beres

etal., 2011).

Although wheat stem sawfly are weak fliers which tend to oviposit near the area of
emergence (Beres et al., 2011; Weiss & Morrill, 1992), their distribution is wide and integrated
pest management is challenging. Removal of stubs was once recommended as a key cultural
control of wheat stem sawfly (Fletcher, 1904), but contemporary research proved that that method
was ineffective (Beres et al., 2011). Rotations of wheat followed by fallows also appeared to
increase infestation rates, so it has been suggested to use a non-host in rotation as a “trap crop”
(Beres et al., 2011; Seamens, 1929). More recently, trap crops have been suggested as a
management tool where trap crops are planted as a border around hollow-stem varieties to act as
a buffer-zone and prevent infestation of higher yielding hollow-stem varieties (Beres et al., 2009;

Peirce, Cockrell, Ode, et al., 2022).

Solid-stem varieties of wheat have been available since the mid-twentieth century (Peirce,
Cockrell, Mason, et al., 2022; Weiss & Morrill, 1992). In solid-stem varieties, undifferentiated
parenchyma cells create a solid pith within the stem (Berzonsky et al., 2003) and this lessens the
severity of yield losses in wheat plants (Beres et al., 2007). The genetic architecture of stem
solidness appears oligogenic, with large effect loci being the main contributors to solidness (Peirce,
Cockrell, Mason, et al., 2022). One gene found responsible for solidness is Sst1 (Nilsen et al.,
2020, 2017), which was first identified in a QTL study conducted by Cook et al (2004) on the long

arm of wheat chromosome 3B (Qss.msub-3BL). Stem solidness is thus caused, in part, by tandem
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88  repeats of the TdDof gene coding sequence which lead to the filling in of the pith within the wheat

89  stem (Nilsen et al., 2020).

90 While visual rating of stem solidness can be a reliable method for selecting lines that
91 express solid-stem phenotypes, many wheat breeders in the United States utilize molecular
92  markers to haplotype the region containing Sstl in a process termed marker-assisted selection.
93  More recently, the United States Department of Agriculture (USDA) Central Small Grains
94  Genotyping Lab located in Manhattan, Kansas has been producing haplotype information on many
95 large effect loci, including Sstl, for the lines entered into the Southern Regional Performance
96 Nursery (SRPN) and Regional Germplasm  Observation  Nursery (RGON)
97  [https://www.ars.usda.gov/plains-area/lincoln-ne/wheat-sorghum-and-forage-research/docs/hard-
98  winter-wheat-regional-nursery-program/research/]. This service performed by the USDA lab is
99  conducted to assist breeders in releasing lines with the solid-stem trait, and, as a result, it has also
100 created a backlog of information on lines in the SRPN and RGON lines with known Sstl

101  haplotypes.

102 Moreover, the lines in the SRPN and RGON have been characterized for genome-wide
103  single nucleotide polymorphisms (SNPs) by the Colorado State University (CSU) Wheat Breeding
104  Program on an annual basis for more than a decade. Winn et al (2022) described a method where
105 historical molecular and haplotype data are utilized to produce accurate haplotype predictions on
106  lines which only have genome-wide molecular data by characterizing either homozygous resistant

107  or homozygous susceptible varieties

108 In the current work we sought to (1) produce a deployable R statistical software compatible

109  package to perform an analysis similar to the one performed in Winn et al (2022), (2) demonstrate
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110 that the analysis preforms similarly in an unrelated germplasm pool for a different locus than those
111 explored in Winn et al (2022), (3) predict the Sstl haplotypes of genome-wide genotyped
112  individuals, and (4) compare the effect of predicted Sstl verses genotyped Sstl on wheat stem

113 sawfly related phenotypes in Colorado State University hard winter wheat germplasm.

114
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115 MATERIALS AND METHODS

116  Germplasm

117 Two separate sets of germplasm were utilized in this study. The first population used in
118  this study was a historical panel of lines submitted to the SRPN and RGON. This panel of lines
119  consisted of 1,056 distinct genotypes, and all lines in the panel were genotyped genome-wide for
120  SNPs and haplotyped via a diverse panel of markers for the Sst1/Qss.msub-3BL locus. The second
121  population utilized in this study represented contemporary lines in the CSU Wheat Breeding
122  Program from the 2022 advanced yield nursery (AYN) and the 2022 wheat stem sawfly solid stem
123 panel (WSS), which were phenotyped for sawfly reaction traits, genotyped for SNPs across the
124 genome, and screened with kompetative allele specific polymerase chain reaction (KASP) assays
125  for the Sstl locus. The AYN consisted of 107 distinct genotypes and the WSS consisted of 185
126  distinct genotypes (292 total genotypes). Individuals in the WSS had not gone through any
127  phenotypic or marker-assisted selection for solid stem or wheat stem sawfly resistance, while

128 individuals in the AYN had already undergone one generation of field selection for resistance.

129  Phenotyping

130 In the 2021-2022 wheat growing season, the AYN and WSS were planted in Akron,
131  Colorado and a second location of the AYN was planted in New Raymer, Colorado. These sites
132 were selected for sawfly trials due to the historical presence of sawfly within these regions and the
133  consistent infestation that they receive (Cockrell et al., 2021; Irell & Peairs, 2014). Furthermore,
134  in areas surrounding the field sites, 100 sweeps were taken along the field edge bordering an

135 adjacent wheat stubble field. Sampling began during mid-jointing and continued weekly until no
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136  adult sawfly were found in sweep samples. This data further confirms if infestation pressure was

137  adequate for data collection (Nachappa, 2023; Nachappa & Peirce, 2022).

138 In each site, all plots were sown in mid-September using a 1.5m wide no-till drill seeder
139 that was guided by a cable and had 4.9m spacing between centers. Following spring green up,
140  centers were pruned using glyphosate (Bayer, St Louis, Missouri, USA) applied by a 1.2m wide
141  hooded sprayer. After end trimming, this resulted in a measurable area of 1.5m by 3.7m. The AYN
142  and WSS were planted in partially replicated designs arranged in rows and columns, with repeated

143  checks included at both row and column levels.

144 After physiological maturity, when lodging due to sawfly cutting was apparent, a visual
145  cutting score was assigned to each plot in each location. The visual cutting score was assigned as
146  an index of percent plot affected by cutting, which is the physical process by which insect injury
147  detaches most of the wheat stem from the base of the plant. Visual scores were assigned via an
148  ordinal scale ranging from 1-9, where one is fully resistant and erect despite wheat stem sawfly

149  pressure, and nine indicates the whole plot is affected, cut, and prostrate.

150  Genome-Wide Genotyping

151 Ten seeds were planted for each line and a 2-3 cm of leaf tissue sample was taken from
152 each plant and bulked for DNA extraction. Genomic DNA was extracted from the samples using
153  MagMax (ThermoFisher Scientific; Waltham, Massachusetts, USA) plant DNA kits following the
154  manufacturer’s instructions and quantified using PicoGreen (ThermoFisher Scientific; Waltham,
155  Massachusetts, USA) Kits. Extracted DNA was normalized to a concentration of 20 ng pL* and
156  sequencing libraries were prepared following the protocol established by Poland et al (2012). The

157  multiplexed libraries were sequenced on a NovaSeq 6000 (Illumina, San Diego, California, USA)
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158  sequencer at 384-plex density per lane. The resulting reads were aligned to the International Wheat
159  Genome Sequencing Consortium (IWGSC) wheat reference sequence RefSeq v2.0 (Appels et al.,

160  2018) using the burrow-wheeler aligner (Li & Durbin, 2009).

161 The TASSEL 2.0 standalone pipeline (Glaubitz et al., 2014) was used to process the reads
162  obtained from alignment, and markers were organized into compressed variant calling format files
163  (Danecek et al., 2011). Initial variant calling format files were filtered using the following
164  parameters: monomorphic SNPs, insertions, and deletions were removed, SNPs with 85% or less
165  missing data were retained, SNPs with a read depth of more than one or less than 100 were retained,
166  SNPs with a minimum allele frequency of less than 5% were removed, SNPs with more than 10%
167  heterozygosity were removed, and all unaligned SNPs were removed. After filtration, missing data
168  were imputed using the Beagle algorithm V5.4 (Browning et al., 2018), and a synthetic wheat
169  biparental cross between "W7984" and 'Opata’ was used to derive a recombination distance-based

170  map for imputation (Gutierrez-Gonzalez et al., 2019).

171  Historical Haplotype Information Curation

172 Information on the Sst1 locus was curated from historical marker calling files generated by
173 the USDA Central Small Grains Genotyping Lab [https://www.ars.usda.gov/plains-area/lincoln-
174 ne/wheat-sorghum-and-forage-research/docs/hard-winter-wheat-regional-nursery-

175  program/research/]. The information for lines in both the RGON and SRPN was standardized to a
176  biallelic haplotype of homozygous Sstl, heterozygous, and homozygous wildtype represented as

177 “HH+7,“+/-”, and “-/-", respectively.

178 Haplotype calls within the CSU wheat breeding program were made using a single marker

179 identified as diagnostic for the Sstl locus. Extracted and purified DNA, ranging between 50n and
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180 150 ng uL™* were plated in 96-well plates in 4 uL volumes. Plates contained both test genotype
181 DNA as well as positive, heterozygous, negative, and non-template controls. Each well 4 uL of
182  2X KASP (LGC Genomics, Middlesex, UK) reaction mixture and 0.11 uL of KASP primer assay
183  mixture. The assay mixture contained an equal mixture of 100 uM of FAM and HEX fluorescence
184  labeled forward primers, as well as 2.5 concentration of 100 uM reverse primer, suspended in
185 molecular grade sterile water (Table 1). Assays were run on a Bio-Rad (Bio-Rad; Hercules,
186  California, USA) CFX96 RT PCR machine and results were read using a single endpoint
187  measurement of florescence. Haplotype calls were made by visual discrimination of florescence
188  groupings. The frequency of allelic states for Sst1 in the training and testing set are also provided
189 (Table 2).

190
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191  Table 1. List of primers and sequences for the Usw275 marker.

Position .
Marker  Chromosome (Mbp?) Primer Sequence

GAAGGTCGGAGTCAACGGAT

HEX Forward® TAAAGAAAACAAAACCTGTC
AAAAAC

GAAGGTGACCAAGTTCATGC

Usw275 3B 843.6 FAM Forward® TAAAGAAAACAAAACCTGTC
AAAAAT

GAATTTTCGGAGTTACAGAT
Common Reverse TGC

192

193  Note: @ Megabase pair position, ® HEX labeled primer is diagnostic for the solid allele of the Sst1
194  locus, ¢ FAM labeled primer is diagnostic for the non-solid allele of the Sst1 locus

195
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196  Table 2. Number of observations and frequency of Sst1 haplotypes in the training and test
197  population.

Training Testing
Haplotype n? Frequency n  Frequency
+/+P 303 0.29 156 0.53
+/-° 104 0.10 25 0.09
-/ 649 061 111  0.38

198

199  Note: 2 number of observations,  homozygous Sst1 haplotype, ¢ heterozygous Sst1 haplotype, ¢
200  homozygous wildtype haplotype

201
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202  Package Development and Analysis Pipeline

203 The “HaploCatcher” package was developed using the “devtools” package (Wickham et
204 al.,, 2022) in R statistical software (R Core Team, 2022) via the RStudio (Posit; Boston,
205  Massachusetts, USA) development environment on a computer with a Microsoft® Windows
206  operating system. Data inputs required of the package are a marker matrix containing both
207 individuals in the training population and those in the testing population, a historical haplotype
208 classification file for individuals in the training population, and a marker information file which
209  denotes the name, chromosome, and position of each marker in the genotypic matrix (Figure 1A).
210  The package is comprised of several core functions which are then streamlined into the function
211  “auto_locus”. The “auto locus” function conducts a similar analysis pipeline to Winn et al (2022)
212 through the “caret” package (Kuhn, 2008, 2022), while requiring minimal intervention from users

213 (Figure 1B).
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Figure 1. A diagram of [A] input data structure and [B] the “auto locus” function pipeline. Panel [A] shows a total data set that is
partitioned into a training and test population. The training population in panel [A] shows a population of individuals, that is suggested
to be comprised of more than 750 individuals, which have both genome-wide marker and historical haplotype data. The testing
population in panel [A] shows a testing population, which may be any size greater than zero, which only has genome-wide marker data.
Panel [B] shows the workflow of the “auto locus” function. In the cross-validation step [l], the total training population is split in a user
defined way (default is 80:20 split) and the 80% tuning population is used to train and select optimal hyper-parameters for a k-nearest
neighbors (KNN) and random forest (RF) model. The trained models are then used to predict the haplotype of the validation population.
The predicted haplotype is then compared to the ‘true’ haplotype and kappa (and accuracy) are calculated. This is repeated a user set
number of times (default is 30). The best performing model based on accuracy or kappa (default is kappa) is then taken as the model to
be used in forward prediction. There are two options post cross-validation: [I1A] a single model with a set seed for repeatability or [11B]
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226 The “auto_locus” function is comprised of two major phases: cross validation by random
227  partitioning into a user specified ratio (default is 80:20 training-testing; FigurelB - Step I) over a
228  set number of permutations (default is 30) and forward prediction of training population candidates
229 by the best model in cross validation (FigurelB- Step 11A and FigurelB- Step 1IB). Prediction of
230 training population haplotypes can be performed by either setting a random seed for reproducibility
231  and performing the model once (Figure 1B - Step 11A) or by running the optimal model with no
232  set seed over a user specified number of permutations (default is 30; Figure 1B - Step IIB) and

233  producing a haplotype prediction by majority rule.

234 Cross-validation results were visualized using functions from the packages “ggplot2” and
235  “patchwork” (Pedersen, 2022; Wickham et al., 2016). Both the cross-validation and forward
236  prediction by voting steps in the “auto_locus” function can be run either sequentially or in parallel
237  using the R packages “parallel”, “doParallel”, and “foreach” (Microsoft & Weston, 2022a, 2022b;
238 R Core Team, 2022). Users can specify if the analysis is to be done in parallel (default argument
239 is FALSE) or sequentially. Users may also define the number of processing cores desired for
240  analysis or use the default setting which uses the function “detectCores” from the parallel package

241  to determine the number of system cores and subtract that value by one.

242 The computer used for development of the package had a hexacore 2.6GHz Intel® (Intel;
243  Santa Clara, California, USA) i7-10750H processor with 12 logical processors, 32 gigabytes of
244  DDR4 RAM and a dedicated NVIDA (NVIDA,; Santa Clara, California, USA) GeForce® RTX
245 2070 graphics card. Using the example datasets available in the HaploCatcher package, the
246  ““auto_locus” function performed in parallel with 100 permutations of cross-validations and 100

247  votes for majority rule resulted in a total runtime of eight minutes and 36 seconds.
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248  Statistical Analysis

249 All statistical analysis was conducted in R statistical software version 4.2.2 (R Core Team,
250 2022). Cutting visual score data was checked for normality by visualization of the distribution of
251  observations using histograms and QQ-plots. Upon evaluation, all data exhibited near-normality
252  or somewhat skewed normal distributions. Mixed linear models were run using the function
253 “mmer” in the package “sommer” (Covarrubias-Pazaran, 2016, 2018). Across locations the

254  following model was utilized to estimate the effect of the Sstl locus:
255 yijkl =ﬂ+Hi+9j+ek+T:Clm+5ijklm

256 Where y;jxim is the response, p is the population mean, H; is the haplotype fixed effect of
257  the i haplotype, g ; s the genotypic random effect of the j™ genotype effect whose variance is
258  defined by the additive relationship matrix among individuals derived by markers (VanRaden,
259  2008), e, is the random environment effect of the k" environment that is identically and
260 independently distributed across levels, r: ¢, is the random row by column interaction effect of
261  the 1™ row and the j" column whose variance is defined by the two-dimensional penalized tensor-
262  product of spline relationship between row and column effects as described by Lee et al (2013),

263 and & is the residual error that is identically and independently distributed across all levels.

264 To compare KASP genotyped haplotype vs machine learning predicted haplotype effects,
265  the same mixed linear model was run twice to estimate an H; haplotype fixed effect first using the
266  “true” haplotype calls derived by KASP genotyping and then using the machine learning predicted
267  haplotype information. Fixed effect group mean estimates for both the observed and predicted
268  haplotype effects were estimated via the “predict.mmer” function in the package “sommer”. Visual

269  comparison of effect estimates was summarized using functions from the “ggplot2” package.
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270 Narrow-sense, per-plot, genomic heritability (h7) of cutting visual score ratings within

271  environment were estimated using the following mixed linear model:
212 Yi=ktgite

273 Where y; is the observation, u is the population mean, g; is the random genotype effect of
274 the i™ genotype whose variance is defined by the marker-derived additive relationship matrix
275  calculated by the “A.mat” function from the “sommer” package, and &; is the residual error whose
276  variance is identically and independently distributed. Variance components were used in the

277 function “vpredict” in the “sommer” package to estimate hZ using the following formula:

0.2
278 hi=——"—
oy + o¢
279 Where hg is the narrow-sense, per-plot, genomic heritability, o is the genotypic variance,
280 and o2 is the residual error variance.
281 Importance of defining variables (genome-wide SNP markers) in KNN and RF algorithms

282  was calculated for each iteration of the 100 permutations of cross-validation by using the function
283  “varlmp” in the “caret” package. Variable importance, or more aptly put the importance of
284  genome-wide SNP markers in defining haplotypes, was scaled between zero and 100 for
285  comparability across models and the average importance of markers across all permutations was
286  reported in images generated by the “ggplot2” package. Linkage disequilibrium (LD) was
287  calculated for all markers identified as important using the function “LD” in the package “gaston”
288  and results were reported in images derived by functions in the “ggplot2” package (Perdry &

289  Dandine-Roulland, 2018).
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290 Confusion matrices were calculated by comparing the predicted haplotype to the observed
291  haplotype state in the WSS and AYN combined via the function “confusionMatrix” in the “caret”
292  package. Model performance parameters were calculated across iterations of the 100 permutations
293  of cross-validation and the forward prediction of the WSS and AYN. The reported measures of
294  model performance were accuracy, sensitivity, specificity, and unadjusted Cohen’s kappa

295  (McHugh, 2012). Accuracy was calculated as:

206 2 _ TP+TN
Uy = TP ¥TN + FP + FN
297 Where TP is the number of true positive cases, TN is the number of true negative cases, FP

298 is the number of false positive cases, and FN is the number of false negative cases. Sensitivity and

299  specificity were calculated as such:

300 Sensitivity = e
ensitivity = TP + FN
301 Specifity = o
pecifity = TN rp
302 Cohen’s kappa was calculated as:

B Pr(a) — Pr(e)

303 1 —Pr(e)

304 Where Pr(a) is the probability of observed agreement, and Pr(e) represents the expected
305 rate of chance agreement. Kappa is often considered more robust than accuracy as a measurement
306  parameter of reliability in categorization models because it is not easily biased by sample size

307  (McHugh, 2012).
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308 Kappa may be understood as a measurement which is bound between -1 and 1 where a
309 value of 1 represents a perfectly categorizing model, 0 is the same as chance agreement, and a
310 value of -1 is categorization that is worse than chance agreement (Viera et al., 2005). Historically,
311 akappavalue of 0.8 to 1 is considered to be either “substantial” to “almost perfect” in its predictive
312  ability (Landis & Koch, 1977). All model parameters were either reported in tables or visualized

313  using functions from the “ggplot2” package.

314
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315 RESULTS

316  Sstl Prediction Cross-Validation

317 Cross-validation indicated that the training data was well suited for analysis and
318  substantially predictive based on reported kappa values (Figure 2). Over the 100 permutations of
319  cross-validation, the average kappa value for the KNN model was k = 0.83 and k = 0.88 for RF.
320  The average accuracy for the KNN model was 0.91 and 0.94 for RF. By-class sensitivity varied
321 Dby haplotype. For homozygous Sstl calls, KNN had a mean sensitivity of 0.84 and RF had a mean
322 sensitivity of 0.91. For heterozygous Sstl calls, KNN had a mean sensitivity of 0.82 and RF had a
323  mean sensitivity of 0.81. For homozygous wildtype calls, both KNN and RF had a sensitivity of

324 0.96.

325
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Figure 2. A visualization output by the “auto locus” function of overall accuracy (A), kappa, and by-class sensitivity and specificity
value distributions over 100 permutations of cross validation. The figure legend on the right of the total figure displays the color that
corresponds to which model. The top left panel displays the overall accuracy of each model in boxplots. The top right panel displays the
overall kappa of each model in boxplots. The bottom left panel displays the by-class sensitivity values in boxplots for homozygous Sstl
individuals (+/+), heterozygous individuals (+/-) and homozygous wildtype individuals (-/-). The bottom right panel displays the
specificity of each model for each classification in boxplots. The x-axis is the model in each figure. The y-axis corresponds to the value
of interest displayed within the graph.
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334 Specificities had a narrow range among haplotype classifications and models. Average
335  specificities for homozygous Sstl individuals were 0.97 for KNN and 0.96 for RF. Specificities
336  for heterozygous Sstl individuals were 0.94 for KNN and 0.97 for RF. Specificities for
337  homozygous wildtype individuals were 0.97 for both KNN and RF. These results indicate that
338  KNN tended to under-identify true negatives in heterozygous cases, meaning that it tended to
339  overclassify non-heterozygous individuals as heterozygous. Furthermore, the lower sensitivity
340  scores of both the RF and KNN models (as compared to the higher sensitivity in the homozygous
341  cases) indicates that both models were not as well suited for classifying heterozygous individuals
342 as they were for homozygous individuals. Based on highest achieved average kappa value, the

343  random forest model was selected for use in forward prediction.

344 Models in cross-validation mainly selected markers in or near the known region of Sstl,
345  however there were two outliers on the distal short arm of 3B at approximately 34 megabase pairs
346  (Mbp) and 159 Mbp (Figure 3B). When looking at LD among the markers selected for use in the
347  models, it appears that the outlier markers and markers in the 828-852 Mbp region share minor-

348  to-substantial LD (r2:0.20 < r2 < 0.70; Figure 3A). More specifically, the LD appears to be very

349  strong between these two outliers and markers in the 848-850 Mbp region (r2 ~ 0.66) which
350 indicates that the markers may not be inherited independently. This may be the result of
351  misalignment of markers to the wrong arm of the 3B chromosome. Alternatively, this may be a
352  signature of true linkage disequilibrium, indicating that some region on the short arm of 3B is

353  being inherited frequently with the Sstl locus.

354
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Figure 3. A visualization of (A) linkage disequilibrium (LD) among the most important markers identified between the k-nearest
neighbors and random forest model, (B) the importance values of markers across the genome and (C) the importance values of markers
proximal to the known position of Sstl. Panel (A) displays the linkage disequilibrium of each marker identified as important by the
models. The x and y axes display the marker megabase pair (Mbp) position of each marker. The color within the plot on panel (A) that
corresponds with the figure legend located on the right indicates the magnitude of LD between those markers. The known location of
Sstl falls within the black box. The graph in panel (B) shows the importance of markers averaged over the 100 iterations. The y-axis
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displays the importance value of the marker which is represented by the colored dot. The x-axis represents the Mbp position of the
marker. The point color corresponds with which model the point belongs to, which is denoted by the figure legend to the right. The
graph in panel (C) is a zoomed in version of panel (B) where the known location of Sstl is labeled with a gray shaded box flanked by
dashed lines.
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367 When looking at derived importance values within the region, it appears that those outlier
368  markers on the distal short arm of 3B are highly important (x > 0.75) for the RF model and less
369  so for the KNN model (x < 0.25, Figure 3B). Taking a closer look at the known location of Sst1,
370 it appears that markers within the region are moderately important (x =~ 0.50) in RF models while
371  they were non-important for KNN models (x < 0.10) (Figure 3B). Interestingly, the most

372 important markers (x = 0.95) identified by KNN and RF models were in the 845-853 Mbp region.

373 This region of highly important markers is located nearly 15-20 Mbps away from the
374  known location of Sstl. However, historical markers used to haplotype the Sstl in the RGON and
375  SRPN are not in perfect linkage with the causal polymorphism. Furthermore, the marker used by
376  the CSU wheat breeding program, which is diagnostic of the Sstl1 locus, is found at approximately
377 843 Mbp, which is directly adjacent to the most important markers for classification. These results
378  may be due to the use of haplotype designations derived from markers which do not lie within or
379 in direct proximity to the Sstl locus. Regardless, model performance parameters, namely kappa,
380 indicate that both models are capable of “substantial predictions” using historical scales for kappa

381 interpretation (Landis & Koch, 1977).

382  Sstl Prediction Forward Validation

383 Forward validation on the WSS and AYN using a RF model trained on the total available
384  training data produced similar results to that of cross-validation (Figure 4). Accuracies for
385  homozygous wildtype and Sstl individuals were 0.95 and 0.93, respectively. As observed in the
386  cross-validation results, the accuracy for identification of heterozygous individuals was lower at
387  0.84. Specificities for homozygous Sst1, heterozygous Sst1, and homozygous wildtype were 0.96,

388 0.92, and 0.99. Sensitivities followed the same trend as cross-validation, where the true positive
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389 identification rate for homozygous Sstl and wildtype individuals was higher (0.95 and 0.85,

390 respectively) than identification of heterozygous individuals (0.75).

391
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393  Figure 4. Visualization of performance parameters of predictions by a random forest model trained
394  on all available training data. Each subgraph represents a separate measurement of model
395 performance. The y-axis displays the magnitude of the metric displayed in each subgraph. The
396 allelic state on the x-axis denotes individuals who are homozygous Sstl (+/+), heterozygous (+/-),
397 and homozygous wildtype (-/-). The value of the metric for each allelic state is displayed within
398  each bar.
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400 Based on the confusion matrix (Table 3) of predicted vs observed haplotypes, the RF
401  algorithm misidentified heterozygous individuals as wildtype frequently. Homozygous wildtype
402 individuals were most often correctly identified (two cases misidentified), followed by
403  homozygous Sstl individuals (seven cases misidentified). These results may indicate that, while
404  not completely uninformative, these methods may be best suited for identifying homozygous
405  individuals, like in Winn et al (2022), rather than trying to identify heterozygous individuals as

406  well.

407
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408 Table 3. Confusion matrix of predicted Sstl haplotypes calls vs haplotypes calls made by
409  kompetative allele specific polymerase chain reaction (KASP).

410
KASP (Observed)
+/+ +/- -/-
B | H+ 147 7 0
(&)
S| P 6 19 15
i 2 0 96
411

412  Note: ® homozygous Sst1 calls, ® heterozygous Sst1 calls, ¢ homozygous wildtype calls

413
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414  Effect of Sstl: Predicted vs Genotyped Haplotype

415 Visual examination of distributions for both locations of the AYN revealed somewhat
416  skewed data distributions while observations from the single location of the WSS followed an
417  approximately normal distribution (Figure 5). Notably, the AYN exhibited a distribution skewed
418  towards lower values of cutting visual scores at both Akron, CO and New Raymer, CO. This is
419  most likely because the AYN is one generation later than the WSS in the breeding process and has
420  already gone through one cycle of selection for wheat stem sawfly resistance. Summary statistics
421  of the location mean, minimum, maximum, standard deviation, heritability and standard error of

422  heritability are also provided (Table 4).
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Figure 5. A visualization of (A) gqplots for each locations data and (B) histogram of the cutting visual score within each environment.
In panel (A) the y axis represents the observed cutting visual score and the x axis represents the theoretical quantiles. The line going
across observation points shows the pattern of expected vs observed visual scores for a normal distribution. Panel (B) displays
histograms of each location where the y axis is the count of observations within the bin and the x axis is the cutting visual score. The
legend at the bottom of the image displays each environment which corresponds to the color of each subgraph.
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429  Table 4. Table of descriptive statistics for each environment.

Year Location Nursery N Observations N Genotypes Min Mean Max SD? h?%P SE°®

2022 Akron AYN 136 107 1.00 3.07 9.00 186 0.62 0.10
2022 New Raymer  AYN 136 107 1.00 397 9.00 223 0.70 0.08
2022 Akron WSS 201 185 1.00 512 9.00 218 0.49 0.11

430

431  Note: ? standard deviation of cutting visual score, ® narrow-sense, per-plot, genomic heritability, ¢ standard error of heritability
432  measurements.

433
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434 Narrow-sense, per-plot, genomic heritabilities varied among locations. The lowest
435  heritability (hf, = 0.49 £ 0.11) was observed in Akron, CO for the WSS and the highest (hf, =
436  0.70 £ 0.08) was observed in New Raymer, CO for the AYN. The mean cutting score in both
437  Akron and New Raymer was lower for the AYN (x = 3.07 and X = 3.97, respectively) than Akron
438  for the WSS (x = 5.12), however both nurseries across locations contained visual scores between
439  oneand nine. This implies that the generation of selection prior to the AYN did shift the population

440  mean towards resistance, yet it did not cull out all susceptible genotypes, which is expected.

441 Both predicted and KASP-genotyped Sst1 haplotype calls had significant effects on cutting
442  score (P(F) < 0.05). Homozygous Sstl and heterozygous Sstl individuals did not have
443  substantially different cutting scores when classifying based on either KASP-genotyped or
444  predicted Sstl haplotypes. Estimates of Sstl effects made by prediction were not significantly
445  different from KASP-genotyped Sstl effects within each haplotype (Figure 6). In the case of
446  KASP-genotyped Sstl effects, the homozygous wildtype individuals significantly differentiated
447  themselves from both the homozygous Sstl and heterozygous individuals; however, predicted
448  haplotypes for homozygous wildtype individuals did not significantly differentiate from
449  heterozygous individuals. This is because the prediction method tended to incorrectly classify

450  homozygous wildtype individuals as heterozygous (Table 3).
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452  Figure 6. KASP derived Sstl haplotype call effects vs predicted Sstl haplotype effects. On the x-
453  axis is the allelic state of the Sst1 locus where +/+ represents individuals homozygous for Sst1, +/-
454 represents individuals as heterozygous for the Sstl locus, and -/- represents individuals
455  homozygous for the wildtype allele at the Sst1 locus. The y-axis displays the visual cutting score
456  rating best linear unbiased estimate (BLUE) for the estimated effect of Sstl. The legend on the
457  right indicates what color-coded box corresponds to which type of Sst1 haplotype assignment. The
458  black bars around each point estimate represents a 95% confidence interval about the estimate.

459
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460 DISCUSSION

461 In the current work, we developed an R user accessible R package by the name
462  “HaploCatcher” which can predict haplotypes using historical information derived from molecular
463  marker assays on genome-wide genotyped lines. The function, “auto locus”, allows users to
464  produce predictions for the many lines submitted for sequencing which are not KASP genotyped
465  onanannual basis. Just as in the work performed by Winn et al (2022), we suggest that this method
466  may be deployed in generations where genome-wide sequencing is performed on a very large
467  number of lines which would otherwise not be screened via PCR based assays for these loci. While
468  these predictions were not perfect in their predictive accuracies (k = 1), they were substantial in
469 their predictive ability (k = 0.80) and similar in respect to the results of Winn et al (2022) (Landis

470 & Koch, 1977).

471 Furthermore, this method is directly accessible to breeding programs, researchers, and
472  students due to its development and deployment through R, a free and accessible statistical
473  computing language. Here, we demonstrated that this method is successful in predicting the Sstl
474  locus which has a direct impact on improving sawfly resistance in areas threatened by this
475  emerging pest. Moreover, applying this method to resistance loci beyond Sst1 could lead to further

476  progress in the pyramiding and maintenance of wheat stem sawfly resistance.

477 The cross-validation results in the current work were similar to those in Winn et al (2022);
478  however, unlike Winn et al (2022) we included the option “include hets” in the “auto locus”

479  function, which allows for the prediction of biallelic loci with a heterozygous state. In our results,
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480  we observed that both the KNN and RF models were not as capable of identifying heterozygous

481  cases as they were homozygous cases. There may be several reasons for this phenomenon.

482 Firstly, lines in the CSU program are often initially sequenced in the Fs:5 generation with
483  recurrent sequencing in each subsequent year. Leaf tissue from ten seeds of each line is bulked and
484  used to prep libraries for sequencing. Therefore, if a heterogenous line for the Sstl locus was
485  selected in the F3 generation, the DNA extracted may be a small 1:2:1 mixture of Sst1 haplotypes,
486  and because of this, the sequence of the region may not be truly representative of a heterozygous

487  Sstl haplotype, leading to misidentification by this method.

488 Secondly, we curated KASP data produced by the USDA Central Small Grains genotyping
489 lab over years for training. This data, while highly informative, showed some inconsistency across
490 years. Marker platforms and locus region sizes change over years, and this can lead to unexpected
491  association of markers with the locus. More specifically, we observed that markers 15-20 Mbps
492  away from the known region of the locus were identified as “highly important”. This may be
493  because markers which were used to haplotype the region were not in direct linkage with the causal

494  polymorphism, and this led to the detection of markers on the distal long arm of 3B as important.

495 Furthermore, we aligned our genetic data to the IWGSC wheat reference genome version
496 2.0 (Appels et al., 2018). This genome is genetically distant from the wheat germplasm located in
497  the Great Plains area of the United States and may have led to misalignments of sequencing reads,
498 like those potentially observed in the marker importance figure (Figure 3A). Moreover, this genetic
499  data was imputed using Beagle (Browning et al., 2018), which is also not perfectly predictive.
500 Therefore, the summed errors of genomic sequencing method, historical data curation,

501 misalignment, and imputation may have contributed to the lower predictability of heterozygous
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502 classes. We therefore suggest that if users can do so, that they produce their own training
503 populations within their own programs and genotype them with a consistent set of markers for best

504  results. Regardless, our proposed models are still substantially informative.

505 When comparing KASP-based and predicted Sst1 haplotype call group mean estimates, we
506  observed that the predicted and KASP-based haplotype group means were not significantly
507  different from each other within haplotype. We did observe that homozygous wildtype and
508 heterozygous Sstl haplotype group means did not significantly differentiate in the prediction as
509 the RF model used to make this prediction often grouped heterozygous individuals with wildtype

510 haplotypes (Table 3).

511 Irrespective of these shortcomings, this method provides a way to assess haplotypes of
512 interest, with a measurable margin of error, in generations that would otherwise not be screened
513  for these. More importantly, this package now provides an easily accessible method of pipeline
514  implementation for breeding programs. While targeted sequencing platforms (Lundberg et al.,
515  2013) may reduce the need for a method like this, it will remain useful for programs without access
516 to targeted sequencing platforms or programs missing probes for specific loci of interest.
517  Furthermore, this method can accommodate many different sequencing platforms (diversity
518 arrays, genotyping-by-sequencing, amplicon, etc.), does not require physical position information,
519 and can potentially be widely applied across species. Lastly, we demonstrated that this method can
520  be applied within breeding programs and produce comparable results to PCR based marker calls;
521 more specifically, we showed that this method could be a viable way of screening early
522  development germplasm for the Sstl locus, and thus increase the frequency of this locus earlier in

523  the development pipeline.
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524 CONCLUSIONS

525 The utility of marker-assisted selection has been vetted through the vast literature available
526  for the method. However, with whole genome sequencing technologies being applied in early
527  generations for use in genomic prediction, there lies an opportunity to acquire data on haplotypes
528  of important loci. The method proposed in Winn et al (2022) allows breeding programs to organize
529  their historical marker-assisted selection data to produce predictive haplotype calls for lines in
530 generations where PCR-based assays for loci of interest are not run due to increased time, labor,
531 and genotyping cost. This can allow breeders to observe locus profiles of potential varieties much
532  earlier in the breeding process than before. Here, we chose wheat stem sawfly — an emerging pest
533 that threatens grower profitability and the dryland cropping agroecosystem— as a test case to
534  demonstrate the effectiveness of this method. We used existing genotypic data sets to deliver
535  breeders precise predictions of the presence of a major resistance gene, Sst1, allowing for improved
536  selection for stem sawfly resistance at an earlier generation. With the development of the
537  HaploCatcher package, there is now a freely accessible software for easier implementation of this

538  method in other breeding pipelines.

539
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560 HAPLOTYPES>. The package developed for this project, “HaploCatcher”, can be directly
561 downloaded to an R installation using devtools::install github(‘“zjwinn/HaploCatcher”) to directly

562 install from GitHub or install.packages(“HaploCatcher”) to install from the CRAN database.
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