
 

 

ARTICLE TYPE 1 

Original Research 2 

CORE IDEAS 3 

1. Identification, introgression, and frequency increase of large effect loci are important for cultivar 4 

development. 5 

2. The Sst1 locus has a significant effect on cutting score in fields exposed to sawfly infestation. 6 

3. Historical genetic information can be utilized to predict haplotypes for lines which have 7 

genome-wide genetic data. 8 

4. An R package, HaploCatcher, has been developed to facilitate this analysis in other programs.  9 
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ABBREVIATIONS 24 

AYN Advanced Yield Nursery 

BLUE Best Linear Unbiased Estimate 

IWGSC International Wheat Genome Sequencing Consortium 

KASP Kompetative Allele Specific Polymerase Chain Reaction 

KNN K-Nearest Neighbors 

LD Linkage Disequilibrium 

Mbp Megabase pair 

PCR Polymerase Chain Reaction 

RF Random Forest 

RGON Regional Germplasm Observation Nursery 

SNP Single Nucleotide Polymorphism 

SRPN Southern Regional Performance Nursery 

USDA United States Department of Agriculture 

WSS Wheat Stem Sawfly Solid Stem Panel 
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ABSTRACT 26 

 Wheat (Triticum aestivum L.) is crucial to global food security, but is often threatened by 27 

diseases, pests, and environmental stresses. Wheat stem sawfly (Cephus cinctus Norton) poeses a 28 

major threat to food security in the United States, and solid-stem varieties, which carry the stem-29 

solidness locus (Sst1), are the main source of genetic resistance against sawfly. Marker-assisted 30 

selection uses molecular markers to identify lines possessing beneficial haplotypes, like that of the 31 

Sst1 locus. In this study, an R package titled "HaploCatcher" was developed to predict specific 32 

haplotypes of interest in genome-wide genotyped lines. A training population of 1,056 lines 33 

genotyped for the Sst1 locus, known to confer stem solidness, and genome-wide markers was 34 

curated to make predictions of the Sst1 haplotypes for 292 lines from the Colorado State University 35 

wheat breeding program. Predicted Sst1 haplotypes were compared to marker derived haplotypes. 36 

Our results indicated that the training set was substantially predictive, with kappa scores of 0.83 37 

for k-nearest neighbors and 0.88 for random forest models. Forward validation on newly developed 38 

breeding lines demonstrated that a random forest model, trained on the total available training data, 39 

had comparable accuracy between forward and cross-validation. Estimated group means of lines 40 

classified by haplotypes from PCR-derived markers and predictive modeling did not significantly 41 

differ. The HaploCatcher package is freely available and may be utilized by breeding programs, 42 

using their own training populations, to predict haplotypes for whole genome sequenced early 43 

generation material.44 
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INTRODUCTION 45 

 Common bread wheat (Triticum aestivum L.) consumption represents nearly 20% of 46 

human caloric intake; however, current genetic gain of wheat grain yield is insufficient to meet the 47 

rise in demand as the global population increases (Poole et al., 2021; Ray et al., 2013; Shiferaw et 48 

al., 2013). Two major threats to grain yield stability in wheat are diseases and pests. One such pest, 49 

which presents a major risk to yield stability in the United States northern Great Plains and 50 

Mountain West regions, is wheat stem sawfly (Cephus cinctus Norton). In terms of domestic 51 

losses, the Colorado winter wheat growing region lost approximately 32.7 and 31.2 million dollars’ 52 

worth of wheat in the years 2020 and 2021, respectfully (Erika et al., 2023). Yield losses for 53 

infested hollow-stem varieties can be anywhere from 90-120 kg ha-1 for spring wheats, potentially 54 

resulting in multi-million dollar losses annually (Beres et al., 2007). Furthermore, Beres et al 55 

(2011) estimated that sawfly infestation may cost 350 million dollars annually to the United States 56 

northern Great Plains and Canadian provinces, making it a major concern of consumers and 57 

producers alike.  58 

 The wheat stem sawfly is an insect native to North America that infests wheat by 59 

ovipositing eggs within the stem of wheat plants from late May to early June (Weiss & Morrill, 60 

1992). Once the egg has been deposited into the stem, the larva emerges and feeds upon the 61 

parenchyma and vascular tissue inside the stem (Weiss & Morrill, 1992). After receiving the 62 

correct combination of physical and photoperiodic signals (Holmes, 1975), the larvae will migrate 63 

downward from its hatching site to an area of the stem near the soil surface and create a notch, 64 

which is known as a hibernaculum, that it fills with the excrement of digested plant material (frass) 65 

(Weiss & Morrill, 1992). The wheat stem tends to break at the notch development site, causing the 66 
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substantial lodging of affected plants that gives the pest its common name. The larvae will enter a 67 

period of diapause to then pupate and emerge from the hibernaculum in the following year (Beres 68 

et al., 2011).  69 

 Although wheat stem sawfly are weak fliers which tend to oviposit near the area of 70 

emergence (Beres et al., 2011; Weiss & Morrill, 1992), their distribution is wide and integrated 71 

pest management is challenging. Removal of stubs was once recommended as a key cultural 72 

control of wheat stem sawfly (Fletcher, 1904), but contemporary research proved that that method 73 

was ineffective (Beres et al., 2011). Rotations of wheat followed by fallows also appeared to 74 

increase infestation rates, so it has been suggested to use a non-host in rotation as a “trap crop” 75 

(Beres et al., 2011; Seamens, 1929). More recently, trap crops have been suggested as a 76 

management tool where trap crops are planted as a border around hollow-stem varieties to act as 77 

a buffer-zone and prevent infestation of higher yielding hollow-stem varieties (Beres et al., 2009; 78 

Peirce, Cockrell, Ode, et al., 2022). 79 

 Solid-stem varieties of wheat have been available since the mid-twentieth century (Peirce, 80 

Cockrell, Mason, et al., 2022; Weiss & Morrill, 1992). In solid-stem varieties, undifferentiated 81 

parenchyma cells create a solid pith within the stem (Berzonsky et al., 2003) and this lessens the 82 

severity of yield losses in wheat plants (Beres et al., 2007). The genetic architecture of stem 83 

solidness appears oligogenic, with large effect loci being the main contributors to solidness (Peirce, 84 

Cockrell, Mason, et al., 2022). One gene found responsible for solidness is Sst1 (Nilsen et al., 85 

2020, 2017), which was first identified in a QTL study conducted by Cook et al (2004) on the long 86 

arm of wheat chromosome 3B (Qss.msub-3BL). Stem solidness is thus caused, in part, by tandem 87 
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repeats of the TdDof gene coding sequence which lead to the filling in of the pith within the wheat 88 

stem (Nilsen et al., 2020). 89 

 While visual rating of stem solidness can be a reliable method for selecting lines that 90 

express solid-stem phenotypes, many wheat breeders in the United States utilize molecular 91 

markers to haplotype the region containing Sst1 in a process termed marker-assisted selection. 92 

More recently, the United States Department of Agriculture (USDA) Central Small Grains 93 

Genotyping Lab located in Manhattan, Kansas has been producing haplotype information on many 94 

large effect loci, including Sst1, for the lines entered into the Southern Regional Performance 95 

Nursery (SRPN) and Regional Germplasm Observation Nursery (RGON) 96 

[https://www.ars.usda.gov/plains-area/lincoln-ne/wheat-sorghum-and-forage-research/docs/hard-97 

winter-wheat-regional-nursery-program/research/]. This service performed by the USDA lab is 98 

conducted to assist breeders in releasing lines with the solid-stem trait, and, as a result, it has also 99 

created a backlog of information on lines in the SRPN and RGON lines with known Sst1 100 

haplotypes. 101 

 Moreover, the lines in the SRPN and RGON have been characterized for genome-wide 102 

single nucleotide polymorphisms (SNPs) by the Colorado State University (CSU) Wheat Breeding 103 

Program on an annual basis for more than a decade. Winn et al (2022) described a method where 104 

historical molecular and haplotype data are utilized to produce accurate haplotype predictions on 105 

lines which only have genome-wide molecular data by characterizing either homozygous resistant 106 

or homozygous susceptible varieties  107 

 In the current work we sought to (1) produce a deployable R statistical software compatible 108 

package to perform an analysis similar to the one performed in Winn et al (2022), (2) demonstrate 109 
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that the analysis preforms similarly in an unrelated germplasm pool for a different locus than those 110 

explored in Winn et al (2022), (3) predict the Sst1 haplotypes of genome-wide genotyped 111 

individuals, and (4) compare the effect of predicted Sst1 verses genotyped Sst1 on wheat stem 112 

sawfly related phenotypes in Colorado State University hard winter wheat germplasm.  113 

 114 
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MATERIALS AND METHODS 115 

Germplasm 116 

 Two separate sets of germplasm were utilized in this study. The first population used in 117 

this study was a historical panel of lines submitted to the SRPN and RGON. This panel of lines 118 

consisted of 1,056 distinct genotypes, and all lines in the panel were genotyped genome-wide for 119 

SNPs and haplotyped via a diverse panel of markers for the Sst1/Qss.msub-3BL locus. The second 120 

population utilized in this study represented contemporary lines in the CSU Wheat Breeding 121 

Program from the 2022 advanced yield nursery (AYN) and the 2022 wheat stem sawfly solid stem 122 

panel (WSS), which were phenotyped for sawfly reaction traits, genotyped for SNPs across the 123 

genome, and screened with kompetative allele specific polymerase chain reaction (KASP) assays 124 

for the Sst1 locus. The AYN consisted of 107 distinct genotypes and the WSS consisted of 185 125 

distinct genotypes (292 total genotypes). Individuals in the WSS had not gone through any 126 

phenotypic or marker-assisted selection for solid stem or wheat stem sawfly resistance, while 127 

individuals in the AYN had already undergone one generation of field selection for resistance. 128 

Phenotyping 129 

 In the 2021-2022 wheat growing season, the AYN and WSS were planted in Akron, 130 

Colorado and a second location of the AYN was planted in New Raymer, Colorado. These sites 131 

were selected for sawfly trials due to the historical presence of sawfly within these regions and the 132 

consistent infestation that they receive (Cockrell et al., 2021; Irell & Peairs, 2014). Furthermore, 133 

in areas surrounding the field sites, 100 sweeps were taken along the field edge bordering an 134 

adjacent wheat stubble field. Sampling began during mid-jointing and continued weekly until no 135 
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adult sawfly were found in sweep samples. This data further confirms if infestation pressure was 136 

adequate for data collection (Nachappa, 2023; Nachappa & Peirce, 2022).  137 

 In each site, all plots were sown in mid-September using a 1.5m wide no-till drill seeder 138 

that was guided by a cable and had 4.9m spacing between centers. Following spring green up, 139 

centers were pruned using glyphosate (Bayer, St Louis, Missouri, USA) applied by a 1.2m wide 140 

hooded sprayer. After end trimming, this resulted in a measurable area of 1.5m by 3.7m. The AYN 141 

and WSS were planted in partially replicated designs arranged in rows and columns, with repeated 142 

checks included at both row and column levels. 143 

 After physiological maturity, when lodging due to sawfly cutting was apparent, a visual 144 

cutting score was assigned to each plot in each location. The visual cutting score was assigned as 145 

an index of percent plot affected by cutting, which is the physical process by which insect injury 146 

detaches most of the wheat stem from the base of the plant. Visual scores were assigned via an 147 

ordinal scale ranging from 1-9, where one is fully resistant and erect despite wheat stem sawfly 148 

pressure, and nine indicates the whole plot is affected, cut, and prostrate.  149 

Genome-Wide Genotyping 150 

 Ten seeds were planted for each line and a 2-3 cm of leaf tissue sample was taken from 151 

each plant and bulked for DNA extraction. Genomic DNA was extracted from the samples using 152 

MagMax (ThermoFisher Scientific; Waltham, Massachusetts, USA) plant DNA kits following the 153 

manufacturer’s instructions and quantified using PicoGreen (ThermoFisher Scientific; Waltham, 154 

Massachusetts, USA) kits. Extracted DNA was normalized to a concentration of 20 ng µL-1 and 155 

sequencing libraries were prepared following the protocol established by Poland et al (2012). The 156 

multiplexed libraries were sequenced on a NovaSeq 6000 (Illumina, San Diego, California, USA) 157 
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sequencer at 384-plex density per lane. The resulting reads were aligned to the International Wheat 158 

Genome Sequencing Consortium (IWGSC) wheat reference sequence RefSeq v2.0 (Appels et al., 159 

2018) using the burrow-wheeler aligner (Li & Durbin, 2009).  160 

 The TASSEL 2.0 standalone pipeline (Glaubitz et al., 2014) was used to process the reads 161 

obtained from alignment, and markers were organized into compressed variant calling format files 162 

(Danecek et al., 2011). Initial variant calling format files were filtered using the following 163 

parameters: monomorphic SNPs, insertions, and deletions were removed, SNPs with 85% or less 164 

missing data were retained, SNPs with a read depth of more than one or less than 100 were retained, 165 

SNPs with a minimum allele frequency of less than 5% were removed, SNPs with more than 10% 166 

heterozygosity were removed, and all unaligned SNPs were removed. After filtration, missing data 167 

were imputed using the Beagle algorithm V5.4 (Browning et al., 2018), and a synthetic wheat 168 

biparental cross between 'W7984' and 'Opata' was used to derive a recombination distance-based 169 

map for imputation (Gutierrez-Gonzalez et al., 2019). 170 

Historical Haplotype Information Curation 171 

 Information on the Sst1 locus was curated from historical marker calling files generated by 172 

the USDA Central Small Grains Genotyping Lab [https://www.ars.usda.gov/plains-area/lincoln-173 

ne/wheat-sorghum-and-forage-research/docs/hard-winter-wheat-regional-nursery-174 

program/research/]. The information for lines in both the RGON and SRPN was standardized to a 175 

biallelic haplotype of homozygous Sst1, heterozygous, and homozygous wildtype represented as 176 

“+/+”, “+/-”, and “-/-”, respectively. 177 

 Haplotype calls within the CSU wheat breeding program were made using a single marker 178 

identified as diagnostic for the Sst1 locus. Extracted and purified DNA, ranging between 50n and 179 
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150 ng uL-1 were plated in 96-well plates in 4 uL volumes. Plates contained both test genotype 180 

DNA as well as positive, heterozygous, negative, and non-template controls. Each well 4 uL of 181 

2X KASP (LGC Genomics, Middlesex, UK) reaction mixture and 0.11 uL of KASP primer assay 182 

mixture. The assay mixture contained an equal mixture of 100 uM of FAM and HEX fluorescence 183 

labeled forward primers, as well as 2.5 concentration of 100 uM reverse primer, suspended in 184 

molecular grade sterile water (Table 1). Assays were run on a Bio-Rad (Bio-Rad; Hercules, 185 

California, USA) CFX96 RT PCR machine and results were read using a single endpoint 186 

measurement of florescence. Haplotype calls were made by visual discrimination of florescence 187 

groupings. The frequency of allelic states for Sst1 in the training and testing set are also provided 188 

(Table 2). 189 

  190 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 24, 2023. ; https://doi.org/10.1101/2023.07.20.549744doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.20.549744
http://creativecommons.org/licenses/by/4.0/


 

 

Table 1. List of primers and sequences for the Usw275 marker. 191 

Marker Chromosome 
Position 

(Mbpa) 
Primer Sequence 

Usw275 3B 843.6 

HEX Forwardb 

GAAGGTCGGAGTCAACGGAT

TAAAGAAAACAAAACCTGTC

AAAAAC 

FAM Forwardc 

GAAGGTGACCAAGTTCATGC

TAAAGAAAACAAAACCTGTC

AAAAAT 

Common Reverse 
GAATTTTCGGAGTTACAGAT

TGC 

 192 

Note: a Megabase pair position, b HEX labeled primer is diagnostic for the solid allele of the Sst1 193 

locus, c FAM labeled primer is diagnostic for the non-solid allele of the Sst1 locus 194 

195 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 24, 2023. ; https://doi.org/10.1101/2023.07.20.549744doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.20.549744
http://creativecommons.org/licenses/by/4.0/


 

 

Table 2. Number of observations and frequency of Sst1 haplotypes in the training and test 196 

population.  197 

 Training Testing 

Haplotype na Frequency n Frequency 

+/+b 303 0.29 156 0.53 

+/-c 104 0.10 25 0.09 

-/-d 649 0.61 111 0.38 

 198 

Note: a number of observations, b homozygous Sst1 haplotype, c heterozygous Sst1 haplotype, d 199 

homozygous wildtype haplotype 200 

  201 
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Package Development and Analysis Pipeline 202 

 The “HaploCatcher” package was developed using the “devtools” package (Wickham et 203 

al., 2022) in R statistical software (R Core Team, 2022) via the RStudio (Posit; Boston, 204 

Massachusetts, USA) development environment on a computer with a Microsoft® Windows 205 

operating system. Data inputs required of the package are a marker matrix containing both 206 

individuals in the training population and those in the testing population, a historical haplotype 207 

classification file for individuals in the training population, and a marker information file which 208 

denotes the name, chromosome, and position of each marker in the genotypic matrix (Figure 1A). 209 

The package is comprised of several core functions which are then streamlined into the function 210 

“auto_locus”. The “auto_locus” function conducts a similar analysis pipeline to Winn et al (2022) 211 

through the “caret” package (Kuhn, 2008, 2022), while requiring minimal intervention from users 212 

(Figure 1B). 213 
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 214 

Figure 1. A diagram of [A] input data structure and [B] the “auto_locus” function pipeline. Panel [A] shows a total data set that is 215 

partitioned into a training and test population. The training population in panel [A] shows a population of individuals, that is suggested 216 

to be comprised of more than 750 individuals, which have both genome-wide marker and historical haplotype data. The testing 217 

population in panel [A] shows a testing population, which may be any size greater than zero, which only has genome-wide marker data. 218 

Panel [B] shows the workflow of the “auto_locus” function. In the cross-validation step [I], the total training population is split in a user 219 

defined way (default is 80:20 split) and the 80% tuning population is used to train and select optimal hyper-parameters for a k-nearest 220 

neighbors (KNN) and random forest (RF) model. The trained models are then used to predict the haplotype of the validation population. 221 

The predicted haplotype is then compared to the ‘true’ haplotype and kappa (and accuracy) are calculated. This is repeated a user set 222 

number of times (default is 30). The best performing model based on accuracy or kappa (default is kappa) is then taken as the model to 223 

be used in forward prediction. There are two options post cross-validation: [IIA] a single model with a set seed for repeatability or [IIB] 224 

a user set number of random models (default is 30) used to create a consensus haplotype prediction. 225 
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 The “auto_locus” function is comprised of two major phases: cross validation by random 226 

partitioning into a user specified ratio (default is 80:20 training-testing; Figure1B - Step I) over a 227 

set number of permutations (default is 30) and forward prediction of training population candidates 228 

by the best model in cross validation (Figure1B- Step IIA and Figure1B- Step IIB). Prediction of 229 

training population haplotypes can be performed by either setting a random seed for reproducibility 230 

and performing the model once (Figure 1B - Step IIA) or by running the optimal model with no 231 

set seed over a user specified number of permutations (default is 30; Figure 1B - Step IIB) and 232 

producing a haplotype prediction by majority rule. 233 

 Cross-validation results were visualized using functions from the packages “ggplot2” and 234 

“patchwork” (Pedersen, 2022; Wickham et al., 2016). Both the cross-validation and forward 235 

prediction by voting steps in the “auto_locus” function can be run either sequentially or in parallel 236 

using the R packages “parallel”, “doParallel”, and “foreach” (Microsoft & Weston, 2022a, 2022b; 237 

R Core Team, 2022). Users can specify if the analysis is to be done in parallel (default argument 238 

is FALSE) or sequentially. Users may also define the number of processing cores desired for 239 

analysis or use the default setting which uses the function “detectCores” from the parallel package 240 

to determine the number of system cores and subtract that value by one.  241 

 The computer used for development of the package had a hexacore 2.6GHz Intel® (Intel; 242 

Santa Clara, California, USA) i7-10750H processor with 12 logical processors, 32 gigabytes of 243 

DDR4 RAM and a dedicated NVIDA (NVIDA; Santa Clara, California, USA) GeForce® RTX 244 

2070 graphics card. Using the example datasets available in the HaploCatcher package, the 245 

“auto_locus” function performed in parallel with 100 permutations of cross-validations and 100 246 

votes for majority rule resulted in a total runtime of eight minutes and 36 seconds.  247 
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Statistical Analysis 248 

 All statistical analysis was conducted in R statistical software version 4.2.2 (R Core Team, 249 

2022). Cutting visual score data was checked for normality by visualization of the distribution of 250 

observations using histograms and QQ-plots. Upon evaluation, all data exhibited near-normality 251 

or somewhat skewed normal distributions. Mixed linear models were run using the function 252 

“mmer” in the package “sommer” (Covarrubias-Pazaran, 2016, 2018). Across locations the 253 

following model was utilized to estimate the effect of the Sst1 locus: 254 

𝑦𝑖𝑗𝑘𝑙 = 𝜇 + 𝐻𝑖 + 𝑔𝑗 + 𝑒𝑘 + 𝑟: 𝑐𝑙𝑚 + 𝜀𝑖𝑗𝑘𝑙𝑚 255 

 Where 𝑦𝑖𝑗𝑘𝑙𝑚 is the response, 𝜇 is the population mean, 𝐻𝑖 is the haplotype fixed effect of 256 

the ith haplotype, 𝑔𝑗 is the genotypic random effect of the jth genotype effect whose variance is 257 

defined by the additive relationship matrix among individuals derived by markers (VanRaden, 258 

2008), 𝑒𝑘 is the random environment effect of the kth environment that is identically and 259 

independently distributed across levels, 𝑟: 𝑐𝑙𝑚 is the random row by column interaction effect of 260 

the lth row and the jth column whose variance is defined by the two-dimensional penalized tensor-261 

product of spline relationship between row and column effects as described by Lee et al (2013), 262 

and 𝜀𝑖𝑗𝑘𝑙𝑚 is the residual error that is identically and independently distributed across all levels. 263 

 To compare KASP genotyped haplotype vs machine learning predicted haplotype effects, 264 

the same mixed linear model was run twice to estimate an 𝐻𝑖 haplotype fixed effect first using the 265 

“true” haplotype calls derived by KASP genotyping and then using the machine learning predicted 266 

haplotype information. Fixed effect group mean estimates for both the observed and predicted 267 

haplotype effects were estimated via the “predict.mmer” function in the package “sommer”. Visual 268 

comparison of effect estimates was summarized using functions from the “ggplot2” package.  269 
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 Narrow-sense, per-plot, genomic heritability (ℎ𝑔
2) of cutting visual score ratings within 270 

environment were estimated using the following mixed linear model: 271 

𝑦𝑖 = 𝜇 + 𝑔𝑖 + 𝜀𝑖 272 

 Where 𝑦𝑖 is the observation, 𝜇 is the population mean, 𝑔𝑖 is the random genotype effect of 273 

the ith genotype whose variance is defined by the marker-derived additive relationship matrix 274 

calculated by  the “A.mat” function from the “sommer” package, and 𝜺𝒊 is the residual error whose 275 

variance is identically and independently distributed. Variance components were used in the 276 

function “vpredict” in the “sommer” package to estimate ℎ𝑔
2 using the following formula: 277 

ℎ𝑔
2 =

𝜎𝑔
2

𝜎𝑔2 + 𝜎𝜀2
 278 

 Where ℎ𝑔
2 is the narrow-sense, per-plot, genomic heritability, 𝜎𝑔

2 is the genotypic variance, 279 

and 𝜎𝜀
2 is the residual error variance.  280 

 Importance of defining variables (genome-wide SNP markers) in KNN and RF algorithms 281 

was calculated for each iteration of the 100 permutations of cross-validation by using the function 282 

“varImp” in the “caret” package. Variable importance, or more aptly put the importance of 283 

genome-wide SNP markers in defining haplotypes, was scaled between zero and 100 for 284 

comparability across models and the average importance of markers across all permutations was 285 

reported in images generated by the “ggplot2” package. Linkage disequilibrium (LD) was 286 

calculated for all markers identified as important using the function “LD” in the package “gaston” 287 

and results were reported in images derived by functions in the “ggplot2” package (Perdry & 288 

Dandine-Roulland, 2018).  289 
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 Confusion matrices were calculated by comparing the predicted haplotype to the observed 290 

haplotype state in the WSS and AYN combined via the function “confusionMatrix” in the “caret” 291 

package. Model performance parameters were calculated across iterations of the 100 permutations 292 

of cross-validation and the forward prediction of the WSS and AYN. The reported measures of 293 

model performance were accuracy, sensitivity, specificity, and unadjusted Cohen’s kappa 294 

(McHugh, 2012). Accuracy was calculated as: 295 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 296 

 Where TP is the number of true positive cases, TN is the number of true negative cases, FP 297 

is the number of false positive cases, and FN is the number of false negative cases. Sensitivity and 298 

specificity were calculated as such:  299 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 300 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 301 

 Cohen’s kappa was calculated as: 302 

𝜅 =
Pr(𝑎) − Pr(𝑒)

1 − Pr⁡(𝑒)
 303 

 Where Pr(a) is the probability of observed agreement, and Pr(e) represents the expected 304 

rate of chance agreement. Kappa is often considered more robust than accuracy as a measurement 305 

parameter of reliability in categorization models because it is not easily biased by sample size 306 

(McHugh, 2012).  307 
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 Kappa may be understood as a measurement which is bound between -1 and 1 where a 308 

value of 1 represents a perfectly categorizing model, 0 is the same as chance agreement, and a 309 

value of -1 is categorization that is worse than chance agreement (Viera et al., 2005). Historically, 310 

a kappa value of 0.8 to 1 is considered to be either “substantial” to “almost perfect” in its predictive 311 

ability (Landis & Koch, 1977). All model parameters were either reported in tables or visualized 312 

using functions from the “ggplot2” package.  313 

 314 
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RESULTS 315 

Sst1 Prediction Cross-Validation 316 

 Cross-validation indicated that the training data was well suited for analysis and 317 

substantially predictive based on reported kappa values (Figure 2). Over the 100 permutations of 318 

cross-validation, the average kappa value for the KNN model was 𝜅 = 0.83 and 𝜅 = 0.88 for RF. 319 

The average accuracy for the KNN model was 0.91 and 0.94 for RF. By-class sensitivity varied 320 

by haplotype. For homozygous Sst1 calls, KNN had a mean sensitivity of 0.84 and RF had a mean 321 

sensitivity of 0.91. For heterozygous Sst1 calls, KNN had a mean sensitivity of 0.82 and RF had a 322 

mean sensitivity of 0.81. For homozygous wildtype calls, both KNN and RF had a sensitivity of 323 

0.96.  324 

 325 
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Figure 2. A visualization output by the “auto_locus” function of overall accuracy (A), kappa, and by-class sensitivity and specificity 327 

value distributions over 100 permutations of cross validation. The figure legend on the right of the total figure displays the color that 328 

corresponds to which model. The top left panel displays the overall accuracy of each model in boxplots. The top right panel displays the 329 

overall kappa of each model in boxplots. The bottom left panel displays the by-class sensitivity values in boxplots for homozygous Sst1 330 

individuals (+/+), heterozygous individuals (+/-) and homozygous wildtype individuals (-/-). The bottom right panel displays the 331 

specificity of each model for each classification in boxplots. The x-axis is the model in each figure. The y-axis corresponds to the value 332 

of interest displayed within the graph.   333 
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 Specificities had a narrow range among haplotype classifications and models. Average 334 

specificities for homozygous Sst1 individuals were 0.97 for KNN and 0.96 for RF. Specificities 335 

for heterozygous Sst1 individuals were 0.94 for KNN and 0.97 for RF. Specificities for 336 

homozygous wildtype individuals were 0.97 for both KNN and RF. These results indicate that 337 

KNN tended to under-identify true negatives in heterozygous cases, meaning that it tended to 338 

overclassify non-heterozygous individuals as heterozygous. Furthermore, the lower sensitivity 339 

scores of both the RF and KNN models (as compared to the higher sensitivity in the homozygous 340 

cases) indicates that both models were not as well suited for classifying heterozygous individuals 341 

as they were for homozygous individuals. Based on highest achieved average kappa value, the 342 

random forest model was selected for use in forward prediction.  343 

 Models in cross-validation mainly selected markers in or near the known region of Sst1, 344 

however there were two outliers on the distal short arm of 3B at approximately 34 megabase pairs 345 

(Mbp) and 159 Mbp (Figure 3B). When looking at LD among the markers selected for use in the 346 

models, it appears that the outlier markers and markers in the 828-852 Mbp region share minor-347 

to-substantial LD (𝑟2: 0.20 < 𝑟2 < 0.70; Figure 3A). More specifically, the LD appears to be very 348 

strong between these two outliers and markers in the 848-850 Mbp region (𝑟2̅̅ ̅ ≈ 0.66) which 349 

indicates that the markers may not be inherited independently. This may be the result of 350 

misalignment of markers to the wrong arm of the 3B chromosome. Alternatively, this may be a 351 

signature of true linkage disequilibrium, indicating that some region on the short arm of 3B is 352 

being inherited frequently with the Sst1 locus.  353 

 354 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 24, 2023. ; https://doi.org/10.1101/2023.07.20.549744doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.20.549744
http://creativecommons.org/licenses/by/4.0/


 

 

 355 

Figure 3. A visualization of (A) linkage disequilibrium (LD) among the most important markers identified between the k-nearest 356 

neighbors and random forest model, (B) the importance values of markers across the genome and (C) the importance values of markers 357 

proximal to the known position of Sst1. Panel (A) displays the linkage disequilibrium of each marker identified as important by the 358 

models. The x and y axes display the marker megabase pair (Mbp) position of each marker. The color within the plot on panel (A) that 359 

corresponds with the figure legend located on the right indicates the magnitude of LD between those markers. The known location of 360 

Sst1 falls within the black box. The graph in panel (B) shows the importance of markers averaged over the 100 iterations. The y-axis 361 
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displays the importance value of the marker which is represented by the colored dot. The x-axis represents the Mbp position of the 362 

marker. The point color corresponds with which model the point belongs to, which is denoted by the figure legend to the right. The 363 

graph in panel (C) is a zoomed in version of panel (B) where the known location of Sst1 is labeled with a gray shaded box flanked by 364 

dashed lines. 365 

 366 
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 When looking at derived importance values within the region, it appears that those outlier 367 

markers on the distal short arm of 3B are highly important (𝑥 > 0.75) for the RF model and less 368 

so for the KNN model (𝑥 < 0.25, Figure 3B). Taking a closer look at the known location of Sst1, 369 

it appears that markers within the region are moderately important (𝑥 ≈ 0.50) in RF models while 370 

they were non-important for KNN models (𝑥 < 0.10) (Figure 3B). Interestingly, the most 371 

important markers (𝑥 ≥ 0.95) identified by KNN and RF models were in the 845-853 Mbp region.  372 

 This region of highly important markers is located nearly 15-20 Mbps away from the 373 

known location of Sst1. However, historical markers used to haplotype the Sst1 in the RGON and 374 

SRPN are not in perfect linkage with the causal polymorphism. Furthermore, the marker used by 375 

the CSU wheat breeding program, which is diagnostic of the Sst1 locus, is found at approximately 376 

843 Mbp, which is directly adjacent to the most important markers for classification. These results 377 

may be due to the use of haplotype designations derived from markers which do not lie within or 378 

in direct proximity to the Sst1 locus. Regardless, model performance parameters, namely kappa, 379 

indicate that both models are capable of “substantial predictions” using historical scales for kappa 380 

interpretation (Landis & Koch, 1977). 381 

Sst1 Prediction Forward Validation 382 

 Forward validation on the WSS and AYN using a RF model trained on the total available 383 

training data produced similar results to that of cross-validation (Figure 4). Accuracies for 384 

homozygous wildtype and Sst1 individuals were 0.95 and 0.93, respectively. As observed in the 385 

cross-validation results, the accuracy for identification of heterozygous individuals was lower at 386 

0.84. Specificities for homozygous Sst1, heterozygous Sst1, and homozygous wildtype were 0.96, 387 

0.92, and 0.99. Sensitivities followed the same trend as cross-validation, where the true positive 388 
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identification rate for homozygous Sst1 and wildtype individuals was higher (0.95 and 0.85, 389 

respectively) than identification of heterozygous individuals (0.75).  390 

 391 
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 392 

Figure 4. Visualization of performance parameters of predictions by a random forest model trained 393 

on all available training data. Each subgraph represents a separate measurement of model 394 

performance. The y-axis displays the magnitude of the metric displayed in each subgraph. The 395 

allelic state on the x-axis denotes individuals who are homozygous Sst1 (+/+), heterozygous (+/-), 396 

and homozygous wildtype (-/-). The value of the metric for each allelic state is displayed within 397 

each bar. 398 

 399 
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 Based on the confusion matrix (Table 3) of predicted vs observed haplotypes, the RF 400 

algorithm misidentified heterozygous individuals as wildtype frequently. Homozygous wildtype 401 

individuals were most often correctly identified (two cases misidentified), followed by 402 

homozygous Sst1 individuals (seven cases misidentified). These results may indicate that, while 403 

not completely uninformative, these methods may be best suited for identifying homozygous 404 

individuals, like in Winn et al (2022), rather than trying to identify heterozygous individuals as 405 

well. 406 

 407 
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Table 3. Confusion matrix of predicted Sst1 haplotypes calls vs haplotypes calls made by 408 

kompetative allele specific polymerase chain reaction (KASP).  409 

 410 

  KASP (Observed) 

  +/+ +/- -/- 
P

re
d
ic

te
d

 

+/+a 147 7 0 

+/-b 6 19 15 

-/-c  2 0 96 

 411 

Note: a homozygous Sst1 calls, b heterozygous Sst1 calls, c homozygous wildtype calls 412 

 413 
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Effect of Sst1: Predicted vs Genotyped Haplotype 414 

 Visual examination of distributions for both locations of the AYN revealed somewhat 415 

skewed data distributions while observations from the single location of the WSS followed an 416 

approximately normal distribution (Figure 5). Notably, the AYN exhibited a distribution skewed 417 

towards lower values of cutting visual scores at both Akron, CO and New Raymer, CO. This is 418 

most likely because the AYN is one generation later than the WSS in the breeding process and has 419 

already gone through one cycle of selection for wheat stem sawfly resistance. Summary statistics 420 

of the location mean, minimum, maximum, standard deviation, heritability and standard error of 421 

heritability are also provided (Table 4).  422 
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 423 

Figure 5. A visualization of (A) qqplots for each locations data and (B) histogram of the cutting visual score within each environment. 424 

In panel (A) the y axis represents the observed cutting visual score and the x axis represents the theoretical quantiles. The line going 425 

across observation points shows the pattern of expected vs observed visual scores for a normal distribution. Panel (B) displays 426 

histograms of each location where the y axis is the count of observations within the bin and the x axis is the cutting visual score. The 427 

legend at the bottom of the image displays each environment which corresponds to the color of each subgraph. 428 
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Table 4. Table of descriptive statistics for each environment. 429 

Year Location Nursery N Observations N Genotypes Min Mean Max SDa h2
g
b SEc 

2022  Akron  AYN 136 107 1.00 3.07 9.00 1.86 0.62 0.10 

2022  New Raymer  AYN 136 107 1.00 3.97 9.00 2.23 0.70 0.08 

2022  Akron  WSS 201 185 1.00 5.12 9.00 2.18 0.49 0.11 

 430 

Note: a standard deviation of cutting visual score, b narrow-sense, per-plot, genomic heritability, c standard error of heritability 431 

measurements. 432 

 433 
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 Narrow-sense, per-plot, genomic heritabilities varied among locations. The lowest 434 

heritability (ℎ𝑔
2 = 0.49 ± 0.11) was observed in Akron, CO for the WSS and the highest (ℎ𝑔

2 =435 

0.70 ± 0.08) was observed in New Raymer, CO for the AYN. The mean cutting score in both 436 

Akron and New Raymer was lower for the AYN (𝑥̅ = 3.07 and 𝑥̅ = 3.97, respectively) than Akron 437 

for the WSS (𝑥̅ = 5.12), however both nurseries across locations contained visual scores between 438 

one and nine. This implies that the generation of selection prior to the AYN did shift the population 439 

mean towards resistance, yet it did not cull out all susceptible genotypes, which is expected. 440 

 Both predicted and KASP-genotyped Sst1 haplotype calls had significant effects on cutting 441 

score (𝑃(𝐹) < 0.05). Homozygous Sst1 and heterozygous Sst1 individuals did not have 442 

substantially different cutting scores when classifying based on either KASP-genotyped or 443 

predicted Sst1 haplotypes. Estimates of Sst1 effects made by prediction were not significantly 444 

different from KASP-genotyped Sst1 effects within each haplotype (Figure 6). In the case of 445 

KASP-genotyped Sst1 effects, the homozygous wildtype individuals significantly differentiated 446 

themselves from both the homozygous Sst1 and heterozygous individuals; however, predicted 447 

haplotypes for homozygous wildtype individuals did not significantly differentiate from 448 

heterozygous individuals. This is because the prediction method tended to incorrectly classify 449 

homozygous wildtype individuals as heterozygous (Table 3).  450 
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 451 

Figure 6. KASP derived Sst1 haplotype call effects vs predicted Sst1 haplotype effects. On the x-452 

axis is the allelic state of the Sst1 locus where +/+ represents individuals homozygous for Sst1, +/- 453 

represents individuals as heterozygous for the Sst1 locus, and -/- represents individuals 454 

homozygous for the wildtype allele at the Sst1 locus. The y-axis displays the visual cutting score 455 

rating best linear unbiased estimate (BLUE) for the estimated effect of Sst1. The legend on the 456 

right indicates what color-coded box corresponds to which type of Sst1 haplotype assignment. The 457 

black bars around each point estimate represents a 95% confidence interval about the estimate.  458 

 459 
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DISCUSSION 460 

 In the current work, we developed an R user accessible R package by the name 461 

“HaploCatcher” which can predict haplotypes using historical information derived from molecular 462 

marker assays on genome-wide genotyped lines. The function, “auto_locus”, allows users to 463 

produce predictions for the many lines submitted for sequencing which are not KASP genotyped 464 

on an annual basis. Just as in the work performed by Winn et al (2022), we suggest that this method 465 

may be deployed in generations where genome-wide sequencing is performed on a very large 466 

number of lines which would otherwise not be screened via PCR based assays for these loci. While 467 

these predictions were not perfect in their predictive accuracies (𝑘 = 1), they were substantial in 468 

their predictive ability (𝑘 ≥ 0.80) and similar in respect to the results of Winn et al (2022) (Landis 469 

& Koch, 1977).  470 

 Furthermore, this method is directly accessible to breeding programs, researchers, and 471 

students due to its development and deployment through R, a free and accessible statistical 472 

computing language. Here, we demonstrated that this method is successful in predicting the Sst1 473 

locus which has a direct impact on improving sawfly resistance in areas threatened by this 474 

emerging pest. Moreover, applying this method to resistance loci beyond Sst1 could lead to further 475 

progress in the pyramiding and maintenance of wheat stem sawfly resistance. 476 

 The cross-validation results in the current work were similar to those in Winn et al (2022); 477 

however, unlike Winn et al (2022) we included the option “include_hets” in the “auto_locus” 478 

function, which allows for the prediction of biallelic loci with a heterozygous state. In our results, 479 
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we observed that both the KNN and RF models were not as capable of  identifying heterozygous 480 

cases as they were homozygous cases. There may be several reasons for this phenomenon.  481 

 Firstly, lines in the CSU program are often initially sequenced in the F3:5 generation with 482 

recurrent sequencing in each subsequent year. Leaf tissue from ten seeds of each line is bulked and 483 

used to prep libraries for sequencing. Therefore, if a heterogenous line for the Sst1 locus was 484 

selected in the F3 generation, the DNA extracted may be a small 1:2:1 mixture of Sst1 haplotypes, 485 

and because of this, the sequence of the region may not be truly representative of a heterozygous 486 

Sst1 haplotype, leading to misidentification by this method. 487 

 Secondly, we curated KASP data produced by the USDA Central Small Grains genotyping 488 

lab over years for training. This data, while highly informative, showed some inconsistency across 489 

years. Marker platforms and locus region sizes change over years, and this can lead to unexpected 490 

association of markers with the locus. More specifically, we observed that markers 15-20 Mbps 491 

away from the known region of the locus were identified as “highly important”. This may be 492 

because markers which were used to haplotype the region were not in direct linkage with the causal 493 

polymorphism, and this led to the detection of markers on the distal long arm of 3B as important. 494 

 Furthermore, we aligned our genetic data to the IWGSC wheat reference genome version 495 

2.0 (Appels et al., 2018). This genome is genetically distant from the wheat germplasm located in 496 

the Great Plains area of the United States and may have led to misalignments of sequencing reads, 497 

like those potentially observed in the marker importance figure (Figure 3A). Moreover, this genetic 498 

data was imputed using Beagle (Browning et al., 2018), which is also not perfectly predictive. 499 

Therefore, the summed errors of genomic sequencing method, historical data curation, 500 

misalignment, and imputation may have contributed to the lower predictability of heterozygous 501 
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classes. We therefore suggest that if users can do so, that they produce their own training 502 

populations within their own programs and genotype them with a consistent set of markers for best 503 

results. Regardless, our proposed models are still substantially informative. 504 

 When comparing KASP-based and predicted Sst1 haplotype call group mean estimates, we 505 

observed that the predicted and KASP-based haplotype group means were not significantly 506 

different from each other within haplotype. We did observe that homozygous wildtype and 507 

heterozygous Sst1 haplotype group means did not significantly differentiate in the prediction as 508 

the RF model used to make this prediction often grouped heterozygous individuals with wildtype 509 

haplotypes (Table 3). 510 

 Irrespective of these shortcomings, this method provides a way to assess haplotypes of 511 

interest, with a measurable margin of error, in generations that would otherwise not be screened 512 

for these. More importantly, this package now provides an easily accessible method of pipeline 513 

implementation for breeding programs. While targeted sequencing platforms (Lundberg et al., 514 

2013) may reduce the need for a method like this, it will remain useful for programs without access 515 

to targeted sequencing platforms or programs missing probes for specific loci of interest. 516 

Furthermore, this method can accommodate many different sequencing platforms (diversity 517 

arrays, genotyping-by-sequencing, amplicon, etc.), does not require physical position information, 518 

and can potentially be widely applied across species. Lastly, we demonstrated that this method can 519 

be applied within breeding programs and produce comparable results to PCR based marker calls; 520 

more specifically, we showed that this method could be a viable way of screening early 521 

development germplasm for the Sst1 locus, and thus increase the frequency of this locus earlier in 522 

the development pipeline. 523 
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CONCLUSIONS 524 

 The utility of marker-assisted selection has been vetted through the vast literature available 525 

for the method. However, with whole genome sequencing technologies being applied in early 526 

generations for use in genomic prediction, there lies an opportunity to acquire data on haplotypes 527 

of important loci. The method proposed in Winn et al (2022) allows breeding programs to organize 528 

their historical marker-assisted selection data to produce predictive haplotype calls for lines in 529 

generations where PCR-based assays for loci of interest are not run due to increased time, labor, 530 

and genotyping cost. This can allow breeders to observe locus profiles of potential varieties much 531 

earlier in the breeding process than before. Here, we chose wheat stem sawfly – an emerging pest 532 

that threatens grower profitability and the dryland cropping agroecosystem– as a test case to 533 

demonstrate the effectiveness of this method. We used existing genotypic data sets to deliver 534 

breeders precise predictions of the presence of a major resistance gene, Sst1, allowing for improved 535 

selection for stem sawfly resistance at an earlier generation. With the development of the 536 

HaploCatcher package, there is now a freely accessible software for easier implementation of this 537 

method in other breeding pipelines. 538 

 539 
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