bioRxiv preprint doi: https://doi.org/10.1101/2023.07.20.549578; this version posted July 25, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Concurrent profiling of multiscale 3D genome organization
and gene expression in single mammalian cells

Tianming Zhou', Ruochi Zhang'®, Deyong Jia?, Raymond T. Doty?3, Adam D.
Munday?, Daniel Gao*®, Li Xin?4, Janis L. Abkowitz®4, Zhijun Duan3*# and Jian Ma'#

1. Computational Biology Department, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA 15213, USA
2. Department of Urology, University of Washington, Seattle, WA 98195, USA
3. Division of Hematology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
4. Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
5. Present address: Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
6. Present address: Department of Chemistry, Pomona College, Claremont, CA 91711, USA

# Correspondence: zjduan@uw.edu (Z.D.) and jianma@cs.cmu.edu (J.M.)

Abstract

The organization of mammalian genomes within the nucleus features a complex, multiscale
three-dimensional (3D) architecture. The functional significance of these 3D genome
features, however, remains largely elusive due to limited single-cell technologies that can
concurrently profile genome organization and transcriptional activities. Here, we report
GAGE-seq, a highly scalable, robust single-cell co-assay that simultaneously measures 3D
genome structure and transcriptome within the same cell. Employing GAGE-seq on mouse
brain cortex and human bone marrow CD34+ cells, we comprehensively characterized the
intricate relationships between 3D genome and gene expression. We found that these
multiscale 3D genome features collectively inform cell type-specific gene expressions, hence
contributing to defining cell identity at the single-cell level. Integration of GAGE-seq data with
spatial transcriptomic data revealed in situ variations of the 3D genome in mouse cortex.
Moreover, our observations of lineage commitment in normal human hematopoiesis unveiled
notable discordant changes between 3D genome organization and gene expression,
underscoring a complex, temporal interplay at the single-cell level that is more nuanced than
previously appreciated. Together, GAGE-seq provides a powerful, cost-effective approach for
interrogating genome structure and gene expression relationships at the single-cell level
across diverse biological contexts.
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INTRODUCTION

Connecting genotype to phenotype remains a challenge due to the complex principles
governing genome functions. Mammalian genomes exhibit an intricate organization within the
three-dimensional (3D) cell nucleus’, encompassing various architectural structures across
genomic scales. These structures, including chromosome territories?, A/B compartments?,
subcompartments®+#, topologically associating domains (TADs)%>® and subTADs"8, and
chromatin loops®'°, play critical roles in gene regulation, cellular development, and disease
progression’'-'¢_ Single-cell analysis can provide unique insights into these processes,
uncovering the variability of 3D genome features in individual cells that might be masked in
bulk analyses''7:18, However, understanding how changes in multiscale 3D genome
structure within a single cell influence its transcriptional program and cellular phenotypes
remains a major challenge in epigenomics.

Cellular and molecular heterogeneity is a fundamental aspect of cell differentiation and tissue
development. Single-cell technologies, such as scRNA-seq and single-cell Hi-C (scHi-C),
have advanced our understanding of cellular heterogeneity'®-2" and 3D genome
organization'722-28, Yet, to fully unravel the connections between 3D genome organization
and transcriptional activities in a cell, technologies that can concurrently measure these two
molecular properties in the same cell are needed. Current computational methods can
provide integrative analysis of scHi-C and scRNA-seq to a certain extent?’:2%30_ However, it is
currently unattainable to accurately correlate a cell’s 3D genome organization with its gene
expression programs using separately generated scHi-C and scRNA-seq data. While existing
imaging-based methods do offer this capability, their genomic resolution and throughput are
limited®'-34, demanding the development of new high-throughput genomic technologies
capable of co-assaying 3D genome and gene expression in the same cell.

Here, we report GAGE-seq (genome architecture and gene expression by sequencing), a
highly scalable and cost-effective method for simultaneously profiling chromatin interactions
and gene expression in single cells. GAGE-seq, thanks to its combinatorial barcoding
strategy, offers a higher methodological throughput, as well as greater efficiency and
effectiveness than recent technologies such as HIRES?®®. We utilized GAGE-seq to profile
9,190 cells across diverse mammalian cell lines and tissue types, including mouse brain and
human bone marrow. Specifically, we characterized the intricate connections between the
multiscale 3D genome features and cell type-specific gene expression, in situ dynamics of
both 3D genome and transcriptome in the tissue context, and the temporal interplay between
3D genome rewiring and transcriptional reprogramming during normal human hematopoiesis.
This work presents an experimental and analytical framework for examining genome
structure and gene expression relationships in single cells across diverse biological systems.
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RESULTS
Overview of GAGE-seq

GAGE-seq is a high-throughput, effective, and robust single-cell multiomics technology that
simultaneously profiles the 3D genome and transcriptome in individual cells (Fig. 1a). GAGE-
seq leverages the highly scalable “combinatorial indexing” paradigm previously employed in
sci-Hi-C?236-38 as well as other single-cell methods®*? (Fig. 1a). The procedure can be
summarized as follows: (i) The RNA in cross-linked and permeabilized cells or nuclei is
reverse transcribed (RT) with a biotinylated poly(T) or random hexamer primer containing
DNA sequences, facilitating the ligation of the first-round barcoded cDNA adaptors (Fig. S$1,
Table S1); (ii) Cross-linked chromatins are efficiently fragmented (the first round chromatin
fragmentation) using two 4-cut restriction enzymes (RE), CviQl and Msel, both producing the
same adhesive DNA end 5’-TA, enabling the marking of chromatin interactions via proximity
ligation; (iii) After a second round of chromatin fragmentation to introduce adhesive DNA
ends for ligating the first-round barcoded DNA adaptors (Fig. S1, Table S1), cells/nuclei are
distributed to a 96-well plate, where the first-round barcodes for DNA or cDNA are introduced
through ligation of barcoded adaptors; (iv) Intact cells/nuclei are then pooled, diluted, and
redistributed to a second 96-well plate, where the second-round barcodes for DNA or cDNA
are introduced through ligation; (v) After reverse-crosslinking to release barcoded nucleic
acids, all genomic DNA and cDNA are pooled, and biotinylated cDNA fragments are
separated from genomic DNA with streptavidin beads; (vi) Sequencing libraries for scHi-C
and scRNA-seq are separately generated and sequenced (Methods); and finally, (vii)
Matched scHi-C and scRNA-seq profiles are identified according to the well-specific
barcoding combinations (Fig. 1a, Fig. S1, Table S1, Methods). This combinatorial cellular
indexing strategy can be further extended to achieve even larger throughput using additional
rounds of ligation-mediated barcoding.

The GAGE-seq strategy can profile tens of thousands of single cells in a few days without the
need for physical isolation of the cells and special instruments/reagents, and can be applied
to various biological contexts.

Quality validation and benchmarking of GAGE-seq

To validate the quality and specificity of GAGE-seq data, we first performed experiments
using a mixture of human (K562) and mouse (NIH3T3) cell lines (Fig. 1b-e, Methods,
Supplementary Methods). The successful separation of human and mouse reads in both
scHi-C and scRNA-seq data demonstrated the accuracy of GAGE-seq, with 683 human and
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568 mouse cells identified out of 1,500 expected, along with 57 doublets observed in line with
the expected 4.4% collision rate (Fig. 1b-e). Cells passing stringent quality criteria exhibited
an average of 181,240 (K562, 39.2% duplicate rate) and 206,113 (NIH3T3, 38.0% duplicate
rate) chromatin contacts (>1Kb intra-chromosomal) from scHi-C part, as well as an average
of 24,784 (K562, 35.7% duplicate rate) and 16,596 (NIH3T3, 31.2% duplicate rate) unique
molecular identifiers (UMIs) obtained from 3,699 (K562) and 2,256 (NIH3T3) genes per cell
for the scRNA-seq part (Fig. 1, Table S2). These robust results underscore GAGE-seq’s
capacity to concurrently measure single-cell chromatin interactions and transcriptome with
high sensitivity and accuracy. In addition, GAGE-seq'’s efficient fragmentation of crosslinked
chromatin before proximity ligation, enabled by two four-cutters (Fig. 1a, Methods), allows
for efficient detection of multi-way chromatin interactions, with >25% of all identified
chromatin contacts in each scHi-C library (Table S2).

We expanded the validation of GAGE-seq to additional cell lines, GM12878 and MDS-L,
further reinforcing its robustness, specificity, sensitivity, and reproducibility (Fig. 2, Fig. S2,
S3, Methods, Supplementary Methods). At the whole-genome and whole-library level, we
found that the chromatin interaction and gene expression profiles generated by GAGE-seq
were strongly correlated with published datasets (Fig. 2a-b). The low collision rate (Fig. 1b),
the binomial distribution of scHi-C reads (Fig. 1b, Fig. S2a, S3a), the typical chromatin
contact decay curve (Fig. 2c), the high cis-trans ratio (Fig. 1c, Fig. S2c, S3c, Table S2-S4),
and the aggregated pseudobulk and single-cell chromatin contact maps (Fig. 2d, Fig. S4,
S6), as well as pseudobulk and single-cell A/B compartment scores and insulation scores
(Fig. 2e), further confirmed the specificity of the GAGE-seq scHi-C signals. The specificity of
the GAGE-seq scRNA-seq signals was demonstrated through the low collision rate (4.6% in
the K562/NIH3T3 library) (Fig. 1d), the binomial distribution of RNA reads (Fig. 1d, Fig. S2d,
S3d), and the fact that the majority of RNA reads (86%) mapped to the gene body (Fig. 2f),
complemented by the pseudobulk and single-cell RNA signal distribution at individual gene
loci (Fig. 2g, Fig. S5). Notably, similar to SHARE-seq*3, GAGE-seq scRNA-seq reads were
found to be 25%-50% intronic (Fig. 2f), indicating enriched nascent RNA. The high
reproducibility of GAGE-seq across replicates was demonstrated at multiple levels (Fig.
2a,b,d,e,g,h,i), and its methodological resolution (library complexity) of scHi-C matched
existing lower-throughput, unimodal methods, such as Dip-C?%?7, as well as sn-m3C-seq**4°
(Fig. 2j). The scRNA-seq data quality generated by GAGE-seq was also comparable to
existing methods (Fig. 2k). In line with previous scHi-C studies?*3¢, GAGE-seq scHi-C data
revealed cell cycle stages (Fig. S6, Supplementary Methods).

Compared to the recent HIRES method®®, GAGE-seq offers several major advantages (Fig.
2j-k, Fig. S10, S11). By using a combinatorial barcoding strategy, GAGE-seq achieves a
higher methodological throughput, which is an order of magnitude higher than HiIRES. In
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addition, GAGE-seq is more efficient as HIRES relies on quasilinear pre-amplification, known
to lead to low mappability of sequence reads*6. Moreover, GAGE-seq is more cost-effective,
as HiRES requires higher sequencing costs per cell and substantial costs from enzymes
required in the single-cell quasilinear pre-amplification, PCR amplification and the Tn5-
enzyme mediated tagmentation in multi-well plates.

These comprehensive validation experiments and benchmarking collectively affirm the high-
quality data produced by GAGE-seq, attesting to its reliability in jointly profiling single-cell
chromatin organization and transcriptome.

GAGE-seq reveals complex cell types in mouse cortex

To demonstrate the utility of GAGE-seq in unveiling complex cell types based on single-cell
3D genome features and gene expression within a tissue context, we turned our focus to the
adult mouse brain cortex, known for its varied cell types. Applying GAGE-seq on cells from
the mouse cortex (8-9 weeks old), we generated 3,296 high-quality joint single-cell profiles of
chromatin interactions and transcriptomes (Methods, Supplementary Methods). On
average, we observed 231,136 chromatin contacts per cell (at ~50% duplication rate), and
20,160 UMIs and 1,883 genes per cell (~59% duplication rate), in line with the adult mouse
whole brain data from the recently published HIRES method (Fig. S7-S9, Fig. 2j-k, Table
S5).

Our GAGE-seq scRNA-seq data successfully identified 28 known cell types for three major
lineages in the mouse cortex, including 15 excitatory neuron subtypes, 8 inhibitory neuron
subtypes, and 5 glia cell subtypes, such as astrocytes and oligodendrocytes (Fig. 3a-b, Fig.
S12-S14). These cell identities were confirmed by the unique expression patterns of marker
genes (Fig. 3b). Notably, our GAGE-seq scRNA-seq data enabled the delineation of many
rare neuronal subtypes not identified by HIRES3®, such as L5 PT CTX, Sncg, and Meis2 (Fig.
3a-b, Fig. S13-S14). Although previous studies have suggested that 3D genome features
encode cell identity information3%47, scHi-C data often identified fewer cell types in complex
tissues than scRNA-seq did?"444548 By using our recent method Fast-Higashi*® for scHi-C
embedding, GAGE-seq distinguished all 28 transcriptome-defined cell types, including the
aforementioned L5 PT CTX, Sncg, and Meis2 rare subtypes (Fig. 3c, Fig. S13-S15). The
scHi-C-based delineation supports these cell types with distinct 3D genome features, with
insulation scores surrounding gene bodies showing cell type-specific connection with gene
expression (Fig. 3d; see later section with more analysis).
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These results established that both the scRNA-seq and scHi-C data from GAGE-seq can
resolve refined cell types, such as neuron subtypes in mouse cortex, facilitating the analysis
of cell type-specific connections and variability between 3D genome features and gene
expression. The high congruence between cell types defined by scHi-C and scRNA-seq from
the GAGE-seq suggest a strong correlation between the two modalities in mouse cortex.

Spatial integration of GAGE-seq data reveals in situ 3D genome variation in tissues

Using GAGE-seq to map the 3D genome and transcriptome of single cells, we sought to
examine the in situ variation of the 3D genome in the adult mouse cortex. We leveraged
GAGE-seq scRNA-seq as a “bridge” for this analysis. Recently, the spatial transcriptomics
method MERFISH successfully discerned the spatial organization of distinct cell populations
in the mouse primary motor cortex®°. We started by integrating our GAGE-seq scRNA-seq
data with the MERFISH data using Seurat®’, allowing us to establish a connection between
the two datasets (Methods).

We focused on the excitatory neuron cell types present in both GAGE-seq and MERFISH
datasets. Within the integrated embedding space, cells primarily clustered by cell type, and
cells from both datasets integrated cohesively, indicating high correlation between cell types
identified by the two methods (Fig. 3e, Fig. $16, Methods). We next characterized the in situ
variation of both marker gene expression and 3D genome features of these maker gene loci
in the mouse cortex. As a proof of principle, we investigated the in situ pattern of marker
genes for LS intratelencephalic (IT) CTX. The observed and inferred gene expression
demonstrated a high degree of congruence, further supporting the reliability of the integration
(Spearman’s r=0.76, two-sided P=0; Fig. S17b-c, j-k). Layer 5, where L5 IT CTX cells reside,
corresponded with the highest expression level, scA/B value?’, gene body score
(Supplementary Methods), and a low single-cell insulation score (Fig. 3f-g, Fig. S17),
reinforcing the overall correlation between expression and 3D genome structure.
Interestingly, despite consistently low expression levels and gene body scores in more
superficial layers, the scA/B value increased and the single-cell insulation score decreased
slightly around layer 3, a cortical layer containing the L2/3 IT CTX cells that are not adjacent
to the tissue boundary, suggesting potential discrepancies of expression and various 3D
genome features at finer spatial resolution (highlighted by arrows in Fig. 3f-g, Fig. S17g-0).

Together, such joint profiling of scRNA-seq and scHi-C by GAGE-seq allows for the
superimposition of 3D genome features on in situ tissues. The spatial patterns of expression
and multi-scale 3D genome structures generally align, although they do show discrepancies
at finer resolutions.
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Impact of multiscale 3D genome features on gene expressions in single cells

With high-resolution, paired GAGE-seq scRNA-seq and scHi-C data, we next rigorously
examined the relationship between gene expression and various multiscale 3D genome
features, including A/B compartments, TAD-like domains, and chromatin loops.

Our analysis of the 3,461 genes expressed in inhibitory neurons (n=508) or excitatory
neurons (n=1,938) revealed a strong correlation between cell type-specific gene expression
and scA/B value, a quantitative measure of compartmentalization variations?”2° (Fig 4a, top
panels). Inhibitory neurons, for instance, showed a much higher expression for 432 genes
which corresponded to a higher scA/B value (t-test P=1.1e-46; Fig. 4a, top middle panel).
Most of the 391 genes with much higher scA/B value in inhibitory neurons were also
expressed at a significantly higher level in these cells than in excitatory neurons (t-test
P=7.5e-26, Fig. 4a, top right panel). Overall, there is a high correlation between differential
gene expression and differential scA/B value (Pearson’s r=0.38, P<1e-100, Fig. 4a, top left,
Fig. S18). Additionally, at the chromatin domain level, we identified a negative correlation
between cell type-specific gene expression and the associated single-cell insulation score
across cell types (Fig. 4a, bottom panels, Fig. $19), indicating that TAD-like domain variation
surrounding the gene body is accompanied with changes in transcriptional activity of the
gene. This phenomenon was also observed at cell type level previously?® and may be related
to domain melting, which was noted earlier in highly expressed long genes in mouse
hippocampus and midbrain neurons*’.

We therefore examined the relationship between single-cell insulation score surrounding the
gene body and the potential occurrence of domain melting within our diverse collection of cell
types revealed by GAGE-seq (Supplementary Methods). We focused on the four genes
(Grik2, Dscam, Rbfox1, and Nrxn) known to undergo domain melting*’, profiling their scA/B
value, single-cell insulation score, and single-cell gene expression. Notably, these genes
displayed high expression across nearly all of the 28 cell subtypes revealed by GAGE-seq,
with the exception of Dscam and Grik2 in VLMC and Micro cells (Fig. S20, Fig. 3d). As
expected, the scA/B value profiles indicated that Dscam, Rbfox1, and Nrxn3 are in the active
A compartment in the majority of cell subtypes (Fig. 3d, Fig. S20). The Grik2 locus was in a
weak B compartment across all the cells, despite its high expression (Fig. $S20). Aggregated
single-cell insulation scores varied across the gene body, with lower insulation scores in most
cell subtypes often correlating with higher gene expression (Fig. 3d, Fig. S20). The
aggregated chromatin contact maps indicate potential occurrence of domain melting around
these gene bodies (Fig. 3d, Fig. S21). A similar phenomenon was also detected for the
Rbfox1 locus across different excitatory neurons (Fig. 3d, low panels). These observations
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indicated co-occurrence of potential domain melting, low single-cell insulation score
surrounding the gene body, and high gene expression.

We next further confirmed the above observed connection between multiscale 3D genome
features and gene expression at a single cell resolution. Higher gene expression in a cell
compared to others frequently corresponded to a higher scA/B value and lower single-cell
insulation score in the same cell (Fig. 4b, Fig. $S22). For instance, of the 432 genes showing
a significantly elevated scA/B value in inhibitory neurons, most displayed a higher expression
level in these neurons than in excitatory neurons (Spearman’s r=0.22, P=7.4e-28, n=2446
cells; Fig. 4b, top panel). At the chromatin domain level, the 198 genes expressed highly in
Pvalb cells exhibited notably lower single-cell insulation scores than in the other inhibitory
neurons (Spearman's r=0.45, P=1.5e-26, n=508 cells; Fig. 4b, low panel). Therefore, the
connection between multiscale 3D genome features and gene expression can be
recapitulated at the single-cell resolution.

We then confirmed our observations on single loci. As a proof of principle, we focused on the
Pvalb inhibitory subtype (including both Pvalb a and Pvalb b). We first selected genes that
have 1) significantly higher scA/B values and expression in inhibitory neurons compared to
excitatory neurons (Fig. 4a, top panels, Fig. S23), and 2) significantly higher expression and
lower single-cell insulation scores in Pvalb compared to other inhibitory neurons (Fig. 4a,
bottom panels, Fig. S24, Supplementary Method). This approach led us to the Erbb4 gene.
The Erbb4 gene plays a pivotal role in the central nervous system and has been linked to
schizophrenia®. As expected, we observed differential A/B compartment states correlated
with cell type-specific expression of the Erbb4 gene (Fig. 4c), and differential single-cell
insulation score that manifests domain melting in the gene locus (Fig. 4d, low panel). The
TAD-like domain structure of the Erbb4 gene body in Sst and Meis2 cells appears to be
melted in Pvalb cells (i.e., less pronounced), which is again accompanied with high gene
expression in Pvalb cells (Fig. 4d, top panel). In addition, it appears that the Erbb4 gene
body interacts more frequently with the downstream two small TAD-like domains in Pvalb
cells than in Sst and Meis2 cells (Fig. 4d, top panel). On the finer scale, we also observed a
cell type-specific putative enhancer-promoter chromatin loop at the TSS of the Erbb4 gene in
Pvalb cells (Fig. 4e-f, Supplementary Methods).

Together, GAGE-seq enabled us to uncover the intrinsic link between multiscale 3D genome
features and cell type-specific gene expression at the single cell level.
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Developmental stages of human hematopoiesis characterized by GAGE-seq

Human definitive hematopoiesis, a developmental process that produces all types of blood
cells, originates from CD34+ stem cells in the bone marrow (BM), offering an ideal model
system to explore the dynamic relationship between 3D genome structure and gene
expression. We generated GAGE-seq profiles of 2,815 human BM CD34+ cells after stringent
quality filtering (Fig. $S25-S27, Table S6, Methods, Supplementary Methods), obtaining an
average of 265,336 chromatin contacts (at ~50% duplication rate) and detecting on average
5,504 UMIs and 985 genes per cell (at ~63% duplication rate), which is in line with the
publicly available scRNA-seq datasets (Fig. $S25-S27, Table S6). BM CD34+ cells, part of
hematopoietic stem/progenitor cells (HSPCs), exhibit considerable molecular heterogeneity.
The continuous nature of hematopoiesis®® makes distinguishing various types of HSPCs in
the CD34+ population based solely on transcriptomic data a challenge. Our goal here is not
to exhaustively identify all cell types in the CD34+ population but to elucidate the dynamic
relationship between genome structure and function. To mitigate the potential impact of 3D
genome’s cell-cycle dynamics?®, we restricted our analysis to high-quality GO/G1 phase cells
(837 cells).

Unsupervised clustering of our GAGE-seq scRNA-seq data yielded six clusters (five clusters
with continuous diffusion and one distinct cluster), each displaying unique gene signatures
(Fig. 5a-b). Based on the gene expression signatures and known marker genes®*, we
annotated these clusters into known cell types, namely hematopoietic stem cell (HSC),
multipotent progenitor (MPP), lymphoid-primed MPP (LMPP), multi-lymphoid progenitor
(MLP), megakaryocyte-erythroid progenitor (MEP), and B lymphocyte natural killer cell
progenitors (B-NK) (Fig. 5a-b). These clusters represent all three major blood cell lineages
but show a preference towards the lymphoid lineage. As anticipated, progenitor
subpopulations at earlier differentiation stages, HSC, MPP, LMPP, MLP and MEP, were
clustered more closely, whereas the more lineage-committed B-NK cells separated from the
rest (Fig. 5a). Our GAGE-seq scHi-C data also successfully resolved these six cell types
(Fig. 5a-b), further demonstrating the ability of the 3D genome to encode cell type
information.

Four of the six identified cell types (HSC, MPP, MLP and B-NK) represent the early
differentiation stages of B-NK cell lineage. We used our GAGE-seq dataset to reconstruct the
developmental trajectory of this lineage, demonstrating the dynamic interplay between
genome structure and gene expression along this trajectory. Transcriptome and 3D genome-
based pseudotime trajectories, inferred from GAGE-seq data, were highly congruent (Fig. 5c,
Fig. S28-S29, Methods), suggesting that global 3D genome temporal variations overall
mirror transcriptional changes and differentiation progression. Further, we created an
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integrated pseudotime trajectory (Fig. 5d, Methods), which was confirmed by the accurate
alignment of the four cell types along the differentiation pseudotime and the observation that
earlier-stage progenitors (e.g., HSCs) decrease while later-stage cells (e.g., B-NK) increase
along the pseudotime (Fig. 5d-e), reaffirming that lineage differentiation is a continuous
process®s.

These results underscore the ability of GAGE-seq's joint profiling of scRNA-seq and scHi-C
at delineating major differentiation stages, and inferring the differentiation trajectory and
pseudotime in human BM CD34+ cells. The concordance between unimodal pseudotime and
the joint pseudotime suggests the general temporal trend of concurrent changes of gene
expression and 3D chromatin structures.

Temporal interplays between 3D genome and gene expression during lineage
differentiation

Examining 3D genome dynamics and temporal gene regulation during differentiation
pseudotime, we found that while scA/B values temporally shifted across most marker genes,
all remained in the A compartment (Fig. S30-S32). The scA/B value in the MPP marker
genes exhibited little temporal variation, implying regulatory mechanisms beyond A/B
compartmentalization (Fig. $S30). In the HSC marker gene set, scA/B value changes lagged
behind gene expression, whereas the MLP and B-NK2 gene sets transitioned to a more
active chromatin state before transcriptional activation, denoting a reverse pattern (Fig. S30).

When analyzing the aggregated single-cell insulation scores of these marker genes along the
differentiation pseudotime (Fig. S30), unlike mouse cortex cells, we found no reverse
correlation to gene expression. An abrupt insulation score increase during MLP to B-NK
lineage commitment signaled global 3D genome rearrangement, corroborated by a surge in
mid-range intra-chromosomal contacts and decreased short- and long-range contacts in B-
NK progenitors (Fig. S33). TAD-like domain rearrangements at marker gene loci in the B-NK
cells further supported these findings (Fig. S31, S32). Despite the increased portion of
chromatin contacts in B-NK cells residing within the mitotic contact range®®, the chromatin
contact maps in these gene loci exhibited clear A/B compartment and TAD-like domain
organization (Fig. S31-S32, Fig. S35-S36), possibly tied to the quiescent state (GO phase) of
the bone marrow B-NK immature cells®®.

We then performed an unsupervised clustering to further unravel relationships between gene
expression and 3D genome features in the B-NK differentiation trajectory, based on all genes
expressed in at least twenty single cells in the trajectory (Methods). We identified 11 distinct

-10-


https://doi.org/10.1101/2023.07.20.549578
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.20.549578; this version posted July 25, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

gene clusters (Fig. 5f). Intriguingly, aside from the aforementioned scenarios in the marker
gene sets (Fig. 5g right panel, Fig. S34), we found that 5 of these 11 clusters displayed a
negative correlation between the changes in gene expression and scA/B value as the
pseudotime progressed (Fig. 59 left panel, Fig. S34). We closely examined gene cluster 9,
where expression is elevated while the scA/B value decreases along the pseudotime. We
selected two genes, JAK7 and ITPR1, which exhibit the highest similarity with the average
temporal patterns of this gene cluster. The scA/B value at the gene bodies of JAK7 and
ITPR1 indeed decreases over pseudotime, but we did not observe any A/B
compartmentalization switch (Fig. 5h left panels), indicating that scA/B value changes may
reflect the gradual change within the A compartment of the local chromatin environment of
the gene loci. Therefore, we have systematically identified a diverse set of gene groups with
distinct temporal patterns, including those with discordant patterns in expression and scA/B
value, as reported previously?’, during differentiation trajectory.

In relation to the chromatin domains, a uniform temporal trend was observable in the
aggregated single-cell insulation scores across all gene clusters, mirroring the pattern seen in
the marker gene sets (Fig. 59, Fig. S34). This trend suggests global 3D genome changes,
manifested by widespread TAD-like domain re-organizations, in B-NK cells. Specifically, for
genes JAKT and ITPR1, the single-cell insulation score increases abruptly from MLP to B-
NK, showing a positive correlation with gene expression (Fig. 5h right panels). This was
confirmed by aggregated contact maps (Fig. 5i, Fig. S35-S36). In addition, genes with
different sizes appear to behave differently (Fig. S37). For instance, among the under-
expressed genes in B-NK cells (n=576 genes), shorter genes (< 200kb, n=285) showed a
more prominent increase in single-cell insulation score during the MLP to B-NK transition
compared to longer genes (>=200kb, n=191) did (one-sided t-test P-value=2e-11, Fig. S37).

Together, our findings unveiled a landscape of diverse interplays between gene expression
and chromatin compartmentalization during the B-NK lineage differentiation. The observed
global changes in chromatin interactions within the B-NK cells induced widespread gene
locus-associated domain re-organizations. Interestingly, these re-organizations appear to be
independent of gene expression, yet they do not induce a broad-scale A/B compartment
switching at the gene loci.
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DISCUSSION

Our new high-throughput multiomic single-cell technology, GAGE-seq, delivers an integrative
approach to co-assay 3D genome structure and gene expression in individual cells with high
resolution. We show that GAGE-seq can reveal complex cell types from complex tissues not
identified by other existing methods. Additionally, its data integration with spatial
transcriptomic data points to great potential to reach a deeper understanding of 3D genome
variation within complex tissues. Importantly, GAGE-seq also facilitates the reconstruction of
differentiation trajectories based on 3D genome features, transcriptomes, or both. The high
congruence between these modalities underscores the intimate connection between the
temporal variations of the 3D genome and transcriptional rewiring during cell differentiation.
Notably, GAGE-seq has revealed much more nuanced relationships between 3D genome
features and gene expression during bone marrow B-NK lineage differentiation, creating a
resource for future studies to disentangle causal gene regulatory changes in differentiation
through the lens of 3D genome in single cells.

GAGE-seq is characterized by its efficiency, scalability, robustness, cost-effectiveness, and
adaptability. We envision that GAGE-seq, along with our analytical tools, could significantly
enhance the current toolkit for single-cell epigenomics. With wide-ranging applications,
GAGE-seq can deepen our understanding of genome structure and function, providing
insights into normal development and disease pathogenesis. Future refinements, such as
enhancing barcoding strategy for higher throughput and improving detection of chromatin
contacts, may allow GAGE-seq to construct high-resolution cell atlases and assess the role
of pathogenic noncoding single-nucleotide variants on chromatin loops®” in a massively
parallel manner. Additionally, we anticipate a future application where GAGE-seq will be
integrated with spatial labeling technologies, producing spatially-resolved scHi-C and scRNA-
seq data. Such advancements will likely open up new avenues of investigation, such as
exploring the role of the 3D genome in various tissue development and disease progression.
Ultimately, GAGE-seq may offer the opportunity to coalesce multiscale molecular modalities
in single cells, leading to a more comprehensive understanding of genome structure, cellular
function, and their spatiotemporal variability.
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METHODS

GAGE-seq experimental details

Preparation of 96-well plate of barcoded adaptors. Two separate barcoding rounds of
ligation reactions are used in CARE-seq, with two different 96-well barcoding plates for each
round (scHi-C and scRNA-seq, respectively, as detailed in Table S1). The design of the
scRNA-seq part barcodes resembles that of Split-seq*? and SHARE-seq*® (Table S1). The
molecular structure of the scHi-C part barcodes is depicted in Fig. S1.

Cell lysis. Crosslinked cells of K562, NIH3T3, GM12878, MDS-L, human bone marrow
Cd34+ cells were thawed from —80°C or liquid nitrogen. 0.2 ml of high-salt lysis buffer 1 (50
mM HEPES pH 7.4, 1 mM EDTA pH 8.0, 1 mM EgTA pH 8.0, 140 mM NacCl, 0.25% Triton X-
100, 0.5% IGEPAL CA-630, 10% glycerol, and 1x proteinase inhibitor cocktail (PIC)) was
added per 1 x 106 cells. The cell solution was mixed thoroughly and incubated on ice for 10
min. After this, cells were pelleted at 500xg for 2 min at 4°C and then resuspended in 0.2 ml
of high-salt lysis buffer 2 (10 mM Tris-HCI pH 8, 1.5 mM EDTA, 1.5 mM EgTA, 200mM NaCl,
1x PIC). The solution was incubated on ice for 10 min. Following this, cells were then pelleted
at 500xg for 2 min at 4°C and then resuspended in 200 pl of 1 x T4 DNA ligase buffer (NEB,
B0202S) containing 0.2% SDS. They are then incubated at 58°C for 10 min. To quench the
reaction, 200 pl ice-cooled 1x NWB and 10 pl 10% Triton X-100 (MilliporeSigma, 93443) were
added to the tube. Finally, cells were spun at 500xg for 4 min at 4°C. For crosslinked mouse
brain cortex cells, the treatment was simplified. The step involving high-salt lysis buffer 1 and
high-salt lysis buffer 2 was omitted, and 0.1% SDS was used for cell lysis.

Reverse transcription. SDS treated cells were resuspended in 400 pl of RT mix (final
concentration of 1x RT buffer, 500 mM dNTP, 10 mM Biotinylated RT primers, 7.5% PEG
6000 (VWR, 101443-484), 0.4U/ml SUPERase*In™ RNase Inhibitor, and 25U/ml Maxima H
Minus Reverse Transcriptase (ThermoFisher Scientific, EP0752)). The RT primers contain a
poly dT tail, a biotin molecule, and a universal ligation overhang. The sample then underwent
a series of heating cycles. Initially, it was heated at 50 oC for 10 minutes, then it went through
3 thermal cycles (8 °C for 12s, 15 °C for 45s, 20 °C for 45s, 30°C for 30s, 42 °C for 2 min and
50 °C for 3 min). Afterwards, the sample was again incubated at 50 oC for 10 minutes. After
reverse transcription, 600 pl of 1x NWB was added, the sample was centrifuged at 500x g for
3 minutes, and the supernatant was then removed.

1st-round chromatin fragmentation, proximity ligation, and 2nd-round chromatin
fragmentation. Cells were resuspended in 400 pl of restriction enzyme (RE) digestion mix
(1x T4 ligase buffer (NEB, B0202S), 500U Msel (NEB, R0525M), 240U CviQl (NEB,
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R0639L), 0.32 U/ml Enzymatics RNase Inhibitor, 0.05 U/ml SUPERase RNase Inhibitor), and
incubated at room temperature (25 °C) for 2 hr. Cells were then centrifuged at 500x g for 3
minutes at 4 °C, and the supernatant was removed. The remaining cell pellet was washed
twice with 300 ul of 1x NWB, and as much supernatant was removed as possible. Next, the
pellet was resuspended in 200 pl of ligation mix (1x T4 ligation buffer (NEB, B0202S), 50
Units T4 DNA ligase (ThermoFisher Scientific, EL0012), 0.32 U/ml Enzymatics RNase
Inhibitor, 0.05 U/ml SUPERase RNase Inhibitor) and incubated at 16 °C overnight. This was
followed by adding 20 ul 10x T4 ligation buffer, 1 yl SUPERase RNase Inhibitor and 20 pl
Ddel (NEB, R0175L). The sample was then incubated at 37 °C for 1 hr and centrifuged at
500x g for 3 minutes, with the supernatant removed afterwards.

Combinatorial cellular barcoding. Cells were resuspended in 330 pl of ligation mix (1x T4
ligase buffer (NEB, B0202S), 100 Units T4 DNA ligase (ThermoFisher Scientific, EL0012),
0.25 mg/ml BSA (ThermoFisher Scientific, AM2618), 5% PEG-4000 (ThermoFisher Scientific,
EL0012), 0.32 U/ml Enzymatics RNase Inhibitor, 0.05 U/ml SUPERase RNase Inhibitor) and
distributed into each well (3 pl/well) of the first-round barcoding plate, which already
contained 2 pl of CARE-seq 1st-round adaptors in each well. This barcoding plate was then
incubated at 25 °C for 3 hr. Afterwards, cells from all 96 wells were pooled into three 1.5 ml
tubes, and 5 ul of 10% NP-40 (ABCam, ab142227) was added to each tube. This is followed
by centrifuging at 500x g for 3 minutes at 4 °C. The supernatant was then removed and cells
were resuspended in 300 yl 1x NWB containing 0.033% SDS and combined into one 1.5 ml
tube. Cells were then pelleted at 500x g for 2 minutes at 4 °C. After three additional rounds of
washing with 300 yl 1x NWB containing 0.033% SDS, cells were resuspended in 200 pl 1x
NWB containing 0.1% SDS and filtered with with 10 um or 20 ym cell ministrainer
(PluriStrainer, 43-10010-50 or 43-10020-40). Cells were inspected under a microscope and
counted with a hemocytometer. Approximately 7,500 cells were diluted with 1.25 ml of a
dilution buffer containing 0.4x NEBuffer 2 (NEB, B7002S), 2 mg/ml BSA (ThermoFisher
Scientific, AM2618), and 0.08 uM RNA ligation-1 block, and distributed into each well (3
pl/well) of a 96-well plate (the 2nd-round barcoding plate). Then, 2 ul of cell lysis buffer (5x
NEBuffer 2, 0.625% SDS) were then added to each well of the 2nd-round barcoding plate.
The plate was incubated at 60 °C for at least 24 hr.

For the 2nd-round barcoding, 1.5 yl of pre-mixed GAGE-seq adapters (0.2 uM Hi-C-
AD2 and 0.17 uM RNA-AD2) were added to the plate, followed by 23.5 yl of ligation mix (3 pl
1x T4 ligase buffer (NEB, B0202S), 0.15 pl 50 mg/ml BSA (ThermoFisher Scientific,
AM2618), 1 pl 10% Triton X-100 (MilliporeSigma, 93443), 0.03 pl 20 uM 5’-P-TNA-Nextera-
P5-AD, 0.03 pl 20 uM 5-P-TA-Nextera-P5-AD, 0.03 pl 10 uM RNA ligation-1 block, and 0.8 pl
T4 DNA ligase (ThermoFisher Scientific, EL0012)). The ligation was carried out at 25 °C for
24 hr, and then stopped by adding 2 pl of proteinase K digestion mix (0.2 pl proteinase K
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(ThermoFisher Scientific, AM2546), 0.5 yl 10% SDS and 1.8 pl water) to each well. A reverse
crosslinking was carried out at 60 °C for 20 hr.

Reverse crosslinking and separation of scHi-C and scRNA-seq libraries. After reverse
crosslinking, the sample in each 96-well plate was pooled into 12 DNA low-binding 1.5 ml
tubes (Eppendorf, 022431021). Genomic DNA (gDNA) and cDNA were precipitated by
adding 66 pl 3M Sodium Acetate Solution (pH 5.2) (MilliporeSigma,127-09-3), 1 ul GlycoBlue
(ThermoFisher Scientific, AM9515) and 720 pl iso-propanol (MilliporeSigma, 19516) to each
tube, followed by incubating at -80 °C for at least 1 hr. The samples were then centrifuged at
15000 rpm for 10 min and the pellet in each tube were resuspended in 30 pl 1x NEBuffer 2
containing 0.15% SDS. After incubation at 37 °C for 10 min, the samples were combined into
one DNA low-binding tube. gDNA and cDNA were precipitated by adding 66 yl 3M Sodium
Acetate Solution (pH 5.2) and 720 pl iso-propanol, followed by incubating at -80 °C for at
least 1 hr. The sample was then centrifuged at 15000 rpm for 10 min and the pellet was
resuspended in 100 pl buffer EB (Qiagen, 19086). For each sample of a 96-well plate, 5.5 pl
of MyOne C1 Dynabeads were washed twice with 1x B&W-T buffer (6mM Tris pH 8.0, 1M
NaCl, 0.5mM EDTA, and 0.05% Tween 20) and resuspended in ul of 2x B&W buffer (10mM
Tris pH 8.0, 2M NaCl, and 1mM EDTA) and added to the sample tube. The mixture was
incubated at room temperature for 60 min and put on a magnetic stand to separate
supernatant and beads.

scHi-C sequencing library construction. The supernatant that contained the Hi-C library
(gDNA) was precipitated by adding 60 yl 3M Sodium Acetate Solution (pH 5.2) and 660 pl
iso-propanol, followed by incubating at -80 °C for at least 1 hr. The sample was then
centrifuged at 15000 rpm for 10 min and the pellet was washed with 0.8 ml 80% ethanol, air
dried, and resuspended in 38.5 ul water. After adding 1.5 ul 20 uM 5’-P-TNA-Nextera-P5-AD,
1.5 yl 20 M 5’-P-TA-Nextera-P5-AD, 1.5 ul 20 uM Hi-C-AD1-Block and 2 pl T4 DNA ligase,
adaptor ligation was carried out at 22 °C for at least 20 hr and stopped by adding 2 pl 10%
SDS. Hi-C library was purified by adding 80 yl Ampure beads and amplified in two 100 yl pre-
amplification reactions (50 pl 2x NEBNEXT Ultra Il Q5 Master Mix (NEB, M0544L), 5 pl 10
MM Nextera-P5-pre-Primer, 5 pyl 10 uM Trueseq-P7-pre-P-S primer and 40 ul Hi-C sample),
with the following PCR program: 98 °C for 2 min, and then 9 cycles at 98 °C for 15 s, 60 °C
for 30 s and 65 °C for 3 min. The pre-PCR products were purified by 0.75x AMPure beads,
eluted in 42 pl buffer EB, and quantified by Qubit (ThermoFisher Scientific). For lllumina
sequencing library construction, about 40 ng purified pre-amplified Hi-C sample was
fragmented in two 50 pl tagmentation mix (1x TD buffer and 0.5 pyl TDE1 (Illlumina Tagment
DNA TDE1 Enzyme and Buffer Kit, 20034198)) at 55 °C for 5 minutes in two PCR tubes.
Tagmentation was stopped by adding 15 pl NT buffer per well and incubated at room
temperature for 5 min, followed by adding 60 yl NPM (lllumina, FC-131-1096), 12 pyl 10 uM
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Indexed Nextera P5 primer, 12 yl 10 uM Indexed Trueseq P7 primer and 51 yl water. The
final Hi-C sequencing library was amplified, with the PCR program: 72 °C for 5 min, 98 °C for
45 s, and then 7 cycles at 95 °C for 10 s, 55 °C for 30 s and 72 °C for 1 min. The amplified
library was purified by 0.7x AMpure beads and eluted in 40 pl buffer EB.

scRNA-seq sequencing library construction. The Myone C1 beads with the cDNA library
were resuspended in 100 yl of TdT mix (1x Terminal Transferase Reaction Buffer, 0.25 mM
CoCI2, 1 yM dGTP/ddGTP mix (0.95 uyM dGTP (Thermo Fisher Scientific, R0161), 0.05 uM
ddGTP (MilliporeSigma, GE27-2045-01), 0.2 U/ul Terminal Transferase (NEB, M0315L)) and
incubated at 37 °C for 20 min. The supernatant was removed by placing the sample on a
magnetic stand. Beads were washed with 200 pl buffer EB and resuspended in 400 pl of
Post-TdT PCR mix (1x NEBNEXT Ultra Il Q5 Master Mix (NEB, M0544L), 0.5 uM post-TdT-
poly(C)12-S Primer, and 0.5 yM post-TdT-P5-T7 primer). Post-Tdt PCR was carried out with
the following program: 98 °C for 2 min, and then 13-18 cycles at 98 °C for 15 s, 52 °C for 45 s
and 65 °C for 3.5 min. The PCR products were purified by 0.8x AMPure beads, eluted in 32
ul buffer EB, and quantified by Qubit. For sequencing library construction, about 1.5 ng
purified pre-amplified cDNA sample was fragmented in four 20 pl tagmentation mix (10 pl 2x
TD buffer, 5 pyl Nextera XT (lllumina, FC-131-1096), and 5 ul cDNA sample) at 55 °C for 5
minutes in four PCR tubes. Tagmentation was stopped by adding 5 pl NT buffer per tube and
incubated at room temperature for 5 min, followed by adding 15 yl NPM (lllumina, FC-131-
1096), 3 pl 10 uM Indexed Nextera P7 primer, 3 yl 10 uM Indexed Trueseq PS5 primer and 4
pl water to each tube. The final cDNA sequencing library was amplified with the PCR
program: 72 °C for 5 min, 98 °C for 45 s, and then 12 cycles at 95 oC for 10 s, 55 °C for 30 s
and 72 °C for 1 min. The amplified library was purified by 0.7x AMpure beads and eluted in
40 pl buffer EB.

Sequencing. Both scHi-C and scRNA-seq libraries were pooled and paired end sequencing
(PE 150) were performed on the HiSeq, NextSeq, or NovaSeq platform (lllumina).

GAGE-seq data processing workflow

Demultiplexing. DNA and RNA reads were assigned to wells based on the two rounds of
barcodes. For DNA reads, only read 2 was used for demultiplexing, allowing at most 1
mismatch in each of the two rounds of barcodes. DNA reads with more than 5 mismatches in
the region between the two rounds of barcodes (the 9th-23rd nt) were discarded. After
demultiplexing, the first 12 nt were removed from read 1 and the first 35 nt were removed
from read 2. For RNA reads, only read 1 was used for demultiplexing, allowing at most 1
mismatch in each barcode round. RNA reads with more than 6 mismatches in the region
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between the two rounds of barcodes (the 19th-48th nt) or with more than 6 mismatches in the
region downstream of the first round of barcode (the 57th-71th nt) were discarded.

The two reference genomes were combined into a single reference genome file used
for all GAGE-seq libraries. For DNA reads, BWA® was used for alignment. The combined
reference genome was indexed using command bwa index -a bwtsw. Paired, timmed DNA
reads were aligned to the combined reference genome using command bwa mem -SP5M.
For RNA reads, STAR®® was used for alignment. The GENCODE annotation files for human
(v36) and mouse (vM25) were downloaded and concatenated. The combined reference
genome was indexed using command --runMode genomeGenerate --sjdbOverhang 100 with
the combined gencode annotation file. Only read 2 of RNA reads was aligned with the
command STAR --outSAMunmapped Within.

Identification of contact pairs from DNA reads. Pairtools®® was used to identify contact
pairs from paired DNA reads with command pairtools parse --walks-policy all --no-flip --min-
mapqg=10. After that, walk reads (i.e., DNA reads containing multiple ligation sites) were
further processed. Briefly, we assumed that any pair of loci in the same DNA read forms a
valid contact pair, and these contact pairs were included in the results.

Deduplication of contact pairs. The contact pairs were deduplicated. We extract the
genomic positions of the two ends of each contact pair. We define two contact pairs as
directly duplicated if the two contact pairs’ first ends lie within 500 nt apart and their second
ends also within 500 nt. If two contact pairs are not directly duplicated, but are directly or
indirectly duplicated with a third contact pair, we define the first two contact pairs as indirectly
duplicated. Among each cluster (i.e., connected component) of (in)directly duplicated contact
pairs, the one with the largest difference between its two ends’ genomic positions was
retained, and the rest were marked as duplicates.

Deduplication of RNA reads. The RNA reads were deduplicated. Two RNA reads are
defined as directly duplicated if there is at most 1 mismatch in their UMI and if their genomic
positions differ by at most 5 nt. The rest of the process is similar to the deduplication of
contact pairs. Only one RNA read from each duplicate cluster is retained.

GAGE-seq integrative analysis for mouse brain cortex.

Integration with MERFISH data. Integration of GAGE-seq data and MERFISH data was
done with Seurat®'. Only scRNA-seq profiles from the GAGE-seq data were used for this
integration. In the GAGE-seq mouse brain cortex data, the following cell types of excitatory
neurons were used: L2/3 IT CTX a, L2/3 IT CTX b, L2/3 IT CTX c, L4 IT CTX, L4/5 IT CTX,
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LSITCTX, L6 IT CTX, L6 CT CTX a, L6 CT CTX b, L5/6 NP CTX, and L6b CTX. In the
MERFISH data, cells from L2/3 IT, L4/5 IT, L5 IT, L5/6 NP, L6 CT, L6 IT, and L6b were used.
Each time, the selected cells from GAGE-seq were integrated with one slice from the
MERFISH data. All genes detected and expressed in both GAGE-seq and MERFISH were
used. The ‘FindIntegrationAnchors’ and ‘IntegrateData’ functions were used with default
parameters, except that the number of dimensions was set to 10.

Inference of whole-transcriptome expression and 3D genome features for MERFISH
cells. The integrated single-cell expression profiles of GAGE-seq data and MERFISH data
were scaled by the ‘ScaleData’ function from Seurat®! with default parameters, and the first
30 PCs were calculated by the ‘RunPCA’ function. A 50-nearest neighbor regressor was
created to estimate whole-transcriptome expression and 3D genome features from the 30-
dimensional PC space. The regressor was trained on GAGE-seq data and then applied to the
MERFISH data. The Gaussian kernel was used as the weight function. For each MERFISH
cell, the bandwidth was defined as the 0.3 quantile of the distances to the 50 nearest
neighbors.

GAGE-seq integrative analysis for bone marrow

Trajectory and pseudotime. The pseudotime of human bone marrow cells was inferred by
the ‘sc.tl.diffmap’ and ‘sc.tl.dpt’ function in Scanpy?®’, jointly from the paired scRNA-seq
profiles and scHi-C profiles. Specifically, cells in the HSC, MPP, MLP, and B-NK clusters
were included. The first 5 PCs of the scRNA-seq profiles were used for the scRNA-based
pseudotime and the first 2 PCs of the Fast-Higashi embeddings of the scHi-C profiles were
used for the scHi-C-based pseudotime. The 5 scRNA-seq PCs and the 2 scHi-C PCs were
then concatenated and used for the joint pseudotime. The ‘sc.pp.neighbors’ function was
used to construct the neighbor graph with 30 (scRNA-based and joint pseudotime) or 20
(scHi-C-based pseudotime) nearest neighbors per cell. The ‘sc.tl.diffmap’ and ‘sc.tl.dpt’
function was applied with 10 diffusion components to learn a latent representation focusing
on the trajectory and to infer the pseudotime for single cells. The origin of the trajectory was
set based on the average expression level of HSC marker genes previously identified>*,

Unsupervised clustering of genes. The clustering of genes was based on the expression
and scA/B value. Genes expressed in at least 20 cells were included. To generate features
for genes, 1) the expression levels and scA/B values were z-score normalized per gene
among all cells. 2) cells were evenly divided into 10 bins based on the pseudotime, and 3) the
average values of the expression and scA/B value in each bin were calculated for each gene.
This process led to 20 features for each gene. The Louvain clustering algorithm was then
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applied to genes with 20 neighbors, a resolution of 1.5. The correlation was used as the
distance metric.

Additional experimental methods, methods for quality control and benchmarking, methods for
identifying single-cell 3D genome features, and other methods are described in the
Supplementary Methods.
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Figure Legends

Figure 1. Overview and validation of GAGE-seq. a. Schematic representation of the
GAGE-seq workflow detailing the simultaneous single-cell profiling of 3D genome
architecture and gene expression. b-e. Validations demonstrating the specificity of GAGE-
seq using mixed experiments with the human (K562) and mouse (NIH3T3). b and d. Scatter
plots showing the collision level in the GAGE-seq scHi-C (b) and scRNA-seq (d) libraries,
and histograms showing the binomial distribution of reads mapped to hg38 (top) and mm10
(right). c. Scatter plot showing the cis:trans ratio of scHi-C reads. e. Scatter plot showing the
well-separation of scHi-C and scRNA reads of valid cellular indices from that of empty
indices. Mouse is colored in green, human in orange, collisions in red, and empty indices in

gray.

Figure 2. High-quality scHi-C and scRNA-seq data generated by GAGE-seq. a.
Correlation between the aggregated scHi-C profiles from GAGE-seq replicates and the bulk
in situ Hi-C data®. b. Comparison of aggregated scRNA-seq profiles of GAGE-seq replicates
with NEAT-seq®, SHARE-seq*?, and SNARE-seq2%’. c. Decay curves of chromatin contact
for the GAGE-seq scHi-C libraries. d. Comparison of aggregated contact maps between two
GAGE-seq K562 replicates (upper), and between the combined GAGE-seq K562 library and
an in situ Hi-C library® (lower). e. Comparison of A/B compartments and TAD-like domain
calling at the human beta-globin locus between GAGE-seq (pseudo bulk) and in situ Hi-C3. f.
RNA read distribution across gene bodies in the GAGE-seq scRNA libraries. g. Aggregated
single-cell gene expression profiles at the GAPDH locus. Upper panel: scRNA-seq signals of
GAGE-seq libraries of K562, GM12878, and MDS-L cells (hg38). Lower panel: scRNA-seq
signals of SHARE-seq in GM12878 cells (hg19)*3. h. Reproducibility between two biological
replicates of GAGE-seq scHi-C libraries. i. Reproducibility between two biological replicates
of GAGE-seq scRNA libraries. j. Comparison of GAGE-seq scHi-C library size with published
scHi-C17:22-27.37.62-65 gnd co-assay methods®%4445. k. Comparison of scRNA-seq library size
(upper) and the number of detected genes (lower) with published co-assay methods35:43:66-74,

Figure 3. Cell types in mouse cortex characterized by GAGE-seq scHi-C and scRNA-
seq. a and c. UMAP visualization of mouse cortex scRNA-seq (a) and scHi-C profiles (c)
from GAGE-seq. Insets: UMAP visualization of excitatory neuron subtypes (top) and
inhibitory neuron subtypes (bottom). b. Cell type-specific expression (based on scRNA-seq in
GAGE-seq) of known marker genes, including glial types, neuronal types, and neuron
subtypes. d. Visualization of cell type-specific 3D chromatin architecture and gene expression
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at representative gene loci. Left: aggregated single-cell insulation score (100-Kb resolution,
upper) and gene expression (lower) at the Girk2 locus and the Rbfox1 locus. Right:
aggregated contact maps (50-Kb resolution) of the Girk2 locus (top panel, excitatory vs
inhibitory neurons) and the Rbfox1 locus (low panel, L4 & L4/5 IT CTX vs L2/3 CTX). Cell
types selected in the right panels are highlighted by green lines (higher expression) or red
lines (lower expression) in the corresponding left panels. e. UMAP visualization of the
integration of GAGE-seq and a MERFISH dataset®. f. Inferred spatial patterns of gene
expression and 3D genome features of L5 IT CTX marker genes. g. In situ plots of inferred
single-cell gene expression (left) and scA/B value (right) for L5 IT CTX marker genes. Layer 3
was highlighted by black arrows in panels (f) and (g).

Figure 4. Multiscale 3D genome features inform cell type-specific gene expressions in
the mouse cortex at single-cell resolution. a. Genome-wide correlations between gene
expression and 3D genome features in different neuron cell types. Upper row: correlation for
inhibitory (n=508) vs. excitatory neurons (n=1938). Lower row: correlation for Pvalb (n=188)
vs. other inhibitory neurons (n=320). Left column: correlation between differential expression
and differential 3D genome feature. Middle column: volcano plot of differential scA/B value
and single-cell insulation score; Right column: volcano plot of differential expression. Left
column: Pearson’s correlation coefficients and the P-values from one-sided tests for nonzero
correlations are shown. Middle and right columns: P-values from one-sided t-tests with
unequal variance are shown. b. Correlation at the single-cell level between gene expression
and scA/B value (upper) or single-cell insulation score (lower) for genes overexpressed in
inhibitory neurons (432 genes) and Pvalb cells (198 genes), respectively. Spearman’s
correlation coefficients and the P-values from one-sided tests for nonzero correlations are
shown. c¢. Comparison of A/B compartment (identified at 200-Kb resolution) state of the
Erbb4 locus between inhibitory and excitatory neurons. Correlation matrices of aggregated
scHi-C contact maps (top) and the corresponding A/B compartment scoretracks (bottom) are
shown. d. Comparison of the pseudo-bulk contact map (at 50-Kb resolution) of the Erbb4
locus between Pvalb and the other inhibitory subtypes. Pseudo-bulk scHi-C contact maps
(upper) and the corresponding insulation scores (bottom) are displayed. Two Pvalb-specific
bright strides are highlighted by a white arrow and the melted TAD by a black arrow in the top
panel. The gene body is shown right under the matrices in the top panels of (c) and (d).
Regions with differential 3D genome features are highlighted with light red boxes in the
bottom panels of (c) and (d). e. An example loop in Pvalb (upper) and Sst and Meis2 (lower)
inhibitory subtypes at 10-Kb resolution. Aggregated convolution-smoothed contact maps and
regulatory element annotations’? in Pvalb are shown. The black maplet arrows show the TSS
of Erbb4. f. The comparison of loop contacts (blue) and non-loop contacts (orange) regarding
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their correlation with expression, showing more significant correlation for loop contacts. P-
values from two-sided tests for nonzero Spearman’s correlation coefficients are shown.

Figure 5. Interplay between 3D genome variation and gene expression changes in
human bone marrow differentiation. a. UMAP visualization of GAGE-seq scRNA-seq (left)
and scHi-C profiles (right) of human bone marrow CD34+ cells. b. Average expression of
known marker genes on the UMAP plot. The 6 panels include n=124, 78, 24, 82, 126, and
356 genes for HSC, MPP, LMPP, MEP, MLP, and B-NK, respectively. c-d. Inferred B-NK
lineage trajectory and pseudotime from scHi-C profiles (c) and jointly from scRNA-seq and
scHi-C profiles (d), displayed by cell type (upper) and pseudotime (lower). e. Cell type
compositions across 10 equally divided pseudotime bins. f. UMAP visualization of gene
clusters determined by the temporal trend of expression and scA/B value. g. Temporal trends
of gene expression (upper row), scA/B value (middle row), and single-cell insulation score
(lower row) of gene clusters 9 (left column) and 10 (right column). h. scA/B (left) and single-
cell insulation score (right) of the JAKT (upper) and ITPR1 (lower) loci (at 100-Kb resolution).
Each row represents a cell, ordered by the joint pseudotime from left to right. Heat maps
were smoothed by a Gaussian kernel with a receptive field of 10 neighboring cells and 1
neighboring bin in each direction. i. Pseudo-bulk contact maps (at 50-Kb resolution) of HSC
and B-NK at the JAKT (upper) and ITPR1 (lower) loci.
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