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Abstract. Constitutive modeling is the cornerstone of computational and structural mechanics.
In a finite element analysis, the constitutive model is encoded in the material subroutine, a func-
tion that maps local strains onto stresses. This function is called within every finite element, at
each integration point, within every time step, at each Newton iteration. Today’s finite element
packages offer large libraries of material subroutines to choose from. However, the scientific cri-
teria for model selection remain highly subjective and prone to user bias. Here we fully automate
the process of model selection, autonomously discover the best model and parameters from ex-
perimental data, encode all possible discoverable models into a single material subroutine, and
seamlessly integrate this universal material subroutine into a finite element analysis. We proto-
type this strategy for tension, compression, and shear data from human brain tissue and perform
a hyperelastic model discovery from twelve possible terms. These terms feature the first and
second invariants, raised to the first and second powers, embedded in the identity, exponential,
and logarithmic functions, generating 22×2×3 = 4096 models in total. We demonstrate how to
integrate these models into a single universal material subroutine that features the classical neo
Hooke, Blatz Ko, Mooney Rivlin, Demiray, Gent, and Holzapfel models as special cases. Finite
element simulations with our universal material subroutine show that it specializes well to these
widely used models, generalizes well to newly discovered models, and agrees excellently with
both experimental data and previous simulations. It also performs well within realistic finite ele-
ment simulations and accurately predicts stress concentrations in the human brain for six different
head impact scenarios. We anticipate that integrating automated model discovery into a univer-
sal material subroutine will generalize naturally to more complex anisotropic, compressible, and
inelastic materials and to other nonlinear finite element platforms. Replacing dozens of individ-
ual material subroutines by a single universal material subroutine that is populated directly via
automated model discovery—entirely without human interaction—makes finite element analyses
more accessible, more robust, and less vulnerable to human error. This could forever change how
we simulate materials and structures.
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1 Motivation

Material modeling lies at the heart of a finite element analysis and selecting the appropriate ma-
terial model is key to a successful finite element simulation [30]. A material model takes the local
strains as input and calculates the stresses and their derivatives as output [27, 38]. Nonlinear finite
element programs evaluate the material model locally, within every finite element, at each inte-
gration point, within every time step, at each Newton iteration [7, 39]. The local stresses and their
derivatives then enter the global force vector and stiffness matrix to calculate the nodal displace-
ments [30]. Finite element packages typically provide a comprehensive suite of built-in material
models—-linear, polynomial, exponential, or logarithmic–with dozens of models to choose from
[11, 23, 40, 41, 53]. This raises the question how we can select the best model and, probably more
importantly, to which extent can we remove user bias throughout this selection process?

Admittedly, selecting the appropriate material model is a difficult task. This is especially true for
unexperienced users or experienced scientists from other disciplines. For hyperelastic materials
alone, commercial finite element packages offer the neo Hooke [60], Blatz Ko [6], Mooney Rivlin
[42, 49], Yeoh [64], Gent [19], Demiray [12], Holzapfel [26], Ogden [45], and Valanis Landel [61]
models, and continue to add new models as new releases emerge. To complicate matters, most fi-
nite element packages offer their users the flexibility to define their own custom-designed user ma-
terial subroutines [1]. A user material subroutine is a modular software component that empowers
the user to define and simulate complex material behaviors that cannot be captured by standard
built-in material models. For example, our group has recently characterized different types of arti-
ficial meat and discovered material models that have never been used in any material library [55].
By implementing our own material subroutine, we can not only accurately model this complex
material behavior, but also design and functionalize new materials [37, 43, 46]. This customiza-
tion enhances the fidelity and accuracy of the simulation and enables the analysis of cutting-edge
engineering problems for which standard material models fall short [25, 50, 55]. With this added
flexibility in mind, do we now have to implement a new material subroutine every time we study
a new material? And how do we discover the appropriate functional form that best describes the
material behavior?

Recently, a trend has emerged to autonomously discover the model and parameters that best de-
scribe a specific material from experimental data, without any prior domain knowledge or user
bias [5, 8]. There are several different strategies to achieve this. Most of them harness the power
and robustness of algorithms developed for machine learning [3]. While some discover models
that are interpretable, others do not.

Non-interpretable approaches closely follow traditional neural networks and typically discover func-
tions of rectified linear unit, softplus, or hyperbolic tangent type [24]. The first representative
of this category uses tensor basis Gaussian process regression, a special type of regression for
isotropic hyperelastic materials that harnesses the representation theorem to a priori ensures ob-
jectivity [16]. In a rather abstract sense, it learns a 3 × 3 mapping that maps the three isotropic
invariants onto the three coefficients of the stress tensor representation [17]. The second uses
invariant-based constitutive artificial neural networks that a priori satisfy thermodynamic consis-
tency by learning a free energy function from which they derive the stress [28, 33]. The third uses
neural ordinary differential equations, special neural networks that a priori satisfy objectivity and
polyconvexity by directly learning the derivatives of the free energy function that enter the stress
definition [56, 58] While these approaches are straightforward, provide an excellent approxima-
tion of the data, and can be integrated manually within finite element software packages [24, 57],
they learn non-interpretable models and parameters and teach us little about the underlying ma-
terial.
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Interpretable approaches discover models that are made up of a library of functional building blocks
that resemble traditional constitutive models. The first representative of this category uses unsu-
pervised learning and adopts sparse regression to discover interpretable models from a feature
library of candidate functions [14, 15]. The second uses symbolic regression and genetic program-
ming to discover mathematical expressions for invariant-based models in the form of rooted trees
[2]. Here we combine all five approaches: We use a custom-designed invariant-based constitutive
artificial neural network that a priori satisfies objectivity, thermodynamic consistency, and poly-
convexity and autonomously discovers a free energy function that features popular constitutive
terms and parameters with a clear physical interpretation [34–36]. In practice, interpretable mod-
els are limited by their functional form and approximate data less perfectly than non-interpretable
models. At the same time, interpretable models are a generalization of popular existing constitu-
tive models that–by design–translate seamlessly into user material subroutines.

The objective of this work is to integrate automated model discovery into the finite element workflow
by creating a single universal material subroutine that automatically generates thousands of possi-
ble constitutive models. While we motivate this material subroutine from constitutive neural
networks [35], the concept generalizes well to material models discovered via symbolic regression
[2] or sparse regression or from feature libraries [14]. In Section 2, we briefly summarize the gov-
erning kinematic and constitutive equations. In Section 3, we introduce our constitutive neural
network for automated model discovery. In Section 4, we translate all possible models of our net-
work into a universal material subroutine and illustrate its pseudocode within the invariant-based
UANISOHYPER_INV environment of the finite element package Abaqus. In Section 5, we illustrate
the features of our user material subroutine by means of three types of examples: four benchmarks
with popular constitutive models, two benchmarks with newly discovered models, and six realis-
tic finite element simulations. We discuss our results in Section 6 and close with a brief conclusion
and outlook in Section 7.

2 Governing equations

We begin by summarizing the governing kinematic and constitutive equations and reduce the
general sets of equations to the special homogeneous deformations of uniaxial tension, uniaxial
compression, and simple shear.

2.1 Kinematics

To characterize finite deformations, we introduce the deformation map ϕ that maps material par-
ticles X from the undeformed configuration to particles, x = ϕ(X), in the deformed configuration
[39]. We describe relative deformations within the sample using the deformation gradient F, the
gradient of the deformation map ϕ with respect to the undeformed coordinates X, and its Jaco-
bian J,

F = ∇Xϕ with J = det(F) > 0 . (1)

In the undeformed state, the deformation gradient is equal to the unit tensor, F = I, and the
Jacobian is equal to one, J = 1. A Jacobian smaller than one, 0 < J < 1, denotes compression
and a Jacobian larger than one, 1 < J, denotes extension. To characterize an isotropic material, we
introduce the three principal invariants I1, I2, I3 and their derivatives ∂F I1, ∂F I2, ∂F I3,

I1 = F : F ∂F I1 = 2 F
I2 = 1

2 [I2
1 − [ Ft · F ] : [ Ft · F ]] with ∂F I2 = 2 [ I1 F − F · Ft · F ]

I3 = det (Ft · F) = J2 ∂F I3 = 2 I3 F−t .
(2)
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In the undeformed state, F = I, the three invariants are equal to three and one, I1 = 3, I2 = 3,
and I3 = 1. For isotropic, perfectly incompressible materials, the third invariant always remains
identical to one, I3 = J2 = 1. This reduces the set of invariants to two, I1 and I2.

Tension and compression. For the case of uniaxial tension and compression, we stretch the
specimen in one direction, F11 = λ1 = λ. For an isotropic, perfectly incompressible material
with I3 = λ2

1 λ2
2 λ2

3 = 1, the stretches orthogonal to the loading direction are identical and equal
to the square root of the stretch, F22 = λ2 = λ−1/2 and F33 = λ3 = λ−1/2. From the resulting
deformation gradient, F = diag { λ, λ−1/2, λ−1/2 }, we calculate the first and second invariants
and their derivatives,

I1 = λ2 +
2
λ

and I2 = 2λ +
1

λ2 with
∂I1

∂λ
= 2

[
λ− 1

λ2

]
and

∂I2

∂λ
= 2

[
1− 1

λ3

]
. (3)

Shear. For the case of simple shear, we shear the specimen in one direction, F12 = γ. For an
isotropic, perfectly incompressible material with F11 = F22 = F33 = 1, we calculate the first and
second invariants and their derivatives,

I1 = 3 + γ2 and I2 = 3 + γ2 with
∂I1

∂λ
= 2 γ and

∂I2

∂λ
= 2 γ . (4)

2.2 Constitutive equations

Constitutive equations relate a stress like the Piola or nominal stress P , the force per undeformed
area that is commonly measured in experiments, to a deformation measure like the deformation
gradient F . For a hyperelastic material that satisfies the second law of thermodynamics, we can
express the Piola stress, P = ∂ψ(F )/∂F , as the derivative of the Helmholtz free energy function
ψ(F ) with respect to the deformation gradient F , modified by a pressure term, −pF -t, to ensure
perfect incompressibility [39],

P =
∂ψ

∂F
− pF -t . (5)

Here, the hydrostatic pressure, p = − 1
3 P : F , acts as a Lagrange multiplier that that we determine

from the boundary conditions. Instead of formulating the free energy function directly in terms of
the deformation gradient ψ(F), we can express it in terms of the invariants, ψ(I1, I2), to yield the
following expression for the Piola stress,

P =
∂ψ

∂I1

∂I1

∂F
+

∂ψ

∂I2

∂I2

∂F
− pF -t = 2

[
∂ψ

∂I1
+ I1

∂ψ

∂I2

]
F − 2

∂ψ

∂I2
F · Ft · F − p F−t . (6)

Tension and compression. For the case of uniaxial tension and compression, we evaluate the
nominal uniaxial stress P11 using the general stress-stretch relationship for perfectly incompress-
ible materials, Pii = [∂ψ/∂I1] [∂I1/∂λi] + [∂ψ/∂I2] [∂I2/∂λi]− [1/λi] p, for i = 1, 2, 3 with the in-
variants in tension and compression from equation (3). Here, p denotes the hydrostatic pressure
that we determine from the zero stress condition in the transverse directions, P22 = 0 and P33 = 0,
as p = [2/λ] ∂ψ/∂I1 + [2λ + 2/λ2] ∂ψ/∂I2. This results in the following explicit uniaxial stress-
stretch relation,

P11 = 2
[

∂ψ

∂I1
+

1
λ

∂ψ

∂I2

] [
λ− 1

λ2

]
. (7)
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Shear. For the case of simple shear, we evaluate the nominal shear stress P12 using the general
stress-stretch relationship for perfectly incompressible materials with the invariants for shear from
equation (4). This results in the following explicit shear stress-strain relation,

P12 = 2
[

∂ψ

∂I1
+

∂ψ

∂I2

]
γ . (8)

3 Neural network modeling

Motivated by these kinematic and constitutive considerations, we reverse-engineer a family of
invariant-based neural networks that satisfy the conditions of thermodynamic consistency, mate-
rial objectivity, material symmetry, incompressibility, constitutive restrictions, and polyconvexity
by design [27, 39]. Yet, instead of building these constraints into the loss function [13, 48], we hard-
wire them directly into our network input, output, architecture, and activation functions [34–36]
to explicitly satisfy the fundamental laws of physics.

Figure 1: Constitutive neural network for isotropic, perfectly incompressible, hyperelastic materials. The net-
work has two hidden layers with four and twelve nodes and 24 weights. It takes the deformation gradient F as input
and computes the first and second invariants [I1 − 3] and [I2 − 3]. The first layer generates powers (◦)1 and (◦)2 of
the two invariants and multiplies them by the network weights w1,1..12. The second layer applies the identity (◦), the
exponential function, (exp(◦)− 1), and the natural logarithm, (−ln(1− (◦))), to these powers, multiplies them by the
network weights w2,1..12 and sums them up to calculate the strain energy function ψ(F), which defines the Piola stress,
P = ∂ψ/∂F. The networks is selectively connected by design to a priori satisfy the condition of polyconvexity.

Figure 1 illustrates our constitutive neural network for isotropic, perfectly incompressible, hy-
perelastic materials. The network has two hidden layers with four and twelve nodes and a total
of 24 weights. It takes the deformation gradient F as input and computes the first and second
invariants [I1 − 3] and [I2 − 3]. The first layer applies activation functions f1,1 and f1,2 by gen-
erating the first and second powers (◦)1 and (◦)2 of the two invariants, and multiplies them by
the network weights w1,1..12. The second layer applies activation functions f2,1 and f2,2 and f2,3
by generating the identity (◦), the exponential function, (exp(◦)− 1), and the natural logarithm,
(−ln(1− (◦))), from these powers, and multiplies them by the network weights w2,1..12. The sum
of all twelve terms defines the strain energy function ψ(F), from which the network calculates
its output, the Piola stress, P = ∂ψ/∂F. Importantly, the networks is only selectively connected
to a priori satisfy the condition of polyconvexity. The set of equations for this network takes the
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following explicit representation.

ψ(I1, I2)=w2,1 w1,1 [ I1 − 3 ] +w2,2 [ exp(w1,2 [ I1 − 3 ] )− 1 ]−w2,3 ln( 1− w1,3 [ I1 − 3 ] )
+w2,4 w1,4 [ I1 − 3 ]2 +w2,5 [ exp(w1,5 [ I1 − 3 ]2)− 1 ]−w2,6 ln( 1− w1,6 [ I1 − 3 ]2)
+w2,7 w1,7 [ I2 − 3 ] +w2,8 [ exp(w1,8 [ I2 − 3 ] )− 1 ]−w2,9 ln( 1− w1,9 [ I2 − 3 ] )
+w2,10 w1,10 [ I2 − 3 ]2 +w2,11 [ exp(w1,11 [ I2 − 3 ]2)− 1 ]−w2,12 ln( 1− w1,12 [ I2 − 3 ]2)

(9)

Here one of the first two weights of each row becomes redundant, and we can reduce the set of
network parameters from 24 to 20, w = [ (w1,1w2,1), w1,2, w2,2, w1,3, w2,3, (w1,4w2,4), w1,5, w2,5, w1,6,
w2,6, (w1,7w2,7), w1,8, w2,8, w1,9, w2,9), (w1,10w2,10), w1,11, w2,11, w1,12, w2,12 ]. Using the second law of
thermodynamics, we can derive an explicit expression for the Piola stress from equation (6), P =
∂ψ/∂I1 · ∂I1/∂F + ∂ψ/∂I2 · ∂I2/∂F − p F−t,

P = [w2,1 w1,1 +w2,2 w1,2 exp(w1,2 [ I1 − 3 ] ) +w2,3 w1,3 /[ 1− w1,3 [ I1 − 3 ] ]
+ 2 [ I1 − 3 ][w2,4 w1,4 +w2,5 w1,5 exp(w1,5 [ I1 − 3 ]2)]+w2,6 w1,6 /[ 1− w1,6 [ I1 − 3 ]2 ]] ∂I1/∂F
+ [w2,7 w1,7 +w2,8 w1,8 exp(w1,8 [ I2 − 3 ] ) +w2,9 w1,9 /[ 1− w1,9 [ I2 − 3 ] ]
+ 2 [ I2 − 3 ][w2,10w1,10+w2,11w1,11 exp(w1,11 [ I2 − 3 ]2)]+w2,12w1,12 /[ 1− w1,12 [ I2 − 3 ]2 ]] ∂I2/∂F

(10)

and correct it by the pressure term, −p F−t, with p = − 1
3 P : F. The constitutive neural network

learns its weights, θ = {w1..2,1..12}, by minimizing a loss function L that penalizes the error between
the model we want to discover and the experimental data. We characterize this error as the mean
squared error, the L2-norm of the difference between model P(F i) and data P̂i, divided by the
number of training points ntrn,

L(θ; F) =
1

ntrn

ntrn

∑
i=1
||P(F i)− P̂i ||2 → min . (11)

We train the network by minimizing the loss function (11) and learn the network weights θ =
{w1..2,1..12} using the ADAM optimizer, a robust adaptive algorithm for gradient-based first-order
optimization. To comply with physical constraints, we constrain all weights to always remain
non-negative, wi,j ≥ 0.

4 Universal material subroutine

Our objective is to create a seamless simulation pipeline from experiment–via discovered model
and parameters–to simulation. To smoothly integrate our discovered model and parameters, we
create a universal material subroutine that translates the local deformation, for example in the
form of the deformation gradient F, into the current stress, for example the Piola stress P. This sub-
routine operates on the integration point level. Conveniently, some finite element codes provide
the option to define a subroutine that works directly with the strain invariants and returns the first
and second derivatives of the free energy function to calculate the stresses and their derivatives
[1]. Towards this goal, we express the free energy function ψ from equation (9) in the following
abstract form.

ψ =
n

∑
k=1

w2,k f2,k ( f1,j ( f0,i ); w1,k ) (12)
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with

f2 =


w1 (◦)

exp(w1 (◦))− 1
−ln(1− w1 (◦))

...

f1 =


(◦)1

(◦)2

(◦)3

...

f0 =


( I1 − 3 )
( I2 − 3 )
( I3 − 1 )

...

Here f0 maps the deformation gradient F onto a set of shifted invariants, [I1 − 3], [I2 − 3], [I3 − 1],
[I4 − 1], [I5 − 1], that ensure that the strain energy function is zero in the underformed reference
configuration, f1 raises these invariants to the first, second, or any higher order power, (◦)1, (◦)2,
(◦)3, and f2 applies the identity (◦), exponential, (exp(◦)− 1), logarithm , −ln(1− (◦)), or any
other thermodynamically admissible function to these powers. The material subroutine can then
calculate the Piola stress following equation (10) by using the derivatives of the individual func-
tions f0, f1, f2.

P =
n

∑
k=1

w2,k
∂ f2,k

∂( ◦ )
∂ f1,j

∂( ◦ )
∂ f0,i

∂F
(13)

with

∂ f2

∂( ◦ ) =


w1

w1 exp(w1 (◦))
w1 /(1− w1 (◦))

...

∂ f1

∂( ◦ ) =


1
2 (◦)1

3 (◦)2

...

∂ f0

∂( ◦ ) =


∂I1/∂F
∂I2/∂F
∂I3/∂F

...

In implicit finite element codes that rely on a global Newton Raphson iteration, the material sub-
routine also calculates the second derivative for the tangent moduli.

dP
dF

=
n

∑
k=1

w2,k

[
∂2 f2,k

∂( ◦ )2

∂ f1,j

∂( ◦ ) +
∂ f2,k

∂( ◦ )
∂2 f1,j

∂( ◦ )2

]
∂2 f0,i

∂F2 (14)

with

∂2 f2

∂( ◦ )2 =


0

w2
1exp(w1(◦))

w2
1/(1− w1(◦))2

...

∂2 f1

∂( ◦ )2 =


0
2
6 (◦)

...

∂2 f0

∂( ◦ )2 =


∂2 I1/∂F2

∂2 I2/∂F2

∂2 I3/∂F2

...

Figure 2 illustrates the free energy and stress contributions of our universal material subroutine
for isotropic, perfectly incompressible, hyperelastic materials. The free energy function ψ is made
up of twelve terms, based on the two invariants, [I1 − 3] and [I2 − 3], taken to the first and second
powers, (◦)1 and (◦)2, and embedded in the identity (◦), the exponential function, (exp(◦)− 1),
and the natural logarithm, (−ln(1− (◦))). The odd rows illustrate these twelve terms, ψ(I1) and
ψ(I2), for the special case of tension and compression with 0.5 ≤ λ ≤ 2.0, top four rows, and
shear with −2.0 ≤ γ ≤ +2.0, bottom four rows. The even rows underneath each free energy
term illustrate the corresponding Piola stress, P = ∂ψ/∂F, as the derivative of the free energy
with respect to the deformation gradient, for the special case of tension and compression, top, and
shear, bottom.
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Figure 2: Universal material subroutine. Free energy and stress contributions. The free energy function ψ of
our isotropic, perfectly incompressible, hyperelastic material is made up of powers (◦)1 and (◦)2 of the two invariants
[I1 − 3] and [I2 − 3], embedded in the identity (◦), the exponential function, (exp(◦) − 1), and the natural logarithm,
(−ln(1− (◦))), odd rows. The stress P = ∂ψ/∂F is the derivative of the free energy with respect to the deformation
gradient, even rows. The twelve terms represent the twelve nodes of the constitutive neural network in Figure 1 for
tension and compression with 0.5 ≤ λ ≤ 2.0, top four rows, and shear with −2.0 ≤ γ ≤ +2.0, bottom four rows.

Our discovered model translates seamlessly into a modular universal material subroutine within
any finite element environment. Here we illustrate this translation by means of the Abaqus finite
element analysis software suite [1]. We leverage the UANISOHYPER_INV user subroutine to intro-
duce our discovered hyperelastic material strain energy function (9) or (12) in terms of the discov-
ered pairs of network weights and activation functions. Specifically, our user subroutine defines
the strain energy density, UA(1) = ψ, and the arrays of its first derivatives, UI1(NINV) = ∂ψ/∂Ii,
and second derivatives, UI2(NINV∗(NINV+1)/2)= ∂2ψ/∂Ii∂Ij, with respect to the invariants. With
a view towards a potential generalization to anisotropic materials, we introduce an array of gener-
alized invariants, aInv(NINV)= I∗i with i = 1, ...,NINV, where NINV is the total number of isotropic
and anisotropic invariants, and adopt the UANISOHYPER_INV invariant numbering,

I1 → I∗i; i = 1 I4(αβ) → I∗i; i = 4 + 2 (α− 1) + β (β− 1))
I2 → I∗i; i = 2 I5(αβ) → I∗i; i = 5 + 2 (α− 1) + β (β− 1))
J → I∗i; i = 3 .

Here, I4(αβ) = n 0α · (Ft · F) · n 0β and I5(αβ) = n 0α · (Ft · F)2 · n 0β are anisotropic invariants in terms
of the unit vectors n 0α and n 0β that represent the directions of anisotropy in the reference con-
figuration. For example, a transversely isotropic behavior with a single direction of anisotropy,
α = β = 1, introduces two additional invariants, I4 = I4(11) and I5 = I5(11) [36].

Algorithm 1 presents the UANISOHYPER_INV pseudocode that describes how we compute the UA(1),
UI1(NINV), and UI2(NINV∗(NINV+1)/2) arrays at the integration point level during a finite element
analysis. In short, we begin by initializing all relevant arrays and read the activation functions
k f1,k and k f2,k and weights w1,k and w2,k of the n color-coded nodes of our constitutive neural
network in Figure 1 from our user-defined parameter table UNIVERSAL_TAB. Next, for each node,
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we evaluate its row in the parameter table UNIVERSAL_TAB and additively update the strain en-
ergy density function UA, its first derivative UI1, and its second derivative UI2 using the node’s
reference-corrected invariants xInv.

Algorithm 2 details the additive update of the free energy UA and its first and second derivatives
UI1 and UI2 within the user material subroutine uCANN.

Algorithms 3 and 4 provide the pseudocode for the two subroutines uCANN_h1 and uCANN_h2 that
evaluate the first and second network layers for each network node with its discovered activation
functions and weights.

Algorithm 1: Pseudocode for universal material subroutine UANISOHYPER_INV

subroutine UANISOHYPER_INV(aInv, UA, UI1, UI2 )

// Initialize energy, its derivatives, reference configuration, and model
parameters

Set initial array values for UA, UI1, UI2;
Set reference configuration array UANISOHYPER_INV;
Retrieve discovered parameter table UNIVERSAL_TAB;

// Evaluate all n neurons, i.e., rows in parameter table
for k in n do

// Extract activation functions and weights
Extract invariants k f0,k;
Extract activation functions k f1,k and k f2,k;
Extract weights w1,k and w2,k;

// Compute invariant in reference configuration
xInvk = aInv(k f0,k)− aInv0(k f0,k);

// Update energy and its derivatives UA, UI1, UI2

Call uCANN(xInvk, k f1,k, k f2,k, w1,k, w2,k, UA, UI1, UI2 )

// Return updated arrays
Return UA, UI1, UI2;

Algorithm 2: Pseudocode to update energy and its derivatives for UANISOHYPER_INV

subroutine uCANN(xInv, k f1, k f2, w1, w2, UA, UI1, UI2 )

// Process first network layer - provides f1, d f1, and dd f1
w0 = 1.0;
Call uCANN_h1(xInv, w0, k f1);

// Process second network layer - provides f2, d f2, and dd f2
Call uCANN_h2( f1, w1, k f2);

// Update energy and its derivatives UA, UI1, UI2
UA← UA +w2 ∗ f2;
UI1← UI1 +w2 ∗ d f2 ∗ d f1;
UI2← UI2 +w2 ∗ (dd f2 ∗ d f1 ∗ d f1 + d f2 ∗ dd f1);
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Algorithm 3: Pseudocode to evaluate first network layer of UANISOHYPER_INV

subroutine uCANN_h1(k f , w, x)
// Calculate first layer output f, d f, and dd f for activation function k f

if k f = 1 then
f = w ∗ x;
d f = w;
dd f = 0;

else if k f ≥ 2 then
f = wk f ∗ xk f ;
d f = k f ∗ wk f ∗ x(k f−1);
dd f = k f ∗ (k f − 1) ∗ wk f ∗ x(k f−2);

Return f , d f , dd f

Algorithm 4: Pseudocode to evaluate second network layer of UANISOHYPER_INV

subroutine uCANN_h2(k f , w, x)
// Calculate second layer output f, d f, dd f for activation function k f

if k f = 1 then
f = w ∗ x;
d f = w;
dd f = 0;

else if k f ≥ 2 then
f = exp(w ∗ x)− 1;
d f = w ∗ exp(w ∗ x);
dd f = w2 ∗ exp(w ∗ x);

else if k f ≥ 3 then
f = −ln(1− w ∗ x);
d f = w/(1− w ∗ x);
dd f = w2/(1− w ∗ x)2;

Return f , d f , dd f

In Abaqus FEA, we define our model parameters in a parameter table; in our example, in the
UNIVERSAL_PARAM_TYPES.INC file. Each row of this parameter table represents one of the color-
coded nodes in Figure 1 and consists of five terms, an integer k f 0 that defines the index of the
pseudo-invariant xInv, two integers k f 1 and k f 2 that define the indices of the first- and second-
layer activation functions, and two float values w1 and w2 that define the weights of the first and
second layers.

*PARAMETER TABLE TYPE, name="UNIVERSAL_TAB", parameters=5
INTEGER, ,"Index of Pseudo-Invariant, kf0,o"
INTEGER, ,"Index of first hidden layer activation function, kf1,o"
INTEGER, ,"Index of second hidden layer activation function, kf2,o"
FLOAT , ,"Weight of first hidden layer, w1,o"
FLOAT , ,"Weight of second hidden layer, w2,o"
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Within Abaqus FEA, we include the parameter table type definition using

*INCLUDE, INPUT=UNIVERSAL_PARAM_TYPES.INC

at the beginning of the input file. We activate our user-defined material model through the com-
mand

*ANISOTROPIC HYPERELASTIC, USER, FORMULATION=INVARIANT

followed by the discovered parameter table entries. For a fully activated constitutive neural net-
work without any zero weights, the header and the twelve rows of this table reads as follows,
where terms with zero weight can simply be excluded from the list.

*PARAMETER TABLE, TYPE="UNIVERSAL_TAB"
1,1,1,w1,1,w2,1 1,1,2,w1,2,w2,2 1,1,3,w1,3,w2,3 1,2,1,w1,4,w2,4

1,2,2,w1,5,w2,5 1,2,3,w1,6,w2,6 2,1,1,w1,7,w2,7 2,1,2,w1,8,w2,8

2,1,3,w1,9,w2,9 2,2,1,w1,10,w2,10 2,2,2,w1,11,w2,11 2,2,3,w1,12,w2,12

The first index selects between the first and second invariants, I1 or I2, the second index raises
them to linear or quadratic powers, (◦)1 or (◦)2, and the third index selects between the identity,
exponential, or logarithmic function, (◦), (exp(◦)− 1), or (−ln(1− (◦))). Importantly, our user-
defined material subroutine is universal by design. Combinations of the 2×12 weights naturally
introduce popular and widely used material models as special cases. In the following, for illus-
trative purposes, we only highlight examples in terms of the first and second invariants I1 and
I2. However, we can easily expand our user-defined material subroutine to include the third in-
variant I3 or any combination of the I4αβ and I5αβ invariants according to the invariant numbering
scheme NINV. Moreover, the modular structure of our material subroutine facilitates a straightfor-
ward addition of additional first- and second-layer activation functions k f 1 and k f 2 within the
uCANN_h1 and uCANN_h2 subroutines, or even completely novel layers with additional activation
functions uCANN_h* within the hierarchical uCANN subroutine in Algorithm 2.

5 Results

We illustrate the features of our new user material subroutine in terms of three types of examples:
First, we benchmark it with four popular constitutive models, demonstrate how to create the
parameter tables for these models, and compare the simulations against the experimental data
for gray matter tissue. Second, we benchmark it with two newly discovered models, create their
parameter tables, and compare the simulations against both gray and white matter experiments.
Finally, we demonstrate how it generalizes to realistic finite element simulations in terms of six
different head impact simulations.

5.1 Benchmarking with popular constitutive models.

To demonstrate that our universal material subroutine includes popular constitutive models
as special cases, we benchmark our subroutine with four widely used models, translate their
network weights w1,• and w2,• of the first and second layers into their model parameters, provide
the material table for the input file to our material subroutine, and compare each simulation to
experimental data. Table 1 summarizes our discovered non-zero gray matter weights w1,• and
w2,• and model parameters µ, µ1, µ2, a, b, α, β when training our network with combined tension,
compression, and shear data from human gray matter brain tissue [35].
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Table 1: Neo Hooke, Blatz Ko, Mooney Rivlin, Demiray, Gent, and Holzapfel models and parameters. Discovered
non-zero gray matter weights w1,• and w2,• and model parameters µ, µ1, µ2, a, b, α, β for training with combined tension,
compression, and shear data from human gray matter brain tissue [35].

neo Hooke Blatz Ko Mooney Rivlin Demiray Gent Holzapfel
ten+com+shr ten+com+shr ten+com+shr ten+com+shr ten+com+shr ten+com+shr
gray matter gray matter gray matter gray matter gray matter gray matter
n = 15, 17, 35 n = 15, 17, 35 n = 15, 17, 35 n = 15, 17, 35 n = 15, 17, 35 n = 15, 17, 35
w1,• w2,• w1,• w2,• w1,• w2,• w1,• w2,• w1,• w2,• w1,• w2,•
[-] [kPa] [-] [kPa] [-] [kPa] [-] [kPa] [-] [kPa] [-] [kPa]

w•,1 0.7880 1.1522 – – 0.0026 0.4128 – – – – – –
w•,2 – – – – – – 1.0529 0.8760 – – – –
w•,3 – – – – – – – – 1.8399 0.4782 – –
w•,5 – – – – – – – – – – 4.1833 4.7548
w•,7 – – 1.4156 0.6726 2.2122 0.4253 – – – – – –

µ = 1.8159kPa µ = 1.9043kPa µ1 = 0.0021kPa a = 1.8447kPa α = 1.7597kPa a = 39.7815kPa
µ2 = 1.8817kPa b = 1.0529 β = 1.8399 b = 4.1833

Neo Hooke model. The neo Hooke model [60] is the simplest of all models. It has a free energy
function that is constant in the first invariant, [ I1− 3 ], scaled by the shear modulus µ. We recover
it as a special case from our network free energy (9) as

ψ = 1
2 µ [ I1 − 3 ] where µ = 2 w1,1w2,1 . (15)

The neo Hooke model translates into the following material table for our universal material sub-
routine,

*PARAMETER TABLE, TYPE="UNIVERSAL_TAB"
1,1,1,w1,1,w2,1

and activates the first term of our model.

Blatz Ko model. The Blatz Ko model [6] has a free energy function that depends on the second
and third invariants, [ I2 − 3 ] and [ I3 − 1 ], scaled by the shear modulus µ as ψ = 1

2 µ [ I2/I3 +

2
√

I3 − 5 ]. For perfectly incompressible materials, I3 = 1, we recover it as a special case of the
network free energy (9) as

ψ = 1
2 µ [ I2 − 3 ] where µ = 2 w1,7w2,7 . (16)

The Blatz Ko model translates into the following material table for our universal material subrou-
tine,

*PARAMETER TABLE, TYPE="UNIVERSAL_TAB"
2,1,1,w1,7,w2,7

and activates the seventh term of our model.

Mooney Rivlin model. The Mooney Rivlin model [42, 49] is a combination of both free energy
functions (15) and (16). It accounts for the first and second invariants, [ I1− 3 ] and [ I2− 3 ], scaled
by the moduli µ1 and µ2 that sum up to the overall shear modulus, µ = µ1 + µ2. We recover it as
a special case of the network free energy (9) as

ψ = 1
2 µ1 [ I1 − 3 ] + 1

2 µ2 [ I2 − 3 ] where µ1 = 2 w1,1w2,1 and µ2 = 2 w1,7w2,7 . (17)
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The Mooney Rivlin model translates into the following material table for our universal material
subroutine,

*PARAMETER TABLE, TYPE="UNIVERSAL_TAB"
1,1,1,w1,1,w2,1

2,1,1,w1,7,w2,7

and activates the first and seventh terms of our model.

Demiray model. The Demiray model [12] uses linear exponentials of the first invariant, [I1 − 3],
in terms of two parameters a and b. We recover it as a special case of the network free energy (9)
as

ψ =
1
2

a
b
[ exp( b [ I1 − 3 ] )− 1 ] where a = 2 w1,2w2,2 and b = w1,2 . (18)

The Demiray model translates into the following material table for our universal material subrou-
tine,

*PARAMETER TABLE, TYPE="UNIVERSAL_TAB"
1,1,2,w1,2,w2,2

and activates the second term of our model.

Gent model. The Gent model [19] uses linear logarithms of the first invariant, [I1− 3], in terms of
two parameters α and β. We recover it as a special case of the network free energy (9) as

ψ = −1
2

α

β
ln( 1− ( β [ I1 − 3 ] ) where α = 2 w1,3w2,3 and β = w1,3 . (19)

The Gent model translates into the following material table for our universal material subroutine,

*PARAMETER TABLE, TYPE="UNIVERSAL_TAB"
1,1,3,w1,3,w2,3

and activates the third term of our model.

Holzapfel model. The Holzapfel model [26] uses quadratic exponentials, typically of the fourth
invariant, which we adapt here for the the first invariant, [ I1 − 3 ], in terms of two parameters a
and b. We recover it as a special case of the network free energy (9) as

ψ =
1
2

a
b
[ exp( b[ I1 − 3 ]2 )− 1 ] where a = 2 w1,5w2,5 and b = w1,5 . (20)

The Holzapfel model translates into the following material table for our universal material sub-
routine,

*PARAMETER TABLE, TYPE="UNIVERSAL_TAB"
1,2,2,w1,5,w2,5

and activates the fifth term of our model.

Figure 3 compares the neo Hooke, Blatz Ko, Demiray, and Holzapfel models and the finite element
simulation with our universal material subroutine. The graphs show the nominal stress as a func-
tion of the stretch and shear strain for all four models. The dots indicate the tension, compression,
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Figure 3: Neo Hooke, Blatz Ko, Mooney Rivlin, Demiray, Gent, and Holzapfel models and finite element sim-
ulation. Nominal stress as a function of stretch and shear strain for the neo Hooke model ψ = 1

2 µ [ I1 − 3 ] with
1,1,1,w1,1,w2,1, the Blatz Ko model ψ = 1

2 µ [ I2 − 3 ] with 2,1,1,w1,7,w2,7, the Demiray model ψ = 1
2

a
b [ exp( b [ I1 −

3 ] ) − 1 ] with 1,1,2,w1,2,w2,2, and the Holzapfel model ψ = 1
2

a
b [ exp( b[ I1 − 3 ]2 ) − 1 ] with 1,2,2,w1,5,w2,5. Dots

illustrate the tension, compression, and shear data of human gray matter tissue [35]; color-coded area highlights the
contribution to the stress function according to Table 1; top graphs display the discovered model and bottom graphs
display the finite element simulation.

and shear data of human gray matter tissue, the color-coded areas highlights the contributions to
the stress function. The finite element simulation with our universal material subroutine in the
bottom graphs agrees excellently with the discovered models in the top graphs [35] and confirms

14

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 25, 2023. ; https://doi.org/10.1101/2023.07.19.549749doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.19.549749
http://creativecommons.org/licenses/by/4.0/


the correct implementation of the first, seventh, second, and fifth terms of our model.

Taken together, these simple examples demonstrate that we can recover popular constitutive func-
tions for which the network weights gain a well-defined physical meaning and the universal ma-
terial subroutine specializes to widely used constitutive models.

5.2 Benchmarking with newly discovered models.

To illustrate how our universal material subroutine performs for newly discovered models, we
benchmark our subroutine with two recently discovered models for gray and white matter tissue
[35], translate their network weights w1,• and w2,• of the first and second layers into their model
parameters, provide the material table for the input file to our material subroutine, and compare
each simulation to experimental data. Table 2 summarizes our discovered weights w1,• and w2,•
when training our network with individual and combined tension, compression, and shear data
from human gray and white matter brain tissue.

Table 2: Newly discovered gray and white matter models and parameters. Discovered gray and white matter
weights w1,• and w2,• for training with individual and combined tension, compression, and shear data and for human
gray and white matter brain tissue [35].

tension compression shear ten+com+shr tension compression shear ten+com+shr
gray matter gray matter gray matter gray matter white matter white matter white matter white matter

n = 15 n = 17 n = 35 n = 15, 17, 35 n = 18 n = 18 n = 33 n = 18, 18, 33
w1,• w2,• w1,• w2,• w1,• w2,• w1,• w2,• w1,• w2,• w1,• w2,• w1,• w2,• w1,• w2,•
[-] [kPa] [-] [kPa] [-] [kPa] [-] [kPa] [-] [kPa] [-] [kPa] [-] [kPa] [-] [kPa]

w•,1 0.314 0.346 0.403 0.198 0.663 0.180 0.000 0.000 0.000 0.000 1.736 0.281 0.364 0.249 0.000 0.000
w•,2 0.158 0.110 0.063 0.790 0.242 0.260 0.000 0.000 0.000 0.000 0.000 0.000 0.103 0.240 0.000 0.000
w•,3 0.000 0.000 0.000 0.000 0.766 0.184 0.000 0.000 0.000 0.000 0.000 0.000 0.037 0.307 0.000 0.000
w•,4 1.130 0.681 2.373 1.109 1.440 1.420 0.000 0.000 0.893 0.147 1.547 1.077 1.394 0.652 0.000 0.000
w•,5 1.472 1.562 1.186 2.103 1.336 1.711 0.000 0.000 0.376 0.233 1.142 1.215 1.360 1.103 0.000 0.000
w•,6 0.502 0.435 0.000 0.000 0.000 0.000 0.000 0.000 1.308 0.430 1.212 1.148 0.440 0.831 0.000 0.000
w•,7 0.952 0.169 1.853 0.290 0.373 0.190 0.000 0.000 1.004 0.072 0.000 0.000 0.035 0.295 1.386 0.160
w•,8 0.228 0.207 0.059 0.059 0.261 0.357 0.000 0.000 0.087 0.072 0.003 0.030 0.055 0.391 0.240 0.490
w•,9 0.682 0.173 1.947 0.114 0.000 0.000 0.988 0.634 0.840 0.207 0.000 0.000 0.768 0.118 0.000 0.000
w•,10 2.264 0.848 2.274 1.130 0.880 1.987 2.774 1.370 0.000 0.000 1.008 1.413 1.055 0.855 0.000 0.000
w•,11 0.038 0.357 1.223 2.067 1.735 1.551 1.650 1.888 0.000 0.000 1.219 1.133 0.999 1.074 1.889 1.686
w•,12 0.933 0.473 0.000 0.000 0.882 1.425 1.403 1.666 1.105 0.003 2.648 0.823 0.000 0.000 1.179 1.911

Gray matter model. The left columns of Table 2 provide four different models for gray matter
tissue, three for training with the individual tension, compression, and shear data, and one for
training with all three data sets combined. When trained with the individual data sets for tension,
compression, and shear, the neural network in Figure 1 discovers the majority of terms of the
free energy function (9), eleven, nine, and ten terms, while only one, three, and two terms train to
zero. When trained with all three data sets combined, our network uniquely discovers a four-term
model, while the weights of the other eight terms train to zero,

ψ =
1
2

µ2[ I2− 3 ]2 +
1
2

a2

b2
[ exp( b2[ I2− 3 ]2)− 1 ]− 1

2
α1

β1
ln(1− β1[ I2− 3 ])− 1

2
α2

β2
ln(1− β2[ I2− 3 ]2) .

(21)

The non-zero weights translate into physically meaningful gray matter parameters with well-
defined physical units, the four stiffness-like parameters, µ2 = 2 w1,10 w2,10 = 7.60kPa, a2 =
2 w1,11 w2,11 = 6.23kPa, α1 = 2 w1,9 w2,9 = 1.25kPa, α2 = 2 w1,12 w2,12 = 4.67kPa, and the three
nonlinearity parameters, b2 = w1,11 = 1.65, β1 = w1,9 = 0.99, β2 = w1,12 = 1.40. The newly dis-
covered gray matter model translates into the following material table for our universal material
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Figure 4: Gray matter discovered model and finite element simulation. Nominal stress as a function of stretch
and shear strain for the isotropic, perfectly incompressible constitutive neural network with two hidden layers, and
twelve nodes in Figure 1. Dots illustrate the tension, compression, and shear data of gray matter [35]; color-coded
areas highlight the twelve contributions to the discovered stress function according to Table 2; top graphs display the
discovered model and bottom graphs display the finite element simulation.

subroutine.
*PARAMETER TABLE, TYPE="UNIVERSAL_TAB"
2,1,3,w1,9,w2,9

2,2,1,w1,10,w2,10

2,2,2,w1,11,w2,11

2,2,3,w1,12,w2,12 16
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Figure 4 compares the gray matter model and the finite element simulation with our universal
material subroutine. The graphs show the nominal stress as a function of the stretch and shear
strain for the gray matter model. The dots indicate the tension, compression, and shear data of
human gray matter tissue, the color-coded areas highlight the contributions to the stress function.
The finite element simulation with our universal material subroutine in the bottom graphs agrees
excellently with the discovered gray matter model in the top graphs [35] and confirms the correct
implementation of all twelve terms of our model.

White matter model. The right columns of Table 2 provide four different models for white matter
tissue, three for training with the individual tension, compression, and shear data, and one for
training with all three data sets combined. When trained with the individual data sets for tension,
compression, and shear, the neural network in Figure 1 discovers the majority of terms of the free
energy function (9), seven, eight, and eleven terms, while only five, four, and one terms train to
zero. When trained with all three data sets combined, our network uniquely discovers a four-term
model, while the weights of the other eight terms train to zero,

ψ =
1
2

µ1[ I2− 3 ]+
1
2

a1

b1
[exp(b1[ I2− 3 ])− 1 ]+

1
2

a2

b2
[exp(b2[ I2− 3]2)− 1 ]− 1

2
α2

β2
ln(1− β2[ I2− 3]2).

(22)

The non-zero weights translate into physically meaningful parameters with well-defined physical
units, the four stiffness-like parameters, µ1 = 2 w1,7 w2,7 = 0.44kPa, a1 = 2 w1,8 w2,8 = 0.24kPa,
a2 = 2 w1,11 w2,11 = 6.37kPa, α2 = 2 w1,12 w2,12 = 4.51kPa, and the three nonlinearity parameters,
b1 = w1,8 = 0.24, b2 = w1,11 = 1.89, β2 = w1,12 = 1.18. The newly discovered white matter model
translates into the following material table for our universal material subroutine.

*PARAMETER TABLE, TYPE="UNIVERSAL_TAB"
2,1,1,w1,7,w2,7

2,1,2,w1,8,w2,8

2,2,2,w1,11,w2,11

2,2,3,w1,12,w2,12

Figure 5 compares the white matter model and the finite element simulation with our universal
material subroutine. The graphs show the nominal stress as a function of the stretch and shear
strain for the white matter model. The dots indicate the tension, compression, and shear data of
human white matter tissue, the color-coded areas highlight the contributions to the stress func-
tion. The finite element simulation with our universal material subroutine in the bottom graphs
agrees excellently with the discovered white matter model in the top graphs [35] and confirms the
correct implementation of the twelve terms of our model.

Taken together, these eight examples demonstrate that our proposed method generalizes well to
previously undiscovered constitutive functions, which translate smoothly into a universal mate-
rial subroutine that agrees well with the experimental data and previous simulations.

5.3 Realistic finite element simulations.

To illustrate the performance of our universal material subroutine for our discovered gray and
white matter models from equations (21) and (22) within a realistic finite element simulation, we
study six different head impact scenarios. Figure 6 shows our sagittal model that consists of 6182
gray and 5701 white matter linear triangular elements, 6441 nodes, and 12,882 degrees of freedom.
Figure 7 shows coronal model that consists of 7106 gray and 14196 white matter linear triangular
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Figure 5: White matter discovered model and finite element simulation. Nominal stress as a function of stretch
and shear strain for the isotropic, perfectly incompressible constitutive neural network with two hidden layers, and
twelve nodes in Figure 1. Dots illustrate the tension, compression, and shear data of white matter [35]; color-coded
areas highlight the twelve contributions to the discovered stress function according to Table 2; top graphs display the
discovered model and bottom graphs display the finite element simulation.

elements, 11808 nodes, and 23616 degrees of freedom. We embed both models into the skull using
spring support at the free boundaries and apply top-of-the-head, diagonal, and frontal impacts to
the sagittal model and top-of-the-head, diagonal, and lateral impacts to the coronal model.
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Figure 6: Stress profiles for top-of-the-head, diagonal, and frontal impact to the human brain. The finite element
simulations use our universal material subroutine with the discovered models from Table 1 for gray matter from equation
(21) with the four stiffness-like parameters µ = 7.60kPa, a2 = 6.23kPa, α1 = 1.25kPa, α2 = 4.67kPa, and the three
nonlinearity parameters, b2 = 1.65, β1 = 0.99, β2 = 1.40, and for white matter from equation (22) with the three stiffness-
like parameters µ = 0.44kPa, a1 = 0.24kPa, a2 = 6.37kPa, α2 = 4.51kPa, and the three nonlinearity parameters,
b1 = 0.24, b2 = 1.89, β2 = 1.18.

Figure 7: Stress profiles for to top-of-the-head, diagonal, and lateral impact to the human brain. The finite
element simulations use our universal material subroutine with the discovered models from Table 1 for gray matter from
equation (21) with the four stiffness-like parameters µ = 7.60kPa, a2 = 6.23kPa, α1 = 1.25kPa, α2 = 4.67kPa, and
the three nonlinearity parameters, b2 = 1.65, β1 = 0.99, β2 = 1.40, and for white matter from equation (22) with the
three stiffness-like parameters µ = 0.44kPa, a1 = 0.24kPa, a2 = 6.37kPa, α2 = 4.51kPa, and the three nonlinearity
parameters, b1 = 0.24, b2 = 1.89, β2 = 1.18.

Figures 6 and 7 summarize the stress profiles for the six different impact simulations. Clearly, we
observe stress concentrations at the gray and white matter interface, between the cortex and the
corona radiata. These stress concentrations are common after a hit to the head, and are a result
of the structural and mechanical differences between different tissue types: Gray matter consists
primarily of neuronal cell bodies and is rather dense, while white matter consists primarily of
myelinated axons. Upon an impact to the head, forces are transmitted differently through these
tissue types. From Figures 4 and 5, we conclude that gray matter is almost twice as stiff as white
matter, with maximum tensile stresses of 0.4 kPa versus 0.2 kPa for stretches of 1.1, maximum
compressive stresses of -1.1 kPa versus -0.8 kPa for stretches of 0.9, and maximum shear stresses
of 0.5 kPa versus 0.5 kPa for shear of 0.2. This disparity in mechanical stiffnesses leads to localized
stress concentrations at the gray and white matter interface, which can disrupt the structural in-
tegrity of the tissue and trigger diffuse axonal injuries. The simulations predict that these stress
concentrations occur primarily in the frontal and occipital lobes for top-of-the-head impacts, in the
deep white matter tracts for diagonal impacts, in the frontal and parietal lobes for frontal impacts,
and in the gray and white matter interface for lateral impacts.
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Taken together, these six examples demonstrate that our discovered gray and white matter mod-
els translate smoothly into a universal material subroutine that generalizes from the homogeneous
simulations in Figures 3 through 5 to realistic finite element simulations in Figures 6 and 7, where
it robustly predicts heterogeneous stress profiles across complex structures.

6 Discussion

Our universal material subroutine specializes well to popular constitutive models. To
demonstrate that our material subroutine includes popular constitutive models as special cases,
we benchmarked it with four widely used models. Figure 3 compares the neo Hooke [60], Blatz
Ko [6], Demiray [12], and Holzapfel [26] models in the top row to finite element simulations with
our universal material subroutine in the bottom row. All four models only activate a single term
of the subroutine, which translates into a single-row material table, and a single-color stress plot.
For all four models, the finite element simulation with our new material subroutine in the bottom
row agrees excellently with the model in the top row [35]. These simple benchmark examples
demonstrate that we can recover popular constitutive models for which the weights of our consti-
tutive neural network in Figure 1 gain a well-defined physical meaning and the universal material
subroutine takes the functional form of one of the twelve activation functions in Figure 2 [34]. Im-
portantly, to perform a finite element analysis, we no longer need to select a specific material
model; instead, we can simply use our universal material subroutine and selectively activate its
relevant terms through the non-zero entries in the material table.

Our universal material subroutine expands naturally to compressible and anisotropic ma-
terials. For illustrative purposes, we have only demonstrated the versatility of our material sub-
routine for incompressible and isotropic hyperelastic materials [34]. For these, the first index of our
parameter table selects between the first and second invariants, the second index raises them to
linear or quadratic powers, and the third index selects between the identity, exponential, and log-
arithmic functions. This setting seamlessly generalizes to compressible and anisotropic materials by
selecting a first index of three, four, five, ..., NINV to include terms in the third, fourth, or fifth invari-
ants. For example, the subroutine UANISOHYPER_INV supports up to three fiber directions resulting
in a total of 15 invariants. It also naturally allows for higher order powers by selecting a second
index larger than two and facilitates the integration of additional functional forms through a third
index larger than three. In the present study, we have illustrated how to translate the output of
our automated model discovery into the input of our universal material subroutine within Abaqus
[1] using the software’s invariant-based user material subroutine UANISOHYPER_INV. However, the
inherent modularity of our approach ensures that this translation will generalize naturally to ar-
bitrary implicit or explicit nonlinear finite element packages.

Our proposed method generalizes well to previously undiscovered constitutive functions.
Automated model discovery allows us to discover the best possible model, in our case out of 212

= 4096 possible combinations of terms [35]. Traditionally, model developers have rationalized
constitutive models from the shape of experimental curves and then fit their parameters to data.
Throughout the past decades, this has generated dozens of models with one [6, 12, 19, 60], two
[26, 42, 49], three [64] or more terms, almost always in terms of the first invariant. Recent devel-
opments in deep learning now allow us to rapidly screen thousands of possible combinations of
terms and discover the best possible fit. However, when only trained with individual tension,
compression, or shear data, the network tends to overfit the data and discovers a wide variety
of terms [34, 54]. Yet, when trained with all three data sets combined, the network robustly and
repeatedly discovers a small subset of terms in the second invariant for both gray and white matter
[35]. Strikingly, these terms have been overlooked by traditional manual model development. In
retrospect, it seems obvious that the second invariant is well suited to characterize human brain
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tissue : While the first invariant, I1 = λ2
1 + λ2

2 + λ2
3, is quadratic in terms of the stretches λ, the

second invariant, I2 = λ2
1λ2

2 + λ2
2λ2

3 + λ2
1λ2

3, is quartic and seems better suited to represent nonlin-
earities [29]. This is particularly relevant in the small stretch regime of 0.9 ≤ λ ≤ 1.1 that we study
here, where the stretches are small and their nonlinear effects remain minor [10]. For rubber-like
materials, where the stretches in uniaxial tension, equibiaxial tension, and pure shear can easily
reach values of 1.0 ≤ λ ≤ 8.0, the second invariant explodes and seems less well-suited to char-
acterize the stretch-stress response [59]. The excellent agreement of the finite element simulations
with our universal material subroutine in the bottom rows of Figures 4 and 5 with the experimen-
tal data [10] and the discovered models [35] in the top rows confirms the correct implementation
of our discovered gray and white matter models.

Our universal material subroutine uses interpretable material parameters. A characteristic
feature of our proposed modeling strategy is that it features different activation functions, lin-
ear and quadratic, (◦)1 and (◦)2, embedded in the identity, exponential, and logarithmic func-
tions, (◦), (exp(◦)− 1), and (−ln(1− (◦))) [34]. This is in stark contrast to previous approaches
that have used one and the same activation function across all network nodes, for example of
hyperbolic tangent [24, 56], exponential linear unit [31], or softplus squared [4] type. While it
is theoretically possible to manually embed these models into a finite element workflow, their
weights translate into material parameters that have no clear physical interpretation [32]. In con-
trast, our non-zero weights translate into physically meaningful parameters with well-defined
physical units: the stress-like parameters, w1,•w2,•, with the unit kilopascal, and the dimension-
less parameters, w1,•, that govern the exponential [12] and logarithmic [19] nonlinearities. We
conclude that our proposed approach generalizes well to previously undiscovered constitutive
functions, which translate naturally into a universal material subroutine that agrees well with the
experimental data [10] and with previous simulations [34]. Importantly, rather than having to im-
plement a new material subroutine for each newly discovered model, we use a single universal
material subroutine that inherently incorporates all 212 = 4096 possible combinations of terms and
activates the relevant model merely by means of the twelve rows of its parameter table.

Our universal material subroutine generalizes well to realistic simulations. When embedded
into a finite element simulation, our material subroutine translates the local deformation gradient
into stresses and stress derivatives that enter the global force vector and stiffness matrix of the lo-
cal Newton iteration to solve the balance of motion. To illustrate that our new subroutine not only
performs well for the homogeneous examples in Figures 3 to 5, but also for realistic finite element
simulations, we simulate the regional stress distributions across the human brain for six different
head impact scenarios [44]. Figures 6 and 7 emphasize the sensitivity of the stress profiles with
respect to the location and direction of the impact. Depending on impact location and severity,
individuals may experience a broad spectrum of symptoms ranging from headaches, dizziness,
nausea, and vision problems to difficulties with concentration and attention [22]. Top-of-the-head
impacts in Figures 6 and 7, left, affect regions of the skull that are usually very thin and vulnera-
ble to skull fractures, brain contusions, and significant brain damage [52]. In agreement with our
simulated stress profiles, these impacts primarily affect the frontal region of the brain that plays a
crucial role in higher cognitive functions, personality, emotional regulation, and decision-making.
Their symptoms may range from cognitive impairment, memory loss, and motor function deficit
to long-term consequences such as permanent disability or death. Diagonal impacts as in Figures
6 and 7, middle, can cause rotational forces that many result in diffuse axonal injuries. These in-
juries occur when brain structures tear in response to elevated shear stresses [20]. Diffuse axonal
injuries often involve deep white matter tracts and can affect multiple lobes of the brain, including
the frontal, temporal, and parietal lobes, for which our simulation predicts elevated stress levels.
These can have profound effects on brain function and lead to cognitive, behavioral, and motor
impairments associated with difficulties of attention, memory, problem-solving, and emotional
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regulation. Frontal impacts as in Figures 6, right, directly affect the frontal region of the brain,
the side of impact, through coup injury. Importantly, they can also have severe secondary effects
on brain regions opposite to the impact, through countercoup injury, as we conclude from our
simulated stress profiles. Frontal impacts commonly results in mild or severe concussions [22]
or traumatic brain injuries associated with a wide range of symptoms such as headaches, dizzi-
ness, confusion, and memory issues. These can impair higher cognitive functions, personality, and
emotional regulation and lead to changes in behavior, mood, and decision-making. Lateral impacts
as in Figures 7, right, cause the brain to rotate, which can induce diffuse axonal injuries similar
to diagonal impacts [9]. As we conclude from our simulated stress profiles, lateral impacts affect
mainly the gray and white matter interface, which experiences much higher stresses than, for ex-
ample, under top-of-the-head impacts of the same magnitude. Diffuse axonal injuries can result
in cognitive, behavioral, and motor impairments, and affect various aspects of daily life. Lateral
impacts may also lead to contusions, which can compromise brain function and potentially cause
long-term memory loss, personality changes, and emotional instability. Knowing the precise loca-
tion and direction of a head impact is critical because impacts to different brain regions can result
in varying types and severity of injuries [47]. Understanding the stress profiles in response to dif-
ferent types of impact can help assess the extent of an injury, determine the appropriate treatment,
and develop strategies to prevent further head trauma [63].

Limitations. Our results suggest that we can seamlessly integrate automated model discovery
into a finite element workflow through a new universal material subroutine. Nonetheless, our
study has several limitations that point towards possible future extensions. First, while our cur-
rent model is incompressible and isotropic, we can easily expand it to include compressibility
[21] and anisotropy [51] by adding the third, fourth, fifth, and higher order invariants, that we
can simply embed via the first index in our parameter table. Second, we can expand our model
and include higher order powers [64], cubic or quartic, via the second index in our parameter
table. Third, we could generalize our current network architecture from an additive coupling of
the invariants towards a multiplicative coupling [18], which would translate into additional cross-
coupling terms in the tangents of our user material subroutine. Fourth, instead of using a purely
invariant-based formulation, we could also include principal-stretch-based terms [54] that mimic
an Ogden [45] or Valanis-Landel [61] type behavior. Fifth, in addition to the elastic potential that
characterizes the hyperelastic behavior, we could also include one or more inelastic potentials that
characterize viscosity, plasticity, damage, or growth [62].

7 Conclusion

Constitutive modeling is critical to a successful analysis of materials and structures. However, the
scientific criteria for selecting the appropriate model remain insufficiently understood. This work
seeks to address the question whether and how we can automate constitutive modeling within
a finite element analysis. Our work is made possible by a recent trend in physics-based artificial
intelligence, automated model discovery, a new technology that allows us to autonomously dis-
cover the best model to explain experimental data. Automated model discovery comes in various
flavors and uses sparse regression, genetic programming, or constitutive neural networks with the
common goal to discover constitutive models from thousands of combinations of a few functional
building blocks. Here our objective was to integrate automated model discovery into the finite
element workflow by creating a single unified user material subroutine that contains 212 = 4096
constitutive models made up of 12 individual terms. For illustrative purposes, we prototyped this
strategy within the UANISOHYPER_INV environment of the general-purpose finite element software
Abaqus and share our new universal material subroutine publicly on GitHub. For three examples,
we demonstrated that our universal material subroutine specializes well to traditional constitu-
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tive models, generalizes well to newly discovered models, and performs well within realistic fi-
nite element simulations. While we have only prototyped our approach for a specific hyperelastic
material model, for a specific type of automated model discovery, and for a specific finite element
platform, we are confident that our strategy will generalize naturally to more complex anisotropic,
compressible, and inelastic materials, to other types of model discovery, and to other nonlinear fi-
nite element analysis platforms. Replacing dozens of individual material subroutines by a single
universal material subroutine–populated directly via automated model discovery–makes finite
element analyses more accessible, more robust, and less vulnerable to human error. This could
induce a paradigm shift in constitutive modeling and forever change how we simulate materials
and structures.

Data availability

Our neural network, data, and universal material subroutine will be available upon request or at
https://github.com/LivingMatterLab/CANN.
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