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Abstract

Protein quantitative trait loci (pQTLS) are an invaluable source of information for drug target
development as they provide genetic evidence to support protein function, suggest relationships
between cis- and trans-associated proteins, and link proteins to disease where they collocate with
genetic risk loci for clinical endpoints. Using the recently released Olink proteomics data for
1,463 proteins measured in over 54,000 samples of the UK Biobank we identified and replicated
4,248 associations with 2,821 ratios between protein levels (rQTLs) where the strengths of
association at known pQTL loci increased by up to several hundred orders of magnitude. We
attribute this increase in statistical power (p-gain) to accounting for genetic and non-genetic
variance shared by the two proteinsin the ratio pair. Protein pairs with a significant p-gain were
7.6-fold enriched in known protein-protein interactions, suggesting that their ratios reflect
biological links between the implicated proteins. We then conducted a GWAS on the 2,821 ratios
and identified 2,527 nove rQTLSs, increasing the number of discovered genetic signals compared
to the original protein-only GWAS by 24.7%. At examples we demonstrate that this approach
can identify novel loci of clinical relevance, support causal gene identification, and reveal
complex networks of interacting proteins. Taken together, our study adds significant value to the
genetic insghts that can be derived from the UKB proteomics data and motivates the wider use
of ratiosin large scale GWAS.
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INTRODUCTION

Large-scale studies of the blood circulating proteome leverage the natural variation in the general
population to identify genetic and non-genetic factors that control blood protein levels *. Of
particular interest for drug development are genome-wide association studies (GWAS) that
identify protein quantitative traits (pQTLS), as they provide genetic evidence for a causal effect
of the underlying variant — and hence the affected gene(s) — on the levels of the associated
protein(s) and their physiological effects. In cases of cis-pQTLs, where the genetic variant is
located in proximity of the gene coding for the associated pQTL protein, the effect is most likely
through a causal variant that modifies transcription, trandlation or stability of the cis-encoded
protein. More complex, but also more rewarding in terms of potential biological insights, are
trans-pQTLs, as they suggest direct or indirect protein-protein interactions between the —
presumably causal — cis-encoded protein and the associated trans-protein, which can extend into
larger networks when multiple proteins are associated with a same variant and ideally aso

clinical endpoints of interest.

Such genetics-driven insights are of highest value to pharmaceutical companies as they can
inform drug target discovery and validation, generate hypotheses on modes of action, and
suggest biomarkers for target engagement and efficacy. Early successes of pQTL studies % led
to the creation of the UKB PPP consortium, a pre-competitive consortium of 13
biopharmaceutical companies that funded the measurement of over 54,000 UKB samples on the
Olink Explore 1536 affinity proteomics platform. Olink uses a dual antibody binding technique,
termed proximity extension assay (PSA), to quantify the abundance of almost 1,500 blood
circulating proteins (Supplementary Table 1). The UKB PPP consortium recently published
first results from a GWAS that identified over 10,000 pQTLs using this platform °. The Olink
proteomics data itself has been released in April 2023 to the public and can be accessed and
analyzed using the DNAnexus UKB RAP platform (ukbiobank.dnanexus.com). Our aim in this

paper is to explore new methods to enhance pQTL discovery and interpretation, using this
exceptional and freely available data set.

We and others previously developed analysis strategies for GWAS with metabolomics data %, a

field that is similar in many ways to that of pQTL studies. In particular, we showed that partial

9,10

correlations between metabolites can reconstruct metabolic networks ™~ and that the hypothesis-
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free testing of all ratios between metabolites can substantially strengthen the association signals,
in several cases elevating genetic loci out of the background noise **2. Both approaches are
related in that they identify biological relationships between individual molecules through their
shared genetic and non-genetic variance, which can then be integrated into larger metabolic
networks, such as the atlas of genetic influences of the human metabolome * and more recent
versions thereof **. Previous GWAS with proteomics suggest that Gaussian graphical models
(GGMs) built from partial correlations and ratios between protein levels can reveal biologically

relevant protein-protein interactions >, but the approach has never been tested at scale.

Here we hypothesize that a GWAS with ratios between protein levels can identify associations
and novel links between protein pairs that have not been identified using current GWAS
approaches. However, the computational costs of conducting a full-fledged all-against-all ratio
GWAS are prohibitive at this point, estimated to several hundred thousand pounds Sterling on
the DNAnexus AWS-based platform for a single run of a full-fledged all-againgt-all ratio
GWAS, not considering costs associated with the handling of the generated data. This challenge
will be aggravated in the future by the expected increases in proteome coverage.

We therefore take a more economic approach and test genetic associations with ratios between
proteins that are partially correlated and therefore more likely to be related through some
biological process. For each pQTL reported by the UKB PPP consortium that implicated one of
two partially correlated proteins we test the ratio between the levels of these two proteins for
association with the pQTL variant. We then conduct a GWAS on those ratios that increased the
strength of association at an already known pQTL locus (see flowchart of this study in
Supplementary Figure 1). We show in the following that by using this approach we could
identify novel pQTLs that were not discovered by the standard GWAS with protein levels
conducted by the UKB PPP consortium °, and furthermore, that genetic associations with ratios
can uncover biologically relevant links between two or more proteins based on their shared
genetic and non-genetic variance. We discuss selected cases of biomedical interest and provide

an interpretation of why we believe ratios work.
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RESULTS
I dentification of ratio QTLsat established pQTL loci.

We quantify the increase in the strength of an association with ratios by the p-gain, which is
defined as the smaller of the two p-values for the single protein associations divided by that for
the ratio association **. A p-gain of 10 is the equivalent of a nominal p-value for asingle test, in
other words, a p-gain of 10 is expected to be observed by chance in 5% of the cases when ratios
between two random proteins are tested. In the following we require Bonferroni levels of
significance for p-values and p-gains throughout and refer to protein ratio associations with
significant p-gains as ratio QTLs (rQTLs). We split the UKB cohort into a discovery set
comprising 43,000 individuals and a replication set of 8,700 individuals based on the data-field
“ genetic ethnic grouping” being equal / not equal to “ Caucasian” (see UKB documentation on
data-field 22006), and further limit the analysis to samples collected at basdline.

A total of 179,923 ratio — variant pairs were tested for association, selected as the overlap of
11,936 Bonferroni significant GGM edges (p < 4.7x10°® or |pcor| > 1.76x10°, Supplementary
Table 2) and 10,248 Bonferroni significant pQTLs (p < 3.4x10™, Supplementary Table 3)
from the UKB PPP GWAS °. A total of 10,760 ratio associations (5.98%) had a Bonferroni
significant p-gain (> 10* 179,923), and of these 4,248 (41.4%) replicated in the genetically “non-
Caucasian” cohort (p-gain > 10*10,760). The 4,248 replicated ratio associations covered 2,821
unique protein pairs between 1,001 of the 1,463 (68.4%) proteins assayed on the Olink platform
and 926 of the 5,717 (16.2%) genetic variants reported as pQTL variants by the UKB PPP
GWAS (Supplementary Table 4 & 5). The likelihood of finding a significant ratio association
for a protein pair increased with the strength of their partial correlation from around 5 % for
uncorrelated proteins to 9% for |pcor| ~ 0.2 (Figure 1), supporting our choice to prioritize GGM

protein pairs.

A selection of pharmaceutically relevant rQTLs is provided in Table 1, including associations

with a ratio between a cis- and a trans-located protein, where the cis-protein is the target of an

approved drug (Tclin according to Pharos ™).
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I dentification of novel rQTLsina GWASwith ratios.

We then conducted a GWAS on the 2,821 ratios using the genotyped UKB data. For each ratio
we retained the strongest associations that reached a Bonferroni level of significance of p-value <
5x10%/ 2,821, a p-gain > 10" * 2,821, and that were more distant than one million base pairs
from any other significant association with the same ratio. We identified 8,462 ratio-variant pairs
with 2,095 unique variants that satisfied this criterion, which corresponds to a discovery per
tested ratio of on average three independent GWAS signals with a significant p-gain
(Supplementary Table 6, Figure 2, Supplementary Figure 2). The ratios with the largest
number of rQTLs discovered were HBEGF / PDGFA (N=25) and ITGB1BP2 / MITD1 (N=24).
A total of 999 proteins were implicated in at least one rQTL, with a median of eight rQTLs per
protein. The two most frequently occurring proteins were ITGB1BP2 with 259 rQTLs and
EDAR with 237 rQTLs. A total of 2,527 (29.9%) of the 8,462 rQTLs were more distant that 10°
base pairs from any pQTL reported by the UKB PPP GWAS for one of the two proteins in the
respective ratio and thus represent previously non-reported pQTLsS, which corresponds to an
increase of 24.7% in genetic signas derived from the UKB PPP Olink data using ratios
compared to the standard approach.

To investigate whether these rQTLs provided new insights of biomedical interest we annotated
the 2,095 rQTL variants identified in this study and the 5,717 pQTL variants reported by the
UKB PPP GWAS using PhenoScanner '® for association with 446 distinct GWAS traits
(Supplementary Table 6 and Supplementary Table 3, resp.). We identified 322 rQTL variants
that were more distant than 10° base pairs from any pQTL variant on the same GWAS trait,
implicating 874 rQTLs in a total of 4,700 co-associations with GWAS traits (Supplementary
Table7).

These rQTLs provide new evidence to support drug target selection. For instance, rs3764640
associated with the ratio STK11/USP8 (-logio(p) = 13.8, logio(p-gain) = 10.5). The variant is an
intragenic SNP in the STK11 gene and associated with the presence versus absence of psychosis

in Alzheimer’s cases *’. STK11 is a serine/threonine-protein kinase and USP8 may play arolein
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the degradation of activated protein kinases by ubiquitination *®

, which would explain the
significant p-gain for the ratio. This rQTL hence not only supports a role of STK11 in AD
pathology, but also provides further insights into the putative underlying biological pathways,
suggesting that medicinal modification of STK11 or its phosphorylation targets may affect the

AD related phenotypes.

A second example is a region of high LD on chromosome 5 (Figure 3) which is a maor risk
locus for inflammatory bowel disease (IBD) *°. The most likely causal gene prioritized by
multiple GWAS, based on its function and the presence of an amino acid-changing variant, was
Macrophage Simulating 1 (MST1). However, this view has been challenged, proposing
Glutathione Peroxidase 1 (GPX1) as a causa gene instead, supported by biochemical
experiments showing that a co-segregating amino-acid variant in GPX1 reduced the activity of
this antioxidant enzyme %. Here we identified 14 ratios between 16 proteins that associated with
a significant p-gain at this locus (Table 2). Seven were ratios of the pyruvate kinase, liver and
red blood cells (PKLR) with proteins involved in haemoglobin metabolism, including
hydroxyacylglutathione hydrolase (HAGH), hydroxymethylbilane synthase (HMBS), Arginase 1
(ARG1), Biliverdin Reductase B (BLVRB). The biochemical properties of these genes clearly
support a causal role for GPX1 in an oxidative stress related phenotype, likely related to
haemoglobin metabolism in red blood cells. However, four of the ratios were with the cis-
encoded protein Dystroglycan 1 (DAG1) and several proteins not related to red blood cell
metabolism, suggesting the presence of a second, likely independent causal gene at this locus,
which would co-segregate with the GPX1 variant due to the high linkage disequilibrium in this
region. Whether both pathways are driving factors of the IBD association requires further
investigation. Important for our study is that this case exemplifies the kind of insights that can be

drawn from using rQTLs and their value for drug target evaluation and hypothesis generation.
Discovery of novel cis-pQTLs

Observation of cis-pQTLs is considered genetic evidence to confirm the target specificity of the
respective affinity binding assay. Sun et al. found a cis-pQTL for 1,163 (79.5%) of the 1,463
assayed proteins. Here we report 39 additional genetic variants that associated with a ratio that
involves a protein located in-cis and a second protein located in-trans (Table 3). These cis-

pQTLs became presumably discoverable as the trans-proteins in the ratios captured some


https://doi.org/10.1101/2023.07.19.549734
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.19.549734; this version posted July 20, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

unidentified shared non-genetic variance, accounting for which lead to the significant p-gains.
The corresponding 39 proteins include three Olink targets for which no genetic signal had been
found in the UKB PPP GWAS at al (ARHGEF12, EIF4EBP1, INPPL1) and thus provide
genetic evidence that the respective antibodies bind their designated targets. Even by using only
a subset of al possible ratios, we identified 13% of the 300 cis-pQTLSs that were not accounted
for so far, increasing confidence in the target specificity of the Olink platform for these proteins.
More may beidentified in an all-against-all ratio approach.

Refinement of therQTL loci.

For economic reasons, we conducted the GWAS using the genotyped variants only and may
therefore have missed variants of interest. For each of the 8,462 rQTLs we therefore refined the
associations within +/- 500,000 base pairs of the respective lead variant by using the imputed
UKB genotype data, both, in the discovery and in the replication cohort. We provide the
summary statistics for al 8,462 refined regions on FigShare
(doi:10.6084/m9.figshare.23695398). This data can also be used to further refine loci of interest,
for instance to identify potentially multiple independent signals using SUSIE #* or to test for
colocalization with other traits of interest using coloc . To visuaize individual rQTLs we
generated regional association plots for all rQTLs, both in the discovery and the replication
cohort (Supplementary Figure 3).

We then used coloc % to ask whether the two proteins in a ratio shared a same genetic signa
(Q.12), whether any of the two proteins shared a signal with the ratio (Q.13 and Q.23), and
whether the signal for the ratio was shared between discovery and replication cohort (Q.33.repli).
Supplementary Table 6 provides the most likely hypothesis for each of these four questions,
together with its posterior probability. In 7,414 (87.6%) of the 8,462 cases at least one of the
proteins shared a genetic signal with theratio (Q.13 = H4 or Q.23 = H4), in 1,305 (15.4%) cases
both proteins shared a signal with theratio (Q.13 = H4 and Q.23 = H4), and in 489 (5.8%) cases
there was no signal detectable for either of the two proteins alone (Q.13 = H2 and Q.23 = H2 and
Q.12 = HO). A total of 6,775 of the 8,462 rQTLs (80.1%) shared a genetic signal between
discovery and replication cohort (Q.33.repli = H4).

For each rQTL region we designated the variant with the strongest association with the ratio in

the discovery cohort as the lead variant and asked whether the association on this variant
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replicated. Requiring in the discovery cohort p-value < 5x10°%2821 and p-gain > 10*10% 2821
and in the replication cohort p-value < 0.05/8462 and p-gain > 10*8462, we identified 4,181
rQTLs (49.4%) that satisfied this stringent Bonferroni significance criterion. Considering that
80.1% of the rQTLs shared a same genetic signal between discovery and replication cohort, it is

likely that more rQTLs can be replicated when more samples become available.
Why do ratioswork and what do they represent?

With P; and P, representing the levels of two blood circulating proteins (we suppress the indices
of the individual samples) we can fit two linear models to the log-scaled protein levels by
selecting parameters ai, fi, and y such that they minimize the square of the non-explained

variance ¢; in the following equation:
lOg(Pl) = q; + ﬂi X SNP+ Yi X w + & fori € {1,2}

SNP represents the number of effect alleles (0, 1, 2) of a given genetic variant in a given sample
and W denotes some non-identified non-genetic variance that is shared by both proteins. Using

the identity log(A/B) = log(A) —log(B), the ratio can then be written as:

log(Py/P;) = (a; — @) + (By — B2) X SNP+ (Y1 —v2) X W + (& — &).

As the significance level (p-value) of the association with the variant depends on the proportion
of the variance that is explained by the genetic term (SNP) compared to the remaining variance
(W + ¢), the strength of the association with the ratio can increase under two conditions. (1)

when $; and S, have opposite signs, or (2) when y; and y, are of comparable size and non-zero.

1 and B2 having opposite signs implies that the genetic variant increases the levels of one protein
while decreasing those of the other (Figure 4). When working with metabolites, this situation
can occur when the ratio represents a substrate-product pair of an enzyme who's efficacy is
affected by the genetic variant. Many such cases have been reported *2*%. For proteins, a
possible scenario is a genetic variant that increases the expression of one protein which acts as a
suppressor of a second protein. One example is the association of rs1065853, which is in LD
with coding SNP rs7412 in APOE, and the ratio between LDLR and PCSK9 protein levels
(logio(p-gain) = 67.2). PCSK9 binds LDLR and targets it for degradation 2*. PCSK9's
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availability to degrade LDLR in turn is limited by binding to apolipoprotein B %, the levels of
which are associated with rs7412 in APOE.

If only one of the proteinsis affected by the genetic variant, then observing a significant p-gain
implies that y, and y, must be of comparable size and non-zero, and the association with the ratio
indicates the presence of some non-genetic variance that is shared by both proteins. For instance,
ITGB1BP2 has only five trans-pQTLs in the UKB PPP GWAS of moderate effect size, but
occurs with 26 different ratios in 259 rQTLs in our GWAS, the strongest with a log10(p-gain) =
1115.5 for the association of rs4680 with the ratio COMT / ITGB1BP2 at the COMT gene locus.
The association of ITGB1BP2 with rs4680 was not significant (p = 0.69). The ratio with the
largest number of rQTLs in the GWAS was ITGB1BP2 / MITD1, which had 24 rQTLs
compared to only 2 pQTLs for MITD1 in the UKB PPP GWAS (Figure 5). Intriguingly, both
proteins are highly correlated (Pearson r? = 0.86), suggesting that their correlation is driven by
some shared, yet not identified factor. The strongest correlations with one of the clinical
biochemistry and blood traits available in UKB was with platelet count (r* = 0.12 with
ITGB1BP2, r* = 0.10 with MITD1, and r? = 0.025 with the ratio), which are too weak to explain
the full correlation between both proteins, suggesting that a driving factor for this association is
related to some more specific, probably blood cell type related trait that is not readily availablein
the UKB phenotype dataset.

There are thus multiple possible causes that can lead to a significant p-gain in a ratio association,
as schematized in Figure 4, some rQTLs revealing the presence of shared genetic variance while
others suggest the proteinsin the ratio being linked through some shared non-genetic processes.

What can belearned fromrQTLS?

To evaluate the enrichment in protein pairs that were linked through significant ratio associations
and/or GGM edges we used the STRING database of protein-protein interactions
(Supplementary Table 5). Of the 2,281 protein pairs, 168 pairs (6.0%) had a protein-protein
interaction link in the STRING database with a high confidence score (> 0.7), while random
pairs between these proteins had on average only 22.1 links (s.d. = 4.2, based on 100 samplings),
which corresponds to a 7.6-fold enrichment. For comparison, of the 11,936 protein pairs linked
through significant GGM edges, 465 pairs (3.9%) had a protein-protein interaction reported in
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STRING, while random sampling yielded an average of 89.4 (s.d. = 9.4), which correspondsto a
5.2-fold enrichment for proteins linked through GGM edges alone.

Using cytokine and cytokine-receptor annotations from CytokineLink 2° we identified 39 protein
pairs with an rQTL that involved cytokine-cytokine pairs, 15 receptor-receptor pairs, and 9
cytokine-receptor pairs, seven of which were known and two were new (CSF1:.LTBR and
CXCL9:TNFRSF9). CytokineLink predicted 1,542 cytokine-cytokine interactions between 77
cytokines from the Olink platform (out of 77*76/2 = 2,926 possible interactions). The number of
cytokine pairs that were involved in rQTLs was significantly enriched (30 out of 39 compared to
1,512 out of 2,887 withno rQTL, p < 0.002, Fisher exact test).

When multiple proteins associate in rQTLs with a same variant, networks of related proteins can
be constructed. Here we present an example of how a single pQTL around a pharmaceutically
interesting protein can be extended into a network of potentially interacting proteins. NFATC1
(Nuclear Factor Of Activated T Cells 1) is key transcription factor and regulator of the immune
response %’ and a molecular target for immunosuppressive drugs such as cyclosporin A %,
NFATC1 has been implicated in the pathogenesis and targeted therapy of hematological
malignancies . rs657693 is a cis-pQTL for NFATC1 in the UKB PPP GWAS and one of only
two genetic association for this protein. Here we identified rs657693 as an rQTL for the ratio of
NFATC1 with 16 other proteins (AXIN1, BACH1, BANK1, BCR, CASP2, CD69, EIF4Gl1,
FADD, FOXOL, IKBKG, INPPL1, IRAK1, LBR, PTPN6, SPRY2, TJAP1, Table S3), none of
which had a significant association with this variant alone. Nine of the 16 proteins had a second
replicated rQTL in aratio with NFATC1 elsewhere in the genome, and in all of these cases the
other protein in the ratio was the driving pQTL, with five of them being cis-pQTLs (AXIN1,
BANK1, FOXO1, SPRY2, TJAPL). Our GWAS identified additional rQTLs, including cis-
rQTLs for BCR (rs713617), CD69 (rs7309767), and FADD (rs7939734). Using IPA we
identified a number of functional links between these proteins, generating a network of proteins
that can now be linked through genetic evidence and rQTLs to the NFATC1 locus, potentially

supporting the development of new immunosuppressive drugs (Figure 6).

To further explore the benefits of all-against-all ratios, we computed the associations of SNP
rs12075 with all possible rations between 76 cytokines that are in the Olink panel. rs12075
(1:159175354:G:A) is an amino acid changing variant (c.125G>A, p.Gly42Asp) in the atypical

11


https://doi.org/10.1101/2023.07.19.549734
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.19.549734; this version posted July 20, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

chemokine receptor 1 gene (ACKR1 aka DARC). The glycine variant defines the Fy? alele and
the aspartate variant the Fy® allele of the Duffy blood group system *'. DARC is clinically
important as it is the entry point for the human malaria parasite Plasmodium vivax. Individuals
with two copies of the FY? allele or a silenced FY® allele are resistant to Plasmodium vivax
infection. A structural basis for DARC binding to Plasmodium vivax Duffy-binding protein
involving the region around the p.Gly42Asp variant has been proposed ¥,

Eleven cytokines associated in the UKB PPP GWAS at the ACKR1 locus (CCL2, CCL7, CCLS,
CCL11, CCL13, CCL14, CCL17, CCL26, CXCL1, CXCL6, CXCLS8; Supplementary Table 3).
CCL7 and CCLS8 protein levels increased with copy number of the Fy? allele, while levels of the
other nine cytokines decreased with that variant. DARC controls chemokine levels through
promiscuous binding *. The associations with these cytokines are thus matching the function of
DARC. In our discovery study, rs12075 associated with three ratios (CCL13 / CCL8, CCL2 /
CCL7, and CCL11/ CCL7; Supplementary Table 4), the strongest association of rs12075 was
with the ratio between CCL8 and CCL13. Testing the association of rs12075 with al possible
ratios between the 76 cytokines on the Olink panel implicated twelve additional cytokines
(CCL3, CCL4, CCL14, CXCL11, CXCL12, HGF, IL7, PDGFA, TGFB1, THPO, TNFSF13,
TNFSF14) in significant (p-gain > 10™) rQTLs (Supplementary Table 8 and Figure 7). It goes
beyond the scope of the present study to interpret these associations in further detail. The take-
away message here is that using ratios we not only identified additional cytokines that associate
with the Duffy blood type, but also suggest interactions between specific pairs of proteins, like
CXCL6 that occurs in a significant ratio with CCL8, but not with CCL7. Especialy at
pleiotropic loci, where multiple proteins associate with a clinically relevant variant, it may be
worthwhile to conduct this kind of all-against-all ratio analysis, using a subset of functionally
related protein, as done in this example, or even extending the ratio analysis to the full protein

panel.
DISCUSSION

This is, to the best of our knowledge, the first GWAS at scale with ratios between blood
circulating protein levels, using the recently released Olink proteomics data for almost 1,500
proteins measured in blood plasma of 54,000 participants of the UK Biobank. Using ratios, we

observed increases in the strengths of association by up to several hundred orders of magnitude,
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involving two thirds of the proteins targeted by the Olink platform, increasing the strength of
association at 16% of the pQTLs from the UKB PPP GWAS. We further reported novel cis-
pQTLs for 13% of the 300 Olink proteins for which such a target-confirmatory QTL had not
been identified so far and uncovered over 2,500 novel QTLs with ratios at loci that had not been
highlighted by the UKB PPP GWAS using single protein levels, which corresponds to a 25%
increase in the discovery rate.

We argue that ratios can account for unidentified genetic and/or non-genetic variance that is
shared between the associated protein pairs (Figure 5). rQTL protein pairs were 7.2-fold
enriched in known protein-protein interactions, demonstrating that they add substantial new
information to hypothesis generation and providing a broad set of protein-protein relationships
that can be mined using network pharmacology (NFATC1 example) ** and systems immunology
(ACKR1 example) % approaches. We further reported selected examples that illustrate novel
insights gained from using ratios, adding new information to established loci (GPX1 with IBD
example) and identifying entirely novel loci (STK11 with AD example).

As we could only discuss a fraction of the biologically relevant findings in this paper, we freely
share the full summary statistics of the GWAS using array-genotyped data and of the refinement
using imputed genotype data, together with the corresponding Manhattan and regional
association plots. These data represent a rich resource for biomedical hypothesis generation that
complements the data generated by the UKB PPP GWAS and should be of particular value for
pharmaceutical drug target devel opment.

The following caveats apply: We analyzed only a subset of all possible ratios. Although the
likelihood of finding a significant ratio association for a protein pair increased with the strength
of their partial correlation, even for uncorrelated proteins this likelihood remains high (5%),
supporting the testing of all possible ratio in future GWAS, if resources permit. Indeed, we hope
that the present study shall motivate further methods development that could render all-against-
all ratio testing computationally feasible, and maybe also more research into formal statistical
methods that may generalize the analysis of combinations of quantitative traits as dependent
variablesin GWAS.

It should also be noted that affinity proteomics technologies have numerous limitations, such as

effects of epitope changing variants, non-specific binding, and uncertainty about target
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specificity. However, the many biologically relevant associations that have been derived using
data from the Olink and other affinity proteomics platforms suggest that these concerns are of
minor relevance. The fact that we identified 39 novel cis-pQTLs provides further confirmatory

evidence for the target specificity of their respective affinity binders.

Taken together, we hope to have demonstrated the benefits of analyzing ratios between protein
levels at scale, an approach that we believe has already shown its benefits in the metabolomics
field. Future work is needed to further speed up ratio associations, especially in the light of
broadening proteomics panels and their increased application in large-scale cohorts. Also, further
theoretical development and generalization of the concept of using ratios in more thorough
statistical terms may be beneficial, as there are similarities in the approach to what could be
conceived as “local Mendelian randomization”.

METHODS

Data sour ces. All data was obtained through the UKB RAP system on the DNAnexus platform
(data dispensed on April 23, 2023; application id 43418) for samples satisfying the criterion
“Number of proteins measured | Instance 0" is greater than “0O”
(https://biobank.ndph.ox.ac.uk/showcase/field.cgi 2d=30900). Imputed genotypes ' were
extracted from BGEN files (https.//biobank.ndph.ox.ac.uk/showcase/label.cgi 71 d=100319) using

bgenix *® and reformatted to text format (.raw) using plink * for further analysisin R. Phenotype

data for age, sex, BMI, the first three genotype principal components, and the classification of
genetic ethnic grouping were extracted usng the DNAnexus cohort browser and the table

downloader app (https.//ukbiobank.dnanexus.com/landing). Details on genomics and proteomics

data QC and preprocessing are available in the accompanying UK Biobank resource files
(available at the respective showcase links given above).

The downloaded proteomics data set comprised NPX values for 1,463 proteins for 52,749
participants. NPX values correspond to relative protein concentrations and are reported on a log-
scale. Data analysis was restricted to 52,705 samples that were collected at baseline (instance 0).
Samples were split into a discovery set of 43,509 samples identified as Caucasian based on the
genetic ethnic grouping variable and a replication set of 9,196 ethnically diverse samples
(https://biobank.ndph.ox.ac.uk/showcase/field.cgi 2d=22006). A total of 5,717 unique variants
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corresponding to 10,248 pQTLs of the UKB PPP GWAS were analyzed. These pQTLs were
obtained from Supplementary Table 6 of Sun et al. °.

Graphical Gaussian model. Partial correlations were computed using the R function
ggm.estimate.pcor from the package GeneNet “°. All baseline samples were used for this step. As
this analysis does not allow for the presence of missing values, samples with more than 20%
missing protein values were removed (N=1,840), followed by proteins that were missing in more
than 20% of the samples (N=3). The remaining missing data points were imputed to minimum
(N=37,419). A total of 11,936 partia correlations were identified at a Bonferroni significance
cut-off p-value of 4.7x10°®. The smallest r? at this level was 0.00176.

Statistical analysis. Linear models with inverse-normal scaled proteomics data (NPX values) as
dependent variables and genotype, age, sex, and the first three genotype principal components
were computed using the R function “Im”. For ratios, inverse-normal scaled differences between
the two NPX values were used, based on the relation log(A/B) = log(A) - log(B) and the NPX
values representing protein levels on alog-scale. The p-gain for associations with ratios between
two protein traits was computed as the smaller of the two p-values for the individual trait
associations divided by the p-value for the ratio association . Logl0-scaled p-values and p-
gains were used throughout to avoid numeric overflows and rounding of small p-values to zero.

For all pairs of proteins with a Bonferroni significant partial correlation al variants that were
associated with at least one of the two proteins in a pQTL in the UKB PPP GWAS were
identified. For these variant — protein pairs the single protein and ratio association statistics were

computed using the discovery and replication samples separately.

GWAS analysis. The GWAS on 2,821 ratios was conducted using plink2 * on the UKB RAP
platform hosted by DNAnexus with the --glm option, using age, sex, and the first the genoPCs as
covariates. We used the array-genotyped UKB data with the following variant filtering options: -
-geno 0.1, --hwe 1e-15, --mac 100, --maf 0.01, --mind 0.1.

Other sources of data. The STRING database of proteins and their functional interactions was
used to identify known relationships between proteins *. The database was downloaded from
https.//string-db.org/cgi/download (version 11.5, accessed 5 May 2023). Annotated cytokine and

cytokine-receptor pairs were downloaded from CytokineLink 2
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(https://github.com/korcsmarosgroup/Cytokinelink, accessed 30 June 2023). Drug target
development status was obtained from NCBI Pharos *° (accessed 11 July 2023). Variants were
annotated with PhenoScanner API *° using proxies based on EUR LD r?>0.8 (accessed 5 May -
11 July 2023). LocusZoom “* was used to generate regional association plots with LD annotation

(EUR population). GeneCards ** was used to obtain general information about the associated

genes and proteins.
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TABLES

Table 1. rQTLsthat implicate drug targetsin the cis-position. Selected rQTLs that include a
ratio between a cis- and a trans-located protein, with the cis-protein being the target of an
approved drug (Tclin according to Pharos *°). The negative logo-transformed p-values for the
association with the single proteins (-logP.1, -logP.2) and the ratio (-logP.3) and the logio-
transformed p-gain (logPgain) for the rQTL are reported, the GWAS traits was annotated using
PhenoScanner *° (details arein Supplementary Table 4).
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CisProtein Ratio Chr Pos rsiD -logP.1 -logP.2 -logP.3 logPgain GWAS ttraits
CA6 CAG6/DNER 1 9,034,598 rs3765963 2878.1 0.6 3235.0 356.9
LEPR IL6ST/LEPR 1 66,073,982 rs10399687 0.1 225.1 270.6 455 Blood cell traits
SLAMF7 ICAM3/SLAMF7 1 160,720,074 rs11581248 3.7 2094.1 2631.3 537.2
NECTIN4 NBL1/NECTIN4 1 161,049,509 rs35434391 0.4 396.6 643.6 247.0 Blood cell traits
SELP SELP/VSIR 1 169,563,951 rs6136 349.1 0.3 663.3 314.2 Activated partial thromboplastin time
DPP4 DPP4/ITGB1 162,930,725 rs13015258 229.0 0.9 3175 88.5
PDCD1 PDCD1/TNFRSF8 242,801,752 - 271.2 0.3 364.4 93.1
CD38 CD38/RELT 15,775,851 rs28703311 894.1 0.9 1030.5 136.4
PDGFRA | IL6ST/PDGFRA | 4 | 55139771 | rs35597368 0.6 364.8 439.3 74.4 | mpedance of thef'lg%vs Peak expiratory
F2R DAGVTF2R 5 76,028,124 rs168753 0.4 56.1 276.6 220.5
FLT4 FLT4/ICAM2 5 180,057,293 rs34221241 389.3 0.6 516.6 127.4
IGF2R CTSO/IGF2R 6 160,409,894 rs75474551 106.3 366.8 434.3 67.5
AKR1B1 AKR1B1/SUGT1 7 134,135,621 rs2229542 92.6 0.4 172.2 79.5
IMPA1 IMPA1/TBCC 8 82,583,771 rs1967328 176.4 0.9 329.5 153.0
CAl CA1/HMBS 8 86,256,210 rs12544332 35.7 0.5 114.2 78.5 Blood cell traits
CA3 CA1/CA3 8 86,351,051 rs2072696 6.7 109.1 387.6 278.6
CD274 CD274/EFNA4 9 5,453,260 rs822340 446.6 0.6 500.4 53.8 Ulcerative colitis
IL2RA IL2RA/TNFRSF4 10 6,095,928 rs12722497 1440.8 0.1 1892.6 451.8 Streptococcal throat infections
LAG3 LAG3/VCAM1 12 6,885,076 rs3782735 137.5 0.6 169.1 31.6
TXNRD1 NUDTS/TXNRD1 12 104,707,047 rs201402862 0.4 20.3 41.8 215
Age at menarche, Blood cell traits, Body
FLT3 FLT3/FLT3LG 13 28,637,838 rs9554228 34.2 36.0 53.9 17.8 size, mass and fat traits, Rheumatoid
arthritis
IL4AR CKAP4/IL4R 16 27,327,214 rs8060025 0.3 449.7 497.6 48.0 Asthma, Eosinophils
CABA AGXT/CABA 16 87,927,222 rs55870502 0.9 2387.8 3738.1 1350.3 Basophils
Basal metabolic rate, Systolic blood
COMT COMT/HNRNPK 22 19,951,271 rs4680 1008.4 0.7 3043.4 2035.1 pressure, Body fat traits
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Table2: Novel cis-pQTLs. List of 39 genetic variants that associated with aratio that involves a
protein located less than IMB from the variant (Cis protein) and that has no cis-pQTL in the
UKB PPP GWAS. The negative logo-transformed p-values for the association with the single
proteins (-logP.1, -logP.2) and the ratio (-logP.3) and the log;o-transformed p-gain (logPgain) for
therQTL arereported (detailsarein Supplementary Table 6).

CisProtein Ratio Chr Pos rsiD -logP.1 | -logP.2 | -logP.3 | logPgain
MNDA MNDA/NCF2 1 158,788,542 rs2875712 57 0.3 16.9 11.2
EPCAM EPCAM/GPA33 2 47,773,540 rs6708696 1.6 13 155 13.9
ANXA4 ANXA4/LACTB2 2 70,033,584 rs2228203 11.6 3.8 232.7 2211
TMSB10 DBI/TMSB10 2 85,133,861 rs13409738 0.0 8.1 36.8 28.7
NCK2 NCK2/PLA2G4A 2 106,452,253 rs10169998 4.6 0.0 36.4 318
TGFBR2 TGFBR2/TNFRSF1A 3 30,729,510 | rs114836705 8.2 0.4 25.0 16.9
PPP1R2 PPP1R2/SNAP23 3 195,238,559 rs34950021 1.9 0.8 26.6 24.7
CXCL3 CXCL3/CXCL5 4 74,797,139 rs352024 0.6 514.2 | 1229.3 715.1

FYB1 FYBLPPP1R12A 5 39,338,358 rs3822462 18 0.7 14.1 12.3
DAB2 DAB2/NCK2 5 39,427,481 rs75839063 25 0.0 20.3 17.8
HBEGF HBEGF/PDGFA 5 139,720,400 rs2237077 7.6 0.8 311 234
PDLIM7 PDLIM7/SRC 5 176,922,643 rs335428 75 1.0 28.9 214
MPIG6B MPIGEB/PLXNA4 6 31,346,193 rs2507982 0.3 51 185 135
MAP3K5 MAP3K5/MAVS 6 136,888,889 rs56379668 4.0 1.9 317 277
VTAL RWDDLVTAL 6 142,641,606 rs12189801 0.6 42 211 16.9
LAT2 CLIP2/LAT2 7 73,780,812 rs512023 4.9 4.8 59.6 54.7
CASP2 CASP2/NUB1 7 142,986,684 rs3181165 2.8 0.5 14.3 114
PLPBP PLPBP/RWDD1 8 37,635,649 rsr463174 8.7 11 37.9 29.2
EIF4EBP1" DNPHY/EIF4EBP1 8 37,884,310 rs28797500 0.5 4.3 18.4 14.1
LYN KIFBP/LYN 8 56,785,133 rs6985703 0.2 55 185 12.9
INPPL1" BANKYVINPPL1 11 72,064,041 rs79658353 0.1 17 13.0 11.3
PPME1 ATG4A/PPMEL 11 73,948,875 rs79153613 0.6 9.5 30.1 20.6

ARHGEF12" | ARHGEF12/AXIN1 11 120,278,477 rs34172482 4.6 0.1 37.7 331
IRAG2 CRACR2A/IRAG2 12 25,243,115 rs1908946 0.3 35 16.4 12.8
METAP2 EIFAB/METAP2 12 95,830,338 rs159853 0.6 8.9 274 185
TRIAPL TMSB10/TRIAPL 12 120,902,007 rs542407 0.3 3.6 14.7 11.1
SRP14 APEX1/SRP14 15 40,325,829 rs6492926 0.0 10.9 253 14.4
SNAP23 CDG69/SNAP23 15 42,808,309 rs73404730 0.8 17 21.2 19.6

PPIB MANFPPIB 15 64,780,971 rs73452261 1.0 19 29.2 27.3
MESD MANF/MESD 15 81,279,706 rs57967327 0.3 54 74.5 69.1
CORO1A CORO1A/TBC1D5 16 30,147,265 rs7201780 4.9 0.0 18.2 13.3
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STX4 DNMBP/STX4 16 31,004,812 rs12445568 0.3 6.7 20.5 139
AHSP AHSP/CA2 16 31,463,216 rs4889659 9.9 0.0 26.3 16.4
VPS53 SCAMP3/VPS53 17 400,933 rs9916346 0.3 2.9 14.7 11.8
STK11 STK11/USP8 19 1,207,238 rs3764640 33 0.6 138 10.5
CDKN2D CDKN2D/TACC3 19 9,868,278 rs10420364 0.5 6.7 455 38.7
CDC37 CDC37/PLA2G4A 19 10,523,086 rs10854116 4.4 0.8 47.0 42.6
TBCB MITD1/TBCB 19 36,593,915 rs61741470 0.3 9.7 130.7 121.0
CRKL CRKL/DBNL 22 21,139,239 rs117858197 16 0.5 34.8 331

“This protein has no pQTL inthe UKB PPP GWAS

23


https://doi.org/10.1101/2023.07.19.549734
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.19.549734; this version posted July 20, 2023. The copyright holder for this preprint (which

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Table 3. Association of selected ratios with rs9858542. Ratios have been arranged such that all

associations are negative with the copy number of the G allele of variant 3:49701983.G:A.

RATIO Protein name 1 Protein name 2 -logP.1 | -logP.2 | -logP.3 | logPgain
HMBS/PKLR Hydroxymethylbilane Synthase 33 82 457 375
ARG1/PKLR Arginase 1 21 8.2 30.3 22.1

BLVRB / PKLR Biliverdin Reductase B 0.2 8.2 29.4 21.2

Hydroxyacylglutathione
HAGH / PKLR Hydrolase Pyruvate Kinase L/R 04 82 23.0 14.8
Phospholysine phosphohistidine
LHPP/PKLR inorganic pyrophosphate 12 82 220 13.8
phosphatase
2'-Deoxynucleoside 5'-
DNPH1/PKLR Phosphate N-Hydrolase 1 0.9 8.2 20.0 11.8
Proteasome 26S Subunit, Non-
PSMD9/ PKLR ATPase 9 14 8.2 31.6 234
AHsp/BLVRB | APPAHemodiobinSDIZNg | gijiverdin Reductase B | 132 02 | 314 183
AHSP/ CA2 Alpha HemOP?:)‘:g': S@bIlizZing | aponic Anhydrase 2 13.2 0.8 24.0 10.8
Ubiquitin-associated
HMBS/UBAC1 | Hydroxymethylbilane Synthase domain-containing 33 25 16.7 13.4
protein 1
CD84/ DAG1 SLAM family member 5 0.0 15.1 34.7 19.6
FoR / DAGL Coagulation Factor Il Thrombin 05 151 62.1 470
Receptor
H in Binding EGE Lik Dystroglycan 1
HBEGF / DAGL eparin Binding EGF Like 2.6 15.1 27.9 12.8
Growth Factor
SCARF1/DAGL | Scvenger Receptor ClassF 0.1 15.1 41.9 26.8
Member 1
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Figure 1. Percentage of Bonferroni significant protein ratio pair associations (p-gain > 10*
179,923) as a function of the partial correlation |pcor| between the protein pair. A moving
average with awindow size of 10,000 data points was used.
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Figure 2: 2D-Manhattan plots. (a) The position of the rQTL plotted against the position of the
genes coding for the two proteins in the ratio, the stronger of the two single protein associations
is in blue, the weaker in red; (b) The positions of the genes coding for the two proteins in an

rQTL ratio plotted against each other, darker colors indicate multiple rQTLs with a samerratio.
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Figure 3: Regional association plot for the association of the HAGH / PKLR ratio at a
major 1BD locus on Chr3. Plot created using LocusZoom .
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Figure 4: Possible scenarios that can lead to a significant p-gain in a ratio association. P1
and P2 are the proteins in the ratio that associates with the genetic variant SNP, X is the causal
cis-encoded protein in the case of a trans-rQTLs; W denotes some unidentified shared non-

genetic variance.
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Figure 5: Example of aratio that leads to the discovery of novel signals. Manhattan plots for
the GWAS with (a) ITGB1BP2, (b) MITD1, and (c) theratio ITGB1BP2 / MITD1. Associations
with p-values exceeding 10%° are indicated by red triangles. Vertical linesindicate 24 Bonferroni
significant (p < 5x10%/2821) rQTLs for the ratio. Manhattan plots for all 2,821 ratio GWAS are
available as online as explained in Supplementary Figure 1.
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Figure 6. NFATC1 network. Protein-protein interactions obtained using Ingenuity Pathway
Analysis (IPA)’s connect function with default settings (accessed 4 July 2023); Blue arrows
indicate IPA interactions with the following abbreviations: A: activation, E: expression, I:
inhibition, LO: localization, P: phosphorylation, PP: protein-protein interaction, RB: regulation
of binding, T: transcription; Numbers in parentheses indicate multiple sources of evidence;
Green arrows: rQTLs for the ratio of NFATC1 with the respective proteins at a cis-location;
Orange: multiple variants on Chrl0 around 65 MB associated with ratios between the listed
proteins and NFATC1,; Red: rs657693 at the NFATCL1 gene locus associated with all depicted
proteinsin aratio with NFATC1 (details arein Supplementary Table 4).
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Figure 7. P-gain matrix for the association of rs12075 with all ratios between cytokines.
SNP rs12075 (1:159175354:G:A) is an amino acid changing variant in ACKR1 aka DARC
(c.125G>A, p.Gly42Asp) and defines the co-dominant Duffy blood type alleles Fy? (Gly) and
Fy® (Asp). Limited to associations with -log10(p-value) > 10 or log10(p-gain) > 10 (full matrix
in Supplementary Table 6); Vaues on the diagonal are -log10(p-value) for the single protein
associations; Values in the off-diagonal cells are -loglO(p-gain); The directionality of the
associations with the copy number of the Fy® alele are indicated by the sign and colored red
(negative association) and green (positive association). Note that the -log10(p-value) for the
ratios can be obtained by adding the log10(p-gain) of the ratio to the larger of the two -log10(p-
value) of the single protein associations (full datain Supplementary Table 8).
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SUPPLEMENTARY TABLES

Supplementary tables are provided in EXCEL format.

ST1 1,463 Olink protein targets

ST2 10,248 pQTLs (from Suppl. Tab. 6 in Sun et al.)

ST3 11,936 GGM edges

ST4 4,248 replicated variant-ratio associations (rQTLS)

ST5 2,821 ratiosimplicated in the 4,248 replicated rQTLs

ST6 8,462 rQTLsdiscovered in a GWAS with the 2,821 ratios

ST7 Novel rQTLsthat overlap GWAS traits reported in PhenoScanner

ST8 P-gain matrix for rs12075 association with all-against-all ratios of 76 cytokines
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SUPPLEMENTARY FIGURES

Extract pQTLs from
UKB PPP GWAS,
Sun et al., 2022

Compute partial
correlations
ween all proteins

52,705 UKB samples
1,473 Olink proteins

10,248 pQTLs

5,70 e 11,936 partial correlations

lect GGM pairs
ere one protein
has a pQTLin Sun et al.

Select pQTL varian
where the protei

has a GGM edge 179,923 ratio-variant pairs

Compute associations between
protein ratios and pQTL variants;
replicate in non-Caucasian cohort

4,248 replicated rQTLs
2,821 ratios, 926 variants

Compute GWAS with
2,821 protein ratios

8,462 rQTLs
2,095 variants

Local refinement, compare
association signals using “coloc”

7,414 rQTLs share a genetic

signal between discovery
and replication cohort

Supplementary Figure 1: Flowchart of the study.
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Supplementary Figure 2: Example of Manhattan plots for a ratio. This Figure explains how
by using ratios novel genetic loci can be uncovered. Plotted are the associations of the two
individual proteins (ITGB1BP2 and MTD1), the ratio (ITGB1BP2 / MTD1), and the p-gain of
the ratio using array genotype data; Similar Manhattan plots are available in PDF format for the
2,821 ratios on FigShare (doi:10.6084/m9.figshare.23695398); The full GWAS summary
statisticswill be deposited with the GWAS catalogue.
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Supplementary Figure 3: Example of regional association plots for rQTLs. This Figure
explains how by using ratios a genetic signal can emerge from the noise. Plotted are the
associations of the two individual proteins (STK11 and USP8), the ratio (STK11 / USP8), and
the p-gain of the ratio using imputed genotype data +/-500kb around the variant rs3764640 for
the discovery (a) and the replication cohort (b); The subtitles indicate the most likely coloc
hypotheses regarding the similarity between the relevant genetic signals, Similar regional
association plots together with the full summary statistics used in these plots for 8,462 rQTLs are
available in PDF format on FigShare (doi:10.6084/m9.figshare.23695398).
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SUPPLEMENTARY DATA

The following items are available on FigShare (doi:10.6084/m9.figshare.23695398):

Item Description

Local association Full summary statistics for +/- 500kb regional refinements around 8,462 rQTL

data lead SNPs using imputed genotype data.
Manhattan plots Manhattan plots for the GWAS (PDF format)
Regiond

s Regiona association plotsfor loca refinements (PDF format)
association plots
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