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Abstract 

Protein quantitative trait loci (pQTLs) are an invaluable source of information for drug target 

development as they provide genetic evidence to support protein function, suggest relationships 

between cis- and trans-associated proteins, and link proteins to disease where they collocate with 

genetic risk loci for clinical endpoints. Using the recently released Olink proteomics data for 

1,463 proteins measured in over 54,000 samples of the UK Biobank we identified and replicated 

4,248 associations with 2,821 ratios between protein levels (rQTLs) where the strengths of 

association at known pQTL loci increased by up to several hundred orders of magnitude. We 

attribute this increase in statistical power (p-gain) to accounting for genetic and non-genetic 

variance shared by the two proteins in the ratio pair. Protein pairs with a significant p-gain were 

7.6-fold enriched in known protein-protein interactions, suggesting that their ratios reflect 

biological links between the implicated proteins. We then conducted a GWAS on the 2,821 ratios 

and identified 2,527 novel rQTLs, increasing the number of discovered genetic signals compared 

to the original protein-only GWAS by 24.7%. At examples we demonstrate that this approach 

can identify novel loci of clinical relevance, support causal gene identification, and reveal 

complex networks of interacting  proteins. Taken together, our study adds significant value to the 

genetic insights that can be derived from the UKB proteomics data and motivates the wider use 

of ratios in large scale GWAS. 

Keywords: UK Biobank, affinity proteomics, genome-wide association studies, protein 

quantitative trait loci, protein-protein interaction, ratios between quantitative traits 
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INTRODUCTION 

Large-scale studies of the blood circulating proteome leverage the natural variation in the general 

population to identify genetic and non-genetic factors that control blood protein levels 1. Of 

particular interest for drug development are genome-wide association studies (GWAS) that 

identify protein quantitative traits (pQTLs), as they provide genetic evidence for a causal effect 

of the underlying variant – and hence the affected gene(s) – on the levels of the associated 

protein(s) and their physiological effects. In cases of cis-pQTLs, where the genetic variant is 

located in proximity of the gene coding for the associated pQTL protein, the effect is most likely 

through a causal variant that modifies transcription, translation or stability of the cis-encoded 

protein. More complex, but also more rewarding in terms of potential biological insights, are 

trans-pQTLs, as they suggest direct or indirect protein-protein interactions between the – 

presumably causal – cis-encoded protein and the associated trans-protein, which can extend into 

larger networks when multiple proteins are associated with a same variant and ideally also 

clinical endpoints of interest. 

Such genetics-driven insights are of highest value to pharmaceutical companies as they can 

inform drug target discovery and validation, generate hypotheses on modes of action, and 

suggest biomarkers for target engagement and efficacy. Early successes of pQTL studies 2-5 led 

to the creation of the UKB PPP consortium, a pre-competitive consortium of 13 

biopharmaceutical companies that funded the measurement of over 54,000 UKB samples on the 

Olink Explore 1536 affinity proteomics platform. Olink uses a dual antibody binding technique, 

termed proximity extension assay (PSA), to quantify the abundance of almost 1,500 blood 

circulating proteins (Supplementary Table 1). The UKB PPP consortium recently published 

first results from a GWAS that identified over 10,000 pQTLs using this platform 6. The Olink 

proteomics data itself has been released in April 2023 to the public and can be accessed and 

analyzed using the DNAnexus UKB RAP platform (ukbiobank.dnanexus.com). Our aim in this 

paper is to explore new methods to enhance pQTL discovery and interpretation, using this 

exceptional and freely available data set. 

We and others previously developed analysis strategies for GWAS with metabolomics data 7,8, a 

field that is similar in many ways to that of pQTL studies. In particular, we showed that partial 

correlations between metabolites can reconstruct metabolic networks 9,10 and that the hypothesis-
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free testing of all ratios between metabolites can substantially strengthen the association signals, 

in several cases elevating genetic loci out of the background noise 11,12. Both approaches are 

related in that they identify biological relationships between individual molecules through their 

shared genetic and non-genetic variance, which can then be integrated into larger metabolic 

networks, such as the atlas of genetic influences of the human metabolome 13 and more recent 

versions thereof 14. Previous GWAS with proteomics suggest that Gaussian graphical models 

(GGMs) built from partial correlations and ratios between protein levels can reveal biologically 

relevant protein-protein interactions 5, but the approach has never been tested at scale. 

Here we hypothesize that a GWAS with ratios between protein levels can identify associations 

and novel links between protein pairs that have not been identified using current GWAS 

approaches. However, the computational costs of conducting a full-fledged all-against-all ratio 

GWAS are prohibitive at this point, estimated to several hundred thousand pounds Sterling on 

the DNAnexus AWS-based platform for a single run of a full-fledged all-against-all ratio 

GWAS, not considering costs associated with the handling of the generated data. This challenge 

will be aggravated in the future by the expected increases in proteome coverage. 

We therefore take a more economic approach and test genetic associations with ratios between 

proteins that are partially correlated and therefore more likely to be related through some 

biological process. For each pQTL reported by the UKB PPP consortium that implicated one of 

two partially correlated proteins we test the ratio between the levels of these two proteins for 

association with the pQTL variant. We then conduct a GWAS on those ratios that increased the 

strength of association at an already known pQTL locus (see flowchart of this study in 

Supplementary Figure 1). We show in the following that by using this approach we could 

identify novel pQTLs that were not discovered by the standard GWAS with protein levels 

conducted by the UKB PPP consortium 6, and furthermore, that genetic associations with ratios 

can uncover biologically relevant links between two or more proteins based on their shared 

genetic and non-genetic variance. We discuss selected cases of biomedical interest and provide 

an interpretation of why we believe ratios work. 
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RESULTS 

Identification of ratio QTLs at established pQTL loci. 

We quantify the increase in the strength of an association with ratios by the p-gain, which is 

defined as the smaller of the two p-values for the single protein associations divided by that for 

the ratio association 11. A p-gain of 10 is the equivalent of a nominal p-value for a single test, in 

other words, a p-gain of 10 is expected to be observed by chance in 5% of the cases when ratios 

between two random proteins are tested. In the following we require Bonferroni levels of 

significance for p-values and p-gains throughout and refer to protein ratio associations with 

significant p-gains as ratio QTLs (rQTLs). We split the UKB cohort into a discovery set 

comprising 43,000 individuals and a replication set of 8,700 individuals based on the data-field 

“genetic ethnic grouping” being equal / not equal to “Caucasian” (see UKB documentation on 

data-field 22006), and further limit the analysis to samples collected at baseline. 

A total of 179,923 ratio – variant pairs were tested for association, selected as the overlap of 

11,936 Bonferroni significant GGM edges (p < 4.7x10-8 or |pcor| > 1.76x10-3, Supplementary 

Table 2) and 10,248 Bonferroni significant pQTLs (p < 3.4x10-11, Supplementary Table 3) 

from the UKB PPP GWAS 6. A total of 10,760 ratio associations (5.98%) had a Bonferroni 

significant p-gain (> 10* 179,923), and of these 4,248 (41.4%) replicated in the genetically “non-

Caucasian” cohort (p-gain > 10*10,760). The 4,248 replicated ratio associations covered 2,821 

unique protein pairs between 1,001 of the 1,463 (68.4%) proteins assayed on the Olink platform 

and 926 of the 5,717 (16.2%) genetic variants reported as pQTL variants by the UKB PPP 

GWAS (Supplementary Table 4 & 5). The likelihood of finding a significant ratio association 

for a protein pair increased with the strength of their partial correlation from around 5 % for 

uncorrelated proteins to 9% for |pcor| ~ 0.2 (Figure 1), supporting our choice to prioritize GGM 

protein pairs. 

A selection of pharmaceutically relevant rQTLs is provided in Table 1, including associations 

with a ratio between a cis- and a trans-located protein, where the cis-protein is the target of an 

approved drug (Tclin according to Pharos 15). 
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Identification of novel rQTLs in a GWAS with ratios. 

We then conducted a GWAS on the 2,821 ratios using the genotyped UKB data. For each ratio 

we retained the strongest associations that reached a Bonferroni level of significance of p-value < 

5x10-8/ 2,821, a p-gain > 107 * 2,821, and that were more distant than one million base pairs 

from any other significant association with the same ratio. We identified 8,462 ratio-variant pairs 

with 2,095 unique variants that satisfied this criterion, which corresponds to a discovery per 

tested ratio of on average three independent GWAS signals with a significant p-gain 

(Supplementary Table 6, Figure 2, Supplementary Figure 2). The ratios with the largest 

number of rQTLs discovered were HBEGF / PDGFA (N=25) and ITGB1BP2 / MITD1 (N=24). 

A total of 999 proteins were implicated in at least one rQTL, with a median of eight rQTLs per 

protein. The two most frequently occurring proteins were ITGB1BP2 with 259 rQTLs and 

EDAR with 237 rQTLs. A total of 2,527 (29.9%) of the 8,462 rQTLs were more distant that 106 

base pairs from any pQTL reported by the UKB PPP GWAS for one of the two proteins in the 

respective ratio and thus represent previously non-reported pQTLs, which corresponds to an 

increase of 24.7% in genetic signals derived from the UKB PPP Olink data using ratios 

compared to the standard approach. 

To investigate whether these rQTLs provided new insights of biomedical interest we annotated 

the 2,095 rQTL variants identified in this study and the 5,717 pQTL variants reported by the 

UKB PPP GWAS using PhenoScanner 16 for association with 446 distinct GWAS traits 

(Supplementary Table 6 and Supplementary Table 3, resp.). We identified 322 rQTL variants 

that were more distant than 106 base pairs from any pQTL variant on the same GWAS trait, 

implicating 874 rQTLs in a total of 4,700 co-associations with GWAS traits (Supplementary 

Table 7). 

These rQTLs provide new evidence to support drug target selection. For instance, rs3764640 

associated with the ratio STK11/USP8 (-log10(p) = 13.8, log10(p-gain) = 10.5). The variant is an 

intragenic SNP in the STK11 gene and associated with the presence versus absence of psychosis 

in Alzheimer’s cases 17. STK11 is a serine/threonine-protein kinase and USP8 may play a role in 
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the degradation of activated protein kinases by ubiquitination 18, which would explain the 

significant p-gain for the ratio. This rQTL hence not only supports a role of STK11 in AD 

pathology, but also provides further insights into the putative underlying biological pathways, 

suggesting that medicinal modification of STK11 or its phosphorylation targets may affect the 

AD related phenotypes. 

A second example is a region of high LD on chromosome 5 (Figure 3) which is a major risk 

locus for inflammatory bowel disease (IBD) 19. The most likely causal gene prioritized by 

multiple GWAS, based on its function and the presence of an amino acid-changing variant, was 

Macrophage Stimulating 1 (MST1). However, this view has been challenged, proposing 

Glutathione Peroxidase 1 (GPX1) as a causal gene instead, supported by biochemical 

experiments showing that a co-segregating amino-acid variant in GPX1 reduced the activity of 

this antioxidant enzyme 20. Here we identified 14 ratios between 16 proteins that associated with 

a significant p-gain at this locus (Table 2). Seven were ratios of the pyruvate kinase, liver and 

red blood cells (PKLR) with proteins involved in haemoglobin metabolism, including 

hydroxyacylglutathione hydrolase (HAGH), hydroxymethylbilane synthase (HMBS), Arginase 1 

(ARG1), Biliverdin Reductase B (BLVRB). The biochemical properties of these genes clearly 

support a causal role for GPX1 in an oxidative stress related phenotype, likely related to 

haemoglobin metabolism in red blood cells. However, four of the ratios were with the cis-

encoded protein Dystroglycan 1 (DAG1) and several proteins not related to red blood cell 

metabolism, suggesting the presence of a second, likely independent causal gene at this locus, 

which would co-segregate with the GPX1 variant due to the high linkage disequilibrium in this 

region. Whether both pathways are driving factors of the IBD association requires further 

investigation. Important for our study is that this case exemplifies the kind of insights that can be 

drawn from using rQTLs and their value for drug target evaluation and hypothesis generation. 

Discovery of novel cis-pQTLs 

Observation of cis-pQTLs is considered genetic evidence to confirm the target specificity of the 

respective affinity binding assay. Sun et al. found a cis-pQTL for 1,163 (79.5%) of the 1,463 

assayed proteins. Here we report 39 additional genetic variants that associated with a ratio that 

involves a protein located in-cis and a second protein located in-trans (Table 3). These cis-

pQTLs became presumably discoverable as the trans-proteins in the ratios captured some 
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unidentified shared non-genetic variance, accounting for which lead to the significant p-gains. 

The corresponding 39 proteins include three Olink targets for which no genetic signal had been 

found in the UKB PPP GWAS at all (ARHGEF12, EIF4EBP1, INPPL1) and thus provide 

genetic evidence that the respective antibodies bind their designated targets. Even by using only 

a subset of all possible ratios, we identified 13% of the 300 cis-pQTLs that were not accounted 

for so far, increasing confidence in the target specificity of the Olink platform for these proteins. 

More may be identified in an all-against-all ratio approach. 

Refinement of the rQTL loci. 

For economic reasons, we conducted the GWAS using the genotyped variants only and may 

therefore have missed variants of interest. For each of the 8,462 rQTLs we therefore refined the 

associations within +/- 500,000 base pairs of the respective lead variant by using the imputed 

UKB genotype data, both, in the discovery and in the replication cohort. We provide the 

summary statistics for all 8,462 refined regions on FigShare 

(doi:10.6084/m9.figshare.23695398). This data can also be used to further refine loci of interest, 

for instance to identify potentially multiple independent signals using SuSiE 21 or to test for 

colocalization with other traits of interest using coloc 22. To visualize individual rQTLs we 

generated regional association plots for all rQTLs, both in the discovery and the replication 

cohort (Supplementary Figure 3). 

We then used coloc 22 to ask whether the two proteins in a ratio shared a same genetic signal 

(Q.12), whether any of the two proteins shared a signal with the ratio (Q.13 and Q.23), and 

whether the signal for the ratio was shared between discovery and replication cohort (Q.33.repli). 

Supplementary Table 6 provides the most likely hypothesis for each of these four questions, 

together with its posterior probability. In 7,414 (87.6%) of the 8,462 cases at least one of the 

proteins shared a genetic signal with the ratio (Q.13 = H4 or Q.23 = H4), in 1,305 (15.4%) cases 

both proteins shared a signal with the ratio (Q.13 = H4 and Q.23 = H4), and in 489 (5.8%) cases 

there was no signal detectable for either of the two proteins alone (Q.13 = H2 and Q.23 = H2 and 

Q.12 = H0). A total of 6,775 of the 8,462 rQTLs (80.1%) shared a genetic signal between 

discovery and replication cohort (Q.33.repli = H4). 

For each rQTL region we designated the variant with the strongest association with the ratio in 

the discovery cohort as the lead variant and asked whether the association on this variant 
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replicated. Requiring in the discovery cohort p-value < 5x10-8/2821 and p-gain > 10*106*2821 

and in the replication cohort p-value < 0.05/8462 and p-gain > 10*8462, we identified 4,181 

rQTLs (49.4%) that satisfied this stringent Bonferroni significance criterion. Considering that 

80.1% of the rQTLs shared a same genetic signal between discovery and replication cohort, it is 

likely that more rQTLs can be replicated when more samples become available. 

Why do ratios work and what do they represent? 

With P1 and P2 representing the levels of two blood circulating proteins (we suppress the indices 

of the individual samples) we can fit two linear models to the log-scaled protein levels by 

selecting parameters αi, βi, and γi such that they minimize the square of the non-explained 

variance εi in the following equation: 

log���
� � �� 	 
� � SNP 	 �� � 
 	  ��   for  � � �1,2� 

SNP represents the number of effect alleles (0, 1, 2) of a given genetic variant in a given sample 

and W denotes some non-identified non-genetic variance that is shared by both proteins. Using 

the identity log(A/B) = log(A) – log(B), the ratio can then be written as: 

log���/��
� � ��� � ��� 	 �
�  � 
�� � SNP 	 ��� � ��� � 
 	  ��� � ���. 

As the significance level (p-value) of the association with the variant depends on the proportion 

of the variance that is explained by the genetic term (SNP) compared to the remaining variance 

(
 	  �), the strength of the association with the ratio can increase under two conditions: (1) 

when β1 and β2 have opposite signs, or (2) when γ1 and γ2 are of comparable size and non-zero. 

β1 and β2 having opposite signs implies that the genetic variant increases the levels of one protein 

while decreasing those of the other (Figure 4). When working with metabolites, this situation 

can occur when the ratio represents a substrate-product pair of an enzyme who’s efficacy is 

affected by the genetic variant. Many such cases have been reported 12,13,23. For proteins, a 

possible scenario is a genetic variant that increases the expression of one protein which acts as a 

suppressor of a second protein. One example is the association of rs1065853, which is in LD 

with coding SNP rs7412 in APOE, and the ratio between LDLR and PCSK9 protein levels 

(log10(p-gain) = 67.2). PCSK9 binds LDLR and targets it for degradation 24. PCSK9’s 
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availability to degrade LDLR in turn is limited by binding to apolipoprotein B 25, the levels of 

which are associated with rs7412 in APOE.  

If only one of the proteins is affected by the genetic variant, then observing a significant p-gain 

implies that γ1 and γ2 must be of comparable size and non-zero, and the association with the ratio 

indicates the presence of some non-genetic variance that is shared by both proteins. For instance, 

ITGB1BP2 has only five trans-pQTLs in the UKB PPP GWAS of moderate effect size, but 

occurs with 26 different ratios in 259 rQTLs in our GWAS, the strongest with a log10(p-gain) = 

1115.5 for the association of rs4680 with the ratio COMT / ITGB1BP2 at the COMT gene locus. 

The association of ITGB1BP2 with rs4680 was not significant (p = 0.69). The ratio with the 

largest number of rQTLs in the GWAS was ITGB1BP2 / MITD1, which had 24 rQTLs 

compared to only 2 pQTLs for MITD1 in the UKB PPP GWAS (Figure 5). Intriguingly, both 

proteins are highly correlated (Pearson r2 = 0.86), suggesting that their correlation is driven by 

some shared, yet not identified factor. The strongest correlations with one of the clinical 

biochemistry and blood traits available in UKB was with platelet count (r2 = 0.12 with 

ITGB1BP2, r2 = 0.10 with MITD1, and r2 = 0.025 with the ratio), which are too weak to explain 

the full correlation between both proteins, suggesting that a driving factor for this association is 

related to some more specific, probably blood cell type related trait that is not readily available in 

the UKB phenotype dataset.  

There are thus multiple possible causes that can lead to a significant p-gain in a ratio association, 

as schematized in Figure 4, some rQTLs revealing the presence of shared genetic variance while 

others suggest the proteins in the ratio being linked through some shared non-genetic processes.  

What can be learned from rQTLs? 

To evaluate the enrichment in protein pairs that were linked through significant ratio associations 

and/or GGM edges we used the STRING database of protein-protein interactions 

(Supplementary Table 5). Of the 2,281 protein pairs, 168 pairs (6.0%) had a protein-protein 

interaction link in the STRING database with a high confidence score (> 0.7), while random 

pairs between these proteins had on average only 22.1 links (s.d. = 4.2, based on 100 samplings), 

which corresponds to a 7.6-fold enrichment. For comparison, of the 11,936 protein pairs linked 

through significant GGM edges, 465 pairs (3.9%) had a protein-protein interaction reported in 
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STRING, while random sampling yielded an average of 89.4 (s.d. = 9.4), which corresponds to a 

5.2-fold enrichment for proteins linked through GGM edges alone. 

Using cytokine and cytokine-receptor annotations from CytokineLink 26 we identified 39 protein 

pairs with an rQTL that involved cytokine-cytokine pairs, 15 receptor-receptor pairs, and 9 

cytokine-receptor pairs, seven of which were known and two were new (CSF1:LTBR and 

CXCL9:TNFRSF9). CytokineLink predicted 1,542 cytokine-cytokine interactions between 77 

cytokines from the Olink platform (out of 77*76/2 = 2,926 possible interactions). The number of 

cytokine pairs that were involved in rQTLs was significantly enriched (30 out of 39 compared to 

1,512 out of 2,887 with no rQTL, p < 0.002, Fisher exact test). 

When multiple proteins associate in rQTLs with a same variant, networks of related proteins can 

be constructed. Here we present an example of how a single pQTL around a pharmaceutically 

interesting protein can be extended into a network of potentially interacting proteins. NFATC1 

(Nuclear Factor Of Activated T Cells 1) is key transcription factor and regulator of the immune 

response 27 and a molecular target for immunosuppressive drugs such as cyclosporin A 28. 

NFATC1 has been implicated in the pathogenesis and targeted therapy of hematological 

malignancies 29,30. rs657693 is a cis-pQTL for NFATC1 in the UKB PPP GWAS and one of only 

two genetic association for this protein. Here we identified rs657693 as an rQTL for the ratio of 

NFATC1 with 16 other proteins (AXIN1, BACH1, BANK1, BCR, CASP2, CD69, EIF4G1, 

FADD, FOXO1, IKBKG, INPPL1, IRAK1, LBR, PTPN6, SPRY2, TJAP1, Table S3), none of 

which had a significant association with this variant alone. Nine of the 16 proteins had a second 

replicated rQTL in a ratio with NFATC1 elsewhere in the genome, and in all of these cases the 

other protein in the ratio was the driving pQTL, with five of them being cis-pQTLs (AXIN1, 

BANK1, FOXO1, SPRY2, TJAP1). Our GWAS identified additional rQTLs, including cis-

rQTLs for BCR (rs713617), CD69 (rs7309767), and FADD (rs7939734). Using IPA we 

identified a number of functional links between these proteins, generating a network of proteins 

that can now be linked through genetic evidence and rQTLs to the NFATC1 locus, potentially 

supporting the development of new immunosuppressive drugs (Figure 6). 

To further explore the benefits of all-against-all ratios, we computed the associations of SNP 

rs12075 with all possible rations between 76 cytokines that are in the Olink panel. rs12075 

(1:159175354:G:A) is an amino acid changing variant (c.125G>A, p.Gly42Asp) in the atypical 
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chemokine receptor 1 gene (ACKR1 aka DARC). The glycine variant defines the Fya  allele and 

the aspartate variant the Fyb allele of the Duffy blood group system 31. DARC is clinically 

important as it is the entry point for the human malaria parasite Plasmodium vivax. Individuals 

with two copies of the FYa allele or a silenced FYb allele are resistant to Plasmodium vivax 

infection. A structural basis for DARC binding to Plasmodium vivax’ Duffy-binding protein 

involving the region around the p.Gly42Asp variant has been proposed 32. 

Eleven cytokines associated in the UKB PPP GWAS at the ACKR1 locus (CCL2, CCL7, CCL8, 

CCL11, CCL13, CCL14, CCL17, CCL26, CXCL1, CXCL6, CXCL8; Supplementary Table 3). 

CCL7 and CCL8 protein levels increased with copy number of the Fya allele, while levels of the 

other nine cytokines decreased with that variant. DARC controls chemokine levels through 

promiscuous binding 33. The associations with these cytokines are thus matching the function of 

DARC. In our discovery study, rs12075 associated with three ratios (CCL13 / CCL8, CCL2 / 

CCL7, and CCL11 / CCL7; Supplementary Table 4), the strongest association of rs12075 was 

with the ratio between CCL8 and CCL13. Testing the association of rs12075 with all possible 

ratios between the 76 cytokines on the Olink panel implicated twelve additional cytokines 

(CCL3, CCL4, CCL14, CXCL11, CXCL12, HGF, IL7, PDGFA, TGFB1, THPO, TNFSF13, 

TNFSF14) in significant (p-gain > 1010) rQTLs (Supplementary Table 8 and Figure 7). It goes 

beyond the scope of the present study to interpret these associations in further detail. The take-

away message here is that using ratios we not only identified additional cytokines that associate 

with the Duffy blood type, but also suggest interactions between specific pairs of proteins, like 

CXCL6 that occurs in a significant ratio with CCL8, but not with CCL7. Especially at 

pleiotropic loci, where multiple proteins associate with a clinically relevant variant, it may be 

worthwhile to conduct this kind of all-against-all ratio analysis, using a subset of functionally 

related protein, as done in this example, or even extending the ratio analysis to the full protein 

panel. 

DISCUSSION 

This is, to the best of our knowledge, the first GWAS at scale with ratios between blood 

circulating protein levels, using the recently released Olink proteomics data for almost 1,500 

proteins measured in blood plasma of 54,000 participants of the UK Biobank. Using ratios, we 

observed increases in the strengths of association by up to several hundred orders of magnitude, 
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involving two thirds of the proteins targeted by the Olink platform, increasing the strength of 

association at 16% of the pQTLs from the UKB PPP GWAS. We further reported novel cis-

pQTLs for 13% of the 300 Olink proteins for which such a target-confirmatory QTL had not 

been identified so far and uncovered over 2,500 novel QTLs with ratios at loci that had not been 

highlighted by the UKB PPP GWAS using single protein levels, which corresponds to a 25% 

increase in the discovery rate. 

We argue that ratios can account for unidentified genetic and/or non-genetic variance that is 

shared between the associated protein pairs (Figure 5). rQTL protein pairs were 7.2-fold 

enriched in known protein-protein interactions, demonstrating that they add substantial new 

information to hypothesis generation and providing a broad set of protein-protein relationships 

that can be mined using network pharmacology (NFATC1 example) 34 and systems immunology 

(ACKR1 example) 35,36 approaches. We further reported selected examples that illustrate novel 

insights gained from using ratios, adding new information to established loci (GPX1 with IBD 

example) and identifying entirely novel loci (STK11 with AD example).  

As we could only discuss a fraction of the biologically relevant findings in this paper, we freely 

share the full summary statistics of the GWAS using array-genotyped data and of the refinement 

using imputed genotype data, together with the corresponding Manhattan and regional 

association plots. These data represent a rich resource for biomedical hypothesis generation that 

complements the data generated by the UKB PPP GWAS and should be of particular value for 

pharmaceutical drug target development. 

The following caveats apply: We analyzed only a subset of all possible ratios. Although the 

likelihood of finding a significant ratio association for a protein pair increased with the strength 

of their partial correlation, even for uncorrelated proteins this likelihood remains high (5%), 

supporting the testing of all possible ratio in future GWAS, if resources permit. Indeed, we hope 

that the present study shall motivate further methods development that could render all-against-

all ratio testing computationally feasible, and maybe also more research into formal statistical 

methods that may generalize the analysis of combinations of quantitative traits as dependent 

variables in GWAS. 

It should also be noted that affinity proteomics technologies have numerous limitations, such as 

effects of epitope changing variants, non-specific binding, and uncertainty about target 
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specificity. However, the many biologically relevant associations that have been derived using 

data from the Olink and other affinity proteomics platforms suggest that these concerns are of 

minor relevance. The fact that we identified 39 novel cis-pQTLs provides further confirmatory 

evidence for the target specificity of their respective affinity binders. 

Taken together, we hope to have demonstrated the benefits of analyzing ratios between protein 

levels at scale, an approach that we believe has already shown its benefits in the metabolomics 

field. Future work is needed to further speed up ratio associations, especially in the light of 

broadening proteomics panels and their increased application in large-scale cohorts. Also, further 

theoretical development and generalization of the concept of using ratios in more thorough 

statistical terms may be beneficial, as there are similarities in the approach to what could be 

conceived as “local Mendelian randomization”. 

METHODS 

Data sources. All data was obtained through the UKB RAP system on the DNAnexus platform 

(data dispensed on April 23, 2023; application id 43418) for samples satisfying the criterion 

“Number of proteins measured | Instance 0” is greater than “0” 

(https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=30900). Imputed genotypes 37 were 

extracted from BGEN files (https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100319) using 

bgenix 38 and reformatted to text format (.raw) using plink 39 for further analysis in R. Phenotype 

data for age, sex, BMI, the first three genotype principal components, and the classification of  

genetic ethnic grouping were extracted using the DNAnexus cohort browser and the table 

downloader app (https://ukbiobank.dnanexus.com/landing). Details on genomics and proteomics 

data QC and preprocessing are available in the accompanying UK Biobank resource files 

(available at the respective showcase links given above). 

The downloaded proteomics data set comprised NPX values for 1,463 proteins for 52,749 

participants. NPX values correspond to relative protein concentrations and are reported on a log-

scale. Data analysis was restricted to 52,705 samples that were collected at baseline (instance 0). 

Samples were split into a discovery set of 43,509 samples identified as Caucasian based on the 

genetic ethnic grouping variable and a replication set of 9,196 ethnically diverse samples 

(https://biobank.ndph.ox.ac.uk/showcase/field.cgi?id=22006). A total of 5,717 unique variants 
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corresponding to 10,248 pQTLs of the UKB PPP GWAS were analyzed. These pQTLs were 

obtained from Supplementary Table 6 of Sun et al. 6. 

Graphical Gaussian model. Partial correlations were computed using the R function 

ggm.estimate.pcor from the package GeneNet 40. All baseline samples were used for this step. As 

this analysis does not allow for the presence of missing values, samples with more than 20% 

missing protein values were removed (N=1,840), followed by proteins that were missing in more 

than 20% of the samples (N=3). The remaining missing data points were imputed to minimum 

(N=37,419). A total of 11,936 partial correlations were identified at a Bonferroni significance 

cut-off p-value of 4.7x10-8. The smallest r2 at this level was 0.00176. 

Statistical analysis. Linear models with inverse-normal scaled proteomics data (NPX values) as 

dependent variables and genotype, age, sex, and the first three genotype principal components 

were computed using the R function “lm”. For ratios, inverse-normal scaled differences between 

the two NPX values were used, based on the relation log(A/B) = log(A) - log(B) and the NPX 

values representing protein levels on a log-scale. The p-gain for associations with ratios between 

two protein traits was computed as the smaller of the two p-values for the individual trait 

associations divided by the p-value for the ratio association 41. Log10-scaled p-values and p-

gains were used throughout to avoid numeric overflows and rounding of small p-values to zero. 

For all pairs of proteins with a Bonferroni significant partial correlation all variants that were 

associated with at least one of the two proteins in a pQTL in the UKB PPP GWAS were 

identified. For these variant – protein pairs the single protein and ratio association statistics were 

computed using the discovery and replication samples separately. 

GWAS analysis. The GWAS on 2,821 ratios was conducted using plink2 39 on the UKB RAP 

platform hosted by DNAnexus with the --glm option, using age, sex, and the first the genoPCs as 

covariates. We used the array-genotyped UKB data with the following variant filtering options: -

-geno 0.1, --hwe 1e-15, --mac 100, --maf 0.01, --mind 0.1. 

Other sources of data. The STRING database of proteins and their functional interactions was 

used to identify known relationships between proteins 42. The database was downloaded from 

https://string-db.org/cgi/download (version 11.5, accessed 5 May 2023). Annotated cytokine and 

cytokine-receptor pairs were downloaded from CytokineLink 26 
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(https://github.com/korcsmarosgroup/CytokineLink, accessed 30 June 2023). Drug target 

development status was obtained from NCBI Pharos 15 (accessed 11 July 2023). Variants were 

annotated with PhenoScanner API 16 using proxies based on EUR LD r2>0.8 (accessed 5 May - 

11 July 2023). LocusZoom 43 was used to generate regional association plots with LD annotation 

(EUR population). GeneCards 44 was used to obtain general information about the associated 

genes and proteins. 
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TABLES 

Table 1: rQTLs that implicate drug targets in the cis-position. Selected rQTLs that include a 

ratio between a cis- and a trans-located protein, with the cis-protein being the target of an 

approved drug (Tclin according to Pharos 15). The negative log10-transformed p-values for the 

association with the single proteins (-logP.1, -logP.2) and the ratio (-logP.3) and the log10-

transformed p-gain (logPgain) for the rQTL are reported, the GWAS traits was annotated using 

PhenoScanner 16 (details are in Supplementary Table 4). 
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Cis Protein Ratio Chr Pos rsID -logP.1 -logP.2 -logP.3 logPgain GWAS traits 

CA6 CA6/DNER 1 9,034,598 rs3765963 2878.1 0.6 3235.0 356.9 . 

LEPR IL6ST/LEPR 1 66,073,982 rs10399687 0.1 225.1 270.6 45.5 Blood cell traits 

SLAMF7 ICAM3/SLAMF7 1 160,720,074 rs11581248 3.7 2094.1 2631.3 537.2 . 

NECTIN4 NBL1/NECTIN4 1 161,049,509 rs35434391 0.4 396.6 643.6 247.0 Blood cell traits 

SELP SELP/VSIR 1 169,563,951 rs6136 349.1 0.3 663.3 314.2 Activated partial thromboplastin time 

DPP4 DPP4/ITGB1 2 162,930,725 rs13015258 229.0 0.9 317.5 88.5 . 

PDCD1 PDCD1/TNFRSF8 2 242,801,752 - 271.2 0.3 364.4 93.1 . 

CD38 CD38/RELT 4 15,775,851 rs28703311 894.1 0.9 1030.5 136.4 . 

PDGFRA IL6ST/PDGFRA 4 55,139,771 rs35597368 0.6 364.8 439.3 74.4 
Impedance of the legs, Peak expiratory 

flow 

F2R DAG1/F2R 5 76,028,124 rs168753 0.4 56.1 276.6 220.5 . 

FLT4 FLT4/ICAM2 5 180,057,293 rs34221241 389.3 0.6 516.6 127.4 . 

IGF2R CTSO/IGF2R 6 160,409,894 rs75474551 106.3 366.8 434.3 67.5 . 

AKR1B1 AKR1B1/SUGT1 7 134,135,621 rs2229542 92.6 0.4 172.2 79.5 . 

IMPA1 IMPA1/TBCC 8 82,583,771 rs1967328 176.4 0.9 329.5 153.0 . 

CA1 CA1/HMBS 8 86,256,210 rs12544332 35.7 0.5 114.2 78.5 Blood cell traits 

CA3 CA1/CA3 8 86,351,051 rs2072696 6.7 109.1 387.6 278.6 . 

CD274 CD274/EFNA4 9 5,453,260 rs822340 446.6 0.6 500.4 53.8 Ulcerative colitis 

IL2RA IL2RA/TNFRSF4 10 6,095,928 rs12722497 1440.8 0.1 1892.6 451.8 Streptococcal throat infections 

LAG3 LAG3/VCAM1 12 6,885,076 rs3782735 137.5 0.6 169.1 31.6 . 

TXNRD1 NUDT5/TXNRD1 12 104,707,047 rs201402862 0.4 20.3 41.8 21.5 . 

FLT3 FLT3/FLT3LG 13 28,637,838 rs9554228 34.2 36.0 53.9 17.8 
Age at menarche, Blood cell traits, Body 

size, mass and fat traits, Rheumatoid 
arthritis 

IL4R CKAP4/IL4R 16 27,327,214 rs8060025 0.3 449.7 497.6 48.0 Asthma, Eosinophils 

CA5A AGXT/CA5A 16 87,927,222 rs55870502 0.9 2387.8 3738.1 1350.3 Basophils 

COMT COMT/HNRNPK 22 19,951,271 rs4680 1008.4 0.7 3043.4 2035.1 
Basal metabolic rate, Systolic blood 

pressure, Body fat traits 
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Table 2: Novel cis-pQTLs. List of 39 genetic variants that associated with a ratio that involves a 

protein located less than 1MB from the variant (Cis protein) and that has no cis-pQTL in the 

UKB PPP GWAS. The negative log10-transformed p-values for the association with the single 

proteins (-logP.1, -logP.2) and the ratio (-logP.3) and the log10-transformed p-gain (logPgain) for 

the rQTL are reported (details are in Supplementary Table 6). 

Cis Protein Ratio Chr Pos rsID -logP.1 -logP.2 -logP.3 logPgain 

MNDA MNDA/NCF2 1 158,788,542 rs2875712 5.7 0.3 16.9 11.2 

EPCAM EPCAM/GPA33 2 47,773,540 rs6708696 1.6 1.3 15.5 13.9 

ANXA4 ANXA4/LACTB2 2 70,033,584 rs2228203 11.6 3.8 232.7 221.1 

TMSB10 DBI/TMSB10 2 85,133,861 rs13409738 0.0 8.1 36.8 28.7 

NCK2 NCK2/PLA2G4A 2 106,452,253 rs10169998 4.6 0.0 36.4 31.8 

TGFBR2 TGFBR2/TNFRSF1A 3 30,729,510 rs114836705 8.2 0.4 25.0 16.9 

PPP1R2 PPP1R2/SNAP23 3 195,238,559 rs34950021 1.9 0.8 26.6 24.7 

CXCL3 CXCL3/CXCL5 4 74,797,139 rs352024 0.6 514.2 1229.3 715.1 

FYB1 FYB1/PPP1R12A 5 39,338,358 rs3822462 1.8 0.7 14.1 12.3 

DAB2 DAB2/NCK2 5 39,427,481 rs75839063 2.5 0.0 20.3 17.8 

HBEGF HBEGF/PDGFA 5 139,720,400 rs2237077 7.6 0.8 31.1 23.4 

PDLIM7 PDLIM7/SRC 5 176,922,643 rs335428 7.5 1.0 28.9 21.4 

MPIG6B MPIG6B/PLXNA4 6 31,346,193 rs2507982 0.3 5.1 18.5 13.5 

MAP3K5 MAP3K5/MAVS 6 136,888,889 rs56379668 4.0 1.9 31.7 27.7 

VTA1 RWDD1/VTA1 6 142,641,606 rs12189801 0.6 4.2 21.1 16.9 

LAT2 CLIP2/LAT2 7 73,780,812 rs512023 4.9 4.8 59.6 54.7 

CASP2 CASP2/NUB1 7 142,986,684 rs3181165 2.8 0.5 14.3 11.4 

PLPBP PLPBP/RWDD1 8 37,635,649 rs7463174 8.7 1.1 37.9 29.2 

EIF4EBP1+ DNPH1/EIF4EBP1 8 37,884,310 rs28797500 0.5 4.3 18.4 14.1 

LYN KIFBP/LYN 8 56,785,133 rs6985703 0.2 5.5 18.5 12.9 

INPPL1+ BANK1/INPPL1 11 72,064,041 rs79658353 0.1 1.7 13.0 11.3 

PPME1 ATG4A/PPME1 11 73,948,875 rs79153613 0.6 9.5 30.1 20.6 

ARHGEF12+ ARHGEF12/AXIN1 11 120,278,477 rs34172482 4.6 0.1 37.7 33.1 

IRAG2 CRACR2A/IRAG2 12 25,243,115 rs1908946 0.3 3.5 16.4 12.8 

METAP2 EIF4B/METAP2 12 95,830,338 rs159853 0.6 8.9 27.4 18.5 

TRIAP1 TMSB10/TRIAP1 12 120,902,007 rs542407 0.3 3.6 14.7 11.1 

SRP14 APEX1/SRP14 15 40,325,829 rs6492926 0.0 10.9 25.3 14.4 

SNAP23 CD69/SNAP23 15 42,808,309 rs73404730 0.8 1.7 21.2 19.6 

PPIB MANF/PPIB 15 64,780,971 rs73452261 1.0 1.9 29.2 27.3 

MESD MANF/MESD 15 81,279,706 rs57967327 0.3 5.4 74.5 69.1 

CORO1A CORO1A/TBC1D5 16 30,147,265 rs7201780 4.9 0.0 18.2 13.3 
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STX4 DNMBP/STX4 16 31,004,812 rs12445568 0.3 6.7 20.5 13.9 

AHSP AHSP/CA2 16 31,463,216 rs4889659 9.9 0.0 26.3 16.4 

VPS53 SCAMP3/VPS53 17 400,933 rs9916346 0.3 2.9 14.7 11.8 

STK11 STK11/USP8 19 1,207,238 rs3764640 3.3 0.6 13.8 10.5 

CDKN2D CDKN2D/TACC3 19 9,868,278 rs10420364 0.5 6.7 45.5 38.7 

CDC37 CDC37/PLA2G4A 19 10,523,086 rs10854116 4.4 0.8 47.0 42.6 

TBCB MITD1/TBCB 19 36,593,915 rs61741470 0.3 9.7 130.7 121.0 

CRKL CRKL/DBNL 22 21,139,239 rs117858197 1.6 0.5 34.8 33.1 
+This protein has no pQTL in the UKB PPP GWAS 
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Table 3: Association of selected ratios with rs9858542. Ratios have been arranged such that all 

associations are negative with the copy number of the G allele of variant 3:49701983:G:A.  

RATIO Protein name 1 Protein name 2 -logP.1 -logP.2 -logP.3 logPgain 

HMBS / PKLR Hydroxymethylbilane Synthase 

Pyruvate Kinase L/R 

3.3 8.2 45.7 37.5 

ARG1 / PKLR Arginase 1 2.1 8.2 30.3 22.1 

BLVRB / PKLR Biliverdin Reductase B 0.2 8.2 29.4 21.2 

HAGH / PKLR 
Hydroxyacylglutathione 

Hydrolase 
0.4 8.2 23.0 14.8 

LHPP / PKLR 
Phospholysine phosphohistidine 

inorganic pyrophosphate 
phosphatase 

1.2 8.2 22.0 13.8 

DNPH1 / PKLR 
2'-Deoxynucleoside 5'-

Phosphate N-Hydrolase 1 
0.9 8.2 20.0 11.8 

PSMD9 / PKLR 
Proteasome 26S Subunit, Non-

ATPase 9 
1.4 8.2 31.6 23.4 

AHSP / BLVRB 
Alpha Hemoglobin Stabilizing 

Protein 
Biliverdin Reductase B 13.2 0.2 31.4 18.3 

AHSP / CA2 
Alpha Hemoglobin Stabilizing 

Protein 
Carbonic Anhydrase 2 13.2 0.8 24.0 10.8 

HMBS / UBAC1 Hydroxymethylbilane Synthase 
Ubiquitin-associated 
domain-containing 

protein 1 
3.3 2.5 16.7 13.4 

CD84 / DAG1 SLAM family member 5 

Dystroglycan 1 

0.0 15.1 34.7 19.6 

F2R / DAG1 
Coagulation Factor II Thrombin 

Receptor 
0.5 15.1 62.1 47.0 

HBEGF / DAG1 
Heparin Binding EGF Like 

Growth Factor 
2.6 15.1 27.9 12.8 

SCARF1 / DAG1 
Scavenger Receptor Class F 

Member 1 
0.1 15.1 41.9 26.8 
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FIGURES 

 

 

 

Figure 1: Percentage of Bonferroni significant protein ratio pair associations (p-gain > 10*

179,923) as a function of the partial correlation |pcor| between the protein pair. A moving

average with a window size of 10,000 data points was used.  
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   (a)    (b) 

Figure 2: 2D-Manhattan plots. (a) The position of the rQTL plotted against the position of the

genes coding for the two proteins in the ratio, the stronger of the two single protein associations

is in blue, the weaker in red; (b) The positions of the genes coding for the two proteins in an

rQTL ratio plotted against each other, darker colors indicate multiple rQTLs with a same ratio. 
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Figure 3: Regional association plot for the association of the HAGH / PKLR ratio at a

major IBD locus on Chr3. Plot created using LocusZoom 43.  
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Figure 4: Possible scenarios that can lead to a significant p-gain in a ratio association. P1

and P2 are the proteins in the ratio that associates with the genetic variant SNP, X is the causal

cis-encoded protein in the case of a trans-rQTLs; W denotes some unidentified shared non-

genetic variance. 
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Figure 5: Example of a ratio that leads to the discovery of novel signals. Manhattan plots for

the GWAS with (a) ITGB1BP2, (b) MITD1, and (c) the ratio ITGB1BP2 / MITD1. Associations

with p-values exceeding 10-20 are indicated by red triangles. Vertical lines indicate 24 Bonferroni

significant (p < 5x10-8/2821) rQTLs for the ratio. Manhattan plots for all 2,821 ratio GWAS are

available as online as explained in Supplementary Figure 1. 
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Figure 6: NFATC1 network. Protein-protein interactions obtained using Ingenuity Pathway

Analysis (IPA)’s connect function with default settings (accessed 4 July 2023); Blue arrows

indicate IPA interactions with the following abbreviations: A: activation, E: expression, I:

inhibition, LO: localization, P: phosphorylation, PP: protein-protein interaction, RB: regulation

of binding, T: transcription; Numbers in parentheses indicate multiple sources of evidence;

Green arrows: rQTLs for the ratio of NFATC1 with the respective proteins at a cis-location;

Orange: multiple variants on Chr10 around 65 MB associated with ratios between the listed

proteins and NFATC1; Red: rs657693 at the NFATC1 gene locus associated with all depicted

proteins in a ratio with NFATC1 (details are in Supplementary Table 4). 
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Figure 7: P-gain matrix for the association of rs12075 with all ratios between cytokines.

SNP rs12075 (1:159175354:G:A) is an amino acid changing variant in ACKR1 aka DARC

(c.125G>A, p.Gly42Asp) and defines the co-dominant Duffy blood type alleles Fya (Gly) and

Fyb (Asp). Limited to associations with -log10(p-value) > 10 or log10(p-gain) > 10 (full matrix

in Supplementary Table 6); Values on the diagonal are -log10(p-value) for the single protein

associations; Values in the off-diagonal cells are -log10(p-gain); The directionality of the

associations with the copy number of the Fya allele are indicated by the sign and colored red

(negative association) and green (positive association). Note that the -log10(p-value) for the

ratios can be obtained by adding the log10(p-gain) of the ratio to the larger of the two -log10(p-

value) of the single protein associations (full data in Supplementary Table 8). 
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SUPPLEMENTARY TABLES 

Supplementary tables are provided in EXCEL format. 

ST1 1,463 Olink protein targets 

ST2 10,248 pQTLs (from Suppl. Tab. 6 in Sun et al.) 

ST3 11,936 GGM edges 

ST4 4,248 replicated variant-ratio associations (rQTLs) 

ST5 2,821 ratios implicated in the 4,248 replicated rQTLs 

ST6 8,462 rQTLs discovered in a GWAS with the 2,821 ratios 

ST7 Novel rQTLs that overlap GWAS traits reported in PhenoScanner 

ST8 P-gain matrix for rs12075 association with all-against-all ratios of 76 cytokines 
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SUPPLEMENTARY FIGURES 

 

Supplementary Figure 1: Flowchart of the study.  
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Supplementary Figure 2: Example of Manhattan plots for a ratio. This Figure explains how

by using ratios novel genetic loci can be uncovered. Plotted are the associations of the two

individual proteins (ITGB1BP2 and MTD1), the ratio (ITGB1BP2 / MTD1), and the p-gain of

the ratio using array genotype data; Similar Manhattan plots are available in PDF format for the

2,821 ratios on FigShare (doi:10.6084/m9.figshare.23695398); The full GWAS summary

statistics will be deposited with the GWAS catalogue.  
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(a) (b) 

Supplementary Figure 3: Example of regional association plots for rQTLs. This Figure

explains how by using ratios a genetic signal can emerge from the noise. Plotted are the

associations of the two individual proteins (STK11 and USP8), the ratio (STK11 / USP8), and

the p-gain of the ratio using imputed genotype data +/-500kb around the variant rs3764640 for

the discovery (a) and the replication cohort (b); The subtitles indicate the most likely coloc

hypotheses regarding the similarity between the relevant genetic signals; Similar regional

association plots together with the full summary statistics used in these plots for 8,462 rQTLs are

available in PDF format on FigShare (doi:10.6084/m9.figshare.23695398). 
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SUPPLEMENTARY DATA 

The following items are available on FigShare (doi:10.6084/m9.figshare.23695398): 

Item Description 

Local association 

data 

Full summary statistics for +/- 500kb regional refinements around 8,462 rQTL 

lead SNPs using imputed genotype data. 

Manhattan plots Manhattan plots for the GWAS (PDF format) 

Regional 

association plots 
Regional association plots for local refinements (PDF format) 
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