bioRxiv preprint doi: https://doi.org/10.1101/2023.07.19.549692; this version posted March 12, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Title: The neural and computational architecture
of feedback dynamics in mouse cortex during
stimulus report

Authors:
Simone Ciceri!, Matthijs N oude Lohuis?>*1, Vivi Rottschafer*>, Cyriel MA Pennartz?3,
Daniele Avitabile®”#1%" Simon van Gaal>*!%", Umberto Olcese?37:1112"

Author affiliations:

1. Institute for Theoretical Physics, Utrecht University, Utrecht, 3584CC, The Netherlands

2. Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, University
of Amsterdam, Amsterdam, 1098XH, The Netherlands.

3. Research Priority Area Brain and Cognition, University of Amsterdam, Amsterdam,
1098XH, The Netherlands.

4. Mathematical Institute, Leiden University, Niels Borhweg 1, 2333CA, Leiden, The
Netherlands.

5. Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Science Park 105-
107, 1098XG, Amsterdam, The Netherlands

6. Amsterdam Center for Dynamics and Computation, Mathematics Department, Vrije
Universiteit Amsterdam, Amsterdam, 1081HV, The Netherlands.

7. Mathneuro Team, Inria Centre at Université Cote d’Azur, Sophia Antipolis, 06902, France

8. Amsterdam Neuroscience, Systems and Network Neuroscience, Amsterdam, 1081HV, The
Netherlands.

9. Department of Psychology, University of Amsterdam, Amsterdam, 1018WT, The
Netherlands

10. Present address: Champalimaud Research, Champalimaud Foundation, Lisbon, 1400-038,
Portugal

11: These authors contributed equally

12: Lead author

*: Correspondence: d.avitabile@vu.nl, s.vangaal@uva.nl, u.olcese@uva.nl



mailto:d.avitabile@vu.nl
mailto:s.vangaal@uva.nl
mailto:u.olcese@uva.nl
mailto:d.avitabile@vu.nl
mailto:s.vangaal@uva.nl
mailto:u.olcese@uva.nl
https://doi.org/10.1101/2023.07.19.549692
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.19.549692; this version posted March 12, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Abstract

Conscious reportability of visual input is associated with a bimodal neural response in primary
visual cortex (V1): an early-latency response coupled to stimulus features and a late-latency
response coupled to stimulus report or detection. This late wave of activity, central to major
theories of consciousness, is thought to be driven by prefrontal cortex (PFC), responsible for
“igniting” it. Here we analyzed two electrophysiological studies in mice performing different
stimulus detection tasks, and characterize neural activity profiles in three key cortical regions:
V1, posterior parietal cortex (PPC) and PFC. We then developed a minimal network model,
constrained by known connectivity between these regions, reproducing the spatio-temporal
propagation of visual- and report-related activity. Remarkably, while PFC was indeed
necessary to generate report-related activity in V1, this occurred only through the mediation
of PPC. PPC, and not PFC, had the final veto in enabling the report-related late wave of V1
activity.

Keywords: cortical feedback dynamics, computational neuroscience, report, access
consciousness, primary visual cortex, modeling, visual processing
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Introduction

A long-standing objective in the investigation of the neural mechanisms of consciousness is
to characterize the signatures of perceived compared to non-perceived sensory stimuli at the
level of neurons and their interactions (Aru et al., 2012; Koch et al., 2016). A milestone in the
study of sensory-evoked responses in the visual system has been the observation of a bimodal
neural response in the primary visual cortex: an early-latency response coupled to stimulus
presentation and a late-latency response that is only observed when agents report the
detection of a visual stimulus (Del Cul et al., 2007; Supér et al., 2001; van Vugt et al., 2018).
In spite of an ongoing debate on the functional role of this late activity component in
conscious perception (Cohen et al., 2020; Hatamimajoumerd et al., 2022; Koch et al., 2016;
Sergent et al., 2021), there is agreement that it remains strongly correlated with conscious
report. Furthermore, this hallmark of visual detection is preserved across species, and has
been the subject of circuit-level investigations in both non-human primates (Super et al.,
2001; van Vugt et al., 2018), ferrets (Yin et al., 2020) and mice (Allen et al., 2017; Oude Lohuis
et al., 2022b; Steinmetz et al., 2019; Zatka-Haas et al., 2021).

The cortical origin of the late, report-related activity observed in V1 has been
pinpointed to frontal areas. Experiments performed across species observed that correlates
of sensory detection behavior (which also carry categorical information about the behavioral
relevance of the detected stimuli) first originate in prefrontal areas and only later appear in
association and sensory areas (Del Cul et al., 2007; Steinmetz et al., 2019; van Vugt et al.,
2018; Yin et al., 2020). A recent study even demonstrated that activity in a secondary motor
area (a cortical subdivision that, in mice, is considered to be part of the prefrontal cortex(Le
Merre et al., 2021)) is necessary for this late activity to emerge in mice (Allen et al., 2017).
However, it is currently not understood how late, report-related activity reaches sensory
regions and whether, besides originating in prefrontal regions, it is also shaped by other
cortical regions, and if so how. For instance, it is debated whether prefrontal regions directly
trigger late, report-related activity in primary sensory cortices, or whether this is (also)
mechanistically driven by intermediate regions, such as association areas in the parietal and
temporal lobes (Fahrenfort et al., 2008; Fisch et al., 2009; Quiroga et al., 2008; Sikkens et al.,
2019; van Vugt et al., 2018). Addressing this question is important to better characterize how
patterns of cortical activity that have been linked to conscious report are generated and
propagate through cortical regions, and is consequential for arbitrating between major
theories of consciousness (COGITATE Consortium et al., 2023; Melloni et al., 2021; Seth and
Bayne, 2022).

Nevertheless, it is currently unfeasible to fully dissect the circuit-level architecture
underlying the origin and propagation of neural activity. Several options (chiefly optogenetics)
are available to modulate the activity of individual cortical areas (Oude Lohuis et al., 2022b,
2022a, 2021), but this approach is unsuitable to causally manipulate individual connections
between regions. On the other hand, projection-specific optogenetic inactivation is only
moderately effective on synaptic terminals or has relatively low temporal dynamics (Rost et
al., 2022). The alternative approach of silencing the activity of feedback-projecting neurons,
while achieving high efficacy and fast temporal specificity, inevitably modifies the activity of
source cortical regions as well (Huh et al., 2018; Tervo et al., 2016). For these reasons, we
decided to develop a minimal model of neural dynamics (Chaudhuri et al., 2015; Joglekar et
al., 2018), which allowed us to test the contribution of individual feedback pathways to
generating and propagating report-related activity across the cortical network. Compared to
previous studies following a similar approach for studying report-related activity in the human
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brain (Alilovi¢ et al., 2023; Castro et al., 2020; Dehaene et al., 2003; Dehaene and Changeux,
2005), we leveraged the recently established availability of functional and structural data in
mice (Harris et al., 2019; Knox et al., 2019; Oude Lohuis et al., 2022b; Steinmetz et al., 2019)
to develop a computational model with anatomically faithful connectivity strengths between
cortical regions and capable of reproducing patterns of spiking activity observed in mice
performing perceptual tasks. We developed a model network composed of mouse primary
visual cortex (V1), posterior parietal cortex (PPC) and prefrontal cortex (PFC). We found that,
while PFCis necessary to generate report-related activity in V1, this effect can only be exerted
through association areas such as PPC, which determine its characteristics and has the final
“veto” for initiating report-related activity in V1. Thus, an interplay between frontal and
parietal cortical regions is required to effectively integrate neural correlates of perception
with ongoing sensory-evoked activity.

Results

Detection of visual stimuli is coupled to large-scale activity patterns in dorsal cortex

We first aimed to replicate and expand earlier reports that visual detection in mice correlates
with a bimodal response pattern in V1 (Oude Lohuis et al., 2022b) and with the emergence of
report-related activity across multiple cortical regions (Allen et al., 2017; Pho et al., 2018;
Steinmetz et al., 2019; van Vugt et al., 2018; Yin et al., 2020; Zatka-Haas et al., 2021). To this
aim, we first analyzed neuronal activity collected in head-fixed mice performing an audio-
visual change detection task (Oude Lohuis et al., 2022b, 2022a) (Fig. 1A). Mice were trained
to report the change in the orientation of the presented visual stimulus, by performing — for
instance — a left lick, and a change in the pitch of the presented auditory stimulus by
performing a right lick (with contingencies counterbalanced across mice, see Materials and
Methods for details). In this report we only focus on the processing of the visual stimuli. Multi-
area laminar probe recordings were performed in the primary visual cortex (V1), posterior
parietal cortex (PPC) and anterior cingulate cortex (ACC) (Fig. 1B). We computed stimulus-
evoked spiking responses across the three areas as a function of the saliency of the visual
stimulus (threshold or max change) and based on whether a stimulus was detected (hit trial)
or not (miss trial). Trials from the max change condition will be referred to as “high saliency”
and trials from the threshold condition as “low saliency” from here on. Of relevance, previous
studies indicated that neuronal responses in both PPC and V1 did not show major deviations
based on whether licking responses to full-field visual stimuli had to be done towards a
detector positioned towards the left or right side of a mouse’s snout (Oude Lohuis et al.,
2022b, 2022a).

In V1, we observed a bimodal pattern of activity: an early-onset wave of sensory-
evoked activity, lasting until about 200 ms after stimulus onset, followed by a late-onset wave
which was mainly encoding whether a trial was a hit or miss (cf. (Oude Lohuis et al., 2022b),
Fig. 1C). Early sensory-evoked activity did not differ between hit and miss trials, but firing
rates were positively correlated with the saliency of visual stimuli (Fig. 1C). Instead, late
activity encoded both whether a trial was a hit or miss, as well as whether the sensory input
was strong or weak (Fig. 1C, cf. (Oude Lohuis et al., 2022b)). Activity in PPC and ACC mainly
encoded differences between hit and miss trials, although a generalized increase in firing
rates could be observed as a consequence of the presentation of sensory stimuli (Fig. 1C, cf.
(Oude Lohuis et al., 2022a)).
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To verify that these results were not specific to our experimental protocol, we also
analyzed recordings from a previously published experiment (Steinmetz et al., 2019). In this
paradigm, mice had to identify which of two visual stimuli presented in the right and left
hemifield had the highest contrast, and rotate a wheel to move the highest-contrast sensory
stimulus toward the center of the screen (Fig. 1D). We computed sensory-evoked responses
as a function of both stimulus contrast (difference between the contrast of the two presented
Gabor patches) and hit/miss responses, for trials in which the highest-contrast stimulus was
shown in the hemifield of view contralateral to the recorded hemisphere. We analyzed
neuronal responses in areas corresponding to those we also recorded [V1; VISa and VISam
(not shown), which are two secondary visual cortices spatially overlapping with PPC; ACC], as
well as in a region broadly defined as supplementary motor cortex (MOs), where report-
related activity has been shown to originate (Allen et al., 2017) — Fig. 1B. Results were in line
with those that we observed in our dataset. V1 showed a bimodal pattern of activity, with an
early sensory-evoked response (that however, in contrast with our dataset, did not encode
stimulus saliency) followed by a report-related bump in activity (Fig. 1E). Activity in higher-
order regions followed the early response displayed in V1 and was only report-related. These
results suggest that the spatiotemporal progression of visual- and report-related activity is
mostly independent from the details of the task being performed.

Earlier findings (Allen et al., 2017; van Vugt et al., 2018; Yin et al., 2020) indicated that
report-related activity showed an earliest peak in prefrontal regions, followed by PPC and V1.
Our results suggest a similar picture for what pertains higher-order regions, with prefrontal
areas (ACC, MOs) (Le Merre et al., 2021) showing earlier indications of hit/miss differences
compared to PPC. The relative timing of the appearance of report-related activity in V1 is,
however, less clear (cf. Fig. 1C and 1E), but is overall very close to that observed in prefrontal
regions (Allen et al., 2017; van Vugt et al., 2018; Yin et al., 2020). Thus, while prefrontal
regions remain the most likely candidate for the origin of report-related activity — as
supported by the causal experiments performed by Allen et al. (2017) (Allen et al., 2017) —
the mechanistic pathway via which this form of activity reaches other cortical areas remains
unclear.

A minimal network model reproduces the spatio-temporal propagation of visual- and
report-related activity

In order to understand the possible network-level mechanisms underlying the spatiotemporal
propagation of visual- and report-related activity across the cortical areas from which we
recorded neuronal activity, we developed a minimal mean-field computational model of the
cortical network that: (i) uses available connectomic data (Bressloff, 2014; Chaudhuri et al.,
2015; Ermentrout and Cowan, 1980; Ermentrout and Terman, 2010; Joglekar et al., 2018) and
(i) is calibrated using in vivo recordings. For this reason, the model only includes the three
cortical areas from which we performed in vivo neuronal recordings: V1, PPC and PFC (see
Fig. 2A). The activity in each area is modeled with a firing-rate neural-mass model comprising
one excitatory and one inhibitory population. Firing rate models of this type are a well-tested
tool to describe macroscopic neuronal dynamics, as they average single-neuron spike rates
(Bressloff, 2014; Chaudhuri et al., 2015; Ermentrout and Cowan, 1980; Ermentrout and
Terman, 2010; Joglekar et al., 2018). Within each mass, the synaptic dynamic has a tunable
dispersion time, and oscillatory dynamics are possible because of the coupling between the
excitatory and inhibitory population (Coombes and Wedgwood, 2023). We also adopted a
classical nonlinear sigmoidal firing rate for each neuronal population (see Materials and
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Methods for a complete description), which is standard for neural mass models in the
literature (Bressloff, 2014; Chaudhuri et al., 2015; Ermentrout and Cowan, 1980; Ermentrout
and Terman, 2010; Joglekar et al., 2018).

The mean field model comprises a total of six neuronal populations, two in each
cortical area, which feature local as well as long-range connections. More precisely, the
excitatory-inhibitory pair in each cortical area are fully connected and should be taken
together as a model of a cortical area, where the excitatory node has been fitted to
experimentally collected neuronal activity and therefore represents the output of an area (in
terms of “firing” activity) and all other variables represent hidden state variables. In addition,
there are long-range excitatory connections to and from each cortical area. Crucially,
connection strengths between areas were taken from recent experimental data (Knox et al.,
2019) (see highlighted entries Fig. 2B). In particular, we employed values of directed
connection density between V1, secondary visual areas A and AM (which are considered the
mouse homologue of PPC (Arlt et al., 2022; Driscoll et al., 2017; Oude Lohuis et al., 2022a;
Pinto et al., 2019)) and MOs (which is considered as a component of PFC (Le Merre et al.,
2021) and is thought to be the key cortical area mainly in view of generating report-related
activity (Allen et al.,, 2017; Steinmetz et al., 2019)). All other model parameters were
calibrated (see Materials and Methods) to enable the excitatory nodes to reproduce patterns
of activity comparable to those observed in vivo, as reported in earlier sections. During the
tuning procedure all parameters in the model (characteristic rise/decay times, activation of
the nonlinear firing rate functions, and local excitatory-inhibitory coupling strengths) were
calibrated, while the inter-areal connections were kept fixed, because we had direct access
to experimental data on these parameters. In this way we could test to what extent the
generation and propagation of report-related activity in the three cortical areas on which we
focus is shaped by cortico-cortical connectivity. Importantly, as our model comprises neural
masses that jointly mimic the activity of whole cortical areas, all parameters except the
activity of excitatory nodes do not represent measurable variables, but rather hidden state
variables or input parameters that do not aim to model specific single-neuron parameters.
For instance, while input currents are measured in picoampere, they reflect input to a whole
cortical area and not to single neurons.

We modelled a visual stimulus via an applied transient step current, with varying
intensity, on the excitatory population of V1 (see Fig. 2A, and /qpp time traces in Fig. 2C-E), and
monitored the elicited cortical firing rate response in excitatory and inhibitory populations of
V1, PPC, and PFC (whose time traces are also seen in Fig. 2C-E). To calibrate the model, we
applied a visual input lasting for 500 ms to the excitatory V1 node and replicated the following
experimental results. First, when subjected to a sufficiently strong stimulus, V1 activity
displayed an early-onset response peaking around 100-200 ms (before the termination of the
visual stimulus) that then dropped to lower values — Fig. 2C. This reproduces the adaptation
to stimuli typically observed in the visual cortex (Fig. 1) — see e.g. (Kirchberger et al., 2021,
Oude Lohuis et al., 2022b; Steinmetz et al., 2019; Super et al., 2001). Second, high-amplitude
visual stimuli evoked a bimodal V1 response, that is, an early-onset peak of activity followed
by a later peak — Fig. 2E. This second peak was absent if the stimulus had a low-amplitude
(low salience stimulus) and accounts for the report-related activity observed in vivo (cf. hit
trials in Fig. 1). While the model itself does not include an actuator stage to perform an actual
report, we consider the emergence of the late-activity bump to represent an instance of
stimulus detection by prefrontal/premotor cortical regions. This mimics the spatiotemporal
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time course of sensory detection, as can be observed from the neural recordings shown in
Fig. 1 and from the related publications (Oude Lohuis et al., 2022b; Steinmetz et al., 2019).

Following this tuning procedure we observed that, when the network was subjected
to stimuli of various intensity for 500ms, it displayed a strongly nonlinear response for the
late peak of report-related activity: for smaller inputs (/,,,x = 1.1pA) V1 was activated, but
the signal did not significantly propagate in the network and did not trigger a second,
feedback-dependent bump in activity (see excitatory nodes in row 2-4 of Fig. 2C). For higher
input strengths (I, = 2pA), the network displayed the late activity bump in many, but not
all, realizations — cf. Fig. 2D,E. To run the model, we first set the initial value of the firing rate
in each of the excitatory and inhibitory population, that is, we set initial conditions prior the
initiation of the stimulus. In the simulation each population is set to a random initial state
with a small variance. In particular, we found that initial conditions varying within 1072
spikes/s, simulating noisy initial data, trigger or suppress the occurrence of the late activity
bump.

This is in line with experimental findings showing that, when subject to a sufficiently
large stimulus, large late-latency activity arises with high probability, but not with certainty
(van Vugt et al., 2018). The probabilistic nature of this response is analysed in detail in later
sections. Before addressing this aspect, we observed the dynamics in each neuronal
population, and noted that the occurrence of a late-latency activity bump appears to be
feedback-induced. The external stimulus activated V1 which, in turn, following a feed-forward
chain, activated PPC and PFC. The activity in the latter areas reached a peak (indicated with a
vertical time-marker in Fig. 2D-E) before decaying owing to local (intra-population) inhibition.
The time marker aligned remarkably well with the small late-latency activity in V1, signaling
the onset of a feedback mechanism (from PFC and PPC back to V1, see schematic in Fig. 2A).
In realizations in which the late activity bump occurred, it was again PFC and PPC that
displayed a peak preceding the late, report-related activity in V1, in line with a feedback
mechanism. This claim will be further substantiated in the following sections.

Thus the model, using a set of nominal parameters, was able to qualitatively
reproduce the types of activity we observed in vivo. While the model was specifically tuned
to reproduce V1 activity, we also obtained comparable patterns of activity in PPC and PFC,
indicating that the model could be used to study the mechanisms underlying the propagation
of activity across cortical areas during sensory-motor transformations. In particular, we
focused on studying the role of feedback connections in the genesis of the late activity bump,
i.e. of report-related activity.

We highlight that the time courses of the activity of excitatory nodes are strongly
determined by the inhibitory ones: in Fig 2D-E it is visible that inhibitory nodes in each cortical
area activate after the corresponding excitatory node, and this determines the rise-and-fall
behavior in the latter. It is known that neurotransmitter release in excitatory and inhibitory
populations are affected by time-scale separation between signals (Rodrigues et al., 2016).
Our model achieves the delayed inhibitory activation using time-scale separation between
excitatory and inhibitory rising times (see discrepancies in the parameters £ and t! in
Materials and Methods). However, we also must point out that, for the purposes of this study,
we did not calibrate the dynamics of inhibitory nodes to match experimental results, but only
tuned their parameters so that excitatory nodes would show realistic behaviors. For this
reason, we will only focus on excitatory nodes in the rest of the manuscript.

The likelihood of late activity bumps is influenced by variations in internal state
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As we have seen above, when the network is in the nominal setup and the visual stimulus is
sufficiently high, a late activity bump occurs with a given probability, upon perturbing the
initial state of the system. We investigated systematically this scenario by running 100
simulations during which the initial state of the excitatory V1 population was picked randomly
and uniformly between 0 and 0.05 spikes/s, thereby imposing a small variance in the internal
state (see Fig. 3A) that is in line with experimental observations linking cortical state
fluctuations to perception (McGinley et al., 2015a, 2015b; Samaha et al., 2020; Speed et al.,
2019; Super et al., 2003). We observed that early V1 responses elicited by either small (I, =
1pA) or large (I,.x = 3pA) input currents were not affected by such small variations, as
trajectories were grouped together as simulation time progressed. On the other hand,
intermediate currents (I,,x = 1.8 — 2pA) considerably propagated the initial uncertainty: a
late activity bump occurred often, but the fine details of the trajectory could differ. These
findings further support the conclusion that the network in the nominal setup supports
robustly self-generated late-latency activity bumps. However, more delicate questions arise:
given a fixed set of network parameters, how often does the network generate such a bump?
And further: how do changes in the network parameters affect this likelihood? To address
these questions, we developed first a mathematical index to track late-latency V1 activity.

We therefore introduced a cumulative (integral) spiking measure S, with the view of
determining the likelihood of late-latency activity in V1. For each of the V1 traces seen in Fig.
3A, we counted the average cumulative number of spikes occurring after the early activity
bump in V1 (Materials and Methods). More precisely, we disregarded the trajectory before
the reference time t;,;; = 250ms, because this is the characteristic time in which the early
activity bump occurs (Del Cul et al., 2007; Oude Lohuis et al., 2022b), and then we calculated
the area under the curve (proportional to the average number of population spikes) between
tinit and the end of the simulation, t,,; = 1000ms, during which the late activity bump may
occur. We expected trajectories with I, = 1.1pA (see Fig. 3A) to have a very small
cumulative spike number S, because they did not display a late activity bump. Indeed, the
histogram in Fig. 3B with I, = 1.1pA shows that in all such trajectories fewer than 0.05
spikes were observed in V1, on average, after the early activity bump, in the time interval
[250ms, 1000ms]. On the contrary, a fully saturated response, in which firing rate reach the
maximum value allowed by the model’s equations (Fig. 3A, I,,.x = 3pA), is characterized by
alarge S, and indeed the histogram in Fig 3B (with I,,,,, = 3pA) shows that all such trajectories
had more than 0.35 spikes after the first bump, on average. Finally, a late activity bump was
characterized by an intermediate value of S: with [,,, = 1.8 — 2pA we observed a clear
separation in the histogram of S. Therefore, we can use the value of S to define, empirically,
the occurrence of a late activity bump (Fig. 3B). We thus classified a V1 activity trace by the
corresponding value of S: we labeled traces with 0 < S < 0.2, as displaying only the early
activity bump, traces with 0.2 < S < 0.35 (green band in Fig. 3B and 3C) as displaying both
the early and late activity bumps and those with S > 0.35 as displaying an overshoot (see also
Fig. 3A).

Based on the fraction of trajectories whose S value falls in each of these three bands,
we estimated the probability of having only the early activity bump as P15, both the early and
late activity bumps as P2, and overshoot as Poy. For example, from the histograms in Fig. 3B
with stimulus I, = 2pA, we estimated that the nominal network displays both an early and
late activity bump with probability P,;, = 71%, an overshoot with probability P,,, = 5%, and
an early activity bump only or inactivity with probability P;;, = 24%.
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Late-latency activity relies on network feedback

Armed with a quantitative index to inspect the likelihood of late-latency activity, we
investigated how this likelihood changes upon variations in the network topology. As we shall
see below, this analysis revealed that the late-latency activity is feedback-induced. We
performed two different experiments which transform the connectivity matrix. In the first
one, we perturbed the connectivity matrix at the initial time, and kept the matrix constant
thereafter. In the second experiment we dynamically perturbed the matrix to explore the
effects of abrupt changes to the topology of the network.

With the view of imposing changes in the network connectivity, we introduced a
morphing parameter a (see Materials and Methods). When a = 1, the network is in its
nominal state (the one studied so far); when a > 1, selected network links are strengthened;
when a < 1, those links are weakened; finally, when a@ = 0 the links are absent. The name
morphing parameter suggests that with this index we can continuously transform the nominal
network to intensify weaken, or even suppress certain links. Therefore, we introduced a tool
to causally study to what extent the specific strength of an inter-area connection enables the
emergence of a regime in which a sensory input to V1 can (with a certain probability)
determine the occurrence of a late, report-related bump in activity.

We first used the morphing parameter to vary the strength of selected networks links from

the starting time onwards, beginning with the feedback link from PFC to PPC (Fig. 4A),
signposted with a red arrow in the network schematic (mathematically, the PFC>PPC
connection was scaled by factor a). We repeated the experiment of Fig. 3A-B for various
values of the morphing parameter (a between 0 and 1.5) and recorded the probability of a
single early bump P1,, both early and late bumps P,;, and overshoot P,,,. We used P, to
derive the heatmap showed in Fig. 4A: the lighter colors correspond to a higher probability of
a late activity bump, while darker colors denote lower probability thereof. We also used
isolines to indicate where the probability of a single bump P, crosses 99% (green isoline) and
where the probability of overshoot P, crosses 99% (orange isoline).

The overall information we gathered from the heatmap in Fig. 4A can be summarized
as follows. First, the network produced a late activity bump robustly with respect to changes
in the PFC>PPC feedback link: light yellow areas (late-bump probabilities close to 100%) were
found in a variety of network configurations (for various values of a). Second, there are
regimes, labelled “ov” and “1b”, where the feedback-bump was absent, but either an
overshoot (ov) or an early bump only (1b) were found with probability greater than 99%,
respectively. Third, the network could produce a late activity bump even when the feedback
link PFC>PPC was weakened with respect to the nominal condition, provided that the
strength of the impinging stimulus was increased; this can be deduced from the yellow area
in Fig. 4A “curving upwards” towards higher values of I,,... Finally, the feedback pathway
PFC—>PPC was an important player in triggering late-latency activity. While the network could
compensate for the weakening of this link with a higher input to produce a late-latency bump,
network configurations in which that link was either too weak or too strong failed to produce
a late activity bump.

A markedly different behavior was observed when we perturbed the feedback link
PPC—>V1 (Fig. 4B). From Fig. 4B it can be seen that the likelihood of a late activity bump was
strongly affected by changes in this feedback link. Small deviations from the nominal value of
the link caused the late activity bump to disappear quickly. While the network could tolerate
a weaker PFC>PPC link (Fig. 4A), even the slightest weakening of the PPC>V1 link caused a
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complete suppression of the feedback bump. This data revealed that the experimentally-
derived anatomical connectivity used in the nominal conditions (&« = 1) was crucial to obtain
a late activity bump.

On the contrary, the network’s activity was only minimally affected by changes to the
feedback link PFC>V1. Fig. 4C shows that feedback bumps could be produced with high
probability even when this link was absent (a¢ = 0), in case the strength of the input was
increased (compensating for the reduced PFC>V1 link).

For the experiments in Figs. 4A-C we perturbed one link at a time, but the morphing
parameter can also be varied on multiple links simultaneously. In Fig. 4D, for instance, we
strengthened or weakened all the feedback pathways at once. These manipulations showed
that late-latency bumps cannot exist without (or with too much) feedback. Therefore, it is the
interplay between the various feedback pathways that generates the late-latency bump. This
was further confirmed by the results displayed in Figs. 4E-F, showing that a network in which
the PFC or PPC nodes were progressively isolated (transforming the architecture into a two-
node network) did not display robust late activity bumps.

The previous experiment modulated the strength of feedback connections over the
whole simulation period. However, we expect that, if the network receives a shock in the form
of instantaneous removal of certain links during sensory processing (rather than from the
initial time), this will also have an impact on late-latency activity. We investigated this scenario
in a further experiment: we selected initial states which, in nominal conditions, would lead to
late-latency activity; we then ran this network up to a chosen time T*, at which we
instantaneously set selected links to zero (see Materials and Methods). In Fig. 5A.1 the
PFC>V1 link is removed for different values of T* in the range 50-450 ms, when applying a
value of Imax=1.8pA. We found that inactivating the link at any time resulted in a quick decay
in V1 activity, preventing the feedback bump to occur. In Fig. 5B.1 analogous results are found
when PFC is instantaneously isolated from the rest of the network. We found similar results
when we removed network links from the initial time (Fig. 4).

However, as we discussed earlier, the amplitude of the external stimulus to V1 (i.e.,
Imax) influences the genesis of the feedback bump. We thus repeated the previous
experiments using a larger value of Imax=3pA in order to establish whether sufficiently large
inputs can compensate for instantaneous inactivation of the network links. In all cases, except
for the PFC>V1 link, we found that large stimuli cannot overcome instantaneous inactivation
of a set of links, hence impairing the generation of a feedback bump. In Fig. 5B.2,
representative of most cases, it can be seen that a second bump is not formed, irrespective
of the value T* (see also Fig. S1). On the contrary, a feedback bump is still visible when
inactivation the PFC->V1 link with a T* between 150 and 300ms, showing that feedback
activity can be restored by sufficiently large external drive in spite of the inactivation of this
specific link.

In summary, the analyses performed using the morphing parameter shed light on the
fact that the late activity bump is dependent on feedback connections. Upon external
stimulation, V1 is activated and a feedforward pathway excites PPC and PFC. From these two
areas, a late-latency activity bump appears in V1, mainly owing to an indirect pathway from
PFC to PPC and then to V1. It turns out that direct feedback from PFC to V1 is instead not
crucial for feedback bumps to be observed in V1, because the impact of reducing this link can
be easily compensated by increasing stimulus strength.

Discussion
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In this project we set out to elucidate how report-related late activity patterns observed in
cortex may mechanistically emerge as a function of the anatomically-constrained connectivity
between sensory, association and prefrontal cortices.

We presented evidence of two crucial stages in the processing of visual information
during perceptual decision making in mice, replicating and extending previous work in both
humans and animals (Alilovi¢ et al., 2023; Allen et al., 2017; Dehaene and Changeux, 2011;
Del Cul et al., 2007; Oude Lohuis et al., 2022b; Steinmetz et al., 2019; van Vugt et al., 2018).
Neural recordings collected from two independent labs using two different tasks revealed
that V1 firing rate at 100 ms after stimulus change was uniquely modulated by the saliency of
the stimulus and not by the decision made by the mouse (Oude Lohuis et al., 2022b) (Fig.
1C,E). In contrast, a second, later wave of V1 activity reflected a combination of stimulus
saliency and decision outcome. This late wave of activity was stronger for hits than for misses
and coincided with increased report-related activity in both posterior parietal and frontal
cortex.

Next, we set out to model the interactions between the three cortical regions that we
considered, to understand the mechanisms giving rise to the observed neural dynamics.
Crucially while designing the model connection strengths between V1, PPC and PFC were
implemented from recent experimental data to match the currently known anatomical
connectivity profiles between these regions. Thus, connectivity between cortical regions was
imposed as a fixed constraint onto neural activity. Previous studies on the origin of report-
related activity were either incorporating a limited set of cortical areas but did not constrain
inter-area connectivity to experimentally-derived connectivity (Del Cul et al., 2007; van Vugt
et al., 2018), or included most cortical regions but only globally varied inter-areal coupling
strength (Castro et al., 2020; Dehaene et al., 2003; Dehaene and Changeux, 2005). Our
approach allowed to mechanistically test the role of all combinations of single and multiple
feedback connections with realistic strengths, something not feasible in whole-brain models.
Importantly, thanks to the close link between experiments and our model, the time-specific
inactivation experiment also provides predictions that, in contrast with more complex
modeling approaches, are directly testable. Specifically, by optogenetically inactivating (i.e.,
isolating), PPC or PFC starting from different time points following stimulus onset (see e.g.
(Kirchberger et al., 2021; Oude Lohuis et al., 2022b; Resulaj et al., 2018) for a similar approach)
one could test the model validity in an existing experimental setup. Nevertheless, we cannot
exclude that including additional areas known to play a role in top-down modulation of
sensory areas (Halassa and Kastner, 2017; Wimmer et al., 2015; Zhang et al., 2016) might have
partially modified the results we obtained. However, the fact that model behavior echoed the
neural data observed in vivo indicates that the model’s architecture and the free model
parameters were enabling physiologically-plausible sensory-evoked activity for a given,
anatomically-based inter-areal connectivity matrix Nevertheless, it is important to briefly
discuss the possible role of different areas. First, the anterior cingulate cortex (ACC) sends
stronger feedback projections to V1 compared to other subdivisions of PFC such as MOs (Le
Merre et al.,, 2021; Zhang et al., 2016). However, even though ACC has been shown to
significantly modulate V1 activity (Fiser et al., 2016; Zhang et al., 2014), report-related activity
has consistently been found to first appear in other PFC subdivisions compatible with MOs
(Allen et al., 2017; Inagaki et al., 2022; Steinmetz et al., 2019; Takahashi et al., 2021; Yin et al.,
2020). Second, while we focused on PPC, other temporal association areas have been
implicated in visual perception (Conway, 2018). However, at least in rodents, medial
association areas such as PPC, that have been hypothesized as the rodent homologue of the
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dorsal stream (Glickfeld et al., 2014; Wang et al., 2012), are more strongly connected to
prefrontal areas compared to temporal association cortices (Harris et al., 2019; Knox et al.,
2019). Furthermore, to what extent individual areas in the mouse association cortex
(generally referred to as higher-order visual areas) provide unique contributions to sensory
processing or form instead a redundant network is a matter of active debate (Glickfeld et al.,
2014; Jin and Glickfeld, 2020; Keller et al., 2020; Kirchberger et al., 2021; Oude Lohuis et al.,
2022a, 2021). Therefore, we believe that considering PPC as a single network node is an
important first step to better understand the role of parietal and temporal cortex in the
generation of report-related activity, to be followed-up by a more detailed characterization.
Finally, although we cannot exclude a role of thalamic nuclei in mediating long-range top-
down modulation, the thalamus seems to mainly play a modulatory role and not directly be
involved in information transfer (Halassa and Kastner, 2017; Wimmer et al., 2015).

There were at least three notable observations in our model behavior. First, increasing
the input strength to V1 led to both stronger early activity waves (~100 ms) as well as an
increased likelihood of a second late wave of activity (~400 ms), as observed in our data and
in previous studies (Del Cul et al., 2007; Supér et al., 2001). Stronger V1 input also directly led
to increased late activity in PPC and PFC, that in general anticipated the late wave of activity
in timing observed in V1.

Second, we show that the initial baseline or pre-stimulus condition of each neural
node strongly determines the likelihood of the late activity wave of activity to occur. In fact,
we observed a regime of model parameters in which there was a clear nonlinear threshold
for “igniting” this late wave of activity, in line with theoretical predictions from the Global
workspace model of conscious access (Dehaene et al., 2003; Dehaene and Changeux, 2011,
2005; Mashour et al.,, 2020). This is in line with recent observations that variations in
behavioral and cortical state, associated with ongoing fluctuations in pre-stimulus neural
activity, strongly determine the likelihood that a stimulus will be reported (or consciously
accessed) and that late report-related neural activity in cortex is observed (McCormick et al.,
2020; McGinley et al., 2015a, 2015b; Speed et al., 2019; Waschke et al., 2019) .

Third, not only do we show that late activity in V1 is driven, as hypothesized earlier
(Dehaene and Changeux, 2011), by feedback from higher-order regions, but also, more
specifically, that although PFC is necessary to generate report-related activity in V1, it exerts
its final influence on V1 only indirectly, through PPC. In our model, therefore, while PFC
activity is necessary towards the buildup and initiation of the late, report-related bump in V1
activity, it is PPC that has the final veto and determines its characteristics. Removing the
feedback connection from PFC to V1 had very limited influence on model behavior and the
occurrence of a late activity wave could still be observed when stimulus input strength was
increased. Thus, an interplay between frontal and parietal cortical regions is required, and
most efficient, for eliciting late feedback activity in early sensory cortex (Super et al., 2001).
This observation is important because, in the Global Neuronal Workspace Model, frontal
cortex has always been considered the site responsible for igniting the network, and hence
threshold setting (Dehaene, 2014) — but see (Sergent et al., 2021). It was hypothesized that
once the threshold for conscious report in PFC is crossed, PFC sends information to other
brain regions, including parietal cortex. We provide evidence for a possible different division
of labor between frontal and parietal regions, in which frontal cortex acts as fast accumulator
of sensory evidence, and parietal cortex as a much slower one (Kim and Shadlen, 1999;
Shadlen and Newsome, 2001) — but see (Pinto et al., 2022). In this scenario, PFC starts to
quickly feed stimulus evidence to parietal cortex, but activity in PFC quickly reaches a ceiling
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level. When activity in PFC reaches such a level, this is not sufficient to elicit a report-related
wave of activity. In contrast, parietal cortex keeps on accumulating evidence from both
sensory and prefrontal regions over time. Once activity in the PPC crosses a certain threshold
(which can happen only if both V1 and PFC provide it with input activity), this triggers a report-
related feedback wave of activity to V1 and other cortical areas. This scenario is a direct
consequence of the known anatomically-constrained connectivity between areas (Harris et
al.,, 2019; Knox et al., 2019), and specifically from the fact that PPC has a much stronger
feedback connection to V1 compared to PFC.

In conclusion, our study provides a mechanistic hypothesis on the cortical pathway via
which report-related activity, a hallmark of conscious access, is generated in the fronto-
parietal cortex and then reaches sensory areas. Future experimental work will be required to
validate our results in vivo. Furthermore, it will be important to disentangle potentially
different mechanisms underlying the genesis of the different sub-components of late-onset
activity in V1. In fact, recent studies suggest that this component of V1 activity correlates not
only with report, but also with spontaneous and sensory-induced motor behavior (Lohuis et
al., 2022; Oude Lohuis et al., 2022b; Steinmetz et al., 2019; Stringer et al., 2019). Finally, it is
worth noting that the primary focus of our study lied in unraveling the mechanisms implicated
in conscious access, associated with cognitive and behavioral responses to sensory stimuli
(e.g., hits versus misses). Therefore, we did not aim to target the neural mechanisms of
"phenomenal consciousness": the subjective phenomenological aspects of conscious
experience (Kriegel, 2007). In this light, it is rather uncontroversial that the fronto-parietal
network is involved in conscious access or report, although exactly how so has been severely
underspecified as we have highlighted before. The role of this network in phenomenal
experience, and how this takes form in across the cortex, on the other hand, are strongly
debated and a matter of ongoing investigation (Boly et al., 2017; Cohen et al., 2020;
Hatamimajoumerd et al., 2022; Koch et al., 2016; Lamme, 2018; Odegaard et al., 2017). In
fact, several theories of consciousness (e.g. integrated information theory (Tononi et al.,
2016) or predictive processing accounts (Friston, 2010; Pennartz, 2022) —see (Seth and Bayne,
2022) for a review) emphasize the role of posterior association cortices (of which PPC is part)
in the generation of phenomenal consciousness, and consider late activity to be only an
reflection of conscious access, or of the subsequent motor actions. Thus, to what extent late,
report-related activity reflects conscious processing, and what roles the different cortical
regions implicated in its genesis play, remain open questions. A way to potentially investigate
these issues is by employing so-called no-report paradigms (Tsuchiya et al., 2015), developed
to isolate phenomenal experience from its functional consequences, such as report and
decision-making, and pursue an interdisciplinary approach combining experiments and
modeling. Whether this is possible and a fruitful approach, both theoretically as well as
experimentally, is an important avenue for future scientific investigation.

Materials and Methods

RESOURCE AVAILABILITY
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Lead contact
e Further information and requests for resources and reagents should be directed to
and will be fulfilled by the lead contact, Umberto Olcese (u.olcese@uva.nl).

Materials availability
e This study did not generate new materials or reagents.

Data and code availability

e All the data collected by the authors of this study and used for the analyses presented
in Fig. 1 will be shared by the lead contact upon request.

e This paper also analyzes existing, publicly available data. These accession numbers for
the datasets are listed in the key resources table.

e All original code will be deposited at Zenodo and will publicly available as of the date
of publication. DOIs will be listed in the key resources table.

e Any additional information required to reanalyze the data reported in this paper is
available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Collection and analysis of in vivo recordings

The model we developed (see Model description) was qualitatively fitted on data collected in
vivo by the authors and on a previously released dataset (Steinmetz et al., 2019). The
experimental procedures performed to collect the data are only summarized here, and are
described more extensively in refs. (Oude Lohuis et al., 2022b, 2022a). All details about
experimental subjects, recording procedures and behavioral task for the previously released
dataset can be found in ref. (Steinmetz et al., 2019).

Experimental subjects

All animal experiments followed the relevant national and institutional regulations.
Experimental procedures were approved by the Dutch Commission for Animal Experiments
and by the Animal Welfare Body of the University of Amsterdam. The data presented here
was collected from 17 male mice, obtained from two transgenic mouse lines: PVcre
(B6;129P2-Pvalbtm1(cre)Arbr/J, RRID: IMSR_JAX:008069) and F1 offspring of this PVcre line
and Ai9-TdTomato cre reporter mice (Gt(ROSA)26Sortm9(CAG- tdTomato)Hze RRID:
ISMR_JAX 007909). Mice were group-housed in under a reversed day-night schedule (lights
on at 20:00 and off at 8:00) and all experimental procedures were done in the dark period.
Temperature was kept between 19.5 and 23.5 °C, and humidity between 45% and 65%. During
behavioral training (starting when mice were about 8 week old), mice were kept under a
water restriction regime. Their minimum weight was kept above 85% of their average weight
between P60-P90. Mice were normally trained 5 days/week, and generally obtained all their
daily liquids in the form of rewards during task performance. A supplement was delivered
when the amount of liquid obtained during the task was below a minimum of 0.025 ml/g body
weight per day. The same amount was provided during weekends. Mice received ad libitum
food.
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METHODS

Surgical procedures

At the start of experimental procedures, mice were implanted with a headbar to allow head-
fixation in the experimental setup. About three weeks before electrophysiological recordings,
a subset of mice received an injection of an adeno-associated virus mediating the Cre-
dependent expression of ChR2 in Parvalbumin-positive interneurons; the injection was
performed, in separate sets of mice, in either V1 or PPC. Data collected during optogenetic
interventions was not utilized for the analyses presented in this study. The day before the
start of extracellular recordings, small craniotomies (about 200 um in diameter) over the
cortical areas of interest using a dental drill. Cortical regions (V1, PPC and anterior cingulate
cortex ACC for this study) were identified either via stereotactic coordinates or via intrinsic
optical signal imaging — Fig. 1A. Details about all surgical procedures can be found refs. (Oude
Lohuis et al., 2022b, 2022a).

Behavioral task and sensory stimuli

Mice were trained, over the course of several weeks, to perform an audio-visual change
detection task — Fig. 1C. Visual stimuli were drifting square-wave gratings (temporal
frequency: 1.5 Hz; spatial frequency: 0.08 cycles per degree; contrast: 70%; gamma-
corrected), presented over the full screen (18.5-inch monitor, 60 Hz refresh rate). Gratings
were continuously presented at a distance of about 21 cm from the eyes. In a subset of trials
(visual change trials) the orientation of the drifting grating was instantaneously changed. The
amount of orientation change determined the visual saliency, which was set, based on the
properties of the psychometric curve of individual mice, to a value corresponding to a
threshold or max change (detection threshold and 90 deg, respectively). Mice were trained
to respond to a visual change by licking to one reward port (left or right, counterbalanced
across mice), and received 5-8 pl of liquid reward (infant formula) upon a correct response.
Visual stimuli were the subject of analysis in the current manuscript, and a detailed
description can be found in refs. (Oude Lohuis et al., 2022b, 2022a). Correct responses to an
auditory changes corresponded to licks toward the port not rewarded for visual stimuli
(counterbalanced across mice). Importantly, similar neuronal responses were obtained across
the measured areas irrespective of the side to which the mice had to lick upon a visual change,
as well as independently of whether mice were trained to only report visual but not auditory
changes. A more in depth account can be found in refs. (Oude Lohuis et al., 2022b, 2022a).

Multi-area recordings: acquisition and pre-processing

Extracellular recordings were performed simultaneously in 2 or 3 cortical areas (V1, PPC, ACC
and Al were targeted in different experimental sessions). Recordings were performed on a
maximum of 4 consecutive days. Several types of Neuronexus (Ann Arbor, Ml) silicon probes
were used (Al x 32-Poly2—10 mm-50 s-177, A2 x 16-10 mm-100-500-177, A4 x 8-5 mm-100-
200-177, Al x 64-Poly2-6 mm-23 s-160). Neurophysiological signals were pre-amplified,
bandpass filtered (0.1 Hz to 9 kHz), and acquired at 32 kHz (a band-pass filter was set between
0.1 Hz and 9 kHz) with a Digital Lynx SX 128 channel system, via the acquisition software
Cheetah 5.0 (Neuralynx, Bozeman, MT). Spike detection and sorting were performed using
the Klusta (version 3.0.16) and Phy (version 1.0.9) software packages. For more details about
acquisition and pre-processing, refer to refs. (Oude Lohuis et al., 2022b, 2022a).
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Histology

At the end of experiments, mice were perfused in 4% PFA in PBS, and their brains were
recovered for histological reconstruction meant to verify the correct placement of silicon
probes in V1, PPC and ACC.

Model description
We modeled a network of 3 regions, namely V1 (primary visual cortex), PPC (posterior parietal

cortex) and PFC (prefrontal cortex). Each region comprises one excitatory and one inhibitory
population (see schematic in Fig. 2), and the activity of each population is described by a
neural mass model (Bressloff, 2014; Chaudhuri et al., 2015; Ermentrout and Cowan, 1980;
Ermentrout and Terman, 2010; Joglekar et al., 2018). The model describes the evolution of
the average population firing rates. Such models are macroscopic in nature, that is, they
describe population activity, as opposed to single-neuron activity. Populations are connected
through weighted links, which represent anatomical connectivities. Neural Mass Wilson-
Cowan models, such as the ones described below, are an established framework to
investigate large-scale neuronal dynamics (Bressloff, 2014; Chaudhuri et al., 2015;
Ermentrout and Cowan, 1980; Ermentrout and Terman, 2010; Joglekar et al., 2018).

The ith cortical area in the network evolves according to the following equations:
— E E E EE E EI 1
_ﬂi U; +Fi Vi U; +ZVVU u] +Iapp,i(t) ’

d
nau —Biui + Fl (y{"uf + y{Fub),

where the superscripts E, I label excitatory and inhibitory variables, respectively. The firing
rate u; of the i-th population has characteristic time constants t;, and it evolves according to
two main contributions: a damping term proportional to f;, and a nonlinear synaptic term,
collecting inputs from the network. Our network is formed by 3 main brain regions (V1, PPC,
and PFC) hence we set u; = V1, u, = PPC and u; = PFC, each endowed with an excitatory
and inhibitory node, thereby obtaining a network with 6 nodes.

The local couplings are denoted by yi"l where k,l = E, I. Inhibitory populations are connected
only locally, whereas excitatory populations have local as well as long-range connections.
Long-range connections are mutual, all-to-all and, in general, asymmetric. This means that,
while each population is connected to all the others, the respective weights have different
strengths. We encode the link from the excitatory population j to the excitatory i in a matrix
using the equation:

number of neuronal projections fromjtoi

Y7 total number of neuronal projections to i

16


https://doi.org/10.1101/2023.07.19.549692
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.19.549692; this version posted March 12, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Nominal values of W;; (see highlighted entries in the upper left 3x3 block of Fig. 2B) have been
taken according to recent data on mice (Harris et al., 2019; Knox et al., 2019). This allows to
develop a model with faithful connectivity between cortical regions.

The nonlinear function Ff is sigmoidal:

FE(D =

1+ e—#f(=vf)

and a similar expression holds for F/. The parameter urinfluences the sharpness of the
sigmoid, while vf determines the threshold at which the nonlinear firing response is
triggered. Finally, we model a network receiving an external stimulus in V1, hence Iapp(t) is

different from O only in V1, so I,,,,; = 0 fori = 2,3 and it is a step function for /;

ppi

I 0<t<T
I t —_ { max —_ ’)
app1 (6) 0 t>T.
Nominal values of parameters are reported in the next paragraph. Parameter variations are

discussed in the main text.

The described equations are numerically integrated using the function ode23s in Matlab,
which is based on a modified Rosenbrock formula of order 2 (Shampine and Reichelt, 1997).

Numerical parameters values

Connection strengths between areas (matrix W) were taken from recent experimental data
(Knox et al., 2019). All other model parameters were manually calibrated to enable the
excitatory nodes to reproduce patterns of activity comparable to those observed in vivo, and
reported earlier. As the model describes population activity, its variable u; refers to the
average firing rate of single neurons within population i. As customary in mean-field models,
some parameters refer to single neurons, while others to entire population. For instance, the
input current I, is interpreted as the average external current received by a single neuron
(measured in pA), and similarly for coupling and synaptic constants. On the other hand,
characteristic timescales refer to populations.

Matrix W: connectivity between excitatory variables (units: pA/Hz)

V1 PPC PFC
V1 11.22 | 1.29
PPC 4.57 10.57
PFC 0.72 9.78

Gamma parameters (units: pA/Hz)

YAl PCC PFC
yEE 1. 1. 1.
yE! 2.3 1.8 1.9
y'E 2 2 2
vyl 0.5 0.5 0.5
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Parameters of the firing rate function:

V1 PPC PFC
UE 1170 3 2 2
ul /pAl 2 2 2
vE oA 2 4 2
vl [oa) 0.3 0.3 0.3

Characteristic times and decay constants:

V1 PCC PFC
7E [ms] 30 200 38
7! [ms) 10 10 10
BE 0.8 0.9 3.8

B! 0.07 0.1 0.07

Noise in the initial conditions
We investigated the network behavior when the nominal setup is perturbed by noise, by
sampling the initial conditions from a random, uniform distribution: ui(t=0) € [0, §].

The analysis of network behavior under noise is obtained by with 50 realizations for each
network setup. We fixed 6=0.05 spikes/s, as this value was one order of magnitude smaller
than the typical scales of the excitatory firing rates, and we additionally studied the effects of
varying 4.

Instantaneous Inactivation and connectivity morphing parameter

We perform two experiments to examine the robustness of the network behavior with
respect to changes in the coupling between areas, and also to infer which nodes are most
relevant for the formation of the late activity bump. First, we introduce a connectivity
morphing parameter which amplifies (a>1), dampens (or suppresses (a<1) one or more
synaptic connections (W;;) with respect to their nominal value (a=1), via the following
transformation:

new __
Wij = aWij

This transformation is performed at the initial time, and allows for intermediate states of
weakened connections

In a second experiment we consider instantaneous inactivation of certain synaptic
connection: at specific time T*, we set one or more entries of the connectivity matrix (Wl-j) to

zZero:
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QUANTIFICATION AND STATISTICAL ANALYSIS

In vivo recordings: Data analysis

All data analysis was performed in Matlab 2021b (MathWorks).

In vivo recordings: Sensory-evoked and task-related responses

For each single neuron identified through the spike sorting procedure (V1: 594 neurons, PPC:
529 neurons, ACC: 629 neurons), we computed the average peri-stimulus time histogram
(PSTH) aligned to the onset of visual changes, separately for hit and miss trials, as well as for
small and large visual changes. PSTHs were computed with a 10 ms time bin, and smoothed
with a Gaussian window (standard deviation: 25 ms). Each PSTH was baseline-corrected, i.e.,
we subtracted the average activity computed in the [-500 -10] ms window with respect to
stimulus onset.

In vivo recordings: Sensory-evoked and task-related responses — previously released

dataset
The dataset used for the Steinmetz et al. (2019) (Steinmetz et al., 2019) study was
downloaded from

https://figshare.com/articles/dataset/Dataset from Steinmetz et al 2019/9598406 and
analyzed using the same approach described above. Trials were pooled together based on
whether a hit or miss was observed, and separately for visual contrasts of 25%, 50% and 100%.

In vivo recordings: Statistical analyses

Differences between sensory-evoked responses were assessed using a permutation-based
approach. For each pair of conditions to be tested (e.g. hit trials to high vs. low saliency
stimuli) we used the corresponding single-neuron PSTHs to compute the difference between
average responses (across neurons) separately for each time bin. We then randomly swapped
the trial identify of each PSTH, separately for each neuron, and computed the corresponding
response difference. This was repeated 1000 times. We then ranked, separately per time bin,
the actual response difference between two conditions compared to the values obtained
through random permutations. If the actual response difference was higher than 95% of the
values obtained through random permutations, a difference was considered to be significant,
and the corresponding p value was compute as the fraction of randomly obtained values
which was higher than the actual difference. All p values were then corrected for the false
discovery rate (Bonferroni correction). To compute if an area encoded differences between
high and low saliency stimuli, we further specified that this difference had to be present for
both hit and miss trials, to prevent any interaction effect. Similarly, any hit/miss difference
had to be present for both low and high saliency stimuli.

Model: Neural activity measure
We define an integral measure which counts the cumulative number of spikes in V1, from
time t;,i: totime t 4
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tend
S = f uf (t)dt.
t

init

Here uf (t) is the firing rate of the excitatory population in the primary visual cortex V;. We

shall set t;,,;; SO as to start counting spikes after a first (stimulus-induced) bump occurs, and

use S to determine whether a second (feedback-induced) bump is present in V1.

KEY RESOURCES TABLE

REAGENT or RESOURCE

| SOURCE

IDENTIFIER

Experimental models: Organisms/strains

Mouse, PVcre, bred at the University of Amsterdam from
Jackson lines

The Jackson Laboratory

RRID: IMSR_JAX:008069

Mouse, PVcre/TdTomato, bred at the University of
Amsterdam from Jackson lines

The Jackson Laboratory

RRID: IMSR_JAX:027395

Deposited data

Previously published in vivo V1 recordings

(Steinmetz et al., 2019)
https://figshare.com/articl
es/dataset/Dataset_from
_Steinmetz_et_al_2019/9
598406

https://doi.org/10.6084/m9.fig
share.11274968

Software and algorithms

https://github.com/cortex-
lab/phy

MATLAB Mathworks RRID:SCR_001622
Arduino IDE Arduino N/A
Klusta (Rossant et al., 2016) N/A
https://klusta.readthedocs
.io/en/latest/
Phy (Rossant et al., 2016) N/A

Data analysis code This paper [insert DOI before
[link provided before publication]
publication]

Modelling code This paper [insert DOI before
[link provided before publication]
publication]

Other

Arduino UNO Arduino RRID: SCR_017284

Microelectrode silicon probes NeuroNexus Cattts:

A1x32-Poly2-10mm-50s-177
A2x16-10mm-100-500-177
A4x8-5mm-100-200-177
A1x64-Poly2-6mm-23s-160
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Figure 1: Neuronal correlates of perceptual decision making in the mouse cortex.

(A) Schematic of the experimental configuration of the audio-visual change detection
paradigm for head-fixed mice. Modified from ref. (Oude Lohuis et al., 2022a).

(B) Schematic representation of the relevant cortical areas represented on a flattened cortical
surface. Acronyms are used for the major subdivision of the dorsal cortex following standard
nomenclature(Steinmetz et al.,, 2019; Wang et al., 2012; Wang and Burkhalter, 2007).
Highlighted in color are the areas from which data was analyzed. V1: primary visual cortex;
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PPC: posterior parietal cortex; ACC: anterior cingulate cortex. MOs: Supplementary motor
cortex.

(C) Baseline-corrected average PSTHs recorded in (from top to bottom) V1, PPC and ACC
following a change in the orientation of the presented drifting grating. Red: hits; green:
misses. Dark colors indicate max visual change (highest saliency), while light colors indicate
threshold visual change (low saliency). Shaded areas indicate the standard error of the mean.
Color bars on top of individual panels indicate time bins in which significant differences
(p<0.05, permutation-based test, FDR-corrected) were found between responses to —
respectively — sensory stimuli with a difference salience (blue) or hit/miss trials (orange).

(D) Outline of the contrast discrimination task, in which mice had to rotate a wheel to bring
the Gabor patch with the highest contrast toward the center of the field of view. Modified
from ref. (Steinmetz et al., 2019).

(E) Same as C, but computed as a function of the difference in contrast between the stimulus
presented in the contralateral field of view with respect to the recorded hemisphere (which
was always the highest-contrast stimulus) and the stimulus presented ipsilaterally. The color
darkness indicates the contrast difference. Statistical differences were computed as in panel
C. Note that no difference between responses to sensory stimuli with different contrasts was
observed.
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Figure 2: Network architecture and activity in the nominal setup.

(A) Network schematic. We developed a minimal network model with an excitatory (E) and
an inhibitory (1) node in three cortical areas: V1, PPC and PFC. Orange (blue) arrows indicate
feedforward (feedback) connections, whose values were determined based on anatomical
connectivity — roughly indicated by arrow thickness, see also panel B. Connections between
excitatory and inhibitory nodes (black arrows) were calibrated to match experimental results.
External input was applied to V1 (red arrow) to simulate visual stimuli.

(B) Synaptic weights between nodes. The upper-left 3x3 block corresponds to non-local
connections (matrix W, see STAR methods), while the other three blocks correspond to local
couplings vyi. Values in highlighted cells (red lines) were experimentally derived. All other
values were calibrated.

(C, D, E) Example firing rate traces in the three regions for two different values of applied
current: C low current Imax = 0.8pA; D, E medium current Imax = 2pA. At medium currents a
feedback-bump may (D) or may not (E) appear depending on small changes in initial
conditions. In C-E, row 1 reflects the input, rows 2-4 the activity of excitatory nodes and rows
5-7 the activity of inhibitory nodes.
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Figure 3: Network activity as a function of initial conditions and input currents.
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(A) Examples of activity trajectories (random initial conditions) for different input currents, in
the nominal setup of parameters.

(B) Distributions of integral quantity S for the trajectories in A. A late-activity bump is detected
when the integral of V1 firing rate S lies in the interval [0.2, 0.35], highlighted in green.

(C) Frequency distribution of S for different values of applied current lapp. Red columns
highlight the values displayed in B. The statistics is obtained over 100 different realizations
for every value of Imax, with initial conditions sampled from a uniform, random distribution
ui(t = 0) € [0, 0.05] spikes/s.
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Figure 4: Probability of observing a late-activity bump, in the plane of parameters (a,Imax),
for the sets of connections considered.

In each panel heatmaps show the probability of observing both an early and late activity
bumps P2y as a function of applied input current Imax and morphing parameter a, applied to a
different set of connections. The green and orange lines represent isolines of P1p = 99% and
Pov = 99% respectively, which border regions dominated by single bumps / inactivity and
overshooting (see gray labels on top-left panel). A white, dotted line marks the nominal setup
(a0 = 1). For each panel. morphed connections are colored in red on the respective network
scheme. For each couple of (a,lmax) values, we considered 50 random initial conditions (see
Materials and Methods).
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Figure 5: Effects of instantaneous link inactivation on feedback bumps.

(A) We selected initial states and nominal conditions leading to late-latency activity (dashed
line, T* = none). We ran this network up to a chosen time T*, and then instantaneously set
the PFC>V1 link to zero. For Imax=1.8pA (A.1) the instantaneous inactivation prevented
(T*=50-300ms), or suppressed (T*>300ms) the feedback bump in V1. Conversely, when a
higher value of Imax is used (A.2, Imax=3.0pA), feedback activity can be restored in V1 despite
the inactivation of the PFC->V1 link.

(B.1-2) Same as A.1-2 but for the isolation of PFC from the network. Note how the feedback
bump is always prevented or suppressed irrespective of the value of Imax (cf. Fig. 4, see also
Fig. S1). The diamond and star shapes relate to the way the traces plotted in the panels can
be retrieved in the heatmaps of Fig. S1.
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Supplementary figures
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Figure S1: Probability of observing a late-activity bump, in the plane of parameters (T*,Imax),
for the sets of connections considered.

In each panel (same order as Fig. 4) the heatmaps show the probability of the measure S
indicating a feedback bump (0.2 < S < 0.35, as a function of stimulus strength Imax and the
instantaneous inactivation time T*, applied to a different set of connections. The green and
orange lines represent isolines of probabilities P(S<0.2) = 99% and P(5>0.35) = 99%,
respectively. For each panel, the morphed set of connections is colored in red in the
respective network scheme. For each pair of (T*,Imax) values, we considered 50 random initial
conditions. Early link inactivation (T*<300) prevents the formation of the feedback bump for
all chosen sets of connections, with the exception of PFC>V1 (panel C). The diamond and
star shapes in panels C and F indicate the pair of (T*,Imax) values for which we plotted V1
dynamics in Fig. 5 (diamonds: Imax=1.8pA; stars: Imax= 3.0pA).
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