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ABSTRACT

Evolutionarily relevant networks have been previously described in several mammalian species
using time-averaged analyses of fMRI time-series. However, fMRI network activity is highly
dynamic and continually evolves over timescales of seconds. Whether the dynamic
organization of resting-state fMRI network activity is conserved across mammalian species
remains unclear. Using frame-wise clustering of fMRI time-series, we find that intrinsic fMRI
network dynamics in awake macaques and humans is characterized by recurrent transitions
between a set of 4 dominant, neuroanatomically homologous fMRI coactivation modes (C-
modes), three of which are also plausibly represented in the rodent brain. Importantly, in all
species C-modes exhibit species-invariant dynamic features, including preferred occurrence at
specific phases of fMRI global signal fluctuations, and a state transition structure compatible
with infraslow coupled oscillator dynamics. Moreover, dominant C-mode occurrence
reconstitutes the static organization of the fMRI connectome in all species, and is predictive of
ranking of corresponding fMRI connectivity gradients. These results reveal a set of species-
invariant principles underlying the dynamic organization of fMRI networks in mammalian
species, and offer novel opportunities to relate fMRI network findings across the phylogenetic

tree.
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INTRODUCTION

Spontaneous fluctuations in resting fMRI signals have been consistently shown to be
temporally synchronized across multiple functional systems, delineating a set of reproducible
topographies often referred to as Resting State Networks (RSNs)?. RSN mapping typically
entails the computation of time-averaged statistical dependencies between fMRI time-series
under the assumption that temporal structure of this activity is time-invariant over a time
window of minutes®. Prompted by the need to complement human fMRI research with
mechanistic investigations in physiologically accessible species*>, multiple research group have
begun to implement fMRI mapping in non-human primates and rodents®’. These
investigations have revealed interesting evolutionary correspondences in the organization of
RSN across mammalian species. These encompass the presence of highly synchronous
interhemispheric networks, including evolutionarily-relevant precursors of distributed
integrative systems, such as the default mode (DMN) and salience networks®1°. However,
spontaneous brain activity is highly dynamic and continuously evolves over the timescale of
minutes*>2. Accordingly, a large body of experimental and theoretical work has shown that
the correlation structure of RSNs varies across time'*'* and involves transient interactions
between distinct functional systems that are continually revisited®. These observations
suggest that mere time-invariant descriptions of spontaneous fMRI activity are not sufficient
to comprehensively describe the functional architecture of the resting brain.

Although many approaches to study the dynamic organization of RSNs have been
proposed!®!4, frame-wise methods'®™° have recently gained traction as a flexible approach to
investigate the dynamic organization of intrinsic fMRI activity. Compared to correlation-based
approaches (e.g. sliding-window analyses), frame-wise approaches offer the possibility to (a)
temporally localize the peaks and troughs of activity that underlie fMRI network dynamics and
relate them to global fluctuations in brain activity; (b) describe the dynamic organization of
fMRI using physiologically interpretable parameters (e.g. mean BOLD activity); and (c) identify
the relevant dimensions of fMRI dynamics without the need to pre-impose regional
parcellations. Using whole-brain framewise clustering of fMRI time-series to obtain
coactivation patterns (CAPs), it has been recently shown that intrinsic fMRI activity is
dominated by recurring, cyclic fluctuations between stereotypic functional topographies®=1°.
The simplicity of the CAP framework, its direct association with a directly quantifiable
physiological property, as well as its high temporal and spatial resolution are perfectly suited
to parsimoniously, yet comprehensively describe the dynamic organization of spontaneous

network activity.

While previous studies have compared the static organization of fMRI networks across
species”?Y, attempts to directly relate the dynamic organization of intrinsic brain activity across
the mammalian phylogenetic tree are lacking. Is fMRI network dynamics underpinned by a
unifying set of species-invariant principles, or does this phenomenon instead reflect unique,
species-specific attributes? And are fMRI dynamic states and their cyclic dynamics
evolutionarily conserved, or do they encompass phylogenetically divergent motifs?
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To address these questions, we leveraged fMRI datasets acquired in awake humans,
macaqgues and mice to probe and compare the dynamic organization of fMRI in the mammalian
brain. We find that fMRI network dynamics in all probed species is similarly characterized by
cyclic transitions between a few dominant and neuroanatomically related fMRI “coactivation
modes” (C-modes) which exhibit largely conserved topographies and dynamic features such as
a quasi-periodic infraslow evolution and a structure of transitions between states compatible
with a coupled-oscillators dynamics?t. We further relate the occurrence of dynamic states
represented by C-modes to the organization of the static connectome and fMRI connectivity
gradients. These results suggest that resting fMRI activity in mammalian species is underpinned
by evolutionarily conserved dynamic principles.


https://doi.org/10.1101/2023.07.19.549681
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.19.549681; this version posted January 20, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

RESULTS

Dominant coactivation modes parsimoniously describe fMRI network dynamics in humans,
macaques and mice

To compare the dynamic organization of fMRI network dynamics within an evolutionary
perspective, we used a frame-wise approach based on the identification of coactivation
patterns (CAPs)'/?2. Data for this study consisted of awake rsfMRI datasets from two human
cohorts (The Hangzhou Normal University - HNU: 30 subjects, 10 test-retest sessions?® and The
Midnight Scan Club - MSC: 10 subjects, 5 test-retest sessions?*); the Newcastle (NC) macaque
cohort?>?% (8 animals with 2 test-retest sessions); and 44 mice under head-fixed conditions.
Using k-means, we clustered fMRI frames in the concatenated timeseries given their spatial
similarity. We averaged the frames in each cluster to produce group-level CAP maps®~Y/, then
T-scored them at the voxel level. We then obtained single-subject CAP maps by averaging the
corresponding clustered frames from each subject (Figure S1). To identify reproducible
functional CAPs that are representative of the dynamic structure of fMRI networks in each
species, we used a multi-criteria approach (see methods section) aimed at maximizing CAP
reproducibility across individuals, sessions or datasets. This approach yielded k = 8 CAPs in
human and macaques, and k = 6 in mice as optimal clustering solutions (see methods section
and Figures S2 and S3). Previous work*® has shown that CAPs embody rich fMRI topographies
that can be reliably matched into mirrored coactive and anti-coactive pairs characterized by
opposite BOLD polarity (Figure 1). As we will demonstrate below, and similar to what has been
observed in quasi-periodic patterns?’,each matched “CAP and anti-CAP” pairs describe a
cyclical fluctuation of a single fMRI state. As predicted, the employed procedure identified in
all species mirrored CAP pairs characterized by opposite BOLD polarity (spatial correlation, r <
-0.65, all species, all CAP pairs, Figure 1A-B). Importantly, the identified CAPs explained in all
species a large proportion of variance in fMRI timeseries (R?> 0.58 mice, >0.68 macaque, and
>0.75 human). Moreover, they also guaranteed robust within and between dataset spatial and
occurrence rate reproducibility (Figures S2-S3, permutation tests with random CAP identity
shuffling). These results suggest that that a few “dominant” dynamic patterns can
parsimoniously describe the dynamic organization of fMRI activity in multiple mammalian
species.

To further reduce dimensionality and facilitate cross-species comparisons, we
coalesced highly anticorrelated CAP pairs into a single Coactivation Mode (C-mode). CAP and
anti-CAP are thus the peak and trough of the same fluctuating C-mode. C-modes are thus
computed by reversing the sign of the anti-CAP, and spatially averaging it with its paired CAP
such to spatially depict the corresponding coactivation axis (Figure 1A). The topography of the
individual CAPs pairs that constitute each C-mode is reported in Figure S4. To assess the
potential confounding contribution of head-motion to C-mode topography mapping, we
repeated the clustering procedure on time-series in which we did not scrub fMRI frames
exhibiting high motion-related. We next compared the spatial topography of C-modes
obtained with and without frame censoring. This comparison revealed that C-mode obtained
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using frame-censored timeseries were very similar to those we mapped using the entire
timeseries (r > 0.95, all C-modes, all species, Figure S5A). Further corroborating a negligible
contribution of head motion to our findings, we also found that no C-mode was preferentially
enriched with high-motion frames in all species (one-way ANOVA, p > 0.3, F < 1.14 for all
comparisons, Figure S5B).

fMRI C-modes exhibit evolutionarily-conserved functional organization

Having identified dominant fMRI C-modes in all three species, we next asked whether
their functional organization would show, on top of foreseeable species-specific features,
recognizable evolutionarily conserved anatomic features. For this purpose, we matched C-
mode topographies based on the similarity of mean BOLD coactivation profile across a set of
evolutionarily conserved resting state networks (RSNs)?®-3! (Figure 1C). The chosen networks
include the Default-Mode (DMN), Visual (VIS), Somato-motor (SMN), Limbic (LIMB), Ventral
(VAT) and Dorsal (DAT) Attention, Fronto-parietal (FPN), as well as key subcortical nuclei of the
Thalamus (TH) and Hippocampus (HCP) and were selected based on the notion that, across
these three species, they encompass partly-conserved neuroanatomical substrates>®. A key
exception of note is the lack of established phylogenetic precursors of the VAT, DAT, and FPN
in the rodent brain®. For this reason, these networks were not included in the coactivation
profile in mouse data. To allow spatial comparisons between species, C-mode maps were z-
scored spatially and the mean of the normalized activity of voxels within each RSN mask was
computed to build its corresponding profile vector (Figure 1D, C-modes numbered by
decreasing occurrence rate). Vectors were first matched using the Hungarian Algorithm3? from
human C-modes (organized in decreasing occurrence rate) to macaques, then from macaques
to mice.

The corresponding results are depicted as spatial correlation between network
coactivation profiles of human and macaque datasets (HNU and MSC, Figure 1E and 1F,
respectively), as well as between macaques and mice (Figure 1G). Human to macaque
matching gave consistent results for both HNU and MSC datasets, with the spatial of
topography of human C-modes 1-4 being best aligned to corresponding macaque C-modes 1-
4 (see also Figure 2C). Because the human HNU dataset included more subjects and was
performed at daylight hours as animal scans, we describe our results hereafter for the HNU as
main dataset and present a summary of the obtained MSC results as supplementary figure
(Figure S6). Macaque to mouse matching linked macague C-modes 2-4 to mouse C-mode 1-3,
respectively (Figure 1G, Figure 2C). Whilst some anticorrelation was apparent in C-mode
matching between single pairs of macaque and mouse C-modes, the chosen algorithmic
solution ensured the overall best network matching across species (Figure 2C), as well as cross-
species preservation of C-mode 3 and 4 phase coupling with fMRI global signal cycles
(described below, cf. Figure 4). As human and macaque C-mode 1 was not preferentially
matched to any mouse C-modes, we refer to mouse C-modes as 2, 3, and 4 for consistency
with those mapped in higher species throughout the manuscript.
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Collectively, cross-species C-mode matching revealed 4 topographically related C-
modes in human and macaque, three of which (C-modes 2-4) were also represented in the
rodent brain (Figure 2A). In all species, C-modes exhibited rich spatial organization
encompassing positive and negative peaks of BOLD activity that together delineated a set of
stereotypic network coactivation profiles (Figure 2A, right panels). Specifically, C-mode 1
(DMN-SMN) encompassed peaks of BOLD activity in DMN, accompanied by below baseline
activity in SMN and ventral attention VAT areas in both humans and macaques. C-mode 2
(DMN-Limbic) exhibited coactivation of DMN areas in anti-correlation with SMN, VIS, and LIMB
networks in all three species. Interestingly, while in humans the HCP had below-baseline fMRI
activity, macaques and mice show above-baseline fMRI activity in this region. C-mode 3 (SMN-
VIS) activity peaked in the SMIN and concomitantly engaged most cortical regions of the human
brain, albeit with considerably weaker or negative BOLD activity in VIS, TH and basal forebrain
areas, reminiscent of global fMRI signal (GS) fluctuations. Finally, C-mode 4 (VIS-FPN) was
characterized in humans and macaques by positive coactivation in VIS and posterior cortical
regions, and negative coactivation in FPN cortical regions. This topography in mice and
macaques, but not humans, was associated with co-deactivation of anterior cingulate and
prefrontal regions of the DMN. Taken together, these results point at the presence of notable
topographic correspondences in the functional organization of dominant C-modes in human,
macaque and mouse brains.

We next computed for each C-mode its occurrence rate, defined here as the proportion
of fMRI frames assigned to each C-mode for each subject/animal. Interestingly, while the
spatial organization of C-modes exhibited species-invariant topographic features, their
occurrence rate, showed variation across species (Figure 2B). Specifically, in humans we
observed a dominant occurrence of DMN-SMN C-mode 1 and 2 (Kruskal-Wallis test, p < 0.001)
while mice occurrence of sensory-oriented C-mode 3 and 4 was observed instead (Kruskal-
Wallis test, p < 0.001), with macaques showing equiprobable (Kruskal-Wallis test, p = 0.25) C-
mode occurrence (although a slight trend for a mouse-like profile was apparent). Thus, the
temporal structure of C-modes in humans was biased towards a greater occurrence of
polymodal integrative metastates (C-modes 1 and 2), with mice (and possibly macaques=
exhibiting instead a greater occurrence of sensory-oriented network modes (C-modes 3 and
4).

fMRI C-modes exhibit infraslow fluctuations in humans, macaques and mice

Our formalism allowed us to compare C-Modes with single fMRI frames and thus
uncover the temporal structure of the spatial configurations that underlie spontaneous fMRI
dynamics. We leveraged this property to describe, in all species, the temporal evolution of each
C-mode for each subject/animal by computing the instantaneous spatial correlation between
each C-mode map and each fMRI frame in all timeseries. The power spectra of the resulting
“C-mode timeseries” revealed that C-modes undergo infraslow fluctuations in all species, with
most of the power peaking within the 0.01-0.03 Hz range (Figure 3). Peaks of infraslow activity
were distinct and sharp in humans, and slightly less prominent (yet clearly recognizable) in
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mice and macaques. We next investigated the assembly of each C-mode by normalizing (z-
score) its time-course and by time locking peaks of C-mode time courses (i.e. event-wavelet)
at the group level. We found that C-modes in awake humans, macaques and mice assemble
and disassemble in a slow and gradual fashion (Figure 3, red insets), reminiscent of damped
oscillations in the dominant frequency band. These results suggest that fMRI C-modes exhibit
comparable infraslow dynamic cycling in all the examined mammalian species.

fMRI C-modes occur at specific phase of fMRI global signals cycles in humans, macaques and
mice

Prompted by previous investigations in anesthetized mice'®3° we next probed if C-
modes in higher species have a preferred occurrence within fMRI global signal (GS) cycles. We
thus first ascertained that also in awake conditions the GS would dominantly fluctuate within
the infraslow range in all species (Figure 4A). A spectral analysis showed that the power
spectrum of GS sharply peaks within a 0.01-0.03 Hz band in awake humans, with analogous
(albeit less pronounced) peaks of activity in the same frequency range in both awake macaques
and mice. We then built a circular distribution of the phases of the filtered (0.01-0.03 Hz) GS
at which each C-mode occurred, by sampling only occurrences in which the normalized C-mode
time series surpassed threshold values of 1 SD. C-mode occurrence was significantly phase-
locked within GS cycles in humans, macaques and mice (Figure 4B, Rayleigh test, p < 0.05, FDR
corrected). Interestingly, GS-phase distributions in macaques and humans presented key
similarities, with C-modes 1, 3 and 4 (but not 2) exhibiting remarkably conserved cross-species
phase alighment. Moreover, C-modes 3 and 4 showed broadly similar circular means across all
the three species examined here.

C-modes were computed by coalescing a CAP with an anti-CAP of nearly identical spatial
shape but opposite polarity. This description of brain dynamics works well under the
assumption that CAP and antiCAPS represent a single fluctuating brain sub-state whose pattern
of activity changes sign cyclically. To corroborate the cyclic nature of C-mode fluctuations
within GS cycles, we repeated the sampling of GS phases but with inverted (negative) C-mode
timecourses so to capture the full temporal evolution of C-mode. This approach revealed
clearly opposite distributions of sampling of the GS phases from positive and negative C-mode
occurrences (Figure 4B, red insets). These results suggest that C-modes describe cycling
spatiotemporal sub-state that fluctuates in magnitude and sign according to the infraslow
structure of the global fMRI signal.

To further provide evidence of the infraslow oscillatory nature of C-mode dynamics, we
investigated whether different C-modes were phase-coupled within individual GS cycles. We
computed the GS phase difference between the occurrences of a C-mode in a GS-cycle, and
following occurrences of another C-mode either within the same GS-cycle, or in an immediately
subsequent cycle (Figure S7). These analyses showed highly consistent positioning of a C-mode
within each GS cycle (Figure S7, diagonals) and phase coupling between some C-mode pairs
(see C-mode 2 and 3 and 3 and 4 in humans, and C-modes 3 and 4 in mice). These results
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suggest that in mammalian species, intrinsic fMRI signal fluctuations do not reflect spatially
undifferentiated peaks and troughs of BOLD activity, but instead encompass infralow cycling
between dominant patterns of BOLD activity. This general principle can be extended to entail
the evolutionary conservation of the phase-relationship with fMRI GS cycles for most (albeit
not all, see C-mode 2) of the explored C-modes. In sum, these results show that C-modes are
phase locked to intrinsic GS fluctuations and imply that different C-modes can be
conceptualized as networks of coupled oscillators in multiple mammalians species.

Coupled oscillatory activity explains C-modes transition dynamics

We next considered whether the temporal structure of C-mode instantaneous
transitions could similarly be underpinned by species-invariant principles. For each species, we
modeled the system as a Markov process from sequences of concatenated C-mode
occurrences and computed the transition probability into a different C-mode, as well as C-
mode self-transitions (also termed persistence probability, Figure 5A). We found that the most
recurring C-modes (1-2 in humans, 3-4 in macaques, and 3-4 in mice) were sinks of preferred
directional transitions (p < 0.01, black crosses in Figure 5A), which can as such considered as
state attractors.

Furthermore, we investigated, for each species, the “accessibility” of C-modes from
one other by computing the corresponding Entropy of Markov Trajectories (HMT)33 from the
transition probability matrices. This parameter measures the complexity of a transition: low
entropy values imply an almost deterministic direct path or high accessibility. On the contrary,
high entropy values suggest high uncertainty, requiring random steps through different C-
modes before reaching the destination, i.e. low accessibility. In keeping with the C-mode
occurrence rates we describe in Figure 2B, the most recurring C-modes in all species were also
those that were most accessible, i.e they were the one characterized by lowest entropy values
(Figure 5B, C). Specifically, in humans, C-modes 1 and 2 were the most accessible ones (p <
0.0001 against C-modes 3-4). In macaques we did not find any C-mode to have preferred
accessibility (p = 0.25) Conversely, in mice, C-modes 3 and specially 4 were the most accessible
ones (p < 0.0001). Importantly, in all species the ensuing accessibility profile (Figure 5C)
recapitulated the C-mode occurrence rates we described in Figure 2B, with the most accessible
C-modes being also the most occurring ones (Figure 2B). This was true also in macaques, where
the entropy of Markov trajectories required to reach C-modes 3 and 4 followed the tendency
of higher occurrence rates of these C-modes.

In the sections above we characterized intrinsic fMRI dynamics both in terms of coupled
quasi-periodic fluctuations between coactive networks captured by different C-modes, and
also in terms of transitions between C-Modes. If coupled cyclic activity is key to explaining state
transition dynamics, we expect that trajectories between C-modes with lower entropy (i.e.,
small HMT, corresponding to more direct transitions) would occur on average with shorter
infraslow phase differences. Conversely, C-mode pairs with larger entropy (i.e. higher HMT
corresponding to less direct transitions) would occur on average with longer infraslow phase
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differences. To test this hypothesis, we computed the circular-linear correlation between the
mean GS-phase differences between C-mode occurrences (Figure S7) and the HMT for their
trajectories. We found clear and significant correlation values in all species (r = 0.66, 0.66, 0.87
with p = 0.029, 0.031 and 0.032 for humans, macagues and mice respectively). This implies
that the transition structure of C-modes is in part described by infraslow coupled cyclic
dynamics across all species, embedding fast transition phenomena within GS cycles in the
dominant infraslow band.

fMRI C-mode occurrence predicts ranking of connectivity gradients in humans, macaques and
mice

Previous investigations have shown that a high portion of the variance in static fMRI
connectivity is explained by a limited fraction (5-15%) of fMRI frames exhibiting exceedingly
high cofluctuation amplitude'®343>. We thus investigated whether the dynamic occurrence of
dominant C-modes alone could similarly be sufficient to reconstitute key organizational
features of the static fMRI connectome. To this aim, we first examined whether the
occurrence-weighted average of C-modes would reproduce the static architecture of fMRI
connectivity. To this purpose, we calculated for each C-modes its co-fluctuation matrix, i.e. the
cross-multiplication of each C-mode map with itself3®. We found that in all species, the
weighted average by occurrence rate of C-mode co-fluctuation matrices exhibited high
correlation with the corresponding group-mean static fMRI connectivity matrix (r > 0.57, all
species, with r = 0.75 in humans, Figure S8). These findings corroborate the notion that C-
modes dynamics account for high co-fluctuation events critical for the topographic
organization of the static functional connectome.

To further investigate the relationship between C-mode dynamics and static fMRI
connectivity, we inquired whether C-mode occurrence could also be related to the
organization of fMRI connectivity gradients3”38. Here we posited that C-mode occurrence rate
may be linked to the ranking of functional connectivity gradients, with dominant (i.e. most
occurring) C-modes aligning with the gradients that explain the most variation in fMRI
connectivity. To test this hypothesis, we first computed for each species the top five fMRI
connectivity gradients, which we next ranked by decreasing variance explained (Figure S9). We
then compared, for each species, the spatial similarity of the obtained gradients to that of each
C-mode, matching them according to their highest absolute spatial correlation. Supporting our
hypothesis, plausible spatial correspondences between C-mode and gradient topographies
were observed in all species (Figure 6A). Specifically, in humans the most occurring C-modes 1
and 2 were matched with dominant gradients 1 and 2, while in macaques and mice dominant
gradients 1 and 2 were matched with most occurring C-modes 4 and 3. Moreover, in all species
C-mode occurrence was linearly related to the variance explained by each gradient (R? > 0.78
for all species, Figure 6B). This analysis shows how recurring network interaction represented
by dominant C-modes, and their relative occurrence rate, shape the organization of the static
fMRI connectome and its principal axis of variance in all the probed species.
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DISCUSSION

While previous cross-species studies have attempted to compare the static functional
architecture of specific fMRI networks via time-invariant fMRI connectivity mapping®3°4°,
whether the dynamic organization of intrinsic fMRI activity is evolutionarily conserved remains
unclear. To fill this knowledge gap, we performed a first-of-its-kind systematic investigation of
intrinsic fMRI dynamics in awake humans, macaques and mice using the same analytical
framework. To facilitate cross-species comparisons, we introduced a parsimonious description
of network dynamics via fMRI C-modes, which represent dominant patterns of fluctuating
BOLD activity. Using this simple approach, we found that fMRI dynamics in awake humans,
macaques and mice encompasses the recurring occurrence of a set of functionally-related C-
mode topographies. We also report that the dynamic structure of fMRI network activity follows
a set of evolutionarily-invariant principles. These include the observation that C-modes
undergo infraslow fluctuations and tend to occur at specific phases of the fMRI global signal.
Moreover, their transition structure is partly explained by infraslow coupled oscillator
dynamics within fMRI global signal cycles. We also show that C-mode occurrence accounts for
high co-fluctuation events critical to the topographic organization of the static functional
connectome, and is closely related to the ranking of connectivity gradients. These observations
suggest that, beyond and above some expected species-specific features, the dynamic
structure of intrinsic fMRI activity in the awake mammalian brain follows evolutionarily
conserved principles.

Although the lack of systematic comparisons of the dynamic organization of fMRI
activity across species does not allow us to directly relate our findings to prior literature, our
results are consistent with emerging evidence supporting the presence of cross species
homologies in static organization of fMRI connectivity in the mammalian brain®41. Our results
expand these initial investigations, by showing that correspondences in static fMRI network
organization can be parsimoniously described and accounted for by a limited set of
evolutionarily-related dynamic patterns of BOLD activity. In keeping with this, the topographic
organization of C-modes encompasses peaks of BOLD activity spanning network systems
previously described in multiple mammalian species, including components of the DMN,
salience and motor-sensory networks, as well as in many key subcortical systems®2830,
Extending previous observations3%4243, we also found that C-modes dynamics can be reliably
related to (and as such, it “explains”) the static organization of the fMRI connectome in all the
probed species. These finding reconcile prior investigations of the dynamic structure of fMRI
connectivity in rodents'®*-4¢ macaques?’, and humans1"27:48-52 by showing that C-mode
dynamics encompass high-amplitude peaks of BOLD activity that critically shape the steady-
state architecture of the fMRI connectome. These results are also in agreement with the
assumption that the mechanisms underlying interareal information transfer as assessed with
fMRI are conserved in the mammalian brain>3>%.

Our observation that the dynamic structure of fMRI activity in mammals follows
species-invariant principles is important in the light of the notion that many fundamental
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physiological and anatomical features (including the brain’s anatomical architecture), are
known to scale with body size, or to be marginally (or not) represented in lower species>™".
Our data suggests instead that, independent of evolutionary complexity, infraslow fluctuations
of spatially rich patterns of fMRI activity similarly underpin spontaneous brain activity in
multiple mammalian species. In this respect, one important advancement of the present study
is the use of datasets collected in awake conditions in all species, an experimental strategy that
allowed us to carry out a cross-species comparison of fMRI dynamics unconfounded by the
pharmacological effects (and the ensuing brain state changes) produced by anesthesia. An
additional key benefit of the C-mode framework we introduce here is computational
tractability, which allows for the representation of the corresponding spatiotemporal patterns
of fMRI activity with voxel resolution (i.e. without predefined anatomical boundaries) and
avoiding the use of correlation-based metrics (e.g. like in sliding window-based dynamic
connectivity mapping). Moreover, the employed approach allows for a fine-grained temporal
localization of dynamic effects with single-frame resolution. All of these properties were key
to the identification of the dynamic properties and cross-species correspondences we report
in this work.

The voxelwise topography of C-modes enabled us to match and compare these
spatiotemporal patterns at maximum spatial resolution, revealing a set of anatomically related
motifs that exhibit evidence of evolutionary conservation across species. Functional
correspondences between human and macaque were apparent, and encompassed four
neuroanatomically homologous C-modes that were plausibly identified in two independent
human datasets. While evolutionarily more tentative, spatial matching between macaque and
mouse was also plausible, with preserved fMRI polarity in key anchor networks in the three
matched C-modes, and evidence of conserved C-mode GS phase coupling in both species.
Improved anatomical matching may be obtained in future studies by incorporating data from
lissenchephalic new world monkeys, and other primate species phylogenetically closer to
rodents that could serve as intermediate evolutionary link between macaques and mice®°8>°,
This approach may represents a warranted extension of our work, owing to the increased
availability of fMRI data in multiple primate species®.

The observation of a substantial coupling between C-mode occurrence and fMRI global
signal cycling was first reported in anesthetized mice®® and it is here extended to awake
humans and macaques. This finding corroborates the hypothesis that fluctuations in fMRI GS
are the intrinsic manifestation of highly structured network interactions®®. This results is also
of interest in the light of emerging evidence linking global fMRI activity to intrinsic fluctuations
in arousal?’.®17%3 Within this framework our findings suggests that the cycling spatiotemporal
patterns of activity captured by C-modes (or by other analogous computational frameworks,
like quasi periodic patterns?’:34), could be strongly affected or driven by ascending modulatory
transmission.

Over the last decade, several influential mathematical models have described resting
state activity in terms of networks of coupled oscillators?!. This work provides important
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empirical support to this modelling as it shows, from data and without making assumptions
about the mechanism, that transition probabilities between different brain states can be
described in terms of coupled C-Modes oscillating at infraslow frequencies. Moreover, the fact
that the state transitions can be reliably described as coupled oscillators in all species suggests
that a functional architecture based on coupled oscillating networks offers important
evolutionarily advantageous computational benefits. These include the possibility of rapidly
reconfiguring coordination and communication between different brain regions, and
effectively transferring information across scales and brain areas?1°*%4,

While the present work focuses on the description of species-invariant principles
underling the organization of spontaneous fMRI activity, species-specific features were also
apparent. Beyond foreseeable discrepancies in the topography of specific C-modes, which can
be related to the increased complexity of the cortical mantle across the phylogenetic tree, one
interesting difference we observed is a shift in C-mode occurrence across species. Although
comparable human C-modes were identified in macaques and mice, their occurrence rate was
inversed, with C-modes 1-2 being the most occurring patterns in humans and C-modes 3-4 in
mice and in macaques. Taken together, these observations support the evolutionary basis for
ongoing dynamic changes across species, albeit with a possible shift in the time that each
species spends in each spatiotemporal state. Such species-dependent shift in C-mode
occurrence may reflect brain adaptations that support the increasing demands of higher-order
cognition throughout evolution. The finding that in humans, BOLD activity profiles in C-modes
1-2 and 3-4 peak in polymodal and sensory areas, respectively, suggests that the intrinsic
organization of fMRI activity is biased towards introspective states that are less frequently
visited in animals. Accordingly, we found that these most recurrent C-modes are also the most
easily accessible from any other C-mode. Our results also highlight a link between the dynamic
organization of fMRI activity and the principal axis of variance of static fMRI activity as mapped
with functional connectivity gradients. This result suggests that the macroscale organization of
the functional connectome is critically shaped by the occurrence of its constituting
spatiotemporal modes, a notion supported also by complementary conceptualization of fMRI
dynamics®®.

In summary, we describe a conserved set of dynamic rules governing large-scale fMRI
network dynamics in human, macaques and mice. Our work provides a simple and flexible
framework to quantitatively model and relate intrinsic fMRI dynamics across the phylogenetic
tree.
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MATERIALS AND METHODS
Data and preprocessing

Resting state fMRI (rsfMRI) datasets from awake, freely breathing humans, macaques, and
mice were used in this study. Preprocessing included most steps suggested by the guidelines
of the Human Connectome Project®®, using a combination of fMRI dedicated software AFNI®/,
FSL®8, FreeSurfer®®, and SPM12 (http://fil.ion.ucl.ac.uk/spm/).

Human

The main dataset, Hangzhou Normal University of the Consortium for Reliability and
Reproducibility (CORR-HNU, or HNU)?? includes 10 sessions of 10-min scans over the course of
a month from n = 30 young healthy adults with no history of neurological or psychiatric
disorders, head injuries, nor substance abuse (balanced sexes, age = 24+/- 2.41 years). Before
scanning, participants were asked to relax and remain still with their eyes opened, avoiding
falling asleep. During scanning, a black crosshair was shown in the middle of a grey background.
The study was approved by the ethics committee of the Center for Cognition and Brain
Disorders at Hangzhou Normal University, and all participants signed written consent before
data collection. A GE MR750 3T scanner (GE Medical Systems, Waukesha, WI, USA) was used
to acquire MRI data. Functional scans were acquired with an echo-planar imaging sequence -
EPI: TR =2 s, TE = 30 ms, flip angle = 90°, FOV = 220 x 220 mm, matrix = 64 x 64, voxel-size =
3.4 mm isotropic, 43 slices. Data was downloaded from the International Neuroimaging Data-
Sharing Initiative (INDI - http://fcon 1000.projects.nitrc.org/indi/CoRR/).

The Midnight Scan Club (MSC) dataset?* was used as secondary, replication dataset. Five out
of 10 randomly selected sessions were used from separate days, and included 30-min scans
from n = 10 healthy young adults (balanced sexes, age = 29.1 +/- 3.3 years). Participants were
asked to visually fix on a white crosshair against a black background. The study was approved
by the Washington University School of Medicine Human Studies Committee and Institutional
review Board, and all participants signed written consent before scanning. Functional scans
were acquired with a Siemens TRIO 3T MRl scanned (Erlangen, Germany) using a gradient-echo
EPl sequence: TR = 2.2 s, TE = 27 ms, flip angle = 90°, voxel-size = 4 mm isotropic, 36 slices.
Data was downloaded from OpenNeuro (doi:10.18112/openneuro.ds000224.v1.0.3).

Preprocessing. The first 5 fMRI volumes were removed from each subject’s raw data, then
despiking (AFNI 3dDespike) and slice-timing correction (AFNI 3dTshift) was performed. Data
subsequently underwent motion-correction (AFNI 3dvolreg); skull-stripping (FSL fast and
bet’®); co-registration to the MNI 3 mm isotropic template (FSL flirt); regression of nuisance
parameters (white matter, cerebrospinal fluid, and 24 motion parameters (6 parameters, 6
derivatives, and their respective squared time-series) (AFNI 3dDeconvolve); band-pass filtering
between 0.01-0.1 Hz (AFNI 3dBandpass); spatial smoothing with a 6 mm FWHM kernel (AFNI
3dBlurinMask); and voxel time-series were finally normalized to z-scores (zero-mean, and
standard deviation units).
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Macaque

The Newcastle dataset (NC) includes n = 14 rhesus macaque monkeys (Macaca Mulatta)
scanned with no contrast agents, from which N = 10 animals (2 females, 8 males), in which two
independent fMRI session were available, were used for our analyses (age = 2.28 +/- 2.33,
weight = 11.76 +/- 3.38). Two additional (female) animals were discarded from our analyses
due to excessive head motion exceeding, in either session, over 30% of fMRI volumes with
Framewise Displacement above a 0.3 mm threshold. Animal procedures, head-fixation, and
protocols were approved by the UK Home Office and comply with the Animal Scientific
Procedures Act (1986) on the care and use of animals in research and with the European
Directive on the protection of animals used in research (2010/63/EU) (see Slater et al., 2016
for protocol specifics on animal preparation for awake imaging®). A Vertical Bruker 4.7T
primate dedicated scanner was used and rsfMRI experiments were performed in awake, head-
fixed animals for two separate sessions with TR =2 s; TE = 16 ms, voxel-size = 1.2 mm isotropic.
Data was downloaded from NHP data sharing consortium  PRIME-DE
(http://fcon 1000.projects.nitrc.org/indi/indiPRIME.html)2®.

Preprocessing. The first 5 rsfMRI volumes were removed from each animal’s raw data, then
despiking (AFNI 3dDespike) and slice-timing correction (AFNI 3dTshift) was performed. Data
subsequently underwent motion-correction (AFNI 3dvolreg); skull-stripping (FSL fast and
bet’®); co-registration to the Yerkes19 2 mm isotropic template’* (FSL flirt); regression of
nuisance parameters (white matter, cerebrospinal fluid, and 24 motion parameters (6
parameters, 6 derivatives, and their respective squared time-series) (AFNI 3dDeconvolve);
band-pass filtering between 0.01-0.1 Hz (AFNI 3dBandpass); spatial smoothing with a 3 mm
FWHM kernel (AFNI 3dBlurinMask); and voxel time-series were finally normalized to z-scores
(zero-mean, and standard deviation units).

Mouse

C57BL/6) mouse data was obtained from n = 44, head-fixed awake male mice undergoing a 12-
min rsfMRI scan using the same animal preparation, habituation and scanning protocols
previously described®C. In vivo experiments were conducted in accordance with the Italian law
(DL26/214, EU 63/2010, Ministero della Sanita, Roma) and with the National Institute of Health
recommendations for the care and use of laboratory animals. The animal research protocols
for this study were reviewed and approved by the Italian Ministry of Health and the animal
care committee of Istituto Italiano di Tecnologia (IIT). All surgeries were performed under
anesthesia. Young adult (< 12 months old) male C57BL/6J mice were used. RsfMRI scans, both
retrieved and newly acquired, were acquired at the IIT laboratory in Rovereto (ltaly) using a
Bruker 7T scanner (Bruker Biospin, Ettlingen) with a BGA-9 gradient set, 72 mm birdcage
transmit coil, and a four-channel solenoid receiver coil: TR =1 s, TE = 15 ms, flip angle = 60°,
matrix = 100 x 100, FOV = 2.3 x 2.3 cm, 18 coronal slices 0.6 mm thick, 12 minutes total
acquisition time.
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Preprocessing. The first 120 rsfMRI volumes (2-min) were removed from each animal’s raw
data to account for thermal gradient equilibration, then despiking (AFNI 3dDespike) was
performed. Due to the short TR we did not perform slice-timing correction in these images.
Data subsequently underwent motion-correction (FSL mcflirt); skull-stripping (FSL fast and
bet’); co-registration to an in-house mouse brain template of 0.23 x 0.23 x 0.6 mm?3 (ANTS
registration suite’?); regression of nuisance parameters (white matter, cerebrospinal fluid, and
24 motion parameters (6 parameters, 6 derivatives, and their respective squared time-series)
(AFNI 3dDeconvolve); band-pass filtering between 0.01-0.1 Hz (AFNI 3dBandpass); spatial
smoothing with a 0.5 mm FWHM kernel (AFNI 3dBlurinMask); and voxel time-series were
finally normalized to z-scores (zero-mean, and standard deviation units).

Whole brain CAP detection and cluster-number selection

To identify recurrent rsfMRI whole-brain states, we used the whole-brain coactivation patterns
(CAPs) approach®*7in which fMRI frames are cluster based on their spatial similarity and then
averaged to define recurrent patterns of BOLD coactivation. Specifically, for each species, we
first performed censoring of motion-contaminated frames (framewise Displacement: FD > 0.3,
0.3, and 0.075 mm for humans?, macaques?®, and mice® respectively), and then concatenated
the frames from all subjects or animals. Given that clustering human fMRI data in the 3 mm
MNI-space became computationally challenging owing to its large dimensionality (n-voxels =
43.539, compared to 11.402 in macaques, and 8.937 in mice), this step was carried out upon
reducing data using the coarse 950-ROI Craddock Parcellation’?. The choice of this specific
parcellation regards its ability to provide a fair dimensionality reduction, while preserving
information present at the voxel scale’®. After these final steps, we ran, for each species, the
k-means clustering algorithm?®74 (spatial correlation as distance metric, 500 iterations, 5
replications with different random initializations, from k = 2:20, 5 independent runs). CAP maps
were obtained at the group level by averaging the fMRI frames belonging to a cluster at the
voxel level, then normalizing these values to T-scores from the concatenated datasets (Figure
S1). At the single-subject level, we obtained, for each subject/animal, a CAP-map for each
cluster by only averaging and converting to T-scores, the frames belonging to a cluster but only
within a subject/animal’s data/session. We note that CAP mapping through frame averaging in
humans was done at the voxel level, as the parcellated data was only used for clustering
purposes. After clustering, we recovered the censored fMRI frames to the cropped datasets
and assigned them to the CAP with the highest spatial correlation. This was done in order to
have a continuum of frames for subsequent analyses.

Selection of the optimal number of clusters was done following a set of previously proposed
empirical rules®®® as well as new metrics. These were dependent on the availability on test-
retest sessions within a dataset in macaques and humans, as well as a full independent dataset
in humans from a different site. Specifically, for human HNU and MSC datasets independently,
we first ran the k-means clustering algorithm with the concatenated dataset from k = 2:20,
selecting, for each ‘k’, the solution with the highest variance explained®® from 5 replications in
5 independent runs. Here, the variance of the data explained by each partition is defined as
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defined as the ratio between the between-cluster variance and the total variance (within-
cluster + between-cluster variance). Within-cluster variance was computed as the averaged
(over clusters) sum of square distances between elements in a cluster and its centroid.
Between-cluster variance was computed as the averaged square distance between a cluster
centroid and the centroid of all clusters or centroid of all data'®’>. For each dataset
independently, we first computed the variance explained by data partitioned into an increasing
number of clusters (2 < k < 20) (Figure S2A-B). We next assessed the topographic consistency
of CAPs at increasing partitions. To this purpose, we computed how consistent CAPs are by
assessing, for each ‘k’ partition, the spatial correlation between a mean CAP map, and its
matched map in the previous order (k-1) partition. Matching was done using the Hungarian
Algorithm32. We found that partitions between k = 6:10 vyielded, in both datasets,
topographically stable CAPs that could be reliably identified at higher ‘k’ (Figure S2C-D).

We then assessed the within-dataset repeatability by comparing the spatial correlations
between the mean CAP maps of each subject between each independent fMRI sessions (10 for
HNU, and 5 for MSC, Figure S2E-F). Statistical significance of the mean within subject
repeatability of each CAP was assessed by recomputing the spatial correlations between
subject-level CAP maps after randomly shuffling the CAP-identity of fMRI frames, preserving
occurrence rates. This process was repeated 1000 times, and repeatability values for each
subject beneath the highest permutation value were flagged as non-repeatable (asterisks in
Figure S2E-F). The result of these comparisons showed that within an upper limit of k = 13
(HNU) or 15 (MSC), all the mapped CAPs were represented in all fMRI sessions of each subject,
with significant spatial correlation across sessions (p < 0.05, surrogate testing with randomly
shuffled cluster associations). At higher partitions, one or more CAPs were instead no longer
represented in one or more subjects. We further probed within-session stability of clustering
by computing the CAP occurrence rate obtained across imaging sessions. We found that CAP
occurrence rate (i.e. proportion of fMRI frames associated to a CAP in each subject), for both
datasets, was stable across sessions at k=2, 6, 8, and 9 (Kruskal-Wallis test, 10 groups for HNU,
5 groups for MSC, FDR corrected for k comparisons, Figure S2 G-H).

Finally, to maximize the generalizability of our partitioning, we compared the main dataset’s
(HNU) CAP maps with those obtained in the MSC in terms of topography matching and
occurrence rates. To this aim, we spatially compared mean group-level CAP maps (matched
with the Hungarian Algorithm for each partition) and tested the significance of this comparison
by recomputing the values after randomly shuffling the fMRI frames within each dataset, while
preserving occurrence rates (Figure S2I). The mean occurrence rates from each dataset was
assessed with a Wilcoxon signed rank test, p < 0.05, FDR corrected for k comparisons (Figure
S2J). This analysis revealed that clusters from all partitions, except k =6, 7, 9, 14, 15 and 16,
were topographically reproducible across datasets (Figure S21). By contrast, a comparison of
the mean CAP occurrence rates between datasets (Figure S21) showed that k = 8 was the only
partition in which this parameter was conserved across dataset (Wilcoxon signed rank test, p
< 0.05, FDR corrected for k comparisons). Based on these analyses, k= 8 was the only partition
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level meeting all the required within and between subject/dataset reproducibility criteria. We
thus based all our subsequent analyses of human fMRI dynamics using k = 8 clusters.

Selection of optimal clusters in macaque fMRI time-series (Newcastle test-retest datasets, n =
8 animals, 2 sessions) followed the same strategy employed for human time-series. Briefly,
computation of explained variance in macaque fMRI time-series revealed an elbow region
within the k = 6:10 range (Figure S3A). Macaque CAPs were topographically stable at increasing
k partitions until an upper limit at k = 10 (Figure S3B). Comparing repeatability of CAP
topographies across sessions revealed that above k = 8, some CAPs present lack of
topographical reproducibility (p > 0.05, surrogate testing with randomly shuffled cluster
associations), as well as significant differences in CAP occurrence rates (Kruskal-Wallis test, FDR
corrected for k comparisons, Figure S3C-D). This cumulative evidence suggests that k = 8 was
the highest partition that guarantees CAP stability, as well as test-retest topographical and
frame distribution repeatability amongst clusters.

For mice, the variance explained curve for the awake dataset we used in this work (N = 44)
showed an elbow between 6 and 8 clusters (Figure S3E-F). Topographic CAP stability as a
function of increasing partition number revealed that mouse CAPs were topographically stable
up to k = 6. This value is in agreement with the results of CAP number selection in prior
independent studies3>49, in which k = 6 was consistently identified as optimal partition in this
species.

Coactivation Modes and between species matching

In previous work we demonstrated that CAPs appear in pairs of spatial configurations with
opposite BOLD coactivations'® (CAP, and anti-CAP, Figure 1A). As this feature was initially
detected in awake and anesthetized mice®, we first showed that these anatomical
configurations were present also in all of our datasets. For each species, we thus organized
CAPs in descending occurrence rate and computed the Pearson’s correlation between the
vectorized mean CAP maps as a spatial similarity metric, matching CAPs and anti-CAPs as pairs
with the highest anticorrelation coefficient (Figure 1B). We then reduced pairs into C-modes,
by taking each CAP map pair (T-score normalized), subtracting the least recurring one from its
counterpart, then dividing the resulting map by two (Figure 1A). In order to have a normalized
basis for between-species comparisons, we further z-scored each resulting C-mode map. Given
that C-modes represent unique configurations between known resting state networks®7:19,
we extracted the mean BOLD values from voxels within masks of previously described,
evolutionarily conserved3>* cortical RSN in humans?®, macaques?® and mice3%’®, as well as
hippocampal and thalamic masks®®’’ (Figure 1C). For each C-mode, we computed their
occurrence rates as the average occurrence of the CAP and anti-CAP conforming the C-mode.
We then organized the vectorized network coactivation profiles of each C-mode in descending
occurrence rate order, and first matched C-mode profiles of humans to macaques, then
macaques to mice using the Hungarian Algorithm3? with vector-correlations between profiles
as distance metrics for the cost function to be minimized (Figure 1D). We represented the
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similarities between network coactivation profiles of C-modes in the human HNU dataset and
macaques (Figure 1E), as well as with the MSC dataset and macaques, confirming our matching
(Figure 1F). Finally, we matched macaque C-mode network coactivation profiles with those of
mice, without accounting for Fronto-Parietal (FPN), Ventral (VAT) and Dorsal Attention (DAT)
networks, as these have not been described in the mouse brain (Figure 1G). We note that since
C-mode 1 was not reliably identified in mice, most likely due to the lack of weighting by higher
order VAT, DAT, and FPN, we hereafter exclude C-mode 1 from this species.

After matching and organizing C-modes, we mapped the voxel-wise C-modes as well as the
network coactivation profiles within C-modes (within-network voxel mean +/- SD, Figure 2A).
Independent group-level CAP maps for each human (HNU and MSC); macaque and mouse
dataset are shown in Figure S4). For each subject/animal in each dataset, we computed a C-
mode’s occurrence rate as the proportion of fMRI frames associated to the CAP pairs
composing the C-mode. A comparison of the distributions of occurrence rates was then
performed (Kruskal-Wallis test, FDR corrected).

We further tested that in-scanner head-motion did not selectively affect the configuration of
any C-mode. This was done by first independently clustering the non- motion censored rsfMRI
datasets with k = 8, 8, and 6 for humans, macaques and mice respectively; building C-modes;
and then comparing the topographies of matched C-mode maps (Hungarian Algorithm?3?) to
the ones obtained after censoring (Pearson’s Correlation) (Figure S5A). We then computed, for
each C-mode in each subject/animal, the proportion of frames in it that were classified as high-
head motion (FD > 0.3, 0.3, and 0.075 mm for humans, macaques, and mice, respectively), and
compared these distributions across C-modes (one-way ANOVA, Figure S5B).

C-mode infraslow dynamics, formation, and temporal structure

We investigated the temporal evolution of C-modes by generating a time-course of
instantaneous C-mode to fMRI frame spatial correlation (hereafter referred to as “C-mode
time-courses”) for each subject/animal, and then computing the power spectrum of these
time-courses as well as that of the Global fMRI signal (GS, i.e., the average of all voxels at each
frame). We next computed the group mean +/- SEM power spectra. C-mode time-courses were
normalized to standard deviation units and mean zero. The evolution of the formation of a C-
mode was computed by time-lock averaging the C-mode to frame correlation values at the
vicinity of a peak surpassing 1SD (+/- 30 seconds), then averaging these event-kernels at the
group level (Figure 3 insets).

Given that the GS also presented a strong peak in the power spectrum in the [0.01-0.03Hz]
infraslow band (Figure 4A) we computed whether occurrence of C-modes was phase locked to
infraslow GS fluctuations'®3°, We extracted the instantaneous infraslow phase of the GS
(filtered between 0.01-0.03Hz) using the Hilbert Transform, then divided the trace into cycles
of minimum 30 s and maximum 100 s. For each cycle, if a C-mode was present, we sampled
the GS-phase at which the C-mode occurred, retaining only samples from normalized C-mode
time-courses exceeding 1SD, thus guaranteeing the selection of frames that are reasonably
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well assigned to a specific C-mode’®. We then built the distribution of GS-phases from the
group-concatenated sampling of C-mode occurrences, and using MATLAB’s CircStats toolbox’8,
we performed a Rayleigh test (p < 0.001, FDR corrected) for deviations from circular uniformity
(Figure 4B). To confirm the cyclical features of C-mode fluctuations within GS cycles, we
repeated this analysis but sampling GS phases from occurrences of inverted (negative) C-mode
time courses (Figure 4B, red insets). As in previous our work!®, we also demonstrated that C-
modes are phase-locked within GS-cycles by sampling the GS-phase difference between the
occurrence of C-modes within a GS cycle, and the following occurrences of another C-mode
within the same cycle or the immediately subsequent one, limiting sampling to instances in
which C-mode time-courses exceeded 1 standard deviation (Figure S7).

To further explore the temporal sequencing of C-mode occurrences and transitions (Figure 5),
we defined for each dataset, a concatenated sequence of C-mode occurrences across
subjects/animals, and calculated the transition probability matrix from a C-mode i at time t to
another C-mode j at time t + 1 as the proportion of transitions i = j and all other transitions
from 1939, Only transitions within the same subject were included, and we first considered
sequences in which we counted the auto-transitions (i = j), namely persistence probabilities.
Off-diagonal elements (i # j), named transition probabilities were then computed after
building sequences in which we removed the repeating elements in order to control for auto-
correlations given the C-mode’s dwell time'®7°. We quantified the directional prevalence of a
transition (P;; > Pj;) by taking their difference. To measure the relative facilitation to reach a
C-mode from another, we computed the Entropy of Markov Trajectories (HMT)3%32 from the
off-diagonal matrix elements (i.e. transition probabilities). This method calculates the
descriptive complexity of the paths between C-mode (in bits), where a lower complexity refers
to less information required to access a destination C-mode j from a source C-mode /, hence
being more accessible as the path travels through less path before reaching its destination.
Specifically, for a Markov Chain (MC) defined by transition probability matrix P, we define the
Entropy Rate perstept = t + 1 as:

k k
H(MC) = _ZEMPl]logZ ij

i=1j=1
Where p is the stationary distribution solving u; = ¥; u;P;j . Also define the Entropy of a
Markov Trajectory T;; from C-mode i to C-mode j as:

H(T;) =K —K'+H,

Where K = (I — P — M)™'(H* — Hp), M is a matrix of stationary probabilities M;; = p;;; I the
identity matrix; H* is the matrix of single-step entropies H;; = H(P;) = X iy Py (from C-
mode i to any C-mode k); and H, is a diagonal entropy matrix with trajectories from a C-mode
to itself (Hp);; = H(MC)/p;, with zeros if i # j*.
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Statistical significance of persistence probabilities was tested from random sequences by
generating 1000 permutations of C-mode occurrence sequences at the subject/animal level,
concatenating the sequences and counting how many times a random iteration exceeded the
true value to reach a p-value. Transition probabilities and directional transition prevalence
were tested against matrices built after randomly permuting the non-repeating sequences
1000 times at the subject/animal level, concatenating them and removing samples if
Cmode;(t + 1) = Cmode;(t). These surrogates were also used to test the significance of
Markov trajectory entropies. To further quantify and assess the relative complexity of
transitions to a particular destination C-mode, we quantified, after repeating the analyses with
subject level sequences, the sum of the HMT matrix columns, and compared their distributions
across C-mode destinations (one-way ANOVA and Tukey test for multiple comparisons, Fig 5C).
Finally, to assess the relationship of the mean GS-phase difference between occurrences of
different C-modes and the HMT of their transitions, we computed the circular-linear
correlations of their mean values (Figure S7 and 5B respectively) using the circ_corrcl.m Matlab
function’®.

C-mode influence on static fMRI connectome and functional connectivity gradients

We first generated C-mode co-fluctuation matrices by cross-multiplying the mean C-mode map
with itself*3, which yielded a voxel-wise representation of the co-activating (or co-deactivating)
peaks of BOLD activity. We then computed the group-level mean Functional Connectivity
matrices by computing the Pearson’s Correlation between the concatenated time-series of
voxels in all subjects/animals in each group®®, and computed the correlation between the
vectorized upper triangular part of the FC matrix to the weighted (by occurrence rate) average
of the C-mode Co-fluctuation matrices® (Fig S9A-B). Voxels were ordered according to the RSN
they belong to (see Fig 1C).

We further explored if the hierarchies that dominate FC are in accordance with the dynamic
structure of C-modes. We first computed the gradients of FC matrices from each species using
the Diffusion Mapping method (BrainSpace®! - diffusion_mapping.m Matlab function: FC
matrix sparse to top 10-percentile per node, 5 components, anisotropic diffusion parameter =
0.5)7%82. We mapped the gradients (Fig S10) and computed their spatial correlation to the
obtained C-modes, matching each C-mode to the gradient with the highest absolute Pearson’s
correlation (Fig 6A). Finally we plotted the variance explained by each gradient (lambda) to the
group mean occurrence rate of their matched C-mode, fitting a linear model to this
relationship (Fig 6B).
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Figure 1. C-mode identification and matching across species (A) CAPs represent transients of infraslow fMRI activity that can
be matched in pairs exhibiting opposite polarity (CAPs, anti-CAPs, left). Detection of CAP anti-CAP pairs (middle) allows for the
computation of fMRI Coactivation modes (right). (B) Detection of CAP-anti-CAP pairs given highest spatial anticorrelation in
the between-CAP similarity matrix. C-modes are built by taking the highest occurring CAP from each pair, and spatially
averaging it with its corresponding inverted anti-CAP. (C) Evolutionarily relevant fMRI networks used for matching. (D)
Vectorized network coactivation profiles for each C-mode (spatially z-scored), extracted from the mean BOLD values of voxels
within a network mask. Arrows denote matching of C-modes across species performed by the Hungarian Algorithm. (E)
Correlation between matched C-modes from humans (HNU dataset) and macaques, (F) between humans (MSC dataset) and
macaques; and (G) between macaques and mice. Abbreviations: aDMN - anterior Default Mode; pDMN - Posterior Default
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Mode; SMN — Somatomotor; VIS — Visual; DAT - Dorsal Attention; VAT-Ventral Attention; FPN — Frontoparietal; LIMB — Limbic;
TH —Thalamus; HC — Hippocampus.
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Figure 2. C-mode topography in awake humans, macaques and mice. (A) Z-scored C-mode maps (Left) and corresponding
normalized network co-activation profiles (Right, mean +/- SD of voxels within the network mask). (B) C-mode occurrence
rates (mean +/- SEM), and between C-mode comparisons (Kruskal-Wallis test, FDR corrected). Abbreviations: aDMN - anterior
Default Mode; pDMN - Posterior Default Mode; SMN — Somatomotor; VIS — Visual; DAT - Dorsal Attention; VAT-Ventral
Attention; FPN — Frontoparietal; LIMB — Limbic; TH —Thalamus; HC — Hippocampus; BF - Basal Forebrain; Cd/Pu -
Caudate/Putamen. P-values: *p < 0.05, **p < 0.01, *** p <0.001, **** p <0.0001.
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to fMRI frame correlation time-series. Red insets denote the mean+/- SEM correlation values time-locked to peaks in the C-
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Figure 4. C-mode occurrence within fMRI global signal infraslow cycles. (A) Group-level power spectral density (mean+/- SEM)
of the GS. (B) Distribution of GS-phases at the occurrence of each C-mode. Blue and red distributions correspond to GS phases
sampled from the positive and negative C-mode time courses, respectively. All distributions significantly deviate from circular
uniformity (Rayleigh test, p < 0.05, FDR corrected).

28


https://doi.org/10.1101/2023.07.19.549681
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.19.549681; this version posted January 20, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A Human Macaque Mouse
Persistence and Transition H Persistence and Transition Persistence and Transition
Probability Probability e S Probability

0.54 0.56 0.58 0.60 0.62

0.54 0.56 0.5

8 074 076 078 080

04
0.4 06
C-mode 1 =
mode C-mode 1 + + Smode’s v
03 03
= C-mode2 = C-mode2 + b 04
] = <
§ - § 02 .§C-mod-1 03
& £ 5
& C-mode3 & C-mode3 © 02
0.1 01 C-mode 4 01
C-mode 4 C-mode 4 + o
0 0
O
o J J S
B & % O,(\‘ 0,6‘ % C-mode at t+1
C-mode at 1+1 C-mode at t+1
Entropy of Markov Trajectories Entropy of Markov Trajectories Entropy of Markov Trajectories
7 7 35
C-mode 1 C-mode 1
C-mode 2
" 3.0
©
g c-mode 2 6 %c-mode 2 3
H
3 5 13
©. =S O C-mode 3 25
2 £ -3
£ £ c-mode 3 £
£ C-mode 3 5 E 5 g
" » 20
C-mode 4 C-mode 4 Crmode’s
4 2 > > . 2 ) > =
oy & 3 @
® 3 & & & & & &
& R & o <
Destination C-mode Destination C-mode Destination C-mode
C <0.0001
E o E £ <0.0001
—_ <0.0001 — S __ 20
e = <o 25 40 =
SWeo 5 S <0.0001
Lwn <0001 Sw Sp 15
i T 30 ® 2 I
S+ 40 . £¥ 5 £ ¥ 104
2§ 28 R :
S 220 52 10 38 5
e E e E cE
% 0 = 0 = 0
I S
N oy ™ Vv
kg b';» & P 4 0'1. en’ ob g en" z"
S F & F K & & &
PP P P P PP £ ®
L AR VA< ¢ o ¢ ¢ < [ [

Figure 5. Temporal trajectories of C-modes converge to the most recurring state. (A) Persistence (top row) and transition (off-
diagonal) probability in human (left), macaques (middle), and mice (right). Red crosses denote the destination C-mode of
preferred directional transitions (Pij > Pji). (B) Entropy of Markov trajectories (HMT) show that the C-mode with the highest
accessibility are C-modes with higher occurrence rates (i.e. C-mode 1 in humans, and C-mode 4 in macaques and mice). Higher
entropy indicates lower accessibility of a destination C-mode (column) from a starting C-mode(row). (C) Quantification of the
sum of Entropy of Markov Trajectories for all destinations (columns in the HMT matrices at the single-subject level), and
comparison between the means (one-way ANOVA, and Tukey test for multiple comparisons). The most occurring C-modes (cf

Figure 2) are also the most accessible ones. P-values: *p < 0.05, **p < 0.01, *** p <0.001, **** p < 0.0001.
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