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ABSTRACT 

Evolutionarily relevant networks have been previously described in several mammalian species 

using  time‐averaged analyses of  fMRI  time‐series. However,  fMRI network activity  is  highly 

dynamic  and  continually  evolves  over  timescales  of  seconds.  Whether  the  dynamic 

organization  of  resting‐state  fMRI  network  activity  is  conserved  across mammalian  species 

remains unclear. Using frame‐wise clustering of fMRI time‐series, we find that intrinsic fMRI 

network dynamics in awake macaques and humans is characterized by recurrent transitions 

between a  set of 4 dominant, neuroanatomically homologous  fMRI coactivation modes  (C‐

modes), three of which are also plausibly represented in the rodent brain. Importantly, in all 

species C‐modes exhibit species‐invariant dynamic features, including preferred occurrence at 

specific phases of fMRI global signal fluctuations, and a state transition structure compatible 

with  infraslow  coupled  oscillator  dynamics.  Moreover,  dominant  C‐mode  occurrence 

reconstitutes the static organization of the fMRI connectome in all species, and is predictive of 

ranking of corresponding  fMRI connectivity gradients. These results  reveal a set of species‐

invariant  principles  underlying  the  dynamic  organization  of  fMRI  networks  in  mammalian 

species, and offer novel opportunities to relate fMRI network findings across the phylogenetic 

tree.  

 

   

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 20, 2024. ; https://doi.org/10.1101/2023.07.19.549681doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.19.549681
http://creativecommons.org/licenses/by-nc-nd/4.0/


     

 

3 
 

INTRODUCTION   

 Spontaneous fluctuations in resting fMRI signals have been consistently shown to be 

temporally synchronized across multiple functional systems, delineating a set of reproducible 

topographies  often  referred  to  as  Resting  State  Networks  (RSNs)1,2.  RSN mapping  typically 

entails the computation of time‐averaged statistical dependencies between fMRI time‐series 

under  the  assumption  that  temporal  structure of  this  activity  is  time‐invariant  over  a  time 

window  of  minutes3.  Prompted  by  the  need  to  complement  human  fMRI  research  with 

mechanistic investigations in physiologically accessible species4,5, multiple research group have 

begun  to  implement  fMRI  mapping  in  non‐human  primates  and  rodents6,7.  These 

investigations have revealed interesting evolutionary correspondences in the organization of 

RSN  across  mammalian  species.  These  encompass  the  presence  of  highly  synchronous 

interhemispheric  networks,  including  evolutionarily‐relevant  precursors  of  distributed 

integrative  systems,  such  as  the  default mode  (DMN)  and  salience  networks8–10.  However, 

spontaneous brain activity is highly dynamic and continuously evolves over the timescale of 

minutes11,12. Accordingly, a large body of experimental and theoretical work has shown that 

the  correlation  structure  of  RSNs  varies  across  time13,14  and  involves  transient  interactions 

between  distinct  functional  systems  that  are  continually  revisited15.  These  observations 

suggest that mere time‐invariant descriptions of spontaneous fMRI activity are not sufficient 

to comprehensively describe the functional architecture of the resting brain. 

Although  many  approaches  to  study  the  dynamic  organization  of  RSNs  have  been 

proposed13,14, frame‐wise methods16–19 have recently gained traction as a flexible approach to 

investigate the dynamic organization of intrinsic fMRI activity. Compared to correlation‐based 

approaches (e.g. sliding‐window analyses), frame‐wise approaches offer the possibility to (a) 

temporally localize the peaks and troughs of activity that underlie fMRI network dynamics and 

relate them to global fluctuations  in brain activity; (b) describe the dynamic organization of 

fMRI using physiologically interpretable parameters (e.g. mean BOLD activity); and (c) identify 

the  relevant  dimensions  of  fMRI  dynamics  without  the  need  to  pre‐impose  regional 

parcellations.  Using  whole‐brain  framewise  clustering  of  fMRI  time‐series  to  obtain 

coactivation  patterns  (CAPs),  it  has  been  recently  shown  that  intrinsic  fMRI  activity  is 

dominated by recurring, cyclic fluctuations between stereotypic functional topographies16–19. 

The  simplicity  of  the  CAP  framework,  its  direct  association  with  a  directly  quantifiable 

physiological property, as well as its high temporal and spatial resolution are perfectly suited 

to  parsimoniously,  yet  comprehensively  describe  the  dynamic  organization of  spontaneous 

network activity. 

While previous studies have compared the static organization of fMRI networks across 

species9,20, attempts to directly relate the dynamic organization of intrinsic brain activity across 

the mammalian phylogenetic  tree are  lacking.  Is  fMRI network dynamics underpinned by a 

unifying set of species‐invariant principles, or does this phenomenon instead reflect unique, 

species‐specific  attributes?  And  are  fMRI  dynamic  states  and  their  cyclic  dynamics 

evolutionarily conserved, or do they encompass phylogenetically divergent motifs?  
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To address these questions, we leveraged fMRI datasets acquired in awake humans, 

macaques and mice to probe and compare the dynamic organization of fMRI in the mammalian 

brain. We find that fMRI network dynamics in all probed species is similarly characterized by 

cyclic transitions between a few dominant and neuroanatomically related fMRI “coactivation 

modes” (C‐modes) which exhibit largely conserved topographies and dynamic features such as 

a quasi‐periodic infraslow evolution and a structure of transitions between states compatible 

with  a  coupled‐oscillators  dynamics21. We  further  relate  the  occurrence  of  dynamic  states 

represented by C‐modes to the organization of the static connectome and fMRI connectivity 

gradients. These results suggest that resting fMRI activity in mammalian species is underpinned 

by evolutionarily conserved dynamic principles.  

 

. 

   

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 20, 2024. ; https://doi.org/10.1101/2023.07.19.549681doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.19.549681
http://creativecommons.org/licenses/by-nc-nd/4.0/


     

 

5 
 

RESULTS 

Dominant  coactivation  modes  parsimoniously  describe  fMRI  network  dynamics  in  humans, 

macaques and mice  

To compare the dynamic organization of fMRI network dynamics within an evolutionary 

perspective,  we  used  a  frame‐wise  approach  based  on  the  identification  of  coactivation 

patterns (CAPs)17,22. Data for this study consisted of awake rsfMRI datasets from two human 

cohorts (The Hangzhou Normal University ‐ HNU: 30 subjects, 10 test‐retest sessions23 and The 

Midnight Scan Club ‐ MSC: 10 subjects, 5 test‐retest sessions24); the Newcastle (NC) macaque 

cohort25,26 (8 animals with 2 test‐retest sessions); and 44 mice under head‐fixed conditions. 

Using k‐means, we clustered fMRI frames in the concatenated timeseries given their spatial 

similarity. We averaged the frames in each cluster to produce group‐level CAP maps15–17, then 

T‐scored them at the voxel level. We then obtained single‐subject CAP maps by averaging the 

corresponding  clustered  frames  from  each  subject  (Figure  S1).  To  identify  reproducible 

functional CAPs  that are  representative of  the dynamic  structure of  fMRI networks  in each 

species, we used a multi‐criteria approach  (see methods section) aimed at maximizing CAP 

reproducibility across  individuals, sessions or datasets.   This approach yielded k = 8 CAPs  in 

human and macaques, and k = 6 in mice as optimal clustering solutions (see methods section 

and Figures S2 and S3).  Previous work16 has shown that CAPs embody rich fMRI topographies 

that can be reliably matched into mirrored coactive and anti‐coactive pairs characterized by 

opposite BOLD polarity (Figure 1). As we will demonstrate below, and similar to what has been 

observed  in  quasi‐periodic  patterns27,each  matched  “CAP  and  anti‐CAP”  pairs  describe  a 

cyclical fluctuation of a single fMRI state. As predicted, the employed procedure identified in 

all species mirrored CAP pairs characterized by opposite BOLD polarity (spatial correlation, r < 

‐0.65, all species, all CAP pairs, Figure 1A‐B). Importantly, the identified CAPs explained in all 

species a large proportion of variance in fMRI timeseries (R2 > 0.58 mice, >0.68 macaque, and 

>0.75 human). Moreover, they also guaranteed robust within and between dataset spatial and 

occurrence rate  reproducibility  (Figures S2‐S3, permutation  tests with  random CAP  identity 

shuffling).  These  results  suggest  that  that  a  few  “dominant”  dynamic  patterns  can 

parsimoniously  describe  the  dynamic  organization  of  fMRI  activity  in  multiple  mammalian 

species. 

To  further  reduce  dimensionality  and  facilitate  cross‐species  comparisons,  we 

coalesced highly anticorrelated CAP pairs into a single Coactivation Mode (C‐mode). CAP and 

anti‐CAP  are  thus  the  peak  and  trough of  the  same  fluctuating C‐mode.  C‐modes  are  thus 

computed by reversing the sign of the anti‐CAP, and spatially averaging it with its paired CAP 

such to spatially depict the corresponding coactivation axis (Figure 1A). The topography of the 

individual  CAPs  pairs  that  constitute  each  C‐mode  is  reported  in  Figure  S4.  To  assess  the 

potential  confounding  contribution  of  head‐motion  to  C‐mode  topography  mapping,  we 

repeated  the  clustering  procedure  on  time‐series  in  which  we  did  not  scrub  fMRI  frames 

exhibiting  high  motion‐related.  We  next  compared  the  spatial  topography  of  C‐modes 

obtained with and without frame censoring. This comparison revealed that C‐mode obtained 
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using  frame‐censored  timeseries  were  very  similar  to  those  we  mapped  using  the  entire 

timeseries (r > 0.95, all C‐modes, all species, Figure S5A). Further corroborating a negligible 

contribution of head motion to our findings, we also found that no C‐mode was preferentially 

enriched with  high‐motion  frames  in  all  species  (one‐way ANOVA,  p  >  0.3,  F  <  1.14  for  all 

comparisons, Figure S5B). 

fMRI C‐modes exhibit evolutionarily‐conserved functional organization 

Having identified dominant fMRI C‐modes in all three species, we next asked whether 

their  functional  organization  would  show,  on  top  of  foreseeable  species‐specific  features, 

recognizable  evolutionarily  conserved  anatomic  features.  For  this  purpose, we matched  C‐

mode topographies based on the similarity of mean BOLD coactivation profile across a set of 

evolutionarily conserved resting state networks (RSNs)28–31 (Figure 1C). The chosen networks 

include the Default‐Mode (DMN), Visual  (VIS), Somato‐motor  (SMN), Limbic  (LIMB), Ventral 

(VAT) and Dorsal (DAT) Attention, Fronto‐parietal (FPN), as well as key subcortical nuclei of the 

Thalamus (TH) and Hippocampus (HCP) and were selected based on the notion that, across 

these three species,  they encompass partly‐conserved neuroanatomical substrates5,8. A key 

exception of note is the lack of established phylogenetic precursors of the VAT, DAT, and FPN 

in  the  rodent brain8. For  this  reason,  these networks were not  included  in  the coactivation 

profile in mouse data. To allow spatial comparisons between species, C‐mode maps were z‐

scored spatially and the mean of the normalized activity of voxels within each RSN mask was 

computed  to  build  its  corresponding  profile  vector  (Figure  1D,  C‐modes  numbered  by 

decreasing occurrence rate). Vectors were first matched using the Hungarian Algorithm32 from 

human C‐modes (organized in decreasing occurrence rate) to macaques, then from macaques 

to mice. 

The  corresponding  results  are  depicted  as  spatial  correlation  between  network 

coactivation  profiles  of  human  and  macaque  datasets  (HNU  and  MSC,  Figure  1E  and  1F, 

respectively),  as  well  as  between  macaques  and  mice  (Figure  1G).  Human  to  macaque 

matching  gave  consistent  results  for  both  HNU  and  MSC  datasets,  with  the  spatial  of 

topography of human C‐modes 1‐4 being best aligned to corresponding macaque C‐modes 1‐

4  (see  also  Figure  2C).  Because  the  human  HNU  dataset  included more  subjects  and was 

performed at daylight hours as animal scans, we describe our results hereafter for the HNU as 

main dataset and present a summary of  the obtained MSC results as supplementary  figure 

(Figure S6). Macaque to mouse matching linked macaque C‐modes 2‐4 to mouse C‐mode 1‐3, 

respectively  (Figure  1G,  Figure  2C).  Whilst  some  anticorrelation  was  apparent  in  C‐mode 

matching  between  single  pairs  of  macaque  and  mouse  C‐modes,  the  chosen  algorithmic 

solution ensured the overall best network matching across species (Figure 2C), as well as cross‐

species  preservation  of  C‐mode  3  and  4  phase  coupling  with  fMRI  global  signal  cycles 

(described  below,  cf.  Figure  4).    As  human  and macaque  C‐mode  1 was  not  preferentially 

matched to any mouse C‐modes, we refer to mouse C‐modes as 2, 3, and 4 for consistency 

with those mapped in higher species throughout the manuscript.  
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Collectively,  cross‐species  C‐mode  matching  revealed  4  topographically  related  C‐

modes in human and macaque, three of which (C‐modes 2‐4) were also represented in the 

rodent  brain  (Figure  2A).  In  all  species,  C‐modes  exhibited  rich  spatial  organization 

encompassing positive and negative peaks of BOLD activity that together delineated a set of 

stereotypic  network  coactivation  profiles  (Figure  2A,  right  panels).  Specifically,  C‐mode  1 

(DMN‐SMN)  encompassed peaks of BOLD activity  in DMN, accompanied by below baseline 

activity  in  SMN and  ventral  attention VAT areas  in both humans and macaques.  C‐mode 2 

(DMN‐Limbic) exhibited coactivation of DMN areas in anti‐correlation with SMN, VIS, and LIMB 

networks in all three species. Interestingly, while in humans the HCP had below‐baseline fMRI 

activity, macaques and mice show above‐baseline fMRI activity in this region. C‐mode 3 (SMN‐

VIS) activity peaked in the SMN and concomitantly engaged most cortical regions of the human 

brain, albeit with considerably weaker or negative BOLD activity in VIS, TH and basal forebrain 

areas,  reminiscent  of  global  fMRI  signal  (GS)  fluctuations.  Finally,  C‐mode  4  (VIS‐FPN)  was 

characterized in humans and macaques by positive coactivation in VIS and posterior cortical 

regions,  and  negative  coactivation  in  FPN  cortical  regions.  This  topography  in  mice  and 

macaques,  but  not  humans, was  associated with  co‐deactivation  of  anterior  cingulate  and 

prefrontal regions of the DMN. Taken together, these results point at the presence of notable 

topographic correspondences in the functional organization of dominant C‐modes in human, 

macaque and mouse brains. 

We next computed for each C‐mode its occurrence rate, defined here as the proportion 

of  fMRI  frames  assigned  to  each  C‐mode  for  each  subject/animal.  Interestingly,  while  the 

spatial  organization  of  C‐modes  exhibited  species‐invariant  topographic  features,  their 

occurrence  rate,  showed  variation  across  species  (Figure  2B).  Specifically,  in  humans  we 

observed a dominant occurrence of DMN‐SMN C‐mode 1 and 2 (Kruskal‐Wallis test, p < 0.001) 

while mice occurrence of  sensory‐oriented C‐mode 3 and 4 was observed  instead  (Kruskal‐

Wallis test, p < 0.001), with macaques showing equiprobable (Kruskal‐Wallis test, p = 0.25) C‐

mode occurrence (although a slight trend for a mouse‐like profile was apparent). Thus,  the 

temporal  structure  of  C‐modes  in  humans  was  biased  towards  a  greater  occurrence  of 

polymodal  integrative metastates  (C‐modes  1  and  2),  with  mice  (and  possibly  macaques= 

exhibiting instead a greater occurrence of sensory‐oriented network modes (C‐modes 3 and 

4). 

fMRI C‐modes exhibit infraslow fluctuations in humans, macaques and mice  

Our  formalism  allowed  us  to  compare  C‐Modes  with  single  fMRI  frames  and  thus 

uncover the temporal structure of the spatial configurations that underlie spontaneous fMRI 

dynamics. We leveraged this property to describe, in all species, the temporal evolution of each 

C‐mode for each subject/animal by computing the instantaneous spatial correlation between 

each C‐mode map and each fMRI frame in all timeseries. The power spectra of the resulting 

“C‐mode timeseries” revealed that C‐modes undergo infraslow fluctuations in all species, with 

most of the power peaking within the 0.01‐0.03 Hz range (Figure 3). Peaks of infraslow activity 

were distinct and sharp  in humans, and slightly  less prominent (yet clearly  recognizable)  in 
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mice and macaques. We next  investigated the assembly of each C‐mode by normalizing  (z‐

score) its time‐course and by time locking peaks of C‐mode time courses (i.e. event‐wavelet) 

at the group level. We found that C‐modes in awake humans, macaques and mice assemble 

and disassemble in a slow and gradual fashion (Figure 3, red insets), reminiscent of damped 

oscillations in the dominant frequency band. These results suggest that fMRI C‐modes exhibit 

comparable infraslow dynamic cycling in all the examined mammalian species. 

fMRI C‐modes occur at specific phase of fMRI global signals cycles in humans, macaques and 

mice  

Prompted  by  previous  investigations  in  anesthetized  mice16,30,  we  next  probed  if  C‐

modes in higher species have a preferred occurrence within fMRI global signal (GS) cycles. We 

thus first ascertained that also in awake conditions the GS would dominantly fluctuate within 

the  infraslow  range  in  all  species  (Figure  4A).  A  spectral  analysis  showed  that  the  power 

spectrum of GS sharply peaks within a 0.01‐0.03 Hz band in awake humans, with analogous 

(albeit less pronounced) peaks of activity in the same frequency range in both awake macaques 

and mice. We then built a circular distribution of the phases of the filtered (0.01‐0.03 Hz) GS 

at which each C‐mode occurred, by sampling only occurrences in which the normalized C‐mode 

time series surpassed threshold values of 1 SD. C‐mode occurrence was significantly phase‐

locked within GS cycles in humans, macaques and mice (Figure 4B, Rayleigh test, p < 0.05, FDR 

corrected).  Interestingly,  GS‐phase  distributions  in  macaques  and  humans  presented  key 

similarities, with C‐modes 1, 3 and 4 (but not 2) exhibiting remarkably conserved cross‐species 

phase alignment. Moreover, C‐modes 3 and 4 showed broadly similar circular means across all 

the three species examined here.  

C‐modes were computed by coalescing a CAP with an anti‐CAP of nearly identical spatial 

shape  but  opposite  polarity.  This  description  of  brain  dynamics  works  well  under  the 

assumption that CAP and antiCAPS represent a single fluctuating brain sub‐state whose pattern 

of  activity  changes  sign  cyclically.  To  corroborate  the  cyclic  nature  of  C‐mode  fluctuations 

within GS cycles, we repeated the sampling of GS phases but with inverted (negative) C‐mode 

timecourses  so  to  capture  the  full  temporal  evolution  of  C‐mode.  This  approach  revealed 

clearly opposite distributions of sampling of the GS phases from positive and negative C‐mode 

occurrences  (Figure  4B,  red  insets).  These  results  suggest  that  C‐modes  describe  cycling 

spatiotemporal  sub‐state  that  fluctuates  in magnitude  and  sign  according  to  the  infraslow 

structure of the global fMRI signal.  

To further provide evidence of the infraslow oscillatory nature of C‐mode dynamics, we 

investigated whether different C‐modes were phase‐coupled within individual GS cycles. We 

computed the GS phase difference between the occurrences of a C‐mode in a GS‐cycle, and 

following occurrences of another C‐mode either within the same GS‐cycle, or in an immediately 

subsequent cycle (Figure S7). These analyses showed highly consistent positioning of a C‐mode 

within each GS cycle (Figure S7, diagonals) and phase coupling between some C‐mode pairs 

(see C‐mode 2 and 3 and 3 and 4  in humans, and C‐modes 3 and 4  in mice). These results 
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suggest that  in mammalian species,  intrinsic fMRI signal  fluctuations do not reflect spatially 

undifferentiated peaks and troughs of BOLD activity, but instead encompass infralow cycling 

between dominant patterns of BOLD activity. This general principle can be extended to entail 

the evolutionary conservation of the phase‐relationship with fMRI GS cycles for most (albeit 

not all, see C‐mode 2) of the explored C‐modes. In sum, these results show that C‐modes are 

phase  locked  to  intrinsic  GS  fluctuations  and  imply  that  different  C‐modes  can  be 

conceptualized as networks of coupled oscillators in multiple mammalians species. 

Coupled oscillatory activity explains C‐modes transition dynamics  

We  next  considered  whether  the  temporal  structure  of  C‐mode  instantaneous 

transitions could similarly be underpinned by species‐invariant principles. For each species, we 

modeled  the  system  as  a  Markov  process  from  sequences  of  concatenated  C‐mode 

occurrences and computed  the  transition probability  into a different C‐mode, as well as C‐

mode self‐transitions (also termed persistence probability, Figure 5A).  We found that the most 

recurring C‐modes (1‐2 in humans, 3‐4 in macaques, and 3‐4 in mice) were sinks of preferred 

directional transitions (p < 0.01, black crosses in Figure 5A), which can as such considered as 

state attractors.  

Furthermore, we  investigated,  for each species,  the “accessibility” of C‐modes  from 

one other by computing the corresponding Entropy of Markov Trajectories (HMT)33 from the 

transition probability matrices. This parameter measures the complexity of a transition: low 

entropy values imply an almost deterministic direct path or high accessibility. On the contrary, 

high  entropy  values  suggest  high  uncertainty,  requiring  random  steps  through  different  C‐

modes  before  reaching  the  destination,  i.e.  low  accessibility.  In  keeping  with  the  C‐mode 

occurrence rates we describe in Figure 2B, the most recurring C‐modes in all species were also 

those that were most accessible, i.e they were the one characterized by lowest entropy values 

(Figure 5B, C). Specifically, in humans, C‐modes 1 and 2 were the most accessible ones (p < 

0.0001  against  C‐modes  3‐4).  In macaques we  did  not  find  any  C‐mode  to  have  preferred 

accessibility (p = 0.25) Conversely, in mice, C‐modes 3 and specially 4 were the most accessible 

ones  (p  <  0.0001).  Importantly,  in  all  species  the  ensuing  accessibility  profile  (Figure  5C) 

recapitulated the C‐mode occurrence rates we described in Figure 2B, with the most accessible 

C‐modes being also the most occurring ones (Figure 2B). This was true also in macaques, where 

the entropy of Markov trajectories required to reach C‐modes 3 and 4 followed the tendency 

of higher occurrence rates of these C‐modes. 

In the sections above we characterized intrinsic fMRI dynamics both in terms of coupled 

quasi‐periodic  fluctuations between  coactive networks  captured by different C‐modes,  and 

also in terms of transitions between C‐Modes. If coupled cyclic activity is key to explaining state 

transition dynamics, we expect  that trajectories between C‐modes with  lower entropy (i.e., 

small HMT, corresponding  to more direct  transitions) would occur on average with shorter 

infraslow phase differences. Conversely, C‐mode pairs with  larger entropy  (i.e. higher HMT 

corresponding to less direct transitions) would occur on average with longer infraslow phase 
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differences. To test this hypothesis, we computed the circular‐linear correlation between the 

mean GS‐phase differences between C‐mode occurrences (Figure S7) and the HMT for their 

trajectories. We found clear and significant correlation values in all species (r = 0.66, 0.66, 0.87 

with p = 0.029, 0.031 and 0.032 for humans, macaques and mice respectively). This  implies 

that  the  transition  structure  of  C‐modes  is  in  part  described  by  infraslow  coupled  cyclic 

dynamics  across  all  species,  embedding  fast  transition  phenomena within GS  cycles  in  the 

dominant infraslow band. 

fMRI C‐mode occurrence predicts ranking of connectivity gradients in humans, macaques and 

mice 

  Previous investigations have shown that a high portion of the variance in static fMRI 

connectivity is explained by a limited fraction (5‐15%) of fMRI frames exhibiting exceedingly 

high cofluctuation amplitude16,34,35. We thus investigated whether the dynamic occurrence of 

dominant  C‐modes  alone  could  similarly  be  sufficient  to  reconstitute  key  organizational 

features  of  the  static  fMRI  connectome.  To  this  aim,  we  first  examined  whether  the 

occurrence‐weighted  average  of  C‐modes would  reproduce  the  static  architecture  of  fMRI 

connectivity. To this purpose, we calculated for each C‐modes its co‐fluctuation matrix, i.e. the 

cross‐multiplication  of  each  C‐mode  map  with  itself36.  We  found  that  in  all  species,  the 

weighted  average  by  occurrence  rate  of  C‐mode  co‐fluctuation  matrices  exhibited  high 

correlation with the corresponding group‐mean static fMRI connectivity matrix (r > 0.57, all 

species, with  r = 0.75  in humans, Figure S8). These  findings corroborate  the notion  that C‐

modes  dynamics  account  for  high  co‐fluctuation  events  critical  for  the  topographic 

organization of the static functional connectome. 

  To  further  investigate  the  relationship  between  C‐mode  dynamics  and  static  fMRI 

connectivity,  we  inquired  whether  C‐mode  occurrence  could  also  be  related  to  the 

organization of fMRI connectivity gradients37,38. Here we posited that C‐mode occurrence rate 

may be  linked  to  the  ranking of  functional  connectivity gradients, with dominant  (i.e. most 

occurring)  C‐modes  aligning  with  the  gradients  that  explain  the  most  variation  in  fMRI 

connectivity.  To  test  this hypothesis, we  first  computed  for  each  species  the  top  five  fMRI 

connectivity gradients, which we next ranked by decreasing variance explained (Figure S9). We 

then compared, for each species, the spatial similarity of the obtained gradients to that of each 

C‐mode, matching them according to their highest absolute spatial correlation. Supporting our 

hypothesis,  plausible  spatial  correspondences  between  C‐mode  and  gradient  topographies 

were observed in all species (Figure 6A). Specifically, in humans the most occurring C‐modes 1 

and 2 were matched with dominant gradients 1 and 2, while in macaques and mice dominant 

gradients 1 and 2 were matched with most occurring C‐modes 4 and 3. Moreover, in all species 

C‐mode occurrence was linearly related to the variance explained by each gradient (R2 > 0.78 

for all species, Figure 6B). This analysis shows how recurring network interaction represented 

by dominant C‐modes, and their relative occurrence rate, shape the organization of the static 

fMRI connectome and its principal axis of variance in all the probed species.  
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DISCUSSION  

While previous cross‐species studies have attempted to compare the static functional 

architecture  of  specific  fMRI  networks  via  time‐invariant  fMRI  connectivity  mapping8,39,40, 

whether the dynamic organization of intrinsic fMRI activity is evolutionarily conserved remains 

unclear. To fill this knowledge gap, we performed a first‐of‐its‐kind systematic investigation of 

intrinsic  fMRI  dynamics  in  awake  humans,  macaques  and  mice  using  the  same  analytical 

framework. To facilitate cross‐species comparisons, we introduced a parsimonious description 

of  network  dynamics  via  fMRI  C‐modes, which  represent  dominant  patterns  of  fluctuating 

BOLD activity. Using this simple approach, we found that  fMRI dynamics  in awake humans, 

macaques and mice encompasses the recurring occurrence of a set of functionally‐related C‐

mode topographies. We also report that the dynamic structure of fMRI network activity follows 

a  set  of  evolutionarily‐invariant  principles.  These  include  the  observation  that  C‐modes 

undergo infraslow fluctuations and tend to occur at specific phases of the fMRI global signal. 

Moreover,  their  transition  structure  is  partly  explained  by  infraslow  coupled  oscillator 

dynamics within fMRI global signal cycles. We also show that C‐mode occurrence accounts for 

high  co‐fluctuation  events  critical  to  the  topographic  organization  of  the  static  functional 

connectome, and is closely related to the ranking of connectivity gradients. These observations 

suggest  that,  beyond  and  above  some  expected  species‐specific  features,  the  dynamic 

structure  of  intrinsic  fMRI  activity  in  the  awake  mammalian  brain  follows  evolutionarily 

conserved principles. 

Although  the  lack  of  systematic  comparisons  of  the  dynamic  organization  of  fMRI 

activity across species does not allow us to directly relate our findings to prior literature, our 

results  are  consistent  with  emerging  evidence  supporting  the  presence  of  cross  species 

homologies in static organization of fMRI connectivity in the mammalian brain31,41. Our results 

expand these  initial  investigations, by showing that correspondences  in static fMRI network 

organization  can  be  parsimoniously  described  and  accounted  for  by  a  limited  set  of 

evolutionarily‐related dynamic patterns of BOLD activity. In keeping with this, the topographic 

organization  of  C‐modes  encompasses  peaks  of  BOLD  activity  spanning  network  systems 

previously  described  in  multiple  mammalian  species,  including  components  of  the  DMN, 

salience  and  motor‐sensory  networks,  as  well  as  in  many  key  subcortical  systems10,28,30. 

Extending previous observations30,42,43, we also found that C‐modes dynamics can be reliably 

related to (and as such, it “explains”) the static organization of the fMRI connectome in all the 

probed species. These finding reconcile prior investigations of the dynamic structure of fMRI 

connectivity  in  rodents16,44–46, macaques47,  and humans15,17,27,48–52 by  showing  that C‐mode 

dynamics encompass high‐amplitude peaks of BOLD activity that critically shape the steady‐

state  architecture  of  the  fMRI  connectome.  These  results  are  also  in  agreement  with  the 

assumption that the mechanisms underlying interareal information transfer as assessed with 

fMRI are conserved in the mammalian brain53,54. 

Our  observation  that  the  dynamic  structure  of  fMRI  activity  in  mammals  follows 

species‐invariant  principles  is  important  in  the  light  of  the  notion  that  many  fundamental 
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physiological  and  anatomical  features  (including  the  brain’s  anatomical  architecture),  are 

known to scale with body size, or to be marginally (or not) represented in lower species55–57. 

Our data suggests instead that, independent of evolutionary complexity, infraslow fluctuations 

of  spatially  rich  patterns  of  fMRI  activity  similarly  underpin  spontaneous  brain  activity  in 

multiple mammalian species. In this respect, one important advancement of the present study 

is the use of datasets collected in awake conditions in all species, an experimental strategy that 

allowed us to carry out a cross‐species comparison of fMRI dynamics unconfounded by the 

pharmacological  effects  (and  the ensuing brain  state  changes)  produced by  anesthesia. An 

additional  key  benefit  of  the  C‐mode  framework  we  introduce  here  is  computational 

tractability, which allows for the representation of the corresponding spatiotemporal patterns 

of  fMRI  activity  with  voxel  resolution  (i.e.  without  predefined  anatomical  boundaries)  and 

avoiding  the  use  of  correlation‐based  metrics  (e.g.  like  in  sliding  window‐based  dynamic 

connectivity mapping). Moreover, the employed approach allows for a fine‐grained temporal 

localization of dynamic effects with single‐frame resolution. All of these properties were key 

to the identification of the dynamic properties and cross‐species correspondences we report 

in this work.  

The  voxelwise  topography  of  C‐modes  enabled  us  to  match  and  compare  these 

spatiotemporal patterns at maximum spatial resolution, revealing a set of anatomically related 

motifs  that  exhibit  evidence  of  evolutionary  conservation  across  species.  Functional 

correspondences between human and macaque were apparent,   and  encompassed  four 

neuroanatomically homologous C‐modes  that were plausibly  identified  in  two  independent 

human datasets. While evolutionarily more tentative, spatial matching between macaque and 

mouse was also plausible, with preserved fMRI polarity in key anchor networks in the three 

matched  C‐modes,  and  evidence of  conserved  C‐mode GS phase  coupling  in  both  species. 

Improved anatomical matching may be obtained in future studies by incorporating data from 

lissenchephalic  new  world  monkeys,  and  other  primate  species  phylogenetically  closer  to 

rodents that could serve as intermediate evolutionary link between macaques and mice6,58,59. 

This  approach may  represents  a warranted  extension  of  our work,  owing  to  the  increased 

availability of fMRI data in multiple primate species6.  

The observation of a substantial coupling between C‐mode occurrence and fMRI global 

signal  cycling was  first  reported  in  anesthetized mice16  and    it  is  here  extended  to  awake 

humans and macaques. This finding corroborates the hypothesis that fluctuations in fMRI GS 

are the intrinsic manifestation of highly structured network interactions60.  This results is also 

of interest in the light of emerging evidence linking global fMRI activity to intrinsic fluctuations 

in arousal27,61–63. Within this framework our findings suggests that the cycling spatiotemporal 

patterns of activity captured by C‐modes (or by other analogous computational frameworks, 

like  quasi periodic patterns27,34), could be strongly affected or driven by ascending modulatory 

transmission.  

Over the last decade, several influential mathematical models have described resting 

state  activity  in  terms  of  networks  of  coupled  oscillators21.  This  work  provides  important 
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empirical support to this modelling as it shows, from data and without making assumptions 

about  the  mechanism,  that  transition  probabilities  between  different  brain  states  can  be 

described in terms of coupled C‐Modes oscillating at infraslow frequencies. Moreover, the fact 

that the state transitions can be reliably described as coupled oscillators in all species suggests 

that  a  functional  architecture  based  on  coupled  oscillating  networks  offers  important 

evolutionarily advantageous computational benefits. These  include  the possibility of  rapidly 

reconfiguring  coordination  and  communication  between  different  brain  regions,  and 

effectively transferring information across scales and brain areas21,54,64.  

While  the  present  work  focuses  on  the  description  of  species‐invariant  principles 

underling the organization of spontaneous  fMRI activity, species‐specific  features were also 

apparent. Beyond foreseeable discrepancies in the topography of specific C‐modes, which can 

be related to the increased complexity of the cortical mantle across the phylogenetic tree, one 

interesting difference we observed is a shift  in C‐mode occurrence across species. Although 

comparable human C‐modes were identified in macaques and mice, their occurrence rate was 

inversed, with C‐modes 1‐2 being the most occurring patterns in humans and C‐modes 3‐4 in 

mice and in macaques. Taken together, these observations support the evolutionary basis for 

ongoing dynamic  changes  across  species,  albeit with  a possible  shift  in  the  time  that  each 

species  spends  in  each  spatiotemporal  state.  Such  species‐dependent  shift  in  C‐mode 

occurrence may reflect brain adaptations that support the increasing demands of higher‐order 

cognition throughout evolution. The finding that in humans, BOLD activity profiles in C‐modes 

1‐2  and  3‐4  peak  in  polymodal  and  sensory  areas,  respectively,  suggests  that  the  intrinsic 

organization of  fMRI  activity  is  biased  towards  introspective  states  that  are  less  frequently 

visited in animals. Accordingly, we found that these most recurrent C‐modes are also the most 

easily accessible from any other C‐mode. Our results also highlight a link between the dynamic 

organization of fMRI activity and the principal axis of variance of static fMRI activity as mapped 

with functional connectivity gradients. This result suggests that the macroscale organization of 

the  functional  connectome  is  critically  shaped  by  the  occurrence  of  its  constituting 

spatiotemporal modes, a notion supported also by complementary conceptualization of fMRI 

dynamics65.  

In summary, we describe a conserved set of dynamic rules governing large‐scale fMRI 

network dynamics  in human, macaques and mice. Our work provides  a  simple and  flexible 

framework to quantitatively model and relate intrinsic fMRI dynamics across the phylogenetic 

tree.   
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MATERIALS AND METHODS 

Data and preprocessing 

Resting  state  fMRI  (rsfMRI)  datasets  from awake,  freely  breathing humans, macaques,  and 

mice were used in this study. Preprocessing included most steps suggested by the guidelines 

of the Human Connectome Project66, using a combination of fMRI dedicated software AFNI67, 

FSL68, FreeSurfer69, and SPM12 (http://fil.ion.ucl.ac.uk/spm/).  

Human 

The  main  dataset,  Hangzhou  Normal  University  of  the  Consortium  for  Reliability  and 

Reproducibility (CoRR‐HNU, or HNU)23 includes 10 sessions of 10‐min scans over the course of 

a  month  from  n  =  30  young  healthy  adults  with  no  history  of  neurological  or  psychiatric 

disorders, head injuries, nor substance abuse (balanced sexes, age = 24+/‐ 2.41 years). Before 

scanning, participants were asked to relax and remain still with their eyes opened, avoiding 

falling asleep. During scanning, a black crosshair was shown in the middle of a grey background. 

The  study  was  approved  by  the  ethics  committee  of  the  Center  for  Cognition  and  Brain 

Disorders at Hangzhou Normal University, and all participants signed written consent before 

data collection. A GE MR750 3T scanner (GE Medical Systems, Waukesha, WI, USA) was used 

to acquire MRI data. Functional scans were acquired with an echo‐planar imaging sequence ‐ 

EPI: TR = 2 s, TE = 30 ms, flip angle = 90°, FOV = 220 × 220 mm, matrix = 64 × 64, voxel‐size = 

3.4 mm isotropic, 43 slices. Data was downloaded from the International Neuroimaging Data‐

Sharing Initiative (INDI ‐ http://fcon_1000.projects.nitrc.org/indi/CoRR/).  

The Midnight Scan Club (MSC) dataset24 was used as secondary, replication dataset. Five out 

of 10 randomly selected sessions were used from separate days, and included 30‐min scans 

from n = 10 healthy young adults (balanced sexes, age = 29.1 +/‐ 3.3 years). Participants were 

asked to visually fix on a white crosshair against a black background. The study was approved 

by the Washington University School of Medicine Human Studies Committee and Institutional 

review Board, and all participants signed written consent before scanning. Functional scans 

were acquired with a Siemens TRIO 3T MRI scanned (Erlangen, Germany) using a gradient‐echo 

EPI sequence: TR = 2.2 s, TE = 27 ms, flip angle = 90°, voxel‐size = 4 mm isotropic, 36 slices. 

Data was downloaded from OpenNeuro (doi:10.18112/openneuro.ds000224.v1.0.3). 

Preprocessing. The  first 5  fMRI  volumes were  removed  from each subject’s  raw data,  then 

despiking (AFNI 3dDespike) and slice‐timing correction (AFNI 3dTshift) was performed. Data 

subsequently  underwent  motion‐correction  (AFNI  3dvolreg);  skull‐stripping  (FSL  fast  and 

bet70); co‐registration to the MNI 3 mm isotropic template (FSL flirt); regression of nuisance 

parameters  (white matter, cerebrospinal  fluid, and 24 motion parameters  (6 parameters, 6 

derivatives, and their respective squared time‐series) (AFNI 3dDeconvolve); band‐pass filtering 

between 0.01‐0.1 Hz (AFNI 3dBandpass); spatial smoothing with a 6 mm FWHM kernel (AFNI 

3dBlurInMask);  and  voxel  time‐series  were  finally  normalized  to  z‐scores  (zero‐mean,  and 

standard deviation units).  
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Macaque 

The  Newcastle  dataset  (NC)  includes  n  =  14  rhesus  macaque  monkeys  (Macaca Mulatta) 

scanned with no contrast agents, from which N = 10 animals (2 females, 8 males), in which two 

independent  fMRI  session were available, were used  for our analyses  (age = 2.28 +/‐ 2.33, 

weight = 11.76 +/‐ 3.38). Two additional (female) animals were discarded from our analyses 

due to excessive head motion exceeding,  in either session, over 30% of  fMRI volumes with 

Framewise Displacement above a 0.3 mm threshold. Animal procedures, head‐fixation, and 

protocols  were  approved  by  the  UK  Home  Office  and  comply  with  the  Animal  Scientific 

Procedures  Act  (1986)  on  the  care  and  use  of  animals  in  research  and with  the  European 

Directive on the protection of animals used in research (2010/63/EU) (see Slater et al., 2016 

for  protocol  specifics  on  animal  preparation  for  awake  imaging25).  A  Vertical  Bruker  4.7T 

primate dedicated scanner was used and rsfMRI experiments were performed in awake, head‐

fixed animals for two separate sessions with TR = 2 s; TE = 16 ms, voxel‐size = 1.2 mm isotropic. 

Data  was  downloaded  from  NHP  data  sharing  consortium  PRIME‐DE 

(http://fcon_1000.projects.nitrc.org/indi/indiPRIME.html)26. 

Preprocessing. The first 5 rsfMRI volumes were removed from each animal’s raw data, then 

despiking (AFNI 3dDespike) and slice‐timing correction (AFNI 3dTshift) was performed. Data 

subsequently  underwent  motion‐correction  (AFNI  3dvolreg);  skull‐stripping  (FSL  fast  and 

bet70);  co‐registration  to  the  Yerkes19  2  mm  isotropic  template71  (FSL  flirt);  regression  of 

nuisance  parameters  (white  matter,  cerebrospinal  fluid,  and  24  motion  parameters  (6 

parameters,  6  derivatives,  and  their  respective  squared  time‐series)  (AFNI  3dDeconvolve); 

band‐pass filtering between 0.01‐0.1 Hz (AFNI 3dBandpass); spatial smoothing with a 3 mm 

FWHM kernel (AFNI 3dBlurInMask); and voxel time‐series were finally normalized to z‐scores 

(zero‐mean, and standard deviation units). 

Mouse 

C57BL/6J mouse data was obtained from n = 44, head‐fixed awake male mice undergoing a 12‐

min  rsfMRI  scan  using  the  same  animal  preparation,  habituation  and  scanning  protocols 

previously described30. In vivo experiments were conducted in accordance with the Italian law 

(DL 26/214, EU 63/2010, Ministero della Sanita, Roma) and with the National Institute of Health 

recommendations for the care and use of laboratory animals. The animal research protocols 

for this study were reviewed and approved by the Italian Ministry of Health and the animal 

care  committee  of  Istituto  Italiano  di  Tecnologia  (IIT).  All  surgeries were  performed  under 

anesthesia. Young adult (< 12 months old) male C57BL/6J mice were used. RsfMRI scans, both 

retrieved and newly acquired, were acquired at the IIT laboratory in Rovereto (Italy) using a 

Bruker  7T  scanner  (Bruker  Biospin,  Ettlingen)  with  a  BGA‐9  gradient  set,  72 mm  birdcage 

transmit coil, and a four‐channel solenoid receiver coil: TR = 1 s, TE = 15 ms, flip angle = 60°, 

matrix  =  100  ×  100,  FOV =  2.3  ×  2.3  cm,  18  coronal  slices  0.6 mm  thick,  12 minutes  total 

acquisition time. 
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Preprocessing. The first 120 rsfMRI volumes (2‐min) were removed from each animal’s raw 

data  to  account  for  thermal  gradient  equilibration,  then  despiking  (AFNI  3dDespike)  was 

performed. Due to the short TR we did not perform slice‐timing correction in these images. 

Data  subsequently  underwent motion‐correction  (FSL mcflirt);  skull‐stripping  (FSL  fast  and 

bet70); co‐registration to an in‐house mouse brain template of 0.23 × 0.23 × 0.6 mm3 (ANTS 

registration suite72); regression of nuisance parameters (white matter, cerebrospinal fluid, and 

24 motion parameters (6 parameters, 6 derivatives, and their respective squared time‐series) 

(AFNI  3dDeconvolve);  band‐pass  filtering  between  0.01‐0.1  Hz  (AFNI  3dBandpass);  spatial 

smoothing  with  a  0.5 mm  FWHM  kernel  (AFNI 3dBlurInMask);  and  voxel  time‐series were 

finally normalized to z‐scores (zero‐mean, and standard deviation units). 

Whole brain CAP detection and cluster‐number selection 

To identify recurrent rsfMRI whole‐brain states, we used the whole‐brain coactivation patterns 

(CAPs) approach15–17 in which fMRI frames are cluster based on their spatial similarity and then 

averaged to define recurrent patterns of  BOLD coactivation. Specifically, for each species, we 

first performed censoring of motion‐contaminated frames (framewise Displacement: FD > 0.3, 

0.3, and 0.075 mm for humans2, macaques29, and mice30 respectively), and then concatenated 

the frames from all subjects or animals. Given that clustering human fMRI data in the 3 mm 

MNI‐space became computationally challenging owing to its large dimensionality (n‐voxels = 

43.539, compared to 11.402 in macaques, and 8.937 in mice), this step was carried out upon 

reducing data using  the  coarse 950‐ROI Craddock Parcellation73.  The choice of  this  specific 

parcellation  regards  its  ability  to  provide  a  fair  dimensionality  reduction,  while  preserving 

information present at the voxel scale73. After these final steps, we ran, for each species, the 

k‐means  clustering  algorithm16,74  (spatial  correlation  as  distance  metric,  500  iterations,  5 

replications with different random initializations, from k = 2:20, 5 independent runs). CAP maps 

were obtained at the group level by averaging the fMRI frames belonging to a cluster at the 

voxel level, then normalizing these values to T‐scores from the concatenated datasets (Figure 

S1).  At  the  single‐subject  level, we  obtained,  for  each  subject/animal,  a  CAP‐map  for  each 

cluster by only averaging and converting to T‐scores, the frames belonging to a cluster but only 

within a subject/animal’s data/session. We note that CAP mapping through frame averaging in 

humans was  done  at  the  voxel  level,  as  the  parcellated  data was  only  used  for  clustering 

purposes. After clustering, we recovered the censored fMRI frames to the cropped datasets 

and assigned them to the CAP with the highest spatial correlation. This was done in order to 

have a continuum of frames for subsequent analyses. 

Selection of the optimal number of clusters was done following a set of previously proposed 

empirical rules16,19, as well as new metrics. These were dependent on the availability on test‐

retest sessions within a dataset in macaques and humans, as well as a full independent dataset 

in humans from a different site. Specifically, for human HNU and MSC datasets independently, 

we first ran the k‐means clustering algorithm with the concatenated dataset from k = 2:20, 

selecting, for each ‘k’, the solution with the highest variance explained16 from 5 replications in 

5 independent runs. Here, the variance of the data explained by each partition is defined as 
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defined  as  the  ratio  between  the  between‐cluster  variance  and  the  total  variance  (within‐

cluster + between‐cluster variance). Within‐cluster variance was computed as the averaged 

(over  clusters)  sum  of  square  distances  between  elements  in  a  cluster  and  its  centroid. 

Between‐cluster variance was computed as the averaged square distance between a cluster 

centroid  and  the  centroid  of  all  clusters  or  centroid  of  all  data16,75.  For  each  dataset 

independently, we first computed the variance explained by data partitioned into an increasing 

number of clusters (2 ≤ k ≤ 20) (Figure S2A‐B). We next assessed the topographic consistency 

of CAPs at  increasing partitions. To this purpose, we computed how consistent CAPs are by 

assessing,  for  each  ‘k’  partition,  the  spatial  correlation  between  a mean  CAP map,  and  its 

matched map in the previous order (k‐1) partition. Matching was done using the Hungarian 

Algorithm32.  We  found  that  partitions  between  k  =  6:10  yielded,  in  both  datasets, 

topographically stable CAPs that could be reliably identified at higher ‘k’ (Figure S2C‐D). 

We  then  assessed  the  within‐dataset  repeatability  by  comparing  the  spatial  correlations 

between the mean CAP maps of each subject between each independent fMRI sessions (10 for 

HNU,  and  5  for  MSC,  Figure  S2E‐F).  Statistical  significance  of  the  mean  within  subject 

repeatability  of  each  CAP  was  assessed  by  recomputing  the  spatial  correlations  between 

subject‐level CAP maps after randomly shuffling the CAP‐identity of fMRI frames, preserving 

occurrence  rates.  This  process was  repeated 1000  times,  and  repeatability  values  for  each 

subject beneath the highest permutation value were flagged as non‐repeatable (asterisks in 

Figure S2E‐F). The result of  these comparisons showed that within an upper limit of k = 13 

(HNU) or 15 (MSC), all the mapped CAPs were represented in all fMRI sessions of each subject, 

with significant spatial correlation across sessions (p < 0.05, surrogate testing with randomly 

shuffled cluster associations). At higher partitions, one or more CAPs were instead no longer 

represented in one or more subjects. We further probed within‐session stability of clustering 

by computing the CAP occurrence rate obtained across imaging sessions. We found that CAP 

occurrence rate (i.e. proportion of fMRI frames associated to a CAP in each subject), for both 

datasets, was stable across sessions at k = 2, 6, 8, and 9 (Kruskal‐Wallis test, 10 groups for HNU, 

5 groups for MSC, FDR corrected for k comparisons, Figure S2 G‐H). 

Finally, to maximize the generalizability of our partitioning, we compared the main dataset’s 

(HNU)  CAP  maps  with  those  obtained  in  the  MSC  in  terms  of  topography  matching  and 

occurrence rates. To this aim, we spatially compared mean group‐level CAP maps (matched 

with the Hungarian Algorithm for each partition) and tested the significance of this comparison 

by recomputing the values after randomly shuffling the fMRI frames within each dataset, while 

preserving occurrence rates (Figure S2I). The mean occurrence rates from each dataset was 

assessed with a Wilcoxon signed rank test, p < 0.05, FDR corrected for k comparisons (Figure 

S2J). This analysis revealed that clusters from all partitions, except k = 6, 7, 9, 14, 15 and 16, 

were topographically reproducible across datasets (Figure S2I). By contrast, a comparison of 

the mean CAP occurrence rates between datasets (Figure S2I) showed that k = 8 was the only 

partition in which this parameter was conserved across dataset (Wilcoxon signed rank test, p 

< 0.05, FDR corrected for k comparisons). Based on these analyses, k= 8 was the only partition 
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level meeting all the required within and between subject/dataset reproducibility criteria. We 

thus based all our subsequent analyses of human fMRI dynamics using k = 8 clusters. 

Selection of optimal clusters in macaque fMRI time‐series (Newcastle test‐retest datasets, n = 

8 animals, 2 sessions)  followed the same strategy employed  for human time‐series. Briefly, 

computation  of  explained  variance  in macaque  fMRI  time‐series  revealed  an  elbow  region 

within the k = 6:10 range (Figure S3A). Macaque CAPs were topographically stable at increasing 

k  partitions  until  an  upper  limit  at  k  =  10  (Figure  S3B).  Comparing  repeatability  of  CAP 

topographies  across  sessions  revealed  that  above  k  =  8,  some  CAPs  present  lack  of 

topographical  reproducibility  (p  >  0.05,  surrogate  testing  with  randomly  shuffled  cluster 

associations), as well as significant differences in CAP occurrence rates (Kruskal‐Wallis test, FDR 

corrected for k comparisons, Figure S3C‐D). This cumulative evidence suggests that k = 8 was 

the highest partition  that guarantees CAP  stability,  as well  as  test‐retest  topographical  and 

frame distribution repeatability amongst clusters. 

For mice, the variance explained curve for the awake dataset we used in this work (N = 44) 

showed  an  elbow  between  6  and  8  clusters  (Figure  S3E‐F).  Topographic  CAP  stability  as  a 

function of increasing partition number revealed that mouse CAPs were topographically stable 

up  to  k  =  6.  This  value  is  in  agreement with  the  results  of  CAP  number  selection  in  prior 

independent studies30,40, in which k = 6 was consistently identified as optimal partition in this 

species. 

Coactivation Modes and between species matching 

In previous work we demonstrated  that CAPs appear  in pairs of  spatial  configurations with 

opposite  BOLD  coactivations16  (CAP,  and  anti‐CAP,  Figure  1A).  As  this  feature  was  initially 

detected  in  awake  and  anesthetized  mice30,  we  first  showed  that  these  anatomical 

configurations were present also  in all of our datasets. For each species, we thus organized 

CAPs  in  descending  occurrence  rate  and  computed  the  Pearson’s  correlation  between  the 

vectorized mean CAP maps as a spatial similarity metric, matching CAPs and anti‐CAPs as pairs 

with the highest anticorrelation coefficient (Figure 1B). We then reduced pairs into C‐modes, 

by taking each CAP map pair (T‐score normalized), subtracting the least recurring one from its 

counterpart, then dividing the resulting map by two (Figure 1A). In order to have a normalized 

basis for between‐species comparisons, we further z‐scored each resulting C‐mode map. Given 

that C‐modes represent unique configurations between known resting state networks16,17,19, 

we  extracted  the  mean  BOLD  values  from  voxels  within  masks  of  previously  described, 

evolutionarily  conserved31,54  cortical RSN  in humans28, macaques29 and mice30,76, as well as 

hippocampal  and  thalamic  masks66,77  (Figure  1C).  For  each  C‐mode,  we  computed  their 

occurrence rates as the average occurrence of the CAP and anti‐CAP conforming the C‐mode. 

We then organized the vectorized network coactivation profiles of each C‐mode in descending 

occurrence  rate  order,  and  first  matched  C‐mode  profiles  of  humans  to  macaques,  then 

macaques to mice using the Hungarian Algorithm32 with vector‐correlations between profiles 

as distance metrics  for  the cost  function  to be minimized  (Figure 1D). We represented  the 
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similarities between network coactivation profiles of C‐modes in the human HNU dataset and 

macaques (Figure 1E), as well as with the MSC dataset and macaques, confirming our matching 

(Figure 1F). Finally, we matched macaque C‐mode network coactivation profiles with those of 

mice, without accounting for Fronto‐Parietal (FPN), Ventral (VAT) and Dorsal Attention (DAT) 

networks, as these have not been described in the mouse brain (Figure 1G). We note that since 

C‐mode 1 was not reliably identified in mice, most likely due to the lack of weighting by higher 

order VAT, DAT, and FPN, we hereafter exclude C‐mode 1 from this species. 

After matching and organizing C‐modes, we mapped the voxel‐wise C‐modes as well as the 

network coactivation profiles within C‐modes (within‐network voxel mean +/‐ SD, Figure 2A). 

Independent  group‐level  CAP maps  for  each human  (HNU and MSC); macaque and mouse 

dataset are shown in Figure S4). For each subject/animal in each dataset, we computed a C‐

mode’s  occurrence  rate  as  the  proportion  of  fMRI  frames  associated  to  the  CAP  pairs 

composing  the  C‐mode.  A  comparison  of  the  distributions  of  occurrence  rates  was  then 

performed (Kruskal‐Wallis test, FDR corrected).  

We further tested that in‐scanner head‐motion did not selectively affect the configuration of 

any C‐mode. This was done by first independently clustering the non‐ motion censored rsfMRI 

datasets with k = 8, 8, and 6 for humans, macaques and mice respectively; building C‐modes; 

and then comparing the topographies of matched C‐mode maps (Hungarian Algorithm32) to 

the ones obtained after censoring (Pearson’s Correlation) (Figure S5A). We then computed, for 

each C‐mode in each subject/animal, the proportion of frames in it that were classified as high‐

head motion (FD > 0.3, 0.3, and 0.075 mm for humans, macaques, and mice, respectively), and 

compared these distributions across C‐modes (one‐way ANOVA, Figure S5B). 

C‐mode infraslow dynamics, formation, and temporal structure 

We  investigated  the  temporal  evolution  of  C‐modes  by  generating  a  time‐course  of 

instantaneous C‐mode  to  fMRI  frame  spatial  correlation  (hereafter  referred  to  as  “C‐mode 

time‐courses”)  for  each  subject/animal,  and  then  computing  the power  spectrum of  these 

time‐courses as well as that of the Global fMRI signal (GS, i.e., the average of all voxels at each 

frame). We next computed the group mean +/‐ SEM power spectra. C‐mode time‐courses were 

normalized to standard deviation units and mean zero. The evolution of the formation of a C‐

mode was computed by time‐lock averaging the C‐mode to frame correlation values at the 

vicinity of a peak surpassing 1SD (+/‐ 30 seconds), then averaging these event‐kernels at the 

group level (Figure 3 insets).  

Given that the GS also presented a strong peak in the power spectrum in the [0.01‐0.03Hz] 

infraslow band (Figure 4A) we computed whether occurrence of C‐modes was phase locked to 

infraslow  GS  fluctuations16,30.  We  extracted  the  instantaneous  infraslow  phase  of  the  GS 

(filtered between 0.01‐0.03Hz) using the Hilbert Transform, then divided the trace into cycles 

of minimum 30 s and maximum 100 s. For each cycle, if a C‐mode was present, we sampled 

the GS‐phase at which the C‐mode occurred, retaining only samples from normalized C‐mode 

time‐courses exceeding 1SD, thus guaranteeing the selection of frames  that are reasonably 
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well  assigned  to a  specific C‐mode16. We  then built  the distribution of GS‐phases  from  the 

group‐concatenated sampling of C‐mode occurrences, and using MATLAB’s CircStats toolbox78, 

we performed a Rayleigh test (p < 0.001, FDR corrected) for deviations from circular uniformity 

(Figure  4B).  To  confirm  the  cyclical  features  of  C‐mode  fluctuations  within  GS  cycles,  we 

repeated this analysis but sampling GS phases from occurrences of inverted (negative) C‐mode 

time courses (Figure 4B, red insets). As in previous our work16, we also demonstrated that C‐

modes are phase‐locked within GS‐cycles by sampling the GS‐phase difference between the 

occurrence of C‐modes within a GS cycle, and the following occurrences of another C‐mode 

within the same cycle or the immediately subsequent one,  limiting sampling to  instances in 

which C‐mode time‐courses exceeded 1 standard deviation (Figure S7). 

To further explore the temporal sequencing of C‐mode occurrences and transitions (Figure 5), 

we  defined  for  each  dataset,  a  concatenated  sequence  of  C‐mode  occurrences  across 

subjects/animals, and calculated the transition probability matrix from a C‐mode i at time t to 

another C‐mode j at time 𝑡 ൅ 1 as the proportion of transitions 𝑖 → 𝑗 and all other transitions 
from  i19,30. Only  transitions within  the same subject were  included, and we first considered 

sequences in which we counted the auto‐transitions (𝑖 ൌ 𝑗), namely persistence probabilities. 

Off‐diagonal  elements  (𝑖 ് 𝑗),  named  transition  probabilities  were  then  computed  after 

building sequences in which we removed the repeating elements in order to control for auto‐

correlations given the C‐mode’s dwell time19,79. We quantified the directional prevalence of a 

transition (𝑃௜௝ ൐ 𝑃௝௜) by taking their difference. To measure the relative facilitation to reach a 

C‐mode from another, we computed the Entropy of Markov Trajectories (HMT)30,33 from the 

off‐diagonal  matrix  elements  (i.e.  transition  probabilities).  This  method  calculates  the 

descriptive complexity of the paths between C‐mode (in bits), where a lower complexity refers 

to less information required to access a destination C‐mode j from a source C‐mode i, hence 

being more accessible as the path travels through less path before reaching its destination. 

Specifically, for a Markov Chain (MC) defined by transition probability matrix P, we define the 

Entropy Rate per step 𝑡 → 𝑡 ൅ 1 as: 

𝐻ሺ𝑀𝐶ሻ ൌ െ ෍ ෍ 𝜇௜𝑃௜௝ logଶ 𝑃௜௝

௞

௝ୀଵ

௞

௜ୀଵ

 

Where 𝜇  is  the  stationary  distribution  solving 𝜇௝ ൌ ∑ 𝜇௜𝑃௜௝ ௜ .  Also  define  the  Entropy  of  a 

Markov Trajectory 𝑇௜௝ from C‐mode i to C‐mode j as: 

𝐻൫𝑇௜௝൯ ൌ 𝐾 െ 𝐾ᇱ ൅ 𝐻୼ 

Where 𝐾 ൌ ሺ𝐼 െ 𝑃 െ 𝑀ሻିଵሺ𝐻∗ െ 𝐻୼ሻ, M is a matrix of stationary probabilities 𝑀௜௝ ൌ 𝜇௜௝; I the 

identity matrix; 𝐻∗  is  the matrix  of  single‐step  entropies 𝐻௜௝
∗ ൌ 𝐻ሺ𝑃௜ሻ ൌ ∑ 𝜇௞𝑃௜௞௞   (from C‐

mode i to any C‐mode k); and 𝐻୼ is a diagonal entropy matrix with trajectories from a C‐mode 

to itself ሺ𝐻୼ሻ௜௜ ൌ 𝐻ሺ𝑀𝐶ሻ/𝜇௜, with zeros if 𝑖 ് 𝑗33. 
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Statistical  significance  of  persistence  probabilities  was  tested  from  random  sequences  by 

generating 1000 permutations of C‐mode occurrence sequences at the subject/animal level, 

concatenating the sequences and counting how many times a random iteration exceeded the 

true  value  to  reach  a p‐value.  Transition probabilities  and directional  transition prevalence 

were  tested  against matrices  built  after  randomly  permuting  the  non‐repeating  sequences 

1000  times  at  the  subject/animal  level,  concatenating  them  and  removing  samples  if 

𝐶𝑚𝑜𝑑𝑒௜ሺ𝑡 ൅ 1ሻ ൌ 𝐶𝑚𝑜𝑑𝑒௜ሺ𝑡ሻ.  These  surrogates were  also  used  to  test  the  significance  of 
Markov  trajectory  entropies.  To  further  quantify  and  assess  the  relative  complexity  of 

transitions to a particular destination C‐mode, we quantified, after repeating the analyses with 

subject level sequences, the sum of the HMT matrix columns, and compared their distributions 

across C‐mode destinations (one‐way ANOVA and Tukey test for multiple comparisons, Fig 5C). 

Finally, to assess the relationship of the mean GS‐phase difference between occurrences of 

different  C‐modes  and  the  HMT  of  their  transitions,  we  computed  the  circular‐linear 

correlations of their mean values (Figure S7 and 5B respectively) using the circ_corrcl.m Matlab 

function78. 

 

C‐mode influence on static fMRI connectome and functional connectivity gradients 

We first generated C‐mode co‐fluctuation matrices by cross‐multiplying the mean C‐mode map 

with itself43, which yielded a voxel‐wise representation of the co‐activating (or co‐deactivating) 

peaks  of  BOLD  activity.  We  then  computed  the  group‐level  mean  Functional  Connectivity 

matrices by  computing  the Pearson’s Correlation between  the concatenated  time‐series of 

voxels  in  all  subjects/animals  in  each  group80,  and  computed  the  correlation  between  the 

vectorized upper triangular part of the FC matrix to the weighted (by occurrence rate) average 

of the C‐mode Co‐fluctuation matrices30 (Fig S9A‐B). Voxels were ordered according to the RSN 

they belong to (see Fig 1C). 

We further explored if the hierarchies that dominate FC are in accordance with the dynamic 

structure of C‐modes. We first computed the gradients of FC matrices from each species using 

the  Diffusion  Mapping  method  (BrainSpace81  ‐  diffusion_mapping.m Matlab  function:  FC 

matrix sparse to top 10‐percentile per node, 5 components, anisotropic diffusion parameter = 

0.5)76,82. We mapped  the gradients  (Fig  S10)  and  computed  their  spatial  correlation  to  the 

obtained C‐modes, matching each C‐mode to the gradient with the highest absolute Pearson’s 

correlation (Fig 6A). Finally we plotted the variance explained by each gradient (lambda) to the 

group  mean  occurrence  rate  of  their  matched  C‐mode,  fitting  a  linear  model  to  this 

relationship (Fig 6B). 
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Figures 

 

Figure 1. C‐mode identification and matching across species (A) CAPs represent transients of infraslow fMRI activity that can 

be matched in pairs exhibiting opposite polarity (CAPs, anti‐CAPs, left). Detection of CAP anti‐CAP pairs (middle) allows for the 

computation of fMRI Coactivation modes (right). (B) Detection of CAP‐anti‐CAP pairs given highest spatial anticorrelation in 

the  between‐CAP  similarity  matrix.  C‐modes  are  built  by  taking  the  highest  occurring  CAP  from  each  pair,  and  spatially 

averaging  it  with  its  corresponding  inverted  anti‐CAP.  (C)  Evolutionarily  relevant  fMRI  networks  used  for  matching.  (D) 

Vectorized network coactivation profiles for each C‐mode (spatially z‐scored), extracted from the mean BOLD values of voxels 

within  a  network mask.  Arrows  denote matching  of  C‐modes  across  species  performed  by  the  Hungarian  Algorithm.  (E) 

Correlation between matched C‐modes from humans (HNU dataset) and macaques, (F) between humans (MSC dataset) and 

macaques; and (G) between macaques and mice. Abbreviations:  aDMN ‐ anterior Default Mode; pDMN ‐ Posterior Default 
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Mode; SMN – Somatomotor; VIS – Visual; DAT ‐ Dorsal Attention; VAT‐Ventral Attention; FPN – Frontoparietal; LIMB – Limbic; 

TH –Thalamus; HC – Hippocampus. 
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Figure 2. C‐mode topography  in awake humans, macaques and mice.  (A) Z‐scored C‐mode maps (Left) and corresponding 

normalized network co‐activation profiles (Right, mean +/‐ SD of voxels within the network mask).  (B) C‐mode occurrence 

rates (mean +/‐ SEM), and between C‐mode comparisons (Kruskal‐Wallis test, FDR corrected). Abbreviations:  aDMN ‐ anterior 

Default Mode;  pDMN  ‐  Posterior  Default Mode;  SMN –  Somatomotor;  VIS  –  Visual;  DAT  ‐  Dorsal  Attention;  VAT‐Ventral 

Attention;  FPN  –  Frontoparietal;  LIMB  –  Limbic;  TH  –Thalamus;  HC  –  Hippocampus;  BF  ‐  Basal  Forebrain;  Cd/Pu  ‐ 

Caudate/Putamen. P‐values: *p < 0.05, **p < 0.01, *** p < 0.001, **** p < 0.0001. 
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Figure 3. Infraslow dynamics and formation of C‐Modes. Group‐level power spectral density (blue, mean+/‐ SEM) of C‐Mode 

to fMRI frame correlation time‐series. Red insets denote the mean+/‐ SEM correlation values time‐locked to peaks in the C‐

Mode time‐series. 
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Figure 4. C‐mode occurrence within fMRI global signal infraslow cycles. (A) Group‐level power spectral density (mean+/‐ SEM) 

of the GS. (B) Distribution of GS‐phases at the occurrence of each C‐mode. Blue and red distributions correspond to GS phases 

sampled from the positive and negative C‐mode time courses, respectively. All distributions significantly deviate from circular 

uniformity (Rayleigh test, p < 0.05, FDR corrected). 

   

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 20, 2024. ; https://doi.org/10.1101/2023.07.19.549681doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.19.549681
http://creativecommons.org/licenses/by-nc-nd/4.0/


     

 

29 
 

 

Figure 5. Temporal trajectories of C‐modes converge to the most recurring state. (A) Persistence (top row) and transition (off‐

diagonal) probability  in human  (left), macaques  (middle), and mice  (right). Red crosses denote  the destination C‐mode of 

preferred directional transitions (Pij > Pji). (B) Entropy of Markov trajectories (HMT) show that the C‐mode with the highest 

accessibility are C‐modes with higher occurrence rates (i.e. C‐mode 1 in humans, and C‐mode 4 in macaques and mice). Higher 

entropy indicates lower accessibility of a destination C‐mode (column) from a starting C‐mode(row). (C) Quantification of the 

sum of Entropy of Markov Trajectories  for all  destinations  (columns  in  the HMT matrices at  the  single‐subject  level),  and 

comparison between the means (one‐way ANOVA, and Tukey test for multiple comparisons). The most occurring C‐modes (cf 

Figure 2) are also the most accessible ones. P‐values: *p < 0.05, **p < 0.01, *** p < 0.001, **** p < 0.0001. 
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Figure 6. C‐modes occurrence rate predicts ranking of functional connectivity gradients. (A) Spatial correlation between the 

principal gradients and each C‐mode map. Black dots denote the spatial matching between maps obtained using the Hungarian 

Algorithm. (B) Scatter plot of the variance explained by each gradient (lambda) versus the corresponding C‐mode occurrence 

rate. R‐square  from a  linear  fit  (p  < 0.01).  The most occurring C‐modes  accounts  for most  variance  in  the  corresponding 

gradient axis. 
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