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Abstract

Tumor microenvironments (TMEs) contain vast amounts of information on patient’s
cancer through their cellular composition and the spatial distribution of tumor cells and
immune cell populations. Exploring variations in TMEs among patients and cancer
types, as well as determining the extent to which this information can predict variables
such as patient survival or treatment success with emerging immunotherapies, is of
great interest. Moreover, in the face of a large number of potential spatial cell
interactions to consider, we often wish to identify specific interactions that are useful in
making such predictions. We present an approach to achieve these goals based on
summarizing spatial relationships in the TME using spatial K functions, and then
applying functional data analysis and random forest models to both predict outcomes of
interest and identify important spatial relationships. This approach is shown to be

effective in simulation experiments. We further used the proposed approach to
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interrogate two real data sets of Multiplexed Ion Beam Images of TMEs in triple
negative breast cancer and lung cancer patients. The methods proposed are publicly

available in a companion R package funkycells.

Author summary

Spatial data on the tumor microenvironment (TME) are becoming more prevalent.
Existing methods to interrogate such data often have several deficiencies: (1) they rely
on estimating the spatial relationships among cells by examining simple counts of cells
within a single radius, (2) they do not come with ways to evaluate the statistical
significance of any findings, or (3) they consider multiple individual interactions
resulting in overly optimistic estimates of interaction importances. Our approach, which
leverages techniques in spatial statistics and uses a benchmark ensemble machine
learning method addresses (1), since the K functions used encode the relative densities
of cells over all radii up to a user-selected maximum radius, and (2) we have developed
a custom approach based on permutation and cross-validation to evaluate the statistical
significance of any findings of significant spatial interactions in the TME, (3) over
potentially multiple interactions. Our approach is also freely available with an R
implementation called funkycells. In the analysis of two real data sets, we have seen
that the method performs well, and gives the expected results. We think this will be a
robust tool to add to the toolbox for researchers looking to interrogate, what can be

sometimes unwieldy, TME data.

Introduction

Recent advances in cancer treatment, such as immune checkpoint inhibition and other
cancer immunotherapies, have sparked a growing interest in studying the cellular
composition and spatial organization of the tumor microenvironment (TME). The latest
innovations in imaging technologies allow for single cell resolution of specific proteins,
facilitating in-depth study of the spatial arrangement of cell types within the TME. A
wide variety of technologies are available for this purpose, each with different benefits

and trade-offs [IH7]. For a review of the available technologies see [8].
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In comparing TME data, different spatial relationships between cell types, e.g.
between tumor cells and specific immune cell populations, and/or individual proteins,
often appear predictive of patient outcomes and may guide therapeutic interventions;
see for example [9]. Comparisons between cancer subtypes, e.g. hormone-positive versus
hormone-negative breast cancers, or lung squamous cell carcinoma vs lung
adenocarcinoma, may provide novel insight into tumor biology and guide the
development of treatments. A further goal is to identify specific spatial relationships
observed in particular patient’s tumor that are useful in predicting an outcome, such as
patient survival or response to therapy. Recent results demonstrate that TME data can
be used for such prediction in a variety of tumor types [10}/11].

We consider such prediction problems for data sets generated from tumors imaged
with Multiplexed Ion Beam Imaging (MIBI) by means of the MIBIscope in this paper.
The MIBIscope uses ion-beam ablation and time-of-flight mass spectrometry to detect
up to 40 protein markers on formalin-fixed, paraffin-embedded (FFPE) tissue. Thus, it
provides deep data on cell characteristics and their localisation at a single-cell resolution
of around 250-400nm [12}|13]. Data collected on the TME, using e.g. the MIBIscope,
can be considered as marked spatial point patterns [14H16]. The cell locations can be
considered as points within the pattern, with cell phenotypes and/or protein markers
giving the “marks”. An example of such a point process generated from a tumor imaged
using MIBIscope is shown in the left hand panel of Fig

Methods developed to this point to study cellular interactions in the TME have
exploited cell neighborhood analysis in which the spatial relationship between a cell of
interest and its neighboring cells can reveal particular cell-cell interactions associated
with a disease state or changes associated with response to therapy; see e.g. [17].
Pairwise cell-to-cell distance calculations over iterations of randomized permutations has
also been used to identify relevant cell-cell interactions [18]. However, the substantial
number of cell types present in the TME leads to a very large number of potential
pairwise interactions creating a major challenge in finding interactions that may be
meaningful and statistically significant in predicting outcomes of interest. There have
been many investigations into applying spatial statistics methods to similar biological
data sets, e.g. [19], [20], and [21].

A common method of analysing spatial point patterns, such as those that arise in
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Fig 1. Sample point pattern and K function. A point pattern produced for a
tumor imaged using MIBIscope from a triple negative breast cancer patient with
multiple identified phenotypes (left) and the associated cross K function (black) for two
cell types in the image: tumor and monocytes/neutrophils (right). In the tumour, the z-
and y-axes represent the spatial dimensions while in the K function,the z-axis indicates
the radius of interest and the y-axis gives the value of the K function. The point
pattern contains 15 uniquely colored phenotypes, including tumor (red), NK (purple),
and monocytes/neutrophils (cyan). The cross-over K function has a red reference line
gives r? (red), associated with complete spatial randomness.

TME imaging, is to consider Ripley’s K function . The K function describes the
distribution of inter-point distances in a given point pattern, giving an indication as to
whether points in the pattern (e.g. cells) are clustered or dispersed with respect to one
another. The K function, along with other summary functions from spatial statistics,

has previously been employed in the analysis of the TME . An example of a K
function showing the relative distribution of a specific immune cell type around tumor
cells within a MIBIscope image from a triple negative breast cancer patient is shown in
the right hand panel of Fig|[l}

In this paper, we present a general framework for analyzing and identifying useful
spatial relationships in the TME through predicting an outcome of interest. The
method we propose uses a novel combination of spatial statistics and functional data
analysis, in conjunction with methods in ensemble machine learning. The application of
functional data analysis to spatial statistics is a recent development .

Our approach begins by producing K functions for the different cell-cell, (or
alternatively marker-marker), interactions within images. After performing dimension
reduction using functional principal components analysis , these data are combined

with non-functional patient meta-data, such as age or sex, and a modified random forest
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model is used to predict the patient outcome. Motivated by [37], in order to evaluate
the predictive power of the spatial interactions, “knock-off” point patterns that mimic
the spatial data in the TME are generated, via permutation, independently of the
responses. The importance of specific spatial interactions in predicting the response are
evaluated by comparison to the predictive power of the knock-off spatial patterns. This
approach overcomes the challenge of distinguishing important spatial interactions among
many potential interactions of interest, and for the generation of easy-to-interpret plots
showing which interactions are useful in predicting the response at a glance. Moreover,
it grants high power for even a relatively few number of cells due to the robustness of
the K functions, and high power for small sample sizes due to the knock-offs. Small
sample sizes are common in rare cancer analyses, but are of increasing interest |19].

In many analyses, a single distance of interest is considered while here we consider a
range of distances through K functions. [30] provides an approach for detecting
differences across multiple images between cell-cell interactions by comparing the
integrated difference between the empirical L function (a function derived from the K
function, see [38]) and the L function associated with complete spatial randomness.
However, this approach independently considers the interactions, while we wish to
consider all interactions in a single model. Additionally, a possible drawback of the
approach in [30] is that integration over the summary statistic may lose valuable
information relating to differences in the shape of functions (i.e. differently shaped L
functions may still have the same integral).

Some methods also consider only a single images or an equal number of images per
patient. However, our approach can be used to analyse data with multiple, possibly
differing, numbers of observations per patient. In that sense, it allows for the complete
use of the data, rather than removing data.

We apply the proposed methods to two MIBIscope data sets; a data set of triple
negative breast cancer (TNBC) patients, and a data set consisting of both lung
squamous cell carcinomas (LUSC) and lung adenocarcinomas (LUAD). Regarding the
TNBC data, our method was accurately able to identify clustered versus dispersed
tumors when compared to |12], and was additionally able to identify important cell
spatial interactions in making that determination. Our method also indicated that there

did not appear to be measurable differences in the spatial arrangement of tumor and
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immune cell types, as measured by K functions, between the LUSC and LUAD groups.

Whilst the methodology presented here is motivated by, and applied to, MIBIscope
data, it can be applied to similar data generated by other technologies, e.g. OPAL,
Phenocycler Fusion, Merscope, Xenium and Cosmx [39-45]. Furthermore, the
methodology can easily extend beyond two-dimensions to higher-dimensional images,

another area of active research [46].

The rest of the paper is organized as follows. In[Materials and methods] we give a

detailed description of the data we consider and the methods to analyze them, including
sub-sections on how we fit a modified random forest in this setting, and how we
evaluate the statistical significance and uncertainty in measuring the variable
importance of spatial interactions of cell types as encoded by K functions. We also

introduce the R package funkycells, an open-source implementation of our approach in

that section. [Simulation study| details the results of simulation experiments in which we

found that the proposed method performed well when applied to synthetic data built to

mimic the TNBC data. We report the results when this approach was applied to the

TNBC and LUSC vs. LUAD data sets in [Applications to MIBIscope datal Some

concluding remarks and directions for future work are collected in |Discussion

Materials and methods

The raw spatial data that we consider take the form of 2-dimensional point patterns, as

generated using MIBIscope. We denote the cell spatial data, as

C =[P,y PNy p=1,... Nyi=1,.... L, c=1,....nppt =1,..,T], (1)

c,t

where (xg)t’i), ygﬁ’i), an””) denotes the z and y coordinates of the ¢*® cell of type ¢, of

which there are T total types, for the i*" image of the pt* patient, al?? defines cell
attributes related to the c'® cell of type t (e.g. phenotype, antigen marker intensities,
etc.), and n, ; ; is the number of cells in image ¢ of patient p over all types, e.g.
phenotypes or proteins. The properties in aép " may simply give the cell’s phenotype

(and is therefore redundant due to the term t), or may be more general, such as a vector
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describing individual protein expression. For example, the vector could be composed of
binary indicators as to whether a protein is expressed or not. For notational clarity, and
since we only consider data consisting of cells and their associated phenotype, we drop
the a term throughout the paper. Fig|l| shows a point pattern for one tumor from the
TNBC data indicating several phenotypes, including tumor cells, monocytes and
neutrophils (Mono/Neu), and B cells [12].

Since the applicability of our method extends beyond this example, we designate
several general terms for use throughout the paper. We refer to point patterns such as
in Fig|l| as “images”. We interchangeably use the terms cell phenotype and cell type.
We also interchangeably use the terms cross-over K function and K function. We
assume a single response variable, Z;, for each of the N patients (e.g. tumor type,
response to therapy, etc.). The set of outcomes for the N patients is denoted
Z=(Zy,...,Zy). In the real data examples we consider below Z; is a binary response,
e.g. “compartmentalized” versus “mixed” tumors for the TNBC data, or LUSC versus
LUAD for the lung cancer data, in which case we can encode the outcomes as taking
the values 0 and 1. These methods may easily be adapted for more general class
responses, e.g. different types of tumors, or numeric responses, e.g. survival time.

In addition to the spatial data, we assume that we may have access to non-spatial
data on the patients. We refer to this data as patient “meta-data”, and we assume that
it takes the form M = (mj,...,my), where each m; is a vector of patient attributes,
for example age or sex.

With both the cell spatial data C and meta-data M, our goals are to (1) investigate
to what extent these data are useful in predicting the outcomes Z, and (2) to identify
which specific spatial relationships and/or components of the meta-data from the full
data set are useful in predicting Z. We deem data on a spatial relationship or
component of the meta-data “useful” if their importance in predicting the outcome
exceeds, to a statistically significant degree, that of similar variables that are known to
be unrelated to the outcome. For reference throughout the paper, a high-level schematic
of our proposed method is presented in Fig

Towards answering these questions, we build a model of the outcomes Z in terms of
the image spatial information C and meta-data M. In doing so, we must address how

we incorporate the complex image data into such a model. Motivated by the
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[Outcome Variable (Z)] ( Q

K Functions

Variable importance plot

Spatial Summaries (C)
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Plot indicating spatial-interactions
/ and/or meta-variables which are

significant in predicting the outcome Z
\ ) Cross-Validation

Permutation

Pt
Meta-variables (M)
Age Q !
Sex _‘H

Random Forest Model

Synthetic Variables

(Cl. M) i t
Independent, matched, " 0O0B (0.93), Guess (0.49), Bias (0.50)

synthetic variables for
evaluating predictive
power of actual data
via permutation.

Fig 2. Flow chart of model. When modeling using funkycells, there are several
major steps: organizing data, generating synthetic data, and modeling using random
forests. The spatial data is organized into functional summaries (K functions) that are
projected into finite dimensions (FPCA) and used with meta-variables to predict the
outcome variable. The spatial data and meta-variables are permuted to create synthetic
variables with similar properties but independent of the outcome. These synthetic
variables are then added to the model, and used to quantify the strength of the
relationships between the spatial and meta-data with the response. The model processes
the data, employing cross-validation and permutation to return a variable importance
plot (with predictive accuracy estimates) indicating spatial interactions and/or
meta-variables which are significant in predicting the outcome Z.

expectation that patient outcomes are influenced by the relative distribution of various
immune cells or protein markers around each other, we begin by computing spatial
“cross-over” K functions from the image data, which summarize the spatial distribution
of cells with respect to one another as in Fig[l}

We provide an open source implementation of our approach in R [47] at the site
github.com/jrvanderdoes/funkycells, in the package funkycells. This
implementation also includes the code and data used in the presented simulations and

data analyses.
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Summarizing the image data using K-functions

The cross-over K function for image 7 of person p and cell types ¢ and ¢’ is defined as

Kt(’i,l)( )= )\1,5/ E (Number of cells of type ¢’ within distance r of a cell of type t) ,
where E denotes mathematical expectation, the radius r ranges from 0 < r < R, with
the max radius R being a user specified parameter that we discuss below, and Ay gives
the density of cells of phenotype ' [14H16].

By examining this function for varying radii, we may infer how cell types are
distributed around each other. For example, if cell types are distributed around each
other entirely at random, then KEZ} )(r) is equal to the area of a circle of radius r, 772.
Regularity or dispersion of the cells around each other tends to reduce Kt(’; )(r) while
clustering tends to increase it. An example of a K function computed between the
tumor and monocytes/neutrophils phenotypes for a given tumor in the TNBC data set
is presented in Fig[I] which indicates a degree of dispersion with respect to monocytes
and neutrophils cells around tumor cells across r values compared to that expected for
cells distributed around Tumor cells with complete spatial randomness. Cross-over K
functions can be used to summarize all two-way interactions between cell phenotypes for
a given image.

In practice, estimation is based on an empirical average replacing the expectation.

The estimated cross-over K function for image i of person p is given by

Np,i,t Wp,it!

K0 = ST ST (il o 1 e <)
Pty c=1

c'=1

0 <r < R, where 1 (A) takes the value one if the condition A is satisfied, and is zero
otherwise, and |i| indicates the area of the image. When patients have multiple images,
we combine their cross-over K functions by computing a weighted average,

IP
ED(r) =3 "t g®D ), 0<r<R, 2)

t,t
’ i=1 Np,-t

with I, giving the number of images for a given patient p. In other words, the K
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functions from each image are weighted according to the prevalence of the cells of the
type under consideration. We note that if there is one image per patient (so that

I, =1), then Kt( t?( )= Kt([;’,l)( ), and further that the weights in Eq (2) vanish to zero
if the cell types t and ¢’ are missing in an image.

It is common when computing such K functions to correct them for what are
referred to as “edge effects”. Edge effects describe the issue that cells near the edge of
an image appear to have fewer cells around them when r extends beyond the nearest
boundary. One option is toroidal edge corrections as described in [48], which replicates
and reflects the image data occurring near the boundary. Another is isotropic edge
corrections which weights edge cells, see |[49H51]. We examined several methods and
found similar results. We use a standard isotropic edge correction in this paper. For a

single point x in some image I, then the isotropic edge correction weight is

2mr

efu,r) = clu,r)N I

where the denominator is the intersection of the circle ¢(u,r) with radius » and center w.

For discussions on approaches to edge corrections see [52] or [53].

In computing these K functions for each cell type, we can transform the spatial data
C into a collection of T2 different K functions for each patient,

{Kt@( ), t,t/ =1,...,T, 0 <r < R}. The K functions are then treated as functional
data objects; see e.g. [36]. Since even moderate values of T' lead to a large number of K
functions to consider, user input is often helpful in determining a smaller subset of
interactions (and hence K functions) of particular interest for analysis.

Although informative, these K functions are unwieldy to directly use in a model,
and we further transform the functions using the dimension reduction technique of
functional principal component analysis (FPCA). FPCA is a common technique in
functional data analysis that decomposes the leading sources of variability among the
curves Kt(lz?( ) into a set of finite-dimensional, approximately uncorrelated principal
components (PCs); see [36]. To do so, for each pair of cell types ¢ and ', we define the

empirical covariance kernel as

Ct t’ T, 8 ﬁ:[ tt/ Kt t’( )} |:Kt(pt?( ) Kt,t’(s)} ’ (3)
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o N
where K 4/(r) = % >4 Kt(’;?(r)
The eigenvalues and eigenfunctions of the kernel CA't,t/ are then computed to satisfy

the functional equation

R
Ai,t,t’ﬁbi,t,t/(r) :/ Ct,t/(rvs)¢i,t,t’(5)d5~
0

The K function Kt(zz) is summarized using the d coefficients (PCs)

i,
R R
kY = ( /0 K& (1)1 (r)dr, ... /0 Kt(f;)(rmd,t,t/(r)dr) . (4)

The coefficients comprising k;t(ﬁ’,d) describe the projection of the K function Kt(ﬁ)
onto the finite dimensional linear space spanned by ¢1 ¢+, ..., @4+, which are optimal
in terms of capturing the variability among the curves Kt()’;), p=1,...,N, with a
d-dimensional summary. We note the amount of captured variability can be computed
to give estimates for the effectiveness of the components in explaining the functions, and
further used to determine the number of required components to achieve some level of
fit. Another advantage of summarizing the curves in this way is that, when differences
in the K functions across the population are present due to differences in the outcome(s)
of interest, the PCs are expected to capture these differences.

As such, we summarize the spatial data using the principal components
C' = {kt(f;’,d)7p =1,...,N,t,t' =1,...,T], which we then incorporate with the

meta-data M into a model for Z of the form
Z = f(C',M). (5)

Since our ultimate goal includes evaluating which spatial interactions or elements of
the meta-data are useful in predicting the outcomes, we use a random forest model for
f. Random forest models are tree-based ensemble machine learning methods in which
decision trees are built, after sampling with replacement the patient data and discarding
some covariates at random, by sequentially splitting on variables to minimize a metric
for predicting Z [54]. The main reasons for the sampling procedures for the patient data

and covariates in building each tree is to build nearly independent trees and also
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address overfitting, common in many machine learning applications. Data missing from
one tree is likely present in another tree. When the trees are combined to create a
forest, increased statistical power is observed. When outcomes in Z take the values 0 or

1, as in the TNBC data, majority voting is used for the model estimates.

Variable importance

Random forest models are useful in achieving our goals since they have strong predictive
power while still allowing for a quantification of the usefulness of individual covariates
in predicting the response through various “variable importance” measures. However,
there are several challenges to overcome in calculating and quantifying the significance
of such importance measures in this setting. One is that the variables in C’ are
d-dimensional proxies of the information derived from the spatial image data. When
multiple components are used to describe a single function, i.e. d > 1, we must take into
account that each individual component in C’ describes only a portion of the associated
K function. Therefore, the importance of each component must be combined to
describe the importance of each spatial interaction, and further this importance must be
made comparable to that of the meta-variables. Also, we wish to identify spatial
interactions and meta-variables that are of “significant importance”, which we take to
mean that their importance exceeds to a statistically significant degree that of similar
variables that are unrelated to the response. This task is complicated by the fact that
we are often faced with such a large number of spatial interactions. Given the large
number of variables, we expect some to have anomalously large variable importance
even when they are independent from the response.

Before proceeding we now describe the computation of variable importance metrics
for random forest models, some of which were introduced in the seminal paper on
random forests [54]. There are multiple methods for calculating variable importance
values, such as permuting variables in data and comparing the difference in loss metrics,
or measuring node purity. We tested several methods and found similar results
regardless of the variable importance metric calculation. We implement a node purity
metric, sometimes called recursive partitioning, as described in [55] and [56]. Our choice

is due to simulation and computation considerations, but we encourage future research
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on the effect of different metric calculations. 246
In the following explanations for node purity variable importance, it is perhaps

useful to imagine the scenario where the outcomes Z; take the values 0 and 1. When

each constituent decision tree is formed in producing the random forest model, nodes

are split based on some impurity metric relating to the outcomes Z; |55]. For a given

node, A, node impurity is defined as

I(A) = g(pia),
€0
where g is an “impurity” function, O is the set of possible outcomes, e.g. 0 or 1, and
Di,A is the proportion of data in A which belong to outcome class i of Z, i.e. 0 or 1.
Typical choices for g are the information index (g(p) = —plog(p)) or the Gini index
(9(p) = p(1 —p)). At a given stage of the decision tree, the splitting variable and

location is chosen to maximize the impurity reduction
ALy =p(A)I(A) — p(AL)I(AL) — p(Ar)I(AR)

where Aj, and Apg are respectively the left and right resulting nodes and p(A) is the
probability of A (for future observations) [56]. That is,
p(A) = S, mpla € Alr(@) = i)/p(x € A) = w5 ™) ) S (nfG™ ni™)

for C classes, prior probabilities 7;, the classes assigned C', and the number of

(class)
i

(class)

observations n (that are class ¢) and n; , ~ (that are class ¢ in A). A variable v’s

importance in a single tree can be computed as

ZA117

i€ P,

where P, is the set of primary splits for (i.e. nodes that split on) the variable. 247
Variable importance (for the entire forest) can similarly be calculated by considering
nodes across all decision trees, typically standardized by the number of trees fit or the

number of trees where the split was present,

VI(v) ! > AL, .

- |[Number of Trees| :
1€EP,
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Additional modifications, such as the use of surrogates, can also be added to improve

variable importance metrics. The technical details are left to more complete works, e.g.

see [55]. The principle behind surrogate splits is that at each split a selection for the
splitting variable must be made, even if the selection is between nearly identical
variables. Traditional splitting would select only one, giving it a measure of variable
importance, and ignore any other options. In this way, traditional splitting can result in
masked variables and inaccurate representations of variable importances. A model using
surrogate splits revisits each split after selecting the “primary” splitting variable and
considers alternative, “secondary” splitting variables, mitigating the masking behavior.

Surrogate splits also take into account that the variables used after the primary split
are, to some degree, lower quality and weight the splits accordingly. Weighting is
performed according to a split’s impurity reduction, and varies slightly based on
classification or regression problems [55]. Moreover, these surrogates allow for use of
another split if an observation is missing data for the primary split.

Consider that a naive choice for any variable missing data used in the primary split
would be to go with the majority split. In order to evaluate potential splits, they should
perform better than this naive approach. In particular secondary splits should
outperform this approach on missing data, and perhaps even split nearly as good as the
primary split on all data. Consequently, one potential weighting scheme for node A and

potential surrogate v is

Cy — Cmayj
wU(A) " (node)
U\ — Cmayj

where ¢, is the number of observations correctly classified due to splitting by variable v,

Cmaj is the number of observations correct by naively selecting the majority class, and
nS‘Ode) is the total number of observations in the node.
A typical variable may appear many times in a tree, both as a primary and

surrogate splitting variable. Therefore, the overall measure of variable importance for a

given variable is a combination of the splitting importances

I Al Al
Vi) = |Number of Trees| <Z + Z s ) (6)

s€ESy

where for variable v, P, and S, respectively indicate the set of primary and surrogate
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splits.

Variable importance comparison

Although the computed variable importance is a helpful summary statistic for ordering
variables in terms of their expected usefulness in predicting the outcome, these values
cannot be easily compared to determine which variables are significantly more useful
than others, including those that are known to be independent of the response.
Furthermore, after combining variable importance values from spatial variables in C’,
these values must be compared with those from variables in M. Yet since each spatial
interaction is characterized by d, which is typically larger than one, principal
components, we might expect for example that the variable importance of a set of such
components will exceed that of any meta-variable when both are independent of the
response. Indeed, in totally random cases, with similar distributions, the spatial
interaction term would often be selected approximately d times more than a
meta-variable.

To allow for such comparisons, we standardize the variable importance metrics by
adding matched synthetic variables. These synthetic variables are generated by
permuting the true data in order to maintain identical distributions, but are
independent from the outcome. We denote the synthetic spatial components as C’, and
the synthetic meta-variables M.

JA random forest model is fit using both the true and synthetic variables,
Z=f(C'M,C,,M,). (7)

To build C’, for each b iteration, 1 < b < B, where we take B = 100, a random
functional variable is selected. The d principal components associated with each patient

are permuted across patients, resulting in assignment of the d components to a random

patient and hence outcome. Note that in doing so, the d components are kept together.

One could use B = 100 synthetic variables for each functional variable. However,
investigations into the model through extensive simulations has shown that a single
group of B synthetics is generally sufficient for the K functions, and additional

synthetic K variables do not improve power beyond this.
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Although one synthetic group for meta-variables could be used, previous work has 20
shown a tendency for random forests to favor continuous predictors over discrete 208
predictors [57]. The model accounts for this tendency through unique synthetic 209
meta-variable groups. Therefore, M is created by permuting each meta-variable across 3w
patients B times. 301

We use these synthetic variables, C/, and My, to standardize the variable importance s
values of the true data and build noise cut-offs. In doing so we are able to infer which 0

spatial interactions and meta-variables lead to significant improvements in the model 304

pccuracy. The details of this are left to [Comparing variable importance of spatial [ 305
nteractions and meta-variables to noisel 306

Due to the innate randomness in the models, the variable importance values 307
fluctuate between runs and model fits of the random forests. To quantify this, we 308
employ cross-validation (CV). CV begins by splitting the data into F' roughly 309

equal-sized parts, sometimes called folds. On each iteration one of these parts is left out, 3w
and the remaining data are used to fit the model. The fluctuating variable importance su
values between runs can be used to estimate the variability. Moreover, the fitted model s
can be used to predict the outcomes in the left out part/fold in order to evaluate the 313
predictive power of the model. 314
Let the data be randomly assigned to the F' folds such that an indexing function

k:{l,--- N} {1,---, F} indicates the partition to which each p*" patient’s data are
allocated. Denote the fitted model, using the true variables as in model @, with the

5(=7)

j* fold removed Z' ~(C’, C,, M, M;). The estimated CV variable importance for each

functional variable ¢ (in both C" and C), which are described by the previously

d)

discussed d dimensional principal components k£ , is computed as

’1:| \

- FE VI

where VI(-CV)(kgi)) denotes the variable importance estimate from the j** fold-removed s
model Z( J)(C/7 C’, M, M) for component ky), which is the i*" component relating to s
the ¢ function. 317

The estimated CV variable importance effects for a meta-variable m (in M and Mj)
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are similarly computed as the mean variable importance metric,
1 E
c cv
VIOV (m) = = VI (m),
j=1

(cv)
J

such that VI (m) denotes the variable importance estimate from the model 318

2(_J)(C’, C.,M, M) for meta-variable m. 310
We quantify the uncertainty in the estimate of the variable importance measure for 3
each variable v, both functional and meta, by calculating its standard deviation across s

the I folds. 32

1

F 2
SD(v) = || 77 > (VI§CV>(U) —v1<CV)(u)) . 8)

This uncertainty estimate is used with variable importance estimates created from
the mean of non-cross-validated models. Let VI,;(x) indicate the variable importance
metric from model , iterate j (where we take 1 < j < F for ease, but each run is on

the full data set), then the estimates are computed

j=114i=1
for functional variables, ¢, and
1 F
Vitm) = 3 Vi m).
Jj=1
for meta-variables, m. 23
Comparing variable importance of spatial interactions and 24
meta-variables to noise 525

As mentioned above, due to the use of d > 1 principal component summaries, we expect
that for spatial interactions and meta variables that are independent of the outcome the
variable importance of the spatial interactions will typically be larger. As such we use
the estimated variable importance values for the synthetic variables to calibrate the

variable importance between the spatial interactions and meta-variables. We compute

for each of the spatial and meta-variables, respectively ¢ and m, the empirical «

July 19, 2023 17


https://doi.org/10.1101/2023.07.18.549619
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.18.549619; this version posted July 19, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

quantiles of the variable importance values of the synthetic variables. If C indicates
the set of synthetic functions, i.e. the combined synthetic components, and M ™)

indicates the set of synthetic meta-variables matched to meta-variable m, then we set

1
Qc =infq : B Z 1(VI(csyn) < q) > a p, and
CsynEc(S)

. 1
QM,m = inf q : E Z ]I(VI(msyn) < Q) >«
msyneM(s,m)
Let Qur = (@ar15- -+, Qs ary) where [M| is the total number of meta-variables. Below
we always set @« = 0.95. Letting Qnoise = max{Qc, Q,,}, we calibrate the variable
importance of each true variable computed from model that includes synthetic

variables, denoted Vtrue, (@) 88

Qnoise
Utrue, € C) + ZmeM QM,m]l(Utrue, €em

Vladj (Utrue,) = QC]I( )VI(vtrue,> . (9)

The cross-validated standard deviations of the variable importance values are
similarly adjusted, but based on the model that does not include the synthetic

variables, denoted Vtrue, ) a8

_ Qnoiso
QCIL(Utrue, € C) + ZmGM QM,m]l(UtrueA, cm

SDad; (Vtrue, @) ) SD (Vgrue, @) -
(10)
These adjusted variable importance values may then be compared to Qpojse-
Estimates that go below the cutoff Qyise have variable importance values that appear
to show no statistically significant relationship with the outcome. Plotting Qpoise, the
adjusted variable importance values, VIgg;(v), along with their adjusted standard
deviations gives a simple way to evaluate at a glance which variables appear to be
important in predicting the response. An example plot of this is shown in the right
hand panel of Fig[2] where Qpoise is plotted as a vertical, red-dotted line, and the
variable importance values are plotted along with their adjusted standard deviations.
While Qnoise estimates the a percentile of the variable importance values

corresponding to outcomes that are unrelated the outcome, the variable importance

values themselves can be distorted due to overfitting. Overfitting occurs when the
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model fits well to the observed data but does not generalize well to unobserved data. As
more variables are observed, it is increasingly likely to find a variable that seems to have
high importance, despite no true relationship to the response.

To account for this potential effect, we employ an additional variable permutation.
In this step, we permute the true variables in addition to the synthetic variables, H
times. We take H = 100 below. In each forest, the synthetic variables are again used to
align the variables (using the previously computed Qnoise), but the remaining, aligned
“true” variables do not have any relation to the outcome. In each of these forests based
on variables that are independent from the response, 1 < b < B, the resulting, adjusted

variable importance estimates are ordered,
Vigjbe = {fth largest adjusted variable importance value in forest b},

ensuring VIeg;p1 > Vlagjp2 > -+ > Vlggjp,v where V' denotes the total number of
variables between the spatial interactions, C, and the meta-variables, M. When the
number of variables V' is large, especially in relation to the number of patients N, we
might expect even when the spatial variables and meta-variables are independent of Z
that the largest variable importance values will (far) exceed Qnoise. As such, we also
compute the o quantile of the variable importance values in each ordered position ¢ for

the random forests fit to the permuted data,

B
. 1
Qint,e = Inf {q ‘5 > A(Vlagipne < q) > a} : (11)

b=1

We let Qi = (Qint1,- - - > Qint,v), and coin it the interpolation cutoff.

We include Q;,; with Qnoeise in order to quantify overfitting and thereby evaluate the
significance of values of the variable importance values VI,g;(v); this is the
orange-dotted line in the right hand panel of Fig

In summary, variables with adjusted importance values, VI,g;(v), that are larger
than both Qnoise and Qing ¢ exhibit importance that significantly exceeds (at the 1 — «
level) what we might expect from similar variables that are unrelated to the outcome.
This holds taking into account the inflation in the variable importance values that arise

from fitting the random forest to a large number of spatial interactions and
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meta-variables.

Predictive accuracy estimates

In weighing the significance of the computed variable importance values, one should also
consider the overall predictive accuracy of the final model for the outcomes. For
example, a variable may have a large variable importance value within a model that
does not lead to improved predictions of the outcome over naive models. Therefore,
evaluating the importance of a variable in the context of a random forest model requires
some consideration for model accuracy.

We consider three such estimates of the overall predictive accuracy of the model:
out-of-bag accuracy (OOB), naive guess (GUESS), and biased guess (BIAS). OOB
estimates how well the model works on unseen data, and a comparison of this estimate
to GUESS or BIAS can indicate if the model captures additional information beyond
simplistic estimates.

OOB estimates how well the model would perform on new data and is computed by

predicting the data left out during each CV iteration,
1 & 5
00B = — " Diff (ZH(,,)) (me»(p))’ M(w(p))) Zp) , (12)
p=1

for the N patients and where Diff indicates a difference function. For classification
problems such as with the TNBC or LUSC versus LUAD data, this may be defined
using an indicator function,

Diff(z,y) = L(x =y).

GUESS is computed by randomly guessing the outcome based on the outcome’s
observed frequency in the original data. To account for the natural variability in this

estimate, we use the mean estimate of G trials,
T &
GUESS = ; v p; Diff (MNDg, 2,,) , (13)

where MND is a multinomial distribution with probability of each outcome based on its

observed frequency. For example, in the TNBC data in which we wish to predict the
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age| ['M

AA

sex

mom g g g g e

OOB (0.93), Guess (0.49), Bias (0.50)
Fig 3. Sample variance importance plot. This sample variable importance plot
uses simulated data with a binary outcome, two cell types, and two meta-variables. The
data was simulated with significant differences between the outcomes for the in B_B,
A_B spatial interactions, and age meta-variable, but no significant difference across sex
and the A_A spatial interaction.

“compartmentalised” versus “mixed” result with a proportion p of “compartmentalised”
patients, this amounts to computing the rate at which we would accurately guess the
outcome by flipping a coin independently for each patient with probability p of heads,
and guessing the outcome is “compartmentalised” for heads, and is “mixed” otherwise.
For a random patient drawn from this two-outcome data, this approach will have a
success probability of p? + (1 — p)2. We take G' = 500 below.

BIAS is built by always guessing the most likely outcome. For classification problems,

the most likely outcome can naturally be defined by the data mode. We compute
1
BIAS = — ,;1 Diff (mode(Z) — 2,)) . (14)

For two outcome data sets like the TNBC or lung cancer examples, this will have
success probability for a random patient drawn from the sample of max{p,1 — p}.

Similar naive estimates can be derived for regression problems.

Variable importance plot

The variable importance plot summarizes the variable importance values of both the

spatial interactions and meta-variables. It shows how they compare to what we might

July 19, 2023

21/39

383

384

385

386

387

388

389

390

391

392

393

394

395

396


https://doi.org/10.1101/2023.07.18.549619
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.18.549619; this version posted July 19, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

expect from similar noise variables which are unrelated to the outcomes, and also
summarizes the overall efficacy in predicting the outcomes using the random forest
model. Fig|3|is the variable importance plot created from simulated data with two cell
types, A and B, and two meta-variables with differing distributions, age and sezx.
Variables are displayed according to their adjusted, standardized (0, 1) variable
importance estimates (black dots), with the largest values being on top.

The plot visualizes uncertainty in computing the VIs through (gray) intervals
representing one standard deviation on either side of the estimate. These intervals are
the adjusted standard deviations estimated through CV, as given in Eq .

The noise cutoff Qneise as well as the interpolation cutoff Q,,, at levels a = 95% are
also shown. Fig [3] presents the noise cutoff as a red, dotted, vertical line and the
interpolation cutoff as a orange, dashed, curved line.

Estimates for predictive accuracy are given at the bottom of the figure. The
estimates include OOB, GUESS, and BIAS, respectively defined in Eqs (12)), (I3), and
(@

Further interpretation of the variable importance plots are given in the sections

[Simulation study| and [Applications to MIBIscope datal These sections consider

simulations for which there is a known solution and real data examples that can be

interpreted.

Results

In order to obtain some confidence for the fit of the proposed model on real data, in this

section we first present simulations then address the patterns of interest.

Simulation study

We here demonstrate our methodology via simulations of spatial point patterns. We
produced simulated point patterns with properties, such as cell counts, numbers of
phenotypes, etc., similar to that of the TNBC data set in [12]. The real data motivating
this simulation experiment are analysed in the following section.

We considered simulated data from 34 “patients”. These patients were defined as

being negative or positive for a binary outcome Z (note that positive/negative here
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refers to the arbitrary outcome Z, and is not related to hormone receptor status as it
does in the term TNBC). We let there be 17 positive and 17 negative patients and
simulate one image per patient. Each image consists of a point pattern with 16 cell

phenotypes. Patients were also ascribed a single meta-variable, which we call age. We

developed a random forest model as described in [Materials and methods| to predict

patient outcome using interactions between the 16 different cell types in the images and
the additional meta-variable.

We considered two main settings: (1) a simulation with only non-informative
variable-outcome relations and (2) a simulation with both informative and
non-informative variable-outcome relations.

To generate the images, the cells were placed according to multiple, potentially
nested, (modified) Thomas processes, which are constructed iteratively |58]. For a given
image, a Thomas process first places cells (of a given type, say cl) at random, according
to a Poisson process. The Poisson process selects the number of cells to place, n.1,
randomly based on a Poisson distribution, where the distributional parameter is user
selected. For our simulation study, these are selected to correspond to the mean number
of cells in the TNBC dataset. We standardize the images to unit length in both the =
and y directions.

Around each cell ¢q 01, a € {1...mc1}, cells of a different type, say ¢2 may be placed.
Again the number of cells of ¢2 are randomly selected based on a Poisson distribution
with a user selected parameter. The coordinates of the ¢2 cells are placed according to
another distribution in such a way that they either cluster or disperse around the cl
cells. In our experiments, a bivariate Normal distribution is used to place the ¢2 points,
so that the mean coincides with the location of a randomly selected c1 cell, and the
covariance matrix is a scalar multiple o2 times the identity matrix. By varying o2 in
the outcome groups, clustering or repulsion in the interactions between the cells can be
introduced.

Additional cells can be simulated around the points of ¢l or ¢2, and so on. Moreover,

the original cells can be removed such that the new cells exhibit hidden or self-clustering.

Compilations of such placement patterns, with use of potentially different distributions,
can achieve images with varying degrees of clustering or regularity.

In our simulations, 16 cells were iteratively placed according to this modified
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Fig 4. Comparison of TNBC and simulated data. An image from TNBC data
(left) and simulated data (right). Different colors indicate one of the 16 different cell
phenotypes.

Thomas pattern. Some cells were placed completely at random (cl, ¢4, ¢5, ¢6, 7, ¢13,
cl4, c15), some were placed exhibiting self-clustering (¢8, ¢9, c10, ¢11, ¢12), and some
were placed exhibiting clustering around ¢l (¢2, €3, ¢16). In what we call the
“no-relation” simulation, the cells locations were simulated in the same way for both the
positive and negative patients. However in the “relation” simulation, ¢2 exhibited
increased clustering around cl while ¢3 exhibited repulsion from cl, for positive
outcomes. Similar to the true data, some cell types were present hundreds of times per
image while others only rarely appeared. Each of the synthetic cell types were generated
to mimic behaviors and frequencies seen in the TNBC data. Fig[d] presents two images,
an image from the TNBC data set and a simulated image.

In this way a single image for each of the 17 positive and 17 negative patients were
simulated. The meta-variable age was simulated as a Normal random variable with unit
variance. While in the no-relation case the mean was a constant 25 for both outcomes,
in the relation-case the mean of age was set to be 25 for negative outcome patients, and
27 for positive outcome patients, creating a useful, though imperfect, classifier.
Moreover, in the relation-case, 2 of the 17 positive patients were given no-relation to the
outcome as additional “noisy” images.

When modeling both cases, there were several tuning parameters selected. We used
the standard choices of 500 trees for each random forest, 10 folds in cross-validation,

and a standard significance level of o = 0.05. We used 100 interactions for the

July 19, 2023

2439

458

460

461

462

463

464

465

467

468

469

470

471

472

473

474

476

477


https://doi.org/10.1101/2023.07.18.549619
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.18.549619; this version posted July 19, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

c10_c15
cl_c13
c5_c13
c3_c10
c8_c8
c8_c10
c9_c13
cl12_c16
c13_c13

OOB (0.42), Guess (0.50), Bias (0.50) OOB (0.42), Guess (0.50), Bias (0.50)

Fig 5. No relationship simulation. Simulation of 16 cell types for 34 patients with
meta-variable age. The figure on the left gives the variable importance values for all
variables while the one on the right shows only the top 25. All variables were generated
with no-relationship to the outcome.

thegesgaty

permuted random forest in creation of the interpolation cut-off. In (unreported)
numerical investigations of these values we saw robustness in the results for these
choices. Creation of the K functions also required selection of the maximum radius, R.
Although we investigated the effect of the choice, we saw little variation in the results
and used a traditionally recommended 25% of the side length of the image, along with
the previously discussed isotropic edge corrections for the simulations. Moreover, the K
functions were summarized using 3 principal components, which were selected to match
the TNBC analysis. TNBC uses 3 components to explain at least 95% of the total
variance explanation for each K function.

Fig |5| shows representative variable importance for all variables (left) and the top 25
(right) in the “no-relation” case. One may see from the plot that some variable
importance estimates exceeded the red noise cutoff, but they all were observed to be
below the orange interpolation cutoff. This may be interpreted that the observed
variable importance values did not exceed, to a significant degree, what we would expect
to see from similar variables that are known to be independent of the response.
Moreover, the prediction accuracy estimate (OOB) indicates the model performs
similarly to a naive guessing approach. Taken together, the plot indicates that none of
the spatial interactions appeared to be important in predicting the outcome, as was

expected in this case.

On the other hand, Fig[6] shows a representative variable importance plot computed

July 19, 2023

25 B9

479

480

482

483

485

486

487

488

489

490

491

492

493

494

495

496


https://doi.org/10.1101/2023.07.18.549619
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.18.549619; this version posted July 19, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

3]

w

Inl

=
Lo dnguanse = = & ®
Fadans gy

] . c11_¢c16
. cZ_cd
. c8_cl12
. ¢5_¢10
cl_c4

-
o
ol
o
(e
Al L RS R )

" 0OB (0.88), Guess (0.50), Bias (0.50) OOB (0.88), Guess (0.50), Bias (0.50)

Fig 6. Relationship simulation. Simulation of 16 cell types for 34 patients with
meta-variable age. All variable importance values (left) and top 25 (right) are shown.
Most cell types were generated with no relationship to the outcome. However, age,
cl_¢2, and ¢l_¢3 were designed to have a relationship with the outcome (which naturally
means ¢2_c¢2 and ¢2_¢3 would also have relationships to the outcomes). These variables

are seen with significantly larger variable importance values.

from a single simulation run in the “relation” simulation. All variables are shown in the

left hand panel, and only top 25 are shown in the right panel. Although many variables

are still below the noise and interpolation cutoffs, the known related variables are found

to have a significant relationship with the outcome variable. Moreover, the OOB

estimate far exceeds that of the GUESS or BIAS estimates. This plot indicates that

interactions between the cl, ¢2, ¢3 cell types, and the age variable, appeared to be

useful, to a statistically significant degree, in predicting the outcome, once again

as

expected. We note that since ¢2 and ¢3 cells are distributed around cl cells, any change

in these distributions will necessarily lead to differences in the cross K functions

between these two cell types as well, as observed.

In order to verify that each of the orange and red lines appeared to be appropriately

calibrated, we performed an additional simulation experiment. We considered two cases

(1) with only 4 cell types and (2) with 16 cell types. Each cell type other than cells ¢l

and 2 are generated such that they have no relationship to outcome. We modify the

clustering of ¢2 around cl in the positive group, and examine the rate at which the

variable importance estimated for the c¢1_c2 spatial interaction exceeded the various

cutoffs (red/orange lines). By changing the standard deviation in the Thomas process

for placing ¢2 points around cl points, we were able to investigate whether the approach
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Fig 7. Power curves. Power curves showing the empirical rate, from 100 simulations
in each setting, that the variable importance for the spatial interaction cl_c2 exceeded
the 95% noise cutoff, interpolation cut off and both the noise and interpolation cutoff.
The left image is based on spatial data with only 4 cell types and the right is based on
16 cell types. Colors match the variable importance plot when possible and indicate the
cutoff method: above both cutoffs (teal), above the curved interpolation cutoff (orange),
and straight noise cutoff (red).

is able to detect the presence of a relationship when the cells either cluster or are more
dispersed across the binary outcomes. The resulting power curves, based on 100
simulations for each setting, are shown in Fig[7] These show the rate at which the
variable importance estimates exceed the 95% noise cutoff, interpolation cutoff, both
the noise and interpolation cutoffs, and the largest interpolation cutoff among all
variables. In reference to Fig[7] the standard deviation in the Thomas process relating
cl and c2 takes the value of approximately 0.025 in the “no relation” case. As such, for
this value it is desired that the noise and interpolation cutoffs are exceeded no more
than o = 0.05 proportion of the time. Otherwise, detecting that standard deviation
values smaller/larger than 0.025 lead to increased/reduced clustering of ¢1_¢2 in the
positive groups is desired.

We saw that each cutoff appeared to have good power to detect clustering or
dispersion relationships. The noise cutoff was well sized, and the interpolation bound
was slightly oversized. We saw though that comparing to both the noise and
interpolation cutoffs (red and orange lines) yielded a slightly under sized cutoff with

good power.
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Applications to MIBlIscope data

In this section we present two applications of the proposed methods to MIBIscope data
sets. The first investigates known clusters in tumors related to triple negative breast
cancer tumours, while the second investigates unknown relations in tumors related to

lung cancer.

Triple negative breast cancer

We investigate the TNBC data set in [12]. [12] employ a mixing score to categorise
tumors based on their TME. The mixing score they use was defined as the proportion of
immune cells touching tumor cells, and was calculated as the number of immune-tumor
interactions divided by the number of immune-immune interactions for an image. They
separate tumors into “compartmentalised” and “mixed” groups (and a “cold” group
that we ignore), such that compartmentalised tumors tend to have tumor cells
aggregated together with immune cells located around or away from the tumor cells,
and mixed tumors tend to have tumor cells and immune cells mixed together. This
makes a useful test data set on which to employ our method, as it provides two tumor
groups that explicitly have different TMEs. The data set contains 33 patients with a
single image per patient, 18 mixed tumors and 15 compartmentalised tumors. We define
the outcome Z as 0 for mixed and 1 for compartmentalised, and we wish to predict the
outcome using interactions between 16 cell phenotypes in the images and an additional
meta-variable, age.

One tuning parameter with K functions is the maximum radius R. For this data we
investigated using several options—25, 50, 100, 500, and 1000 micrometers. In all cases
the conclusions were comparable, illustrating a robustness to the choice. The only
(expected) difference is that as R increases, additional principle components, d, are
required to capture the variations in the functions. With this observation and domain
knowledge, K functions up to a maximum radius of 50 micrometers were used. The
results of this analysis are shown in Fig[§] As expected, many interactions are shown to
be non-significant. However, there are a reasonable number above both cutoffs and the
predictive accuracy estimates agree that there are some important relationships in the

data. Specifically, tumor cell-tumor cell interactions came as the top interaction,
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Fig 8. TNBC variable importance. Variable importance plot and random forest
model summary for predicting “compartmentalized” versus “mixed” tumor types with
the TNBC data. The OOB far exceeds those of naive models, and many of the spatial
interactions between tumor cells and immune cell populations exhibited significant
variable importance values.
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consistent with the characteristics of the “compartimentalised” tumors where little
immune cells infiltrate the tumors and tumor cells are densely packed.

Although this analysis can indicate important relationships, it does not quantify the
type of differences. While meta-variables can be easily compared using traditional
statistical methods, the K functions are more difficult to analyze. To this end, we can
also consider plots of the K functions. Fig[J] examines the Tumor_Tumor interaction,
which is found to be significant, and the CD4T_Endothelial interaction, which was
found to be insignificant. The significant K functions seem to be well separable and
smooth (a property indicative of many cells being present in each image), while the
insignificant K functions are not easily separable and have high variability in individual

K functions of the same group.

Lung adenocarcinoma versus lung squamous cell carcinoma

We also applied our approach to attempt to predict different pathological subtypes of
non-small cell lung cancer. In this section, we aim to measure to what degree the TME
of two of the most common subtypes of lung cancer, LUAD and LUSC can be
differentiated using the spatial relationships between phenotyped cells as characterised
by K functions. Our dataset contained 44 LUAD and 20 LUSC samples stained with

antibodies against 35 proteins to enable the phenotyping of tumor cells, fibroblasts, and
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Fig 9. Example TNBC K functions. The K functions from the different outcomes

compared. In both plots, the z-axis is radial distance in micrometers and the y-axis is
the value of the K function. The light lines are the K functions for each patient, while
the bold line indicates the average. In the figures, red indicates the mixed tumors while
blue indicates the compartmentalized tumors. The black dashed line indicates the curve
of a totally spatially random process for reference. The left figure is the Tumor_Tumor
interaction, which was found to have significant differences in the outcomes and the
right figure is the CD4T _Endothelial interaction, which was found have no significant
differences between the outcomes. As expected, the compartmentalized group indicates
increased clustering compared to the mixed group in Tumor_Tumor cells while the
CD4T _Endothelial interaction shows no clear differences and varying K function

patterns even within outcome groups.
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Fig 10.
forest model summary for predicting LUAD versus LUSC tumor types. The OOB is
similar to a naive model, and none of the measured variable importance value were
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The variable importance plot and model summary when using our method to predict
LUAD versus LUSC are shown in Fig The results suggest that no spatial
interactions as encoded by the K functions are significantly useful in distinguishing
LUAD versus LUSC. The OOB accuracy was observed to be on-par with a naive
method, and none of the variable importance measurements exceeded the 95% quantile
of what we would expect from independent point patterns. This indicates our method
using homogeneous K functions applied to these specific cell phenotypes is unable to
differentiate between the TME of LUAD and LUSC cancer types, and studying the data
with additional cell subsets and/or through other summary functions or techniques may

be of value.

Discussion

In this paper, we present a novel method for the analysis of data-rich TME spatial data.

We consider the case in which we compare TME and meta data or clinical data from
two different patient groups, and develop a model to identify significant differences
between these groups in the distribution of cell phenotypes, protein antigens, or a
mixture thereof. In addition, the model aims to predict which group a new patient is in
using their TME and meta data. Our model employs a combination of spatial statistics
and functional data analysis and is applicable to marked point processes in general.
Benefits of the model include general applicability, with few tuning parameters, and
easily visualised and interpreted output. We find our model to be robust to the choice
of the tuning parameters. The model demonstrates a powerful ability to identify
important variables while maintaining good predictive power.

We evaluate our approach on simulated data, demonstrating the effectiveness of our
method for marked spatial point patterns with known interactions. Our approach is
then applied to TNBC and lung cancer data obtained from multiplexed ion beam
imaging. For the TNBC data, we compare two groups of tumors that are separated into
“compartmentalised” and “mixed” groups based on the degree of tumor-immune cell
interactions. This separation of tumors gives two groups with explicit differences in
their TMESs, making a useful data set for the demonstration of our model. The model

demonstrates good predictive accuracy, and identifies expected specific cell phenotypes
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relationships, and interactions of interest. The lung cancer data shows our model can
also detect lack of differences in cell phenotypes relationships.

Throughout this paper we have assumed homogeneity of the underlying spatial point
processes in defining the K functions used in the model. Spatial homogeneity is defined
such that the intensity of a given mark is independent of spatial location [14-16].
Whilst such an assumption may be reasonable in some cases, given the complexity of
the TME, homogeneity may not always apply. We note, however, that since our
approach compares K functions between different groups, rather than against the
theoretical K functions associated with complete spatial randomness (as is typical in
other circumstances), the lack of underlying spatial homogeneity in the TME for a data
set may not be overly problematic. Statistical tests for homogeneity exist |1416].
Inhomogenous K functions can be used in an attempt to mitigate the issue of
inhomogeneity [14H16L[59]. Regardless of how K functions are defined they are amenable
to being used in our methodology. Furthermore, whilst we have focused throughout this
paper on K functions, we note that the methods presented here can be applied to any
summary functions from spatial statistics, or indeed any functions in general. See, for
example, suggestions in [24}/60}/61].

In addition, we note that a&” D in Eq , may consist of the raw measured protein
expression level for each protein, and may also include other cell information (e.g. cell
size). Our approach could potentially be adapted for analyzing raw protein expression
levels via the use of mark-weighted K functions |14162]. Consequently, the approach
may be useful in methods applied to cell phenotypes based on proteins (OPAL, MIBI,
Phenocycler Fusion) or transcripts (Xenium, Cosmx, MERscope) expression [39-45].

We have also assumed in this paper outcomes which are categorical, or classes in a
group. In this way, we say the model performed classification. Although we considered
two classes, a larger number of classes is directly possible. Further extension of this
method to real-valued data, e.g. survival time, is likewise natural. Random forest
models designed for continuous or survival time analysis exist, e.g. [54163}[64], and
metrics such as Lo error can be used in place of the difference function of the OOB and

naive estimates.
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Supporting information

S1 Table. Lung Cancer Summary Table. Table summarizing the patients,

number of images, type of lung cancer, and the cell count for each type.
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