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Abstract

Tumor microenvironments (TMEs) contain vast amounts of information on patient’s

cancer through their cellular composition and the spatial distribution of tumor cells and

immune cell populations. Exploring variations in TMEs among patients and cancer

types, as well as determining the extent to which this information can predict variables

such as patient survival or treatment success with emerging immunotherapies, is of

great interest. Moreover, in the face of a large number of potential spatial cell

interactions to consider, we often wish to identify specific interactions that are useful in

making such predictions. We present an approach to achieve these goals based on

summarizing spatial relationships in the TME using spatial K functions, and then

applying functional data analysis and random forest models to both predict outcomes of

interest and identify important spatial relationships. This approach is shown to be

effective in simulation experiments. We further used the proposed approach to
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interrogate two real data sets of Multiplexed Ion Beam Images of TMEs in triple

negative breast cancer and lung cancer patients. The methods proposed are publicly

available in a companion R package funkycells.

Author summary

Spatial data on the tumor microenvironment (TME) are becoming more prevalent.

Existing methods to interrogate such data often have several deficiencies: (1) they rely

on estimating the spatial relationships among cells by examining simple counts of cells

within a single radius, (2) they do not come with ways to evaluate the statistical

significance of any findings, or (3) they consider multiple individual interactions

resulting in overly optimistic estimates of interaction importances. Our approach, which

leverages techniques in spatial statistics and uses a benchmark ensemble machine

learning method addresses (1), since the K functions used encode the relative densities

of cells over all radii up to a user-selected maximum radius, and (2) we have developed

a custom approach based on permutation and cross-validation to evaluate the statistical

significance of any findings of significant spatial interactions in the TME, (3) over

potentially multiple interactions. Our approach is also freely available with an R

implementation called funkycells. In the analysis of two real data sets, we have seen

that the method performs well, and gives the expected results. We think this will be a

robust tool to add to the toolbox for researchers looking to interrogate, what can be

sometimes unwieldy, TME data.

Introduction 1

Recent advances in cancer treatment, such as immune checkpoint inhibition and other 2

cancer immunotherapies, have sparked a growing interest in studying the cellular 3

composition and spatial organization of the tumor microenvironment (TME). The latest 4

innovations in imaging technologies allow for single cell resolution of specific proteins, 5

facilitating in-depth study of the spatial arrangement of cell types within the TME. A 6

wide variety of technologies are available for this purpose, each with different benefits 7

and trade-offs [1–7]. For a review of the available technologies see [8]. 8
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In comparing TME data, different spatial relationships between cell types, e.g. 9

between tumor cells and specific immune cell populations, and/or individual proteins, 10

often appear predictive of patient outcomes and may guide therapeutic interventions; 11

see for example [9]. Comparisons between cancer subtypes, e.g. hormone-positive versus 12

hormone-negative breast cancers, or lung squamous cell carcinoma vs lung 13

adenocarcinoma, may provide novel insight into tumor biology and guide the 14

development of treatments. A further goal is to identify specific spatial relationships 15

observed in particular patient’s tumor that are useful in predicting an outcome, such as 16

patient survival or response to therapy. Recent results demonstrate that TME data can 17

be used for such prediction in a variety of tumor types [10,11]. 18

We consider such prediction problems for data sets generated from tumors imaged 19

with Multiplexed Ion Beam Imaging (MIBI) by means of the MIBIscope in this paper. 20

The MIBIscope uses ion-beam ablation and time-of-flight mass spectrometry to detect 21

up to 40 protein markers on formalin-fixed, paraffin-embedded (FFPE) tissue. Thus, it 22

provides deep data on cell characteristics and their localisation at a single-cell resolution 23

of around 250-400nm [12,13]. Data collected on the TME, using e.g. the MIBIscope, 24

can be considered as marked spatial point patterns [14–16]. The cell locations can be 25

considered as points within the pattern, with cell phenotypes and/or protein markers 26

giving the “marks”. An example of such a point process generated from a tumor imaged 27

using MIBIscope is shown in the left hand panel of Fig 1. 28

Methods developed to this point to study cellular interactions in the TME have 29

exploited cell neighborhood analysis in which the spatial relationship between a cell of 30

interest and its neighboring cells can reveal particular cell-cell interactions associated 31

with a disease state or changes associated with response to therapy; see e.g. [17]. 32

Pairwise cell-to-cell distance calculations over iterations of randomized permutations has 33

also been used to identify relevant cell-cell interactions [18]. However, the substantial 34

number of cell types present in the TME leads to a very large number of potential 35

pairwise interactions creating a major challenge in finding interactions that may be 36

meaningful and statistically significant in predicting outcomes of interest. There have 37

been many investigations into applying spatial statistics methods to similar biological 38

data sets, e.g. [19], [20], and [21]. 39

A common method of analysing spatial point patterns, such as those that arise in 40
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Fig 1. Sample point pattern and K function. A point pattern produced for a
tumor imaged using MIBIscope from a triple negative breast cancer patient with
multiple identified phenotypes (left) and the associated cross K function (black) for two
cell types in the image: tumor and monocytes/neutrophils (right). In the tumour, the x-
and y-axes represent the spatial dimensions while in the K function,the x-axis indicates
the radius of interest and the y-axis gives the value of the K function. The point
pattern contains 15 uniquely colored phenotypes, including tumor (red), NK (purple),
and monocytes/neutrophils (cyan). The cross-over K function has a red reference line
gives πr2 (red), associated with complete spatial randomness.

TME imaging, is to consider Ripley’s K function [22–24]. The K function describes the 41

distribution of inter-point distances in a given point pattern, giving an indication as to 42

whether points in the pattern (e.g. cells) are clustered or dispersed with respect to one 43

another. The K function, along with other summary functions from spatial statistics, 44

has previously been employed in the analysis of the TME [25–31]. An example of a K 45

function showing the relative distribution of a specific immune cell type around tumor 46

cells within a MIBIscope image from a triple negative breast cancer patient is shown in 47

the right hand panel of Fig 1. 48

In this paper, we present a general framework for analyzing and identifying useful 49

spatial relationships in the TME through predicting an outcome of interest. The 50

method we propose uses a novel combination of spatial statistics and functional data 51

analysis, in conjunction with methods in ensemble machine learning. The application of 52

functional data analysis to spatial statistics is a recent development [31–35]. 53

Our approach begins by producing K functions for the different cell-cell, (or 54

alternatively marker-marker), interactions within images. After performing dimension 55

reduction using functional principal components analysis [36], these data are combined 56

with non-functional patient meta-data, such as age or sex, and a modified random forest 57
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model is used to predict the patient outcome. Motivated by [37], in order to evaluate 58

the predictive power of the spatial interactions, “knock-off” point patterns that mimic 59

the spatial data in the TME are generated, via permutation, independently of the 60

responses. The importance of specific spatial interactions in predicting the response are 61

evaluated by comparison to the predictive power of the knock-off spatial patterns. This 62

approach overcomes the challenge of distinguishing important spatial interactions among 63

many potential interactions of interest, and for the generation of easy-to-interpret plots 64

showing which interactions are useful in predicting the response at a glance. Moreover, 65

it grants high power for even a relatively few number of cells due to the robustness of 66

the K functions, and high power for small sample sizes due to the knock-offs. Small 67

sample sizes are common in rare cancer analyses, but are of increasing interest [19]. 68

In many analyses, a single distance of interest is considered while here we consider a 69

range of distances through K functions. [30] provides an approach for detecting 70

differences across multiple images between cell-cell interactions by comparing the 71

integrated difference between the empirical L function (a function derived from the K 72

function, see [38]) and the L function associated with complete spatial randomness. 73

However, this approach independently considers the interactions, while we wish to 74

consider all interactions in a single model. Additionally, a possible drawback of the 75

approach in [30] is that integration over the summary statistic may lose valuable 76

information relating to differences in the shape of functions (i.e. differently shaped L 77

functions may still have the same integral). 78

Some methods also consider only a single images or an equal number of images per 79

patient. However, our approach can be used to analyse data with multiple, possibly 80

differing, numbers of observations per patient. In that sense, it allows for the complete 81

use of the data, rather than removing data. 82

We apply the proposed methods to two MIBIscope data sets; a data set of triple 83

negative breast cancer (TNBC) patients, and a data set consisting of both lung 84

squamous cell carcinomas (LUSC) and lung adenocarcinomas (LUAD). Regarding the 85

TNBC data, our method was accurately able to identify clustered versus dispersed 86

tumors when compared to [12], and was additionally able to identify important cell 87

spatial interactions in making that determination. Our method also indicated that there 88

did not appear to be measurable differences in the spatial arrangement of tumor and 89
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immune cell types, as measured by K functions, between the LUSC and LUAD groups. 90

Whilst the methodology presented here is motivated by, and applied to, MIBIscope 91

data, it can be applied to similar data generated by other technologies, e.g. OPAL, 92

Phenocycler Fusion, Merscope, Xenium and Cosmx [39–45]. Furthermore, the 93

methodology can easily extend beyond two-dimensions to higher-dimensional images, 94

another area of active research [46]. 95

The rest of the paper is organized as follows. In Materials and methods, we give a 96

detailed description of the data we consider and the methods to analyze them, including 97

sub-sections on how we fit a modified random forest in this setting, and how we 98

evaluate the statistical significance and uncertainty in measuring the variable 99

importance of spatial interactions of cell types as encoded by K functions. We also 100

introduce the R package funkycells, an open-source implementation of our approach in 101

that section. Simulation study details the results of simulation experiments in which we 102

found that the proposed method performed well when applied to synthetic data built to 103

mimic the TNBC data. We report the results when this approach was applied to the 104

TNBC and LUSC vs. LUAD data sets in Applications to MIBIscope data. Some 105

concluding remarks and directions for future work are collected in Discussion. 106

Materials and methods 107

The raw spatial data that we consider take the form of 2-dimensional point patterns, as 108

generated using MIBIscope. We denote the cell spatial data, as 109

C = [(x
(p,i)
c,t , y

(p,i)
c,t ,a(p,i)c ), p = 1, . . . , N, i = 1, . . . , Ip, c = 1, . . . , np,i,t, t = 1, ..., T ], (1)

where (x
(p,i)
c,t , y

(p,i)
c,t ,a

(p,i)
c ) denotes the x and y coordinates of the cth cell of type t, of 110

which there are T total types, for the ith image of the pth patient, a
(p,i)
c defines cell 111

attributes related to the cth cell of type t (e.g. phenotype, antigen marker intensities, 112

etc.), and np,i,t is the number of cells in image i of patient p over all types, e.g. 113

phenotypes or proteins. The properties in a
(p,i)
c may simply give the cell’s phenotype 114

(and is therefore redundant due to the term t), or may be more general, such as a vector 115
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describing individual protein expression. For example, the vector could be composed of 116

binary indicators as to whether a protein is expressed or not. For notational clarity, and 117

since we only consider data consisting of cells and their associated phenotype, we drop 118

the a term throughout the paper. Fig 1 shows a point pattern for one tumor from the 119

TNBC data indicating several phenotypes, including tumor cells, monocytes and 120

neutrophils (Mono/Neu), and B cells [12]. 121

Since the applicability of our method extends beyond this example, we designate 122

several general terms for use throughout the paper. We refer to point patterns such as 123

in Fig 1 as “images”. We interchangeably use the terms cell phenotype and cell type. 124

We also interchangeably use the terms cross-over K function and K function. We 125

assume a single response variable, Zi, for each of the N patients (e.g. tumor type, 126

response to therapy, etc.). The set of outcomes for the N patients is denoted 127

Z = (Z1, . . . , ZN ). In the real data examples we consider below Zi is a binary response, 128

e.g. “compartmentalized” versus “mixed” tumors for the TNBC data, or LUSC versus 129

LUAD for the lung cancer data, in which case we can encode the outcomes as taking 130

the values 0 and 1. These methods may easily be adapted for more general class 131

responses, e.g. different types of tumors, or numeric responses, e.g. survival time. 132

In addition to the spatial data, we assume that we may have access to non-spatial 133

data on the patients. We refer to this data as patient “meta-data”, and we assume that 134

it takes the form M = (m1, . . . ,mN ), where each mi is a vector of patient attributes, 135

for example age or sex. 136

With both the cell spatial data C and meta-data M, our goals are to (1) investigate 137

to what extent these data are useful in predicting the outcomes Z, and (2) to identify 138

which specific spatial relationships and/or components of the meta-data from the full 139

data set are useful in predicting Z. We deem data on a spatial relationship or 140

component of the meta-data “useful” if their importance in predicting the outcome 141

exceeds, to a statistically significant degree, that of similar variables that are known to 142

be unrelated to the outcome. For reference throughout the paper, a high-level schematic 143

of our proposed method is presented in Fig 2. 144

Towards answering these questions, we build a model of the outcomes Z in terms of 145

the image spatial information C and meta-data M. In doing so, we must address how 146

we incorporate the complex image data into such a model. Motivated by the 147
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Plot indicating spatial-interactions
and/or meta-variables which are
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Fig 2. Flow chart of model. When modeling using funkycells, there are several
major steps: organizing data, generating synthetic data, and modeling using random
forests. The spatial data is organized into functional summaries (K functions) that are
projected into finite dimensions (FPCA) and used with meta-variables to predict the
outcome variable. The spatial data and meta-variables are permuted to create synthetic
variables with similar properties but independent of the outcome. These synthetic
variables are then added to the model, and used to quantify the strength of the
relationships between the spatial and meta-data with the response. The model processes
the data, employing cross-validation and permutation to return a variable importance
plot (with predictive accuracy estimates) indicating spatial interactions and/or
meta-variables which are significant in predicting the outcome Z.

expectation that patient outcomes are influenced by the relative distribution of various 148

immune cells or protein markers around each other, we begin by computing spatial 149

“cross-over” K functions from the image data, which summarize the spatial distribution 150

of cells with respect to one another as in Fig 1. 151

We provide an open source implementation of our approach in R [47] at the site 152

github.com/jrvanderdoes/funkycells, in the package funkycells. This 153

implementation also includes the code and data used in the presented simulations and 154

data analyses. 155
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Summarizing the image data using K-functions 156

The cross-over K function for image i of person p and cell types t and t′ is defined as 157

K
(p,i)
t,t′ (r) =

1

λt′
E (Number of cells of type t′ within distance r of a cell of type t) ,

where E denotes mathematical expectation, the radius r ranges from 0 ≤ r ≤ R, with 158

the max radius R being a user specified parameter that we discuss below, and λt′ gives 159

the density of cells of phenotype t′ [14–16]. 160

By examining this function for varying radii, we may infer how cell types are 161

distributed around each other. For example, if cell types are distributed around each 162

other entirely at random, then K
(p,i)
t,t′ (r) is equal to the area of a circle of radius r, πr2. 163

Regularity or dispersion of the cells around each other tends to reduce K
(p,i)
t,t′ (r) while 164

clustering tends to increase it. An example of a K function computed between the 165

tumor and monocytes/neutrophils phenotypes for a given tumor in the TNBC data set 166

is presented in Fig 1, which indicates a degree of dispersion with respect to monocytes 167

and neutrophils cells around tumor cells across r values compared to that expected for 168

cells distributed around Tumor cells with complete spatial randomness. Cross-over K 169

functions can be used to summarize all two-way interactions between cell phenotypes for 170

a given image. 171

In practice, estimation is based on an empirical average replacing the expectation.

The estimated cross-over K function for image i of person p is given by

K
(p,i)
t,t′ (r) =

|i|
np,i,t′

np,i,t∑
c=1

np,i,t′∑
c′=1

1

(√
[x

(p,i)
c,t − x

(p,i)
c′,t′ ]

2 + [y
(p,i)
c,t − y

(p,i)
c′,t′ ]

2 ≤ r

)
,

0 ≤ r ≤ R, where 1 (A) takes the value one if the condition A is satisfied, and is zero 172

otherwise, and |i| indicates the area of the image. When patients have multiple images, 173

we combine their cross-over K functions by computing a weighted average, 174

K
(p)
t,t′(r) =

Ip∑
i=1

np,i,t

np,·,t
K

(p,i)
t,t′ (r), 0 ≤ r ≤ R , (2)

with Ip giving the number of images for a given patient p. In other words, the K 175
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functions from each image are weighted according to the prevalence of the cells of the 176

type under consideration. We note that if there is one image per patient (so that 177

Ip = 1), then K
(p)
t,t′(r) = K

(p,1)
t,t′ (r), and further that the weights in Eq (2) vanish to zero 178

if the cell types t and t′ are missing in an image. 179

It is common when computing such K functions to correct them for what are

referred to as “edge effects”. Edge effects describe the issue that cells near the edge of

an image appear to have fewer cells around them when r extends beyond the nearest

boundary. One option is toroidal edge corrections as described in [48], which replicates

and reflects the image data occurring near the boundary. Another is isotropic edge

corrections which weights edge cells, see [49–51]. We examined several methods and

found similar results. We use a standard isotropic edge correction in this paper. For a

single point x in some image I, then the isotropic edge correction weight is

e(u, r) =
2πr

c(u, r) ∩ I

where the denominator is the intersection of the circle c(u, r) with radius r and center u. 180

For discussions on approaches to edge corrections see [52] or [53]. 181

In computing these K functions for each cell type, we can transform the spatial data 182

C into a collection of T 2 different K functions for each patient, 183

{K(p)
t,t′(r), t, t

′ = 1, ..., T, 0 ≤ r ≤ R}. The K functions are then treated as functional 184

data objects; see e.g. [36]. Since even moderate values of T lead to a large number of K 185

functions to consider, user input is often helpful in determining a smaller subset of 186

interactions (and hence K functions) of particular interest for analysis. 187

Although informative, these K functions are unwieldy to directly use in a model, 188

and we further transform the functions using the dimension reduction technique of 189

functional principal component analysis (FPCA). FPCA is a common technique in 190

functional data analysis that decomposes the leading sources of variability among the 191

curves K
(p)
t,t′(r) into a set of finite-dimensional, approximately uncorrelated principal 192

components (PCs); see [36]. To do so, for each pair of cell types t and t′, we define the 193

empirical covariance kernel as 194

Ĉt,t′(r, s) =
1

N

N∑
p=1

[
K

(p)
t,t′(r)− K̄t,t′(r)

] [
K

(p)
t,t′(s)− K̄t,t′(s)

]
, (3)
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where K̄t,t′(r) =
1
N

∑N
p=1 K

(p)
t,t′(r). 195

The eigenvalues and eigenfunctions of the kernel Ĉt,t′ are then computed to satisfy

the functional equation

λi,t,t′ϕi,t,t′(r) =

∫ R

0

Ĉt,t′(r, s)ϕi,t,t′(s)ds .

The K function K
(p)
t,t is summarized using the d coefficients (PCs) 196

k
(p,d)
t,t′ =

(∫ R

0

K
(p)
t,t (r)ϕ1,t,t′(r)dr, ...,

∫ R

0

K
(p)
t,t (r)ϕd,t,t′(r)dr

)⊤

. (4)

The coefficients comprising k
(p,d)
t,t′ describe the projection of the K function K

(p)
t,t 197

onto the finite dimensional linear space spanned by ϕ1,t,t′ , ..., ϕd,t,t′ , which are optimal 198

in terms of capturing the variability among the curves K
(p)
t,t , p = 1, ..., N , with a 199

d-dimensional summary. We note the amount of captured variability can be computed 200

to give estimates for the effectiveness of the components in explaining the functions, and 201

further used to determine the number of required components to achieve some level of 202

fit. Another advantage of summarizing the curves in this way is that, when differences 203

in the K functions across the population are present due to differences in the outcome(s) 204

of interest, the PCs are expected to capture these differences. 205

As such, we summarize the spatial data using the principal components 206

C′ = {k(p,d)t,t′ , p = 1, . . . , N, t, t′ = 1, . . . , T ], which we then incorporate with the 207

meta-data M into a model for Z of the form 208

Ẑ = f(C′,M). (5)

Since our ultimate goal includes evaluating which spatial interactions or elements of 209

the meta-data are useful in predicting the outcomes, we use a random forest model for 210

f . Random forest models are tree-based ensemble machine learning methods in which 211

decision trees are built, after sampling with replacement the patient data and discarding 212

some covariates at random, by sequentially splitting on variables to minimize a metric 213

for predicting Z [54]. The main reasons for the sampling procedures for the patient data 214

and covariates in building each tree is to build nearly independent trees and also 215

July 19, 2023 11/39

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 19, 2023. ; https://doi.org/10.1101/2023.07.18.549619doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.18.549619
http://creativecommons.org/licenses/by/4.0/


address overfitting, common in many machine learning applications. Data missing from 216

one tree is likely present in another tree. When the trees are combined to create a 217

forest, increased statistical power is observed. When outcomes in Z take the values 0 or 218

1, as in the TNBC data, majority voting is used for the model estimates. 219

Variable importance 220

Random forest models are useful in achieving our goals since they have strong predictive 221

power while still allowing for a quantification of the usefulness of individual covariates 222

in predicting the response through various “variable importance” measures. However, 223

there are several challenges to overcome in calculating and quantifying the significance 224

of such importance measures in this setting. One is that the variables in C′ are 225

d-dimensional proxies of the information derived from the spatial image data. When 226

multiple components are used to describe a single function, i.e. d > 1, we must take into 227

account that each individual component in C′ describes only a portion of the associated 228

K function. Therefore, the importance of each component must be combined to 229

describe the importance of each spatial interaction, and further this importance must be 230

made comparable to that of the meta-variables. Also, we wish to identify spatial 231

interactions and meta-variables that are of “significant importance”, which we take to 232

mean that their importance exceeds to a statistically significant degree that of similar 233

variables that are unrelated to the response. This task is complicated by the fact that 234

we are often faced with such a large number of spatial interactions. Given the large 235

number of variables, we expect some to have anomalously large variable importance 236

even when they are independent from the response. 237

Before proceeding we now describe the computation of variable importance metrics 238

for random forest models, some of which were introduced in the seminal paper on 239

random forests [54]. There are multiple methods for calculating variable importance 240

values, such as permuting variables in data and comparing the difference in loss metrics, 241

or measuring node purity. We tested several methods and found similar results 242

regardless of the variable importance metric calculation. We implement a node purity 243

metric, sometimes called recursive partitioning, as described in [55] and [56]. Our choice 244

is due to simulation and computation considerations, but we encourage future research 245
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on the effect of different metric calculations. 246

In the following explanations for node purity variable importance, it is perhaps

useful to imagine the scenario where the outcomes Zi take the values 0 and 1. When

each constituent decision tree is formed in producing the random forest model, nodes

are split based on some impurity metric relating to the outcomes Zi [55]. For a given

node, A, node impurity is defined as

I(A) =
∑
i∈O

g(pi,A) ,

where g is an “impurity” function, O is the set of possible outcomes, e.g. 0 or 1, and

pi,A is the proportion of data in A which belong to outcome class i of Z, i.e. 0 or 1.

Typical choices for g are the information index (g(p) = −p log(p)) or the Gini index

(g(p) = p(1− p)). At a given stage of the decision tree, the splitting variable and

location is chosen to maximize the impurity reduction

∆IA = p(A)I(A)− p(AL)I(AL)− p(AR)I(AR)

where AL and AR are respectively the left and right resulting nodes and p(A) is the

probability of A (for future observations) [56]. That is,

p(A) =
∑C

i=1 πip(x ∈ A|τ(x) = i)/p(x ∈ A) ≈ πi(n
(class)
i,A /n

(class)
i )/

∑
πi(n

(class)
i,A /n

(class)
i )

for C classes, prior probabilities πi, the classes assigned C, and the number of

observations n
(class)
i (that are class i) and n

(class)
i,A (that are class i in A). A variable v’s

importance in a single tree can be computed as

∑
i∈Pv

∆Ii ,

where Pv is the set of primary splits for (i.e. nodes that split on) the variable. 247

Variable importance (for the entire forest) can similarly be calculated by considering

nodes across all decision trees, typically standardized by the number of trees fit or the

number of trees where the split was present,

V I(v) =
1

|Number of Trees|
∑
i∈Pv

∆Ii, .
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Additional modifications, such as the use of surrogates, can also be added to improve 248

variable importance metrics. The technical details are left to more complete works, e.g. 249

see [55]. The principle behind surrogate splits is that at each split a selection for the 250

splitting variable must be made, even if the selection is between nearly identical 251

variables. Traditional splitting would select only one, giving it a measure of variable 252

importance, and ignore any other options. In this way, traditional splitting can result in 253

masked variables and inaccurate representations of variable importances. A model using 254

surrogate splits revisits each split after selecting the “primary” splitting variable and 255

considers alternative, “secondary” splitting variables, mitigating the masking behavior. 256

Surrogate splits also take into account that the variables used after the primary split 257

are, to some degree, lower quality and weight the splits accordingly. Weighting is 258

performed according to a split’s impurity reduction, and varies slightly based on 259

classification or regression problems [55]. Moreover, these surrogates allow for use of 260

another split if an observation is missing data for the primary split. 261

Consider that a näıve choice for any variable missing data used in the primary split

would be to go with the majority split. In order to evaluate potential splits, they should

perform better than this näıve approach. In particular secondary splits should

outperform this approach on missing data, and perhaps even split nearly as good as the

primary split on all data. Consequently, one potential weighting scheme for node A and

potential surrogate v is

wv(A) =
cv − cmaj

n
(node)
A − cmaj

where cv is the number of observations correctly classified due to splitting by variable v, 262

cmaj is the number of observations correct by näıvely selecting the majority class, and 263

n
(node)
A is the total number of observations in the node. 264

A typical variable may appear many times in a tree, both as a primary and 265

surrogate splitting variable. Therefore, the overall measure of variable importance for a 266

given variable is a combination of the splitting importances 267

VI(v) =
1

|Number of Trees|

(∑
i∈Pv

∆Ii +
∑
s∈Sv

ws∆Is

)
(6)

where for variable v, Pv and Sv respectively indicate the set of primary and surrogate 268
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splits. 269

Variable importance comparison 270

Although the computed variable importance is a helpful summary statistic for ordering 271

variables in terms of their expected usefulness in predicting the outcome, these values 272

cannot be easily compared to determine which variables are significantly more useful 273

than others, including those that are known to be independent of the response. 274

Furthermore, after combining variable importance values from spatial variables in C′, 275

these values must be compared with those from variables in M. Yet since each spatial 276

interaction is characterized by d, which is typically larger than one, principal 277

components, we might expect for example that the variable importance of a set of such 278

components will exceed that of any meta-variable when both are independent of the 279

response. Indeed, in totally random cases, with similar distributions, the spatial 280

interaction term would often be selected approximately d times more than a 281

meta-variable. 282

To allow for such comparisons, we standardize the variable importance metrics by 283

adding matched synthetic variables. These synthetic variables are generated by 284

permuting the true data in order to maintain identical distributions, but are 285

independent from the outcome. We denote the synthetic spatial components as C′
s and 286

the synthetic meta-variables Ms. 287

)A random forest model is fit using both the true and synthetic variables, 288

Ẑ = f(C′,M,C′
s,Ms) . (7)

To build C′
s, for each b iteration, 1 ≤ b ≤ B, where we take B = 100, a random 289

functional variable is selected. The d principal components associated with each patient 290

are permuted across patients, resulting in assignment of the d components to a random 291

patient and hence outcome. Note that in doing so, the d components are kept together. 292

One could use B = 100 synthetic variables for each functional variable. However, 293

investigations into the model through extensive simulations has shown that a single 294

group of B synthetics is generally sufficient for the K functions, and additional 295

synthetic K variables do not improve power beyond this. 296
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Although one synthetic group for meta-variables could be used, previous work has 297

shown a tendency for random forests to favor continuous predictors over discrete 298

predictors [57]. The model accounts for this tendency through unique synthetic 299

meta-variable groups. Therefore, Ms is created by permuting each meta-variable across 300

patients B times. 301

We use these synthetic variables, C′
s and Ms, to standardize the variable importance 302

values of the true data and build noise cut-offs. In doing so we are able to infer which 303

spatial interactions and meta-variables lead to significant improvements in the model 304

accuracy. The details of this are left to Comparing variable importance of spatial 305

interactions and meta-variables to noise. 306

Due to the innate randomness in the models, the variable importance values 307

fluctuate between runs and model fits of the random forests. To quantify this, we 308

employ cross-validation (CV). CV begins by splitting the data into F roughly 309

equal-sized parts, sometimes called folds. On each iteration one of these parts is left out, 310

and the remaining data are used to fit the model. The fluctuating variable importance 311

values between runs can be used to estimate the variability. Moreover, the fitted model 312

can be used to predict the outcomes in the left out part/fold in order to evaluate the 313

predictive power of the model. 314

Let the data be randomly assigned to the F folds such that an indexing function

κ : {1, · · · , N} 7→ {1, · · · , F} indicates the partition to which each pth patient’s data are

allocated. Denote the fitted model, using the true variables as in model (7), with the

jth fold removed Ẑ
(−j)

(C′,C′
s,M,Ms). The estimated CV variable importance for each

functional variable c (in both C′ and C′
s), which are described by the previously

discussed d dimensional principal components k
(d)
c , is computed as

VI(CV )(c) =
1

F

F∑
j=1

d∑
i=1

VI
(CV )
j (k(i)c ) ,

where VI
(CV )
j (k

(i)
c ) denotes the variable importance estimate from the jth fold-removed 315

model Ẑ
(−j)

(C′,C′
s,M,Ms) for component k

(i)
c , which is the ith component relating to 316

the cth function. 317

The estimated CV variable importance effects for a meta-variable m (in M and Ms)
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are similarly computed as the mean variable importance metric,

VI(CV )(m) =
1

F

F∑
j=1

VI
(CV )
j (m) ,

such that VI
(CV )
j (m) denotes the variable importance estimate from the model 318

Ẑ
(−j)

(C′,C′
s,M,Ms) for meta-variable m. 319

We quantify the uncertainty in the estimate of the variable importance measure for 320

each variable v, both functional and meta, by calculating its standard deviation across 321

the F folds. 322

SD(v) =

√√√√ 1

F − 1

F∑
j=1

(
VI

(CV )
j (v)−VI(CV )(v)

)2
. (8)

This uncertainty estimate is used with variable importance estimates created from

the mean of non-cross-validated models. Let VIj(x) indicate the variable importance

metric from model (7), iterate j (where we take 1 ≤ j ≤ F for ease, but each run is on

the full data set), then the estimates are computed

VI(c) =
1

F

F∑
j=1

d∑
i=1

VIj(k
(i)
c ) ,

for functional variables, c, and

VI(m) =
1

F

F∑
j=1

VIj(m) ,

for meta-variables, m. 323

Comparing variable importance of spatial interactions and 324

meta-variables to noise 325

As mentioned above, due to the use of d ≥ 1 principal component summaries, we expect

that for spatial interactions and meta variables that are independent of the outcome the

variable importance of the spatial interactions will typically be larger. As such we use

the estimated variable importance values for the synthetic variables to calibrate the

variable importance between the spatial interactions and meta-variables. We compute

for each of the spatial and meta-variables, respectively c and m, the empirical α
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quantiles of the variable importance values of the synthetic variables. If C(s) indicates

the set of synthetic functions, i.e. the combined synthetic components, and M(s,m)

indicates the set of synthetic meta-variables matched to meta-variable m, then we set

QC = inf

q :
1

B

∑
csyn∈C(s)

1(VI(csyn) ≤ q) > α

 , and

QM,m = inf

q :
1

B

∑
msyn∈M(s,m)

1(VI(msyn) ≤ q) > α

 .

Let QM = (QM,1, . . . , QM,|M |) where |M | is the total number of meta-variables. Below 326

we always set α = 0.95. Letting Qnoise = max{QC ,QM}, we calibrate the variable 327

importance of each true variable computed from model (7) that includes synthetic 328

variables, denoted vtrue,(7), as 329

VIadj(vtrue,(7)) =
Qnoise

QC1(vtrue,(7) ∈ C) +
∑

m∈M QM,m1(vtrue,(7) ∈ m)
VI(vtrue,(7)) . (9)

The cross-validated standard deviations of the variable importance values are 330

similarly adjusted, but based on the model (5) that does not include the synthetic 331

variables, denoted vtrue,(5), as 332

SDadj(vtrue,(5)) =
Qnoise

QC1(vtrue,(5) ∈ C) +
∑

m∈M QM,m1(vtrue,(5) ∈ m)
SD(vtrue,(5)) .

(10)

These adjusted variable importance values may then be compared to Qnoise. 333

Estimates that go below the cutoff Qnoise have variable importance values that appear 334

to show no statistically significant relationship with the outcome. Plotting Qnoise, the 335

adjusted variable importance values, VIadj(v), along with their adjusted standard 336

deviations gives a simple way to evaluate at a glance which variables appear to be 337

important in predicting the response. An example plot of this is shown in the right 338

hand panel of Fig 2, where Qnoise is plotted as a vertical, red-dotted line, and the 339

variable importance values are plotted along with their adjusted standard deviations. 340

While Qnoise estimates the α percentile of the variable importance values 341

corresponding to outcomes that are unrelated the outcome, the variable importance 342

values themselves can be distorted due to overfitting. Overfitting occurs when the 343
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model fits well to the observed data but does not generalize well to unobserved data. As 344

more variables are observed, it is increasingly likely to find a variable that seems to have 345

high importance, despite no true relationship to the response. 346

To account for this potential effect, we employ an additional variable permutation.

In this step, we permute the true variables in addition to the synthetic variables, H

times. We take H = 100 below. In each forest, the synthetic variables are again used to

align the variables (using the previously computed Qnoise), but the remaining, aligned

“true” variables do not have any relation to the outcome. In each of these forests based

on variables that are independent from the response, 1 ≤ b ≤ B, the resulting, adjusted

variable importance estimates are ordered,

VIadj,b,ℓ = {ℓth largest adjusted variable importance value in forest b} ,

ensuring VIadj,b,1 > VIadj,b,2 > · · · > VIadj,b,V where V denotes the total number of 347

variables between the spatial interactions, C, and the meta-variables, M. When the 348

number of variables V is large, especially in relation to the number of patients N , we 349

might expect even when the spatial variables and meta-variables are independent of Z 350

that the largest variable importance values will (far) exceed Qnoise. As such, we also 351

compute the α quantile of the variable importance values in each ordered position ℓ for 352

the random forests fit to the permuted data, 353

Qint,ℓ = inf

{
q :

1

B

B∑
b=1

1(VIadj,b,ℓ ≤ q) > α

}
. (11)

We let Qint = (Qint,1, . . . , Qint,V ), and coin it the interpolation cutoff. 354

We include Qint with Qnoise in order to quantify overfitting and thereby evaluate the 355

significance of values of the variable importance values VIadj(v); this is the 356

orange-dotted line in the right hand panel of Fig 2. 357

In summary, variables with adjusted importance values, VIadj(v), that are larger 358

than both Qnoise and Qint,ℓ exhibit importance that significantly exceeds (at the 1− α 359

level) what we might expect from similar variables that are unrelated to the outcome. 360

This holds taking into account the inflation in the variable importance values that arise 361

from fitting the random forest to a large number of spatial interactions and 362
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meta-variables. 363

Predictive accuracy estimates 364

In weighing the significance of the computed variable importance values, one should also 365

consider the overall predictive accuracy of the final model for the outcomes. For 366

example, a variable may have a large variable importance value within a model that 367

does not lead to improved predictions of the outcome over näıve models. Therefore, 368

evaluating the importance of a variable in the context of a random forest model requires 369

some consideration for model accuracy. 370

We consider three such estimates of the overall predictive accuracy of the model: 371

out-of-bag accuracy (OOB), näıve guess (GUESS), and biased guess (BIAS). OOB 372

estimates how well the model works on unseen data, and a comparison of this estimate 373

to GUESS or BIAS can indicate if the model captures additional information beyond 374

simplistic estimates. 375

OOB estimates how well the model would perform on new data and is computed by 376

predicting the data left out during each CV iteration, 377

OOB =
1

N

N∑
p=1

Diff
(
Ẑ(−κ(p))

(
X(−κ(p)),M(−κ(p))

)
, zp

)
, (12)

for the N patients and where Diff indicates a difference function. For classification

problems such as with the TNBC or LUSC versus LUAD data, this may be defined

using an indicator function,

Diff(x, y) = 1(x = y) .

GUESS is computed by randomly guessing the outcome based on the outcome’s 378

observed frequency in the original data. To account for the natural variability in this 379

estimate, we use the mean estimate of G trials, 380

GUESS =
1

G

G∑
g=1

1

N

N∑
p=1

Diff (MNDZ, zp) , (13)

where MND is a multinomial distribution with probability of each outcome based on its 381

observed frequency. For example, in the TNBC data in which we wish to predict the 382
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Fig 3. Sample variance importance plot. This sample variable importance plot
uses simulated data with a binary outcome, two cell types, and two meta-variables. The
data was simulated with significant differences between the outcomes for the in B B,
A B spatial interactions, and age meta-variable, but no significant difference across sex
and the A A spatial interaction.

“compartmentalised” versus “mixed” result with a proportion p of “compartmentalised” 383

patients, this amounts to computing the rate at which we would accurately guess the 384

outcome by flipping a coin independently for each patient with probability p of heads, 385

and guessing the outcome is “compartmentalised” for heads, and is “mixed” otherwise. 386

For a random patient drawn from this two-outcome data, this approach will have a 387

success probability of p2 + (1− p)2. We take G = 500 below. 388

BIAS is built by always guessing the most likely outcome. For classification problems, 389

the most likely outcome can naturally be defined by the data mode. We compute 390

BIAS =
1

N

N∑
p=1

Diff (mode(Z)− zp)) . (14)

For two outcome data sets like the TNBC or lung cancer examples, this will have 391

success probability for a random patient drawn from the sample of max{p, 1− p}. 392

Similar näıve estimates can be derived for regression problems. 393

Variable importance plot 394

The variable importance plot summarizes the variable importance values of both the 395

spatial interactions and meta-variables. It shows how they compare to what we might 396
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expect from similar noise variables which are unrelated to the outcomes, and also 397

summarizes the overall efficacy in predicting the outcomes using the random forest 398

model. Fig 3 is the variable importance plot created from simulated data with two cell 399

types, A and B, and two meta-variables with differing distributions, age and sex. 400

Variables are displayed according to their adjusted, standardized (0, 1) variable 401

importance estimates (black dots), with the largest values being on top. 402

The plot visualizes uncertainty in computing the VIs through (gray) intervals 403

representing one standard deviation on either side of the estimate. These intervals are 404

the adjusted standard deviations estimated through CV, as given in Eq (10). 405

The noise cutoff Qnoise as well as the interpolation cutoff Qint at levels α = 95% are 406

also shown. Fig 3 presents the noise cutoff as a red, dotted, vertical line and the 407

interpolation cutoff as a orange, dashed, curved line. 408

Estimates for predictive accuracy are given at the bottom of the figure. The 409

estimates include OOB, GUESS, and BIAS, respectively defined in Eqs (12), (13), and 410

(14). 411

Further interpretation of the variable importance plots are given in the sections 412

Simulation study and Applications to MIBIscope data. These sections consider 413

simulations for which there is a known solution and real data examples that can be 414

interpreted. 415

Results 416

In order to obtain some confidence for the fit of the proposed model on real data, in this 417

section we first present simulations then address the patterns of interest. 418

Simulation study 419

We here demonstrate our methodology via simulations of spatial point patterns. We 420

produced simulated point patterns with properties, such as cell counts, numbers of 421

phenotypes, etc., similar to that of the TNBC data set in [12]. The real data motivating 422

this simulation experiment are analysed in the following section. 423

We considered simulated data from 34 “patients”. These patients were defined as 424

being negative or positive for a binary outcome Z (note that positive/negative here 425
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refers to the arbitrary outcome Z, and is not related to hormone receptor status as it 426

does in the term TNBC). We let there be 17 positive and 17 negative patients and 427

simulate one image per patient. Each image consists of a point pattern with 16 cell 428

phenotypes. Patients were also ascribed a single meta-variable, which we call age. We 429

developed a random forest model as described in Materials and methods to predict 430

patient outcome using interactions between the 16 different cell types in the images and 431

the additional meta-variable. 432

We considered two main settings: (1) a simulation with only non-informative 433

variable-outcome relations and (2) a simulation with both informative and 434

non-informative variable-outcome relations. 435

To generate the images, the cells were placed according to multiple, potentially 436

nested, (modified) Thomas processes, which are constructed iteratively [58]. For a given 437

image, a Thomas process first places cells (of a given type, say c1) at random, according 438

to a Poisson process. The Poisson process selects the number of cells to place, nc1, 439

randomly based on a Poisson distribution, where the distributional parameter is user 440

selected. For our simulation study, these are selected to correspond to the mean number 441

of cells in the TNBC dataset. We standardize the images to unit length in both the x 442

and y directions. 443

Around each cell ca,c1, a ∈ {1 . . . nc1}, cells of a different type, say c2 may be placed. 444

Again the number of cells of c2 are randomly selected based on a Poisson distribution 445

with a user selected parameter. The coordinates of the c2 cells are placed according to 446

another distribution in such a way that they either cluster or disperse around the c1 447

cells. In our experiments, a bivariate Normal distribution is used to place the c2 points, 448

so that the mean coincides with the location of a randomly selected c1 cell, and the 449

covariance matrix is a scalar multiple σ2 times the identity matrix. By varying σ2 in 450

the outcome groups, clustering or repulsion in the interactions between the cells can be 451

introduced. 452

Additional cells can be simulated around the points of c1 or c2, and so on. Moreover, 453

the original cells can be removed such that the new cells exhibit hidden or self-clustering. 454

Compilations of such placement patterns, with use of potentially different distributions, 455

can achieve images with varying degrees of clustering or regularity. 456

In our simulations, 16 cells were iteratively placed according to this modified 457
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Fig 4. Comparison of TNBC and simulated data. An image from TNBC data
(left) and simulated data (right). Different colors indicate one of the 16 different cell
phenotypes.

Thomas pattern. Some cells were placed completely at random (c1, c4, c5, c6, c7, c13, 458

c14, c15), some were placed exhibiting self-clustering (c8, c9, c10, c11, c12), and some 459

were placed exhibiting clustering around c1 (c2, c3, c16). In what we call the 460

“no–relation” simulation, the cells locations were simulated in the same way for both the 461

positive and negative patients. However in the “relation” simulation, c2 exhibited 462

increased clustering around c1 while c3 exhibited repulsion from c1, for positive 463

outcomes. Similar to the true data, some cell types were present hundreds of times per 464

image while others only rarely appeared. Each of the synthetic cell types were generated 465

to mimic behaviors and frequencies seen in the TNBC data. Fig 4 presents two images, 466

an image from the TNBC data set and a simulated image. 467

In this way a single image for each of the 17 positive and 17 negative patients were 468

simulated. The meta-variable age was simulated as a Normal random variable with unit 469

variance. While in the no-relation case the mean was a constant 25 for both outcomes, 470

in the relation-case the mean of age was set to be 25 for negative outcome patients, and 471

27 for positive outcome patients, creating a useful, though imperfect, classifier. 472

Moreover, in the relation-case, 2 of the 17 positive patients were given no-relation to the 473

outcome as additional “noisy” images. 474

When modeling both cases, there were several tuning parameters selected. We used 475

the standard choices of 500 trees for each random forest, 10 folds in cross-validation, 476

and a standard significance level of α = 0.05. We used 100 interactions for the 477
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Fig 5. No relationship simulation. Simulation of 16 cell types for 34 patients with
meta-variable age. The figure on the left gives the variable importance values for all
variables while the one on the right shows only the top 25. All variables were generated
with no-relationship to the outcome.

permuted random forest in creation of the interpolation cut-off. In (unreported) 478

numerical investigations of these values we saw robustness in the results for these 479

choices. Creation of the K functions also required selection of the maximum radius, R. 480

Although we investigated the effect of the choice, we saw little variation in the results 481

and used a traditionally recommended 25% of the side length of the image, along with 482

the previously discussed isotropic edge corrections for the simulations. Moreover, the K 483

functions were summarized using 3 principal components, which were selected to match 484

the TNBC analysis. TNBC uses 3 components to explain at least 95% of the total 485

variance explanation for each K function. 486

Fig 5 shows representative variable importance for all variables (left) and the top 25 487

(right) in the “no–relation” case. One may see from the plot that some variable 488

importance estimates exceeded the red noise cutoff, but they all were observed to be 489

below the orange interpolation cutoff. This may be interpreted that the observed 490

variable importance values did not exceed, to a significant degree, what we would expect 491

to see from similar variables that are known to be independent of the response. 492

Moreover, the prediction accuracy estimate (OOB) indicates the model performs 493

similarly to a näıve guessing approach. Taken together, the plot indicates that none of 494

the spatial interactions appeared to be important in predicting the outcome, as was 495

expected in this case. 496

On the other hand, Fig 6 shows a representative variable importance plot computed 497
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Fig 6. Relationship simulation. Simulation of 16 cell types for 34 patients with
meta-variable age. All variable importance values (left) and top 25 (right) are shown.
Most cell types were generated with no relationship to the outcome. However, age,
c1 c2, and c1 c3 were designed to have a relationship with the outcome (which naturally
means c2 c2 and c2 c3 would also have relationships to the outcomes). These variables
are seen with significantly larger variable importance values.

from a single simulation run in the “relation” simulation. All variables are shown in the 498

left hand panel, and only top 25 are shown in the right panel. Although many variables 499

are still below the noise and interpolation cutoffs, the known related variables are found 500

to have a significant relationship with the outcome variable. Moreover, the OOB 501

estimate far exceeds that of the GUESS or BIAS estimates. This plot indicates that 502

interactions between the c1, c2, c3 cell types, and the age variable, appeared to be 503

useful, to a statistically significant degree, in predicting the outcome, once again as 504

expected. We note that since c2 and c3 cells are distributed around c1 cells, any change 505

in these distributions will necessarily lead to differences in the cross K functions 506

between these two cell types as well, as observed. 507

In order to verify that each of the orange and red lines appeared to be appropriately 508

calibrated, we performed an additional simulation experiment. We considered two cases 509

(1) with only 4 cell types and (2) with 16 cell types. Each cell type other than cells c1 510

and c2 are generated such that they have no relationship to outcome. We modify the 511

clustering of c2 around c1 in the positive group, and examine the rate at which the 512

variable importance estimated for the c1 c2 spatial interaction exceeded the various 513

cutoffs (red/orange lines). By changing the standard deviation in the Thomas process 514

for placing c2 points around c1 points, we were able to investigate whether the approach 515
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Fig 7. Power curves. Power curves showing the empirical rate, from 100 simulations
in each setting, that the variable importance for the spatial interaction c1 c2 exceeded
the 95% noise cutoff, interpolation cut off and both the noise and interpolation cutoff.
The left image is based on spatial data with only 4 cell types and the right is based on
16 cell types. Colors match the variable importance plot when possible and indicate the
cutoff method: above both cutoffs (teal), above the curved interpolation cutoff (orange),
and straight noise cutoff (red).

is able to detect the presence of a relationship when the cells either cluster or are more 516

dispersed across the binary outcomes. The resulting power curves, based on 100 517

simulations for each setting, are shown in Fig 7. These show the rate at which the 518

variable importance estimates exceed the 95% noise cutoff, interpolation cutoff, both 519

the noise and interpolation cutoffs, and the largest interpolation cutoff among all 520

variables. In reference to Fig 7, the standard deviation in the Thomas process relating 521

c1 and c2 takes the value of approximately 0.025 in the “no relation” case. As such, for 522

this value it is desired that the noise and interpolation cutoffs are exceeded no more 523

than α = 0.05 proportion of the time. Otherwise, detecting that standard deviation 524

values smaller/larger than 0.025 lead to increased/reduced clustering of c1 c2 in the 525

positive groups is desired. 526

We saw that each cutoff appeared to have good power to detect clustering or 527

dispersion relationships. The noise cutoff was well sized, and the interpolation bound 528

was slightly oversized. We saw though that comparing to both the noise and 529

interpolation cutoffs (red and orange lines) yielded a slightly under sized cutoff with 530

good power. 531
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Applications to MIBIscope data 532

In this section we present two applications of the proposed methods to MIBIscope data 533

sets. The first investigates known clusters in tumors related to triple negative breast 534

cancer tumours, while the second investigates unknown relations in tumors related to 535

lung cancer. 536

Triple negative breast cancer 537

We investigate the TNBC data set in [12]. [12] employ a mixing score to categorise 538

tumors based on their TME. The mixing score they use was defined as the proportion of 539

immune cells touching tumor cells, and was calculated as the number of immune-tumor 540

interactions divided by the number of immune-immune interactions for an image. They 541

separate tumors into “compartmentalised” and “mixed” groups (and a “cold” group 542

that we ignore), such that compartmentalised tumors tend to have tumor cells 543

aggregated together with immune cells located around or away from the tumor cells, 544

and mixed tumors tend to have tumor cells and immune cells mixed together. This 545

makes a useful test data set on which to employ our method, as it provides two tumor 546

groups that explicitly have different TMEs. The data set contains 33 patients with a 547

single image per patient, 18 mixed tumors and 15 compartmentalised tumors. We define 548

the outcome Z as 0 for mixed and 1 for compartmentalised, and we wish to predict the 549

outcome using interactions between 16 cell phenotypes in the images and an additional 550

meta-variable, age. 551

One tuning parameter with K functions is the maximum radius R. For this data we 552

investigated using several options–25, 50, 100, 500, and 1000 micrometers. In all cases 553

the conclusions were comparable, illustrating a robustness to the choice. The only 554

(expected) difference is that as R increases, additional principle components, d, are 555

required to capture the variations in the functions. With this observation and domain 556

knowledge, K functions up to a maximum radius of 50 micrometers were used. The 557

results of this analysis are shown in Fig 8. As expected, many interactions are shown to 558

be non-significant. However, there are a reasonable number above both cutoffs and the 559

predictive accuracy estimates agree that there are some important relationships in the 560

data. Specifically, tumor cell-tumor cell interactions came as the top interaction, 561
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Fig 8. TNBC variable importance. Variable importance plot and random forest
model summary for predicting “compartmentalized” versus “mixed” tumor types with
the TNBC data. The OOB far exceeds those of näıve models, and many of the spatial
interactions between tumor cells and immune cell populations exhibited significant
variable importance values.

consistent with the characteristics of the “compartimentalised” tumors where little 562

immune cells infiltrate the tumors and tumor cells are densely packed. 563

Although this analysis can indicate important relationships, it does not quantify the 564

type of differences. While meta-variables can be easily compared using traditional 565

statistical methods, the K functions are more difficult to analyze. To this end, we can 566

also consider plots of the K functions. Fig 9 examines the Tumor Tumor interaction, 567

which is found to be significant, and the CD4T Endothelial interaction, which was 568

found to be insignificant. The significant K functions seem to be well separable and 569

smooth (a property indicative of many cells being present in each image), while the 570

insignificant K functions are not easily separable and have high variability in individual 571

K functions of the same group. 572

Lung adenocarcinoma versus lung squamous cell carcinoma 573

We also applied our approach to attempt to predict different pathological subtypes of 574

non-small cell lung cancer. In this section, we aim to measure to what degree the TME 575

of two of the most common subtypes of lung cancer, LUAD and LUSC can be 576

differentiated using the spatial relationships between phenotyped cells as characterised 577

by K functions. Our dataset contained 44 LUAD and 20 LUSC samples stained with 578

antibodies against 35 proteins to enable the phenotyping of tumor cells, fibroblasts, and 579
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Fig 9. Example TNBC K functions. The K functions from the different outcomes
compared. In both plots, the x-axis is radial distance in micrometers and the y-axis is
the value of the K function. The light lines are the K functions for each patient, while
the bold line indicates the average. In the figures, red indicates the mixed tumors while
blue indicates the compartmentalized tumors. The black dashed line indicates the curve
of a totally spatially random process for reference. The left figure is the Tumor Tumor
interaction, which was found to have significant differences in the outcomes and the
right figure is the CD4T Endothelial interaction, which was found have no significant
differences between the outcomes. As expected, the compartmentalized group indicates
increased clustering compared to the mixed group in Tumor Tumor cells while the
CD4T Endothelial interaction shows no clear differences and varying K function
patterns even within outcome groups.

Fig 10. Lung cancer variable importances. Variable importance plot and random
forest model summary for predicting LUAD versus LUSC tumor types. The OOB is
similar to a näıve model, and none of the measured variable importance value were
statistically significant.

10 immune cell subsets after scanning on the MIBIScope. A summary of this data is 580

given in S1 Table. K functions were computed between each cell type with again a 581

maximum radius of 50 micrometers. 582
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The variable importance plot and model summary when using our method to predict 583

LUAD versus LUSC are shown in Fig 10. The results suggest that no spatial 584

interactions as encoded by the K functions are significantly useful in distinguishing 585

LUAD versus LUSC. The OOB accuracy was observed to be on-par with a näıve 586

method, and none of the variable importance measurements exceeded the 95% quantile 587

of what we would expect from independent point patterns. This indicates our method 588

using homogeneous K functions applied to these specific cell phenotypes is unable to 589

differentiate between the TME of LUAD and LUSC cancer types, and studying the data 590

with additional cell subsets and/or through other summary functions or techniques may 591

be of value. 592

Discussion 593

In this paper, we present a novel method for the analysis of data-rich TME spatial data. 594

We consider the case in which we compare TME and meta data or clinical data from 595

two different patient groups, and develop a model to identify significant differences 596

between these groups in the distribution of cell phenotypes, protein antigens, or a 597

mixture thereof. In addition, the model aims to predict which group a new patient is in 598

using their TME and meta data. Our model employs a combination of spatial statistics 599

and functional data analysis and is applicable to marked point processes in general. 600

Benefits of the model include general applicability, with few tuning parameters, and 601

easily visualised and interpreted output. We find our model to be robust to the choice 602

of the tuning parameters. The model demonstrates a powerful ability to identify 603

important variables while maintaining good predictive power. 604

We evaluate our approach on simulated data, demonstrating the effectiveness of our 605

method for marked spatial point patterns with known interactions. Our approach is 606

then applied to TNBC and lung cancer data obtained from multiplexed ion beam 607

imaging. For the TNBC data, we compare two groups of tumors that are separated into 608

“compartmentalised” and “mixed” groups based on the degree of tumor-immune cell 609

interactions. This separation of tumors gives two groups with explicit differences in 610

their TMEs, making a useful data set for the demonstration of our model. The model 611

demonstrates good predictive accuracy, and identifies expected specific cell phenotypes 612
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relationships, and interactions of interest. The lung cancer data shows our model can 613

also detect lack of differences in cell phenotypes relationships. 614

Throughout this paper we have assumed homogeneity of the underlying spatial point 615

processes in defining the K functions used in the model. Spatial homogeneity is defined 616

such that the intensity of a given mark is independent of spatial location [14–16]. 617

Whilst such an assumption may be reasonable in some cases, given the complexity of 618

the TME, homogeneity may not always apply. We note, however, that since our 619

approach compares K functions between different groups, rather than against the 620

theoretical K functions associated with complete spatial randomness (as is typical in 621

other circumstances), the lack of underlying spatial homogeneity in the TME for a data 622

set may not be overly problematic. Statistical tests for homogeneity exist [14–16]. 623

Inhomogenous K functions can be used in an attempt to mitigate the issue of 624

inhomogeneity [14–16,59]. Regardless of how K functions are defined they are amenable 625

to being used in our methodology. Furthermore, whilst we have focused throughout this 626

paper on K functions, we note that the methods presented here can be applied to any 627

summary functions from spatial statistics, or indeed any functions in general. See, for 628

example, suggestions in [24,60,61]. 629

In addition, we note that a
(p,i)
c in Eq (1), may consist of the raw measured protein 630

expression level for each protein, and may also include other cell information (e.g. cell 631

size). Our approach could potentially be adapted for analyzing raw protein expression 632

levels via the use of mark-weighted K functions [14,62]. Consequently, the approach 633

may be useful in methods applied to cell phenotypes based on proteins (OPAL, MIBI, 634

Phenocycler Fusion) or transcripts (Xenium, Cosmx, MERscope) expression [39–45]. 635

We have also assumed in this paper outcomes which are categorical, or classes in a 636

group. In this way, we say the model performed classification. Although we considered 637

two classes, a larger number of classes is directly possible. Further extension of this 638

method to real-valued data, e.g. survival time, is likewise natural. Random forest 639

models designed for continuous or survival time analysis exist, e.g. [54, 63,64], and 640

metrics such as L2 error can be used in place of the difference function of the OOB and 641

näıve estimates. 642
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Supporting information 643

S1 Table. Lung Cancer Summary Table. Table summarizing the patients, 644

number of images, type of lung cancer, and the cell count for each type. 645
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