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ABSTRACT 

Body mass index (BMI) is an indicator of obesity, and recent neuroimaging studies have 
demonstrated inter-individual variations in BMI to be associated with altered brain structure 
and function. However, how the structure-function correspondence is altered according to 
BMI is under-investigated. In this study, we combined structural and functional connectivity 
using Riemannian optimization with varying diffusion time parameters and assessed their 
association with BMI. First, we simulated functional connectivity from structural 
connectivity and generated low-dimensional principal gradients of the simulated functional 
connectivity across diffusion times, where low and high diffusion times indirectly reflected 
mono- and polysynaptic communication. We found the most apparent cortical hierarchical 
organization differentiating between low-level sensory and higher-order transmodal regions 
in the middle of the diffusion time, indicating that the hierarchical organization of the brain 
may reflect the intermediate mechanisms of mono- and polysynaptic communications. 
Associations between the simulated gradients and BMI revealed the strongest relationship 
when the hierarchical structure was most evident. Moreover, the functional gradient-BMI 
association map showed significant correlations with the cytoarchitectonic measures of the 
microstructural gradient and moment features, indicating that BMI-related functional 
connectome alterations were remarkable in higher-order cognitive control-related brain 
regions. Finally, transcriptomic association analysis provided potential biological 
underpinnings, specifying gene enrichment in the striatum, hypothalamus, and cortical cells. 
Our findings provide evidence that structure-function correspondence is strongly coupled 
with BMI when hierarchical organization is most apparent, and the associations are related to 
the multiscale properties of the brain, leading to an advanced understanding of the neural 
mechanisms related to BMI. 
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INTRODUCTION 

Obesity is a prevalent condition worldwide, which is easily measured using the body mass 
index (BMI)[1,2]. Managing body weight is important because a high BMI can lead to 
health-related problems such as type 2 diabetes, cardiovascular disease, sleep apnea, and 
comorbidities[3–6]. Moreover, previous studies have found inter-individual variations in BMI 
to be associated with cognitive function and cell-type-specific metabolic activity[7–10]. 
However, studies linking BMI to large-scale structural and functional brain networks and 
neuronal mechanisms are relatively scarce. 

Neuroimaging studies based on magnetic resonance imaging (MRI) have revealed differences 
in the brain morphology and inter-regional brain connectivity related to variations in the BMI. 
For example, previous studies have found structural alterations in the gray matter and white 
matter in individuals with a high BMI[11–15] and dysfunction in functional brain networks, 
and their relationship to abnormal appetite and energy regulation[16–18]. Recent studies have 
adopted a connectivity analysis to assess interregional functional connectivity based on a 
correlation analysis, and structural connectivity based on diffusion tractography[19,20]. This 
graph-theoretical connectivity analysis has been widely adopted to assess the association 
between the BMI and brain networks[16,17]. However, how structural and functional 
connectome organizations are simultaneously related to the BMI is relatively under-
investigated, although it is evident that brain structure and function are closely 
intertwined[21–26]. In this study, we aimed to explore the structure-function coupling of the 
brain and its association with inter-individual variations in the BMI. 

Structure-function correspondences have been widely investigated in previous studies by 
predicting functional connectivity from structural connectivity via biophysical modeling and 
graph-based network communication models[27–34]. These models are based on synaptic 
communication, which considers polysynaptic pathways in functional interactions[33–37]. A 
recent study proposed a Riemannian optimization framework to assess structure-function 
coupling based on a synaptic communication model[38]. The key idea of this approach is a 
dimensionality-reduction technique that aims to identify a transformation matrix, which 
rotates the low-dimensional eigenvectors of structural connectivity to reconstruct functional 
connectivity. It is governed by a diffusion time parameter that reflects the implications of the 
polysynaptic pathways[38]. In a previous study, the sensory/motor regions were well 
predicted at lower diffusion times (i.e., monosynaptic), whereas the higher-order default-
mode regions required higher diffusion times (i.e., polysynaptic). Here, we assessed 
structure-function coupling using the Riemannian optimization framework and associated it 
with BMI with varying diffusion times. We hypothesized that structurally governed 
functional brain organization may exhibit differential polysynaptic mechanisms related to 
obesity-related traits.  

Multiscale analyses using cytoarchitectural and transcriptomic data can complement the 
imaging-based findings. Previous studies integrated large-scale structural or functional brain 
networks with microcircuit functions and gene expression data[39–44]. For example, our 
previous work suggested a consolidated framework linking structural connectome alterations 
in individuals with autism spectrum disorder and neuronal excitation/inhibition imbalance, as 
well as developmental enrichment of gene expression[45]. Such analyses have been widely 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 19, 2023. ; https://doi.org/10.1101/2023.07.18.549603doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.18.549603
http://creativecommons.org/licenses/by-nc-nd/4.0/


Namgung et al. Structure-function coupling and body mass index 

adopted to investigate the multiscale properties of shared effects of multiple psychiatric 
conditions[41,46]. Taken together, this multiscale framework may provide insights into the 
underlying biological processes related to network-level brain alterations.  

In this study, we investigated structure-function coupling using a Riemannian optimization 
framework [38] and assessed its relationship with inter-individual variations in BMI. 
Furthermore, we performed multiscale analysis by linking macroscale data to 
cytoarchitectural and gene expression data. Our work provides insights into the 
neurobiological aspects of BMI-related structure-function coupling.  

 

 

RESULTS 

Structure-function coupling using Riemannian optimization 

We opted for a Riemannian optimization framework to predict functional connectivity from 
structural connectivity [38] (Fig. 1a), using multimodal MRI data obtained from the Human 
Connectome Project (HCP) database[47]. In brief, this technique determines the optimal 
transformation of structural connectivity to reconstruct functional connectivity in a low-
dimensional manifold space by varying the diffusion time (t) [38] (see Methods). At the 
global level, the prediction performance was improved as the diffusion time increased, and 
the higher spatial granularity showed less variability than lower granularities (mean ± 
standard deviation (SD) correlation coefficients = 0.775 ± 0.024 / 0.810 ± 0.015 / 0.805 ± 
0.022 for 200, 300, and 400 parcels at t = 1; and 0.870 ± 0.016 / 0.900 ± 0.017 / 0.871 ± 
0.022 at t = 10; Fig. 1b). We repeated the analysis 30 times using different training and test 
datasets to confirm the stability of the predictive model (mean and 95% confidence interval 
[CI] of the correlation coefficients = 0.805 (0.8028, 0.8079) / 0.904 (0.9009, 0.9073) at t = 1 
and 10 for 300 parcels; Fig. 1b). We quantified the prediction performance for each brain 
region; similarly, a greater predictive performance was observed at higher diffusion times 
(Fig. 1c). When we stratified the performance across seven intrinsic functional networks[48], 
the sensory/motor regions demonstrated high accuracy with low diffusion times (mean 
correlation coefficients of visual/somatomotor = 0.775 / 0.886 at t = 1 and 0.881 / 0.931 at t = 
10), whereas the transmodal regions of the frontoparietal and default mode networks showed 
low performance at low diffusion times but improved monotonically at higher diffusion times 
(frontoparietal/default mode = 0.721 / 0.672 at t = 1 and 0.845 / 0.837 at t = 10; Fig. 1c). The 
limbic region exhibited the lowest prediction performance compared with the other networks. 
These findings were consistent upon performing an analysis using the Desikan–Killiany-
based sub-parcellation with 300 parcels [49,50] (Supplement Fig. 1). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 19, 2023. ; https://doi.org/10.1101/2023.07.18.549603doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.18.549603
http://creativecommons.org/licenses/by-nc-nd/4.0/


Namgung et al. Structure-function coupling and body mass index 

 

Fig. 1 | Structure-function coupling using Riemannian optimization. (a) Schema of the Riemannian 
optimization approach to simulate functional connectivity from the structural connectivity at different diffusion 
times (t). (b) We calculated the linear correlations between the actual and simulated functional connectivity 
across diffusion times for each individual (left). Each dot indicates each individual. We repeated the analysis 30 
times with different training and test datasets for the Schaefer atlas with 300 parcels (right). The black line is the 
mean of 30 iterations, and the gray area indicates a 95% confidence interval (CI). (c) Regional prediction 
accuracy is shown on brain surfaces, and the box plots indicate the prediction accuracy of each brain region 
(left). The prediction performance was stratified according to the seven functional networks (middle and right). 
Abbreviations: SC, structural connectivity; FC, functional connectivity; sFC, simulated functional connectivity. 

 

Hierarchical organization of the functional gradients across diffusion times 

To assess the cortical hierarchical organization of the functional connectome, we estimated 
the principal gradients from the simulated functional connectivity across the diffusion times 
(Fig. 2a and Supplement Fig. 2)[50,51]. The eigenvalue profile of the simulated gradients 
was highly similar to that estimated from the actual functional connectivity when the 
diffusion time was six (Fig. 2b). Specifically, the eigenvalue of the first simulated gradient 
was largely similar to the actual gradient (explained information = 46.0, 34.8, and 31.2% for 
simulated gradients at t = 1, 6, and 10; 34.8% for actual functional gradient). As the 
eigenvalues of the estimated gradients showed clear elbow between component number three 
and four, and the three gradients explained the information of the simulated functional 
connectivity with approximately 75, 71, and 68% at t = 1, 6, and 10, we thereafter considered 
three gradients. Similar to previous studies based on the HCP dataset[51], the first gradient 
differentiated sensory regions from transmodal regions, the second differentiated visual from 
somatomotor areas, and the third differentiated multiple demand networks from the rest of the 
brain. We summarized the distribution of the gradient values according to the seven 
functional networks across diffusion times. The SD of the distribution decreased at higher 
diffusion times, particularly in the frontoparietal and default mode networks (frontoparietal 
network:0.269, 0.216, and 0.209; default mode network:0.472, 0.410, and 0.356 at t = 1, 6, 
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and 10; joy plot in Fig. 2a). To quantitatively evaluate the discrimination of gradient values 
between the sensory and transmodal regions, we calculated the distance of the distribution of 
gradient values between the visual/somatomotor and frontoparietal/default-mode networks. 
We confirmed that low-level sensory and higher-order transmodal regions were clearly 
differentiated at t = 6 (Fig. 2c). In the sensory areas, a noticeable change was observed 
between t = 1 and 2, and in the transmodal regions between t = 5 and 6. These findings 
indicated that sensory regions were well predicted with direct monosynaptic connections, 
whereas transmodal regions might be explained via indirect polysynaptic pathways. The 
changes in the second gradient across diffusion times showed large differences in the motor 
and visual areas, and the third gradient in the task-related areas (Supplement Fig. 2). 

 

Fig. 2 | Differences in the cortical hierarchy of structure-function coupling across diffusion times. (a) The 
first gradient of the simulated functional connectivity is shown on brain surfaces across different diffusion times 
(left). The joy plots represent the distribution of the gradient values summarized based on the seven functional 
networks (right). (b) A scree plot describes information explained across the principal components of simulated 
and actual functional connectivity data. (c) We calculated the distance of the gradient value distribution between 
sensory and transmodal regions (top). The differences in gradient values that showed noticeable changes 
between diffusion times are shown on the brain surfaces (bottom). 

 

Associations with BMI  

We associated the three simulated gradients with interindividual variations in BMI across 
diffusion times after controlling for age, sex, and head motion using the BrainStat toolbox 
(https://github.com/MICA-MNI/BrainStat)[52]. At diffusion times 5 and 6, we found 
significant associations in the frontoparietal and default mode regions, suggesting that 
variations in the BMI are related to the brain functions involved in higher-order cognitive 
control systems (Fig. 3). Indeed, the overall t-statistic values and number of significantly 
associated brain regions were particularly high at t = 6, which showed the clearest 
hierarchical differentiation. 
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Fig. 3 | Associations between the simulated functional gradients and body mass index (BMI). Hotelling’s T2 
statistics of the whole cortex and the regions that showed significant relations (FDR < 0.05) are shown on the 
brain surfaces across the diffusion times. The t-statistics are stratified according to seven functional networks 
and represented with bar plots. Abbreviation: FDR, false discovery rate. 

 

Cytoarchitectonic association analysis 

To provide the biological underpinnings of BMI-related structure-function coupling, we 
estimated the microstructural gradient and moment features from BigBrain data, which are 
volumetrically reconstructed post-mortem data[53]. The strongest correlations were found at t 
= 6 (gradient: r = 0.393, pspin-false discovery rate (FDR) < 0.001; mean: r = 0.316, pspin-FDR = 0.029; 
SD: r = -0.410, pspin-FDR < 0.001; skewness: r = 0.361, pspin-FDR < 0.001; kurtosis: r = 0.362, 
pspin-FDR < 0.001; Fig. 4). These findings suggest that alterations in structure-function 
coupling according to the BMI are associated with the brain microstructure, where the effects 
are dominant in transmodal areas with low laminar differentiation. 
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Fig. 4 | Cytoarchitectonic association analysis. (a) The distribution of cytoarchitectonic features (gradient, 
mean, SD, skewness, and kurtosis) are shown on the brain surfaces. The correlation coefficients between the 
cytoarchitectonic features and the structure-function coupling according to the BMI across diffusion times are 
shown with bar plots. (b) The correlation plots represent associations at diffusion time six. The distributions of 
correlation coefficients from 10,000 spin permutation tests are reported with histograms, and the actual 
correlation coefficients are represented with red lines. Abbreviations: SD, standard deviation; BMI, body mass 
index; FDR, false discovery rate. 

 

Transcriptomic association analysis 

Additionally, we performed a transcriptomic association analysis with structure-function 
coupling according to the BMI to assess potential genetic relationships (Fig. 5a)[54,55]. 
Correlations with the gene expression data were high at diffusion times 5 and 6 (Fig. 5b). 
Cell type-specific expression analysis using the gene lists at t = 6 (Supplementary Data) 
showed enrichment of cells in the striatum, hypothalamus, and cortex (Fig. 5c)[56–60]. 
Consistent findings were obtained using the observed genes at diffusion time 5 
(Supplementary Fig. 3 and Supplementary Data).  
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Fig. 5 | Transcriptomic association analysis. (a) The expression map of 15,677 genes in the brain regions. (b) 
The spatial correlations between the expression of each gene and the t-statistics of the BMI-related structure-
function coupling are shown with box plots. Black lines represent the top 100 genes that showed negative and 
positive correlations. (c) Cell-type specific expression analysis identifies candidate cell populations. The 
hexagon size is scaled to the proportion of the gene lists, and varying stringencies for enrichment are 
represented by the size of the hexagons (specificity index threshold = 0.05, 0.01, 0.001, and 0.0001, 
respectively). Colors represent the FDR-corrected p-values. Abbreviations: BMI, body mass index; FDR, false 
discovery rate. 

 

 

DISCUSSION 

Structure-function coupling is one of the key questions in neuroscience and may provide 
insights for understanding unseen neural mechanisms related to large-scale brain networks. In 
this study, we incorporated structural and functional information using a Riemannian 
optimization approach by varying the diffusion time parameters that reflect the implications 
of polysynaptic communication[38]. The simulation performance of the functional 
connectivity from the structural connectivity improved with increasing diffusion time, and the 
performance was remarkable in the transmodal regions, indicating that polysynaptic 
communication is required to simulate the higher-order functional dynamics of the 
transmodal systems. Moreover, we found that the hierarchical organization of the simulated 
functional gradients was most evident in the middle of the mono-and polysynaptic 
communications and that BMI was most significantly associated at these stages. BMI-related 
structure-function coupling was further associated with cytoarchitectonic and gene expression 
maps, suggesting the potential biological underpinnings of our findings. 

Structure-function coupling has been actively studied in many previous studies, and higher-
order transmodal regions require polysynaptic mechanisms, whereas low-level sensory 
systems can be modeled via relatively direct monosynaptic communication [27]–[34]. In this 
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study, we adopted a Riemannian optimization approach to simulate the functional 
connectivity from structural information across different diffusion times to reflect 
polysynaptic communication[38]. This approach can perform the simulation at an individual 
participant level, enabling the investigation of the associations between structure and function 
coupling and behavioral or clinical traits at an individual level. We demonstrate the 
robustness of the model by changing the spatial granularities and parcellation schemes and 
applying a strict cross-validation framework. We consistently observed that the transmodal 
regions, including the frontoparietal and default-mode networks, were optimized when the 
diffusion time was high, indicating that these systems require multi-hop polysynaptic 
communication compared to low-level sensory systems. To systematically assess the 
topology of structurally governed functional networks, we estimated low-dimensional 
eigenvectors from the simulated functional connectivity. We found that the hierarchical 
organization differentiating the sensory and transmodal systems was notable in the middle of 
the diffusion times. The human brain has evolved to form a hierarchically organized cortical 
axis[61–64], and our findings may provide insights into random walk processes to describe 
the structurally governed functional dynamics along the cortex while forming cortical 
hierarchies. 

Our study evaluated the associations between simulated functional gradients and inter-
individual variations in BMI and highlighted significant effects on the frontoparietal and 
default mode networks at diffusion time, which revealed a notable cortical hierarchy. These 
findings suggest that variations in the BMI are associated with brain hierarchy. Indeed, 
previous studies complement our results in that individuals with high BMI show disruptions 
in the modular architecture and hierarchical organization of the brain, particularly in the 
transmodal regions[16,65]. Thus, variations in the BMI may be associated with synaptic 
communication along the cortical hierarchy, suggesting that obesity may reduce network 
communication efficiency among brain regions, resulting in delays in information 
transmission for the decision-making process. Furthermore, association analysis with 
cytoarchitectural measures revealed that BMI-related functional network alterations were 
associated with cortical layer-wise cell distribution. Our findings suggest that variations in 
the BMI may alter cell distribution within the cortical layers, which complement prior studies 
that demonstrated reduced neuronal density in the frontal and temporal regions in individuals 
with a high BMI[66].  

Cell type-specific expression analysis provided further insights into BMI-related structure-
function coupling. We observed associations among the striatum, hypothalamus, and cortical 
cells. The striatum plays an important role in reward processing[67], and the hypothalamus is 
involved in hormone and nutrient sensing, which maintains body weight, food intake, and 
energy expenditure[68]. Altered hypothalamic function is related to the dysfunction of the 
inhibitory circuit, inducing hedonic eating[69]. Indeed, previous studies have indicated that 
circuits involving the hypothalamus, striatum, and cortex are important for regulating 
metabolic homeostasis[70]. Although direct relationships between gene expression and 
macroscale structure-function coupling should be investigated in more depth, our cell type-
specific expression analysis demonstrated the potential for constructing a consolidated 
framework linking BMI-related macroscale brain network reconfiguration and microscale 
perspectives.  
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In summary, we observed strong associations between BMI and structure-function coupling 
when the cortical hierarchy was clearly differentiated, and these associations were further 
related to brain microstructure and gene expression. Our findings provide insights into the 
polysynaptic communication mechanisms of BMI-related structure-function coupling in 
large-scale brain networks. 

 

 

METHODS 

Participants 

We obtained T1- and T2-weighted structural, diffusion, and resting-state functional MRI data 
from the S1200 release of the Human Connectome Project (HCP) database 
(http://www.humanconnectome.org/)[47]. Among the 1,206 participants, we excluded those 
who were genetically related (i.e., twins), and had a family history of mental illness, history 
of drug ingestion, and incomplete multimodal imaging data. Finally, 290 participants (mean ± 
SD age = 28.3 ± 3.9 years; 51.3 % female) were included in our analysis. The mean and SD 
of BMI were 26.06 ± 4.85�kg/m2, and the range�was between 17.01 and 42.91�kg/m2. 

 

MRI acquisition 

MRI images were obtained using a Siemens Skyra 3T scanner at the University of 
Washington. The T1-weighted images were acquired using a magnetization-prepared rapid 
gradient echo (MPRAGE) sequence (repetition time [TR]�=�2400�ms; echo time 
[TE]�=�2.14�ms; field of view [FOV]�=�224�×�224�mm2; voxel size�=�0.7�mm2; 
number of slices�=�256), and the T2-weighted MRI data were scanned using a T2-SPACE 
sequence, which had the same parameters as the T1-weighted data but different TR (3,200 ms) 
and TE (565 ms). Diffusion MRI data were obtained using a spin-echo echo-planar imaging 
(SE-EPI) sequence (TR = 8700 ms, TE = 90 ms, flip angle = 90°, voxel size = 2 mm3, 70 
slices, FOV = 192 × 192 mm2, matrix size = 96 × 96 × 70, b-value = 1000 s/mm2, 63 
diffusion directions, six b0 images). Resting-state functional MRI data were acquired using a 
gradient-echo EPI sequence (TR�=�720�ms, TE�=�33.1�ms; 
FOV�=�208�×�180�mm2, voxel size�=�2�mm3, number of slices�=�72, and number 
of volumes�=�1,200). During the functional MRI scan, participants were instructed to keep 
their eyes open while looking at a fixed cross. Functional MRI consisted of two sessions, 
each containing data in a phase-encoded direction from left-to-right and right-to-left, 
providing up to four time series per participant. 

 

MRI data preprocessing 

The HCP database provides minimally preprocessed data using FSL, FreeSurfer, and 
Workbench[71–73]. Briefly, the T1- and T2-weighted images were corrected for gradient 
nonlinearity and b0 distortions, and co-registered using a rigid-body transformation. Bias 
field correction was performed based on the inverse intensities from T1- and T2-weighting. 
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The processed data were nonlinearly registered onto the Montreal Neurological Institute 
(MNI152) standard space, and the pial and white surfaces were generated by following the 
boundaries between the different tissues[74–76]. The mid-thickness surface was generated by 
averaging the pial and white surfaces and was used to create an inflated surface. The 
spherical surface was registered to the Conte69 template using MSMAll, and 164k vertices 
were downsampled to a 32k vertex mesh[77,78]. Diffusion MRI data were corrected for 
susceptibility distortions, head motion, and eddy currents [44]. Resting-state functional MRI 
data were corrected for EPI distortion and head motion. Data were registered to the T1-
weighted image and subsequently to the MNI152 space, and magnetic field bias correction, 
skull removal, and intensity normalization were performed. Noise components resulting from 
head movement, white matter, heartbeat, and arterial- and aortic-related contributions were 
removed using the FMRIB’s ICA-based X-noiseifier (ICA-FIX)[79]. Using a cortical ribbon-
constrained volume-to-surface mapping algorithm, the time-series data were mapped to a 
standard gray ordinate space.  

 

Structural and functional connectivity construction 

Structural connectomes were generated from preprocessed diffusion MRI data using 
MRtrix3[80]. Anatomically constrained tractography was performed using T1-weighted 
image-driven tissue types, including the cortical and subcortical gray matter, white matter, 
and cerebrospinal fluid[81]. After co-registering the T1-weighted and diffusion MRI data 
using boundary-based registration, we applied a transformation to the tissue types to align 
them in the native diffusion MRI space. We estimated multishell and multitissue response 
functions and performed constrained spherical deconvolution and intensity normalization[82]. 
Tractograms were generated by seeding from all white matter voxels using a probabilistic 
approach [83] with 40 million streamlines, a maximum tract length of 250, and a fractional 
anisotropy cutoff of 0.06. We subsequently applied spherical deconvolution informed filtering 
of tractograms (SIFT2) to reconstruct the streamlines weighted by cross-section 
multipliers[84]. Finally, the structural connectivity matrix was constructed using the Yeo 
seven-network-based Schaefer atlas with 200, 300, and 400 parcels, [48,85] as well as the 
Desikan–Killiany-based sub-parcellation with 300 parcels [49,50]and log-transformed. 
Functional connectomes were constructed by calculating linear correlations of functional time 
series between two different regions defined using the Schaefer atlas with 200, 300, and 400 
parcels [48,85] and Desikan–Killiany-based sub-parcellation with 300 parcels[49,50]. The 
correlation coefficients were Fisher’s r-to-z-transformed to render the data more normally 
distributed[86].  

 

Riemannian optimization for structure-function coupling 

To assess structure-function coupling, we adopted the Riemannian optimization approach[38]. 
Briefly, it generates low-dimensional eigenvectors (i.e., diffusion maps) from the structural 
connectivity matrix by applying a nonlinear dimensionality reduction technique (i.e., 
diffusion map embedding)[87]. The diffusion maps are controlled by the diffusion time 
parameter, t, where a higher t embeds the data more closely in the low-dimensional manifold 
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space. By varying the diffusion time parameter between t = 1 and 10, we applied a kernel 
fusion approach to simulate functional connectivity so that the functional connectivity and 
diffusion maps had minimum differences. Specifically, the algorithm determines a 
transformation matrix that rotates the diffusion maps to reconstruct the functional 
connectivity. Thus, the rotation matrix may indicate optimal paths for propagating 
information between different brain regions. We performed a prediction analysis with 
fivefold cross-validation and repeated the analysis 30 times with different training and test 
datasets to mitigate potential subject selection bias. Model performance was evaluated by 
calculating the linear correlation between the elements of the actual and simulated functional 
connectivity matrices. At the regional level, we calculated the linear correlations between 
actual and simulated functional connectivity for each brain region. We stratified the 
correlation coefficients according to seven intrinsic functional communities [48] to evaluate 
the results in terms of functionally differentiated networks. 

 

Simulated functional gradients across diffusion times 

We estimated low-dimensional representations of functional connectivity (i.e., gradients) to 
assess differences in the cortical hierarchy across different diffusion times. Using the 
BrainSpace toolbox (https://github.com/MICA-MNI/BrainSpace)[50], we applied diffusion 
map embedding [87] to the affinity matrix, which was constructed by applying a normalized 
angle kernel to the group-averaged connectivity matrix. Individual gradients were then 
estimated and aligned to the group template gradient using Procrustes analysis[88]. After 
normalizing the gradient values between -1 and 1 using a min–max scaling at each diffusion 
time, we evaluated the shifts in the distribution of the values of the first functional gradient 
for each functional network[48]. Additionally, we calculated the distance of the gradient 
value distributions between the sensory (visual and somatomotor) and transmodal networks 
(frontoparietal and default modes) at each diffusion time point to assess the hierarchical 
differentiation of the brain. 

 

Associations between structure-function coupling and BMI  

We used a standard general linear model to assess the associations between interindividual 
variations in the BMI and structure-function coupling at different diffusion times using the 
BrainStat toolbox (https://github.com/MICA-MNI/BrainStat)[52]. After controlling for age, 
sex, and head movement, defined using framewise displacement, we estimated the 
associations between the BMI and the three simulated functional gradients. The inference was 
based on Hotelling’s t-square statistics, and multiple comparisons across brain regions were 
corrected using FDR[89]. 

 

Cytoarchitectonic and transcriptomic association analyses 

To elucidate the biological underpinnings of the association between BMI and structure-
function coupling measures, we performed cytoarchitectonic and transcriptomic association 
analyses. Cytoarchitectural features were calculated from the BigBrain dataset, an ultra-high-
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resolution, three-dimensional volumetric reconstruction of a post-mortem Merker-stained and 
sliced human brain from a 65-year-old male (https://bigbrain.loris.ca/main.php)[53]. Data 
were mapped onto a Schaefer atlas with 300 parcels[85]. We first generated 14 
equivolumetric cortical surfaces within the cortex 
(https://github.com/caseypaquola/BigBrainWarp) and sampled intensity values along these 
surfaces. We then constructed a microstructural profile covariance matrix based on the linear 
correlations of the cortical depth-dependent intensity profiles between different brain regions, 
controlling for the average whole-cortex intensity profile[90]. The matrix was thresholded at 
zero and log-transformed, and a microstructural gradient was generated using BrainSpace 
(https://github.com/MICA-MNI/BrainSpace)[50]. An affinity matrix was constructed using a 
normalized angle kernel with the top 10% entries for each parcel and we applied diffusion 
map embedding to generate a microstructural gradient [87]. Next, we calculated four moment 
features (mean, SD, skewness, and kurtosis) from the microstructural profile of each brain 
region. Mean and SD represent the overall intensity distribution across the cortical layers, 
skewness represents the shift in intensity values towards the supragranular layer (positive 
skewness) or flat distribution (negative skewness), and kurtosis indicates whether the tail of 
the intensity distribution contains extreme intensity values[41]. We associated the t-statistics 
of BMI and structure-function coupling relationships with the cytoarchitectonic features by 
calculating linear correlations with 1,000 spin permutation tests to account for spatial 
autocorrelations[91]. Multiple comparisons across features were corrected using FDR[89]. 

Transcriptomic association analysis was performed using the Abagen toolbox 
(https://abagen.readthedocs.io/en/stable/)[54,55]. The toolbox processed a dataset containing 
microarray expression data collected from six post-mortem human brains obtained from the 
Allen Human Brain Atlas[92]. We mapped the expression data onto parcels, and the missing 
data were interpolated by assigning the expression of the nearest tissue sample. As four of the 
six donors provided expression maps only in the left hemisphere, the expression data were 
mirrored from the left to right hemispheres. We used the differential stability method to select 
probes with multiple probe indexed expression. It computes the Spearman correlation of the 
expression data for every pair of donors, and the probe with the highest correlation is retained. 
The expression data were normalized using a scaled robust sigmoid function to mitigate 
potential differences in the expression values among donors. Finally, a gene expression map 
was constructed by averaging the expression data from six donors. We subsequently 
calculated the linear correlations between each gene expression data point and the t-statistics 
of BMI and structure-function coupling according to the diffusion times. In addition, we 
conducted cell-type-specific expression analysis (http://genetics.wustl.edu/jdlab/csea-tool-2/) 
using the genes that demonstrated an absolute correlation coefficient > 0.45 and passed for 
FDR < 0.05[93]. 
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SUPPLEMENTARY INFORMATION 

 

Supplementary Fig. 1 | Structure-function coupling using Riemannian optimization based on 
the Desikan–Killiany-based sub-parcellation with 300 parcels. (a) We calculated linear 
correlations between the actual and simulated functional connectivity across diffusion times for each 
individual (left). Each dot indicates each individual. We repeated the analysis 30 times with different 
training and test datasets for the Schaefer atlas with 300 parcels (right). The black line is the mean of 
30 iterations, and the gray area indicates a 95% confidence interval (CI). (b) Regional prediction 
accuracy is demonstrated on the brain surfaces, and the box plots indicate the prediction accuracy of 
each brain region (left). The prediction performance was stratified according to the seven functional 
networks (middle and right).   
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Supplementary Fig. 2 | Hierarchical organization of the second and third simulated functional 
gradients across diffusion times. The second and third gradients of simulated functional connectivity 
are shown (left and right). The differences in the gradient values between t = 1 and 10 are shown on 
the brain surfaces (middle). 
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Supplementary Fig. 3 | Transcriptomic association analysis. The correlation coefficient between 
the t-statistic map at diffusion time 5 and the gene expression was calculated, and we performed cell-
type specific expression analysis. 
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Supplementary Data  

A total of 201 genes that were associated with BMI-related structure-function coupling at 
diffusion time 5 

['ACAN', 'ACOX3', 'ACSL6', 'ADAMTS3', 'ADM', 'ANKRD55', 'AP3S1', 'ARHGAP28', 'ARHGAP33', 

'ARHGDIG', 'ASS1', 'ATP2B3', 'ATP9A', 'B3GAT1', 'B4GALT2', 'BAIAP3', 'BATF3', 'BCRP2', 

'C11orf97', 'C17orf67', 'C1S', 'C2CD4C', 'C2orf80', 'C4orf33', 'C8orf46', 'CA10', 'CCDC3', 

'CCDC58', 'CCNYL1', 'CDH10', 'CDH7', 'CDH8', 'CDKN2D', 'CEP170B', 'CHCHD6', 'CLGN', 'CNIH2', 

'CRIP2', 'CTC1', 'CTXN1', 'CUX1', 'CXorf57', 'CYP46A1', 'DCAF11', 'DDA1', 'DDN', 'DDRGK1', 

'DOK6', 'DPF1', 'DPP10-AS1', 'DPYSL3', 'DUSP3', 'DYRK2', 'DZIP3', 'E2F3', 'EEPD1', 'EFCAB1', 

'EFHC2', 'EFNB2', 'EFNB3', 'ENOX1', 'EPHA10', 'EPOP', 'ERFE', 'EYA4', 'F12', 'FAM102B', 

'FAM110C', 'FASTKD1', 'FIGNL2', 'FREM3', 'FSTL1', 'FXYD6', 'FZR1', 'GABRB1', 'GAS2', 'GGN', 

'GLRA3', 'GMFB', 'GSG1', 'GSS', 'GSTM3', 'GULP1', 'HDAC9', 'HDC', 'HES4', 'HRH1', 'HS3ST1', 

'HSD11B1L', 'HTR7P1', 'IFT22', 'IP6K2', 'ITGA11', 'JPH3', 'KCNA5', 'KCNC4', 'KCNG3', 

'KCNMB4', 'KCTD15', 'KIF21B', 'KIRREL2', 'L3MBTL4', 'LAG3', 'LCA5', 'LINC00484', 

'LINC01102', 'LINC01137', 'LINC01197', 'LINC02217', 'LOC100288911', 'LOC100294145', 

'LOC440934', 'LOC728392', 'LRRC2', 'LRRC49', 'LY6H', 'LYPD8', 'MBOAT7', 'MC1R', 'MEA1', 

'MOB1B', 'MORN4', 'MRAS', 'MSANTD1', 'MTA3', 'MUM1L1', 'NAALAD2', 'NANOS1', 'NEB', 

'NEUROD6', 'NEXN', 'NLE1', 'NOL4', 'NOV', 'NT5DC2', 'NT5DC3', 'NUDT14', 'OPRM1', 'PCBD1', 

'PCNT', 'PECR', 'PI4K2A', 'PLCD4', 'PLPPR3', 'PLXNA1', 'PNCK', 'PPP4R4', 'PRKCD', 'PRR16', 

'PTPRF', 'PUSL1', 'PYGL', 'QRFPR', 'RAB36', 'RASAL1', 'RASSF4', 'RBP4', 'RGS4', 'RNF150', 

'RRAS2', 'RSPO2', 'SCARA5', 'SCN3B', 'SH2D5', 'SHISA9', 'SHISAL1', 'SIDT1', 'SLC25A23', 

'SLC26A4-AS1', 'SLC46A3', 'SMIM10L2A', 'SNHG8', 'SNX7', 'SPRN', 'ST3GAL6', 'ST6GALNAC5', 

'STX1A', 'SUSD1', 'SVOP', 'SYNE4', 'TBC1D24', 'TCEA3', 'TFPT', 'TM2D3', 'TMEM108', 

'TMEM130', 'TMEM145', 'TMEM150C', 'TOM1L1', 'TRPC3', 'TSPAN33', 'TTPAL', 'TXN', 'VAV3', 

'VIT', 'WDR31', 'WDR86', 'WNT10B', 'WTIP', 'XYLT1', 'ZNF350'] 

 

A total of 230 genes that associated with BMI-related structure-function coupling at diffusion 
time 6 

['ACOX3', 'ACTC1', 'ADAMTS3', 'ADCY2', 'ADCY7', 'ADTRP', 'AGPAT2', 'AMIGO2', 'ANKRD55', 

'ARHGAP28', 'ARHGDIG', 'ARL5A', 'ARPP19', 'ASS1', 'ATP9A', 'B3GAT1', 'BAIAP2L2', 'BAIAP3', 

'BATF3', 'BTN2A2', 'C17orf67', 'C1S', 'C2CD4C', 'C4orf33', 'C8orf46', 'CA10', 'CACNG3', 

'CAMK1G', 'CCDC136', 'CCDC3', 'CCDC58', 'CCDC68', 'CCK', 'CCKBR', 'CCNYL1', 'CD83', 'CDH10', 

'CDH8', 'CDKN2D', 'CEP170B', 'CHCHD3', 'CHCHD6', 'CHRDL1', 'CHRM2', 'CIB1', 'CLGN', 'CLIP4', 

'CMPK1', 'CNTLN', 'CRIP2', 'CRYM', 'CTC1', 'CTXN1', 'CUX1', 'CYB561', 'CYP46A1', 'DCAF11', 

'DCP2', 'DDRGK1', 'DGKB', 'DLEU7', 'DLK2', 'DOC2A', 'DOK6', 'DPF1', 'DPP10-AS1', 'DUSP3', 

'DYRK2', 'DZIP3', 'E2F3', 'EEPD1', 'EFCAB1', 'EFNB2', 'ENOX1', 'EPHA10', 'EPOP', 'FADS3', 

'FAM102B', 'FAM110C', 'FAM13B', 'FASTKD1', 'FKBP5', 'FREM3', 'FRMD4A', 'FSTL1', 'FXYD6', 

'GAP43', 'GAS2', 'GAS6', 'GGN', 'GIT2', 'GLRA3', 'GMFB', 'GRASP', 'GSG1', 'GSS', 'GUCA2B', 

'GULP1', 'HDAC9', 'HDC', 'HERC3', 'HRH1', 'HS3ST1', 'HSD11B1L', 'HSPA4L', 'HTR7P1', 'IP6K2', 

'JMJD1C-AS1', 'KCNA5', 'KCNC4', 'KCNMB4', 'KIF21B', 'KIRREL2', 'KLF6', 'KREMEN1', 'L3MBTL4', 

'LAMB1', 'LCA5', 'LINC-PINT', 'LINC00484', 'LINC02217', 'LOC440934', 'LRRC2', 'LRRC49', 

'LRRC73', 'LY6H', 'LY86-AS1', 'LYPD8', 'MAPK11', 'MC1R', 'MCUB', 'MEA1', 'MEIS3', 'MFSD9', 

'MKL2', 'MOB1B', 'MORN4', 'MRAS', 'MSANTD1', 'MTA3', 'MTCH1', 'MUM1L1', 'MYDGF', 'NFKBIE', 

'NIPA1', 'NOL4', 'NOV', 'NT5DC2', 'NT5DC3', 'NUDT14', 'NUDT4', 'OLFM3', 'OPRM1', 'PCBD1', 

'PCTP', 'PDZD8', 'PECR', 'PI4K2A', 'PIK3CD', 'PLCD4', 'PLXNA1', 'PPEF1', 'PRKCD', 'PRNP', 

'PTPRF', 'QRFPR', 'RASAL1', 'RASL11B', 'RASSF4', 'RBP4', 'RETREG1', 'RGS4', 'RRM2B', 

'RSPO2', 'RTL8C', 'RTP1', 'RUNDC3A', 'SCARA5', 'SCLT1', 'SECISBP2', 'SFTPD', 'SH2D5', 

'SHISAL1', 'SLC26A4-AS1', 'SLC35A2', 'SLC46A3', 'SLC4A9', 'SMIM10L2A', 'SMIM10L2B', 

'SPICE1', 'SPINT2', 'SPON2', 'SPPL3', 'SPRN', 'SRFBP1', 'ST3GAL6', 'ST6GALNAC5', 'STMN1', 

'STX12', 'STX1A', 'SVOP', 'SYNE4', 'TBC1D24', 'TIAM1', 'TM2D3', 'TMEM108', 'TMEM130', 

'TMEM150C', 'TOM1L1', 'TPD52', 'TPST1', 'TRIM27', 'TSPAN33', 'TTC21B', 'TTPAL', 'TUBB2A', 

'TUBB6', 'UBE2G1', 'UBE2Z', 'VAV3', 'VIT', 'VSTM2L', 'WDR31', 'WDR86', 'WNT10B', 'WTIP', 

'XYLT1', 'YTHDF2', 'YWHAH', 'ZBTB44'] 
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