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ABSTRACT

Body mass index (BMI) is an indicator of obesity, and recent neuroimaging studies have
demonstrated inter-individual variations in BMI to be associated with altered brain structure
and function. However, how the structure-function correspondence is altered according to
BMI is under-investigated. In this study, we combined structural and functional connectivity
using Riemannian optimization with varying diffusion time parameters and assessed their
association with BMI. First, we simulated functional connectivity from structural
connectivity and generated low-dimensional principal gradients of the simulated functional
connectivity across diffusion times, where low and high diffusion times indirectly reflected
mono- and polysynaptic communication. We found the most apparent cortical hierarchical
organization differentiating between low-level sensory and higher-order transmodal regions
in the middle of the diffusion time, indicating that the hierarchical organization of the brain
may reflect the intermediate mechanisms of mono- and polysynaptic communications.
Associations between the simulated gradients and BMI revealed the strongest relationship
when the hierarchical structure was most evident. Moreover, the functional gradient-BMI
association map showed significant correlations with the cytoarchitectonic measures of the
microstructural gradient and moment features, indicating that BMI-related functional
connectome aterations were remarkable in higher-order cognitive control-related brain
regions. Finaly, transcriptomic association analysis provided potential biological
underpinnings, specifying gene enrichment in the striatum, hypothalamus, and cortical cells.
Our findings provide evidence that structure-function correspondence is strongly coupled
with BM1 when hierarchical organization is most apparent, and the associations are related to
the multiscale properties of the brain, leading to an advanced understanding of the neural
mechanisms related to BMI.

KEYWORDS: structure-function coupling; Riemannian optimization; synaptic communication;
diffusion time; body massindex
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INTRODUCTION

Obesity is a prevalent condition worldwide, which is easily measured using the body mass
index (BMI)[1,2]. Managing body weight is important because a high BMI can lead to
health-related problems such as type 2 diabetes, cardiovascular disease, sleep apnea, and
comorbidities[3-6]. Moreover, previous studies have found inter-individual variationsin BMI
to be associated with cognitive function and cell-type-specific metabolic activity[7-10].
However, studies linking BMI to large-scale structural and functional brain networks and
neuronal mechanisms are relatively scarce.

Neuroimaging studies based on magnetic resonance imaging (MRI) have revealed differences
in the brain morphology and inter-regional brain connectivity related to variations in the BMI.
For example, previous studies have found structural aterations in the gray matter and white
matter in individuals with a high BMI[11-15] and dysfunction in functional brain networks,
and their relationship to abnormal appetite and energy regulation[16-18]. Recent studies have
adopted a connectivity analysis to assess interregional functional connectivity based on a
correlation analysis, and structural connectivity based on diffusion tractography[19,20]. This
graph-theoretical connectivity analysis has been widely adopted to assess the association
between the BMI and brain networks[16,17]. However, how structural and functional
connectome organizations are simultaneously related to the BMI is relatively under-
investigated, athough it is evident that brain structure and function are closely
intertwined[21-26]. In this study, we aimed to explore the structure-function coupling of the
brain and its association with inter-individual variations in the BMI.

Structure-function correspondences have been widely investigated in previous studies by
predicting functional connectivity from structural connectivity via biophysical modeling and
graph-based network communication models[27-34]. These models are based on synaptic
communication, which considers polysynaptic pathways in functional interactions33-37]. A
recent study proposed a Riemannian optimization framework to assess structure-function
coupling based on a synaptic communication model[38]. The key idea of this approach is a
dimensionality-reduction technique that aims to identify a transformation matrix, which
rotates the low-dimensional eigenvectors of structural connectivity to reconstruct functional
connectivity. It is governed by a diffusion time parameter that reflects the implications of the
polysynaptic pathways[38]. In a previous study, the sensory/motor regions were well
predicted at lower diffusion times (i.e., monosynaptic), whereas the higher-order default-
mode regions required higher diffusion times (i.e., polysynaptic). Here, we assessed
structure-function coupling using the Riemannian optimization framework and associated it
with BMI with varying diffusion times. We hypothesized that structurally governed
functional brain organization may exhibit differential polysynaptic mechanisms related to
obesity-related traits.

Multiscale analyses using cytoarchitectural and transcriptomic data can complement the
imaging-based findings. Previous studies integrated large-scale structural or functional brain
networks with microcircuit functions and gene expression data[39-44]. For example, our
previous work suggested a consolidated framework linking structural connectome alterations
in individuals with autism spectrum disorder and neuronal excitation/inhibition imbalance, as
well as developmental enrichment of gene expression[45]. Such analyses have been widely
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adopted to investigate the multiscale properties of shared effects of multiple psychiatric
conditions[41,46]. Taken together, this multiscale framework may provide insights into the
underlying biological processes related to network-level brain alterations.

In this study, we investigated structure-function coupling using a Riemannian optimization
framework [38] and assessed its relationship with inter-individual variations in BMI.
Furthermore, we performed multiscae analysis by linking macroscale data to
cytoarchitectural and gene expression data. Our work provides insights into the
neurobiological aspects of BMI-related structure-function coupling.

RESULTS
Structure-function coupling using Riemannian optimization

We opted for a Riemannian optimization framework to predict functional connectivity from
structural connectivity [38] (Fig. 1a), using multimodal MRI data obtained from the Human
Connectome Project (HCP) database[47]. In brief, this technique determines the optimal
transformation of structural connectivity to reconstruct functional connectivity in a low-
dimensional manifold space by varying the diffusion time (t) [38] (see Methods). At the
global level, the prediction performance was improved as the diffusion time increased, and
the higher spatial granularity showed less variability than lower granularities (mean *
standard deviation (SD) correlation coefficients = 0.775 = 0.024 / 0.810 £ 0.015 / 0.805 £
0.022 for 200, 300, and 400 parcels at t = 1; and 0.870 + 0.016 / 0.900 + 0.017 / 0.871 +
0.022 a t = 10; Fig. 1b). We repeated the analysis 30 times using different training and test
datasets to confirm the stability of the predictive model (mean and 95% confidence interval
[CI] of the correlation coefficients = 0.805 (0.8028, 0.8079) / 0.904 (0.9009, 0.9073) att =1
and 10 for 300 parcels; Fig. 1b). We quantified the prediction performance for each brain
region; similarly, a greater predictive performance was observed at higher diffusion times
(Fig. 1c). When we stratified the performance across seven intrinsic functional networks[48],
the sensory/motor regions demonstrated high accuracy with low diffusion times (mean
correlation coefficients of visual/somatomotor = 0.775/0.886 att=1and 0.881/0.931 at t =
10), whereas the transmodal regions of the frontoparietal and default mode networks showed
low performance at low diffusion times but improved monotonically at higher diffusion times
(frontoparietal/default mode = 0.721/0.672 att = 1 and 0.845/ 0.837 at t = 10; Fig. 1c). The
limbic region exhibited the lowest prediction performance compared with the other networks.
These findings were consistent upon performing an analysis using the Desikan—Killiany-
based sub-parcellation with 300 parcels [49,50] (Supplement Fig. 1).
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Fig. 1 | Structure-function coupling using Riemannian optimization. (a) Schema of the Riemannian
optimization approach to simulate functional connectivity from the structural connectivity at different diffusion
times (t). (b) We calculated the linear correlations between the actual and simulated functional connectivity
across diffusion times for each individual (left). Each dot indicates each individual. We repeated the analysis 30
times with different training and test datasets for the Schaefer atlas with 300 parcels (right). The black line is the
mean of 30 iterations, and the gray area indicates a 95% confidence interval (Cl). (c) Regional prediction
accuracy is shown on brain surfaces, and the box plots indicate the prediction accuracy of each brain region
(left). The prediction performance was stratified according to the seven functional networks (middle and right).
Abbreviations. SC, structural connectivity; FC, functional connectivity; sFC, smulated functional connectivity.

Hierarchical organization of the functional gradients acr oss diffusion times

To assess the cortical hierarchical organization of the functional connectome, we estimated
the principal gradients from the simulated functional connectivity across the diffusion times
(Fig. 2a and Supplement Fig. 2)[50,51]. The eigenvalue profile of the simulated gradients
was highly similar to that estimated from the actual functional connectivity when the
diffusion time was six (Fig. 2b). Specifically, the eigenvalue of the first simulated gradient
was largely similar to the actual gradient (explained information = 46.0, 34.8, and 31.2% for
simulated gradients at t = 1, 6, and 10; 34.8% for actual functional gradient). As the
eigenvalues of the estimated gradients showed clear elbow between component number three
and four, and the three gradients explained the information of the simulated functional
connectivity with approximately 75, 71, and 68% at t = 1, 6, and 10, we thereafter considered
three gradients. Similar to previous studies based on the HCP dataset[51], the first gradient
differentiated sensory regions from transmodal regions, the second differentiated visual from
somatomotor areas, and the third differentiated multiple demand networks from the rest of the
brain. We summarized the distribution of the gradient values according to the seven
functional networks across diffusion times. The SD of the distribution decreased at higher
diffusion times, particularly in the frontoparietal and default mode networks (frontoparietal
network:0.269, 0.216, and 0.209; default mode network:0.472, 0.410, and 0.356 at t = 1, 6,
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and 10; joy plot in Fig. 2a). To quantitatively evaluate the discrimination of gradient values
between the sensory and transmodal regions, we calculated the distance of the distribution of
gradient values between the visual/somatomotor and frontoparietal/default-mode networks.
We confirmed that low-level sensory and higher-order transmodal regions were clearly
differentiated at t = 6 (Fig. 2c). In the sensory areas, a noticeable change was observed
between t = 1 and 2, and in the transmodal regions between t = 5 and 6. These findings
indicated that sensory regions were well predicted with direct monosynaptic connections,
whereas transmodal regions might be explained via indirect polysynaptic pathways. The
changes in the second gradient across diffusion times showed large differences in the motor
and visual areas, and the third gradient in the task-related areas (Supplement Fig. 2).
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Fig. 2 | Differencesin the cortical hierarchy of structure-function coupling across diffusion times. (a) The
first gradient of the simulated functional connectivity is shown on brain surfaces across different diffusion times
(Ieft). The joy plots represent the distribution of the gradient values summarized based on the seven functional
networks (right). (b) A scree plot describes information explained across the principal components of smulated
and actual functional connectivity data. (c) We calculated the distance of the gradient value distribution between
sensory and transmodal regions (top). The differences in gradient values that showed noticeable changes
between diffuson times are shown on the brain surfaces (bottom).

Associationswith BMI

We associated the three simulated gradients with interindividual variations in BMI across
diffusion times after controlling for age, sex, and head motion using the BrainStat toolbox
(https://github.com/MICA-MNI/BrainStat)[52]. At diffusion times 5 and 6, we found
significant associations in the frontoparietal and default mode regions, suggesting that
variations in the BMI are related to the brain functions involved in higher-order cognitive
control systems (Fig. 3). Indeed, the overall t-statistic values and number of significantly
associated brain regions were particularly high at t = 6, which showed the clearest
hierarchical differentiation.
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Fig. 3| Associations between the simulated functional gradients and body massindex (BM1). Hotelling's T?
statistics of the whole cortex and the regions that showed significant relations (FDR < 0.05) are shown on the
brain surfaces across the diffusion times. The t-statistics are stratified according to seven functional networks
and represented with bar plots. Abbreviation: FDR, false discovery rate.

Cytoar chitectonic association analysis

To provide the biological underpinnings of BMI-related structure-function coupling, we
estimated the microstructural gradient and moment features from BigBrain data, which are
volumetrically reconstructed post-mortem data[53]. The strongest correlations were found at t
= 6 (gradient: r = 0.393, Pyin-faise discovery rate (FpR) < 0.001; mean: r = 0.316, Pgin-ror = 0.029;
SD: r = -0.410, pginror < 0.001; skewness: r = 0.361, psinror < 0.001; kurtosis: r = 0.362,
Pypinror < 0.001; Fig. 4). These findings suggest that alterations in structure-function
coupling according to the BMI are associated with the brain microstructure, where the effects
are dominant in transmodal areas with low laminar differentiation.
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Fig. 4 | Cytoarchitectonic association analysis. (a) The distribution of cytoarchitectonic features (gradient,
mean, SD, skewness, and kurtosis) are shown on the brain surfaces. The correlation coefficients between the
cytoarchitectonic features and the structure-function coupling according to the BMI across diffusion times are
shown with bar plots. (b) The correlation plots represent associations at diffusion time six. The distributions of
correlation coefficients from 10,000 spin permutation tests are reported with histograms, and the actual
correlation coefficients are represented with red lines. Abbreviations. SD, standard deviation; BMI, body mass
index; FDR, false discovery rate.

Transcriptomic association analysis

Additionally, we performed a transcriptomic association analysis with structure-function
coupling according to the BMI to assess potential genetic relationships (Fig. 5a)[54,55].
Correlations with the gene expression data were high at diffusion times 5 and 6 (Fig. 5b).
Cell type-specific expression analysis using the gene lists at t = 6 (Supplementary Data)
showed enrichment of cells in the striatum, hypothalamus, and cortex (Fig. 5c)[56-60].
Consistent findings were obtained using the observed genes at diffuson time 5
(Supplementary Fig. 3 and Supplementary Data).
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Fig. 5| Transcriptomic association analysis. (a) The expression map of 15,677 genes in the brain regions. (b)
The spatial correlations between the expresson of each gene and the t-statistics of the BMI-related structure-
function coupling are shown with box plots. Black lines represent the top 100 genes that showed negative and
positive correlations. (c) Cell-type specific expression analysis identifies candidate cell populations. The
hexagon size is scaled to the proportion of the gene lists, and varying stringencies for enrichment are
represented by the size of the hexagons (specificity index threshold = 0.05, 0.01, 0.001, and 0.0001,
respectively). Colors represent the FDR-corrected p-values. Abbreviations: BMI, body mass index; FDR, false
discovery rate.

DISCUSSION

Structure-function coupling is one of the key questions in neuroscience and may provide
insights for understanding unseen neural mechanisms related to large-scale brain networks. In
this study, we incorporated structural and functional information using a Riemannian
optimization approach by varying the diffusion time parameters that reflect the implications
of polysynaptic communication[38]. The simulation performance of the functional
connectivity from the structural connectivity improved with increasing diffusion time, and the
performance was remarkable in the transmodal regions, indicating that polysynaptic
communication is required to simulate the higher-order functional dynamics of the
transmodal systems. Moreover, we found that the hierarchical organization of the simulated
functional gradients was most evident in the middle of the mono-and polysynaptic
communications and that BMI was most significantly associated at these stages. BMI-related
structure-function coupling was further associated with cytoarchitectonic and gene expression
maps, suggesting the potential biological underpinnings of our findings.

Structure-function coupling has been actively studied in many previous studies, and higher-
order transmodal regions require polysynaptic mechanisms, whereas low-level sensory
systems can be modeled via relatively direct monosynaptic communication [27]—34]. In this
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study, we adopted a Riemannian optimization approach to simulate the functional
connectivity from structural information across different diffusion times to reflect
polysynaptic communication[38]. This approach can perform the simulation at an individual
participant level, enabling the investigation of the associations between structure and function
coupling and behavioral or clinical traits a an individua level. We demonstrate the
robustness of the model by changing the spatial granularities and parcellation schemes and
applying a strict cross-validation framework. We consistently observed that the transmodal
regions, including the frontoparietal and default-mode networks, were optimized when the
diffusion time was high, indicating that these systems require multi-hop polysynaptic
communication compared to low-level sensory systems. To systematically assess the
topology of structurally governed functional networks, we estimated low-dimensional
eigenvectors from the simulated functional connectivity. We found that the hierarchical
organization differentiating the sensory and transmodal systems was notable in the middle of
the diffusion times. The human brain has evolved to form a hierarchically organized cortical
axig[61-64], and our findings may provide insights into random walk processes to describe
the structurally governed functional dynamics along the cortex while forming cortical
hierarchies.

Our study evaluated the associations between simulated functional gradients and inter-
individual variations in BMI and highlighted significant effects on the frontoparietal and
default mode networks at diffusion time, which revealed a notable cortica hierarchy. These
findings suggest that variations in the BMI are associated with brain hierarchy. Indeed,
previous studies complement our results in that individuals with high BMI show disruptions
in the modular architecture and hierarchical organization of the brain, particularly in the
transmodal regions[16,65]. Thus, variations in the BMI may be associated with synaptic
communication along the cortical hierarchy, suggesting that obesity may reduce network
communication efficiency among brain regions, resulting in delays in information
transmission for the decision-making process. Furthermore, association analysis with
cytoarchitectural measures revealed that BMI-related functional network alterations were
associated with cortical layer-wise cell distribution. Our findings suggest that variations in
the BMI may alter cell distribution within the cortical layers, which complement prior studies
that demonstrated reduced neuronal density in the frontal and temporal regions in individuals
with ahigh BMI[66].

Cell type-specific expression analysis provided further insights into BMI-related structure-
function coupling. We observed associations among the striatum, hypothalamus, and cortical
cells. The striatum plays an important role in reward processing[67], and the hypothalamus is
involved in hormone and nutrient sensing, which maintains body weight, food intake, and
energy expenditure[68]. Altered hypothalamic function is related to the dysfunction of the
inhibitory circuit, inducing hedonic eating[69]. Indeed, previous studies have indicated that
circuits involving the hypothalamus, striatum, and cortex are important for regulating
metabolic homeostasig[70]. Although direct relationships between gene expression and
macroscale structure-function coupling should be investigated in more depth, our cell type-
specific expression analysis demonstrated the potential for constructing a consolidated
framework linking BMI-related macroscale brain network reconfiguration and microscale
perspectives.
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In summary, we observed strong associations between BMI and structure-function coupling
when the cortical hierarchy was clearly differentiated, and these associations were further
related to brain microstructure and gene expression. Our findings provide insights into the
polysynaptic communication mechanisms of BMI-related structure-function coupling in
large-scale brain networks.

METHODS
Participants

We obtained T1- and T2-weighted structural, diffusion, and resting-state functional MRI data
from the S1200 release of the Human Connectome Project (HCP) database
(http://www.humanconnectome.org/)[47]. Among the 1,206 participants, we excluded those
who were genetically related (i.e., twins), and had a family history of mental illness, history
of drug ingestion, and incomplete multimodal imaging data. Finally, 290 participants (mean +
SD age = 28.3 + 3.9 years, 51.3 % female) were included in our analysis. The mean and SD
of BMI were 26.06 + 4.85( kg/m?, and the rangelIwas between 17.01 and 42.91( 1kg/m?”.

MRI acquisition

MRI images were obtained using a Siemens Skyra 3T scanner a the University of
Washington. The T1-weighted images were acquired using a magnetization-prepared rapid
gradient echo (MPRAGE) sequence (repetition time [TR]L=L2400_ms, echo time
[TE]=012.140ms; field of view [FOV] 1= 224[ x[~ 224" mm? voxel size[1=[10.771mm?;
number of slicesLi=L 256), and the T2-weighted MRI data were scanned using a T2-SPACE
sequence, which had the same parameters as the T1-weighted data but different TR (3,200 ms)
and TE (565 ms). Diffusion MRI data were obtained using a spin-echo echo-planar imaging
(SE-EP!) sequence (TR =8700 ms, TE =90 ms, flip angle = 90°, voxel size=2 mm?®, 70
slices, FOV =192 x 192 mm’, matrix size= 96 x 96 x 70, b-value=1000 s/mm?, 63
diffusion directions, six b0 images). Resting-state functional MRI data were acquired using a
gradient-echo EPI sequence (TRC=C72001ms, TE=0133.111ms;
FOV LI=1120811x 1180 mm?, voxel sizel|=112L/mm?, number of slices_I=_172, and number
of volumesl1=[71,200). During the functional MRI scan, participants were instructed to keep
their eyes open while looking at a fixed cross. Functional MRI consisted of two sessions,
each containing data in a phase-encoded direction from left-to-right and right-to-left,
providing up to four time series per participant.

MRI data preprocessing

The HCP database provides minimally preprocessed data using FSL, FreeSurfer, and
Workbench[71-73]. Briefly, the T1- and T2-weighted images were corrected for gradient
nonlinearity and b0 distortions, and co-registered using a rigid-body transformation. Bias
field correction was performed based on the inverse intensities from T1- and T2-weighting.
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The processed data were nonlinearly registered onto the Montreal Neurological Institute
(MNI152) standard space, and the pial and white surfaces were generated by following the
boundaries between the different tissues[74—76]. The mid-thickness surface was generated by
averaging the pial and white surfaces and was used to create an inflated surface. The
spherical surface was registered to the Conte69 template using MSMAII, and 164k vertices
were downsampled to a 32k vertex mesh[77,78]. Diffusion MRI data were corrected for
susceptibility distortions, head motion, and eddy currents [44]. Resting-state functional MRI
data were corrected for EPI distortion and head motion. Data were registered to the T1-
weighted image and subsequently to the MNI152 space, and magnetic field bias correction,
skull removal, and intensity normalization were performed. Noise components resulting from
head movement, white matter, heartbeat, and arterial- and aortic-related contributions were
removed using the FMRIB’s ICA-based X-noiseifier (ICA-FIX)[79]. Using a cortical ribbon-
constrained volume-to-surface mapping algorithm, the time-series data were mapped to a
standard gray ordinate space.

Structural and functional connectivity construction

Structural connectomes were generated from preprocessed diffusion MRI data using
MRtrix3[80]. Anatomically constrained tractography was performed using T1-weighted
image-driven tissue types, including the cortical and subcortical gray matter, white matter,
and cerebrospina fluid[81]. After co-registering the T1-weighted and diffusion MRI data
using boundary-based registration, we applied a transformation to the tissue types to align
them in the native diffusion MRI space. We estimated multishell and multitissue response
functions and performed constrained spherical deconvolution and intensity normalization[82].
Tractograms were generated by seeding from all white matter voxels using a probabilistic
approach [83] with 40 million streamlines, a maximum tract length of 250, and a fractional
anisotropy cutoff of 0.06. We subsequently applied spherical deconvolution informed filtering
of tractograms (SIFT2) to reconstruct the streamlines weighted by cross-section
multipliers[84]. Finaly, the structural connectivity matrix was constructed using the Yeo
seven-network-based Schaefer atlas with 200, 300, and 400 parcels, [48,85] as well as the
Desikan—Killiany-based sub-parcellation with 300 parcels [49,50]and log-transformed.
Functional connectomes were constructed by calculating linear correlations of functional time
series between two different regions defined using the Schaefer atlas with 200, 300, and 400
parcels [48,85] and Desikan—Killiany-based sub-parcellation with 300 parcels[49,50]. The
correlation coefficients were Fisher’s r-to-z-transformed to render the data more normally
distributed[86].

Riemannian optimization for structure-function coupling

To assess structure-function coupling, we adopted the Riemannian optimization approach[38].
Briefly, it generates low-dimensional eigenvectors (i.e., diffusion maps) from the structural
connectivity matrix by applying a nonlinear dimensionality reduction technique (i.e.,
diffusion map embedding)[87]. The diffusion maps are controlled by the diffusion time
parameter, t, where a higher t embeds the data more closely in the low-dimensional manifold
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space. By varying the diffusion time parameter between t = 1 and 10, we applied a kernel
fusion approach to ssimulate functional connectivity so that the functional connectivity and
diffusion maps had minimum differences. Specifically, the algorithm determines a
transformation matrix that rotates the diffusion maps to reconstruct the functiona
connectivity. Thus, the rotation matrix may indicate optimal paths for propagating
information between different brain regions. We performed a prediction analysis with
fivefold cross-validation and repeated the analysis 30 times with different training and test
datasets to mitigate potential subject selection bias. Model performance was evaluated by
calculating the linear correlation between the elements of the actual and simulated functional
connectivity matrices. At the regional level, we calculated the linear correlations between
actual and simulated functional connectivity for each brain region. We stratified the
correlation coefficients according to seven intrinsic functional communities [48] to evaluate
the results in terms of functionally differentiated networks.

Simulated functional gradients across diffusion times

We estimated low-dimensional representations of functional connectivity (i.e., gradients) to
assess differences in the cortical hierarchy across different diffusion times. Using the
BrainSpace toolbox (https:/github.com/MICA-MNI/BrainSpace)[50], we applied diffusion
map embedding [87] to the affinity matrix, which was constructed by applying a normalized
angle kernel to the group-averaged connectivity matrix. Individual gradients were then
estimated and aligned to the group template gradient using Procrustes analysis[88]. After
normalizing the gradient values between -1 and 1 using a min—max scaling at each diffusion
time, we evaluated the shifts in the distribution of the values of the first functional gradient
for each functional network[48]. Additionally, we calculated the distance of the gradient
value distributions between the sensory (visual and somatomotor) and transmodal networks
(frontoparietal and default modes) a each diffusion time point to assess the hierarchical
differentiation of the brain.

Associations between structure-function coupling and BM|1

We used a standard general linear model to assess the associations between interindividual
variations in the BMI and structure-function coupling at different diffusion times using the
BrainStat toolbox (https://github.com/MICA-MNI/BrainStat)[52]. After controlling for age,
sex, and head movement, defined using framewise displacement, we estimated the
associations between the BMI and the three simulated functional gradients. The inference was
based on Hotelling'st-square statistics, and multiple comparisons across brain regions were
corrected using FDR[89].

Cytoarchitectonic and transcriptomic association analyses

To elucidate the biological underpinnings of the association between BMI and structure-
function coupling measures, we performed cytoarchitectonic and transcriptomic association
analyses. Cytoarchitectural features were calculated from the BigBrain dataset, an ultra-high-
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resolution, three-dimensional volumetric reconstruction of a post-mortem Merker-stained and
sliced human brain from a 65-year-old male (https://bigbrain.loris.calmain.php)[53]. Data
were mapped onto a Schaefer atlas with 300 parcels[85]. We first generated 14
equivolumetric cortical surfaces within the cortex
(https://github.com/caseypaquola/BigBrainWarp) and sampled intensity values along these
surfaces. We then constructed a microstructural profile covariance matrix based on the linear
correlations of the cortical depth-dependent intensity profiles between different brain regions,
controlling for the average whole-cortex intensity profile[90]. The matrix was thresholded at
zero and log-transformed, and a microstructural gradient was generated using BrainSpace
(https://github.com/MICA-MNI/BrainSpace)[50]. An affinity matrix was constructed using a
normalized angle kernel with the top 10% entries for each parcel and we applied diffusion
map embedding to generate a microstructural gradient [87]. Next, we calculated four moment
features (mean, SD, skewness, and kurtosis) from the microstructural profile of each brain
region. Mean and SD represent the overall intensity distribution across the cortical layers,
skewness represents the shift in intensity values towards the supragranular layer (positive
skewness) or flat distribution (negative skewness), and kurtosis indicates whether the tail of
the intensity distribution contains extreme intensity values[41]. We associated the t-statistics
of BMI and structure-function coupling relationships with the cytoarchitectonic features by
calculating linear correlations with 1,000 spin permutation tests to account for spatial
autocorrelations[91]. Multiple comparisons across features were corrected using FDR[89].

Transcriptomic  association analysis was performed using the Abagen toolbox
(https://abagen.readthedocs.io/en/stable/)[54,55]. The toolbox processed a dataset containing
microarray expression data collected from six post-mortem human brains obtained from the
Allen Human Brain Atlas[92]. We mapped the expression data onto parcels, and the missing
data were interpolated by assigning the expression of the nearest tissue sample. As four of the
six donors provided expression maps only in the left hemisphere, the expression data were
mirrored from the left to right hemispheres. We used the differential stability method to select
probes with multiple probe indexed expression. It computes the Spearman correlation of the
expression data for every pair of donors, and the probe with the highest correlation is retained.
The expression data were normalized using a scaled robust sigmoid function to mitigate
potential differences in the expression values among donors. Finally, a gene expression map
was constructed by averaging the expression data from six donors. We subsequently
calculated the linear correlations between each gene expression data point and the t-statistics
of BMI and structure-function coupling according to the diffusion times. In addition, we
conducted cell-type-specific expression analysis (http://genetics.wustl.edu/jdlab/csea-tool -2/)
using the genes that demonstrated an absolute correlation coefficient > 0.45 and passed for
FDR < 0.05[93].
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2. Model evaluation at the global-level
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Supplementary Fig. 1 | Structure-function coupling using Riemannian optimization based on
the Deskan—Killiany-based sub-parcellation with 300 parcels. (a) We caculated linear
correlations between the actual and simulated functional connectivity across diffusion times for each
individual (left). Each dot indicates each individual. We repeated the analysis 30 times with different
training and test datasets for the Schaefer atlas with 300 parcels (right). The black line is the mean of
30 iterations, and the gray area indicates a 95% confidence interval (Cl). (b) Regional prediction
accuracy is demonstrated on the brain surfaces, and the box plots indicate the prediction accuracy of
each brain region (left). The prediction performance was dratified according to the seven functional
networks (middle and right).
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Supplementary Fig. 2 | Hierarchical organization of the second and third simulated functional
gradients across diffusion times. The second and third gradients of simulated functional connectivity
are shown (left and right). The differences in the gradient values betweent = 1 and 10 are shown on
the brain surfaces (middle).
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Supplementary Fig. 3 | Transcriptomic association analysis. The correlation coefficient between
the t-statistic map at diffusion time 5 and the gene expression was calculated, and we performed cell-

type specific expression analysis.
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Supplementary Data

A total of 201 genes that were associated with BMI-related structure-function coupling at
diffusion time5

['ACAN’, 'ACOX3’, 'ACSL6’, 'ADAMTS3", 'ADM’, 'ANKRD55', ‘AP3S1’, 'ARHGAP28', 'ARHGAP33’,
'"ARHGDIG', 'ASS1', ‘ATP2B3', 'ATP9A', 'B3GAT1', 'B4GALT2', 'BAIAP3', 'BATF3', 'BCRP2’',
'C1lorf97', 'Cl7orf67', 'C1S’, 'C2CD4C’', 'C20rf80°', 'C4orf33', 'C8orf46', 'CAl@’, 'CCDC3’,
'CCDC58', 'CCNYL1', 'CDH1@', 'CDH7', 'CDHS8', 'CDKN2D', 'CEP176B', 'CHCHD6', 'CLGN’, 'CNIH2',
‘CRIP2', 'CTC1', 'CTXN1', 'CUX1', 'CXorf57', 'CYP46A1', 'DCAF11‘, 'DDA1', 'DDN', 'DDRGK1’,
‘DOK6', 'DPF1', 'DPP10-AS1', 'DPYSL3', 'DUSP3', ’'DYRK2', 'DZIP3', 'E2F3', 'EEPD1‘', 'EFCAB1’,
'EFHC2', 'EFNB2', 'EFNB3', 'ENOX1', 'EPHA1@', 'EPOP', 'ERFE’, 'EYA4', 'F12’, 'FAMI@2B',
'FAM110C*, 'FASTKD1', 'FIGNL2', 'FREM3', 'FSTL1', 'FXYD6', 'FZR1', 'GABRB1', 'GAS2', 'GGN',
'GLRA3', 'GMFB', 'GSG1’, 'GSS', 'GSTM3', 'GULP1', 'HDAC9', 'HDC', 'HES4', 'HRH1', 'HS3ST1',
'HSD11BIL', 'HTR7P1‘, 'IFT22', 'IP6K2', 'ITGA11', 'JPH3', 'KCNA5', 'KCNC4', 'KCNG3',
'KCNMB4 ', 'KCTD15', 'KIF21B', 'KIRREL2', 'L3MBTL4', 'LAG3’', 'LCA5', 'LINCOQ484',
LINCO1102', 'LINCO1137', 'LINCOI197', 'LINCO2217', 'LOCI00288911°, 'L0C100294145',
'10C440934 ", 'LOC728392', 'LRRC2', 'LRRC49', 'LY6H', 'LYPD8', 'MBOAT7', 'MCIR', 'MEA1’,
‘MOBIB', 'MORN4', 'MRAS', 'MSANTD1', 'MTA3’, 'MUMIL1’', 'NAALAD2', 'NANOS1', ‘NEB',
'NEUROD6', 'NEXN', ‘NLE1’', 'NOL4', ‘NOV', 'NT5DC2', 'NT5DC3', 'NUDT14', 'OPRM1', 'PCBD1’,
'PCNT', ‘PECR', 'PI4K2A', 'PLCD4', 'PLPPR3', 'PLXNA1', 'PNCK', 'PPP4R4’, 'PRKCD', 'PRRI16’,
"PTPRE’, 'PUSL1’, 'PYGL', 'QRFPR', 'RAB36', 'RASAL1', 'RASSF4', 'RBP4', 'RGS4’', 'RNF150°,
'RRAS2', 'RSP02’, 'SCARA5', 'SCN3B', ’'SH2D5', 'SHISA9', ‘SHISAL1', 'SIDT1', 'SLC25A23",
'SLC26A4-AS1', 'SLC46A3', 'SMIMIOL2A', 'SNHGS', 'SNX7', 'SPRN', 'ST3GAL6', 'ST6GALNACS',
'STXIA', 'SUSD1’, 'SVOP', 'SYNE4', 'TBC1D24', 'TCEA3', 'TFPT', ‘TM2D3', 'TMEM1OS',
"TMEM130°, 'TMEM145°, 'TMEM156C', 'TOMIL1', 'TRPC3', 'TSPAN33', 'TTPAL', ‘TXN', ‘VAV3',
'VIT', 'WDR31', 'WDRS6’', 'WNT10B', 'WTIP', 'XYLT1', 'ZNF350°]

A total of 230 genes that associated with BMI-related structure-function coupling at diffusion
time6

['ACOX3', 'ACTC1', 'ADAMTS3', 'ADCY2', 'ADCY7', 'ADTRP', 'AGPAT2', 'AMIG02', 'ANKRD55',
'ARHGAP28', 'ARHGDIG', 'ARL5A', 'ARPP19', 'ASS1', 'ATP9A’, 'B3GAT1', 'BAIAP2L2', 'BAIAP3’,
'BATF3', 'BTN2A2', 'C17orf67', 'C1S', 'C2CDAC', 'Cdorf33', 'C8orfd6’, 'CA10', 'CACNG3',
"CAMKIG', 'CCDC136', ‘CCDC3', 'CCDC58', 'CCDC68', 'CCK', 'CCKBR', 'CCNYL1', 'CD83', 'CDHIO',
"CDH8', 'CDKN2D', 'CEP170B', 'CHCHD3', 'CHCHD6', 'CHRDL1', 'CHRM2', 'CIB1', 'CLGN', 'CLIP4',
‘CMPK1', 'CNTLN’, 'CRIP2', 'CRYM', ‘CTC1', 'CTXN1', 'CUX1’, 'CYB561', 'CYP46A1', 'DCAF11’,
‘DCP2', 'DDRGK1’, 'DGKB', 'DLEU7', 'DLK2', 'DOC2A’', 'DOK6’', 'DPF1’', 'DPP10-AS1', 'DUSP3",
'DYRK2', 'DZIP3’, 'E2F3', 'EEPD1', 'EFCAB1’, 'EFNB2', 'ENOX1', 'EPHA1@', 'EPOP', 'FADS3’,
'"FAM1©2B', 'FAM110C’, 'FAMI3B', 'FASTKD1', 'FKBP5', 'FREM3', 'FRMD4A', 'FSTL1', 'FXYD6',
'GAP43', 'GAS2', 'GAS6', 'GGN', 'GIT2', 'GLRA3', 'GMFB', 'GRASP', 'GSG1', 'GSS', 'GUCA2B’,
‘GULP1', 'HDAC9', 'HDC', 'HERC3', 'HRH1', 'HS3ST1', 'HSD11B1L', 'HSPA4L', 'HTR7P1', 'IP6K2',
"IMIDIC-AS1’, 'KCNA5', °'KCNC4', 'KCNMB4', 'KIF21B', 'KIRREL2', 'KLF6', 'KREMENI', 'L3MBTL4',
"LAMB1', 'LCA5', 'LINC-PINT', 'LINCO9484', 'LINCO2217', 'LOC440934', 'LRRC2', 'LRRC49',
"LRRC73', 'LY6H', 'LY86-AS1', 'LYPD8', 'MAPK11', 'MCIR', 'MCUB', 'MEA1', 'MEIS3', 'MFSD9’,
'MKL2', 'MOBIB', 'MORN4', 'MRAS', 'MSANTD1', 'MTA3’, 'MTCH1', 'MUMIL1', 'MYDGF', 'NFKBIE',
'NIPA1', 'NOL4', 'NOV', 'NT5DC2’, 'NT5DC3', 'NUDT14', 'NUDT4', 'OLFM3', 'OPRM1', 'PCBD1’,
'PCTP', 'PDZD8', 'PECR', 'PI4K2A', 'PIK3CD', 'PLCD4', 'PLXNA1’', 'PPEF1’', 'PRKCD', 'PRNP',
'PTPRF', 'QRFPR', 'RASAL1', 'RASL11B', 'RASSF4', 'RBP4', 'RETREG1', 'RGS4', 'RRM2B’,
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