

Discovery of post-translationally modified self-peptides that promote hypertension

Nathaniel Bloodworth¹, Wei Chen¹, David Patrick¹, Amy Palubinsky², Elizabeth Phillips^{3,4,5}, Daniel Roeth⁶, Markus Kalkum⁶, Simon Mallal^{3,4}, Sean Davies¹, Mingfang Ao¹, Rocco Moretti⁷, Jens Meiler^{7,8,9}, David G Harrison¹

¹Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN

²Department of Medicine, Vanderbilt University Medical Center, Nashville, TN

³Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN

⁴Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia

⁵Center for Drug Safety and Immunology, Vanderbilt University Medical Center, Nashville, TN

⁶Department of Immunology and Theranostics, Beckman Research Institute, City of Hope, Duarte, CA

⁷Center for Structural Biology, Vanderbilt University, Nashville, TN

⁸Department of Chemistry, Vanderbilt University, Nashville, TN

⁹Institute for Drug Discovery, Universität Leipzig Medical School, Leipzig, Germany

Address Correspondence to:

David G. Harrison, MD

Betty and Jack Bailey Professor of Medicine, Pharmacology and Physiology

Director of Clinical Pharmacology

Room 536, Robinson Research Building

2220 Pierce Ave, 536 RRB

Vanderbilt University School of Medicine

Nashville, TN 37232-6602

1 Abstract

2 Post translational modifications can enhance immunogenicity of self-proteins. In
3 several conditions including hypertension, systemic lupus, and heart failure,
4 isolevuglandins (IsoLGs) are formed by lipid peroxidation and covalently bond with protein
5 lysine residues. Here we show that the murine class-I major histocompatibility complex
6 (MHC-I) variant H-2D^b uniquely presents isoLG modified peptides and developed a
7 computational pipeline that identifies structural features for MHC-I accommodation of
8 such peptides. We identified isoLG-adducted peptides from renal proteins including the
9 sodium glucose transporter 2, Cadherin 16, Kelch Domain containing protein 7A and
10 solute carrier family 23, that are recognized by CD8⁺ T cells in tissues of hypertensive
11 mice, induce T cell proliferation *in vitro*, and prime hypertension after adoptive transfer.
12 Finally, we find similar patterns of isoLG-adducted antigen restriction in class-I human
13 leukocyte antigens as in murine analogues. Thus, we have used a combined
14 computational and experimental approach to define likely antigenic peptides in
15 hypertension.

16

17 Introduction

18 Accumulating evidence from the last several decades implicates inflammation and
19 immune activation in the genesis of hypertension and its sequalae (1). Both the innate
20 and adaptive immune systems contribute to hypertension associated inflammation (2),
21 but T cell mediated responses in particular play an especially critical role. In 2007, Guzik
22 et al demonstrated that mice deficient in mature T and B cells (RAG1^{-/-} mice) were
23 protected from both angiotensin II and deoxycorticosterone acetate and sodium chloride
24 (DOCA salt) induced hypertension. Adoptive transfer of T cells, but not B cells, restored
25 the hemodynamic phenotype (3). Deletion of CD247 (CD3 ζ chain), which selectively
26 eliminates T cells, reduced both hypertension and renal inflammation and kidney
27 dysfunction in Dahl Salt Sensitive rats (4). Angiotensin II also induced T cell accumulation
28 in the aortas and kidneys of mice with a humanized immune system, and increased levels
29 of both effector memory CD4⁺ and CD8⁺ T cells that produce IFNy and IL-17A in
30 hypertensive humans. Likewise, CD8⁺ T cells with a senescent phenotype have been
31 observed in the peripheral blood of hypertensive humans compared to normotensive
32 controls (5, 6).

33 While both CD8⁺ and CD4⁺ T cells contribute to the hypertensive phenotype (7, 8),
34 selective depletion of CD8⁺ T cells in mice confers partial protection against hypertension
35 while CD4⁺ T cell depletion does not (9). Single cell sequencing performed in this same
36 study showed that an oligoclonal population of CD8⁺ T cells, but not CD4⁺ T cells,
37 accumulate in the kidney but not in other tissues (9). These data heavily imply the
38 existence of antigens recognized by specific CD8⁺ T cells that are present in hypertension
39 but not in normotensive conditions.

40 CD8⁺ T cell activation in hypertension is closely linked to excessive production of
41 reactive oxygen species (ROS), resulting in the formation of electrophiles including
42 Isolevuglandins (IsoLGs). IsoLGs are produced by free-radical mediated oxidation of
43 arachidonic acid (10). They are highly reactive, electrophilic, short lived intermediates that
44 rapidly form covalent bonds with free amines, especially lysine residues in proteins (11–
45 13). IsoLG-adducted proteins accumulate in multiple inflammatory and cardiovascular
46 diseases closely related to hypertension, including systemic lupus erythematosus (14),
47 atrial fibrillation (15), atherosclerosis (16), and nonischemic heart failure (17). There is a
48 marked increase in IsoLG adducts in DCs of hypertensive compared to normotensive
49 mice, and scavenging of IsoLGs with 2-hydroxybenzylamine (2-HOBA) to inhibit adduct
50 formation attenuates hypertension and end-organ damage in experimental hypertension.
51 Adoptive transfer of DCs from hypertensive mice primes hypertension in recipient mice,
52 and this is prevented if the donor mice have received 2-HOBA or if the recipient mice lack
53 T cells. Likewise, adoptive transfer of DCs in which IsoLGs have been induced *ex vivo*
54 primes hypertension in recipient mice. Further data in animal models show that T cells
55 isolated from hypertensive mice proliferate when exposed to DCs presenting IsoLG
56 modified proteins (18). The percent of monocytes containing IsoLGs is increased in
57 hypertensive humans compared to normotensive subjects (18). Taken together, these
58 data suggest that IsoLG-adducted peptides act as antigens for the activation of T cells in
59 hypertension (19). We have also shown that factors common to the hypertensive milieu,
60 including catecholamines (20), excess sodium (21, 22), and altered mechanical forces
61 (23) increase formation of IsoLG-adducts in antigen presenting cells. Understanding the
62 specific peptides that are IsoLG-adducted in hypertension would be extremely

63 informative, providing insight into the cells and subcellular locations where this pathologic
64 process occurs and provide therapeutic opportunity to intervene and arrest it.

65 In the present work we identify self-peptides that serve as substrates for IsoLG-
66 adduction and CD8⁺ T cell activation. By leveraging several publicly available and custom-
67 developed computational tools and workflows, we were able to identify a limited library of
68 candidates which we individually tested *in vitro* and *in vivo*. We show that several of these
69 candidate IsoLG-adducted peptides are recognized by CD8⁺ T cells, induce CD8⁺ T cell
70 activation, and promote hypertension in mice. These studies are the first to define specific
71 self-peptides that, when adducted by IsoLG, are responsible for T cell mediated
72 inflammation in hypertension, carrying significant implications for the future treatment of
73 hypertension and related illnesses.

74 **Results**

75 *IsoLG-adducted peptides are H-2D^b restricted:*

76 The class-I major histocompatibility complex (MHC-I) displays selective peptide
77 repertoires dictated by the amino acid composition of the antigen binding cleft (24), and
78 can display antigens with post-translational modifications that generate an autoreactive
79 CD8⁺ T cell response in a variety of diseases (25–30). We hypothesized that IsoLG-
80 adducted peptides are similarly restricted in MHC-I presentation and that this restriction
81 modulates T cell recognition. To test this, we generated two transgenic mouse strains
82 expressing respectively truncated forms of one of two major MHC-I alleles found in
83 C57BL/6 mice: H-2K^b or H-2D^b. Each transgene was driven by a CD11c promoter and
84 possessed both a His tag and a truncated transmembrane domain, allowing for
85 extracellular secretion of MHC-I and its bound peptide (Supplemental Table 1,
86 Supplemental Figure 1). Transgenic animals were treated for two weeks with angiotensin
87 II or a sham infusion. In both strains, angiotensin II induced a similar degree of
88 hypertension (Figure 1A). Splenocytes from these mice were then placed in culture for 3
89 days and the shed MHC-I adsorbed onto Ni-agarose beads (Figure 1B). The MHC-I
90 loaded beads were then used to stimulate splenic CD8⁺ T cells from either hypertensive
91 or sham infused wild-type mice that had been preloaded with the CellTrace CFSE
92 proliferation marker. T cell proliferation was measured by assessing dye dilution. We
93 found that T cells exposed to bead-bound and antigen-loaded H-2D^b proliferated, while
94 those exposed to H-2K^b did not (Figure 1C). Furthermore, we observed T cell proliferation
95 only when both T cells and bead-bound H-2D^b were isolated from hypertensive animals
96 and not mice that had received sham infusion (Figure 1D). Treating the donor transgenic

97 animals with the IsoLG scavenger 2-HOBA or adding to the culture a single-chain variable
98 fragment antibody which binds all IsoLG adducts (D11) prevented T cell proliferation,
99 suggesting that T cell activation occurred in response to hypertension-specific IsoLG-
100 adducted antigens.

101 To determine whether IsoLG-adducted antigen restriction was due to relative
102 differences in MHC-I binding affinity to the modified peptide between H-2D^b or H-2K^b or
103 differences in T cell receptor recognition of the MHC-modified peptide complex, we
104 treated murine DCs with tert-butyl hydroperoxide (tBHP), which we have shown
105 stimulates IsoLG formation, and stained with antibodies specific for either H-2D^b or H-2K^b
106 and IsoLG-adducted peptides. Antibodies were conjugated to complementary FRET
107 fluorophore pairs, with a positive FRET signal indicating proximity between IsoLG-
108 adducted peptides and either H-2D^b or H-2K^b. tBHP-treated DCs stained with anti-H-2D^b
109 generated a positive FRET signal while untreated cells or tBHP-treated DCs stained with
110 H-2K^b did not (Figure 1E). These results indicate that H-2D^b can present IsoLG-adducted
111 peptides, promoting T cell activation, while H-2K^b cannot.

112

113 *Computational screening identifies peptide residue positions favoring IsoLG adduction:*

114 Peptide binding affinity for MHC-I is largely dictated by structural constraints
115 imposed by the MHC-I peptide binding cleft which, unlike the groove of MHC-II, is closed
116 and accommodates shorter peptides 8-10 amino acids long (31–33). We reasoned that
117 the IsoLG-adducted lysine imposed significant limitations on a peptide's ability to take on
118 certain structural conformations, and that understanding these limitations might help
119 narrow the list of possible peptides serving as substrates for IsoLG adduction. To test this

120 hypothesis, we developed a computational pipeline for modeling IsoLG-adducted
121 peptides bound to MHC-I using FlexPepDock refinement. FlexPepDock refinement is a
122 protocol implemented in the protein modeling software suite Rosetta, developed to model
123 receptor-bound peptides and used previously to predict MHC-I/peptide structures and
124 peptide-receptor binding affinity with a high degree of accuracy (34–36).

125 Using pre-existing structural templates, we benchmarked FlexPepDock refinement
126 on all peptide/MHC-I structures available in the protein data bank, generating high fidelity
127 models (Supplemental Figure 2A-C, Supplemental Table 2). We next generated
128 structures for H-2D^b and H-2K^b bound epitopes with known binding affinity available in
129 the immune epitope database (IEDB) and compared the Rosetta energy score terms for
130 known binders ($\leq 500\text{nm IC}_{50}$) and non-binders ($> 500\text{nm IC}_{50}$) (37). For both H-2D^b and
131 H-2K^b epitopes, known MHC-I binders had on average lower, or more favorable, Rosetta
132 energies than non-binders (Figure 2A-B). We then selected known binders to H-2D^b or
133 H-2K^b containing at least one lysine residue and measured changes in Rosetta energy
134 after *in silico* IsoLG adduction. H-2K^b bound epitopes displayed a greater increase in
135 Rosetta energy after IsoLG-adduction than H-2D^b bound epitopes (Figure 2C),
136 suggesting an inability to accommodate this post-translational modification.

137 We next examined per-residue energy changes for H-2D^b bound epitopes 8-9
138 residues in length before and after IsoLG-adduction for all non-anchoring residues and
139 found peptides with lysine at residue positions 4, 6, or 7 showed the smallest changes in
140 Rosetta energy following IsoLG adduction (Figure 2D). These positions correspond to
141 solvent-accessible sites that are largely responsible for dictating T cell recognition in H-
142 2D^b restricted epitopes (Figure 2E) (38).

143 Leveraging this insight, we produced a limited library of peptide candidates for
144 further screening, each containing lysine at one of the optimal IsoLG-adduction residue
145 positions. Given our prior evidence that the kidney is a likely source of IsoLG-adducted
146 peptides in hypertension, we focused our initial search on proteins with relative over-
147 expression in the kidney (39). Of the 53 candidates identified, 49 had corresponding
148 mouse homologs. We next identified peptide sequences derived from those proteins with
149 H-2D^b binding motifs, predicted by the webtool NetMHCpan 4.0 to bind to H-2D^b with high
150 affinity (“strong binders” are defined by a percent rank score unique to NetMHCpan) (40).
151 This approach yielded 13 peptides with at least one lysine in a position favoring IsoLG-
152 adduction as predicted by Rosetta. These sequences and the proteins from which they
153 are derived are summarized in Figure 2F and Supplemental Table 3.

154

155 *IsoLG adducted candidate peptides are recognized by T cells in hypertensive mice,*
156 *stimulate T cell proliferation in vitro, and induce hypertension in vivo:*

157 We isolated T cells from the bone marrow of angiotensin II-treated mice and
158 exposed them to DCs pulsed with each candidate peptide, measuring T cell proliferation
159 by serial dye dilution. Seven of 13 candidate peptides induced a significant increase in
160 proliferation of T cells from hypertensive but not normotensive mice (Figure 3A,
161 Supplemental Figure 3). To test T cell specificity for each candidate peptide we employed
162 a fluorescently tagged H-2D^b/IgG1 fusion protein loaded with each candidate, IsoLG-
163 adducted or not. Of the 13 peptides screened, 10 were identified aortic CD8⁺ T cells from
164 hypertensive mice to a greater extent than observed in mice without hypertension (Figure
165 3B and Supplemental Figure 4-5). This analysis revealed that up to 14% of CD8⁺ T cells

166 in aortas of hypertensive mice recognized individual candidate peptides that were IsoLG-
167 adducted. T cells did not recognize peptides unadducted by IsoLGs. Six candidates
168 induced proliferation in T cells from angiotensin II treated mice and identified CD8⁺ T cells
169 enriched in the aortas in hypertension (Figure 3C-D).

170 Given that the bone marrow serves as a reservoir for hypertension-specific CD8⁺
171 memory T cells (20, 41), we also performed flow cytometry on single cell suspensions
172 from the bone marrow of angiotensin II treated mice. CD8⁺ T cells recognizing eight of
173 the IsoLG-adducted peptide candidates were enriched in the bone marrow of
174 hypertensive mice compared to normotensive controls (Figure 4A). Of the six IsoLG-
175 adducted peptides labeling CD8⁺ T cell populations enriched in the aorta, four also labeled
176 T cells enriched in the bone marrow. Staining with the memory T cell markers CD44 and
177 CD62L revealed that CD8⁺ T cells recognizing IsoLG-adducted peptides were
178 predominantly effector memory cells in the aorta (Figure 4B-C), and a mixture of effector
179 memory and central memory cells in the bone marrow (Figure 4D-E).

180 We also performed flow cytometry on kidney homogenates, staining for CD8⁺ T
181 cells specific for the six candidate IsoLG adducted peptides that are recognized by aortic
182 T cells and capable of inducing T cell proliferation. We confirmed that CD8⁺ T cells
183 recognized two of the six IsoLG-adducted peptides that were enriched in the aortas of
184 hypertensive mice, and all six were present in both sham and angiotensin II treated
185 animals (Supplemental Figure 6A-B). These T cells were also predominantly memory
186 effector cells like those observed in the aorta (Supplemental Figure 6C-D).

187

188 *IsoLG modified candidate peptides augment hypertension in vivo:*

189 To test the potential roles of each candidate peptide in hypertension, we performed
190 the experiment illustrated in Figure 5A. Briefly, CD11c⁺ DCs were pulsed overnight with
191 candidate peptides with or without IsoLG adduction. These DCs were then adoptively
192 transferred to WT mice and five days later an infusion of a generally suppressor dose of
193 angiotensin II was begun (18). Blood pressures were measured before and after two
194 weeks of angiotensin II treatment. Of the six peptides tested (those that labeled CD8⁺ T
195 cells in the aorta and induced CD8⁺ T cell proliferation *in vitro*), four induced blood
196 pressure elevations as high as 180 mmHg after adoptive transfer (Figure 5B).

197 Figure 5C summarizes the stepwise screening of our candidate peptides. Of the
198 13 peptides originally identified by our computational analysis, 11 identified T cells in the
199 target tissues of hypertensive mice. Seven of these peptides induced proliferation of CD8⁺
200 T cells from hypertensive mice, and four augmented hypertension *in vivo*.

201 We performed mass spectrographic analysis of the un-adducted and IsoLG-
202 adducted variants for one of the immunogenic peptides (peptide 1, LAGKNLTHI). Ions
203 with IsoLG adducts were positively identified, but the overall signal strength was
204 significantly lower than that of the unadducted variant (Supplemental Figure 7). Ion
205 chromatograms demonstrated the presence of multiple diastereomers, including pyrrole,
206 anhydrolactam, and anhydropyrrole products all present in the same sample
207 (Supplemental Figure 8).

208

209 *Class-I human leukocyte antigens exhibit differential presentation of IsoLG-adducted*
210 *peptides:*

211 The above data from mice strongly suggest that T-cell recognition of IsoLG-
212 adducted peptides depends on their affinity for a given MHC-I. To determine if IsoLG
213 adducted peptides are similarly restricted in their presentation among human MHC-I
214 variants, we identified class-I human leukocyte antigen (HLA) variants from a curated
215 database of HLA allele frequencies (42). We selected HLA alleles for each of three
216 subpopulations from the US National Merit Donor Program with a phenotype frequency
217 >5%, leaving 18 HLA alleles in total after excluding duplicates between subpopulations
218 (Supplemental table 4). Cells lacking native HLA expression (HLA null) were transfected
219 with each allele, treated with tBHP to induce IsoLG formation, and assayed for IsoLG-
220 adduct presentation as in Figure 1E using FRET and flow cytometry. We found significant
221 variability of FRET signal between various HLA-A and HLA-B alleles, suggesting that
222 certain alleles are more adept at displaying IsoLG-adducted peptides (Figure 6A).
223 Scavenging IsoLGs with ethyl-2-HOBA significantly reduced FRET signal across all HLA
224 alleles tested (Figure 6B).

225 We identified one HLA-A variant and four HLA-B variants with an enhanced FRET
226 signal, suggesting these alleles can display IsoLG-adducted peptides (Figure 6C). Using
227 FlexPepDock, we selected lysine-containing peptides, nine residues in length and derived
228 from proteins overexpressed in human renal tissue, predicted bind to the HLA in question
229 with high affinity. We modeled the peptides to each HLA screened before and after IsoLG
230 addition. Rosetta energy scores were more favorable for IsoLG-adducted peptides
231 docked to the HLA-A and HLA-B variants with enhanced FRET signal (“high-presenters”)

232 when compared to the remaining HLA variants (Supplemental Figure 9A). For the three
233 high-presenting HLA variants with available crystal structures, we compared energy score
234 changes at each residue position outside of the MHC-I binding pockets and for which
235 there was at least one lysine containing peptide. Similar to H-2D^b bound peptides, we
236 found that favorable energy score changes after IsoLG adduction corresponded to more
237 exposed sites with potentially greater T cell receptor accessibility on representative HLA-
238 bound peptides (Supplemental Figure 9E).

239 **Discussion**

240 For decades, T cells have been identified in the peripheral tissues of humans with
241 hypertension and in several experimental models. Evidence accumulated over the last 10
242 years strongly implies the existence of IsoLG-adducted peptides as antigens in
243 hypertension (9, 18, 43). In this work we identify for the first time self-peptides that, when
244 IsoLG-modified, are both recognized by and activate CD8⁺ T cells in hypertensive mice
245 and prime hypertension *in vivo*. These findings strongly suggest that the peptides
246 identified in the current study or similar IsoLG-modified peptides play a role in the genesis
247 of hypertension and its related end-organ damage.

248 The finding that T cells identified by these IsoLG-modified peptides are present in
249 the aorta, kidney, and bone marrow of hypertensive mice is compatible with prior work in
250 which we showed that an oligoclonal population of CD8⁺ T cells accumulate in the kidneys
251 of hypertensive mice and that T cells with a memory phenotype home to the bone marrow
252 in hypertension. We have also shown that renal denervation prevents the appearance of
253 activated dendritic cells in secondary lymphoid organs and prevents the ultimate
254 accumulation of T cells in the kidney. Taken together and with our current data, a paradigm
255 emerges in which antigens in the kidney, like those identified in the current study, are
256 presented to CD8⁺ T cells in secondary lymphoid organs. These activated T cells then
257 home back to the kidney, vasculature, and the bone marrow, where they promote organ
258 dysfunction and end-organ damage.

259 In mouse models of obesity-associated insulin resistance, oligoclonal CD8⁺ T cell
260 populations accumulate in response to IsoLG protein adducts presented in DCs located
261 in adipose tissue (44). Oligoclonal CD8⁺ T cell populations are also found in human and

262 murine atherosclerotic plaques, likely in response to plaque-specific antigens (16, 45, 46).
263 In a murine model of heart failure, CD4⁺ T cells are activated after exposure to IsoLG-
264 adducted cardiac peptides presented by class-II MHC (17). We have also shown that
265 IsoLG-adducted peptides contribute to systemic lupus erythematosus (14). It is unclear if
266 the peptides identified in the present study contribute to these other diseases; however,
267 a combined computational and experimental approach like that employed here could be
268 useful in these related conditions.

269 We found that CD8⁺ T cells recognizing IsoLG-adducted peptides in the aorta,
270 kidney, and bone marrow are both effector and central memory cells. These findings are
271 consistent with prior experiments performed in our laboratory illustrating that memory
272 CD8⁺ T cells accumulate in the bone marrow and kidney in response to repeated
273 hypertensive stimuli, and that memory T cell formation through CD70 mediated co-
274 stimulation is necessary for hypertension pathogenesis (20, 41). Similar observations
275 have been made in humanized mice demonstrating increased numbers of memory T
276 cells in the aorta and lymphatic tissues after induction of hypertension (5).

277 It is also of interest that even in non-hypertensive mice, 3 to 6% of CD8⁺ T cells in
278 the aorta, kidney, and bone marrow recognize IsoLG-adducted peptides. In the peripheral
279 tissues, these cells have the phenotype of effector memory cells, and in the bone marrow
280 they are a mix of effector and central memory cells. These findings suggest that these T
281 cells may have previously encountered molecularly similar antigens. One such source of
282 exposure could be antigens derived from commensal organisms or other chronic
283 persistent foreign antigens that either mimic IsoLG-adducts or that are themselves IsoLG-
284 adducted. Hypertension is closely associated with alterations in gut microbiome content

285 in humans (47). Germ-free mice are also protected against angiotensin II-induced
286 hypertension and have reduced arterial and renal inflammatory infiltrate, and transplant
287 of gut microbiome from hypertensive patients to germ free animals can induce high blood
288 pressure (48). Salt sensitivity, an important hypertension phenotype, is also intrinsically
289 linked to both gut microbiome alterations in mice and humans and is a potent stimulator
290 for IsoLG production in DCs (49, 50). Whether or not the same T cells responsible for
291 mediating inflammatory responses against gut bacteria (or some other viral antigen) also
292 recognize IsoLG adducted antigens is an important subject of further study.

293 The proteins we identified from which the IsoLG adducted peptides are derived are
294 all membrane-associated proteins and include transporters (in the case of peptide 1,
295 derived from the sodium/glucose cotransporter encoded by Slc5a2, and P7, derived from
296 the sodium/vitamin C cotransporter encoded by Slc23a1), cell-cell adhesion proteins
297 (peptide 6, derived from the cell-cell adhesion protein encoded by Cdh16), and one
298 without functional annotation (peptide 10, derived from the kelch-domain containing
299 protein encoded by Klhdc7a) (see Supplemental Table 3). Peptides 1 and 7 are derived
300 from cytoplasmic regions of their respective proteins, while peptide 6 is derived from the
301 extracellular region. These proteins may be adducted by IsoLG and processed via several
302 pathways. Renal epithelial cells experience increased oxidative stress in hypertension
303 (51, 52), and thus these proteins could undergo IsoLG adduction in their cell of origin. It
304 is also possible that previously unadducted proteins, released with cellular debris or upon
305 cell death in the kidney, are engulfed by DCs where they are then IsoLG-adducted. In
306 keeping with this, we have shown that superoxide production is increased by more than
307 6-fold in DCs of hypertensive mice and this is absent in mice lacking NOX2 (18).

308 IsoLGs are a family of 8 regioisomers, and reaction of IsoLGs with lysine form a
309 number of adduct species including pyrrole and oxidized pyrroles (53). Chromatograms
310 derived from mass-spectrometry data obtained one of the immunogenic IsoLG-adducted
311 peptides revealed characteristic signals congruent with different IsoLG adducts including
312 anhydrolactams and andihydropyrroles (Supplemental Figure 8). While such differences
313 in IsoLG structure may not appreciably change their affinity for MHC-I, different IsoLG
314 regioisomer or adduct species could select for different T cell populations. This
315 mechanism might explain why we observe many distinct T cell clonotypes in the kidneys
316 of hypertensive mice, rather than a few single dominant clonal populations (9). Additionally,
317 the robust T cell response observed despite a relatively low amount of IsoLG-adducted
318 peptide (as assessed by mass spectrometry, Supplemental Figure 7) suggests that the
319 adducts may be especially immunogenic.

320 Our data strongly suggests that IsoLG-adducts are restricted to certain MHC-I
321 variants in mice and preferentially displayed by certain HLA variants in humans. Such
322 data implies there might exist a correlation between “high risk” HLA variants and
323 hypertension as is the case for other diseases (54). There are several studies with small
324 populations that correlate specific class-II HLA alleles with hypertension severity, though
325 this may be due to linkage disequilibrium rather than HLA itself (55, 56). A more recent
326 study correlating phenotypes with imputed HLA alleles in a large clinical database do not
327 reproduce these associations, and there is no single class-I HLA that confers significantly
328 elevated risk for hypertension (57). This may be due in part to the “mosaic” nature of
329 hypertension, where distinct pathogenic stimuli act in concert to mediate a common
330 phenotype (58). While single HLA alleles may be insufficient to promote disease it is also

331 possible that combinations of multiple alleles, or haplotypes, may confer either risk (if all
332 are predisposed to IsoLG-adduct presentation) or protection (if they have low affinity for
333 IsoLG adducts). The computational modeling pipeline employed for this study could also
334 be employed to screen large numbers of antigen/HLA combinations. Further studies
335 combining this screening tool with large databases containing both imputed HLA alleles
336 and diagnosis codes may help identify high risk haplotypes, and individual alleles later
337 screened for IsoLG-adduct affinity *in vitro*.

338 There are several important limitations to consider for this work. Firstly, the
339 peptides we screened are N-terminal acetylated. While necessary to prevent IsoLG
340 adduction at the peptide N-terminus, N-terminal acetylation can also alter peptide binding
341 affinity for MHC-I resulting in false negatives in our screening studies (59). Solid-phase
342 peptide synthesis using pre-adducted lysine residues could circumvent this problem, but
343 an optimized protocol for manufacturing such residues is not yet available. In our initial
344 computational screen, we also excluded peptides predicted to have a low binding affinity
345 for H-2D^b. This exclusion step reduced the number of peptides included in the screen by
346 several orders of magnitude, but also may have rejected peptides with increased binding
347 affinity for MHC-I following IsoLG-adduction.

348 While we exclusively considered CD8⁺ T cell mediated responses to peptide
349 candidates, it is also possible that CD4⁺ T cells recognize these same or similar antigens
350 presented by MHC-II. IL-17 producing CD4⁺ T cells and gamma delta T cells are an
351 important source of inflammation in hypertension and recognize IsoLG-adducted peptides
352 in mouse models of nonischemic heart failure (8, 17, 60). Future studies should examine
353 the ability of these cells to recognize similar IsoLG-adducted peptides.

354 Despite these limitations, identifying antigens that mediate T cell inflammation in
355 hypertension is an important discovery with broad implications. Future work expanding
356 the scope of immunogenic IsoLG-adducted self-peptides, identifying the T cells that
357 recognize them, and characterizing molecularly similar antigens from human pathogens
358 that may evoke cross-reactive memory T cell responses will greatly enhance our
359 understanding of how inflammation drives morbidity and mortality in this increasingly
360 common ailment.

361 **Methods**

362 *Transgenic animals and murine hypertension models*

363 DNA fragments containing the H-2K^b and H-2D^b heavy chains with 6-His tags and
364 without transmembrane domain regions downstream of a CD11c promoter were amplified
365 and cloned into the pcDNA3.1 (H-2D^b) and pET-3a (H-2K^b) vectors. Resultant vectors
366 were transformed into ampicillin-treated *E. Coli* (DH5 α), purified using the ThermoFisher
367 PureLink Maxiprep kit, and sequenced to confirmed insertion. The resultant constructs
368 were used to perform pronuclear injections for creation of transgenic C57Bl/6 mice with
369 soluble forms of H2-D^b and H2-K^b respectively.

370 To induce hypertension, mice were implanted with osmotic minipumps (Alzet)
371 containing angiotensin II delivered at a rate of 490 ng/min/kg (regular dosing) or 140
372 ng/min/kg (subpressor dosing), or sodium acetate buffer (sham controls). Mice were
373 studied at 12 weeks of age and received angiotensin II for two weeks, and blood pressure
374 tail cuff measurements using the MC4000 Multichannel System for mice (Hatteras, Inc.).
375 In some experiments, 2-HOBA was provided concurrently in drinking water at a
376 concentration of 1g/L. Animals were euthanized by CO₂ asphyxiation prior to tissue
377 isolation. All animal experiments were approved by the Vanderbilt University Medical
378 Center Institutional Animal Care and Use Committee.

379

380 *In silico studies and computational screening*

381 Rosetta stable release version 3.13 was used for all computational studies with
382 FlexPepDock refinement. We created Rosetta params files for modeling isolevuglandin-
383 adducted lysine as previously described (61). Preliminary structures were generated by

384 identifying the best-scoring pre-existing template structure available in the PDB (after
385 alignment and scoring with the Blocks Substitution Matrix BLOSUM62) and mutating
386 peptide residue to match those of the query sequencing using the Rosetta Scripts mover
387 MutateResidue prior to prepacking (62). MHC-I models were generated using AlphaFold2
388 (63). Unless otherwise specified, 250 models were generated for each peptide/MHC-I
389 complex using computational resources available through the Vanderbilt Advanced
390 Computing Center for Research and Education (ACCRE). The Rosetta energy composite
391 score reweighted_sc, which provides additional weighting to interactions at the peptide-
392 receptor interface, was averaged from the top 5 scoring models. PyMOL molecular
393 graphics software was used to visualize the generated models (Schrödinger). All code
394 used to generate the models in this manuscript is provided in a public GitHub repository.

395 Candidate peptides nine residues in length were derived from the sequences of
396 proteins overexpressed in renal tissue. We queried the Human Protein Atlas for proteins
397 with a greater than 4-fold increase in RNA expression in the kidney compared to other
398 tissues, identified mouse homologs, and used NetMHCpan 4.0 to identify peptides
399 derived from those sequences that were likely to bind strongly to H-2D^b (40).

400

401 *Peptide synthesis, IsoLG adduction, and in vitro IsoLG adduct generation*

402 Candidate peptides commercially produced (EZBiolab). Peptides were N-terminal
403 acetylated to prevent unwanted N-terminus IsoLG adduction, and purity confirmed with
404 high performance liquid chromatography. IsoLG was synthesized as described (64).
405 Peptides were incubated with IsoLG at a 1:1 molar ratio of lysine to IsoLG overnight at
406 4°C in aqueous solution to generate adducts as previously described (14). Unadducted

407 and IsoLG-adducted peptides were stored at 4°C at a concentration of 1mM until used in
408 cell culture or flow cytometry.

409 Native IsoLG generation was induced by treating cultured cells with tert-butyl
410 hydroperoxide (tBHP, Sigma-Aldrich) at 100 μ M for 30 minutes as previously described
411 (18). After treatment, cells were centrifuged at 350 g for 5 minutes and the media
412 replaced. Cells were incubated overnight prior to further analysis.

413

414 *Cell isolation and culture*

415 For assays with bead-bound MHC-I, spleens from H-2D^b or H-2K^b transgenic mice
416 were isolated, passed through a 70 μ m mesh, and red blood cells lysed (RBC lysis buffer,
417 eBioscience) prior to culture in RPMI supplemented with 10% v/v fetal bovine serum, 1%
418 v/v penicillin/streptomycin (Gibco), and 2 μ L/500mL of β -mercaptoethanol (Sigma-
419 Aldrich). After 72 hours, media was collected and incubated with nickel agarose beads
420 (ThermoFisher) and the beads collected through centrifugation before being added to T
421 cell cultures. If indicated, a single-chain variable fragment antibody that recognizes
422 IsoLG-adducts (D11) was added to cultures simultaneously (65).

423 For T cell proliferation assays, dendritic cells were isolated from the spleens of
424 C57BL/6 animals using the Miltenyi Pan Dendritic Cell Isolation Kit and cultured in RPMI
425 supplemented with 10% v/v fetal bovine serum, 10 mM HEPES buffer, 1% v/v sodium
426 pyruvate (Gibco), 1% v/v penicillin/streptomycin (Gibco), and 2 μ L/500mL of β -
427 mercaptoethanol (Sigma-Aldrich). Adducted or unadducted peptides were added to DC
428 cultures overnight at a concentration of 10 μ M, DCs centrifuged, and supernatant
429 removed prior to the addition of T cells. CD3⁺ cells were isolated from the bone marrow

430 of adult C57BL/6 angiotensin II or sham treated mice using the Miltenyi Pan T Cell
431 Isolation Kit II and cultured in RPMI supplemented with 10% v/v fetal bovine serum, 1%
432 v/v MEM non-essential amino acids solution (Gibco), 1% v/v penicillin/streptomycin
433 (Gibco), and 0.4 uL/100mL of β -mercaptoethanol (Sigma-Aldrich). T cells were stained
434 with CellTrace CFSE (ThermoFisher) prior to incubation with DCs to track proliferation. A
435 1:1000 dilution of anti-CD28 was added to T cell and DC co-cultures for co-stimulation. T
436 cells were cultured for five days prior to analysis with flow cytometry as described.

437

438 *Tissue isolation and flow cytometry*

439 Femurs and tibias, aortas, and kidneys were isolated from sham or angiotensin II
440 treated mice following perfusion of a normal saline solution to remove residual leukocytes
441 from the peripheral blood. Long bones were flushed with phosphate buffered saline to
442 isolate bone marrow cells. Aortas were manually homogenized and digested for 20
443 minutes at 37°C in RPMI with 1 mg/mL of collagenase A and collagenase B and 0.1 mg/mL
444 DNase I (Roche). Kidneys were homogenized using the Miltenyi gentleMACS Dissociator
445 and digested for 20 minutes at 37°C in RPMI with 2 mg/mL collagenase D (Roche) and
446 0.1 mg/mL DNase I. Red blood cells were lysed for all tissues using RBC lysis buffer
447 (eBioscience). Single cell suspensions were stained with Live/Dead violent fluorescent
448 reactive dye (ThermoFisher), Fc receptor block, and stained with antibodies for CD3
449 (BV650), CD4 (FITC), CD8 (APC), CD44 (APC-Fire750), and CD62L (PE-Fire810)
450 (BioLegend). To identify peptide-specific T cells, suspensions were also stained with H-
451 2D^b/IgG1 fusion protein loaded with unadducted or IsoLG-adducted peptide (160:1 molar
452 ratio overnight at 37°C) at 1 ug per sample. Secondary staining to identify H-2D^b/IgG1-

453 bound cells was done with anti-mouse IgG1 (PE) (BD Biosciences). Samples were run
454 on a Cytek Aurora 4-laser flow cytometer and analyzed using FlowJo. A minimum of 1×10^6
455 events were collected and cell counts determined based on total cell number (bone
456 marrow and aorta cells, determined after isolation using a hemocytometer with trypan
457 blue staining) or normalized to organ weight (kidney).

458

459 *Assessment of IsoLG adduct presentation by single-variant HLA-expressing cells*

460 We identified HLA alleles to screen for IsoLG adduct presentation by selecting the
461 ten HLA alleles with the highest phenotypic frequency present in three populations of the
462 US National Merit Donor Program available through the Allele Frequency Net Database
463 to best capture haplotype diversity (42). The populations included USA NMDP European
464 Caucasian, USA NMDP Chinese, and USA NMDP African American Pop 2. Twenty-two
465 non-duplicate HLA-A, -B, and -C alleles were identified in this manner.

466 The HLA-null human cell line K562 was transduced with each HLA allele with either
467 an adenovirus vector or electroporation in conjunction with a transposon sequence and
468 sleeping beauty transposase. After transduction and expansion, HLA-expressing cells
469 were enriched with a positive magnetic sort using the biotinylated pan-HLA antibody
470 (clone W6/32, Biolegend) in conjunction with the ThermoFisher CELlection Dynabead
471 cell isolation kit. HLA expression was confirmed with flow cytometry after staining with
472 Live/Dead violent fluorescent reactive dye and anti-pan-HLA (BV650). Non-transduced
473 K562 cells were used as a null control.

474 To induce IsoLG adduct presentation, cells were treated with tBHP as described.
475 If indicated, cells were also maintained in media containing ethyl-2-HOBA at a

476 concentration of 200 μ M for the duration of the experiment. After incubation overnight,
477 cells were stained with live/dead violet fluorescent reactive dye and anti- pan-HLA
478 (BV650) and biotinylated D11 conjugated to streptavidin APC-Cy7. D11 was biotinylated
479 prior to conjugation with the streptavidin fluorophore using the Lightning Link A
480 Biotinylation Kit (Abcam).

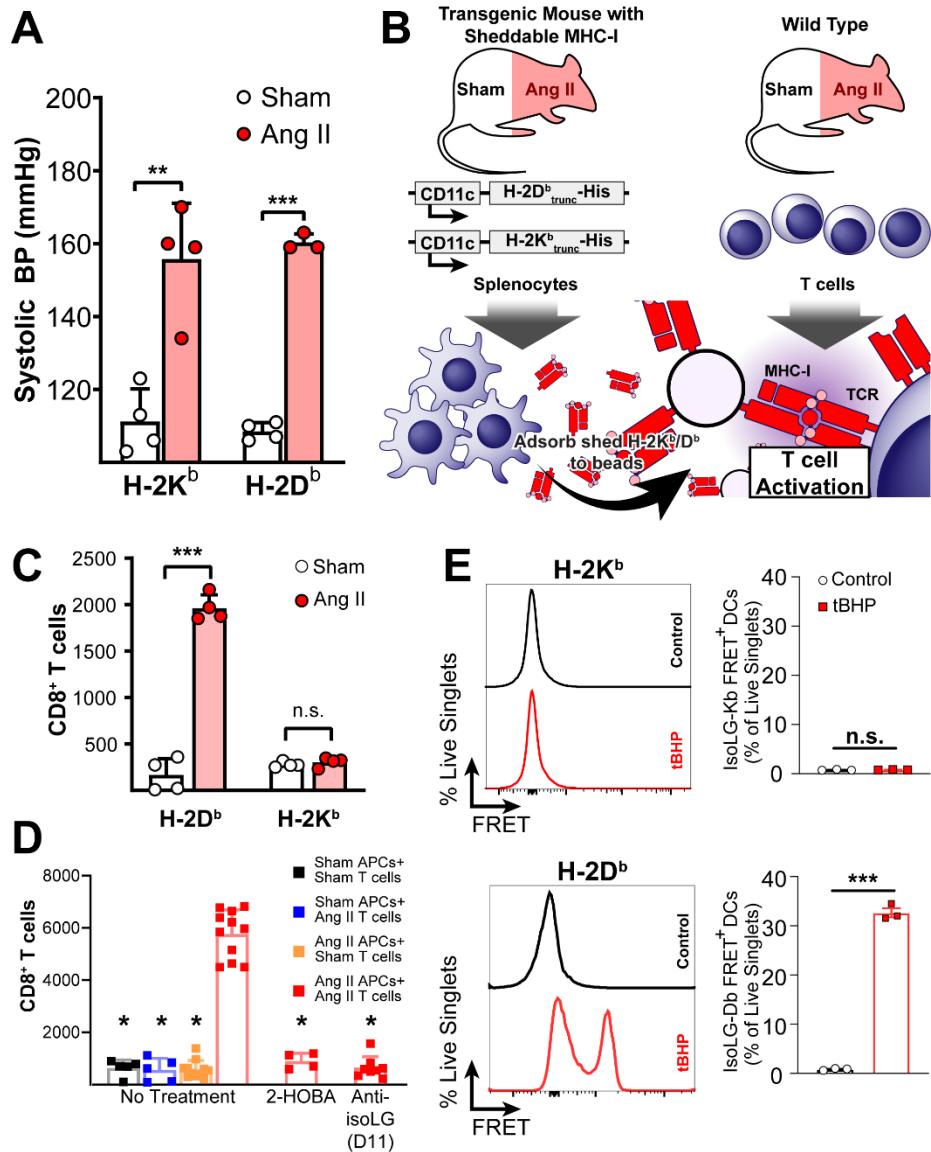
481 **Acknowledgements**

482 This work was conducted in part using the resources of the Advanced Computing
483 Center for Research and Education at Vanderbilt University, Nashville, TN. Mice were
484 created in the Vanderbilt Genome Editing Resource Center.

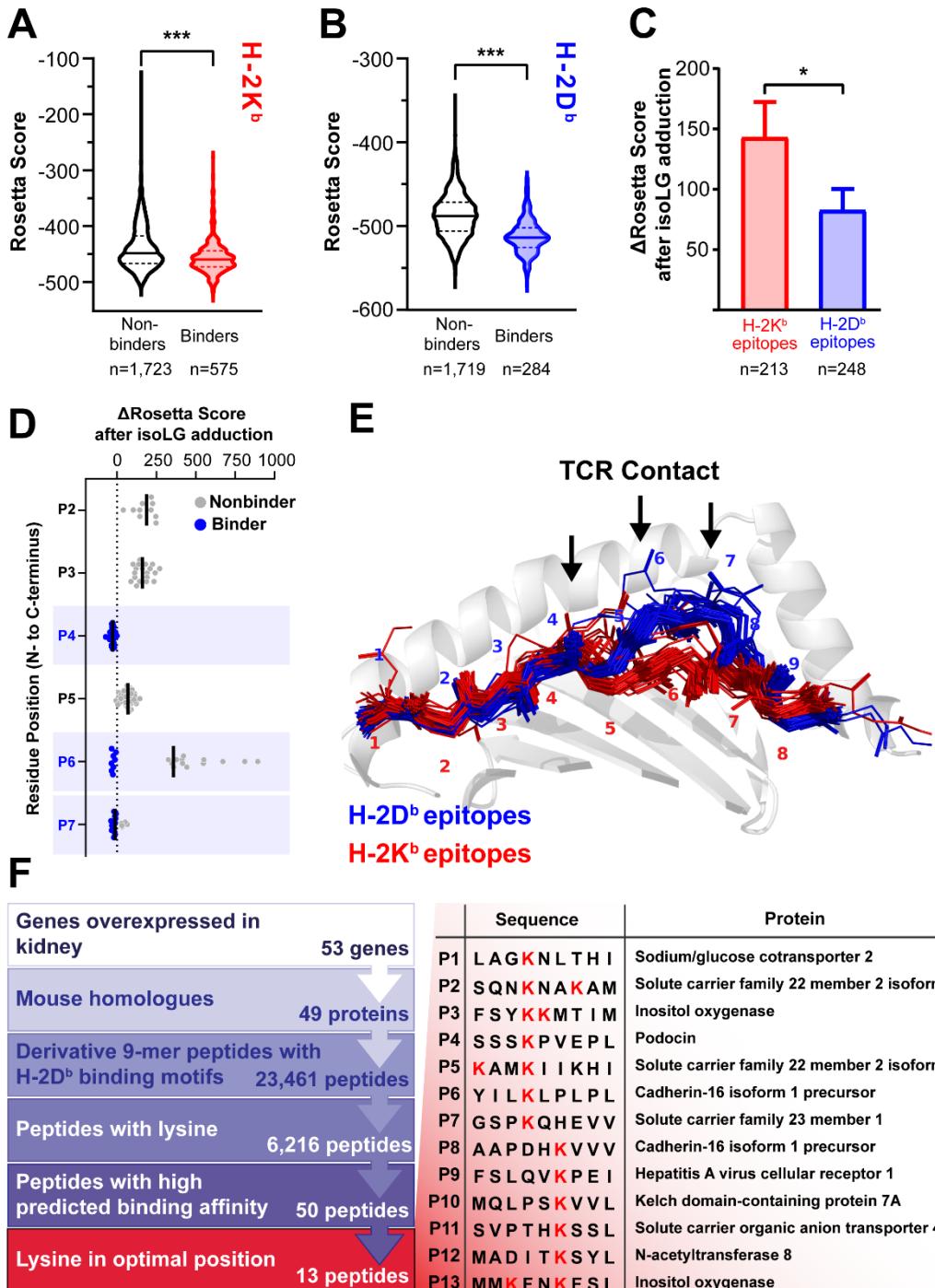
485 **References**

- 486 1. Norlander AE, Madhur MS, Harrison DG. The immunology of hypertension. *J Exp Med*
487 2018;215(1):21–33.
- 488 2. Madhur MS et al. Hypertension: Do Inflammation and Immunity Hold the Key to Solving
489 this Epidemic?. *Circulation research* 2021;128(7):908–933.
- 490 3. Guzik TJ et al. Role of the T cell in the genesis of angiotensin II induced hypertension
491 and vascular dysfunction. *The Journal of experimental medicine* 2007;204(10):2449–
492 2460.
- 493 4. Rudemiller N et al. CD247 modulates blood pressure by altering T-lymphocyte
494 infiltration in the kidney. *Hypertension* 2014;63(3):559–564.
- 495 5. Itani HA et al. Activation of Human T Cells in Hypertension: Studies of Humanized Mice
496 and Hypertensive Humans. *Hypertension* 2016;68(1):123–132.
- 497 6. Youn J-C et al. Immunosenescent CD8+ T cells and C-X-C chemokine receptor type 3
498 chemokines are increased in human hypertension. *Hypertension* 2013;62(1):126–133.
- 499 7. Nguyen H et al. Interleukin-17 causes Rho-kinase-mediated endothelial dysfunction
500 and hypertension. *Cardiovasc Res* 2013;97(4):696–704.
- 501 8. Madhur MS et al. INTERLEUKIN 17 PROMOTES ANGIOTENSIN II-INDUCED
502 HYPERTENSION AND VASCULAR DYSFUNCTION. *Hypertension* 2010;55(2):500.
- 503 9. Trott DW et al. Oligoclonal CD8+ T cells play a critical role in the development of
504 hypertension. *Hypertension* 2014;64(5):1108–1115.
- 505 10. Salomon RG, Miller DB. Levuglandins: isolation, characterization, and total synthesis
506 of new secoprostanoid products from prostaglandin endoperoxides. *Adv Prostaglandin
507 Thromboxane Leukot Res* 1985;15:323–326.

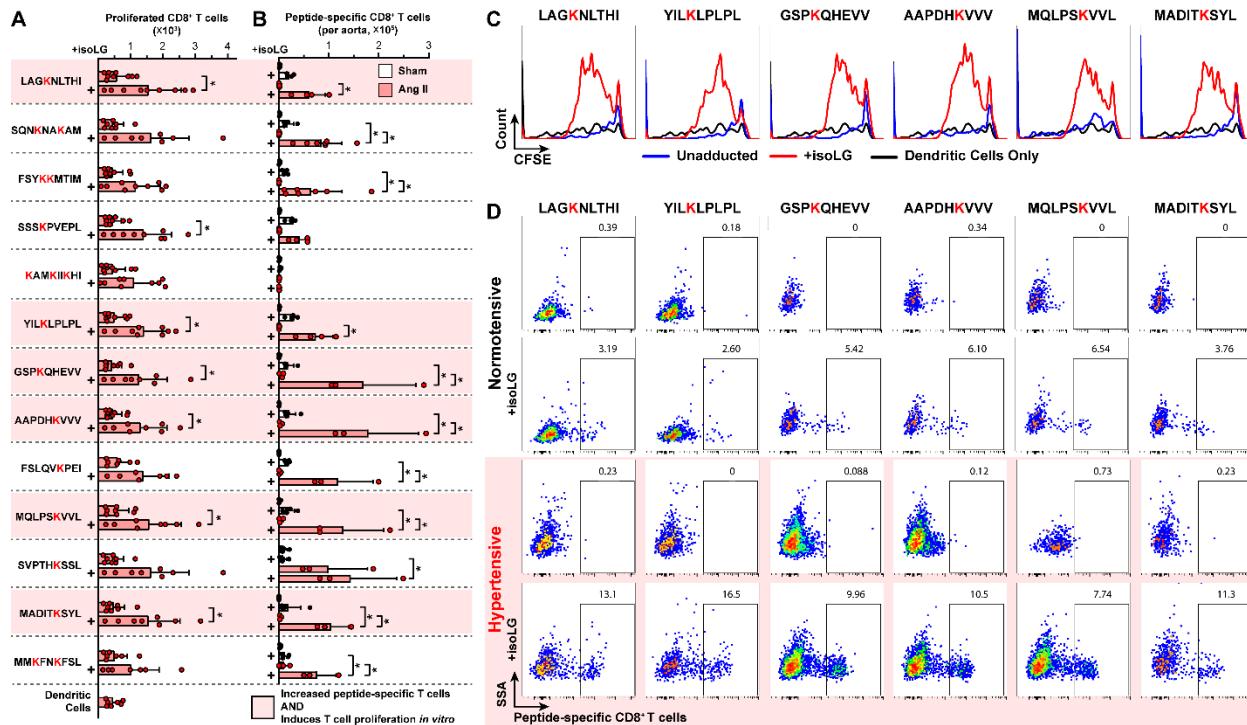
- 508 11. Brame CJ, Salomon RG, Morrow JD, Roberts LJ. Identification of extremely reactive
509 gamma-ketoaldehydes (isolevuglandins) as products of the isoprostane pathway and
510 characterization of their lysyl protein adducts. *J Biol Chem* 1999;274(19):13139–13146.
- 511 12. Roberts LJ 2nd, Salomon RG, Morrow JD, Brame CJ. New developments in the
512 isoprostane pathway: identification of novel highly reactive gamma-ketoaldehydes
513 (isolevuglandins) and characterization of their protein adducts.. *FASEB journal: official*
514 *publication of the Federation of American Societies for Experimental Biology*
515 1999;13(10):1157–1168.
- 516 13. Iyer RS, Ghosh S, Salomon RG. Levuglandin E2 crosslinks proteins. *Prostaglandins*
517 1989;37(4):471–480.
- 518 14. Patrick DM et al. Isolevuglandins disrupt PU.1-mediated C1q expression and promote
519 autoimmunity and hypertension in systemic lupus erythematosus [Internet]. *JCI insight*
520 2022;7(13). doi:10.1172/JCI.INSIGHT.136678
- 521 15. Prinsen JK et al. Highly Reactive Isolevuglandins Promote Atrial Fibrillation Caused
522 by Hypertension. *JACC. Basic to translational science* 2020;5(6):602–615.
- 523 16. Tao H et al. Scavenging of reactive dicarbonyls with 2-hydroxybenzylamine reduces
524 atherosclerosis in hypercholesterolemic Ldlr–/– mice. *Nat Commun* 2020;11(1):4084.
- 525 17. Ngwenyama N et al. Isolevuglandin-Modified Cardiac Proteins Drive CD4+ T-Cell
526 Activation in the Heart and Promote Cardiac Dysfunction. *Circulation* 2021;143:1242–
527 1255.
- 528 18. A K et al. DC isoketal-modified proteins activate T cells and promote hypertension.
529 *The Journal of clinical investigation* 2014;124(10):4642–4656.

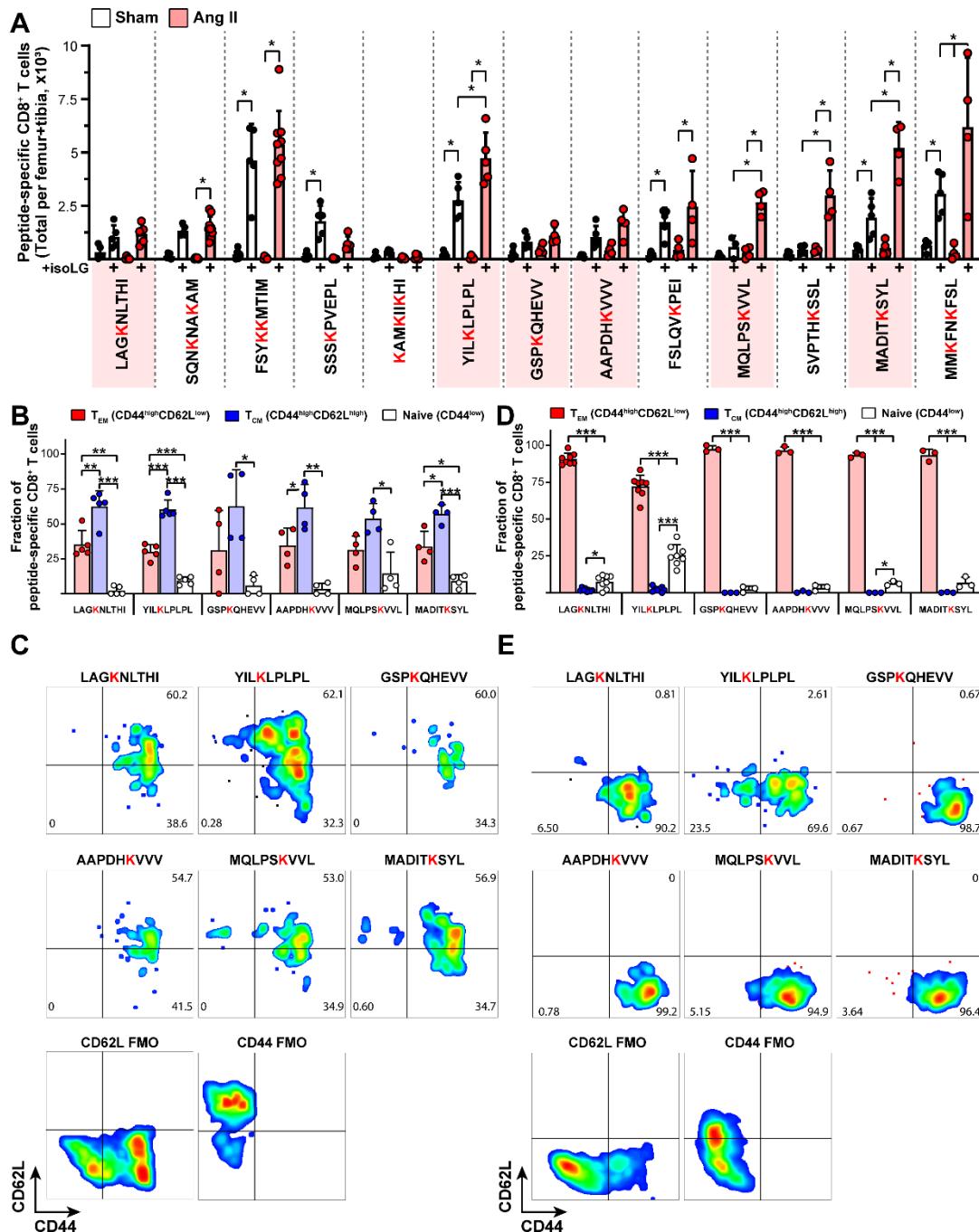

- 530 19. Vinh A et al. Inhibition and Genetic Ablation of the B7/CD28 T cell Costimulation Axis
531 Prevents Experimental Hypertension. *Circulation* 2010;122(24):2529–2537.
- 532 20. Xiao L, do Carmo LS, Foss JD, Chen W, Harrison DG. Sympathetic Enhancement of
533 Memory T Cell Homing and Hypertension Sensitization. *Circ Res* 2020;126(6):708–721.
- 534 21. Ruggeri Barbaro N et al. Sodium activates human monocytes via the NADPH oxidase
535 and isolevuglandin formation. *Cardiovasc Res* 2021;117(5):1358–1371.
- 536 22. Van Beusecum JP et al. High Salt Activates CD11c+ Antigen-Presenting Cells via
537 SGK (Serum Glucocorticoid Kinase) 1 to Promote Renal Inflammation and Salt-Sensitive
538 Hypertension. *Hypertension* 2019;74(3):555–563.
- 539 23. Van Beusecum JP et al. Growth Arrest Specific-6 and Axl Coordinate Inflammation
540 and Hypertension. *Circulation research* 2021;129(11):975–991.
- 541 24. Archbold JK et al. Natural micropolymorphism in human leukocyte antigens provides
542 a basis for genetic control of antigen recognition. *J Exp Med* 2009;206(1):209–219.
- 543 25. Illing PT et al. Immune self-reactivity triggered by drug-modified HLA-peptide
544 repertoire. *Nature* 2012;486(7404):554–558.
- 545 26. Chen B, Li D, Xu W. Association of ankylosing spondylitis with HLA-B27 and ERAP1:
546 pathogenic role of antigenic peptide. *Med Hypotheses* 2013;80(1):36–38.
- 547 27. Boisgerault F et al. Definition of the HLA-A29 peptide ligand motif allows prediction of
548 potential T-cell epitopes from the retinal soluble antigen, a candidate autoantigen in
549 birdshot retinopathy. *Proc Natl Acad Sci U S A* 1996;93(8):3466–3470.
- 550 28. Nair RP et al. Sequence and Haplotype Analysis Supports HLA-C as the Psoriasis
551 Susceptibility 1 Gene. *Am J Hum Genet* 2006;78(5):827–851.

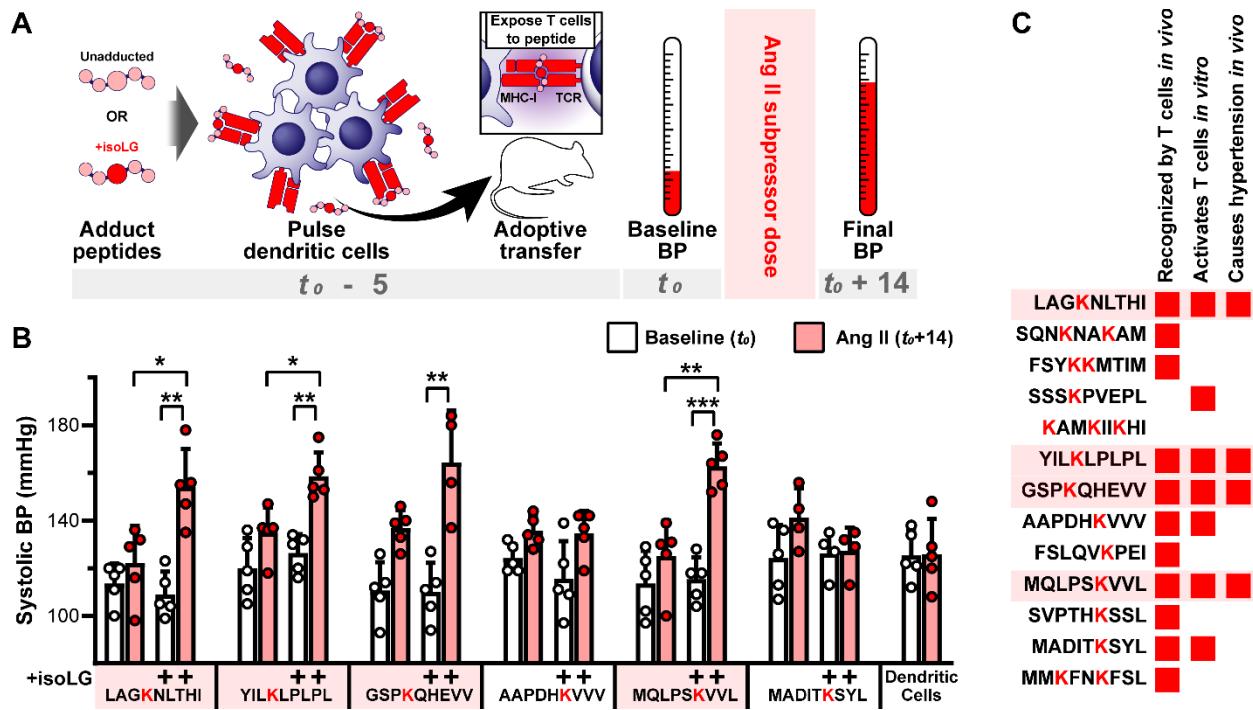
- 552 29. Scally SW et al. A molecular basis for the association of the HLA-DRB1 locus,
553 citrullination, and rheumatoid arthritis. *J Exp Med* 2013;210(12):2569–2582.
- 554 30. Petersen J et al. T-cell receptor recognition of HLA-DQ2-gliadin complexes associated
555 with celiac disease. *Nat Struct Mol Biol* 2014;21(5):480–488.
- 556 31. Young AC, Zhang W, Sacchettini JC, Nathenson SG. The three-dimensional structure
557 of H-2Db at 2.4 Å resolution: implications for antigen-determinant selection. *Cell*
558 1994;76(1):39–50.
- 559 32. Fremont DH, Stura EA, Matsumura M, Peterson PA, Wilson IA. Crystal structure of
560 an H-2Kb-ovalbumin peptide complex reveals the interplay of primary and secondary
561 anchor positions in the major histocompatibility complex binding groove. *Proc Natl Acad
562 Sci U S A* 1995;92(7):2479–2483.
- 563 33. Achour A et al. A Structural Basis for LCMV Immune Evasion: Subversion of H-2Db
564 and H-2Kb Presentation of gp33 Revealed by Comparative Crystal Structure Analyses.
565 *Immunity* 2002;17(6):757–768.
- 566 34. Raveh B, London N, Schueler-Furman O. Sub-angstrom modeling of complexes
567 between flexible peptides and globular proteins. *Proteins* 2010;78(9):2029–2040.
- 568 35. T L et al. Subangstrom accuracy in pHLA-I modeling by Rosetta FlexPepDock
569 refinement protocol. *Journal of chemical information and modeling* 2014;54(8):2233–
570 2242.
- 571 36. Alam N, Schueler-Furman O. Modeling Peptide-Protein Structure and Binding Using
572 Monte Carlo Sampling Approaches: Rosetta FlexPepDock and FlexPepBind.. *Methods
573 in molecular biology (Clifton, N.J.)* 2017;1561:139–169.


- 574 37. Vita R et al. The immune epitope database (IEDB) 3.0.. *Nucleic acids research*
575 2015;43(Database issue):D405-12.
- 576 38. Sigal LJ, Wylie DE. Role of non-anchor residues of Db-restricted peptides in class I
577 binding and TCR triggering. *Mol Immunol* 1996;33(17–18):1323–1333.
- 578 39. Uhlén M et al. Proteomics. Tissue-based map of the human proteome.. *Science (New*
579 *York, N.Y.)* 2015;347(6220):1260419.
- 580 40. Hoof I et al. NetMHCpan, a method for MHC class I binding prediction beyond
581 humans. *Immunogenetics* 2009;61(1):1–13.
- 582 41. Itani HA et al. CD70 Exacerbates Blood Pressure Elevation and Renal Damage in
583 Response to Repeated Hypertensive Stimuli.. *Circulation research* 2016;118(8):1233–
584 1243.
- 585 42. Gonzalez-Galarza FF et al. Allele frequency net database (AFND) 2020 update: gold-
586 standard data classification, open access genotype data and new query tools.. *Nucleic*
587 *acids research* 2020;48(D1):D783–D788.
- 588 43. Wu J et al. Immune activation caused by vascular oxidation promotes fibrosis and
589 hypertension.. *The Journal of clinical investigation* 2016;126(1):50–67.
- 590 44. McDonnell WJ et al. High CD8 T-Cell Receptor Clonality and Altered CDR3 Properties
591 Are Associated With Elevated Isolevuglandins in Adipose Tissue During Diet-Induced
592 Obesity.. *Diabetes* 2018;67(11):2361–2376.
- 593 45. Fernandez DM et al. Single-cell immune landscape of human atherosclerotic plaques.
594 *Nat Med* 2019;25(10):1576–1588.
- 595 46. Winkels H et al. Atlas of the immune cell repertoire in mouse atherosclerosis defined
596 by single-cell RNA-sequencing and mass cytometry. *Circ Res* 2018;122(12):1675–1688.

- 597 47. Sun S et al. Gut Microbiota Composition and Blood Pressure. *Hypertension*
598 2019;73(5):998–1006.
- 599 48. Karbach SH et al. Gut Microbiota Promote Angiotensin II-Induced Arterial
600 Hypertension and Vascular Dysfunction. *J Am Heart Assoc* 2016;5(9):e003698.
- 601 49. Wilck N et al. Salt-responsive gut commensal modulates TH17 axis and disease.
602 *Nature* 2017;551(7682):585–589.
- 603 50. Eliovich F et al. The Gut Microbiome, Inflammation, and Salt-Sensitive Hypertension.
604 *Curr Hypertens Rep* 2020;22(10):79.
- 605 51. Massey KJ, Hong NJ, Garvin JL. Angiotensin II stimulates superoxide production in
606 the thick ascending limb by activating NOX4. *Am J Physiol Cell Physiol*
607 2012;303(7):C781-789.
- 608 52. Welch WJ, Blau J, Xie H, Chabashvili T, Wilcox CS. Angiotensin-induced defects in
609 renal oxygenation: role of oxidative stress. *Am J Physiol Heart Circ Physiol*
610 2005;288(1):H22-28.
- 611 53. Boutaud O, Brame CJ, Salomon RG, Roberts LJ 2nd, Oates JA. Characterization of
612 the lysyl adducts formed from prostaglandin H2 via the levuglandin pathway..
613 *Biochemistry* 1999;38(29):9389–9396.
- 614 54. Dendrou CA, Petersen J, Rossjohn J, Fugger L. HLA variation and disease. *Nature*
615 *Reviews Immunology* 2017 18:5 2018;18(5):325–339.
- 616 55. Diamantopoulos EJ et al. HLA phenotypes as promoters of cardiovascular
617 remodelling in subjects with arterial hypertension. *J Hum Hypertens* 2003;17(1):63–68.
- 618 56. Gerbase-DeLima M et al. Essential hypertension and histocompatibility antigens. An
619 association study.. *Hypertension* 1992;19(4):400–402.


- 620 57. Karnes JH et al. Phenome-wide scanning identifies multiple diseases and disease
621 severity phenotypes associated with HLA variants [Internet]. *Science translational*
622 *medicine* 2017;9(389). doi:10.1126/SCITRANSLMED.AAI8708
- 623 58. Harrison DG, Coffman TM, Wilcox CS. Pathophysiology of Hypertension: The Mosaic
624 Theory and Beyond. *Circulation research* 2021;128(7):847–863.
- 625 59. Bouvier M, Wiley DC. Importance of peptide amino and carboxyl termini to the stability
626 of MHC class I molecules. *Science* 1994;265(5170):398–402.
- 627 60. Caillon A et al. $\gamma\delta$ T Cells Mediate Angiotensin II-Induced Hypertension and Vascular
628 Injury. *Circulation* 2017;135(22):2155–2162.
- 629 61. Bloodworth N, Barbaro NR, Moretti R, Harrison DG, Meiler J. Rosetta FlexPepDock
630 to predict peptide-MHC binding: An approach for non-canonical amino acids. *PLOS ONE*
631 2022;17(12):e0275759.
- 632 62. Fleishman SJ et al. RosettaScripts: A Scripting Language Interface to the Rosetta
633 Macromolecular Modeling Suite. *PLOS ONE* 2011;6(6):e20161.
- 634 63. Jumper J et al. Highly accurate protein structure prediction with AlphaFold. *Nature*
635 2021;596(7873):583–589.
- 636 64. Amarnath V, Amarnath K, Masterson T, Davies S, Roberts LJ. A Simplified Synthesis
637 of the Diastereomers of Levuglandin E2. *Synthetic Communications* 2005;35(3):397–408.
- 638 65. Davies SS et al. Localization of isoketal adducts in vivo using a single-chain antibody..
639 *Free radical biology & medicine* 2004;36(9):1163–1174.
- 640


Figure 1: Presentation of IsoLG-adducted peptides is H-2D^b restricted. (A) Transgenic mice develop hypertension in response to angiotensin II (n=4, **p<0.001, ***p<0.0001, student's t-test). (B) Transgenic mice expressing soluble forms of H-2D^b or H-2K^b were treated with angiotensin II to induce hypertension before splenocyte harvesting and culture. Shed MHC-I was adsorbed onto Ni-agarose beads, co-cultured with T cells from wild type mice, and T cell proliferation measured with serial dye dilution and flow cytometry. (C) CD8⁺ T cells proliferate if exposed to bead-bound H-2D^b but not H-2K^b (n=4, ***p<0.0001, student's t-test). (D) CD8⁺ T cell proliferation is only observed if both soluble H-2D^b and T cells are isolated from angiotensin II-treated animals, and treating transgenic mice with the IsoLG scavenger 2-HOBA or blocking T cell/MHC-I interactions with the anti-IsoLG antibody D11 inhibits CD8⁺ T cell activation (n=4-11, *p<0.01 vs No Treatment AngII/AngII by 2-way ANOVA and Holm-Sidak post-hoc). (E) After treating mouse DCs with tBHP to induce IsoLG adduct formation, cells were stained with antibodies for MHC-I and IsoLG conjugated to a complementary FRET fluorophore pair. FRET signal was observed when staining for H-2D^b and IsoLG in tBHP treated DCs, but not untreated cells or when staining for H-2K^b (n=3, ***p<0.0001, student's t-test).


Figure 2: A Computational modeling pipeline predicts IsoLG adducted peptides presented by H-2D^b. (A-B) Rosetta scores are more favorable (more negative) for peptides known to bind to H-2K^b (A) and H-2D^b (B) when compared to known non-binders (**p<0.0001, Mann-Whitney test). (C) When lysine-containing peptides are adducted with IsoLG *in silico*, Rosetta predicts smaller (more favorable) score changes if those peptides are bound to H-2D^b compared to H-2K^b (*p<0.05, Mann-Whitney test). (D) Rosetta score changes after *in silico* IsoLG adduction for all non-anchoring residues in lysine containing H-2D^b bound epitopes predict residue sites 4, 6, and 7 as energetically favorable positions (positions at which multiple peptides modeled have no score increase after adduction). Black bars indicate mean Δ Rosetta score. (E) These residues correspond to areas recognized by TCRs interacting with H-2D^b epitopes. (F) Strategy for identifying a library of peptide candidates to screen *in vitro* and *in vivo*.

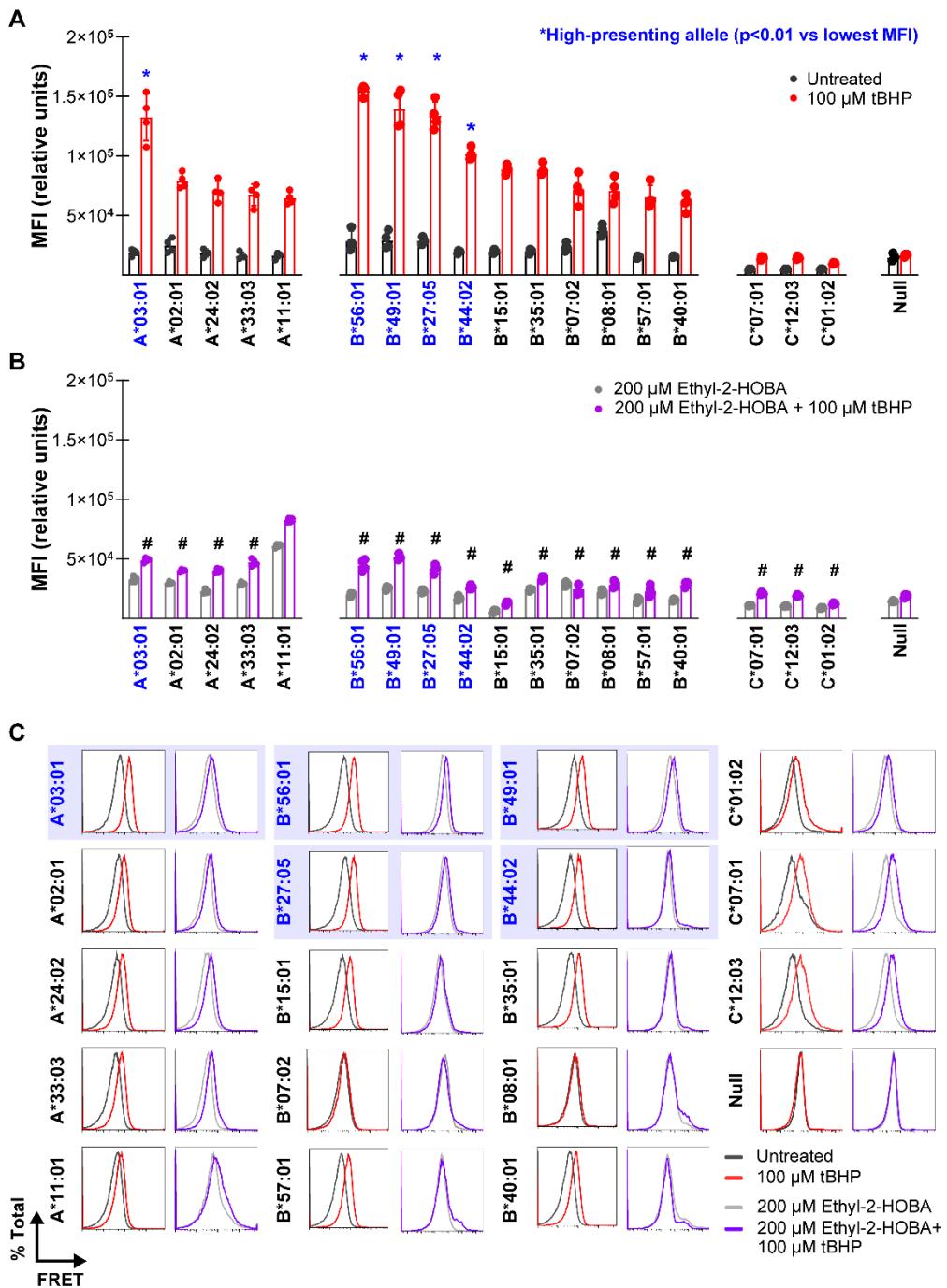

Figure 3: A subset of candidate IsoLG-adducted peptides are recognized by CD8⁺ T cells enriched in the aortas of hypertensive mice and induce CD8⁺ T cell proliferation *in vitro*. (A) Seven candidate IsoLG-adducted peptides induce the proliferation of T cells isolated from the bone marrow of hypertensive mice, while unadducted peptides do not (n=7-9, *p<0.05, student's t-test). (B) 11 IsoLG-adducted peptides identify a population of peptide-specific CD8⁺ T cells that are enriched in the aortas of hypertensive mice (n=3-9, *p<0.05 by 2-way ANOVA and Holm-Sidak post-hoc). Six candidates are both recognized by CD8⁺ T cells and induce CD8⁺ T cell proliferation *in vitro* (highlighted in red). (C) Representative histograms illustrating proliferation of CD8⁺ T cells after exposure to each of these six candidate IsoLG-adducted peptides and (D) flow plots illustrating the increase in peptide-specific CD8⁺ T cells in the aorta.

Figure 4: IsoLG-adducted peptide-specific CD⁺ T cells are predominantly memory T cells. (A) Candidate peptides adducted with IsoLG are recognized by CD8⁺ T cells in the bone marrow, an important reservoir for memory CD8⁺ T cells in hypertension (n=3-8, *p<0.05, 2-way ANOVA and Holm-Sidak post-hoc). Staining for memory T cell markers CD44 (all memory cells) and CD62L (central memory cells) reveals these populations are primarily a mix of effector and central memory cells in (B-C) the bone marrow and mostly effector memory cells in (D-E) the aorta (n=3-8, *p<0.05, **p<0.001, ***p<0.0001, 1-way ANOVAs and Holm-Sidak post-hoc).

Figure 5: IsoLG-adducted peptides induce hypertension in mice. (A) Experimental diagram. IsoLG-adducted peptide candidates and their unadducted counterparts were loaded onto DCs and adoptively transferred prior to two weeks of treatment with a subpressor dose of angiotensin II. (B) Four of the six candidates tested induced a significant increase in blood pressure following adoptive transfer while unadducted peptides do not (n=4-5, *p<0.05, **p<0.001, ***p<0.0001, 2-way ANOVA and Holm-Sidak post-hoc). (C) Of the original 13 candidates screened, four are recognized by CD8⁺ T cells, induce CD8⁺ T cell activation, and induce hypertension in mice following adoptive transfer.

Figure 6: IsoLG adducted peptides are preferentially displayed by certain HLA molecules. (A) Treating K562 cells expressing single HLA alleles with tBHP induces a significant increase in the HLA-IsoLG FRET proximity mean fluorescent intensity (MFI) for all alleles screened, excepting the HLA null control. However, there are certain alleles with significantly higher FRET MFI compared to the lowest measured in each allele class (A, B, or C) ($n=4$, $*p < 0.05$ vs lowest average MFI for corresponding allele class, 2-way ANOVA and Holm-Sidak post-hoc test). (B) Treatment with the dicarbonyl scavenger ethyl-2-HOBA significantly reduces FRET MFI compared to tBHP only treated cells ($n=4$, $#p < 0.05$ vs corresponding tBHP treated group, 2-way ANOVA with Holm-Sidak post-hoc). (C) Example FRET signal for all HLA alleles tested. “High-presenting” HLA-A and HLA-B alleles are highlighted in blue.