

1 **The super-pangenome of *Populus* unveil genomic facets for**
2 **adaptation and diversification in widespread forest trees**

3

4

5 Tingting Shi¹, Xinxin Zhang¹, Yukang Hou¹, Yuanzhong Jiang¹, Changfu Jia¹, Qiang
6 Lai¹, Xuming Dan¹, Jiajun Feng¹, Jianju Feng², Tao Ma¹, Jiali Wu¹, Shuyu Liu¹, Lei
7 Zhang¹, Zhiqin Long¹, Yulin Zhang¹, Jiaqi Zhang¹, Liyang Chen¹, Nathaniel R. Street³,
8 Pär K. Ingvarsson⁴, Jianquan Liu^{1*}, Tongming Yin^{5*}, Jing Wang^{1*}

¹Key Laboratory for Bio-Resources and Eco-Environment, College of Life Science,
Sichuan University, Chengdu, Sichuan, China

²College of Horticulture and Forestry, Tarim University, Alar 843300, China

³Umeå Plant Science Centre, Department of Plant Physiology, Umeå University,
Umeå, Västerbotten, Sweden

⁴Linnean Centre for Plant Biology, Department of Plant Biology, Uppsala BioCenter,
Swedish University of Agricultural Sciences, Uppsala, Sweden

⁵The Key Laboratory of Tree Genetics and Biotechnology of Jiangsu Province and
Education Department of China, Nanjing Forestry University, Nanjing, Jiangsu,
China

*Correspondence: liujq@nwipb.cas.cn (J.L.); tmyin@njfu.com.cn (T.Y.);
wangjing2019@scu.edu.cn (J.W.);

9 **Abstract**

10
11 Understanding the underlying mechanisms between genome evolution and phenotypic
12 and adaptive innovations is a key goal of evolutionary studies. Poplars are the world's
13 most widely distributed and cultivated trees, with extensive phenotypic diversity and
14 environmental adaptability. Here we report a genus-level super-pangenome of 19
15 *Populus* genomes. After integrating pan-genomes with transcriptomes, methylomes
16 and chromatin accessibility mapping, we reveal that the evolutionary fate of
17 pan-genes and duplicated genes are largely associated with local genomic landscapes
18 of regulatory and epigenetic architectures. Further comparative genomic analyses
19 enabled to identify 142,202 structural variations (SVs) across species, which overlap
20 with substantial genes and play key roles in both phenotypic and adaptive divergence.
21 We experimentally validated a ~180 bp presence/absence variant located in the
22 promoter of the *CUC2* gene, which contributed critically to leaf serration divergence
23 between species. Together, this first super-pangenome resource in forest trees will not
24 only accelerate molecular functional studies and genetic breeding of this globally
25 important tree genus, but also lays a foundation for our understanding of tree biology.

26

27

28 **INTRODUCTION**

29

30 Forests cover approximately 30% of the Earth's terrestrial surface and provide
31 humanity with clean air, fiber, food and fuel¹. Large and long-lived forests serve
32 numerous important ecological roles, from providing substantial habitat for terrestrial
33 biodiversity to mitigating the effects of global climate change^{2,3}. Despite their great
34 ecological and economic importance, both genomic and molecular studies of forest
35 trees have lagged behind other model herbaceous plants and crops⁴. Members of the
36 genus *Populus* have been established as model forest trees for diverse research areas
37 because of their relatively small genome sizes and the ease of genetic and
38 experimental manipulation⁵. In addition, poplars are one of the most widely naturally
39 distributed and cultivated trees in the world; they are found throughout the Northern
40 Hemisphere and some tropical regions in the Southern Hemisphere (Fig. 1a). Their
41 diverse habitats vary from arid deserts to wet tropical regions. There are 30 to 80
42 species in the genus and they are classified into five to eight intrageneric sections
43 depending on different taxonomists⁶. These sections encompass extensive phenotypic
44 diversity, for example, leaf margins range from being entire smooth to deeply
45 serrated⁷ (Fig. 1a). In addition, all poplar species experienced a recent whole genome
46 duplication (WGD) before their species diversification^{8,9}. The subsequent evolution
47 through structural variations and random retention of the duplicated genes may have
48 played an important role in widespread adaptation and the phenotypic diversity of the
49 genus *Populus*. The various species within the genus, therefore, contain rich genetic
50 diversity including allelic variations, private genes and structural variations that are
51 essential for facilitating genetic modifications of the cultivated poplars and for
52 supplementing germplasms for the biotic and abiotic stress tolerance required to adapt
53 to future climate change.

54 High-quality reference genomes for several species have promoted breeding and
55 functional studies of poplar trees^{8,10,11}. By resequencing numerous accessions of these

56 and closely related species, single nucleotide polymorphisms (SNPs) and small
57 insertion/deletions (InDels) have been identified to assist in clarifying local adaptation
58 and phenotypic diversification^{10,12,13}. However, these approaches can only reveal a
59 part of the genetic variation; it is difficult, however, to recover private genes and large
60 structural variants (SVs) at the genus level that may contribute more to genomic
61 evolution and phenotypic diversity^{14,15}. To overcome these limitations, pan-genomic
62 analyses based on multiple assembled *de novo* genomes have been developed to
63 capture the nearly complete spectrum of genetic diversity and reveal the hidden ability
64 to inherit for individual or closely related species¹⁶⁻¹⁸. In this study, we extended these
65 pan-genomic analyses to the genus level and assembled high-quality
66 chromosome-level genomes of 6 species of the genus *Populus* from different
67 geographical regions. These poplars have different phenotypes and/or evolutionary
68 histories from the currently published poplars, which can be a great complement to
69 poplar genome resources. We further collected previously published genome
70 sequences of 13 additional species/sub-species^{8,10,11}, with the combined 19
71 species/sub-species covering major clades of the genus⁶. This panel of genomes was
72 used to perform a super-pangenomic analysis which facilitated the discovery of
73 genomic variations at the genus level, including genes, transposable elements (TEs)
74 and structural variants (SVs). After using complementary Bisulfite-, ATAC- and
75 RNA-sequencing data (Extended Data Fig. 1a), it opens new opportunities to explore
76 the evolutionary causes and consequences of epigenetic and regulatory architectures
77 as species diverged and adapted to a wide range of ecological niches in the genus
78 *Populus*. We particularly aimed to identify SVs and also the hemizygous genes across
79 these representative species and to clarify the functional roles of these SVs in the
80 widespread adaptation and phenotypic diversity of the genus.

81

82 **RESULTS**

83

84 **Chromosome-scale reference genomes of newly sequenced *Populus* species**

85

86 To characterize the super-pangenome architecture of the genus *Populus*, we selected
87 19 reference genomes comprising 18 wild species and 1 sub-species from four
88 sections of *Populus*, in which 6 were *de novo* assembled at the chromosome level in
89 this study and the other 13 were published in other studies (Table 1). The 6 new
90 genomes were sequenced using a combination of Illumina short-read sequencing
91 (average coverage depth of 57.1 \times per genome), Oxford Nanopore long-read
92 sequencing (average coverage depth of 88.5 \times per genome) and high-throughput
93 chromosome conformation capture (Hi-C) technologies (average sequencing depth of
94 152.9 \times per genome) (Supplementary Table 2). Using these sequencing data, the new
95 genomes were assembled with contig N50 sizes ranging from 3.2Mb to 6.3Mb and
96 assembly sizes ranging from 408.0Mb to 448.7Mb after removing redundant
97 sequences and potential contaminated sequences (Table 1 and Supplementary Table 2).
98 Based on Hi-C read pairs, the assembled contigs were further anchored to 19
99 pseudo-chromosomes with an average anchoring rate of 98.3% across species
100 (Extended Data Fig. 1b and Supplementary Fig. 1). The completeness of all
101 assemblies exceeded 98% when evaluated using Benchmarking Universal
102 Single-Copy Orthologs (BUSCO)¹⁹ (Extended Data Fig. 1c). Further evaluation using
103 Merqury²⁰ showed a quality value (QV) over 30 for all assemblies, which reached the
104 TrioCanu human (NA12878) assembly standard of QV 30²⁰ (Supplementary Table 2).

105 By combining *ab initio*, homology-based and transcriptome-based approaches,
106 37,520-40,713 protein-coding genes were identified from the newly assembled
107 genomes (Table 1), of which 93.8%-95.3% were functionally annotated through at
108 least one of the databases TrEMBL, Swiss-Prot, NR, Pfam, Interproscan, GO or
109 KEGG (Supplementary Tables 3,4). BUSCO completeness scores of annotated genes
110 from the newly assembled genomes ranged from 95.0 to 98.1% (Table 1 and
111 Supplementary Fig. 2). We observed a high level of chromosomal-scale genetic

112 synteny across the 19 species (Extended Data Fig. 1d and Supplementary Fig. 3),
113 supporting the suggestion that the karyotypes of these species have remained
114 remarkably stable. To minimize methodological artifacts of whole-genome
115 transposable elements (TE) annotation, we used a uniform annotation pipeline for
116 both newly assembled and previously published genomes. We found that repetitive
117 elements made up ~ 38.5% of genomic sequences with a range from 33.4 to 47.0%
118 across species (Table 1, Fig. 1b and Supplementary Table 5). Variable TE abundance
119 were largely explained in genome size across the species (Supplementary Fig. 4).
120 Among the annotated repeats, long terminal repeat (LTR) retrotransposon elements
121 were the most abundant, accounting for 15.73-41.31% of each genome (Fig. 1c).

122

123 **Phylogeny, demography and TE landscape of the genus *Populus***

124

125 We constructed the phylogenetic tree using the reference genomes of 19
126 species/sub-species, based on both the concatenation and coalescent methods, using
127 2,455 single-copy orthologous genes. However, we observed a conflict with respect to
128 the basal section in trees constructed using the two methods (Extended Data Figs.
129 2a,b). We thus quantified the amount of incongruence between individual gene trees
130 and the species tree by implementing gene and site concordance factors (gCF and sCF)
131 analysis, which respectively quantify the proportion of informative gene trees (gCF)
132 and sites (sCF) that support a given branch between taxa. Both gCF and sCF were
133 found to be quite low for many branches (Fig. 1b), and the incomplete lineage sorting
134 (ILS) in conjunction with the short internal branches observed are probably the main
135 factors causing the tree discordance, although ancestral gene flow could also play a
136 minor role. To further resolve the phylogenetic challenges, we extracted
137 approximately 48.7 Mb of orthologous regions from the reference-free Cactus²¹
138 alignments and used a much larger dataset of 11,385 low-copy number genes for
139 phylogenetic analyses. Both methods yielded topologies consistent with the ASTRAL

140 coalescent tree described above (Fig. 1b and Extended Data Fig. 2), implying that the
141 coalescent-based phylogenetic approach is likely to be more robust in the presence of
142 ILS. Three major clades, represented by *P. trichocarpa* (Clade-I), *P. davidiana*
143 (Clade-II) and *P. euphratica* (Clade-III), were highly supported, which also differ
144 distinctly from each other in the phenotypic variation of leaves (Fig. 1). Further, we
145 examined changes in effective population sizes (N_e) of the 19 species in the recent
146 past using the Pairwise Sequentially Markovian Coalescent (PSMC) method²². We
147 found that different *Populus* species experienced a highly distinct demographic
148 history (Extended Data Fig. 3), even for species occupying similar ecological niches.

149 We further compared the genomic distributions of TEs across the genus
150 phylogeny (Figs. 1c,d and Supplementary Fig. 5). TE families tend to reside
151 preferentially within 2kb surrounding genic regions, with the exception of the basal
152 clade (Clade-III) comprising *P. euphratica*, *P. pruinosa* and *P. illicifolia* in which
153 *Gypsy* retrotransposons were located mainly in regions more distant from genes. At
154 the superfamily level, different families were found to have varying relationships with
155 gene expression, with expression in general being positively correlated with the
156 distance to the nearest *Gypsy* and *Copia* superfamilies, negatively correlated with
157 Helitrons, and only weakly correlated with other superfamilies (Supplementary Table
158 6). Therefore, potential *cis*-regulatory influences of TEs on the expression level of
159 neighboring genes may differ between different superfamilies²³. We also compared
160 the proportion of TEs between shared and species-specific genomic regions. We
161 observed a much higher content of TEs that are largely dominated by *Gypsy* LTR
162 retrotransposons (LTR-RTs) in species-specific sequences compared with shared
163 sequences (Extended Data Figs. 4a-c). We detected an average of 1,370 intact
164 full-length LTRs (fl-LTRs) per species (Supplementary Table 7) and identified
165 relatively recent retrotransposon amplifications (<5 million years ago, Ma) in most
166 species (Supplementary Fig. 6). In particular, the species-specific fl-LTRs were much
167 younger than the shared ones (Extended Data Fig. 4d). After identifying pairwise

168 shared syntenic fl-LTRs between species, we detected 0-39.4% of still syntenic
169 fl-LTRs across species (Supplementary Fig. 7). Differences in pairwise shared
170 numbers were highly consistent with phylogenetic relationships and these results
171 reinforce the notion that TEs, and in particular LTR-RTs, are important drivers of
172 rapid sequence turnover and genome evolution in the genus.

173

174 **Evolutionary architecture of the *Populus* super-pangenome**

175

176 We performed pan-genomic analyses of the 19 species/sub-species at the genus
177 level, which we refer to as a super-pangenome. We annotated 40,606 gene families
178 and 20,928 unassigned genes containing a total of 712,487 genes. The number of
179 pan-genes retained increased with each additional genome added (Fig. 2a). On the
180 basis of their presence in each genome, the gene families were further categorized into
181 four groups: 12,924 gene families that were present across all 19 genomes were
182 defined as core genes; 4,874 families present in 17 to 18 genomes as softcore genes;
183 19,668 families presented in 2 to 16 genomes as dispensable genes; and the remaining
184 gene families only present in a single genome and the genes were not clustered into
185 families as private genes (Fig. 2b, Extended Data Fig. 5a and Supplementary Table 8).
186 We found that the proportion of each group of genes was highly consistent across
187 species, with an average of 51.3% (SE=0.74%) belonging to the core genes, 22.8%
188 (SE=0.33%) to the softcore genes, 22.3% (SE=0.97%) to the dispensable genes, and
189 3.6% (SE=0.59%) to the private genes (Supplementary Table 8). Compared to most of
190 the core and softcore genes that are highly syntenic to the sister genus *Salix* (85.6%
191 and 75.7%), dispensable and private genes show much lower syntenic ratios (29.7%
192 and 17.7%) with *Salix* (Extended Data Fig. 5b). When compared with core and
193 soft-core genes, dispensable and private genes had shorter coding sequences and were
194 relatively closer to proximal upstream TEs (Figs. 2c,d). Moreover, dispensable genes
195 exhibited higher nucleotide diversity (π) and a higher ratio of nonsynonymous to

196 synonymous substitution (d_N/d_S) than core genes (Fig. 2e and Extended Data Fig. 5c).
197 Expression analysis showed that dispensable and private genes displayed significantly
198 lower expression levels but higher tissue specificity (Tau index) when compared to
199 core and softcore genes (Figs. 2f,g). Nevertheless, caution should be warranted given
200 the potential impact of gene prediction accuracy on the gene gain and/or loss
201 measures across divergent species at the genus level. To minimize these affections,
202 comprehensive annotation are supposed to be build by using the same gene prediction
203 pipelines for all species with high-quality genome assemblies in the future.

204 Functional enrichment analysis showed that core genes were enriched in basic
205 biological and cellular processes, including primary metabolic, developmental and
206 other fundamental metabolic and biosynthetic processes. In contrast, the dispensable
207 and private genes were enriched in areas related to secondary metabolic processes,
208 abiotic and biotic responses, molecule transport and rhythmic processes (Fig. 2h and
209 Supplementary Table 9). In particular, we found that private genes were highly
210 enriched for processes that could be associated with species-specific adaptation to
211 local environments. For instance, the private genes of *P. qiongdaoensis*, which
212 naturally grows in tropical regions, were enriched in multiple processes involved in
213 heat stress response, such as lateral root development, stomatal closure and
214 phytohormone regulation (including response to auxin, cytokinin, abscisic acid and
215 gibberellic acid). In addition, the private genes of *P. pseudoglauca*, which is mainly
216 distributed on the Qinghai-Tibet Plateau and adjacent highlands, were significantly
217 enriched in processes related to hypoxia and rapid temperature change responses, such
218 as response to oxygen levels, anaerobic respiration and glycerolipid metabolic
219 processes (Fig. 2h and Supplementary Table 10).

220 We further characterized the patterns of DNA methylation and chromatin
221 accessibility across *Populus* species (Supplementary Tables 11-12), in order to
222 compare the epigenetic marks and transcriptional regulatory elements among the
223 different types of pan-genes (Figs. 2i-k and Extended Data Figs. 5d-f). Methylated

224 bases were identified in three sequence contexts: CG, CHG, and CHH (where H is A,
225 T, or C) based on the Bisulfite sequencing data from leaf tissue of 13 species. We
226 found that both CHG and CHH methylation levels, together with CG methylation in
227 the flanking regions of core and softcore genes were substantially lower than in
228 dispensable and private genes (Fig. 2i and Extended Data Figs. 5d,e), which was
229 expected since DNA methylation in these contexts is usually associated with
230 repression of gene expression²⁴. In contrast, CG methylation within protein coding
231 sequence regions was similar or even higher in core and softcore genes compared to
232 dispensable and private genes. This pattern mirrors previous studies that have shown
233 that gene body methylation (gbM) in the CG context is positively correlated with
234 levels of gene expression²⁵⁻²⁷, again suggesting that gbM may play an important role
235 in the maintenance of the core genes that are generally enriched for housekeeping
236 functions across species. In addition, as active *cis*-regulatory elements are widely
237 reported to be located within accessible chromatin regions (ACRs), we performed
238 ATAC-seq using leaf tissue from 12 *Populus* species to assess genome-wide
239 chromatin accessibility and identify ACRs within each species (Extended Data Fig.
240 5f). ACRs were highly enriched upstream of transcription start sites of genes.
241 Interestingly, we observed significantly shorter distances between ACRs and the
242 nearest core and softcore genes relative to dispensable and private genes (Fig. 2j).
243 Overall, these pan-gene results are consistent in all poplar species (Supplementary
244 Figs. 8-15), suggesting that the epigenetic and regulatory architectures may both have
245 pervasive effects on gene evolution as species diverged and adapted to a wide range
246 of ecological niches.

247

248 **The evolutionary dynamics of duplicate genes alongside species divergence in the**
249 **genus *Populus***

250

251 *Populus* and its sister genus *Salix* shared a recent WGD event around 58 Ma^{8,9}. In

addition to WGD, other modes of gene duplication are also prevalent in various plant genomes²⁸⁻³⁰. We identified different modes of gene duplication across the 19 poplar genomes using DupGen_finder³¹. We found 14,674-22,148 (41.77-57.3%), 2,226-4,757 (5.99-12.06%), 1,015-3,185 (3.01-7.10%), 1,518-5,423 (4.37-15.44%) and 4,630-6,138 (11.55-17.29%) duplicated genes derived from WGD, tandem duplicates (TD), proximal duplicates (PD), transposed duplicates (TRD) and dispersed duplicates (DSD), respectively. In addition, 2,854-6,387 (8.66-17.13%) genes were only present once in the genome-wide landscape (referred to as singletons) (Fig. 3a and Supplementary Table 13). When mapping these duplicated genes and singletons to the pan-genes identified above, we found that core genes were mainly composed of WGD-derived genes, while singletons accounted for the majority of private genes (Fig. 3a). Moreover, the WGD-derived genes were mostly syntenic to *Salix*, whereas this was rarely the case for genes duplicated through other modes and for singletons (Extended Data Fig. 6a). These findings suggest that, compared to other genes, WGD-derived genes are more conserved at both species and genus level.

We also performed integrative genomic analysis, incorporating expression, methylation and chromatin accessibility, to compare these duplicate genes with different origin modes. Regardless of the pan-gene type, the WGD-derived genes had, on average, longer CDS lengths, a greater distance to proximal upstream TEs, lower K_a/K_s ratios and exhibited higher expression levels and lower expression specificity compared to other, i.e. TD- and PD- derived, duplicate genes (Figs. 3c-e,h and Extended Data Fig. 6b-d). The average methylation levels in flanking regions of WGD-derived genes at CG sites and along the whole gene at CHG and CHH sites were substantially lower than the methylation levels of the other groups of duplicate genes, which are probably associated with fewer TEs near these genes, which may also explain their higher expression levels (Fig. 3f and Extended Data Figs. 6e,f). Moreover, compared with duplicate genes originating in other ways, there was a significantly shorter distance between ACRs and the nearest core-type WGD-derived

280 genes (Fig. 3g). These patterns are consistent in all poplar species (Supplementary
281 Figs. 16-26), further support the suggestion that expression and epigenetic regulatory
282 architectures play key roles in determining the distinct evolutionary trajectories of
283 duplicated genes. To further explore the biased functional roles of duplicate genes
284 with different origin modes, we performed GO enrichment analysis with the results
285 suggesting that TD- and PD-derived duplicate genes exhibited divergent functional
286 roles and were enriched for GO terms related to secondary metabolic processes,
287 response to stress and biotic stimulus when compared to the WGD-derived duplicate
288 genes that were mainly enriched in essential functions (Fig. 3b and Supplementary
289 Table 14).

290 As WGD is considered as a major driving force in organismal adaptation and
291 species diversification³², we thus performed complementary and integrative analysis
292 combining pan-genes and duplicate genes to examine the differential retention and
293 divergent resolution of duplicate genes between species following WGD. We used
294 one-to-one duplicated pairs (i.e., both gene copies appeared only once in all
295 WGD-derived gene pairs) that are originated from WGD for this analysis
296 (Supplementary Table 15). According to the level of synonymous divergence (K_s)
297 between the two paralogs, we divided duplicate genes into three groups and found that
298 WGD pairs with highest K_s values tend to enrich in dispensable and private gene sets
299 compared to those with lower K_s values (Figs. 4a,b). Furthermore, the relative gene
300 expression and DNA methylation divergence (in particular of gbM) between the
301 duplicates increased with their evolutionary changes. More strikingly, the duplicate
302 pairs with the different pan-gene types (e.g. one paralog is core gene and the other
303 paralog is dispensable gene) across species exhibit higher expression and methylation
304 divergence than those sharing the same pan-gene types (Figs. 4c,d and Extended Data
305 Fig. 6g). These results imply that potential evolutionary novelties of duplicated genes
306 also accompanied by clade- or species-specific gene retention, losses and functional
307 innovations over the different speciation events (Extended Data Fig. 6h). Additionally,

308 we observed a positive correlation between the expression and methylation
309 divergence of duplicated genes in all three sequence contexts but especially for the
310 CG methylation in gene-body regions (Fig. 4e and Extended Data Fig. 6i). These
311 findings have universality across poplar species (Supplementary Figs. 27-29),
312 suggesting that DNA methylation, particularly gbM, has strong effects in determining
313 the functional divergence and long-term preservation of duplicated genes^{33,34}.

314 In support of this, we further selected only duplicate gene pairs located within the
315 confidence interval of corrected K_s peaks for analysis to correct for the sequence
316 divergence (Fig. 4f). Among duplicate gene pairs that share the greatest sequence
317 similarity, we still found extensive variation in expression divergence (Extended Data
318 Figs. 7a,b). To investigate the factors driving the differences in gene expression
319 divergence, we classified duplicate genes into conserved and diverged pairs by
320 assessing the similarity in expression profiles of partners (Figs. 4f,g). Despite
321 divergent duplicate gene pairs showing similar overall expression levels with
322 conserved pair, they still exhibited significantly higher K_d/K_s ratios and tissue
323 expression specificities (Extended Data Figs. 7c-g), suggesting that functional
324 divergence probably occurred at both expression and protein level for these divergent
325 duplicate pairs. However, compared to the weak differences in nearby TE, chromatin
326 accessibility distribution and methylation in the CHG and CHH sequence contexts
327 between divergent and conserved duplicate gene pairs (Extended Data Figs. 7h-k), we
328 observed remarkable divergence of CG methylation in the gene-body regions (Fig.
329 4h), with divergent pairs displaying much lower and divergent levels of gbM when
330 compared with the similar levels of gbM observed for conserved pairs. Moreover,
331 levels of duplicate-gene retention and sequence divergence across species also
332 differed between conserved and divergent duplicate pairs, with the latter having
333 higher tendency of containing different pan-gene categories and structural variations
334 (SVs) across species (Figs. 4f,i-j). Together, these findings suggest that the loss of
335 gbM is likely a key epigenetic precursor for sub- or neofunctionalization of duplicates

336 following WGD, particularly given that rapid reduction of gbM may result in aberrant
337 transcription, splicing and TE insertion³⁵, which extends the window of opportunity
338 for subsequent differential expression and sequence divergence via mutation^{36,37}.
339 Nevertheless, some caution is warranted given the non-independence of duplicated
340 genes across species and also more future work needs to dissect the precise cause or
341 consequence roles of epigenetic modification underlying retention and functional
342 divergence of duplicated genes.

343

344 **The landscape of structural variations (SVs) and hemizygous genes in *Populus***

345

346 We identified SVs based on 16 chromosome-level genomes by comparing 15 species
347 against the *P. trichocarpa* reference genome to identify syntenic and rearranged
348 regions using SyRI³⁸. We found highly consistent patterns when using an alternative
349 species, *P. adenopoda*, as the reference (Supplementary Figs. 30-38). In general,
350 species that have a closer phylogenetic relationship to the reference had more syntenic
351 regions and lower sequence divergence (Extended Data Fig. 8a). Five types of
352 representative SVs (>50 bp) were extracted, including insertions (INS), deletions
353 (DEL), inversions (INV), translocations (TRANS) and duplications (DUP). The total
354 sizes of SVs varied between 49.4 Mb and 184.6 Mb across the species compared
355 (Supplementary Table 16), with the length per SV ranging from a few dozen bp to
356 hundreds of Kb or even over Mb scales (Extended Data Fig. 8b). To verify the
357 accuracy and consistency of the SVs when called based on different reference
358 genomes, we randomly sampled 1000 different SVs detected by using *P. trichocarpa*
359 as the reference and then looked at how well those SVs were called when using *P.*
360 *adenopoda* as the reference. The results showed that only 9 SVs (9/1000) were not
361 cross-validated (Supplementary Table 17). Furthermore, we selected 50 SVs and
362 manually checked by mapping Nanopore long reads to the genome assemblies. We
363 found that only one border (1/100) could not be verified in the mapping results

364 (Supplementary Table 18 and Extended Data Fig. 8c). We next merged all SVs into a
365 set of 142,202 nonredundant SVs, comprising 34,372 insertions, 40,811 deletions,
366 24,623 translocations, 1,107 inversions and 41,289 duplications. When using the total
367 number of genes in *P. trichocarpa* as a reference, 77.6% of which (26,933) harbored
368 at least one SV across different species. We observed a remarkable uneven
369 distribution of SVs across the genome, with some regions being highly collinear
370 among species whereas other regions act as SV hotspots, harboring more TEs and
371 fewer collinear genes (Fig. 5a and Extended Data Figs. 8d,e). Many functional genes
372 were identified to be overlapped with at least one SV across species (Supplementary
373 Table 19). GO analyses of these genes within SV hotspot regions indicated that
374 defense response, secondary metabolite biosynthesis and signal transduction in both
375 adaptation and development were enriched (Supplementary Table 20), suggesting an
376 important role of SVs in adaptation of the sampled *Populus* species to biotic and
377 abiotic stresses, and the result of significantly higher ratios of disease resistance genes
378 (or *R* genes) overlapping with SVs also supports this (Extended Data Fig. 8f).

379 An extreme pattern of SVs within a given genome is that cause hemizygous genes,
380 which can be inferred and evidenced from long-read mapping³⁹. Based on remapping
381 Nanopore long reads to the corresponding reference genome, we estimate that
382 0.63-1.42% (211-559) of genes are hemizygous (i.e., gene presents in only one of the
383 two homologous chromosomes) across 10 *Populus* species with long-reads datasets
384 available (Supplementary Table 21), which is slightly higher than domesticated
385 selfing rice (0.35%-0.73%)⁴⁰, but much lower than the clonal propagated grapevine
386 (~15.5%)³⁹ and apomictic sweet orange (~11.2%)⁴¹. The relatively lower proportion
387 of hemizygous genes is not surprising given that the features shared by most *Populus*
388 species, such as outcrossing mating system, widespread geographic distribution and
389 higher efficacy of purifying selection acting against deleterious variations⁴². In
390 particular, we found that hemizygous genes were significantly concentrated in SV
391 hotspot regions than expected at random (Extended Data Fig. 8g), suggesting similar

392 mechanisms driving the formation of SVs within and across genomes in specific
393 regions. Functional enrichment analysis on these hemizygous genes are linked to GO
394 terms such as “rhythmic process”, “regulation of circadian rhythm” and ‘response to
395 wounding’, implying their possible adaptive roles in immunity and stress response
396 (Fig. 5b and Supplementary Table 22). For instance, the gene *Popse18561*, the
397 ortholog in *Arabidopsis PCR2* that was known to be associated with the response to
398 oxidative stress⁴³, was specifically expanded hemizygously in high altitude *P.*
399 *pseudoglauce* (Fig. 5g).

400 When comparing the ratio of genes associated with SVs and hemizygous genes
401 among the pan-genes and duplicated genes categories, we observed that core-genes
402 and WGD-derived genes were significantly depleted in genes overlapping with SVs
403 and hemizygous state when compared to dispensable-genes and the small-scale
404 duplicated genes that are more likely to be affected by structural variants than expected
405 by chance (Figs. 5c-f and Extended Data Figs. 8h,i). Moreover, genes associated with
406 SVs and particularly the hemizygous genes were found to be much closer to TEs than
407 other genes (Fig. 5h), again supporting the idea that TE mobilization is likely to be a
408 constant and dominant mechanism for the formation of SVs, finally leading to the
409 massive gene presence-absence variation within and between species⁴⁴. We also found
410 that genes with SVs, especially those hemizygous genes, had significantly higher
411 molecular evolutionary rates (K_a/K_s), lower expression level, longer distance to
412 nearest ACRs and higher methylation level within both gene-body and flanking
413 regions when compared to genes without SVs (Figs. 5i-n). As such, these results
414 suggest that the transposon-dominated formation of SVs has a broad influence on
415 gene function by affecting the expression of nearby genes through altering both
416 coding and flanking regulatory sequences, as well as triggering changes of local
417 chromatin and the epigenome⁴⁵⁻⁴⁸.

418

419 **Identification of a *cis*-regulatory SV potentially underlying leaf margin**

420 **differences across species in *Populus***

421

422 SVs have been reported to have widespread impacts on gene expression and
423 functional traits⁴⁹⁻⁵¹. Among the SVs detected across species, we detected an inversion
424 (~104 kb) on chromosome 1 that occurred between species of Clade-I (mainly
425 belonging to sect. *Tacamahaca*) and Clade-II (mainly belonging to sect. *Populus*) (Fig.
426 5a). Interestingly, species in these two clades have contrasting leaf margins (Fig. 6a).
427 This inverted region was also confirmed by mapping the Nanopore long reads of the
428 representative species from the two clades to the *P. trichocarpa* genome (Extended
429 Data Fig. 9a). We further measured and compared the synteny diversity, which
430 quantified the degree of genomic collinearity, among species within and between the
431 two clades. Compared to the flanking regions, we observed high inter-clade, but not
432 intra-clade, synteny diversity across the entire region, which is consistent with the
433 presence of an inversion that suppressed recombination and contributed to divergence
434 (Fig. 6b).

435 Among the ten genes contained in the inverted region, we identified an
436 orthologous gene of the transcription factor *CUP-SHAPED COTYLEDON2* (*CUC2*),
437 which has been repeatedly shown to play an essential role in promoting leaf margin
438 outgrowth and the formation of serration in plants⁵²⁻⁵⁴. As noted above, there are
439 striking morphological differences in leaf margin serrations between species from the
440 two clades. Most species of the Clade-I have smooth and entire margins whereas
441 those Clade-II ones have more serrated leaves with sparse or dense sinuous teeth (Fig.
442 6a), which may reflect their long-term adaptation to different natural environments
443 and habitats. The divergent patterning of leaf margin between the two clades could
444 likely be governed by the gene *CUC2*. Further testing *CUC2* expression along the leaf
445 margin of emerging young leaves revealed significantly higher expression of *CUC2* in
446 species from the Clade-II than those from Clade-I (Extended Data Figs. 9c,d). This is
447 consistent with the previous finding that the elevated expression of the *CUC2*

448 probably further triggers the formation of more serrated leaf margins in
449 *Arabidopsis*^{53,54}. Notably, compared to small sequence variations observed between
450 the two clades within *CUC2* genic regions, the divergence was much higher in the
451 promoter region, especially a ~180bp presence/absence variant close to the
452 transcription start site (TSS) was identified between species from the two clades (Fig.
453 6c). We therefore speculated that the ~180bp presence/absence variant might have
454 regulated the inter-species *CUC2* expression differences. To test this hypothesis, we
455 cloned the promoter fragments (Supplementary Fig. 39) from three species belonging
456 to Clade-I and three species belonging to Clade-II and conducted a dual luciferase
457 assay (LUC) via transiently transformed tobacco (Figs. 6d,e and Extended Data Fig.
458 9e). LUC activity driven by the Clade-II promoters was significantly higher than that
459 from the Clade-I promoters (Figs. 6d,e and Extended Data Fig. 9e). Importantly, the
460 modified Clade-II sequences components excluding the ~180bp fragment (Clade-IIΔ)
461 drove significantly lower luciferase reporter gene expression compared to constructs
462 containing the fragment (Figs. 6d,e and Extended Data Fig. 9e). Therefore, these data
463 suggest that the ~180bp insertion that contain multiple transcriptional factor binding
464 motifs in species from Clade-II (Extended Data Fig. 9b) resulted in the elevated
465 transcriptional activation of *CUC2*, thereby likely causing the more serrations along
466 the leaf margin.

467

468 **DISCUSSION**

469

470 The genus-level super-pangenome dataset of 19 *Populus* species/sub-species covering
471 the major taxonomic clades from this study represents, to our knowledge, the first
472 super-pangenome reconstructed based on whole-genome assemblies for forest trees
473 (Fig. 7). The availability of high-quality genome assemblies of these species enabled
474 us to precisely examine the evolution of the genomic landscape underlying the
475 widespread adaptation and high phenotypic diversity of this genus. We revealed

476 substantial variations in the number of genes and the content of repetitive regions
477 between these *Populus* species. Variable TEs abundance largely explained variation in
478 genome size and further promoted gene and genome evolution across different species.
479 The constructed super-pangenome greatly expands the gene repertoires of the total
480 genus, which can now be used in further diverse research areas. For example, many
481 dispensable and private genes across different species were found to play critical roles
482 in specific adaptation to abiotic and biotic stresses; these may be valuable for genetic
483 breeding of poplars and for revealing novel adaptive mechanisms that can be
484 translated to other species.

485 All *Populus* members shared a WGD event and we combined the analysis of
486 transcriptomes and methylomes as well as chromatin accessibility mapping to
487 illustrate the evolutionary trajectories of these duplicated genes after WGD across
488 different species. We find that sequence evolution and further functional divergences
489 of the WGD-derived duplicate genes are largely affected, regulated and maintained by
490 the levels of gene-body methylation. The evolution and maintenance of these
491 WGD-derived duplicate genes contribute to variable gene repertoires between species
492 that may lead to their divergence with respect to both adaptation and phenotype. The
493 evolutionary mechanism of these duplicated genes that we revealed deepens our
494 understanding of the critical roles of the frequent WGD during plant diversification.
495 We further identified 142,202 SVs across the sampled species, which overlap with
496 substantial genes in the genus and are involved in diverse functions. Among which,
497 0.63-1.42% of genes were found be hemizygous. SVs tend to occur more frequently
498 and in greater numbers within dispensable and small-scale duplicated genes, which
499 are mainly involved in defense response, secondary metabolite biosynthesis and
500 signal transduction. This further reveals the potential important regulatory roles of
501 SVs in modulating species adaptation and resilience to environmental changes. One
502 notable finding in our study was the identification of a large inversion-mediated
503 *cis*-regulatory divergence of *CUC2* gene likely act as an essential regulator in driving

504 divergent patterning of leaf margin serration across *Populus* species. Overall, the
505 super-pangenome that we constructed here for this model tree genus provides insights
506 into the evolution of the genomic landscape across different species, mainly involving
507 variations in genes, SVs and TEs. These genetic resources will facilitate the
508 genotyping of agronomically important traits at both population- and species-level for
509 this genus, something that has rarely been explored in forest trees.

510

511 **ACKNOWLEDGMENTS**

512 This work was supported by the National Key Research and Development Program of
513 China (2022YFD2201200 to J.W. and 2021YFD2200202 to T.Y. and J.L.). National
514 Natural Science Foundation of China (31971567 to J.W.) and Fundamental Research
515 Funds for the Central Universities (SCU2022D003, SCU2021D006, SCU2019D013
516 and 2020SCUNL207 to J.W. and J.L.).

517

518 **AUTHOR CONTRIBUTIONS**

519 J.W., T.Y., J.L. conceived the research. J.W. supervised the study. T.S., X.Z., C.J.,
520 Q.L., Z.L., Y.Z., J.Z. J.W. conducted genome assembly, annotation and
521 bioinformatics analyses. S.L. J.F. and L.Z. collected samples of different species. Y.
522 H., Y. J., X.D., J.F., L.C. carried out experiments. T.S. and J.W. wrote the manuscript,
523 with the input from N.R.S., P.K.I. and J.L.. All authors proofread and approved the
524 final manuscript.

525

526 **DECLARATION OF INTERESTS**

527 The authors declare no competing interests.

528

529 **Methods**

530

531 **Plant materials and genome sequencing**

532 Nineteen *Populus* species were selected for the construction of the genus-level
533 super-pangenome. In addition to 13 published assemblies, genomes of 6 more species
534 were newly sequenced and assembled (Extended Data Fig.1 and Supplementary Table
535 1). Fresh young leaves were harvested and immediately frozen in liquid nitrogen,
536 followed by preservation at -80 °C until DNA extraction for the newly sequenced
537 species. High-quality genomic DNA was extracted from leaves using the CTAB
538 method. For the short-read sequencing, 150-bp paired-end libraries with an insert size
539 of 350 bp were generated according to the standard protocol (Illumina) and sequenced
540 on an Illumina HiSeq X Ten platform. All raw reads were filtered using fastp
541 (v0.20.0)⁵⁵ with the following criteria: (1) with adapter sequences, (2) containing N
542 base and (3) more than 20% of bases with a quality score <20.

543 For the long-read sequencing, libraries for Nanopore long reads sequencing were
544 built using large (>20 kb) DNA fragments with the Ligation Sequencing Kit 1D
545 (SQK-LSK109), and sequenced using the PromethION platform (Oxford Nanopore
546 Technologies). Low-quality nucleotides that a mean quality score <7 were removed.

547 For the Hi-C experiment, the libraries were constructed from about 3g of fresh
548 and young leaves and prepared with DpnII restriction enzyme, followed by
549 sequencing on the Illumina NovaSeq platform. All clean Hi-C reads were obtained
550 using fastp (v0.20.0)⁵⁵ according to the following criteria: (1) with adapter sequences,
551 (2) the number of N base ≥ 5 and (3) more than 40% of bases with a quality score <15.

552 Total RNA was extracted from multiple tissues (leaf, root, stem, etc., the detailed
553 information was described in Supplementary Table 1) using the CTAB method.
554 RNA-seq libraries were constructed using a NEB Next Ultra Directional RNA Library
555 Prep Kit and sequenced on the Illumina HiSeq 2500 platform with a read length of 2
556 \times 150 bp.

557

558 **Genome assembly and pseudo-chromosome construction**

559 The quality-filtered Illumina short reads were first used to estimate the genome size of

560 each *Populus* species via a 17-bp k-mer frequency analysis with Jellyfish (v2.3.0)⁵⁶.
561 NextDenovo (v2.0-beta.1, <https://github.com/Nextomics/NextDenovo>), which contain
562 two core modules (NextCorrect and NextGraph), was then used for the preliminary
563 sequence assembly based on the Nanopore long reads. The raw long reads were first
564 error-corrected via NextCorrect with parameters “reads_cutoff=1k, seed_cutoff=30k”,
565 and then assembled via NextGraph with default parameters. To further improve
566 single-base accuracy and obtain high-quality consensus sequences; assembled contigs
567 were polished using Racon (v1.3.1)⁵⁷ with long reads for three rounds, and further
568 error-corrected using NextPolish (v1.0.5)⁵⁸ with the Illumina short reads for four
569 rounds. The redundant sequences were subsequently removed by using
570 perge_haplotigs (v1.1.1)⁵⁹ and the obtained genome assemblies were checked for
571 DNA contamination by searching against the NCBI non-redundant nucleotide
572 database (Nt) using BLASTN, with an E-value cutoff of 1e-5. Then, BUSCO (v4.0.5,
573 embryophyta_odb10 download at 16-Oct-2020)¹⁹ and Merqury (v1.3)²⁰ with default
574 settings were both applied to assess the integrity of assemblies.

575 To generate pseudochromosome-level genomes, the clean Hi-C paired-end reads
576 were first mapped to the draft assembled sequences using bowtie2 (v2.3.2)⁶⁰
577 (parameters: -end-to-end --very-sensitive -L 30) to obtain the unique mapped
578 paired-end reads. Then, valid interaction-paired reads identified by HiC-Pro
579 (v2.11.4)⁶¹ were further used to cluster, order, and orient scaffolds onto 19
580 pseudochromosomes using LACHESIS⁶², with parameters CLUSTER MIN RE
581 SITES=100, CLUSTER MAX LINK DENSITY=2.5, CLUSTER
582 NONINFORMATIVE RATIO=1.4, ORDER MIN N RES IN TRUNK=60, ORDER
583 MIN N RES IN SHREDS=60. Finally, placement and orientation errors exhibiting
584 obvious discrete chromatin interaction patterns were manually adjusted.

585

586 **Repeat and gene annotation**

587 Considering that the methods for TE annotation are highly variable across studies, we

588 used a uniform workflow to perform whole-genome TE annotation for both the newly
589 assembled and previously reported genomes, in order to minimize methodological
590 artifacts for TE discovery. TE annotations were first derived using the Extensive
591 de-novo TE Annotator (EDTA, v1.9.3) pipeline⁶³, which combines well performing
592 structure- and homology-based programs and subsequent filtering methods to create a
593 high quality non-redundant TE library. TEsorter (v1.2.5)⁶⁴ was then used to reclassify
594 the TEs that were annotated as “LTR/unknown” by EDTA.

595 For gene prediction of newly assembled genomes, we first used RepeatMasker
596 (v4.10)⁶⁵ to mask the whole genome sequences with the TE libraries constructed by
597 EDTA. An integrated strategy that combined *ab initio* prediction, homology-based
598 prediction and transcriptome-based prediction was then used to predict the
599 protein-coding genes based on the masked genomic sequences. For homology-based
600 gene prediction, the published protein sequences of six species, including *Populus*
601 *trichocarpa*, *Populus euphratica*, *Salix brachista*, *Salix purpurea*, *Arabidopsis*
602 *thaliana* and *Vitis vinifera* were used. TBLASTN (ncbi-BLAST v2.2.28)⁶⁶ with
603 e-value less than 1e-5 was employed to align these protein sequences against the
604 genome assemblies, and GeneWise (v2.4.1)⁶⁷ was used with default settings to predict
605 the exact gene models. For transcriptome-based prediction, trimmed RNA-seq reads
606 from multiple tissues were mapped to the respective reference genome using HISAT
607 (v2.2.1)⁶⁸ with parameters “--max-intronlen 20000 --dta --score-min L,0.0,-0.4”, and
608 Trinity (v2.8.4)⁶⁹ was used for transcripts assembly with default parameters. These
609 assembled transcripts were subsequently aligned to the corresponding genome to
610 predict gene structure using PASA (v2.4.1)⁷⁰. For *ab initio* gene prediction, Augustus
611 was used with default parameters incorporating the homology- and transcripts-based
612 evidence for gene model training. Finally, all the gene models generated by the above
613 three approaches were integrated into a comprehensive gene set using
614 EvidenceModeler (v1.1.1)⁷¹, and the resulting gene models were further updated using
615 PASA for three rounds of iteration. Furthermore, BUSCO was used to evaluate the

616 protein-coding annotations.

617 Functional annotation of predicted genes was conducted based on comparisons
618 with the NCBI nonredundant protein database (NR), SwissProt, TrEMBLE, COG and
619 KOG protein databases by using BLASTp with 1e-5 E-value cutoff. InterProScan
620 (release 5.32-71.0)⁷² was used to identify functional domains and motifs. Gene
621 ontology (GO) terms and KEGG pathways for each gene were assigned by
622 InterProScan and KEGG Automatic Annotation Server, respectively. The topGO⁷³ R
623 package was used for downstream gene set enrichment analysis in this study.

624 To evaluate the genomic collinearity among species, we used MCScanX⁷⁴ to
625 detect syntenic gene blocks between each of the newly sequenced genomes and *P.*
626 *trichocarpa* genome, as well as the collinearity between the 19 poplar genomes and *S.*
627 *suchowensis*, with default parameters.

628

629 **Phylogenetic reconstruction**

630 Three different datasets were used to retrieve the phylogenetic relationships of 19
631 poplar species, along with three willow species (*S. suchowensis*⁷⁵, *S. purpurea*⁷⁶ and *S.*
632 *brachistia*⁷⁷) with published genome sequences available. First, amino acid sequences
633 of the single-copy gene families (SCGs, n= 2,455), identified using the OrthoFinder
634 pipeline (v2.5.2)⁷⁸ under the default parameters after removing genes with early stop
635 codons or open reading frames shorter than 50 amino acids, were aligned using
636 MAFFT (v7.475)⁷⁹. PAL2NAL (v14)⁸⁰ was then used to convert the protein sequence
637 alignments into the corresponding codon alignments and trimmed with trimAl (v1.4)⁸¹.
638 The maximum likelihood (ML) concatenated tree was constructed using IQ-TREE
639 (v2.0.3)⁸² with 1,000 replicates of the ultrafast bootstrap approximation⁸³ for datasets
640 including all three codon positions (CDS) and including only the first and second
641 codon positions (Codon12) separately, and the best-fitting substitution model was
642 automatically selected by internal program ModelFinder⁸⁴ (-bb 1000 -m MFP). In
643 addition, coalescent-based analysis was also used to infer phylogenetic relationship.

644 Initially, un-rooted gene trees from each of the two datasets (CDS and condens12)
645 were individually estimated using IQ-TREE, and then the quartet-based species tree
646 was reconstructed based on these gene trees by ASTRAL (v5.6.1)⁸⁵. To quantify
647 phylogenetic discordance among loci, the gene concordance factor (gCF) and the site
648 concordance factor (sCF)⁸⁶ for every node in the species trees were calculated.

649 Given that the whole-genome sequences contain more genetic information than
650 protein-coding genes, we further constructed a phylogenetic tree based on multiple
651 whole-genome sequence alignment (MSA) that was generated across 19 poplar and
652 three willow genome sequences using the progressive mode in Cactus²¹. To do so, the
653 hierarchical alignment format (HAL) was converted into multiple alignment format
654 (MAF) using the HAL tools command hal2maf⁸⁷ with parameters “--noAncestors,
655 --onlyOrthologs and --noDuplicates” to ignore paralogy edges. To reduce errors in
656 phylogenetic inferences, only blocks longer than 100bp and containing at least one
657 species in sect. *Populus*, sect. *Turanga*, ATL clade and willows were retained. All
658 realigned individual segments were concatenated to obtain final whole genome
659 alignments of 48.68 Mb and were then used to infer the topology by IQ-TREE with
660 the ModelFinder function (-bb 1000 -m MFP). Moreover, low-copy genes (LCGs,
661 n=11,385), which ranged between one and five gene copies per species in each
662 orthologous group, were also employed to infer species trees by ASTRAL-pro⁸⁸.

663 Divergence times among species were estimated using r8s (v1.81)⁸⁹ software with
664 selected parameter settings as follows: “blformat lengths=persite nsites=3597653
665 ultrametric=no; set smoothing=100; divtime method=PL algorithm=TN” and the
666 others as defaults. The root age of the tree was calibrated to 48–52 Mya obtained from
667 the TimeTree database (<http://www.timetree.org/>). Finally, with the gene family data
668 and ultrametric phylogeny as input, CAFÉ (v4.2)⁹⁰ was used to identify expansion and
669 contraction of gene families, with the parameter p-value threshold was set to 0.01 and
670 auto searching for the λ value. The lineage/species-specific gene families that had
671 undergone expansion and contraction were further subjected to functional analysis

672 using GO enrichment.

673

674 **Nucleotide diversity and demographic history analysis**

675 For each species, whole-genome resequencing of two to three individuals with an
676 average sequencing depth of 32 \times were obtained. After filtering the raw sequencing
677 reads using Trimmomatic (v0.36)⁹¹, the clean reads were mapped to the respective
678 reference genome with BWA-MEM (v0.7.17)⁹² and sorted with SAMtools (v1.9)⁹³.
679 The MarkDuplicates tool in Picard (v2.18.21, <http://broadinstitute.github.io/picard/>)
680 was then used to remove duplicates. To estimate the nucleotide diversity (π) of
681 different poplar species, variant calling for each individual was carried out using the
682 HaplotypeCaller tool in GATK (v3.8.1)⁹⁴ and the resulting gVCF files were merged to
683 a single-variant calling file using CombineGVCFs and GenotypeGVCFs with the
684 option “-all-sites”. The program pixy⁹⁵ was then used to calculate the pairwise
685 nucleotide diversity for each species.

686 To further investigate the demographic history of each species, the pairwise
687 sequentially Markovian coalescence model (PSMC)²² was used to infer historical
688 dynamics of effective population sizes (N_e) with parameters -N25 -t15 -r5 -p
689 "4+25*2+4+6". Assuming 15 years as the generation time and a mutation rate of
690 3.75 \times 10 $^{-8}$ per site per-generation⁹⁶, we converted scaled population parameters into
691 years and N_e . Bootstrapping was performed 50 replicates per individual to examine
692 the variance in N_e .

693

694 **Transposable element analysis**

695 To examine the role of transposons in driving genome evolution, we first calculated
696 the distance between TEs and the nearest gene as well as the distance between genes
697 and the nearest TE using the BEDTools (v 2.29.2)⁹⁷ closest function. Furthermore, we
698 compared the proportion of TEs in shared (homologous) vs. species-specific
699 (non-homologous) sequences across genomes of various species. With the MAF files

700 generated by multiple whole-genome sequence alignment, we identified
701 species-specific or shared sequence between species and the sequence coordinates of
702 each genome were saved as bed files using a custom Python script. Next,
703 species-specific and shared sequences were intersected with TE annotations,
704 respectively, using BEDTools intersect function.

705 For the insertion time (T) estimation of TEs, we extracted the full-length
706 LTR-retrotransposons (fl-LTRs) and calculated the insertion time according to the
707 formula $T=K/2\mu$, where K is the sequence divergence rate between its 5' and 3' -LTRs
708 and using the neutral mutation rate of $\mu = 2.5 \times 10^{-9}$ mutations per bp per year.

709 To quantify transposon dynamics between species, the syntentic fl-LTRs among
710 genomes of the 19 species were identified by sequence clustering of TE junctions
711 from the annotated fl-LTR locations using the program Vmatch
712 (<http://www.vmatch.de>) with the following parameters: -dbcluster 90 90 -identity 90
713 -exdrop 4 -seedlength 20 -d. The junctions consisted of 2×100-bp sequence signatures
714 spanning the upstream and downstream insertion sites, with each 50 bp inside and 50
715 bp outside of the fl-LTR element.

716

717 **Construction of the super-pangenome**

718 Ortholog groups among the 19 *Populus* genomes were identified using OrthoFinder
719 (v2.5.2)⁷⁸ with default parameters. To improve the accuracy of the analysis, genes
720 with early stop codons or open reading frames shorter than 50 amino acids were
721 removed and only the longest transcript of each gene was selected for gene family
722 clustering. The resulting gene families were divided into core, softcore, dispensable
723 and private based on the number of genomes contained in each cluster. Gene families
724 present in all of the genomes were defined as core, while the gene families missing
725 from one or two genomes were defined as softcore. The dispensable gene families
726 contained genes shared by at least two but less than 17 genomes. The species-specific
727 (private) gene families are those that are present only in one genome. We further

728 compared protein coding length, distance to proximal upstream TEs, nucleotide
729 diversity, d_N/d_S , expression level and tissue specificity among different types of
730 pan-genes. Besides, the epigenetic marks and transcriptional regulatory elements
731 distributions were also compared by characterizing the patterns of DNA methylation
732 and chromatin accessibility.

733 For d_N/d_S analysis, only single-copy ortholog groups (scOGs) containing more
734 than three species were used to avoid biases related to duplication among lineages and
735 out-paralog genes. As described above, protein sequences of scOGs were first aligned
736 by MAFFT and then converted to DNA codon alignments using PAL2NAL. Next,
737 trimAl was used to trim the aligned CDSs. Maximum Likelihood trees for each of the
738 scOGs were constructed using IQ-TREE (-m MFP -bb 1000) based on the trimmed
739 alignments. The Codeml program of the PAML (v4.9i)⁹⁸ was used to estimate the
740 d_N/d_S ratio for each ortholog group using its corresponding phylogenetic tree, with
741 “model=0, NSsites=0, ncatG=1” choices.

742

743 **Expression analysis**

744 For both the newly generated RNA-seq datasets and published RNA-seq datasets
745 (Supplementary Table 1), Trimmomatic (v0.36)⁹¹ with default parameters was used to
746 remove adapters and low-quality reads from the raw RNA-seq reads. The clean
747 RNA-seq reads were mapped to the corresponding reference genome using Tophat
748 (v2.1.1)⁹⁹ with default settings (Supplementary Table 11). Gene expression abundance
749 was estimated using FPKM (fragments per kilobase of exon per million fragments
750 mapped) calculated by Cufflinks program (v2.2.1)¹⁰⁰ for each transcript.
751 Tissue-specific expression was assessed by the Tau index¹⁰¹, which is calculated as
752 follows:

$$753 \text{Tau} = \frac{n}{n-1} - \frac{\sum_{i=1}^n x_i}{(n-1) * \max_{1 \leq i \leq n}(x_i)}$$

754 where i is a tissue, x_i is the expression for tissue i , n is the total number of

755 tissues.

756

757 **Whole-genome bisulfite sequencing and methylation calling**

758 For whole-genome bisulfite sequencing (WGBS) of the 6 species sampled in the
759 present study, genomic DNA of fresh leaf was isolated by DNeasy Plant Mini Kit
760 (Qiagen) and sonicated into 200-300 bp using Covaris S220. Bisulfite treatment was
761 performed using EZ DNA Methylation GoldTM Kit (Zymo Research) according to
762 the manufacturer's instructions. WGBS libraries were sequenced on the NovaSeq
763 platform (Illumina) for 150 bp paired-end reads after evaluation by Agilent
764 Bioanalyzer 2100. Together with the 7 published methylomic data (Supplementary
765 Table 1), the raw sequencing reads of 13 species were trimmed using Trimmomatic
766 (v0.36)⁹¹ with parameters “TruSeq3-PE.fa:2:30:10 LEADING:20 TRAILING:20
767 SLIDINGWINDOW:4:20 MINLEN:50”. The trimmed reads were then mapped to the
768 respective reference genome using bowtie2 (v2.3.2)⁶⁰ via Bismark (v0.22.3)¹⁰² with
769 options “-N 1 -L 20”, followed by removal of PCR artifacts using
770 deduplicate_bismark and only the unique mapped reads were retained for methylation
771 calling using bismark_methylation_extractor (Supplementary Table 12). To reduce
772 possible sequencing errors, methylated cytosine (mC) sites with less than four read
773 coverages were finally discarded. The methylation level of each mC site was
774 determined by the percentage of reads supporting mCs to all Cs at the site. The
775 methylation level in genes bodies and the flanking regions was determined by evenly
776 divided the region into 30 and 20 bins, respectively, and evaluated as a weighted
777 methylation level.

778

779 **ATAC sequencing and accessible chromatin regions (ACRs) identification**

780 Approximately 500mg of flash-frozen leaves were immediately chopped with
781 approximately 1ml of prechilled lysis buffer (20mM Tris pH8.0, 40mM NaCl, 90mM
782 KCl, 0.5 mM spermidine, 0.2 mM spermine, 5mM 2-mercaptoethanol and 0.1%
783 Triton X-100). The suspension was then filtered through a series of cell strainers, and

784 then the samples were disrupted through a Dounce homogenizer, and washed four
785 times with ice-cold isolation buffer. In order to continue with 50,000 nuclei, the crude
786 nuclei were stained with 4,6-Diamidino-2-Phenylindole (DAPI), and counted under a
787 microscope using a hematocytometer. The sorted nuclei were incubated with 2 μ l Tn5
788 transposomes in 40 μ l tagmentation buffer (10mM TAPS-NaOH pH8.0, 5mM MgCl2)
789 at 37 °C for 30min without rotation. The integration products were purified and
790 transposed DNA using a Qiagen MinElute PCR Purification Kit according the
791 manufacturer's instructions. Then amplified using Phusion DNA polymerase for
792 10-13 cycles. Amplified libraries were purified using AMPure XP beads to remove
793 primers. The purified libraries were stored at -20 °C for future use. Finally, NGS
794 libraries were sequenced on an Illumina HiSeq platformmm (Illumina, CA, USA) for
795 twelve *Populus* species (Extended Data Fig. 5f and Supplementary Table 1). After
796 sequencing, raw reads were trimmed using Trimmomatic (v0.36)⁹¹ with parameters
797 “LEADING:20 TRAILING:20 SLIDINGWINDOW:4:20 MINLEN:36”. The trimmed
798 reads were then aligned to their corresponding reference genomes using Bowtie
799 (v2.3.2)⁶⁰ with the following parameters: ‘bowtie2 --very-sensitive -N 1 -p 4 -X 2000
800 -q’. Aligned reads were sorted using SAMtools (v1.9)⁹³ and clonal duplicates were
801 removed using Picard (v2.18.21, <http://broadinstitute.github.io/picard/>). Finally, only
802 high quality properly paired reads were retained for further analysis by SAMtools
803 (view -b -h -f 3 -F 4 -F 8 -F 256 -F 1024 -F 2048 -F 1804 -q 30) (Supplementary
804 Table 11). MACS2¹⁰³ was used to define ACRs with the “--keep-dup all” function.
805 The distribution of ACR peaks annotation for each species was visualized by
806 Chipseeker (v.1.28.3)¹⁰⁴.

807

808 **Gene duplication classification and evolution analysis**

809 DupGen_finder³¹ with default parameters was used to identify different modes of
810 gene duplication: whole-genome duplication (WGD), tandem duplication (TD),
811 proximal duplication (fewer than 10 gene distance on the same chromosome: PD),

812 transposed duplication (TRD) and dispersed duplication (DSD). *S. suchowensis* was
813 adopted as an outgroup to infer transposed duplicated gene pairs, all the poplars were
814 used in a self-BLASTp search and a BLASTp search against *S. suchowensis*.
815 Moreover, to eliminate redundant duplicate genes among different modes, we
816 assigned each duplicated gene to a unique mode according to the priority:
817 WGD > TD > PD > TRD > DSD. For each gene pair derived from different
818 duplication modes, the K_a , K_s , and K_a/K_s values were calculated based on the YN
819 model incorporated in KaKs_Calculator (v2.0)¹⁰⁵. MAFFT and PAL2NAL were used
820 for amino acid alignments and codon alignments conversion, respectively. Only gene
821 pairs with K_s values <5.0 were retained for further analysis. Genomic traits (CDS
822 length, distance to proximal upstream TEs) and evolutionary parameters (K_a , K_s ,
823 and K_a/K_s) were further summarized and compared among genes originating from
824 different modes of duplication.

825 We further explored the evolutionary fates of duplicate genes following WGD,
826 and the duplicate gene pairs in which any partner was present in more than one WGD
827 pairs was removed in view of the fact that only one recent whole-genome duplication
828 event occurred in *Populus*. WGD gene pairs were then classified into three groups
829 according to K_s values. Briefly, all duplicates were first sorted in ascending order
830 based on their K_s values and then divided into three groups with an equal number of
831 pairs by tertiles, defined as low K_s , median K_s pair and high K_s groups. Gene pairs
832 with no detectable expression level (FPKM=0) in both partners were further filtered
833 out. For each duplicate pair, gene expression (E) and methylation (M) divergence
834 between the two partners were calculated as $(E_1-E_2)/(E_1+E_2)$ and
835 $(M_1-M_2)/(M_1+M_2)$, respectively, as described previously¹⁰⁶. To further investigate
836 the association between expression divergence and methylation divergence of
837 duplicated genes, we also sorted all gene pairs in ascending order by their expression
838 divergence and then divided them equally into 15 groups. We examined the
839 correlations between expression divergence and methylation divergence (CG, CHG

840 and CHH) both in genic and flanking regions (2 kb of upstream or downstream region)
841 based on these 15 groups.

842 To detect the lineage and/or species-specific divergent clusters of genes retained
843 following WGD, we first corrected the K_s values of the above one-to-one WGD pairs
844 using a method reported previously¹⁰⁷ in order to avoid the resulting errors caused by
845 inconsistent evolution rates among different poplar species. Then, hierachal
846 clustering (Euclidean's distances and complete-linkage clustering) based on the
847 corrected- K_s values was constucted based on pheatmap (v1.0.12) for these one-to-one
848 WGD pairs, in which both partners were retained in all poplar genomes (i.e., both
849 belonging to core genes).

850 Furthermore, we performed the following steps for each genome to further
851 control for the evolutionary age effects: (1) randomly sampling the duplicated pairs
852 1,000 times; (2) estimating the peak value of the corrected- K_s distribution for each of
853 the 1,000 samples, and then calculating the average and 95% confidence interval of
854 all 1,000 corrected- K_s peak values; (3) retaining the gene pairs with the corrected- K_s
855 value that were within the confidence interval. Finally, we obtained an average of 346
856 gene pairs (ranged from 232 in *P. alba* var. *pyramidalis* to 448 in *P. koreana*) per
857 genome. According to the expression difference between duplicated genes, we further
858 classified these pairs into conserved and divergent. The expression difference was
859 calculated by the formula: $\text{diff}_{\text{FPKM}} = (\text{FPKM}_{\text{High}} - \text{FPKM}_{\text{Low}}) / \text{FPKM}_{\text{Low}}$, where
860 $\text{FPKM}_{\text{High}}$ and FPKM_{Low} denote the genes with relative higher expression and lower
861 expression in the duplicated pairs, respectively. The gene pairs with $\text{diff}_{\text{FPKM}} \geq 2$ were
862 assumed to be divergent, whereas those ≤ 0.5 were considered to be conserved. The
863 CDS length, distance to closest upstream TE, expression level, tissue specificity and
864 epigenetic regulation (methylation levels and ACRs distributions) were compared
865 between the gene partners among the conserved and divergent pairs.

866

867 **SV detection and validation**

868 To overcome the results bias caused by a single reference genome, we used two

869 reference genomes (*P. trichocarpa* and *P. adenopoda*) to detect structural variations
870 (SVs). All the *Populus* assemblies were aligned to the reference genome using nucmer
871 in the MUMmer (v4)¹⁰⁸ package with parameters “-l 40 -g 90 -b 200 -c 100
872 -maxmatch”, and the resulting alignments were further filtered using delta-filter with
873 parameters “-m -i 90 -l 100”. Then, SyRI pipeline³⁸ was employed to detect structural
874 variations with default parameters and five types of representative SVs (>50 bp) were
875 extracted for further analysis, including insertions (INS), deletions (DEL), inversions
876 (INV), translocations (TRANS/INVTR) and duplications (DUP/INVDP).

877 A total of 50 SVs including insertions and deletions were randomly selected from
878 SVs between the *P. trichocarpa* and *P. adenopoda*, and/or between the *P.*
879 *pseudoglaucia* and *P. adenopoda* assemblies, respectively. The raw long-reads from *P.*
880 *adenopoda* were aligned to the *P. trichocarpa* genome using minimap2 (v2.17)¹⁰⁹ to
881 verify the DEL SV (relative to *P. trichocarpa*) in the *P. adenopoda* assembly.
882 Similarly, the reads from *P. pseudoglaucia* were aligned to the *P. adenopoda* genome
883 to verify the DEL (relative to *P. adenopoda*) in *P. pseudoglaucia*. On the other hand,
884 the raw long-reads from *P. adenopoda* were aligned to the *P. pseudoglaucia* genome to
885 verify the INS SV (relative to *P. adenopoda*) in the *P. pseudoglaucia* assembly. Lastly,
886 the alignments were manually inspected using the Integrative Genomics Viewer¹¹⁰.

887

888 **Identification of hemizygous genes**

889 To identify hemizygous genes, Nanopore long reads were mapped onto respective
890 reference assembly using minimap2 (v2.17)¹⁰⁹, and variant calling was then
891 performed with Sniffles (v2.0.7)¹¹¹. As the aim was to identify regions of the genome
892 assemblies that were both hemizygous and contained previously annotated genes, the
893 type of structural variants used for subsequent analyses were limited to deletions and
894 the genotypes of ‘0/1’ which represented hemizygosity were extracted. Genes were
895 extracted from hemizygous regions of the genome using BEDTools intersect, and only
896 those genes falling fully within hemizygous regions were considered hemizygous

897 genes and were extracted for analysis (using the -F 1 option).

898

899 **Characteristic analysis of SVs and hemizygous genes**

900 The continuous or overlapping SVs of identical type were merged as a single SV.
901 Further, we calculated the distribution of SVs for each 200 kb sliding window with a
902 100 kb step-size along the entire genome. The windows with number of SVs in the
903 top 5% were defined as SV hotspots, and the continuous windows were merged into
904 one region. First, we compared the ratio of SVs in putative disease resistance genes
905 that contain at least an NB-ARC PFAM protein domain (PF00931) predicted using
906 Pfam HMMs (InterProScan, v5.32-71.0) with other genes. Then, to assess
907 hemizygous genes enrichment in SV hotspots, random genomic regions with the same
908 length distribution to hotspots were generated as a control using the ‘shuffle’
909 command in BEDTools, and the ratio of hemizygous gene of these two sets (SV
910 hotspot regions and random regions) was compared by using the intersectBed utility
911 from BEDTools. Furthermore, we identified the genes overlapping with SVs (SV+)
912 and with hemizygous states respectively. We further compared their ratios and
913 enrichment in different categories of pan-genes and duplicated genes through
914 comparing with random sets of genes (Generate 1000 samples, each time randomly
915 selecting genes with the same number of SV+ genes and hemizygous genes). Lastly,
916 we compared selection pressure (K_a , K_s , and K_a/K_s), expression levels, methylation
917 levels and chromatin accessibility among hemizygous genes, genes with (SV+) and
918 without SVs (SV-).

919

920 **Analysis and RT-qPCR for the *CUC2* gene**

921 To quantify collinearity along the inverted region that contained *CUC2* gene, we
922 measured and compared the synteny diversity across all pairwise genome
923 comparisons within Clade-I and Clade-II separately as well as between these two
924 clades, following the method reported by¹¹². For validation of *CUC2*-associated

925 inversion, the long reads of query genome were mapped to the reference genome (*P.*
926 *trichocarpa*) using minimap2 (v2.17)¹⁰⁹ and further visualized through samplot
927 (v1.3.0)¹¹³ Motif calling was analyzed on the local region of insertion sequence of
928 *CUC2* promoter using PlantCARE¹¹⁴.

929 Reverse transcription quantitative PCR (RT-qPCR) was used to investigate the
930 expression levels of *CUC2* genes in species from different sections. Total RNA was
931 extracted from the leaf margin areas of the emerging young leaves at the same
932 developmental stage containing only serrations, and the HiScript® III RT SuperMix
933 for qPCR (+gDNA wiper) (Vazyme #R323) was used to obtain cDNA. qPCR was
934 performed with gene-specific primers using the Taq Pro Universal SYBR qPCR
935 Master Mix (Vazyme #Q712) reaction system on the CFX96 Real-Time detection
936 system (Bio-Rad). Each experiment was performed with three reaction replicates and
937 UBQ10 was used as the internal control for data analysis. Primer sequences are
938 available in Supplementary Table 23.

939

940 **Dual-luciferase assays**

941 Three species (*P. koreana*, *P. simonii* and *P. lasiocarpa*; absence of the ~180bp
942 upstream of *CUC2*) in Clade-I and three species (*P. alba* var. *pyramidalis*, *P.*
943 *adenopoda* and *P. qiongdaoensis*; presence of the ~180bp upstream of *CUC2*) in
944 Clade-II were selected for experiment and the dual-luciferases (LUC) assay was
945 performed using young *N. benthamiana* leaves¹¹⁵. For these six species, 1.2-1.4 kbp of
946 the *CUC2* promoter containing the entire SV were isolated from the genomic DNA
947 with specific primers (Supplementary Table 24 and Supplementary Fig. 39) followed
948 by a 35S mini promoter and ligated with the BamHI-digested pGreen II 0800-LUC
949 vector as reporters, respectively. To further validate the regulatory potential of this SV,
950 we artificially designed a deletion in three species belonging to Clade-II, i.e., the
951 corresponding upstream and downstream sequences of the variant were extracted and
952 then connected using ClonExpress MultiS One Step Cloning Kit (Vazyme Code:

953 C112-02). These connected sequences were inserted into the BamHI-digested pGreen
954 II 0800-LUC vector to use as reporters, too. Equal amounts of *A. tumefaciens* strain
955 GV3101 carrying different constructs were injected into different regions
956 of 3-week-old *N. benthamiana* leaves. Luciferase and renilla activities were measured
957 with a dual-LUC Reporter Assay System (Promega, Madison, WI, USA) after 2 days
958 of incubation in the dark and 1 day of cultivation under normal growth conditions.
959 Each experiment was independently performed three times. In addition, the injected
960 leaves were sprayed with sodium luciferin (Gold Biotech, China) and the luciferase
961 luminescence from the infiltrated area was imaged using PerkinElmer IVIS Lumina
962 III (PerkinElmer, USA).

963

964 **Data availability**

965 All raw sequencing data as well as genome assembly and annotation generated in this
966 study have been submitted to the National Genomics Data Center (NGDC;
967 <https://bigd.big.ac.cn/bioproject>) under BioProject accession number PRJCA010101
968 and will be available upon publication. All scripts used in this study will be available
969 at https://github.com/jingwanglab/Populus_superpangenome upon publication.
970

971 References

972

973 1. FAO, F. Food and agriculture organization of the United Nations. (Food and agriculture
974 organization of the United Nations, 2018).

975 2. Neale, D.B. & Kremer, A. Forest tree genomics: growing resources and applications.
976 *Nature Reviews Genetics* **12**, 111-122 (2011).

977 3. Borthakur, D. *et al.* Current status and trends in forest genomics. *Forestry Research*
978 **2**(2022).

979 4. Plomion, C. *et al.* Forest tree genomics: 10 achievements from the past 10 years and
980 future prospects. *Annals of Forest Science* **73**, 77-103 (2016).

981 5. Jansson, S. & Douglas, C.J. *Populus*: A model system for plant biology. *Annu Rev Plant*
982 *Biol* **58**, 435-458 (2007).

983 6. Wang, M. *et al.* Phylogenomics of the genus *Populus* reveals extensive interspecific gene
984 flow and balancing selection. *New Phytol.* **225**, 1370-1382 (2020).

985 7. Bastiaanse, H. *et al.* A systems genetics approach to deciphering the effect of dosage
986 variation on leaf morphology in *Populus*. *Plant Cell* **33**, 940-960 (2021).

987 8. Tuskan, G.A. *et al.* The genome of black cottonwood, *Populus trichocarpa* (Torr. & Gray).
988 *Science* **313**, 1596-1604 (2006).

989 9. Dai, X. *et al.* The willow genome and divergent evolution from poplar after the common
990 genome duplication. *Cell Res.* **24**, 1274-7 (2014).

991 10. Ma, T. *et al.* Genomic insights into salt adaptation in a desert poplar. *Nat. Commun.*
992 **4**(2013).

993 11. Sang, Y. *et al.* Genomic insights into local adaptation and future climate-induced
994 vulnerability of a keystone forest tree in East Asia. *Nat. Commun.* **13**(2022).

995 12. Evans, L.M. *et al.* Population genomics of *Populus trichocarpa* identifies signatures of
996 selection and adaptive trait associations. *Nat. Genet.* **46**, 1089-1096 (2014).

997 13. Wang, J. *et al.* A major locus controls local adaptation and adaptive life history variation
998 in a perennial plant. *Genome Biol.* **19**(2018).

999 14. Jay, P. *et al.* Mutation load at a mimicry supergene sheds new light on the evolution of
1000 inversion polymorphisms. *Nat. Genet.* **53**, 763 (2021).

1001 15. Qin, P. *et al.* Pan-genome analysis of 33 genetically diverse rice accessions reveals hidden
1002 genomic variations. *Cell* **184**, 3542-3558 (2021).

1003 16. Liu Y *et al.* Pan-Genome of Wild and Cultivated Soybeans. *Cell* **182**, 162-176 (2020).

1004 17. Tang, D. *et al.* Genome evolution and diversity of wild and cultivated potatoes. *Nature*,
1005 1-7 (2022).

1006 18. Walkowiak, S. *et al.* Multiple wheat genomes reveal global variation in modern breeding.
1007 *Nature* **588**(2020).

1008 19. Simao FA, Waterhouse, R.M., Ioannidis, P., Kriventseva, E.V. & Zdobnov, E.M. BUSCO:
1009 assessing genome assembly and annotation completeness with single-copy orthologs.
1010 *Bioinformatics* **31**, 3210-3212 (2015).

1011 20. Rhie, A., Walenz, B.P., Koren, S. & Phillippy, A.M. Merqury: reference-free quality,

1012 completeness, and phasing assessment for genome assemblies. *Genome Biology*
1013 **21**(2020).

1014 21. Armstrong, J. *et al.* Progressive Cactus is a multiple-genome aligner for the
1015 thousand-genome era. *Nature* **587**, 246 (2020).

1016 22. Li, H. & Durbin, R. Inference of human population history from individual
1017 whole-genome sequences. *Nature* **475**, 493-6 (2011).

1018 23. Wicker, T. *et al.* Impact of transposable elements on genome structure and evolution in
1019 bread wheat. *Genome Biology* **19**, 103 (2018).

1020 24. Diez, C.M., Roessler, K. & Gaut, B.S. Epigenetics and plant genome evolution. *Current*
1021 *Opinion in Plant Biology* **18**, 1-8 (2014).

1022 25. Zilberman, D., Gehring, M., Tran, R.K., Ballinger, T. & Henikoff, S. Genome-wide
1023 analysis of *Arabidopsis thaliana* DNA methylation uncovers an interdependence between
1024 methylation and transcription. *Nat. Genet.* **39**, 61-69 (2007).

1025 26. Bewick, A.J. & Schmitz, R.J. Gene body DNA methylation in plants. *Curr. Opin. Plant*
1026 *Biol.* **36**, 103-110 (2017).

1027 27. Muyle, A. & Gaut, B.S. Loss of Gene Body Methylation in *Eutrema salsugineum* Is
1028 Associated with Reduced Gene Expression. *Mol. Biol. Evol.* **36**, 155-158 (2019).

1029 28. Wang, X. *et al.* Comparative genomic analysis of C4 photosynthetic pathway evolution in
1030 grasses. *Genome Biol.* **10**(2009).

1031 29. Rodgers-Melnick, E. *et al.* Contrasting patterns of evolution following whole genome
1032 versus tandem duplication events in *Populus*. *Genome Res.* **22**, 95-105 (2012).

1033 30. Cuevas, H.E. *et al.* The Evolution of Photoperiod-Insensitive Flowering in Sorghum, A
1034 Genomic Model for Panicoid Grasses. *Mol. Biol. Evol.* **33**, 2417-2428 (2016).

1035 31. Qiao, X. *et al.* Gene duplication and evolution in recurring
1036 polyploidization-diploidization cycles in plants. *Genome Biol.* **20**(2019).

1037 32. Ren, R. *et al.* Widespread Whole Genome Duplications Contribute to Genome
1038 Complexity and Species Diversity in Angiosperms. *Molecular Plant* **11**, 414-428 (2018).

1039 33. Wang, H. *et al.* CG gene body DNA methylation changes and evolution of duplicated
1040 genes in cassava. *PNAS*. **112**, 13729-13734 (2015).

1041 34. Wang, Y., Wang, X., Lee, T.-H., Mansoor, S. & Paterson, A.H. Gene body methylation
1042 shows distinct patterns associated with different gene origins and duplication modes and
1043 has a heterogeneous relationship with gene expression in *Oryza sativa* (rice). *New Phytol.*
1044 **198**, 274-283 (2013).

1045 35. Muyle, A.M., Seymour, D.K., Lv, Y., Huettel, B. & Gaut, B.S. Gene Body Methylation in
1046 Plants: Mechanisms, Functions, and Important Implications for Understanding
1047 Evolutionary Processes. *Genome Biol. Evol.* **14**(2022).

1048 36. Dyson, C.J. & Goodisman, M.A.D. Gene Duplication in the Honeybee: Patterns of DNA
1049 Methylation, Gene Expression, and Genomic Environment. *Mol. Biol. Evol.* **37**,
1050 2322-2331 (2020).

1051 37. Huang, K.M. & Chain, F.J.J. Copy number variations and young duplicate genes have
1052 high methylation levels in sticklebacks. *Evolution* **75**, 706-718 (2021).

1053 38. Goel, M., Sun, H., Jiao, W.-B. & Schneeberger, K. SyRI: finding genomic rearrangements

1054 and local sequence differences from whole-genome assemblies. *Genome Biol.* **20**(2019).

1055 39. Zhou, Y. *et al.* The population genetics of structural variants in grapevine domestication.
Nature Plants **5**, 965-979 (2019).

1057 40. Kou, Y. *et al.* Evolutionary Genomics of Structural Variation in Asian Rice (*Oryza sativa*)
Domestication. *Molecular Biology and Evolution* **37**, 3507-3524 (2020).

1059 41. Wang, N. *et al.* Structural variation and parallel evolution of apomixis in citrus during
domestication and diversification. *National Science Review* **9**(2022).

1060 42. Wang, J., Street, N.R., Scofield, D.G. & Ingvarsson, P.K. Natural Selection and
Recombination Rate Variation Shape Nucleotide Polymorphism Across the Genomes of
1062 Three Related *Populus* Species. *Genetics* **202**, 1185- (2016).

1064 43. Luhua, S., Ciftci-Yilmaz, S., Harper, J., Cushman, J. & Mittler, R. Enhanced tolerance to
1065 oxidative stress in transgenic *Arabidopsis* plants expressing proteins of unknown function.
Plant Physiology **148**, 280-292 (2008).

1067 44. Bennetzen, J.L. & Wang, H. The Contributions of Transposable Elements to the Structure,
1068 Function, and Evolution of Plant Genomes. *Annu Rev Plant Biol* **65**, 505-530 (2014).

1069 45. Springer, N.M., Lisch, D. & Li, Q. Creating Order from Chaos: Epigenome Dynamics in
1070 Plants with Complex Genomes. *Plant Cell* **28**, 314-325 (2016).

1071 46. Choi, J.Y. & Purugganan, M.D. Evolutionary Epigenomics of Retrotransposon-Mediated
1072 Methylation Spreading in Rice. *Mol. Biol. Evol.* **35**, 365-382 (2018).

1073 47. Ritter, E.J. & Niederhuth, C.E. Intertwined evolution of plant epigenomes and genomes.
Curr. Opin. Plant Biol. **61**(2021).

1075 48. Bousios, A. & Gaut, B.S. Mechanistic and evolutionary questions about epigenetic
1076 conflicts between transposable elements and their plant hosts. *Curr. Opin. Plant Biol.* **30**,
1077 123-133 (2016).

1078 49. Alonge M *et al.* Major Impacts of Widespread Structural Variation on Gene Expression
1079 and Crop Improvement in Tomato. *Cell* **182**, 145-161 (2020).

1080 50. Li, H. *et al.* Graph-based pan-genome reveals structural and sequence variations related to
1081 agronomic traits and domestication in cucumber. *Nature Communications* **13**(2022).

1082 51. Li, R. *et al.* A sheep pangenome reveals the spectrum of structural variations and their
1083 effects on tail phenotypes. *Genome Res.* **33**, 463-477 (2023).

1084 52. Kamiuchi, Y., Yamamoto, K., Furutani, M., Tasaka, M. & Aida, M. The CUC1 and CUC2
1085 genes promote carpel margin meristem formation during *Arabidopsis* gynoecium
1086 development. *Front. Plant Sci.* **5**(2014).

1087 53. Nikovics, K. *et al.* The balance between the MIR164A and CUC2 genes controls leaf
1088 margin serration in *Arabidopsis*. *Plant Cell* **18**, 2929-2945 (2006).

1089 54. Bilsborough, G.D. *et al.* Model for the regulation of *Arabidopsis thaliana* leaf margin
1090 development. *PNAS* **108**, 3424-3429 (2011).

1091 55. Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor.
Bioinformatics **34**, 884-890 (2018).

1093 56. Marcais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of
1094 occurrences of k-mers. *Bioinformatics* **27**, 764-770 (2011).

1095 57. Vaser, R., Sovic, I., Nagarajan, N. & Sikic, M. Fast and accurate de novo genome

1096 assembly from long uncorrected reads. *Genome Res.* **27**, 737-746 (2017).

1097 58. Hu, J., Fan, J., Sun, Z. & Liu, S. NextPolish: a fast and efficient genome polishing tool for
1098 long-read assembly. *Bioinformatics* **36**, 2253-2255 (2020).

1099 59. Roach, M.J., Schmidt, S.A. & Borneman, A.R. Purge Haplotts: allelic contig
1100 reassignment for third-gen diploid genome assemblies. *Bmc Bioinformatics* **19**(2018).

1101 60. Langmead, B. & Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. *Nat. Methods*
1102 **9**, 357-9 (2012).

1103 61. Servant, N. *et al.* HiC-Pro: an optimized and flexible pipeline for Hi-C data processing.
1104 *Genome Biol.* **16**, 259 (2015).

1105 62. Burton, J.N. *et al.* Chromosome-scale scaffolding of de novo genome assemblies based
1106 on chromatin interactions. *Nat. Biotechnol.* **31**, 1119-25 (2013).

1107 63. Ou, S.J. *et al.* Benchmarking transposable element annotation methods for creation of a
1108 streamlined, comprehensive pipeline. *Genome Biol.* **20**, 275 (2019).

1109 64. Zhang, R. *et al.* TEsor: an accurate and fast method to classify LTR-retrotransposons in
1110 plant genomes. *Hort. Res.* (2022).

1111 65. Tarailo-Graovac, M. & Chen, N. Using RepeatMasker to identify repetitive elements in
1112 genomic sequences. *Curr Protoc Mol Biol* **4**, 4.10.1-4.10.14 (2009).

1113 66. Camacho, C. *et al.* BLAST+: architecture and applications. *BMC Bioinform.* **10**, 421
1114 (2009).

1115 67. Birney E, Clamp M & Durbin R. GeneWise and Genomewise. *Genome Res.* **14**, 988-95
1116 (2004).

1117 68. Kim, D., Langmead, B. & Salzberg, S.L. HISAT: a fast spliced aligner with low memory
1118 requirements. *Nat. Methods* **12**, 357-60 (2015).

1119 69. Haas, B.J. *et al.* De novo transcript sequence reconstruction from RNA-seq using the
1120 Trinity platform for reference generation and analysis. *Nat. Protoc.* **8**, 1494-1512 (2013).

1121 70. Haas, B.J. *et al.* Improving the Arabidopsis genome annotation using maximal transcript
1122 alignment assemblies. *Nucleic Acids Res.* **31**, 5654-5666 (2003).

1123 71. Haas, B.J. *et al.* Automated eukaryotic gene structure annotation using EvidenceModeler
1124 and the program to assemble spliced alignments. *Genome Biol.* **9**(2008).

1125 72. Jones, P. *et al.* InterProScan 5: genome-scale protein function classification.
1126 *Bioinformatics* **30**, 1236-1240 (2014).

1127 73. Alexa, A., Rahnenführer, J. & Lengauer, T. Improved scoring of functional groups from
1128 gene expression data by decorrelating GO graph structure. *Bioinformatics* **22**, 1600-7
1129 (2006).

1130 74. Wang, Y. *et al.* MCScanX: a toolkit for detection and evolutionary analysis of gene
1131 synteny and collinearity. *Nucleic Acids Res.* **40**, e49 (2012).

1132 75. Wei, S., Yang, Y. & Yin, T. The chromosome-scale assembly of the willow genome
1133 provides insight into Salicaceae genome evolution. *Hort. Res.* **7**, 45 (2020).

1134 76. Zhou R *et al.* A willow sex chromosome reveals convergent evolution of complex
1135 palindromic repeats. *Genome Biol.* **21**, 38 (2020).

1136 77. Chen JH *et al.* Genome-wide analysis of Cushion willow provides insights into alpine
1137 plant divergence in a biodiversity hotspot. *Nat. Commun.* **10**, 5230 (2019).

1138 78. Emms, D.M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative
1139 genomics. *Genome Biol.* **20**, 238 (2019).

1140 79. Katoh, K. & Standley, D.M. MAFFT multiple sequence alignment software version 7:
1141 improvements in performance and usability. *Mol Biol Evol* **30**, 772-80 (2013).

1142 80. Suyama, M., Torrents, D. & Bork, P. PAL2NAL: robust conversion of protein sequence
1143 alignments into the corresponding codon alignments. *Nucleic Acids Res.* **34**, W609-12
1144 (2006).

1145 81. Capella-Gutierrez, S., Silla-Martinez, J.M. & Gabaldon, T. trimAl: a tool for automated
1146 alignment trimming in large-scale phylogenetic analyses. *Bioinformatics* **25**, 1972-1973
1147 (2009).

1148 82. Minh BQ *et al.* IQ-TREE 2: New Models and Efficient Methods for Phylogenetic
1149 Inference in the Genomic Era. *Mol. Biol. Evol.* **37**, 1530-1534 (2020).

1150 83. Diep Thi, H., Chernomor, O., von Haeseler, A., Minh, B.Q. & Le Sy, V. UFBoot2:
1151 Improving the Ultrafast Bootstrap Approximation. *Mol. Biol. Evol.* **35**, 518-522 (2018).

1152 84. Kalyaanamoorthy, S., Bui Quang, M., Wong, T.K.F., von Haeseler, A. & Jermiin, L.S.
1153 ModelFinder: fast model selection for accurate phylogenetic estimates. *Nat. Methods* **14**,
1154 587-589 (2017).

1155 85. Zhang, C., Rabiee, M., Sayyari, E. & Mirarab, S. ASTRAL-III: polynomial time species
1156 tree reconstruction from partially resolved gene trees. *BMC Bioinform.* **19**(2018).

1157 86. Bui Quang, M., Hahn, M.W. & Lanfear, R. New Methods to Calculate Concordance
1158 Factors for Phylogenomic Datasets. *Mol. Biol. Evol.* **37**, 2727-2733 (2020).

1159 87. Hickey, G., Paten, B., Earl, D., Zerbino, D. & Haussler, D. HAL: a hierarchical format for
1160 storing and analyzing multiple genome alignments. *Bioinformatics* **29**, 1341-1342 (2013).

1161 88. Zhang, C., Scornavacca, C., Molloy, E.K. & Mirarab, S. ASTRAL-Pro: Quartet-Based
1162 Species-Tree Inference despite Paralogy. *Mol. Biol. Evol.* **37**, 3292-3307 (2020).

1163 89. Sanderson, M. r8s: Inferring absolute rates of molecular evolution and divergence times
1164 in the absence of a molecular clock. *Bioinformatics (Oxford, England)* **19**, 301-2 (2003).

1165 90. Han, M.V., Thomas, G.W.C., Lugo-Martinez, J. & Hahn, M.W. Estimating Gene Gain and
1166 Loss Rates in the Presence of Error in Genome Assembly and Annotation Using CAFE 3.
1167 *Mol. Biol. Evol.* **30**, 1987-1997 (2013).

1168 91. Bolger, A.M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina
1169 sequence data. *Bioinformatics* **30**, 2114-2120 (2014).

1170 92. Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.
1171 *ArXiv* **1303**(2013).

1172 93. Li, H. *et al.* The Sequence Alignment/Map format and SAMtools. *Bioinformatics* **25**,
1173 2078-2079 (2009).

1174 94. DePristo, M.A. *et al.* A framework for variation discovery and genotyping using
1175 next-generation DNA sequencing data. *Nat. Genet.* **43**, 491-498 (2011).

1176 95. Korunes, K.L. & Samuk, K. pixy: Unbiased estimation of nucleotide diversity and
1177 divergence in the presence of missing data. *Mol Ecol Resour* **21**, 1359-1368 (2021).

1178 96. Koch, M.A., Haubold, B. & Mitchell-Olds, T. Comparative evolutionary analysis of
1179 chalcone synthase and alcohol dehydrogenase loci in *Arabidopsis*, *Arabis*, and related

genera (Brassicaceae). *Mol. Biol. Evol.* **17**, 1483-1498 (2000).

Quinlan, A.R. & Hall, I.M. BEDTools: a flexible suite of utilities for comparing genomic features. *Bioinformatics* **26**, 841-842 (2010).

Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. *Mol. Biol. Evol.* **24**, 1586-91 (2007).

Trapnell, C., Pachter, L. & Salzberg, S.L. TopHat: discovering splice junctions with RNA-Seq. *Bioinformatics* **25**, 1105-1111 (2009).

Trapnell, C. *et al.* Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. *Nat. Protoc.* **7**, 562-78 (2012).

Yanai, I. *et al.* Genome-wide midrange transcription profiles reveal expression level relationships in human tissue specification. *Bioinformatics* **21**, 650-659 (2005).

Krueger, F. & Andrews, S.R. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. *Bioinformatics* **27**, 1571-1572 (2011).

Zhang, Y. *et al.* Model-based analysis of ChIP-Seq (MACS). *Genome Biol.* **9**, R137 (2008).

Yu, G., Wang, L.G. & He, Q.Y. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. *Bioinformatics* **31**, 2382-2383 (2015).

Wang, D., Zhang, Y., Zhang, Z., Zhu, J. & Yu, J. KaKs_Calculator 2.0: a toolkit incorporating gamma-series methods and sliding window strategies. *Genomics Proteomics Bioinformatics* **8**, 77-80 (2010).

Keller, T.E. & Yi, S.V. DNA methylation and evolution of duplicate genes. *PNAS* **111**, 5932-7 (2014).

Wang, X. *et al.* Genome Alignment Spanning Major Poaceae Lineages Reveals Heterogeneous Evolutionary Rates and Alters Inferred Dates for Key Evolutionary Events. *Mol Plant* **8**, 885-98 (2015).

Marcais, G. *et al.* MUMmer4: A fast and versatile genome alignment system. *PLoS Comput. Biol.* **14**, e1005944 (2018).

Li, H. Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics* **34**, 3094-3100 (2018).

Thorvaldsdottir, H., Robinson, J.T. & Mesirov, J.P. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. *Brief Bioinform* **14**, 178-192 (2013).

Sedlazeck, F.J. *et al.* Accurate detection of complex structural variations using single-molecule sequencing. *Nat. Methods* **15**, 461-468 (2018).

Jiao WB & Schneeberger K. Chromosome-level assemblies of multiple *Arabidopsis* genomes reveal hotspots of rearrangements with altered evolutionary dynamics. *Nat. Commun.* **11**, 989 (2020).

Belyeu, J.R. *et al.* Samplot: a platform for structural variant visual validation and automated filtering. *Genome Biol.* **22**, 161 (2021).

Lescot, M. *et al.* PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. *Nucleic Acids Research* **30**, 325-327 (2002).

1222 115. Hellens, R.P. *et al.* Transient expression vectors for functional genomics, quantification of
1223 promoter activity and RNA silencing in plants. *Plant Methods* **1**(2005).

1224 116. Liu, S. *et al.* Chromosomal-level genome assembly of *Populus adenopoda*. Preprint at
1225 *bioRxiv* <https://doi.org/10.1101/2023.07.11.548479> (2023).

1226 117. Liu, Y.J., Wang, X.R. & Zeng, Q.Y. De novo assembly of white poplar genome and
1227 genetic diversity of white poplar population in Irtysh River basin in China. *Sci China Life
1228 Sci* **62**, 609-618 (2019).

1229 118. Zhang, L. *et al.* Bioinformatic analysis of chromatin organization and biased expression
1230 of duplicated genes between two poplars with a common whole-genome duplication. *Hort.
1231 Res.* **8**(2021).

1232 119. Chen, L. *et al.* Chromosomal-level genome assembly of *Populus davidiana*. Preprint at
1233 *bioRxiv* <https://doi.org/10.1101/2023.07.11.548481> (2023).

1234 120. Zhang, Z. *et al.* Improved genome assembly provides new insights into genome evolution
1235 in a desert poplar (*Populus euphratica*). *Mol Ecol Resour* **20**(2020).

1236 121. Chen, Z. *et al.* Survival in the Tropics despite isolation, inbreeding and asexual
1237 reproduction: insights from the genome of the world's southernmost poplar (*Populus
1238 ilicifolia*). *Plant J.* **103**, 430-442 (2020).

1239 122. Long, Z. *et al.* Chromosomal-level genome assembly of *Populus lasiocarpa*. Preprint at
1240 *bioRxiv* <https://doi.org/10.1101/2023.07.11.548483> (2023).

1241 123. Yang, W. *et al.* The draft genome sequence of a desert tree *Populus pruinosa*. *Gigascience*
1242 **6**(2017).

1243 124. Li, Y. *et al.* A chromosome-level *Populus qiongdaoensis* genome assembly provides
1244 insights into tropical adaptation and a cryptic turnover of sex determination. *Mol. Ecol.*
1245 (2022).

1246 125. Bastian, S. *et al.* An Improved Genome Assembly of the European Aspen *Populus
1247 tremula*. Preprint at *bioRxiv* <https://doi.org/10.1101/805614> (2019).

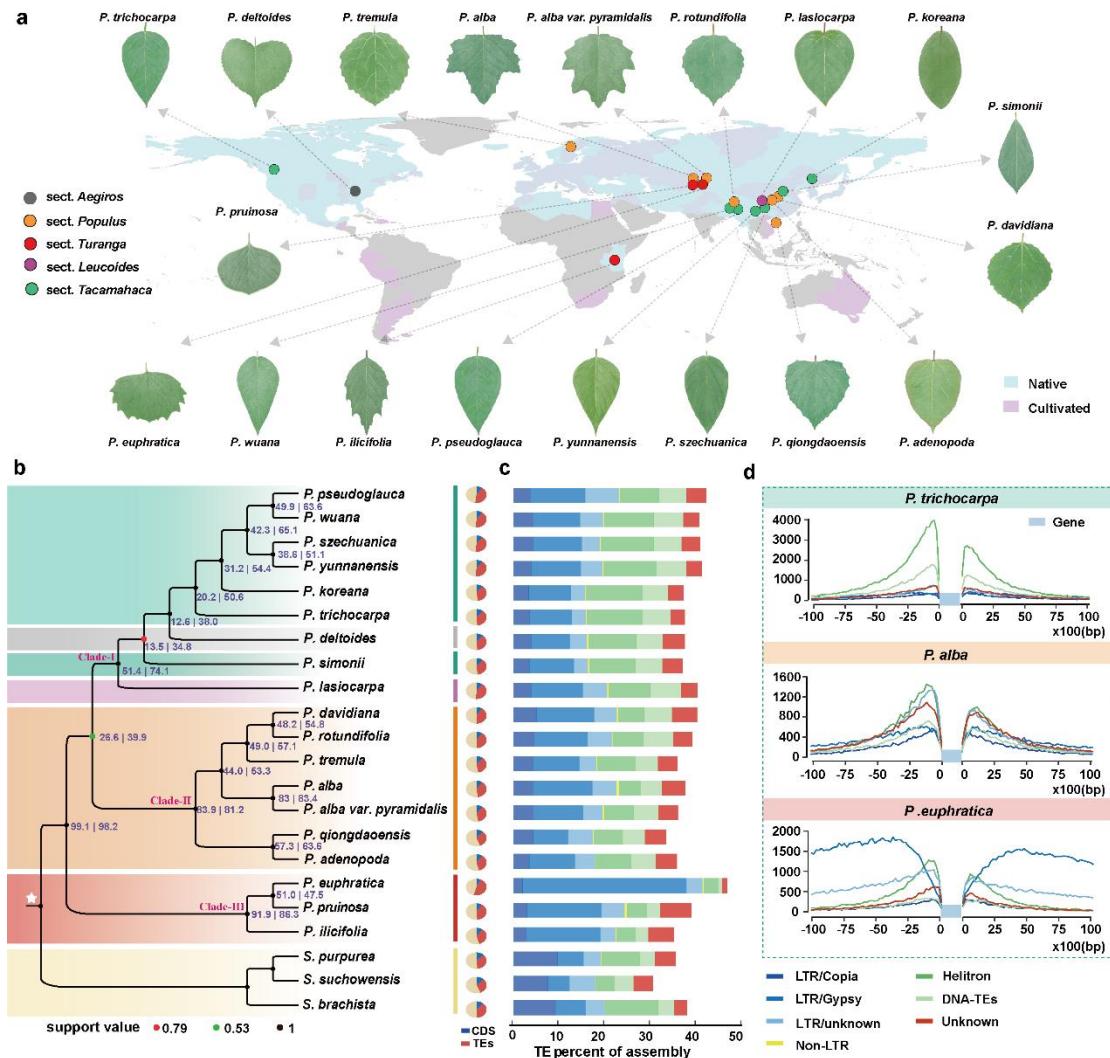
1248 126. Lopez-Delisle, L. *et al.* pyGenomeTracks: reproducible plots for multivariate genomic
1249 datasets. *Bioinformatics* **37**, 422-423 (2021).

1250

1251

1252 **Table 1 Statistics of the genomic assembly and annotation of 19 *Populus* and 3**

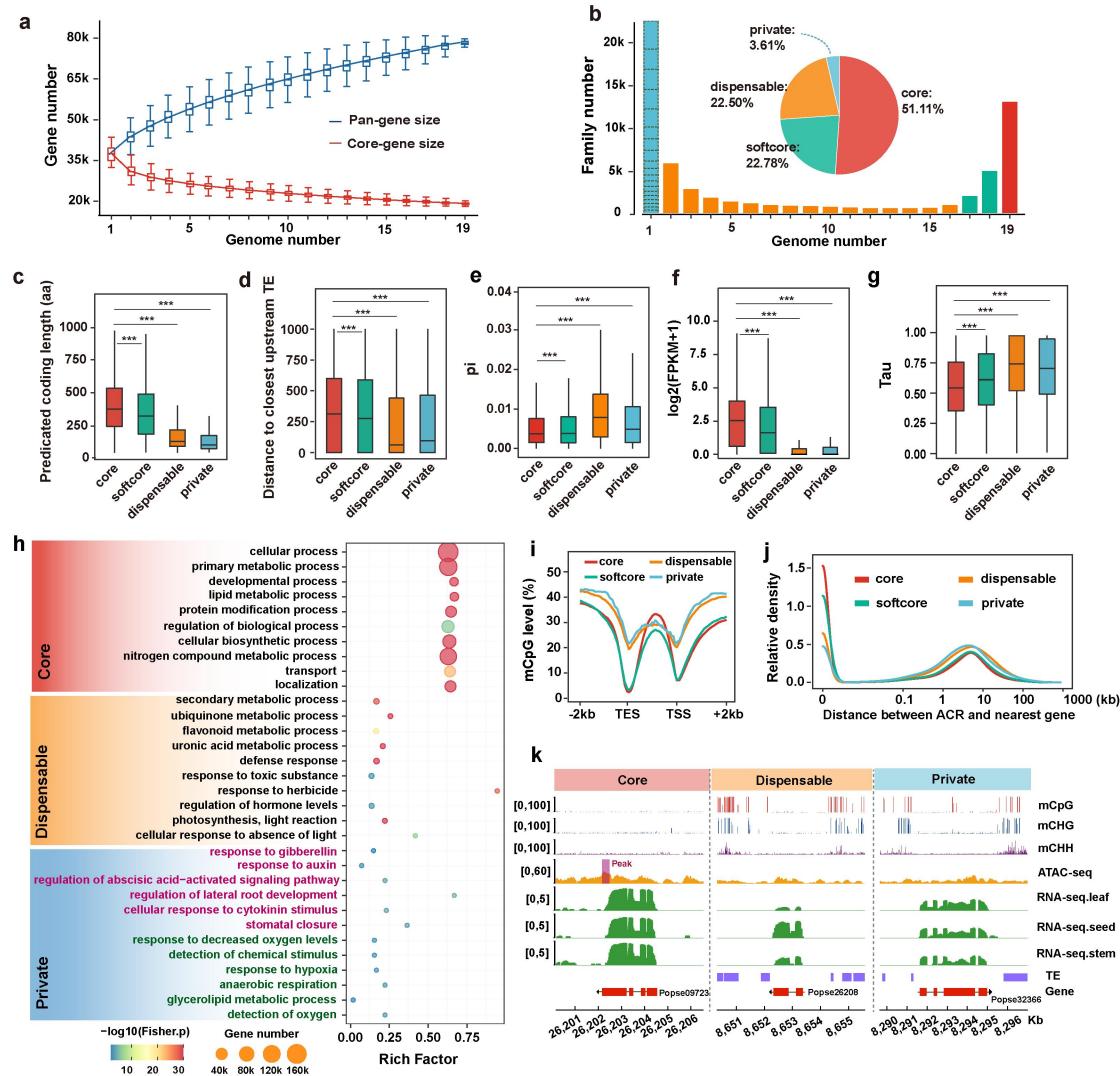
1253 ***Salix* genomes**


Species	Assembly size (Mb)	Anchored chromosome (Mb)	Contig N50 (Mb)	TEs (%)	Gene numbers	Completeness (%, BUSCO)	Reference
<i>P. adenopoda</i>	383.4	382.3	8.3	35.69	33,505	97.2	Liu et al. ¹¹⁶
<i>P. alba</i>	416.0	-	1.2	37.54	32,959	96.6	Liu et al. ¹¹⁷
<i>P. alba</i> var. <i>pyramidalis</i>	408.1	386.6	-	35.97	40,214	91.8	Zhang et al. ¹¹⁸
<i>P. davidiana</i>	441.1	433.3	2.4	40.10	38,244	94.1	Chen et al. ¹¹⁹
<i>P. deltoids</i> v2.1	446.8	403.2	0.6	37.46	44,853	92.8	Phytozome ^a
<i>P. euphratica</i>	574.3	549.8	0.9	47.00	36,606	89.3	Zhang et al. ¹²⁰
<i>P. ilicifolia</i>	400.0	-	0.7	35.05	33,684	97.6	Chen et al. ¹²¹
<i>P. koreana</i>	401.4	399.9	6.4	37.20	37,072	97.7	Sang et al. ¹¹
<i>P. lasiocarpa</i>	419.5	416.3	8.5	40.20	39,008	96.5	Long et al. ¹²²
<i>P. pruinosa</i>	479.3	-	0.7	37.48	35,131	98.8	Yang et al. ¹²³
<i>P. pseudoglauca</i>	448.7	434.2	5.9	42.12	39,639	98.0	This study
<i>P. qiongdaoensis</i>	391.3	381.5	1.6	33.41	39,436	93.2	Li et al. ¹²⁴
<i>P. rotundifolia</i>	414.3	408.5	3.2	38.99	37,592	95.6	This study
<i>P. simonii</i>	408.0	397.0	6.2	36.88	40,352	97.8	This study
<i>P. szechuanica</i>	429.1	416.8	6.3	40.72	40,713	98.1	This study
<i>P. tremula</i>	408.8	361.8	16.9	35.83	37,184	94.2	Bastian et al. ¹²⁵
<i>P. trichocarpa</i> v4.1	392.2	389.2	13.2	37.45	34,699	99.2	Phytozome ^a
<i>P. wuana</i>	417.4	417.3	4.6	40.56	37,520	95.0	This study
<i>P. yunnanensis</i>	433.7	433.7	4.1	41.12	39,464	97.6	This study
<i>S. brachista</i>	339.6	337.3	9.5	37.96	30,209	92.6	Chen et al. ⁷⁷
<i>S. purpurea</i>	328.1	303.7	5.1	35.42	35,125	98.3	Zhou et al. ⁷⁶
<i>S. suchowensis</i>	356.5	309.9	0.3	30.03	36,937	95.9	Wei et al. ⁷⁵

1254 ^aDatabase: <https://phytozome-next.jgi.doe.gov/>

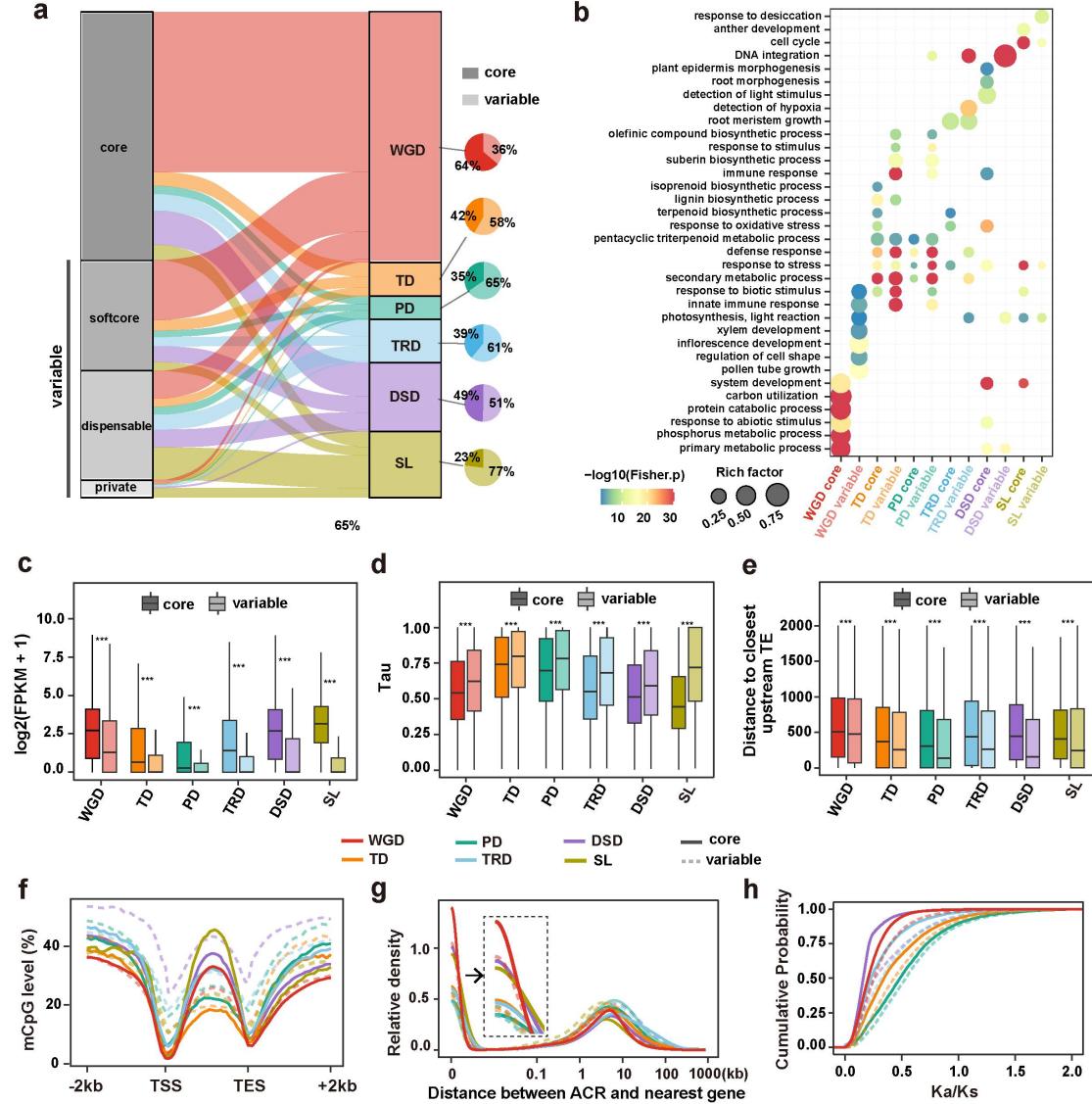
1255

1256 **Figures**


1257

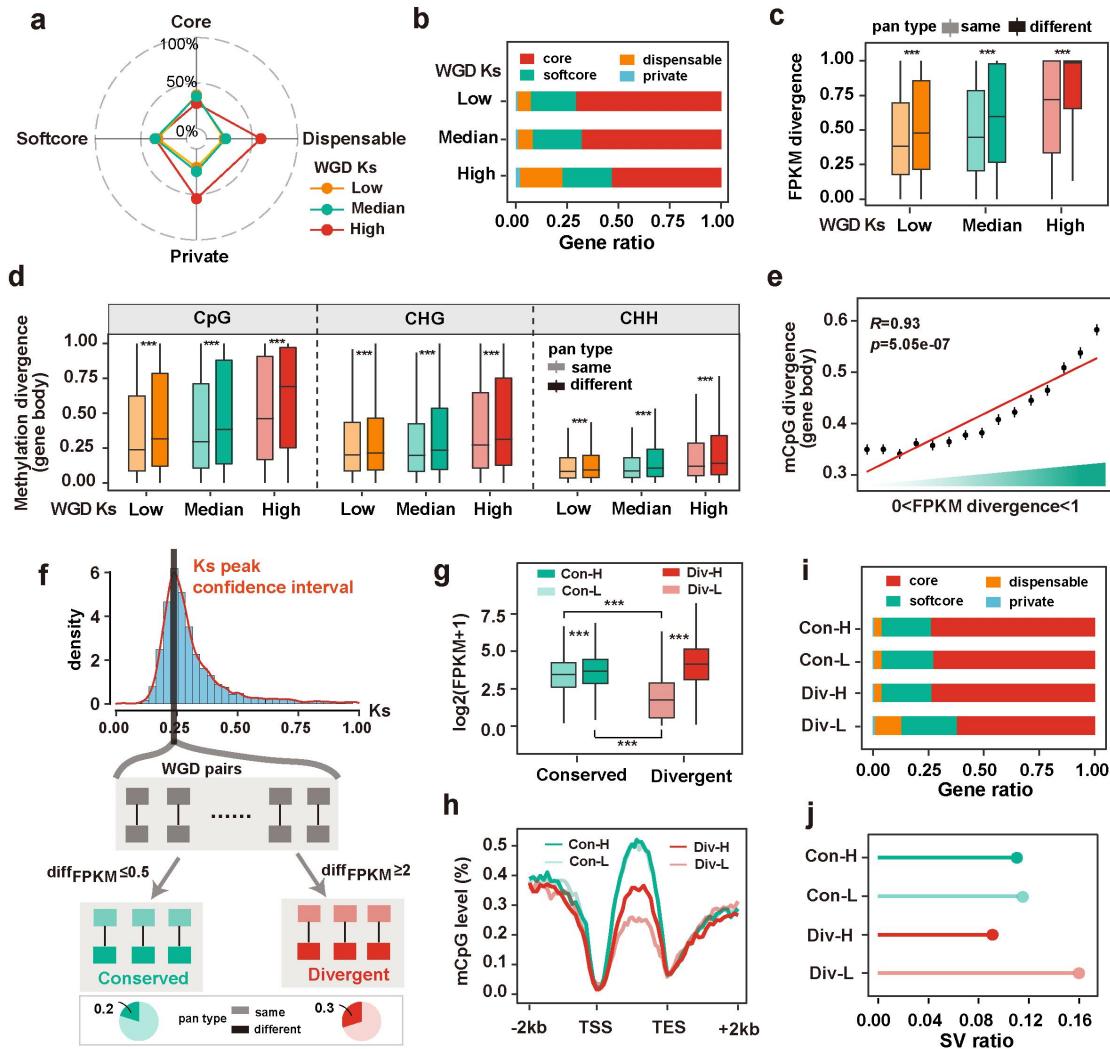
1258

1259 **Fig. 1. Geographical distribution and genome features of poplar species.** **a**, The map of
 1260 naturally distributed and cultivated poplars in the world, with the colored circles representing the
 1261 sampling locations of 19 poplar genomes. **b**, From left to right: phylogenetic relationships inferred
 1262 on the basis of 2,455 single-copy orthologous groups using ASTRAL. Node labels in blue are in
 1263 the following format: gene concordance factors (gCFs) | site concordance factors (sCFs). For each
 1264 node in the ASTRAL species tree, gCFs reflect the percentage of gene trees that contain that node
 1265 as defined by its descendant taxa, and sCFs reflect the percentage of informative sites that support
 1266 that node via parsimony; fraction of CDS (blue) and TEs (red) in each genome. The five sections
 1267 of *Populus* and the outgroup *Salix* are shaded by different colors. **c**, Bar plots show the fraction of
 1268 each TE superfamily (represented by different color as in panel d) in poplar genomes. **d**, TE
 1269 landscape surrounding genes in three poplars. The 10 kbp upstream of the transcription start site
 1270 and 10 kbp downstream of the transcription end site across genes were analyzed.


1271

1272

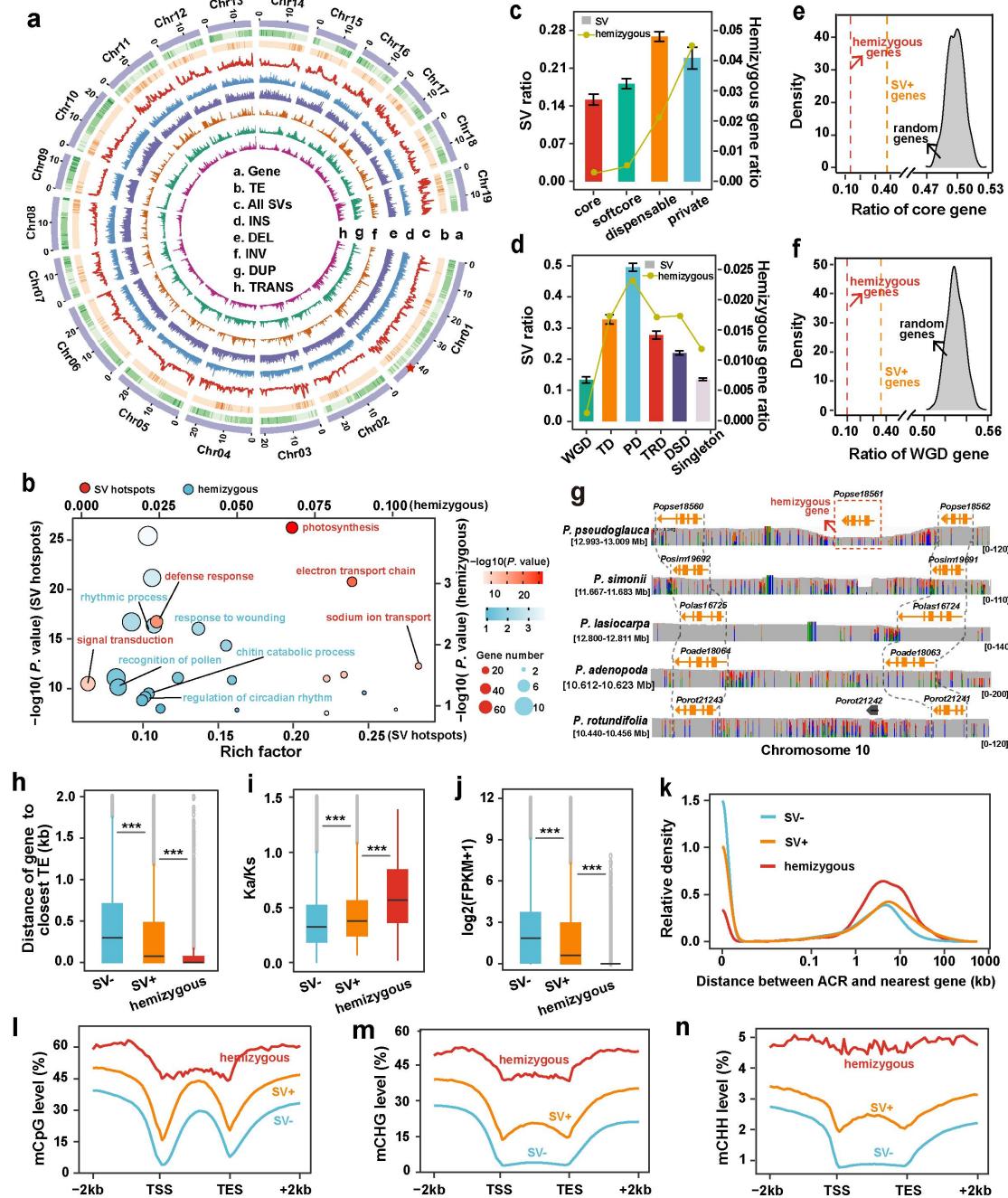
1273 **Fig. 2. Pan-genome analysis at the gene space.** **a**, Number of pan-genes and core-genes for
1274 different combinations of species. **b**, Proportion of pan-genes in the core, softcore, dispensable,
1275 and private categories. A blue block with a dashed border indicates unclustered genes and genes
1276 only clustered in a single genome. **c-g**, The distribution of CDS length (c), distance to the closest
1277 upstream TE (d), nucleotide diversity (π) (e), the expression level in leaf tissues (f), the tissue
1278 specificity index (Tau index, at least with three tissues available) (g) in core, softcore, dispensable
1279 and private genes. **h**, Representative Gene Ontology (GO) enrichment categories of the core,
1280 dispensable and private genes (pink fonts: *P. qiongdaoensis*; green fonts: *P. pseudoglaucum*). **i**,
1281 Regional methylation (CpG) levels across gene-body and flanking regions, which were estimated
1282 by appropriately dividing into 30 and 20 equal bins respectively, for genes from various pan-gene
1283 categories. **j**, Frequency distribution of accessible chromatin regions (ACRs) and their distance to
1284 the nearest genes of genes from various pan-gene categories. **k**, Representative example of
1285 differences in gene expression, TE distribution, methylation levels and ACRs among different
1286 pan-gene categories. The coverage tracks were visualized by pyGenomeTracks¹³⁵. The statistical
1287 difference between groups was calculated using Wilcoxon ranked sum tests: *** $P \leq 0.001$.
1288 Results for each species are shown in the Supplementary Figs. 8-15.


1289

1290

1291 **Fig. 3. The landscape of gene duplication in poplar genomes.** **a**, Overall proportions of
1292 different types of duplicated genes (WGD, TD, PD, TRD, DSD and singleton genes) across the
1293 four categories of pan-genes, where softcore, dispensable and private genes were all grouped into
1294 variable genes. **b**, Representative GO enrichment categories for the different classes of duplicated
1295 genes and pan-genes. **c-h**, The comparison of average expression level (log₂ FPKM in leaf tissue)
1296 (c), tissue specificity index (Tau index, at least three tissues) (d), the distance to closest upstream
1297 TE (e), regional methylation (CpG) levels across gene-body and flanking regions (f), the
1298 frequency distribution of ACRs and their distance to the nearest genes (g) and the K_a/K_s
1299 distribution (h) across different types of duplicate genes intersect with the pan-gene categories
1300 (core vs. variable). WGD whole-genome duplication, TD tandem duplication, PD proximal
1301 duplication, TRD transposed duplication, DSD dispersed duplication, SL singletons. The
1302 statistical analysis was performed using Wilcoxon ranked sum tests: * $P \leq 0.05$; *** $P \leq 0.001$.
1303 Results for each species are shown in the Supplementary Figs. 16-26.

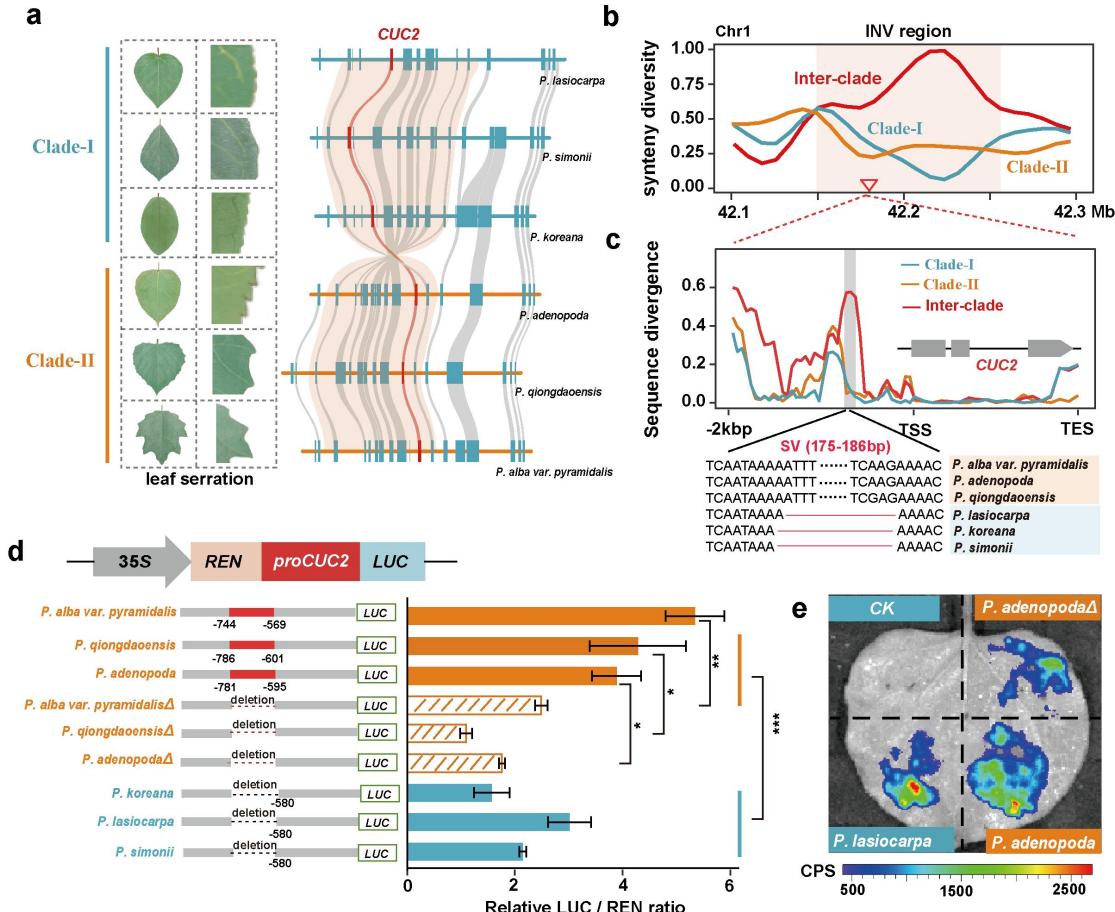
1304


1305

1306 **Fig. 4. The evolutionary fates and divergent resolution of duplicate genes between species**
1307 **following WGD. a,b,** Overall proportion of WGD-derived duplicated genes classified by
1308 evolutionary age (estimated by calculating K_s values between paralogs) across the four pan-gene
1309 categories. **c,d,** Association of expression (c) and methylation (d) divergence of duplicated genes
1310 with evolutionary age and the consistency pan-gene status between paralogs. **e,** Pearson's
1311 correlation coefficient between methylation divergence (CG) and expression divergence of
1312 duplicated genes in gene body regions. **f,** The selection of WGD pairs under the control of
1313 evolutionary age effects. $\text{diff}_{\text{FPKM}} = (\text{FPKM}_{\text{high}} - \text{FPKM}_{\text{low}}) / \text{FPKM}_{\text{low}}$,
1314 where $\text{FPKM}_{\text{high}}$ and FPKM_{low} denote the genes with relative higher and lower expression in the
1315 duplicated pairs, respectively. Gene pairs with $\text{diff}_{\text{FPKM}} \leq 0.5$ were considered as conserved
1316 whereas those ≥ 2 were assumed to be divergent. The pie chart denotes the proportion of paralogs
1317 with same or different pan-gene type within conserved and divergent duplicate gene pairs
1318 respectively. **g,** The expression level ($\log_2 \text{FPKM}$ in leaf tissue) of genes in divergent and
1319 conserved gene pairs. The legends "Con-L" and "Con-H" respectively represent genes with low
1320 and high expression in the conserved gene pairs, while "Div-L" and "Div-H" respectively
1321 represent genes with low and high expression in the divergent gene pairs (same in h-j). **h,**
1322 Regional methylation (CG) levels across gene-body and flanking regions of genes in divergent

1323 and conserved gene pairs. **i**, Overall proportion of genes from the four pan-gene categories in
1324 distinct WGD-derived genes based on expression divergence and expression level. **j**, The ratio of
1325 structural variation (SV) identified across the 16 *Populus* species by SyRI among different
1326 categories of WGD-derived genes divided according the expression divergence and level. The
1327 statistical analysis was performed using Wilcoxon ranked sum tests: ns. $P > 0.05$; *** $P \leq 0.001$.
1328 Results for each species are shown in the Supplementary Figs. 27-29.

1329


1330

1331

1332 **Fig. 5. The landscape and genomic features of structural variations (SVs) and hemizygous**
 1333 **genes.** **a**, Circos plot of the densities of genes, TEs, all SVs, insertions (INS), deletions (DEL),
 1334 inversions (INV), duplications (DUP) and translocations (TRANS) across different *Populus*
 1335 species when using the *P. trichocarpa* genome as the reference. The position of the red star
 1336 represents an fixed inversion between species from Clade-I and Clade-II detained in Fig.6. **b**,
 1337 Representative GO enrichment categories of the genes overlapped with SV hotspots regions and
 1338 hemizygous regions. **c**, The ratio of SV-related and hemizygous genes in core, softcore, dispensable
 1339 and private genes. **d**, The ratio of SV-related and hemizygous genes in different classes of
 1340 duplicated genes. **e,f**, The density of ratios of core-gene (e) and WGD gene (f) overlapped with SV
 1341 and hemizygous genes (dashed lines indicate the empirical observation) compared with the
 1342 distribution resulting from the 1,000 randomizations. **g**, Integrative Genomics Viewer (IGV) plot

1343 showing the coverage of reads and the structure of a specific hemizygous gene in *P. pseudoglaauca*.
1344 In each diagram, the arrow denotes the gene, and the connected grey lines indicate the
1345 homologous genes. The red box indicates the hemizygous gene. The height represents the read
1346 coverage. **h-n**, Comparison of the distance to closest TE (h), selective constraint (i), expression
1347 level (j), ACR distributions (k), methylation levels at CpG (l), CHG (m) and CHH (n) context of
1348 hemizygous genes as well as genes with SVs (SV+) and without SVs (SV-). SV+ and SV- genes
1349 respectively denote the gene-body regions overlapping and not overlapping the SVs. The
1350 statistical analysis was performed using Wilcoxon ranked sum tests: *** $P \leq 0.001$. Results for
1351 each species are shown in the Supplementary Figs. 30-38.
1352

1353

1354 **Fig. 6. Identification of a *cis*-regulatory SV potentially underlying leaf margin differences**
1355 **across species in *Populus*.** **a**, Identification of a fixed inversion (the location was shown as red

1356 star in Fig. 5a) that includes the *CUC2* gene between species from Clade-I and Clade-II as shown

1357 in Fig. 1b that have contrasting leaf margin phenotypes. **b**, The synteny diversity within and

1358 between clades around the inverted region. **c**, The divergence in the promoter and gene-body

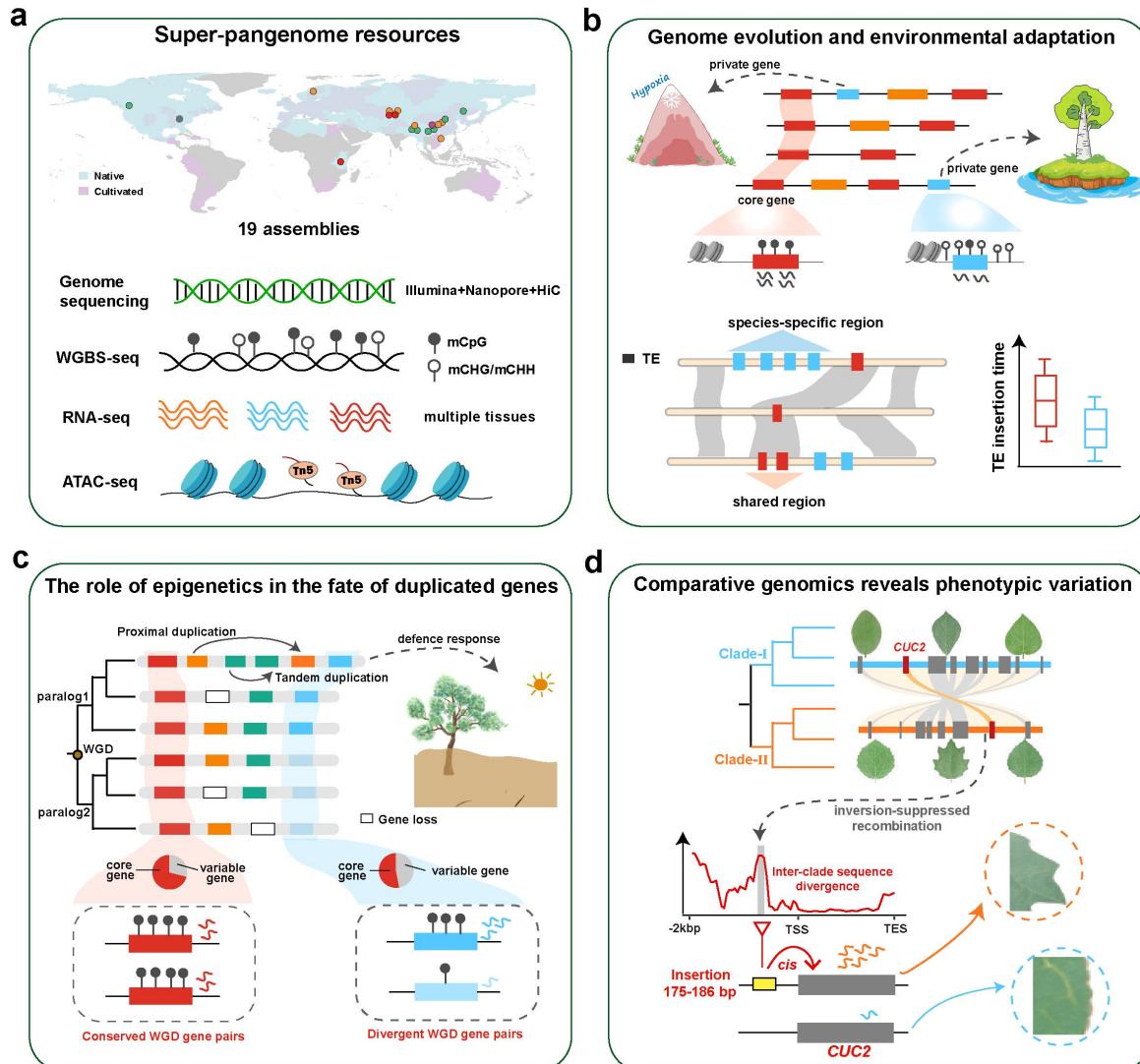
1359 regions of *CUC2* highlight a ~180bp presence/absence variant closet to the transcription start site

1360 (TSS) being fixed between species from the two clades. **d**, Validation of function of the ~180bp

1361 presence upstream of *CUC2*. Schematic overview of luciferase constructs with and without the

1362 ~180bp *CUC2* promoter, with corresponding luciferase activity in transfected *N. benthamiana*.

1363 Each bar represents the mean of three independent experiments \pm SD (* $P \leq 0.05$, ** $P \leq 0.01$,

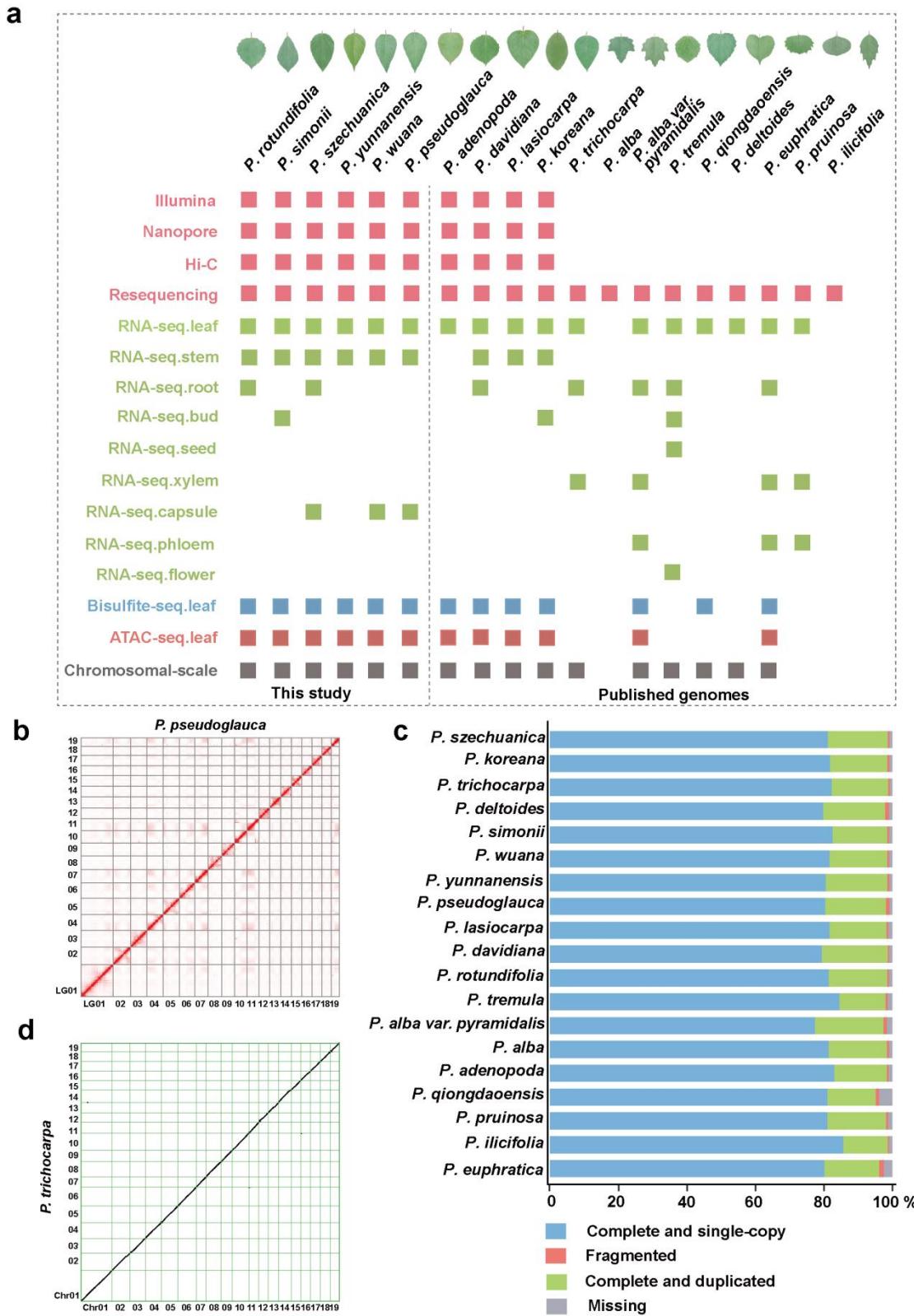

1364 Student's t test). **e**, Transient expression assay show that the ~180bp deletion directly decreased

1365 the regulatory potential of the promoter on the *CUC2* gene. Representative images of *N.*

1366 *benthamiana* leaves 72 h after infiltration were shown.

1367

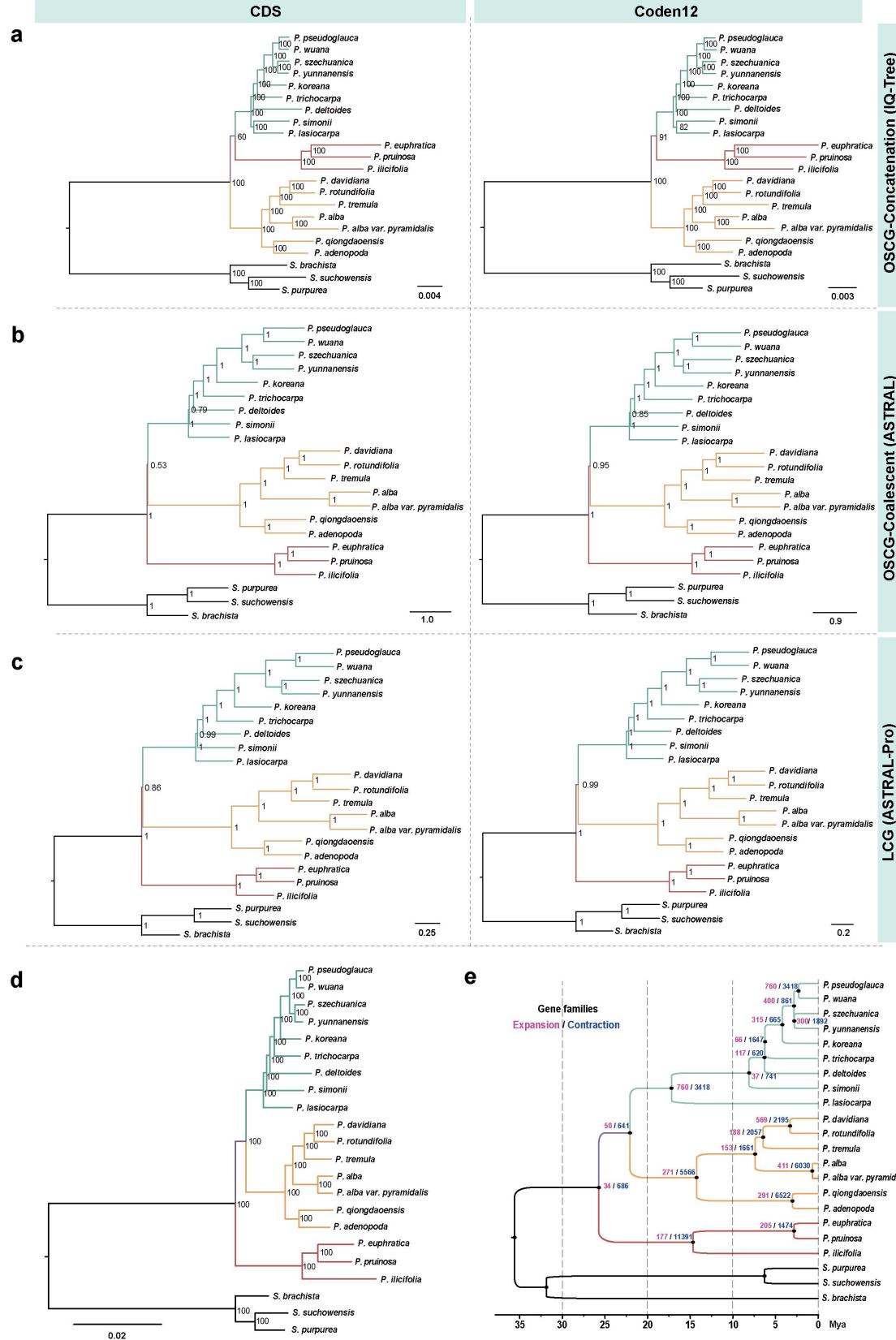
1368


1369

1370 **Fig. 7. Summary of the four key findings in this study.** **a**, The super-pangenome resources
 1371 combined with the multi-omics datasets across the 19 *Populus* genomes generated. **b**, Integrative
 1372 analysis associating pan-genomes with epigenetic and regulatory architecture to understand
 1373 genome evolution and species adaptation. **c**, Complementary analysis of pan-genes and duplicate
 1374 genes provides novel insight into understanding the genetic mechanisms that create functional
 1375 divergence of duplicates retained alongside species divergence following whole-genome
 1376 duplications (WGDs). **d**, The large-scale comparative genomics at the genus level opens vital
 1377 opportunities for exploring how genomes evolved and diverged as species adapted to a wide range
 1378 of ecological niches, and also enable better identifying previously hidden structural variants that
 1379 affect phenotypic and functional divergence across species.

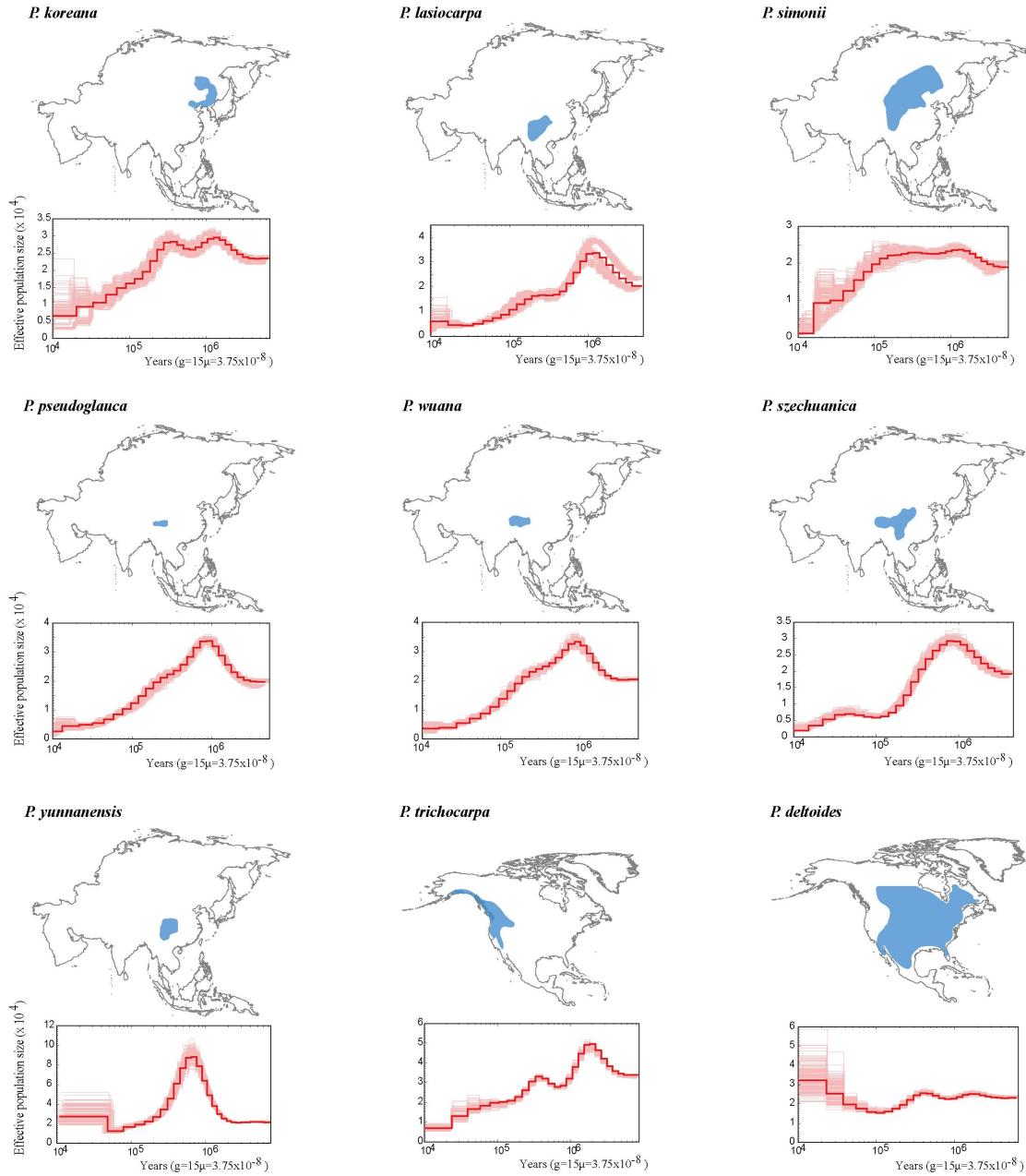
1380

1381 **Extended Data Figures**

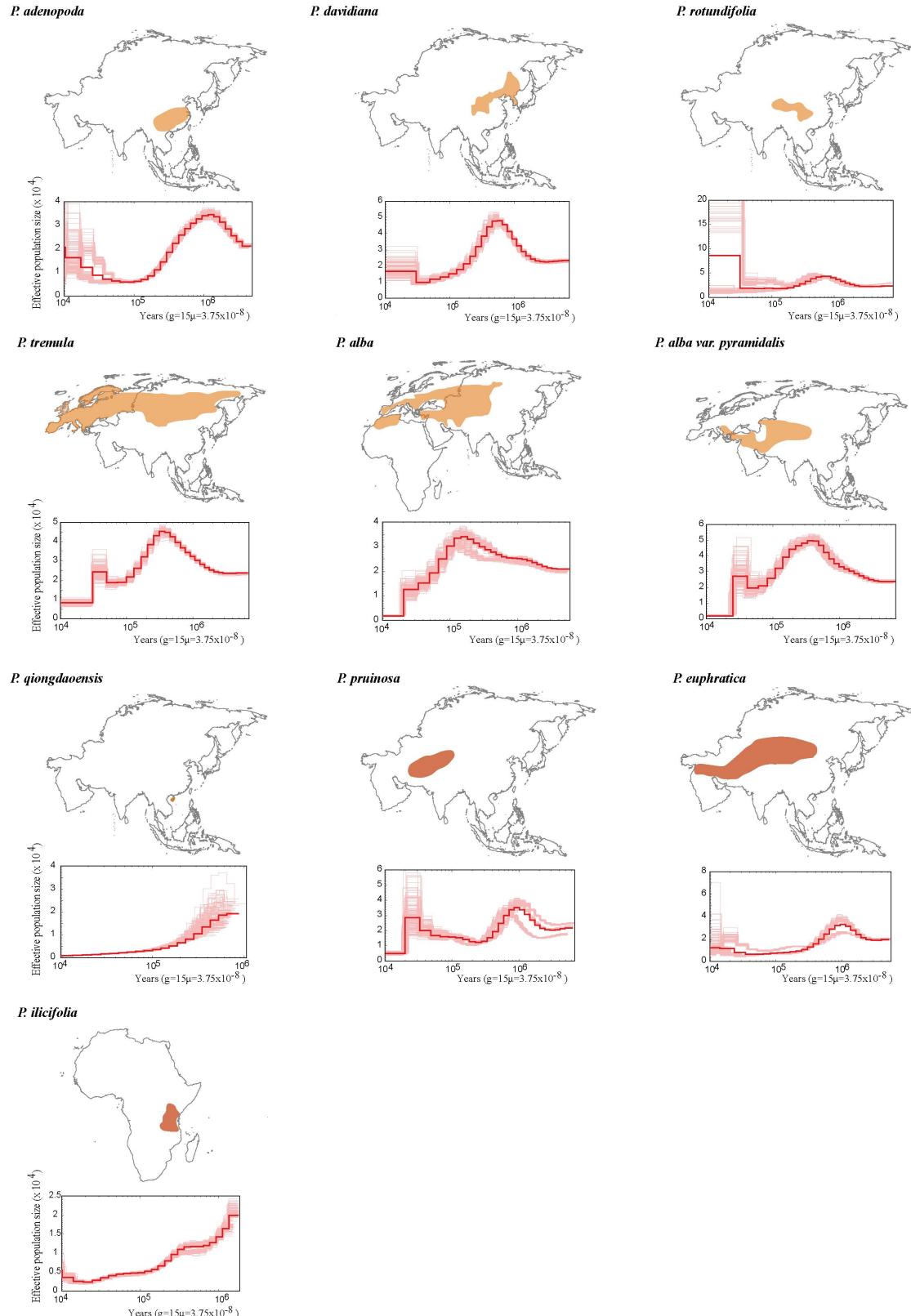

1382

1383

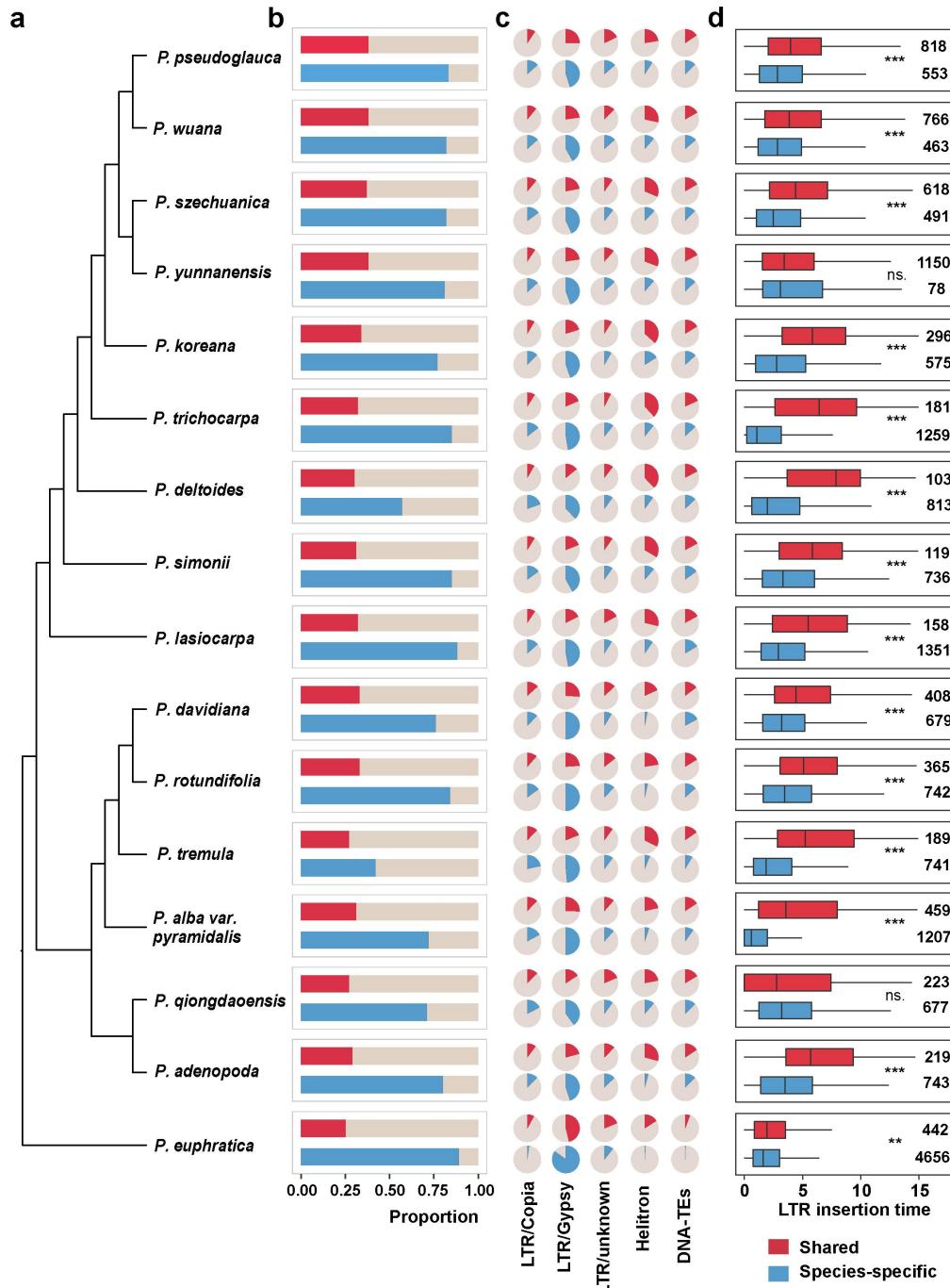
1384 **Extended Data Fig. 1 | General information about the poplar species and characteristics of**
1385 **genome assemblies in this study. a, General information about the 19 genomes used in this study.**


1386 The colored rectangles represent the corresponding data available for each dataset. Detailed data
1387 sources are listed in the Supplementary Table 1. **b**, Hi-C heatmap of *P. pseudoglauca* shown with a
1388 resolution window of 100 kbp. Darker red indicates stronger interactions. **c**, BUSCO assessment
1389 for the poplar genome assemblies. **d**, Synteny between *P. trichocarpa* and *P. pseudoglauca*. The
1390 scaffolds nomenclature was adopted for the chromosome numbering on the basis of their
1391 collinearity with 19 chromosomes of *P. trichocarpa* genome.
1392

1393


1394 **Extended Data Fig. 2 | Phylogeny of the genus *Populus*.** a,b,c, Phylogenetic relationships
 1395 inferred with the 2,455 single-copy genes (CDS and conden12 respectively) using IQ-TREE (a)
 1396 and ASTRAL (b), 11,385 low-copy genes (CDS and conden12 respectively) using ASTRAL-Pro

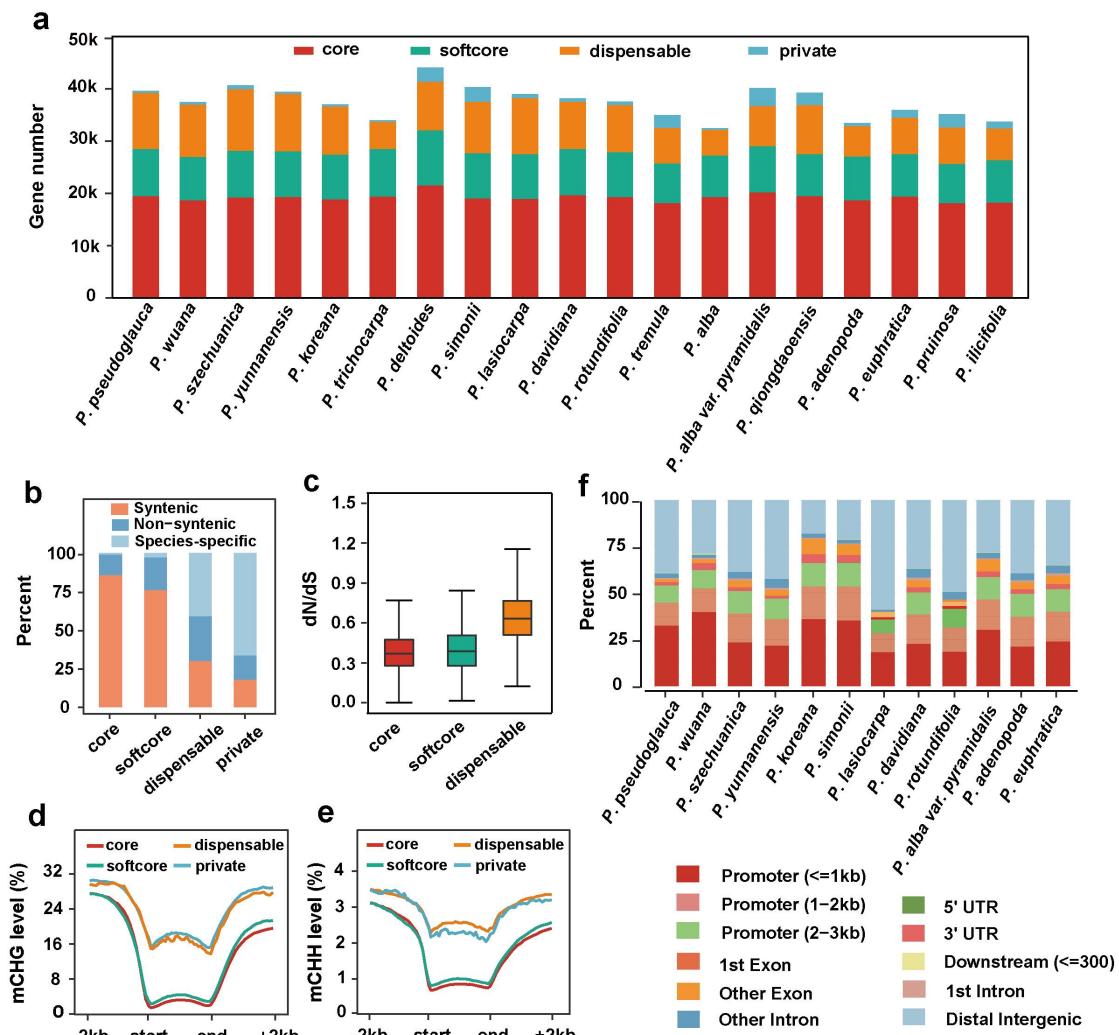
1397 (c). **d**, Phylogenetic relationships inferred using the orthologous regions (~48.7Mb) from the
1398 multiple sequence alignments (generated by Cactus) using IQ-TREE. **e**, Estimation of divergence
1399 time and dynamic evolution of orthologous gene families. Gene family expansion events are
1400 shown in pink and gene family contraction events in blue. The calibration time for divergence
1401 between *P. trichocarpa* and *S. suchowensis* (12-48 Mya) was obtained from the TimeTree
1402 database (<http://www.timetree.org/>).
1403


1404

1405 **Extended Data Fig. 3 | Continued on next page.**

1406

1407 **Extended Data Fig. 3 | Demographic history of different poplars.** Changes in effective
 1408 population size (N_e) through time inferred by the Pairwise Sequentially Markovian Coalescent
 1409 model (PSMC). Bold lines are the mean estimate for all resequenced samples, whereas faint lines
 1410 are for 50 replicates per individual.



1411

1412 **Extended Data Fig. 4 | TE dynamics in the shared and species-specific genomic regions**
 1413 across the 19 poplar species/sub-species. **a**, Phylogenetic relationship between the poplar species.
 1414 **b**, TE proportion in the shared and species-specific genomic regions, respectively. The shared and
 1415 species-specific genomic regions were extracted from the multiple sequence alignments generated
 1416 by Cactus. **c**, Proportion of each TE superfamily in shared and species-specific genomic regions. **d**,
 1417 Age distribution of LTR-RT insertions belonging to shared and species-specific genomic regions.
 1418 The numbers indicate the sample size used in the analysis. The statistical difference between
 1419 groups was calculated using Wilcoxon ranked sum tests: ns. $P > 0.05$; * $P \leq 0.05$; ** $P \leq 0.01$;
 1420 *** $P \leq 0.001$.

1421

1422

1423

1424

Extended Data Fig. 5 | Pan-genome analysis of the gene space. **a**, Number of genes in the core, softcore, dispensable, and private fractions in each genome. **b**, Overall proportions of syntenic, non-syntenic, and species-specific loci in each genome based on their pan-genome classification. Syntenic genes in each genome were calculated using *S. suchowensis* as the query genome with MCScanX. **c**, The ratio of non-synonymous to synonymous mutations (dN/dS) in core, softcore and dispensable genes. Only single-copy ortholog groups that contained more than three species were used to calculate dN/dS ratio using PAML. **d,e**, Differences in average CHG (d), and CHH (e) methylation level along the gene and flanking regions among core, softcore, dispensable and private genes. The color of the line is consistent with the classification of (a). **f**, Genome-wide distribution of annotated ATAC-seq peaks in 12 poplar species.

1425

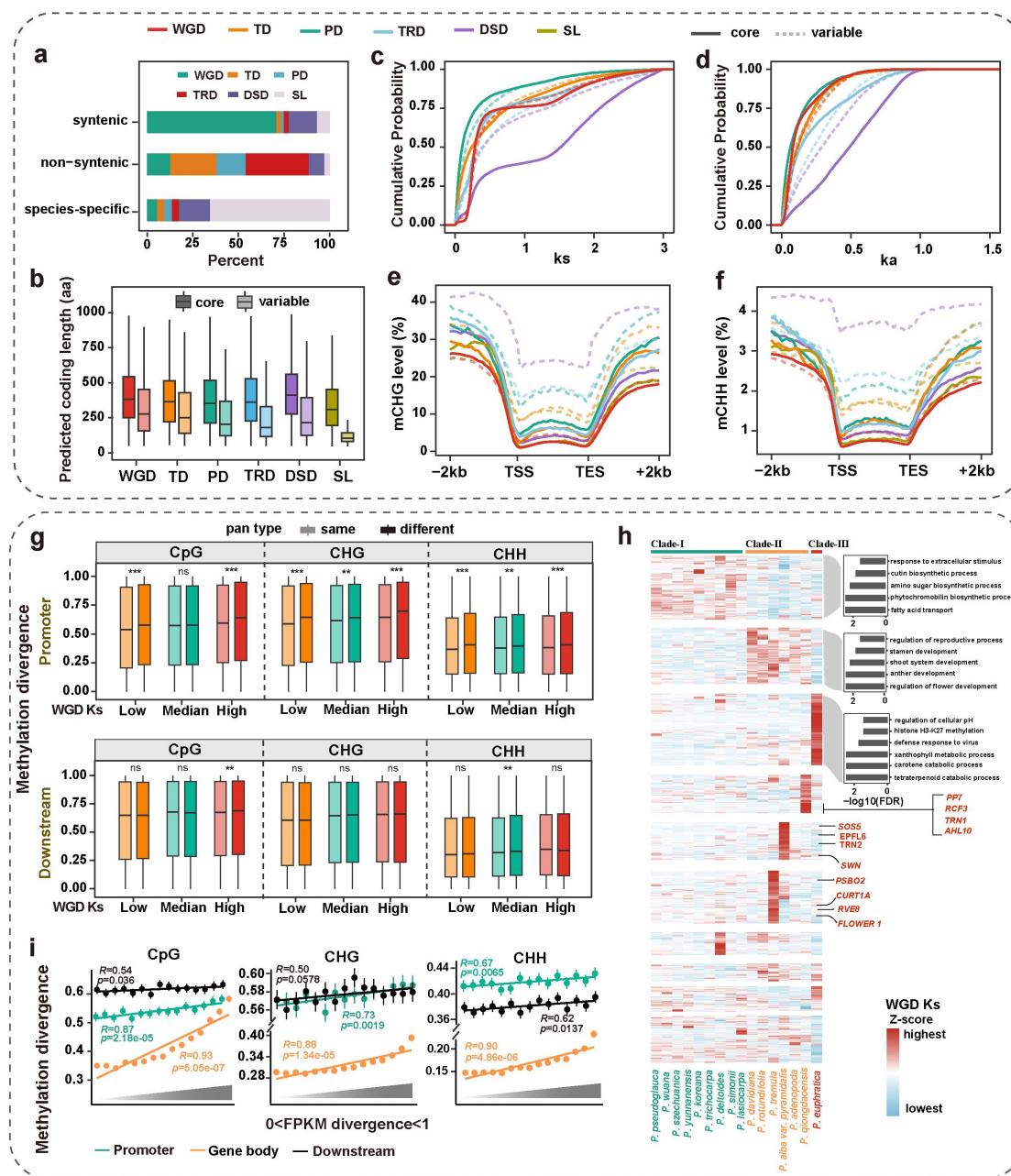
1426

1427

1428

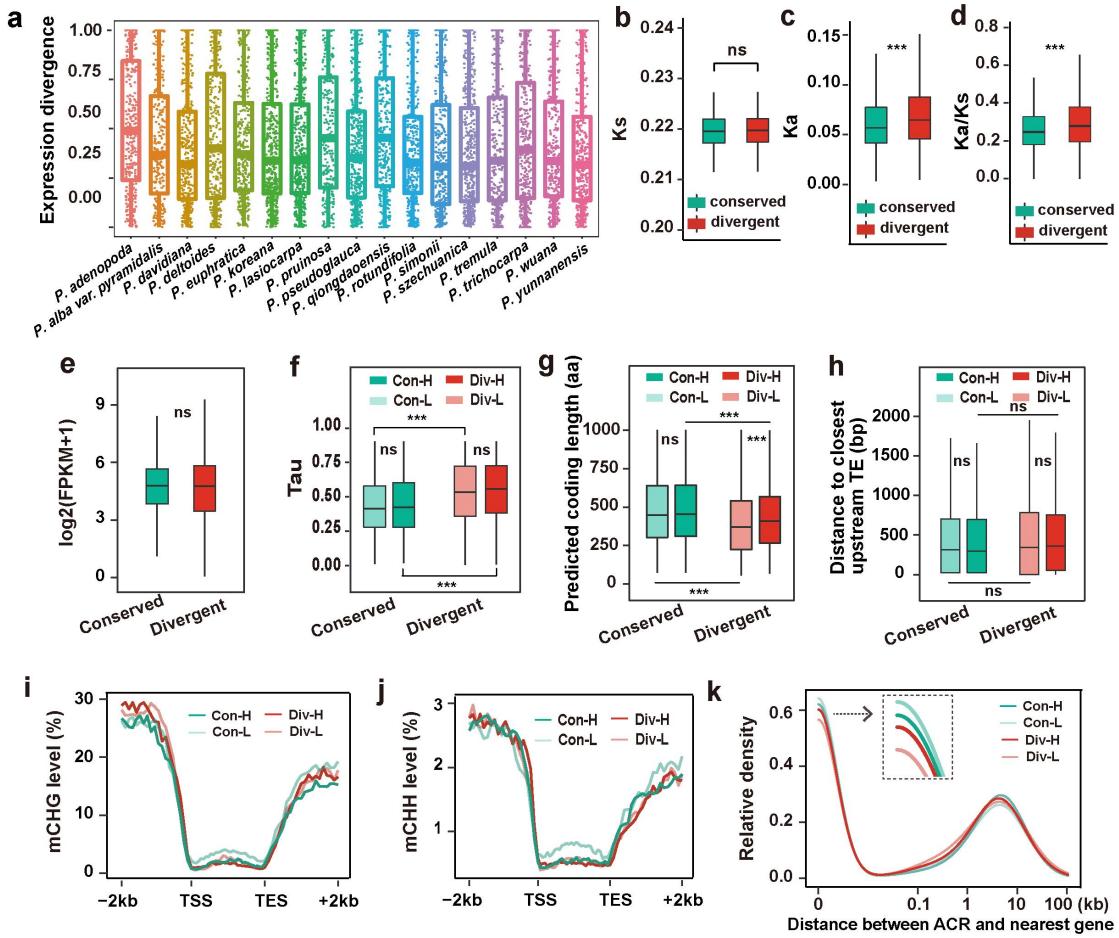
1429

1430

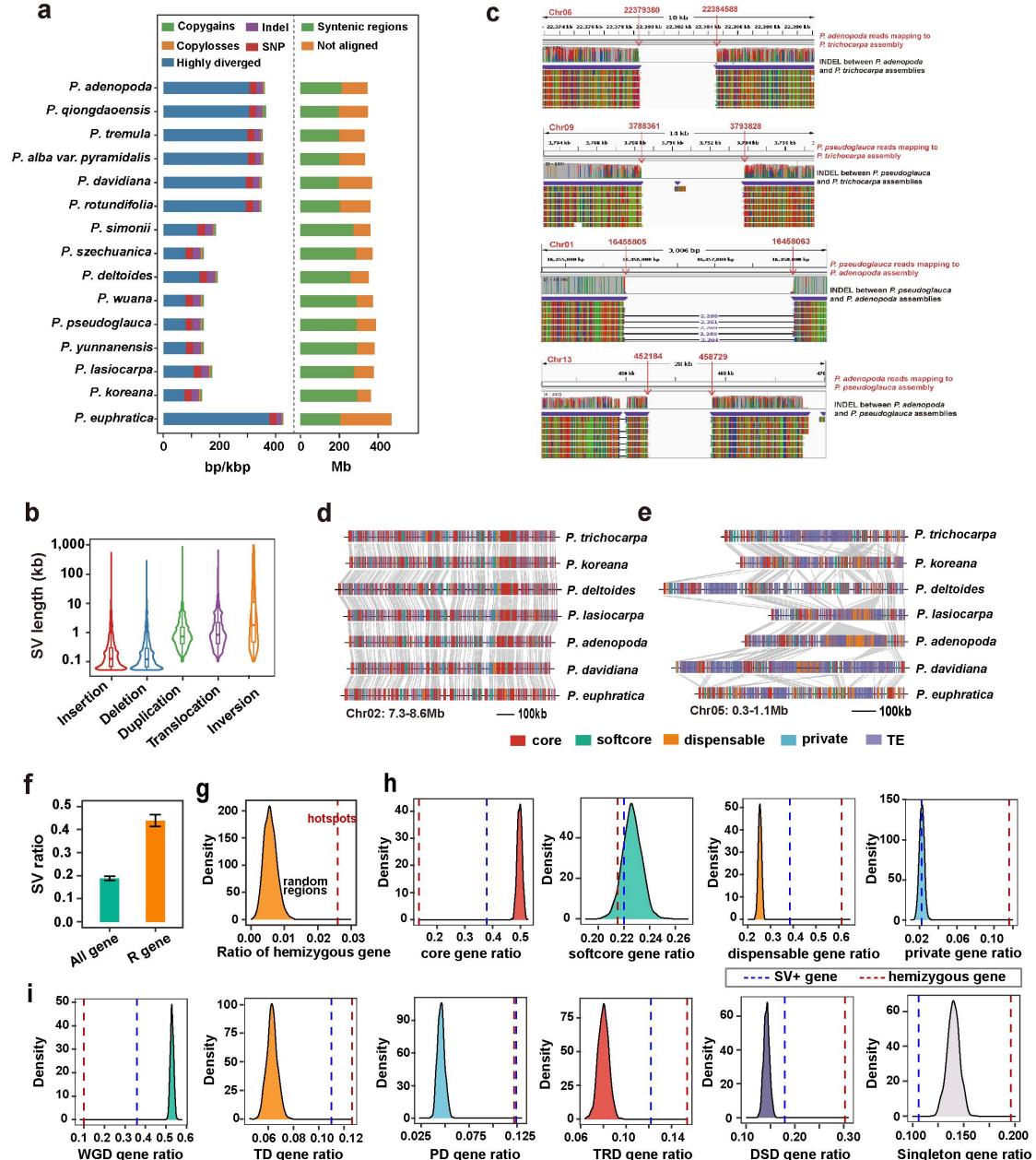

1431

1432

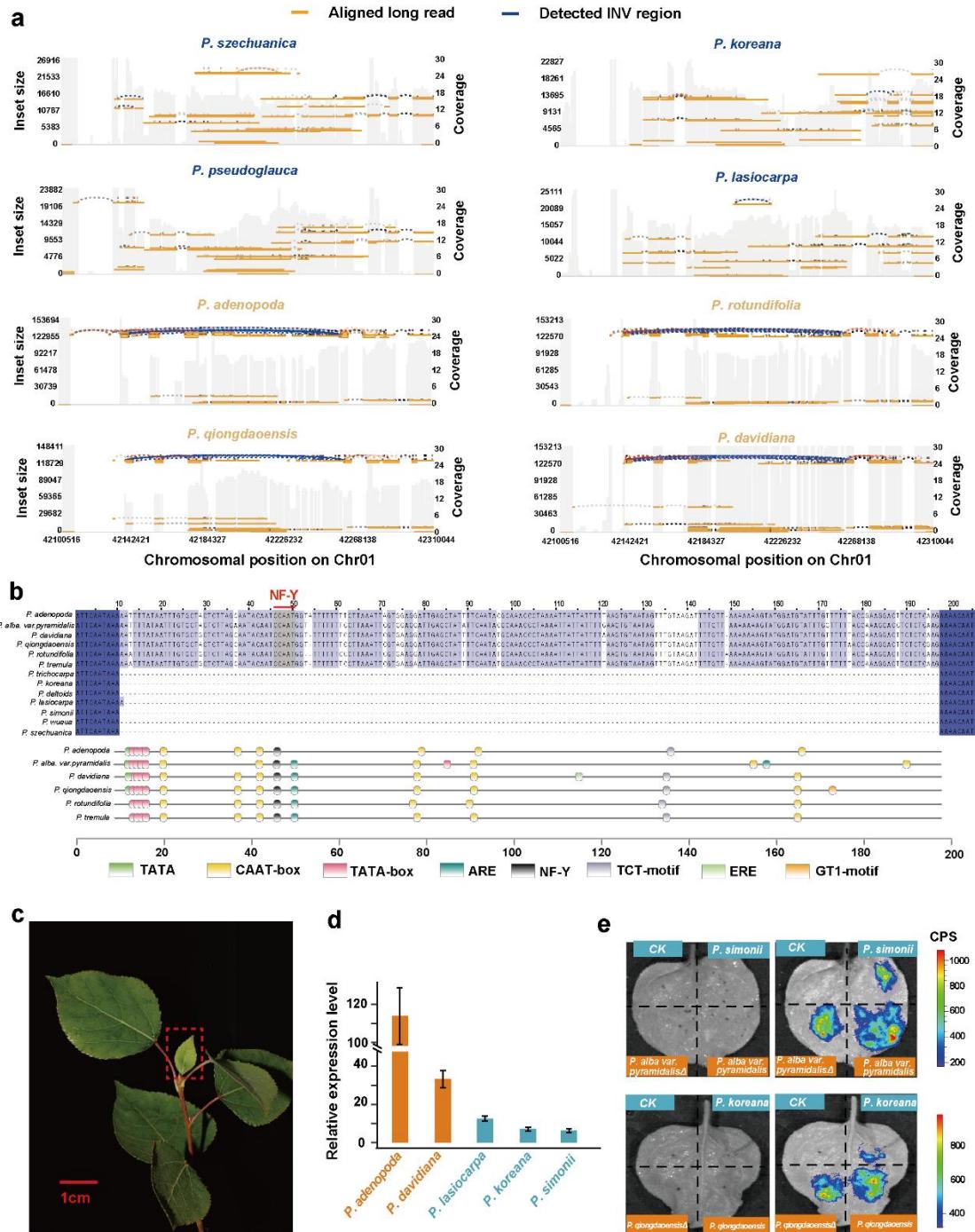
1433


1434

1435


1438 **Extended Data Fig. 6 | The landscape of gene duplication and the evolutionary fates of**
1439 **WGD-derived genes over a long evolutionary time period in poplar genomes. a,** Overall
1440 proportions of WGD, TD, PD, TRD, DSD and singleton loci based on their syntenic blocks with *S.*
1441 *suchowensis*. Syntenic genes in each genome were calculated using MCScanX. **b,** CDS length of
1442 different duplicated genes that in distinct pan-gene categories. Variable represent softcore,
1443 dispensable and private genes, which correspond those shown in Fig.3. **c,d,** The K_s (c) and K_a (d)
1444 distributions of different duplicated gene pairs based on different pan-gene categories. **e,f,**
1445 Differences in average CHG (e) and CHH (f) methylation level along the gene and flanking
1446 regions among different gene groups based on the duplication status and pan-gene type. **g,**
1447 methylation divergence (upstream and downstream) of duplicated genes with evolutionary age and
1448 the consistency pan-gene status between paralogs. **h,** Clade- and/or species-specific functional

1449 divergence of duplicated genes retained following WGD. Unsupervised hierarchical clustering of
1450 corrected- K_s values (Z-score) of WGD gene pairs belonging to core gene families (both paralogs
1451 retained in all species). Right: GO enrichment and gene examples for the WGD-derived genes
1452 from the clade-specific and species-specific functional divergence cluster, respectively. i,
1453 Pearson's correlation coefficient between the expression divergence and methylation divergence of
1454 WGD gene pairs at CG, CHG, and CHH contexts. The different colors indicate the methylation
1455 divergence of duplicated genes in the promoter, gene body, and downstream regions, respectively.
1456 WGD whole-genome duplication, TD tandem duplication, PD proximal duplication, TRD
1457 transposed duplication, DSD dispersed duplication, SL singletons. The statistical analysis was
1458 performed using Wilcoxon ranked sum tests: ns. $P > 0.05$; $*P \leq 0.05$; $**P \leq 0.01$; $***P \leq 0.001$.
1459 Results for each species are shown in the Supplementary Figs. 16-29.
1460


1461

1462 **Extended Data Fig. 7 | The diverse fates of WGD-derived genes under the same evolutionary**
 1463 **age effects.** **a**, Expression divergences of WGD-derived duplicates under the same sequence
 1464 divergence. **b-d**, K_s (b), K_a (c) and K_a/K_s (d) distributions of divergent and conserved gene pairs,
 1465 as classified shown in Fig.4. **e**, Overall expression levels (log₂ FPKM in leaf tissue) of conserved
 1466 and divergent duplicate genes. **f**, Tissue specificity index (Tau index, at least three tissues) in
 1467 divergent and conserved gene pairs. The legends “Con-L” and “Con-H” respectively represent
 1468 genes with relative lower and higher expression in the conserved gene pairs, while “Div-L” and
 1469 “Div-H” respectively represent genes with relative lower and higher expression in the divergent
 1470 gene pairs (same in g-k). **g-k**, The CDS length (g), distance to neighboring TE (h), methylation in
 1471 the CHG (i) and CHH (j) sequence contexts and the frequency distribution of ACRs and their
 1472 distance to the nearest genes (k) for each of the two partners (divided into low and high according
 1473 their expression) in conserved and divergent gene pairs. The statistical analysis was performed
 1474 using Wilcoxon ranked sum tests: ns. $P > 0.05$; *** $P \leq 0.001$.

1476 **Extended Data Fig. 8 | SVs landscapes in the genus *Populus*.** **a**, Schematic of sequence
 1477 variation detected in poplar genomes. **b**, Size distributions of different types of SV. **c**, Example
 1478 manual validations of 50 randomly selected SVs (also see Supplementary Table 18), based on
 1479 mapping Nanopore long-reads to the genome assemblies. **d, e**, Examples of pan-genes and TEs
 1480 enriched in SV hotspots (d) and desert (e) regions. **f**, Comparision of the ratio of SVs overlapped
 1481 with NLR genes and all other genes. **g**, The density of ratios of hemizygous genes in SV hotspot
 1482 region (dashed lines indicate the empirical observation) compared with genomic random regions
 1483 with same sizes resulting from the 1,000 randomizations. **h,i**, Comparison of ratios of different
 1484 categories of pan-gene (h) and duplicated gene (i) in SV-related (SV+) genes (blue dashed lines),
 1485 hemizygous genes (red dashed lines) and genes selected randomly.
 1486

1487

1488

1489 **Extended Data Fig. 9 | An inversion-mediated gene regulatory divergence that likely results**
 1490 **in divergent patterning of the leaf margin between two clades of species.** **a**, Inversion (Chr01:
 1491 **42.15-42.26 Mb) validation by mapping the Nanopore long reads of the representative species**
 1492 **from the two clades represented by Clade-I (mostly belonging to sect. *Tacamahaca*) and Clade-II**
 1493 **(belonging to sect. *Populus*) genomes. Reads plotted in blue have large insert sizes and represent**
 1494 **the detected inversion region. **b**, Predicted transcriptional factor binding motifs within the ~180bp**
 1495 **insertion located in *CUC2* promoter of multiple species from Clade-II. **c**, Total RNA were**
 1496 **extracted from young leaves, i.e., the leaf margin of the emerging young leaves in the terminal bud**
 1497 **(shown in red box). **d**, *CUC2* expression levels (mean \pm SD, n = 3) in species from the two clades**

1498 that were determined by qPCR. **e**, Transient expression assay of luminescence intensity show that
1499 the deletion directly decreased the regulatory potential of the promoter on the *CUC2* gene.
1500 Representative images of *N. benthamiana* leaves 72 h after infiltration were shown.
1501