

1 **Alternative TSS use is widespread in *Cryptococcus* fungi in**
2 **response to environmental cues and regulated genome-**
3 **wide by the transcription factor Tur1**

4 Thi Tuong Vi DANG^{1, #b}, Corinne MAUFRAIS², Jessie COLIN^{1,3}, Frédérique MOYRAND¹,
5 Isabelle MOUYNA¹, Jean-Yves COPPEE¹, Chinaemerem U. ONYISHI^{5, #a}, Joanna
6 LIPECKA⁴, Ida Chiara GUERRERA⁴, Robin C. MAY⁵ and Guilhem JANBON^{1*}

7

8 1. Université Paris Cité, Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques,
9 Département de Mycologie, Paris, France

10 2. Université Paris Cité, Institut Pasteur, HUB Bioinformatique et Biostatistique, C3BI, USR
11 3756 IP CNRS, Paris, France

12 3. Ecole Pratique des Hautes Etudes, PSL Research University, Paris, France

13 4. Université Paris Cité, SFR Necker INSERM US24/CNRS UAR3633, Proteomics Platform,
14 Paris, France

15 5. Institute of Microbiology and Infection and School of Biosciences, University of
16 Birmingham, Birmingham, United Kingdom

17 * Guilhem.Janbon@pasteur.fr

18

19 #a Current address: Molecular Mycology and Immunity Section, Laboratory of Host
20 Immunity and Microbiome, National Institute of Allergy and Infectious Diseases (NIAID),
21 National Institutes of Health, Bethesda, Maryland, USA.

22 #b Current address: TUD Dresden University of Technology, Dresden, Germany

23

24 **Abstract**

25 Alternative transcription start site (TSS) usage regulation has been identified as a major
26 means of gene expression regulation in metazoans. However, in fungi, its impact remains
27 elusive as its study has thus far been restricted to model yeasts. Here, we first re-analysed
28 TSS-seq data to define genuine TSS clusters in two species of pathogenic *Cryptococcus*. We
29 identified two types of TSS clusters associated with specific DNA sequence motifs. Our
30 analysis also revealed that alternative TSS usage regulation in response to environmental cues
31 is widespread in *Cryptococcus*, altering gene expression and protein targeting. Importantly,
32 we performed a forward genetic screen to identify a unique transcription factor (TF) named
33 Tur1, which regulates alternative TSS (altTSS) usage genome-wide when cells switch from
34 exponential phase to stationary phase. ChIP-Seq and DamID-Seq analyses suggest that at
35 some loci the role of Tur1 might be direct. Tur1 has been previously shown to be essential for
36 virulence in *C. neoformans*. We demonstrated here that a *tur1Δ* mutant strain is more
37 sensitive to superoxide stress and phagocytosed more efficiently by macrophages than the
38 wild-type (WT) strain.

39

40 In eukaryotes, gene transcription begins at the core promoter by the assembly of a pre-
41 initiation complex comprised of general transcription factors that recruit the DNA-dependent
42 RNA polymerase II and melt DNA to create the transcription bubble (1). In recent years,
43 different RNA sequencing strategies have been used in metazoans to define two types of core
44 promoters characterized by specific chromatin structure, DNA sequence and distribution of
45 TSS (2). These analyses have shown that TSS are by nature heterogeneous and organized in
46 clusters. These TSS clusters can be sharp or broad, sharp ones being associated with TATA-
47 box genes (1, 3). These studies also revealed that transcription can be initiated from multiple
48 TSS clusters in most genes with a very dynamic pattern of usage (4-8) which can be specific
49 to different cell types and development stages (6, 9-11).

50 In fungi, although TSS sequencing data have been produced in several species (12-14),
51 the analysis of TSS structure and usage is limited to the two model yeasts *Saccharomyces*
52 *cerevisiae* and *Schizosaccharomyces pombe* (15-18). Nevertheless, these studies also revealed
53 a significant number of alternative TSS (altTSS) usage patterns, with some being specific to
54 growth conditions or meiotic stages (12, 19) and others revealed by mutation of genes
55 encoding chromatin modifiers or remodelers (20-22).

56 *Cryptococcus neoformans* is a pathogenic basidiomycete yeast which is responsible
57 for 180,000 deaths every year worldwide (23). In addition to its ability to grow at 37°C, its
58 main virulence factors are a polysaccharide capsule, the production of melanin and its ability
59 to replicate in macrophages (24, 25). In recent years, we produced several sets of RNA-seq
60 data which were used to produce detailed coding gene annotation of the genomes of several
61 pathogenic *Cryptococcus* species (26-28). Our analysis also revealed that nearly all the genes
62 contain several short introns, which are essential for gene expression (29, 30). As expected,
63 alternative splicing is prominent in *Cryptococcus*, although its impact on proteome structure is
64 limited primarily to regulating gene expression (27). More recently, we produced TSS-seq

65 and 3UTR-seq data from *C. neoformans* and its sibling species *Cryptococcus deneoformans*
66 grown under four conditions (*i.e.* exponential phase and stationary phase at 30 and 37°C)
67 (14). We used this dataset to re-annotate the transcript leader (TL) and 3'-UTR sequences in
68 these species. Our analysis revealed that, in contrast to *S. cerevisiae*, *Cryptococcus* TL
69 sequences frequently contain upstream Open Reading Frames (uORFs). These yeasts use the
70 strength of a Kozac-like consensus to determine translation start codon usage, thus regulating
71 both gene expression and protein localization (14). This analysis also revealed thousands of
72 additional TSS clusters associated with coding genes, suggesting that alternative TSS (altTSS)
73 usage might be widespread in *Cryptococcus* (14). This hypothesis was supported by several
74 recent studies reporting gene specific examples of altTSS usage regulation in these yeasts. For
75 instance, Pum1, an RNA-binding protein, is known to positively regulate the expression of
76 *ZNF2*, a master regulator of filamentation and virulence in *C. neoformans* (31). Under
77 filamentation-inducing conditions, the TF Znf2 favors *PUM1* transcription from a
78 downstream TSS, which excludes from the transcript the Pum1-binding site that is normally
79 found in the TL. This shorter form being immune to the negative autoregulation, this leads to
80 the accumulation of the Pum1 protein which in turn activates *ZNF2* expression (31).
81 Moreover, when exposed to UV light, *C. neoformans* switches off TSS at the *UVE1* gene and
82 uses an upstream altTSS. This promotes the transcription of a longer mRNA coding for the
83 mitochondrial isoform of the DNA damage repair endonuclease Uve1, thus protecting the
84 mitochondrial genome from potentially lethal UV-induced DNA damage (32). Finally, a
85 recent study reports that, under copper-limited conditions, *C. neoformans* cells promote the
86 usage of a downstream altTSS at both *SOD1* and *SOD2* superoxide dismutase genes, thus
87 regulating transcript stability and protein subcellular localization of these proteins,
88 respectively (33).

89 In the present study, we re-analyzed these *Cryptococcus* TSS-seq data to first
90 characterize the structure of a genuine TSS cluster in these yeasts. We then described
91 alternative TSS usage and demonstrated that it represents a major means to regulate
92 transcriptome and proteome structure in these fungi. More importantly, we screened a
93 transcription factor mutant collection to identify genes regulating altTSS usage in
94 *C. neofomans*. We showed that the transcription factor Tur1 is necessary for genome wide
95 altTSS usage regulation during the exponential to stationary phase transition. We also
96 performed ChiP-Seq and DamID-seq analyses to study the binding of Tur1 at the regulated
97 loci. Finally, we showed that Tur1 regulates superoxide stress resistance and interaction with
98 macrophage linking altTSS usage and virulence in this major fungal pathogen.

99

100

101 **Results**

102 **TSS-cluster characterisation in *Cryptococcus***

103 We previously used TSS-seq data obtained from cells grown under four conditions in
104 triplicate to construct twelve GFF files defining the coordinates of several thousand TSS
105 clusters associated with coding genes in two *Cryptococcus* species (14). To evaluate
106 alternative TSS usage, we aimed to construct a TSS cluster reference GFF file. We first
107 thought to merge the twelve condition-specific GFF files originally constructed. However,
108 this simplistic strategy resulted in a very poor result. Firstly, most of the resulting merged
109 TSS were doubtful since they were only 1 bp-wide. Secondly, at several loci the TSS cluster
110 size and number varied between conditions. This merging operation also resulted in the
111 definition of very large TSS (more than 100 bp wide) with probably poor biological relevance
112 (see Supplementary Figure S1). This result suggested that the strategy previously used to
113 define the TSS clusters (14) was not optimal and resulted in the identification of a number of
114 doubtful TSS clusters. To better define the characteristics of genuine TSS clusters in *C.*
115 *neoformans*, we reasoned that when only one TSS cluster is found upstream of the annotated
116 ATG (aATG) of a well-expressed gene, this cluster should be genuine. We thus first
117 considered only the 50% most expressed genes in exponential phase 30°C and for which a
118 single TSS cluster has been originally identified upstream of the aATG (n = 761). We then
119 performed sub-clusterization analysis (see material and methods) and characterized the
120 structure of the resulting clusters using two parameters: size and thermodynamic entropy-
121 related shape index (SI), which is a measure of the heterogeneity of the TSS cluster (34).
122 Finally, we kept only the TSS clusters with both sizes and SI values comprised between the
123 2.5% and 97.5% quantiles for further analysis (n = 719). Plotting the size and SI of this set of
124 newly defined TSS clusters with the MixtureInf (35) based statistical test revealed a bimodal

125 distribution defining two categories: the Sharp clusters characterized by a lower size and high
126 SI values and the Broad TSS clusters having the converse characteristics (Fig 1A and 1B).

127 MEME Suite software 5.4.1 (36) *de novo* pattern discovery mode was used to examine the
128 region going from -100 to +30 relative to the major position within each TSS cluster to
129 identify six enriched motifs (Fig 1C). Notably, our analysis identified a TATA motif
130 positioned -40 to -35 bp upstream of the TSS. We noticed that genes with a sharp TSS cluster
131 are enriched within the TATA-box containing genes, as previously observed in some other
132 model organisms (1) (Fig 1C). Overall, 23.5 % of the Sharp TSS clusters are associated with a
133 TATA-box containing genes compared to only 11.7 % of the Broad TSS clusters and 14.5 %
134 of both groups of TSS clusters (χ^2 test, *p*-value <0.05). The distance between the TATA-box
135 and the TSS in *Cryptococcus* is comparable with that reported in metazoans (28 to 33 bp) and
136 in *S. pombe* (25 to 32 bp) (2, 3) This short distance suggests that *C. neoformans* uses a classic
137 model of transcription initiation in which the preinitiation complex (PIC) assembles on
138 TATA-box and loads the RNAPII on a TSS located in close proximity. In contrast, *S.*
139 *cerevisiae* as well as most hemiascomycetes use a scanning model of transcription initiation in
140 which the PIC scans the sequence downstream to find TSSs which results in longer and more
141 variable distances between the TATA-box and the TSS (40 to 120 bp) (3).

142
143 We performed the same analysis using the TSS-seq data obtained from cells grown in the
144 three other conditions (*i.e.* Exponential phase 37°C; Stationary phase 30°C and 37°C). Even
145 though the gene set considered was different each time, similar bimodal distribution of sizes
146 and SI as well as motif enrichments and positions were observed, suggesting general features
147 in *C. neoformans* (S2 and S3 Figs). Previous studies in other organisms indicated that
148 regulated genes are associated with the presence of a TATA-box whereas constitutive ones
149 tend to be devoid of TATA-box (2, 5, 8, 34, 37). To determine if this phenomenon is

150 conserved in *C. neoformans*, we used or produced spiked in RNA-seq data from *C.*
151 *neoformans* cells grown in diverse conditions (*i.e.* exponential phase at 30°C in the presence
152 of either fluconazole (15 µg/mL) or SDS (0.01% w/v), exponential phase at 37°C or
153 stationary phase at 30°C) (14) to perform differential gene expression analysis using RNA-seq
154 data produced from cells growing in exponential phase at 30°C as the reference. We then used
155 a variability score as a proxy to evaluate the degree of gene expression variability. A gene not
156 regulated in any of these four alternative conditions will have a score of 0 whereas a gene
157 regulated by all these modifications of culture conditions will have a score of 4. Our results
158 revealed that genes harboring a TATA-box in their promoter are more prone to be regulated
159 than the genes of the control group (devoid of TATA-box) (Wilcoxon rank sum test, *p*-value
160 < 0.0001) (Fig 1D). TATA-box containing genes also display a higher absolute log fold-
161 change between conditions than genes devoid of TATA-box (Wilcoxon rank sum test, *p*-value
162 < 0.0001) (Fig 1E). As said above, we identified five additional enriched motifs proximal to
163 the *Cryptococcus* TSS. Some of these motifs like “AAYKCCG” were more commonly
164 associated with broad TSS some other as “GGRNG” were more commonly associated the
165 with sharp TSS. Yet, their functionally remains to be studied.

166

167 Given that Sharp TSS cluster associated genes are enriched in TATA-boxes, it is no surprise
168 that these genes are also more prone to be regulated and with a higher magnitude than Broad
169 cluster associated genes (Wilcoxon rank sum test, *p*-value < 0.05) (Fig 2A). To figure out
170 which feature, the presence of TATA-box or the TSS cluster shape, is the true determinant for
171 gene expression variability, we conducted stratification analyses. We compared absolute log
172 fold-change between Sharp and Broad cluster associated genes within the TATA-box-
173 harboring genes and within the no-TATA-box genes. In both groups, the difference between
174 Sharp and Broad cluster is no longer detected, suggesting that this higher magnitude of gene

175 expression change in Sharp cluster is most likely due to higher percentage of TATA-box
176 containing genes in this group (Fig 2B). Meanwhile, TATA-box containing genes display
177 higher absolute log fold-change between conditions compared to the genes without TATA-
178 box regardless of the TSS cluster shape (Wilcoxon rank sum test, p-value < 0.0001) (Fig 2C)
179 confirming the presence of TATA-box as the decisive factor to explain gene expression
180 variability in *C. neoformans*. Overall, this re-analysis of TSS-seq data revealed the existence
181 of two types of TSS clusters in *Cryptococcus*. Sharp TSS cluster-containing genes are more
182 often associated with a TATA-box and more prone to be regulated in response to a
183 modification of the environment than the Broad TSS cluster containing genes. These results
184 are in good agreement with data published on several other organisms (1, 12, 16, 38, 39)
185 suggesting that our TSS cluster definition approach is valid.

186

187 **Alternative TSS cluster identification in *Cryptococcus***

188 To evaluate alternative TSS usage in *Cryptococcus*, we applied the same subclusterization
189 procedure to all previously identified TSS clusters (14). We then merged the overlapping TSS
190 clusters obtained from the four growth conditions in triplicate. The resulting TSS cluster
191 reference GFF file defines the genomic coordinates of 7,213 TSS clusters associated with
192 4,931 coding genes in *C. neoformans* (72.6% of the coding genes) (S4 Table). We defined a
193 TSS cluster as annotated TSS clusters if it satisfies all these three criteria: it is the most
194 upstream cluster within a gene, the distance between the 5' boundary of the cluster and the
195 annotated 5' extremity of the gene does not exceed 50 bp, and the 3' border of the cluster is at
196 least 20 bp upstream of the annotated ATG. Every other TSS clusters were considered as
197 alternative TSS clusters. Here we identified 2,431 genes associated with two or more TSS
198 clusters. In total, 3,817 TSS clusters were considered as alternative. We performed the same

199 analysis using the *C. deneoformans* data and defined 4,064 alternative TSS clusters associated
200 with 2,581 genes (S4 Table).

201

202 *altTSS within the TL sequence*

203 A large proportion of these alternative TSS clusters (37% (n = 1,405) in *C. neoformans* and
204 31% (n = 1,256) in *C. deneoformans*) are positioned within the TL sequence. Their usage
205 regulates the length of the TL sequence (Fig 3) and can result in the inclusion or exclusion of
206 protein binding sites, secondary structures or uORFs, potentially impacting mRNA
207 subcellular localization, stability or translation efficiency (14, 15, 40). We previously reported
208 that *Cryptococcus* TL sequences are very rich in uORFs and that uORF containing mRNAs
209 are more prone to be degraded by the NMD pathway than uORF-free mRNAs, thus reducing
210 translation efficiency (14). Here, we identified 542 and 633 genes in *C. neoformans* and *C.*
211 *deneoformans* respectively, for which the sequence between the annotated TSS cluster and the
212 alternative TSS cluster located in the TL contains one or several uORFs. In these genes,
213 alternative TSS usage can regulate the presence or absence of uORFs within the mRNA. In
214 these cases, we reasoned that the production of a short transcript devoid of uORFs would be a
215 way to stabilize it by preventing its degradation by the NMD pathway. Accordingly, among
216 the genes containing one uORF within their TL sequence, the ones containing an alternative
217 TSS potentially skipping it are less prone to be up-regulated by the deletion of the major
218 NMD factor *UPF1* than those devoid of alternative TSS within their TL sequence (Fig 3A)
219 (Wilcoxon rank sum test, *p*-value = 1.246 x 10⁻¹⁰). For instance, usage of an alternative TSS
220 within the TL sequence of the CNA08250 locus skips 11 uORFs and results in the production
221 of a short isoform immune to the NMD, whereas the long isoform can only be revealed by the
222 deletion of *UPF1* (Fig 3B).

223

224 *altTSS close to the annotated start codon*

225 We identified 220 alternative TSS clusters associated with 213 genes in *C. neoformans* (208

226 TSS clusters and 199 genes in *C. deneoformans*) positioned between -20 and +90 nt from

227 the aATG, when counting bases on the spliced mRNA. The usage of each of these altTSSs

228 results in the transcription of an mRNA which can code a protein truncated from its N-

229 termini, thereby potentially lacking an N-terminal targeting motif. Accordingly, DeepLoc

230 2.0 (41) analysis predicts that whereas for 169 of these genes the long isoform has a defined

231 subcellular localization, for 87 of them the usage of an altTSS is predicted to result in the

232 production of a shorter isoform with a different subcellular localization (S5 Table and Fig

233 4). For instance, we identified an altTSS associated with the gene *MAE102* (CNAG_06374)

234 which encodes a putative mitochondrial malate dehydrogenase (Fig 5A). Depending on the

235 TSS used, the predicted translated protein contains a mitochondrial targeting signal (MTS)

236 or not. Interestingly, the usage of this altTSS is regulated by the growth condition, the long

237 isoform encoding the putative mitochondrial protein being transcribed in stationary phase at

238 30°C, whereas the exponential phase condition triggers mostly the transcription of the short

239 isoform predicted to code a protein devoid of MTS. Accordingly, a C-terminal

240 mNeonGreen-tagged version of Mae102 protein revealed a regulated localisation of this

241 protein by the phase of growth. It seems to accumulate into mitochondrial-like particles in

242 stationary phase (Fig 5B) whereas, in exponential phase it localizes in the cytosol and the

243 nucleus (Figs 5B and S4). Moreover, mutation of the first ATG into CGT (M1R) or deletion

244 of the sequence between the two ATGs (MTSΔ) increase the percentage of cells having a

245 nucleus localization of the protein in exponential phase. In stationary phase, the Mae102

246 protein mitochondrial-like localization seems to be lost confirming the functionality of the

247 MTS sequence. Overall, these results are consistent with the alternative localization of the

248 Mae102 isoforms depending on the alternative TSS usage regulated by the growth phase.

249

250

251 *altTSS downstream of the start codon*

252 The 2,181 remaining TSS clusters (2,576 in *C. deneoformans*) are positioned at least 90 bp
253 after the annotated start codon and promote the transcription of shorter RNAs than the
254 annotated ones (S4 Table). We named this last category of transcripts TRASS for Transcript
255 Resulting from Alternative Start Sites. One example of TRASS is given in Fig 6. At the
256 CNC03460 locus in *C. deneoformans*, cells growing in exponential phase at 30°C use
257 mainly an altTSS located within the sixth intron of the gene and positioned within a CDS-
258 intron 1395 bp downstream of the annotated TSS. In contrast, cells in stationary phase
259 mainly use the annotated altTSS as confirmed by Northern-blot analysis (Fig 6B).

260

261 Although the function of these RNAs was unknown, we noticed that nearly all the TRASS
262 have coding capacity. Overall, 1,523 potential new proteins could be encoded by these
263 RNAs in *C. neoformans*. Most of these new proteins would be in frame with the annotated
264 ones and would thus be completely ignored though classical proteomic analysis. To gain
265 insights into the coding capacities of the TRASS, we performed N-terminomic analysis (42)
266 using proteins extracted from cells growing in stationary phase at 30°C. We identified 844
267 peptide sequences corresponding to N-terminal sequences associated with 12% of the coding
268 genes (n = 810) in *C. neoformans*. As expected, most of the N-terminal peptides (97%; n =
269 818) correspond to the annotated N-terminal sequence of 784 proteins (Table A in S6
270 Table). Also as expected, we identified 19 peptides corresponding to 19 proteins presenting
271 an alternative N-terminal sequence produced from an altTSS close to the annotated ATG
272 (Table B in S6 Table). Finally, 7 N-terminal sequences are likely the products of translation
273 of 7 TRASS (Table B in S6 Table). A striking case is the gene CNAG_04307 (*URO1*)
274 coding Urate oxidase for which we identified a peptide that is out-of-frame with the main

275 protein. Of course, these represent only a few examples of peptides translated from these
276 RNAs and it is probable that a large part of the TRASS are lncRNAs. Nevertheless, N-
277 terminomic analysis, although powerful and efficient in selecting protein N-termini, is not
278 powerful enough for low abundance alternative N-termini suggesting that much more
279 TRASS encoded peptides are produced in these cells.

280

281 **Alternative TSS usage in *Cryptococcus***

282 To further explore the dynamics of alternative TSS usage in *Cryptococcus*, we evaluated how
283 each TSS is employed depending on the growth phase (Exponential or Stationary) and
284 temperature (30°C or 37°C). TSS cluster usage was evaluated considering an "expression
285 level" in each replicate of each condition measured by the number of TSS-seq reads
286 associated within a given TSS cluster. These numbers were then normalized by the total
287 amount of TSS-seq reads aligned to each coding gene. To limit the potential bias associated
288 with this type of normalization, we limited our analysis to genes for which we could count at
289 least 20 TSS reads in each considered condition. Overall, we considered 3,648 TSS clusters
290 belonging to 1,366 genes in *C. neoformans* under four growth conditions (4,311 TSS clusters
291 belonging to 1,621 genes in *C. deneoformans*) for this analysis. We confidently identified
292 1478 altTSS usage regulations by growth condition in 627 *C. neoformans* genes (Fig 7A, S7
293 Table). Alternative TSS usage seems to be more dynamic in *C. deneoformans* with 2,369
294 significant regulations in 1,070 genes. Interestingly, 25% of the altTSS usage regulations are
295 specific to the considered comparison (Fig 7A). Explicit examples of these regulations are
296 given on the Fig 7B. At the gene *PKP1* (CNAG_00047), two TSS are used alternatively
297 depending on the phase of growth. In stationary phase at 30°C, an altTSS within the second
298 intron is mainly used and promotes the transcription of a TRASS. Strikingly, we also
299 identified *SOD1* and *SOD2* genes as regulated by altTSS usage during this phase transition

300 (Supplementary Figure S5). In that case, the pattern of altTSS usage in stationary phase is
301 similar to the one previously reported in copper limiting condition using gene specific
302 experiments (33). Alternative TSS usage at these two genes has been reported to be regulated
303 by copper and is dependent on the transcription factor Cufl which can recognize a Cu-
304 responsive element (CuRE) found in their promoters (33). It is possible that the stationary
305 phase condition somehow mimics the copper shortage as used by the Thiele laboratory thus
306 altering altTSS usage at these loci in the same way. We also observed regulation of altTSS by
307 the temperature. For instance, at the locus CNAG_00812, the usage of a downstream TSS is
308 favored in stationary phase at 37°C thus promoting the production of a TRASS. Moreover, at
309 the loci CNAG_01272 and CNAG_03239, a change in temperature in stationary and
310 exponential phase, respectively, alters the usage of an altTSS located within the TL sequence
311 (Fig 7B). Our original idea was to compare the results obtained with the two studied sibling
312 species of *Cryptococcus*. We observed an apparent low conservation of these regulations with
313 only 16.21% and 10.12% of the altTSS usage regulations observed in *C. neoformans* upon the
314 transition of the growth phase and temperature change, respectively conserved in *C.*
315 *deneoformans* (S4 Table). However, visual examination of some of the “non-conserved”
316 events revealed that the apparent non-conservation was mainly due to the poor level of one or
317 the other TSS in one species which did not pass the different thresholds of our bioinformatic
318 pipelines (Supplementary Figure S6). Indeed, in some cases, the position of the altTSS is
319 conserved but regulation is reversed. In others, the altTSS exists but its position is not
320 conserved (Supplementary Figure S6). These observations suggest that the degree of
321 conservation of these regulations might be more significant than they appear at first glance.

322

323 **Tur1 regulates altTSS usage at the *PKP1* gene**

324 Our analysis revealed a widespread regulation of altTSS usage in *Cryptococcus* regulating
325 both transcriptome and proteome structures in response to modifications of the growth
326 condition. Although the mechanisms associated with these regulations remain unknown, the
327 specificity of some of these regulations suggests that alternative TSS usage is mediated by
328 precise regulators. We reasoned that at least some of these regulators might be transcription
329 factors (TF) as previously observed in mammals and in yeast, (9, 10, 33, 43). To identify
330 altTSS usage regulators in *Cryptococcus*, we screened a library of 155 TF mutant strains (44)
331 using a RT-qPCR assay with primers specific to the long or both the long and the short
332 isoforms identified at the *PKP1* gene (CNAG_00047). This gene encodes a protein that shares
333 homology with the *S. cerevisiae* mitochondrial protein kinase Pkp1 (45). In *C. neoformans*,
334 *PKP1* transcription can start at two altTSS clusters with different expression patterns in
335 exponential and stationary phase at 30°C (Fig 7B). RNA was extracted from the wild type
336 strain (WT) and the 155 TF mutant strains grown in stationary phase at 30°C. The level of the
337 long and the short mRNA isoforms was then evaluated by RT-qPCR. We identified a single
338 mutant strain altered for altTSS usage at this locus. This mutant strain displayed no growth
339 defect and is mutated at the locus CNAG_05642 encoding a zinc cluster TF previously
340 designated Fzc37 (44). Sequence conservation analysis revealed that this TF is basidiomycete
341 specific with no predicted function. In this mutant strain, the short isoform is strongly down-
342 regulated in stationary phase compared to the WT strain (*t*-test *p*-value < 0.01) whereas the
343 expression of the long isoform is not altered (*t*-test *p*-value > 0.05) (Fig 8A). We therefore re-
344 named this gene *TURI* (TSS Usage Regulator 1). As expected, complementation of the *turiΔ*
345 mutation restored the WT expression of the short isoform (Fig 8A). We confirmed the role of
346 *Tur1* in the regulation of altTSS usage at the *PKP1* gene by constructing a conditional mutant
347 in which a 2xFlag-CBP tagged version of *TURI* is expressed under the control of the
348 *C. neoformans* *GAL7* promoter (46) (Fig 8C). As expected, the expression of the *PKP1* short

349 isoform was only observed in stationary phase when the cells were grown with galactose as
350 the sole source of carbon. No regulation was observed when cells were grown in glucose (Fig
351 8B) a condition in which the *GAL7* promoter is repressed and no Tur1 protein is produced
352 (Fig 8B).

353

354 **Tur1 regulated transcriptome structure in *C. neoformans***

355 To get more insights into the role of *TUR1* in *C. neoformans* biology, we performed spiked-in
356 RNA-seq experiments using RNA extracted from *tur1Δ* cells grown in either stationary or
357 exponential phase. In the wildtype background, the transition between exponential phase to
358 stationary phase is associated with a strong decrease of the transcriptome size with 82% (n=
359 5,582) of the genes downregulated at least 2-fold (Fig 9A; S8 Table). Our estimate is that the
360 number of RNA molecules is reduced by 3.8-fold per genome during this phase transition.
361 This is similar to that observed previously in *S. cerevisiae*, in which the overall transcription
362 rate is reduced about three to five times during the exponential to stationary phase transition
363 (47). In the *tur1Δ* mutant strain, this slowdown of the metabolism is less marked than in the
364 WT strain, and we measured only a 1.5-fold reduction of the total number of RNA molecules
365 per genome and identified only 27% (n =1,814) of the genes downregulated by at least two-
366 fold (Fig 9A; S8 Table). Interestingly, nearly 97% of these downregulated genes in the mutant
367 strain were also downregulated in the WT background (Fig 9B). GO-term analysis showed
368 that this set of conserved downregulated genes is enriched in genes coding translation and
369 ribosome biosynthesis linked functions. In contrast, the set of genes downregulated in the WT
370 but not the *tur1Δ* strain is enriched in genes coding proteins linked to transcription regulation
371 suggesting that this transcription factor is necessary for such regulation.

372 This striking effect of *TUR1* deletion on transcriptome structure regulation during exponential
373 to stationary phase transition suggested that this TF could have a genome-wide effect on TSS

374 regulation. To discover whether Tur1 would regulate altTSS at any other locus, we performed
375 TSS-seq in the *tur1Δ* mutant strain using cells grown in exponential and stationary phase at
376 30°C. Here again, in a very conservative way, we restricted our analysis to only 806 genes
377 with at least 2 TSSs and at least 20 TSS reads in all four samples (WT E30, WT S30, *tur1Δ*
378 E30 and *tur1Δ* S30) (S9 Table). As expected, the stationary phase enhanced usage of the
379 second TSS of *PKP1* in the WT strain whereas usage of this distal TSS is nearly abolished in
380 the *tur1Δ* background confirming the Tur1-dependent altTSS usage regulation at this locus
381 (Fig 10A, 10B). Strikingly, 91% (n = 155) of the 171 genes with altTSS significantly
382 regulated by the growth phase in the WT, were not regulated anymore in a *tur1Δ* background
383 (Fig 10A). For instance, at the *IDP1* gene (CNAG_03920), which encodes a putative
384 mitochondrial isocitrate dehydrogenase, cells growing in exponential phase mostly use the
385 first TSS which promotes the production of a long mitochondrial isoform whereas in
386 stationary phase, the second TSS is mainly used promoting the synthesis of a short cytosolic
387 isoform (Fig 10B). In the absence of *TUR1*, this growth phase dependent regulation is lost,
388 and the long isoform is expressed in both exponential and stationary phases (Fig 10B). In
389 contrast, at some loci, deletion of *TUR1* has little impact on altTSS usage (Fig 10A). For
390 instance, Tur1 has only a minor role if any on the altTSS usage regulation by the growth
391 phase at the *SOD1* and *SOD2* genes (Fig 10B). *TUR1* deletion also revealed new growth
392 phase dependent altTSS usage regulation in *C. neoformans*. Thus, we identified 5 genes for
393 which this regulation can be only observed in the *tur1Δ* context (Fig 10). The *YSA1* gene
394 coding for an ADP-ribose pyrophosphatase is such an example. In that case, the long isoform
395 produced in stationary phase in the *tur1Δ* strain contains a MTS absent in the current *C.*
396 *neoformans* genome annotation (Fig 10B).

397 **A Tur1-dependent Mae102 subcellular targeting**

398 As seen above, in a wild-type context, a growth phase dependent altTSS usage regulation was
399 observed at the *MAE102* gene. In that case, the second TSS is mostly used in exponential
400 phase whereas in stationary phase, the long isoform targeted to the mitochondria is expressed
401 using the most upstream TSS (Fig 5A). *TUR1* deletion completely reversed this pattern (Fig
402 11A). Indeed, *tur1Δ* mutant grown in stationary phase preferentially expresses the short
403 isoform, whereas in exponential phase it mostly uses the upstream TSS, only expressing the
404 long isoform albeit at a low level (Fig 11B). To study the impact of *TUR1* deletion on
405 Mae102 protein subcellular targeting, we deleted *TUR1* in a strain expressing a C-terminal
406 mNeonGreen-tagged version of the Mae102 protein. In this genetic background, in
407 exponential phase, Mae102 does not localize in the nucleus in agreement with the absence of
408 production of the short isoform (Fig 5B). In stationary phase, under which the short isoform is
409 strongly induced in *tur1Δ*, Mae102 seems to be poorly targeted to the mitochondria. It is
410 noteworthy that Mae102 is not targeted to the nucleus either suggesting that additional factors
411 specifically present in exponential phase are necessary for targeting this protein to the
412 nucleus. Overall, this analysis exemplifies how Tur1 regulates altTSS usage to control protein
413 subcellular targeting during the transition between exponential to stationary phase (Fig 5B).

414 **Tur1 could act directly on a subset of genes**

415 To determine whether the effect of Tur1 on the regulation of aTSS usage during the transition
416 from exponential to stationary phase could be direct, we constructed a strain expressing a 2x
417 flag tagged version of Tur1 under the control of the actin gene promoter. After phenotypically
418 validating the strain, we used it to perform ChIP-Seq analysis on chromatin purified from
419 cells grown in exponential and stationary phases in triplicate. After peak calling using
420 MASC2 (48), we considered positions where a peak was identified in all 3 stationary phase
421 replicates (151 peaks), or all 3 exponential replicates (29 peaks), or both (400 peaks) to be
422 robust Tur1 binding sites (S10 Table). These 580 Tur1 binding sites were associated with 713

423 genes. Nearly 60% (n = 414) of these genes were downregulated in WT during the transition
424 from exponential to stationary phase, but not in the *tur1Δ* strain, suggesting a direct regulation
425 by Tur1 in this process. Finally, we found that 13% (n=20) of the genes regulated in a Tur1-
426 dependent manner by alternative TSSs during this phase transition were also bound by Tur1,
427 suggesting a direct role of Tur1 in this regulation at these loci. However, the patterns of ChIP-
428 seq read alignment were not easy to interpret and overall, these ChIP-seq experiments
429 remained partly inconclusive regarding the mechanism by which Tur1 regulates alternative
430 TSS usage in *Cryptococcus*. We reasoned that the use of a strong promoter to express the
431 tagged version of Tur1 might have confounded our ChIP-Seq results by masking potential
432 regulation. To overcome this problem, we constructed a strain expressing a Dam-Tur1 fusion
433 protein under the control of the native *TUR1* promoter and performed DamID-Seq analysis
434 (49) using DNA purified from cells grown in exponential and stationary phases in triplicate.
435 Analysis of the data revealed 1698 adenine residues associated with 1283 genes that were
436 specifically methylated in either exponential or stationary phase, suggesting genome wide
437 regulated Tur1 binding (S11 Table). As for our ChIP-Seq analysis, nearly 60% (n = 731) of
438 these genes were downregulated in WT during the transition from exponential to stationary
439 phase but not in the *tur1Δ* strain, suggesting direct regulation. However, the overlap between
440 the two lists was only 13% (n = 106). We found thzt 21% of the genes (n = 32) regulated by
441 aTSS in a Tur1-dependent manner contained methylated adenine residues. Interestingly, a
442 highly regulated adenine residue was identified very close to the second TSS in *PKP1*,
443 suggesting regulated Tur1 binding (Fig 10B).

444 Overall, both strategies indicate that Tur1 does indeed bind DNA of some genes regulated by
445 alternative TSSs, suggesting that at least for some genes the regulation may be direct.
446 However, the pattern of Tur1 binding regulation during the transition from exponential to

447 stationary phase suggested by the two strategies did not provide a straightforward model for
448 Tur1-dependent aTSS regulation.

449 **Tur1 regulates oxidative stress sensitivity and resistance to macrophage phagocytosis**

450 Tur1 was previously reported to regulate mating efficiency, sensitivity to menadione and
451 cadmium, as well as virulence in a mouse infection model (44). We confirmed the sensitivity
452 of *tur1Δ* mutant to menadione, a commonly used superoxide generator and, this sensitivity
453 was reverted in the *tur1Δ+TUR1* complemented strain (Fig 12A). However, the *tur1Δ* mutant
454 does not display growth defect in the presence of reactive oxygen species (ROS) such as H₂O₂
455 (44), 0.2 mM Cumene hydroperoxide, or 2 mM NaNO₂ (Figure S7). This suggests the
456 protective function of Tur1 against ROS generator is specific to superoxide generator
457 menadione, consistent with the fact that cells employ distinct mechanisms to adapt to different
458 reactive oxygen species (50). Similarly, we observed no growth defect of the *tur1Δ* strain in
459 the presence of an inhibitor of superoxide dismutase (sodium dithiocarbamate (100 mM))
460 (Figure S7). This result is in good agreement with the fact that Tur1 does not affect neither the
461 expression of *SOD1* and *SOD2* nor the altTSS usage at these loci (Fig 10). STRING 1.5 (51)
462 analysis of the genes regulated by altTSS in a Tur1-dependent manner showed an enrichment
463 in GO-Terms related to translation (large and small ribosome subunits assembly, translation
464 initiation) but also genes related to glycolysis and glycogenesis (glycolytic and pyruvate
465 metabolic processes). We also identified several mitochondrial protein encoding genes among
466 those regulated by altTSS in a Tur1-dependent manner. We thus thought to test the sensitivity
467 of *tur1Δ* to inhibitors of different components of the respiratory chain: 0.4 mM rotenone
468 (complex I), 10 mM Dimethyl malonate (complex II), 5 µg/mL antimycin A (complex III),
469 and 0.2 µg/ml oligomycin (complex V). We found that the growth of the *tur1Δ* mutant is
470 severely impeded in the presence of 5 µg/mL antimycin A, a known inducer of mitochondrial
471 superoxide production (52), but not affected by the other agents (Fig 12A and Supplementary

472 Figure S7). These results suggest that Tur1 might contribute to oxidative stress defense in *C.*
473 *neoformans*. Interestingly, *tur1Δ* mutant cells are also phagocytosed significantly more
474 efficiently than both the WT and the complemented strain (Fig 12B). Collectively, these
475 results suggest that Tur1 might regulate *C. neoformans* virulence by somehow regulating its
476 sensitivity to ROS and its resistance to phagocytosis.

477

478

479 **Discussion**

480 There is no accepted standard bioinformatics pipeline to analyze TSS-seq data mostly
481 because the structure and density of genes are very different between organisms and because
482 the strategies used to produce this type of sequencing data are diverse (5, 17, 53-55). Here we
483 report a *Cryptococcus*-adapted bioinformatics protocol to analyze TSS-seq data. We thus
484 identified thousands of TSS clusters associated with coding genes in two species of
485 pathogenic *Cryptococcus*. The structure of these TSS clusters (*i.e.*, broad, or sharp) and the
486 preferential association of sharp TSS clusters with TATA-box containing promoters and
487 highly regulated genes resemble results previously obtained in some other reference
488 organisms (2, 8, 12, 34, 54, 56-58). This suggests that our strategy is robust and that the TSS
489 clusters identified are genuine. Moreover, alternative TSS usage analysis identified thousands
490 of alternative usage events which impact nearly a quarter of the coding genes in both
491 *Cryptococcus* species. Because we have been very conservative in our bioinformatics analysis
492 and because we only compared four conditions of growth for this study, our data suggest that
493 altTSS usage might be far more widespread. In fact, altTSS usage is probably a major
494 regulator of gene expression as well as transcriptome and proteome diversity in *Cryptococcus*
495 as observed in metazoans (5, 6, 11, 34) and for some aspects, in the two model yeasts (16, 17,
496 19).

497 Regulation by alternative TSS can impact gene expression by altering transcript
498 stability as it has been previously shown for alternative splicing (27). Although both
499 regulations have the potential to greatly impact the transcriptome by inducing
500 transcripts degradation, they differ in several aspects. First, altTSS-mediated
501 regulation is predicted to mostly rely on cytoplasmic degradation by NMD whereas
502 the decay induced by intron-retention is NMD-independent and occurs in the

503 nucleus (27). Besides, the extent of the impact of these two means of regulation is
504 dramatically different. Indeed, we previously showed that the impact of alternative
505 splicing is probably minor whereas the data we present in this study suggest a
506 remarkable regulatory potential for altTSS-mediated regulation. First, as previously
507 reported in baker's yeast (59, 60) and more recently genome-wide in plants (61), number of
508 altTSS clusters are positioned close to the annotated ATG in *Cryptococcus*. As shown, growth
509 conditions can regulate altTSS usage at *MAE102* and promote the synthesis of protein
510 isoforms with different N-terminal sequences and different subcellular targeting. Second, in
511 both *Cryptococcus* species, we identified close to two thousand altTSSs positioned within the
512 coding sequence of genes and promoting TRASS transcription. These internal TSS have been
513 previously reported in metazoans (62) and a few examples exist in model yeasts in which their
514 usage can be also regulated by the growth conditions and/or the genetic background (16, 19,
515 22, 63, 64). For example, in *S. cerevisiae* two studies identified a few dozen genes where
516 internal TSS usage is regulated by cell-fate transition during gametogenesis (19, 64).
517 However, the coding potential of the resulting transcripts has been difficult to evaluate. Since
518 most peptides potentially encoded by these truncated transcripts, including the ones we
519 identified in this study, are in frame with the full-length protein, classical proteomics is not
520 able to specifically identify them. Nevertheless, indirect evidence for the existence of these
521 truncated proteins has been presented. For instance, in *S. cerevisiae*, cell-fate transition
522 specific truncated transcripts have been shown to overlap with ribosome protected fragments
523 (19) and in *S. pombe*, "disruptive" internal altTSS located within or downstream of conserved
524 protein domains are generally poorly used. Yet only a few examples of functional truncated
525 proteins have been reported (62, 64, 65). Here, N-terminomic approach strongly suggests that
526 a significant part of these transcripts is translated. Our results are in good agreement with *S.*
527 *cerevisiae* data showing that some "internal cryptic" transcripts exhibiting 5' truncation can

528 be translated from downstream in-frame start codons and thus giving rise to shorter
529 polypeptides (22). As for baker's yeast, the function of these TRASS translated peptides is not
530 known. Similarly, the function of all the other TRASS which might not be translated is
531 unknown, though we can speculate that in some cases at least, the usage of one TSS might
532 impact nucleosome positioning and chromatin modifications to regulate positively or
533 negatively the transcription of the other TSS as shown in yeast (19, 66, 67). In some other
534 cases, the TRASS might have a function in trans which remains to be discovered.

535 Our analysis reveals an extended regulation of altTSS usage in response to change in
536 growth conditions in *Cryptococcus*. In that sense, these results are similar to results obtained
537 in *S. pombe* in which 42 % of the genes are regulated by altTSS usage in response to
538 environmental cues (16). The study of *S. pombe* alternative TSS usage identified specific
539 motifs associated with altTSS according to the type of stress or the condition of growth tested
540 (16) suggesting specific regulation of altTSS by transcription factors. This is in good
541 agreement with several other studies in baker's yeast. For instance, Ndt80 regulates the
542 expression of internal transcripts during gametogenesis (19, 64) whereas Ume6 controls the
543 expression of long undecoded transcript isoforms (LUTIs) during meiosis (66). In Valine and
544 Isoleucine restricted conditions, Gcn4 can bind within the CDS or the 3'UTR of about 300
545 genes where it can promote bidirectional transcription (63). These data suggest the existence
546 of a programmed regulation of altTSS usage depending on the growth condition in addition to
547 the classically identified regulons. Similarly in plants, light activates phytochromes which will
548 act on transcription factor activities to coordinate altTSS usage impacting both the uORF-
549 mediated inhibition of gene expression and protein localization (61, 68). In humans, a specific
550 pattern of altTSS usage has been reported according to cell type, developmental stage, or
551 cancer (69, 70). Accordingly, we here identified a basidiomycete specific transcription factor
552 regulating altTSS usage during the transition from exponential phase to stationary phase in

553 *C. neoformans*. In the absence of this transcription factor, the altTSS usage during this change
554 in cell physiology is globally impaired. In pathogenic and nonpathogenic yeasts, entry to
555 stationary phase is usually characterized by a slowdown of cell metabolism through the action
556 of several transcription factors (71-73). It is predictable that such program alteration of altTSS
557 usage exists in all these fungi tuning the transcriptome and cell metabolism toward a
558 quiescent state.

559 Our analysis suggests that Tur1 is a global regulator of aTSS usage in *C. neoformans*
560 during the transition from exponential to stationary phase. Our ChIP-seq and DamId-seq
561 analysis suggests both a direct and indirect mode of action depending on the locus.
562 Interestingly, our data suggest that Tur1 binds to the internal sequence of *PKP1* only during
563 exponential phase, although its absence does not affect alternative TSS usage during this
564 phase. This effect of *TURI* deletion is restricted to the stationary phase, during which it is
565 required to regulate TSS2 usage but does not bind *PKP1*. These results suggest a model (Fig
566 13) in which Tur1 binding during exponential phase is required for the recruitment/activation
567 of another transcription factor that will bind to the Tur1 internal promoter during stationary
568 phase. This change in transcription factor usage could be due to a change in chromatin
569 structure due to the increase in TSS1 usage observed during this phase of growth. Indeed,
570 modification of the transcriptional sense or antisense can alter the chromatin structure
571 allowing TF binding as previously shown (18, 74). It is important to say that the present
572 model is probably an oversimplification of what happens during the ten hours between the
573 exponential and stationary time points during which the switch in TSS usage can be observed.
574 However, this type of TF-TF interaction associated with TF exchange and alternative
575 transcript formation has been described in the literature. For example, in fission yeast during
576 glucose starvation, orchestrated exchanges and interactions between the TFs Tup11/12, Rst2,
577 Atf1 and Php5 resulted in the transition from a stage where only a long RNA (mlonRNA) is

578 transcribed to a stage where the short functional Flp1 mRNA is produced (75). Finally, since
579 we also observed Tur1-dependent aTSS regulation at loci where we did not observe Tur1
580 binding, we must also consider Tur1 as an indirect regulator of aTSS usage, controlling the
581 expression of unknown direct positive or negative regulators. Accordingly, 48 TFs are
582 regulated in a Tur1-dependent manner during the transition from exponential to stationary
583 phase.

584 Tur1 regulates virulence in *C. neoformans* but does not regulate the expression of its
585 main virulence factors (*i.e.*, capsule biosynthesis, melanin production or fitness at 30°C or
586 37°C). However, *TUR1* deletion impacts resistance to superoxide stress as well as the
587 phagocytosis of *C. neoformans* by macrophages, phenotypes previously shown to impact
588 virulence in *C. neoformans* (76, 77). More specifically, antimycin A treatment is known to
589 drastically induce extra-mitochondrial superoxide release (78). Given that Tur1 regulates the
590 localization of mitochondrial enzymes like Mae102, it could potentially contribute to
591 mitochondrial metabolism's defense against oxidative stress by facilitating the distribution of
592 these enzymes. However, further experiments are necessary to establish a conclusive link and
593 determine a direct impact.

594 Besides the model yeasts and *Cryptococcus*, altTSS has been poorly analyzed in fungi
595 (18). Nevertheless, specific examples in *Neurospora crassa*, *Aspergillus oryzae*, *Fusarium*
596 *graminearum* and *Candida glabrata* suggest a widespread although completely ignored
597 regulation of the altTSS usage in pathogenic fungi (31, 79-81). We identified thousands of
598 new RNA molecules resulting from the usage of altTSS and showed that at least a subset of
599 them are coding for new proteins or proteins isoforms with a different subcellular localization
600 in *Cryptococcus*. We can anticipate that the same will be true for all other fungal pathogens.
601 Our work suggests that the impact of altTSS usage in their biology and virulence might be
602 major. This study opens up new possibilities for exploring the interactions between host

603 pathogens and emerging players, as well as uncovering insights into gene regulation and the
604 structure of the transcriptome in fungi.

605

606

607 **Material and Methods**

608 **DNA and RNA sequencing**

609 Each *Cryptococcus* cell preparation was spiked in with one tenth (OD/OD) of *S. cerevisiae*
610 strain FY834 (82) and cells were grown in YPD at 30°C in exponential phase. Cells were
611 washed, snap frozen and used to prepare RNA and total DNA samples as previously described
612 (83, 84). For RNA-seq, strand-specific, paired-end cDNA libraries were prepared from 10 µg
613 of total RNA by polyA selection using the TruSeq Stranded mRNA kit (Illumina) according
614 to manufacturer's instructions. cDNA fragments of ~400 bp were purified from each library
615 and confirmed for quality by Bioanalyzer (Agilent). DNA-seq libraries were prepared using
616 the kit TruSeq DNA PCR-Free (Illumina). Then, 100 bases were sequenced from both ends
617 using an Illumina HiSeq2500 instrument according to the manufacturer's instructions
618 (Illumina). Trimmed reads were mapped to the *Cryptococcus* and *S. cerevisiae* genomes using
619 Bowtie2 (85) and Tophat2 (86) as previously described (14). RNA-seq reads counts were then
620 normalized considering the ratios of DNA and RNA aligned to each genomes using the
621 strategy previously described by Malabat and colleagues (53). Differential gene expression
622 analysis was performed using the DESeq2 package (87) using default settings but omitting
623 the associated read count normalization step.

624 TSS-seq libraries preparations were performed as previously described (14, 53) replacing the
625 TAP enzyme by the Cap-Clip Acid Pyrophosphatase (Cellscript). Sequencing was performed
626 on Illumina HiSeq2500 to obtain fifty base single end reads. Data processing including reads

627 trimming, clipping, and mapping were performed as previously described (14). TSS reads
628 were first clustered using arbitrarily chosen maximum intra-cluster distance ($d = 50$ nt)
629 between sites. We then looked for the optimal “ d ” value to define clusters, reasoning that an
630 excessively small value would separate reads belonging to a single cluster into several ones,
631 whereas an overestimated “ d ” would merge reads from different clusters into a single one. We
632 thus tested increasing values of “ d ” (from $d = 1$ to $d = 50$) reasoning that the size of the clusters
633 thus defined will also increase until their actual boundaries would be reached. We here
634 considered only the genes with only one TSS cluster in their TL sequence using the
635 exponential 30°C dataset and $d = 50$ defined. We then plotted the “ d ” values with the
636 percentage “ P ” of clusters reaching their maximum cluster size (Supplementary Figure S8A).
637 We then used the nls function in R to modelized this relationship in the following equation
638 where $P = 100 / (1 + \exp(-0.1655 * d))^{4.2957}$, (Supplementary Figure S8B). With the model, the
639 correlation of d and P reached its peak at $d = 17$ (Supplementary Figure S8B). We thus choose
640 this value for our analysis.

641 ChIP-Seq analysis

642 ChIP-Seq analysis were performed as previously described (88). Briefly, cells were grown in
643 100 mL YPD medium at 30°C to a final A600nm at 0.8-1.0 (exponential phase) or for 16
644 hours (stationary phase). Cells were then crosslinked by addition of 2.7 mL of 37%
645 formaldehyde (1% final concentration) and let for 10 minutes at 25°C with gentle shaking (70
646 rpm). Crosslinking reaction was stopped by addition of 8 mL of 2.5M Glycine and let for 10
647 min at 25°C with gentle shaking (70 rpm). Cells were harvested by 5 min centrifugation at
648 3000 xg, washed with PBS and pellets from half of the culture were resuspended in 500
649 μL lysis buffer (50 mM Hepes-KOH at pH 7.5, 140 mM NaCl, 1 mM EDTA, 1% Triton-
650 X100, 0.1% sodium deoxycholate, 1 mM PMSF and 1X EDTA-free Complete protease
651 inhibitor cocktail (Roche)). Approximately 500 μL of 0.5 mm diameter glass beads were

652 added and cells were lysed by 8 runs of 40 sec of bead beating (6.5m/sec, FastPrep-24, MP
653 Biomedicals) with cooling on ice between each round. Cell lysate was collected by
654 centrifugation at 2000 xg for 1 min after piercing the bottom of the tube with a needle and
655 placing it on top of a clean tube. This step was repeated after addition of 500 μ L of lysis
656 buffer on the glass beads. Chromatin was fragmented using a Bioruptor Pico (diagenode) for
657 15 cycles (30 sec on, 30 sec off) to give fragments size between 200 bp and 500 bp. Samples
658 were centrifuged at 16000 xg for 10 min and supernatants were recovered, hereafter referred
659 to as chromatin extracts. 20 μ L of each chromatin extract were kept aside for “input” samples.
660 Immunoprecipitation. Remaining chromatin extracts were incubated overnight at 4°C with 50
661 μ L of prewashed anti-Flag M2 magnetic beads suspension (Millipore, Merck M8823) per
662 sample. The day after, beads were washed twice with 1 mL of lysis buffer, twice with 1 mL
663 “high salt” lysis buffer (as lysis buffer except for NaCl which is increased up to 360 mM),
664 once with wash buffer (10 mM Tris-HCl pH 8.0, 250 mM LiCl, 0.5 % NP-40, 0.5 % sodium
665 deoxycholate, 1 mM EDTA) and once with 1 mL TE. ChIP were eluted twice for 10 min at
666 80°C in 100 μ L TE-SDS (10 mM Tris-HCl pH 8.0, 1 mM EDTA, 1 % SDS). DNA recovery.
667 Decrosslink was achieved by adding 15 μ L of 20 mg/mL proteinase K to eluates and
668 overnight incubation at 65°C. The day after, DNA was recovered using Phenol-Chloroform
669 method, quantified by QuBit and sent for sequencing for Illumina sequencing to Novogen
670 (UK). After trimming, the 150 paired ends reads were mapped using Minimap2 (89). Peak
671 calling was performed using MACS2 (48) using default settings.

672

673 **DamID-Seq Analysis**

674 DamID was essentially performed as described in (49). Briefly, for DpnII digestion and
675 alkaline phosphatase treatment, 2.5 μ g of genomic DNA extracted using the Phenol-
676 Chloroform method and treated with RNase A were digested with 10 units of DpnII (NEB,

677 R0543S) in a final volume of 20 μ L at 37°C for 6 hours. Enzyme was inactivated 20 min at
678 65°C. Samples were then treated with 5 units of Antarctic phosphatase (NEB M0289S) in a
679 final volume of 50 μ L for one hour at 37°C. Phosphatase was inactivated 10 min at 70°C and
680 reaction was cleaned up using nucleospin PCR clean-up XS column (Macherey Nagel,
681 740611) with elution in 12 μ L of elution buffer. For DpnI digestion, 5 μ L of the eluate was
682 digested overnight at 37°C with 10 units of DpnI (Takara, 1235A) in a final volume of 10 μ L.
683 Enzyme was inactivated 20 min at 80°C. Ligation of the pre-annealed dsAdR (AdRt/AdRb)
684 adapter duplex to DNA fragments was performed overnight at 16°C in a final volume of 20
685 μ L with 2.5 μ M dsAdR and 400 units of T4 DNA ligase (NEB M0202S). Reaction was
686 cleaned up using nucleospin PCR clean-up XS column (Macherey Nagel, 740611) and eluted
687 in 50 μ L of elution buffer. PCR with Advantage 2 (Takara 639207). 5 μ L of ligation sample,
688 2.5 μ L of 10X Advantage Buffer, 0.5 μ L of 10 mM dNTP, 0.5 μ L 10 μ M AdR_PCR primer
689 and 0.5 μ L of 50X polymerase mix were mixed in a final volume of 25 μ L. PCR was carried
690 out as follows: 68°C for 10 min; 1 cycle of 94°C for 3 min, 65°C for 5 min and 68°C for 15
691 min; 4 cycles of 94°C for 1 min, 65°C for 1 min and 68°C for 10 min; and 17 cycles of 94°C
692 for 1 min, 65°C for 1 min and 68°C for 2 min. 8 PCR reaction of 25 μ L were performed for
693 each sample, pooled and cleaned up together before sending for Illumina sequencing
694 (Novogene). After triming of illumina adaptors, the DamID adaptor
695 (GGTCGCGGCCGAG+GATC) containing reads were selected and aligned to the *C.*
696 *neoformans* reference genome using Minimap2 (89). Adenine residues of genomic GATC
697 sequences positionned at the extremities of these reads were considered as potential
698 methylated positions. The number of reads were normalized by the total number of reads
699 aligned to the genome in each samples. To identify adenine methylated residues, we
700 substracted the average number of reads obtained in the 3 control samples to the number reads

701 obtained in the experimental samples in same condition. Negative numbers were considered
702 as zeros.

703

704 **Calculating thermodynamic entropy-related shape index (SI) of TSS cluster**

705 The SI index was calculated as previously demonstrated by Hoskin and colleagues (34) as
706 below:

707
$$SI = 2 + \sum_i^L p_i \log_2 p_i$$

708 where p is the probability of observing a TSS at base position i within the cluster, and L is the
709 set of positions that possess mapped reads in the cluster.

710 **TSS cluster subpopulation detection and cluster shape classification**

711 We considered only genes with only one TSS cluster in their TL and kept only clusters with
712 both Size and SI between 2.5% and 97.5% quantiles, as evaluated using the data obtained in
713 exponential phase 30°C (719 genes in exponential phase 30°C, 691 in stationary phase 30°C,
714 635 genes in exponential 37°C, 586 genes in stationary phase 37°C). To detect if there is more
715 than one population of TSS clusters, the first principal component (PC1) of Size and SI was
716 used as input for the function “emtest.norm” of R package “MixtureInf” (35) with the default
717 value of the finite mixture model under null hypothesis $m0=1$. The output of function
718 “emtest.norm” includes the percentage of each sub-population together with the detected
719 models with theirs mean and standard deviation. This information was then supplied to the
720 argument “theta” of the function “plotmix.norm” to plot histogram of the observations and the
721 fitted density of a mixture of models. TSS clusters were then classified into two groups based
722 on the mean value of PC1 plus and minus one standard deviation of each group as returned by
723 the function “emtest.norm”.

724 **Motif enrichment discovery in core promoter region**

725 To find motifs enriched in promoter regions, the genomic sequences from -100 to +30 of the
726 major TSS peaks were extracted and used as input in MEME Suite software 5.4.1 (36) (*de*
727 *novo* pattern discovery mode). Default settings were applied except these following
728 parameters: number of motifs: 6, minimum width: 6, maximum width: 10, and search given
729 strand only. The six motifs found were then scanned in each group of Sharp and Broad
730 clusters in each condition with Fimo mode (threshold *p*-value ≤ 0.0005) to examine their
731 number and positions in each dataset.

732 **altTSS usage analysis**

733 The “expression level” of each TSS cluster was calculated for each replicate and normalized
734 by the total number of reads associated with gene containing the cluster. We did not consider
735 the clusters that never contribute more than 10% total reads associated with a given gene in
736 any replicate. We then performed four comparisons: EXPO 30 vs STAT 30, EXPO 37 vs
737 STAT 37, EXPO 30 vs EXPO 37, and STAT 30 vs STAT 37.

738 **N- terminomic experiments**

739 *Lysis and protein extraction*

740 Cells were lysed by sonication in lysis buffer containing 0.5% SDS, 100 mM HEPES pH 8,
741 10 mM DTT, 10 mM EDTA, supplemented with protease inhibitors (Complete Mini EDTA-
742 free, Roche). After sonication, the lysate was incubated for 20 min at RT with 1 μ L of
743 benzoase and centrifuged for 10 min at 12,000 g at 4°C. The supernatant was reduced and
744 alkylated using 20 mM TCEP and 10 mM NEM (N-ethylmaleimide) respectively, for 30 min
745 at RT in the dark. Protein concentration was determined with DC assay (BioRad) and 200 μ g
746 of each sample were further processed.

747 *TAILS protocol (Terminal amine isotopic labeling of substrates)*

748 TAILS experiment was based on reference protocol (42) with some modifications. Prior to
749 labeling, the samples were first precipitated using acetone-methanol method to remove all
750 primary amines. Briefly, 8 sample volumes of ice-cold acetone and 1 volume of ice-cold
751 methanol were added, samples were let to precipitate overnight at -80°C, centrifuged for 30
752 min at 14,000 g at 4°C and the pellet washed twice with ice-cold methanol. The dried pellet
753 was resuspended in 1% SDS, 100 mM TEAB pH 8 and incubated for 5 min at 95°C. pH was
754 adjusted to 7.5. Dimethylation labeling was carried out by adding 40 mM formaldehyde and
755 20 mM sodium cyanoborohydride (NaBH₃CN) and incubating overnight at 37°C. The
756 reaction was quenched by addition of 500 mM of Tris-HCl pH 6.8 and incubation for 1h at
757 37°C.

758 Tryptic digestion

759 S-Trap mini spin column (Protifi, Huntington, USA) digestion was performed on dimethylated
760 samples, according to manufacturer's instructions. Briefly, SDS concentration was first
761 adjusted to 5% and aqueous phosphoric acid was then added to a final concentration of 2.5%
762 following by the addition of S-Trap binding buffer (90% aqueous methanol, 100 mM TEAB,
763 pH 7.1). Mixtures were loaded on S-Trap columns by 30 sec centrifugation at 4,000 g. Six
764 washes were performed before adding the trypsin (Promega) at 1/20 ratio and incubation for 2
765 h at 47°C. After elution, 10 µg of peptides were kept for MS/MS analysis and the remaining
766 samples were vacuum dried.

767 Negative selection by HPG-ALDII polymer

768 Dried peptides were resuspended in 100 µL of 100 mM HEPES pH 7. The HPG-ALDII
769 polymer was added to samples at a polymer/peptide ratio 5:1 (w/w), followed by addition of
770 20 mM NaBH₃CN. Samples were then incubated overnight at 37°C. 100 mM Tris-HCl pH 7
771 was added and samples were incubated for 30 min at 37°C before loading by centrifuging for

772 10 min at 12,000 g on 10 kDa Amicon (Millipore) centrifugation device previously washed
773 with 100 mM NaOH and water. The flow-through was collected and additional washing step
774 was performed. The filters were then rinsed with water, polymer discarded and filters spined-
775 down in upside-down position for 3 min at 5,000 g. Collected fractions were pooled with
776 flowthroughs and vacuum-dried.

777 MS/MS analysis

778 Peptides were resuspended in 10% ACN, 0.1% TFA in HPLC-grade water prior to MS
779 analysis. For each run, 1/10 of peptide solution was injected in a nanoRSLC-Q Exactive
780 PLUS (RSLC Ultimate 3000) (Thermo Scientific, Waltham MA, USA). Peptides were loaded
781 onto a μ -precolumn (Acclaim PepMap 100 C18, cartridge, 300 μ m i.d. \times 5 mm, 5 μ m)
782 (Thermo Scientific), and were separated on a 50 cm reversed-phase liquid chromatographic
783 column (0.075 mm ID, Acclaim PepMap 100, C18, 2 μ m) (Thermo Scientific).
784 Chromatography solvents were (A) 0.1% formic acid in water, and (B) 80% acetonitrile,
785 0.08% formic acid. Peptides were eluted from the column with the following gradient 5% to
786 40% B (120 minutes), 40% to 80% (1 minute). At 121 minutes, the gradient stayed at 80% for
787 5 minutes and, at 126 minutes, it returned to 5% to re-equilibrate the column for 20 minutes
788 before the next injection. One blank was run between each replicate to prevent sample
789 carryover. Peptides eluting from the column were analyzed by data dependent MS/MS, using
790 top-10 acquisition method. Peptides were fragmented using higher-energy collisional
791 dissociation (HCD). Briefly, the instrument settings were as follows: resolution was set to
792 70,000 for MS scans and 17,500 for the data dependent MS/MS scans to increase speed. The
793 MS AGC target was set to 3.106 counts with maximum injection time set to 200 ms, while
794 MS/MS AGC target was set to 1.105 with maximum injection time set to 120 ms. The MS
795 scan range was from 400 to 2,000 m/z. Dynamic exclusion was set to 30 seconds duration.

796 Data analysis

797 The MS files were processed with the MaxQuant software version 1.5.8.3 and searched with
798 Andromeda search engine against the annotated *C. neofomans* database (14) but also against a
799 database containing all alternative proteins potentially resulting for alternative TSS usage. To
800 search parent mass and fragment ions, we set a mass deviation of 3 ppm and 20 ppm
801 respectively. The minimum peptide length was set to 7 amino acids and strict specificity for
802 trypsin cleavage was required, allowing up to two missed cleavage sites. NEM alkylation
803 (Cys) was set as fixed modification, whereas oxidation (Met) and N-term acetylation, N-term
804 Dimethylation (any N-term), Dimethylation (Lys) were set as variable modifications. The
805 false discovery rates (FDRs) at the protein and peptide level were set to 1%. Scores were
806 calculated in MaxQuant as described previously (90). The reverse and common contaminants
807 hits were removed from MaxQuant output. The output files “peptides” and
808 “modificationSpecificPeptides” were combined and further analyzed on excel.

809

810 **Transcription factor mutant library screening**

811 Total RNA (5 μ g) extracted from each of the *C. neofomans* 150 TF mutant strains (44) was
812 subjected to DNase I treatment (Roche) to eliminate contaminating genomic DNA. A total of
813 1 μ g of the DNase I-treated RNA was then used for reverse-transcription (RT) with Maxima
814 First Strand cDNA Synthesis Kit (Thermo ScientificTM). qPCR experiments using CFX96
815 Touch Real-Time PCR Detection System (Bio-Rad) with SsoAdvanced Universal SYBR
816 Green Supermix (Bio-Rad) according to manufacturer’s instructions. The primer pairs used
817 were specific of either long (in the region located between TSS1 and TSS2) or both isoforms
818 (downstream of TSS2) of *PKP1* or *ACT1* (S1 Table). The number of short isoforms was
819 calculated as the number of both *PKP1* RNA isoforms minus the number of long isoforms.
820 The levels of the *PKP1* long and short isoforms were compared between WT and mutant
821 strains. The level of expression of *ACT1* was used as a control.

822

823 **Construction of strains deleted and complemented for *TUR1* gene in *C. neoformans***

824 The *TUR1* gene was deleted in *C. neoformans* KN99α reference strain (26) (S2 Table) by
825 inserting a NEO^R cassette in place of the coding sequence by electroporation using a transient
826 CRISPR-Cas9 expression (TRACE) system (91). Plasmids and primers to amplify Cas9 and
827 gRNA against *TUR1* are listed in S3 and S1 Tables, respectively. For the complemented
828 strain, we PCR amplified a DNA fragment spanning a genomic DNA region from 1kb
829 upstream of annotated ATG to 1kb downstream of stop codon of the gene *TUR1*. This
830 fragment was then cloned into *pSDMA57* (S2 Table) allowing the integration at the genomic
831 “safe haven 1” locus and complementation of *TUR1* in *tur1Δ::NAT* mutant (92). For
832 galactose-inducible complementation, the *TUR1* sequence from annotated ATG to 1kb
833 downstream of stop codon was amplified, and then was fused at the 5' end with 2xFLAG-
834 CBP (93) amplified from plasmid pCM189-NTAP (94). This construct was positioned under
835 the control of the *GAL7* promoter in the plasmid pSDMA57-GAL7p-TUR1. The construct
836 was then PCR-amplified and co-transformed into *tur1Δ* mutant strain together with a PCR-
837 amplified DNA fragments containing the sequence of Cas9 and a PCR-amplified DNA
838 fragment coding the gRNA targeting Safe Haven 1 as previously described (91). For the
839 construction of the *P_{ACT1}::2xFLAG-CBP::TUR1* strain, the sequence of the *ACT1* promoter
840 was PCR amplified and used with the 2xFLAG-CBP::TUR1 strain before and being targeted
841 to the Safe Haven 1 as previously described (91). The resulting strain NE1605 was then used
842 for ChiP-Seq analysis. Finally, a strain expressing the fusion protein Dam:Tur1 under the
843 control of the *TUR1* native promoter was constructed using a similar strategy. Briefly, the *E.*
844 *coli* DNA adenine methyltransferase gene was amplified from the plasmid kindly given by
845 Eugene Gladyshev (Institut Pasteur) and fused with *TUR1* gene. The fusion PCR fragment
846 was then targeted to the *TUR1* locus native locus after co-transformation of the *C. neoformans*

847 Cas9 expressing strain CM2049 (95) with a *TURI* specific gRNA and a linear plasmid
848 containing a nourseothricin resistance marker. The resulting strain NE1713 was used for
849 DamID-Seq experiments.

850

851 **Construction of mNeon tagged *MAE102* genes, fused ATG and mutated aATG mutant
852 strains**

853 For *MAE102* gene tagging, the region covering mNeonGreen-CBP-2xFlag-terminator
854 together with NAT1 cassette was PCR amplified from pBHM2404 and fused in 5' with 1 kb
855 upstream the STOP codon of *MAE102* (without including it) and in 3' with 1kb downstream
856 of the STOP codon to allow recombination in the genome (see S1 Table for primers). This
857 cassette was co-transformed with a PCR fragment allowing production of a gRNA directed
858 against the 3' of *MAE102* in the strain CM2049 in which the Cas9 gene is integrated at the
859 Safe Heaven 2 (95, 96) and constitutively expressed. The *mae102-MTS1* mutant in which the
860 region containing a putative MTS has been deleted was constructed using a similar strategy.
861 Here a cassette in which 1kb upstream of the annotated ATG was fused with 1kb starting at
862 the second ATG was first constructed before being co-transformed with the NEO marker
863 (pSDMA57 cut by PacI), these two constructs being targeted by appropriate gRNAs at the
864 aATG of *MAE102* and at the Safe Haven 1 locus, respectively. These mutations were done on
865 the mNeonGreen-tagged version of *MAE102*. Finally, the *mae102-M1R* mutant was
866 constructed with the same strategy using a cassette in which the annotated ATG was replaced
867 by a CGT. Primers, strains, and plasmids used to construct these mutants are listed in the S1,
868 S2 and S3 Tables, respectively.

869

870 **Western Blot**

871 The *C. neoformans* *tur1Δ* mutant strain expressing the fusion protein 2xFlag-CBP-Tur1 under
872 the control of the *GAL7* promoter (46) was cultured at 30°C in media containing glucose
873 (YPD) or galactose (YPGAL) until exponential phase or stationary phase. Total proteins were
874 extracted from 10 OD₆₀₀ units of cells and were dissolved in 250 μL of 1X SDS-PAGE
875 sample buffer. 10 μL of protein extract were loaded on a denaturing polyacrylamide gel
876 before being transferred to a nylon membrane and probed with an anti-flag M2 antibody
877 (Sigma Aldrich F1804). An anti-β-actin antibody (Sigma Aldrich A2066) was used as control.

878

879 **Northern Blot**

880 RNA was extracted with TRIZOL Reagent (Thermo Fisher Scientific) following the
881 manufacturer's instructions. Total RNA (10 μg) was separated by denaturing agarose gel
882 electrophoresis and transferred onto Hybon-N+ membrane (Sigma-Aldrich) and probed with
883 [³²P]dCTP-radiolabelled DNA fragments. The banding pattern was quantified with a Typhoon
884 9200 imager and Image Quantifier 5.2 software (Molecular dynamics).

885

886 **Phenotypic assays**

887 For spot assays, cells grown in liquid YPD medium at 30°C for 16 h were counted, serially
888 diluted and spotted on solid YPD medium supplemented with chemical compounds purchased
889 from Sigma Aldrich : 0.2 mM cumen hydroperoxide, 2 mM NaNO₂, 100 mM sodium
890 dithiocarbamate , 0.4 mM rotenone , 10 mM dimethyl malonate, and 0.2 μg/mL oligomycin.
891 Cells were incubated at 30°C for 3 days and the plates were photographed.

892 For disc inhibition assays, overnight cultures of indicated *C. neoformans* strains were grown
893 overnight. The following day cells were diluted to a final OD₆₀₀ of 0.1 and 100 μL was then
894 spread on YPD plates. Filter discs containing 20 μL of 10 mM menadione or 5 μg/mL

895 antimycin A were positioned at the center of the Petri dish and plates were incubated at
896 30°C for 3 days and photographed.

897 **Phagocytosis assay**

898 The murine macrophage J774A.1 cell line (97) was cultured in T-75 flasks (Fisher Scientific)
899 in Dulbecco's Modified Eagle medium, low glucose (DMEM) (Sigma-Aldrich), containing 10
900 % live fetal bovine serum (FBS) (Sigma-Aldrich), 2 mM L-glutamine (Sigma-Aldrich), and 1
901 % Penicillin and Streptomycin solution (Sigma-Aldrich) at 37°C and 5 % CO₂. Cells were
902 passaged when 70 % to 90 % confluent by scraping and resuspending in fresh complete
903 DMEM at a ratio of 1:3 to 1:6.

904 Phagocytosis assays were performed to measure the capacity of J774 macrophages to engulf
905 *C. neoformans* WT, *tur1Δ*, and *tur1Δ+TUR1* strains. Twenty-four hours before the start of the
906 phagocytosis assay, 1x10⁵ J774 macrophages were seeded onto wells of a 24-well plate
907 (Greiner Bio-One). The cells were then incubated overnight at 37°C and 5 % CO₂. At the
908 same time, a colony of each strain was picked from the stock plate and resuspended in 3 mL
909 liquid YPD broth. The culture was incubated at 25°C overnight under constant rotation (20
910 rpm). On the day of the assay, macrophages were activated using 150 ng/mL phorbol
911 12-myristate 13-acetate (PMA) (Sigma-Aldrich) for 1 hour at 37°C. PMA stimulation was
912 performed in serum-free media to eliminate the contribution of complement proteins during
913 phagocytosis. To prepare *C. neoformans* for infection, an overnight *C. neoformans* culture
914 was washed two times in 1X PBS and centrifuged at 6,500 rpm for 2.5 min. To infect
915 macrophages with unopsonised *C. neoformans*, after the final wash, the *C. neoformans* pellet
916 was resuspended in 1 mL PBS, counted using a hematocytometer, and fungi incubated with
917 macrophages at a multiplicity of infection (MOI) of 10:1. The infection was allowed to take
918 place for 2 hours at 37°C and 5% CO₂. Afterwards, extracellular *Cryptococcus* was washed
919 off and wells were treated with 10 µg/mL calcofluor white (CFW) (Sigma-Aldrich) for 10

920 min at 37°C to distinguish between phagocytosed and extracellular *C. neoformans*. Images
921 were acquired using the Nikon Eclipse Ti inverted microscope (Nikon) fitted with the
922 QICAM Fast 1394 camera (Hamamatsu) under 20X magnification and using the phase
923 contrast objective and CFW channel. Images were analyzed using the Fiji image processing
924 software (ImageJ). Two hundred macrophages were counted and phagocytic index (PI) was
925 quantified as the percentage of macrophages that phagocytosed at least one *Cryptococcus* cell
926 (PI= ((number of infected macrophage/total number of macrophages counted) * 100%)).

927
928
929

930

931 **AVAILABILITY and ACCESSION NUMBERS**

932 Raw and summarized sequencing data are available on GEO under accession number
933 GSE237320 (RNA-seq, TSS-seq, DNA-seq, ChIP-Seq, DamID-Seq). Proteomic data has
934 been submitted to ProteomeXchange via the PRIDE database under the accession number
935 PXD045272.

936

937

938

939

940

941

942

943

944

945 **References**

946

947

948 1. Haberle V, Stark A. Eukaryotic core promoters and the functional basis of transcription
949 initiation. *Nat Rev Mol Cell Biol.* 2018;19(10):621-37.

950 2. Carninci P, Sandelin A, Lenhard B, Katayama S, Shimokawa K, Ponjavic J, et al. Genome-wide
951 analysis of mammalian promoter architecture and evolution. *Nat Genet.* 2006;38(6):626-35.

952 3. Lu Z, Lin Z. The origin and evolution of a distinct mechanism of transcription initiation in
953 yeasts. *Genome Res.* 2021;31(1):51-63.

954 4. Adiconis X, Haber AL, Simmons SK, Levy Moonshine A, Ji Z, Busby MA, et al. Comprehensive
955 comparative analysis of 5'-end RNA-sequencing methods. *Nature Meth.* 2018;15(7):505-11.

956 5. Kimura K, Wakamatsu A, Suzuki Y, Ota T, Nishikawa T, Yamashita R, et al. Diversification of
957 transcriptional modulation: large-scale identification and characterization of putative alternative
958 promoters of human genes. *Genome Res.* 2006;16(1):55-65.

959 6. Nepal C, Hadzhiev Y, Previti C, Haberle V, Li N, Takahashi H, et al. Dynamic regulation of the
960 transcription initiation landscape at single nucleotide resolution during vertebrate embryogenesis.
961 *Genome Res.* 2013;23(11):1938-50.

962 7. Cooper SJ, Trinklein ND, Anton ED, Nguyen L, Myers RM. Comprehensive analysis of
963 transcriptional promoter structure and function in 1% of the human genome. *Genome Res.*
964 2006;16(1):1-10.

965 8. Forrest ARR, Kawaji H, Rehli M, Kenneth Baillie J, de Hoon MJL, Haberle V, et al. A promoter-
966 level mammalian expression atlas. *Nature.* 2014;507(7493):462-70.

967 9. Bharti K, Liu W, Csermely T, Bertuzzi S, Arnheiter H. Alternative promoter use in eye
968 development: the complex role and regulation of the transcription factor MITF. *Development.*
969 2008;135(6):1169-78.

970 10. Patta I, Madhok A, Khare S, Gottimukkala KP, Verma A, Giri S, et al. Dynamic regulation of
971 chromatin organizer SATB1 via TCR-induced alternative promoter switch during T-cell development.
972 *Nucleic Acids Res.* 2020;48(11):5873-90.

973 11. Pal S, Gupta R, Kim H, Wickramasinghe P, Baubet V, Showe LC, et al. Alternative transcription
974 exceeds alternative splicing in generating the transcriptome diversity of cerebellar development.
975 *Genome Res.* 2011;21(8):1260-72.

976 12. Lu Z, Lin Z. Pervasive and dynamic transcription initiation in *Saccharomyces cerevisiae*.
977 *Genome Res.* 2019;29(7):1198-210.

978 13. Aoyama T, Nakayama H, Ueno K, Inukai T, Tanabe K, Nagi M, et al. Genome-wide survey of
979 transcriptional initiation in the pathogenic fungus, *Candida glabrata*. *Genes Cells.* 2014;19(6):478-
980 503.

981 14. Wallace EWJ, Maufrais C, Sales-Lee J, Tuck LR, de Oliveira L, Feuerbach F, et al. Quantitative
982 global studies reveal differential translational control by start codon context across the fungal
983 kingdom. *Nucleic Acids Res.* 2020;48:2312-31.

984 15. Arribere JA, Gilbert WV. Roles for transcript leaders in translation and mRNA decay revealed
985 by transcript leader sequencing. *Genome Res.* 2013;23(6):977-87.

986 16. Thodberg M, Thieffry A, Bornholdt J, Boyd M, Holmberg C, Azad A, et al. Comprehensive
987 profiling of the fission yeast transcription start site activity during stress and media response. *Nucleic
988 Acids Res.* 2019;47(4):1671-91.

989 17. Pelechano V, Wei W, Steinmetz LM. Extensive transcriptional heterogeneity revealed by
990 isoform profiling. *Nature.* 2013;497(7447):127-31.

991 18. Dang TTV, Colin J, Janbon G. Alternative Transcription Start Site Usage and Functional
992 Implications in Pathogenic Fungi. *J Fungi (Basel).* 2022;8(10).

993 19. Chia M, Li C, Marques S, Pelechano V, Luscombe NM, van Werven FJ. High-resolution analysis
994 of cell-state transitions in yeast suggests widespread transcriptional tuning by alternative starts.
995 *Genome Biol.* 2021;22(1):34.

996 20. Kaplan CD, Laprade L, Winston F. Transcription elongation factors repress transcription
997 initiation from cryptic sites. *Science.* 2003;301:1096-9.

998 21. Carrozza MJ, Li B, Florens L, Suganuma T, Swanson SK, Lee KK, et al. Histone H3 Methylation
999 by Set2 Directs Deacetylation of Coding Regions by Rpd3S to Suppress Spurious Intragenic
1000 Transcription. *Cell.* 2005;123(4):581-92.

1001 22. Wei W, Hennig BP, Wang J, Zhang Y, Piazza I, Pareja Sanchez Y, et al. Chromatin-sensitive
1002 cryptic promoters putatively drive expression of alternative protein isoforms in yeast. *Genome Res.*
1003 2019;29(12):1974-84.

1004 23. Rajasingham R, Smith RM, Park BJ, Jarvis JN, Govender NP, Chiller TM, et al. Global burden of
1005 disease of HIV-associated cryptococcal meningitis: an updated analysis. *The Lancet Infectious
1006 Diseases.* 2017;17(8):873-81.

1007 24. Idnurm A, Bahn YS, Nielsen K, Lin X, Fraser JA, Heitman J. Deciphering the model pathogenic
1008 fungus *Cryptococcus neoformans*. *Nat Rev Microbiol.* 2005; 3:753-64.

1009 25. Johnston SA, May RC. Cryptococcus interactions with macrophages: evasion and
1010 manipulation of the phagosome by a fungal pathogen. *Cell Microbiol.* 2013;15(3):403-11.

1011 26. Janbon G, Ormerod KL, Paulet D, Byrnes III EJ, Chatterjee G, Yadav V, et al. Analysis of the
1012 genome and transcriptome of *Cryptococcus neoformans* var. *grubii* reveals complex RNA expression
1013 and microevolution leading to virulence attenuation. *PLoS Genet.* 2014;10:e1004261.

1014 27. Gonzalez-Hilarion S, Paulet D, Lee K-T, Hon C-C, Lechat P, Mogensen E, et al. Intron retention-
1015 dependent gene regulation in *Cryptococcus neoformans*. *Sci Rep.* 2016;6:32252.

1016 28. Gröhs Ferrareze PA, Maufrais C, Silva Araujo Streit R, Priest SJ, Cuomo CA, Heitman J, et al.
1017 Application of an optimized annotation pipeline to the *Cryptococcus deuterogattii* genome reveals
1018 dynamic primary metabolic gene clusters and genomic impact of RNAi loss. *G3 (Bethesda).*
1019 2021;11(2).

1020 29. Janbon G. Introns in *Cryptococcus*. *Mem Inst Oswaldo Cruz.* 2018;113(7):e170519-e.

1021 30. Goebels C, Thonn A, Gonzalez-Hilarion S, Rolland O, Moyrand F, Beilharz TH, et al. Introns
1022 regulate gene expression in *Cryptococcus neoformans* in a Pab2p dependent pathway. *PLoS Genet.*
1023 2013;9:e1003686.

1024 31. Kaur JN, Panepinto JC. Morphotype-specific effector functions of *Cryptococcus neoformans*
1025 *PUM1*. *Sci Rep.* 2016;6:23638.

1026 32. Verma S, Idnurm A. The Uve1 endonuclease is regulated by the white collar complex to
1027 protect *Cryptococcus neoformans* from UV Damage. *PLoS Genet.* 2013;9(9):e1003769.

1028 33. Smith AD, Garcia-Santamarina S, Ralle M, Loiselle DR, Haystead TA, Thiele DJ. Transcription
1029 factor-driven alternative localization of *Cryptococcus neoformans* superoxide dismutase. *J Biol Chem.*
1030 2021;296:100391.

1031 34. Hoskins RA, Landolin JM, Brown JB, Sandler JE, Takahashi H, Lassmann T, et al. Genome-wide
1032 analysis of promoter architecture in *Drosophila melanogaster*. *Genome Res.* 2011;21:182-92.

1033 35. Li P, Chen J. Testing the Order of a Finite Mixture. *Journal of the American Statistical
1034 Association.* 2010;105(491):1084-92.

1035 36. Bailey TL, Johnson J, Grant CE, Noble WS. The MEME Suite. *Nucleic Acids Res.*
1036 2015;43(W1):W39-49.

1037 37. Yamamoto YY, Yoshioka Y, Hyakumachi M, Obokata J. Characteristics of core promoter types
1038 with respect to gene structure and expression in *Arabidopsis thaliana*. *DNA Res.* 2011;18(5):333-42.

1039 38. Sandelin A, Carninci P, Lenhard B, Ponjavic J, Hayashizaki Y, Hume DA. Mammalian RNA
1040 polymerase II core promoters: insights from genome-wide studies. *Nature Reviews Genetics.*
1041 2007;8(6):424-36.

1042 39. Ni T, Corcoran DL, Rach EA, Song S, Spana EP, Gao Y, et al. A paired-end sequencing strategy
1043 to map the complex landscape of transcription initiation. *Nature Meth.* 2010;7(7):521-7.

1044 40. Hinnebusch AG, Ivanov IP, Sonenberg N. Translational control by 5'-untranslated regions of
1045 eukaryotic mRNAs. *Science*. 2016;352(6292):1413-6.

1046 41. Thumuluri V, Almagro Armenteros JJ, Johansen Alexander R, Nielsen H, Winther O. DeepLoc
1047 2.0: multi-label subcellular localization prediction using protein language models. *Nucleic Acids Res.*
1048 2022;50(W1):W228-W34.

1049 42. Kleifeld O, Doucet A, Prudova A, auf dem Keller U, Gioia M, Kizhakkedathu JN, et al.
1050 Identifying and quantifying proteolytic events and the natural N terminome by terminal amine
1051 isotopic labeling of substrates. *Nat Protoc.* 2011;6(10):1578-611.

1052 43. Sehgal A, Hughes BT, Espenshade PJ. Oxygen-dependent, alternative promoter controls
1053 translation of tco1+ in fission yeast. *Nucleic Acids Res.* 2008;36(6):2024-31.

1054 44. Jung K-W, Yang D-H, Maeng S, Lee K-T, So Y-S, Hong J, et al. Systematic functional profiling of
1055 transcription factor networks in *Cryptococcus neoformans*. *Nat Com.* 2015;6:6757.

1056 45. Krause-Buchholz U, Gey U, Wünschmann J, Becker S, Rödel G. YIL042c and YOR090c encode
1057 the kinase and phosphatase of the *Saccharomyces cerevisiae* pyruvate dehydrogenase complex. *FEBS*
1058 *Lett.* 2006;580(11):2553-60.

1059 46. Wickes BL, Edman JC. The *Cryptococcus neoformans* GAL7 gene and its use as an inducible
1060 promoter. *Mol Microbiol.* 1995;16:1099-109.

1061 47. Choder M. A general topoisomerase I-dependent transcriptional repression in the stationary
1062 phase in yeast. *Genes Dev.* 1991;5(12a):2315-26.

1063 48. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. Model-based analysis
1064 of ChIP-Seq (MACS). *Genome Biol.* 2008;9(9):R137.

1065 49. Gutierrez-Triana JA, Mateo JL, Ibberson D, Ryu S, Wittbrodt J. iDamIDseq and iDEAR: an
1066 improved method and computational pipeline to profile chromatin-binding proteins. *Development.*
1067 2016;143(22):4272-8.

1068 50. Thorpe GW, Fong CS, Alic N, Higgins VJ, Dawes IW. Cells have distinct mechanisms to
1069 maintain protection against different reactive oxygen species: oxidative-stress-response genes. *Proc*
1070 *Natl Acad Sci U S A.* 2004;101(17):6564-9.

1071 51. Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, et al. The STRING database in
1072 2021: customizable protein-protein networks, and functional characterization of user-uploaded
1073 gene/measurement sets. *Nucleic Acids Res.* 2021;49(D1):D605-d12.

1074 52. Wang L, Duan Q, Wang T, Ahmed M, Zhang N, Li Y, et al. Mitochondrial Respiratory Chain
1075 Inhibitors Involved in ROS Production Induced by Acute High Concentrations of Iodide and the Effects
1076 of SOD as a Protective Factor. *Oxid Med Cell Longev.* 2015;2015:217670.

1077 53. Malabat C, Feuerbach F, Ma L, Saveanu C, Jacquier A. Quality control of transcription start
1078 site selection by nonsense-mediated-mRNA decay. *Elife.* 2015;4:e06722.

1079 54. Morton T, Petricka J, Corcoran DL, Li S, Winter CM, Carda A, et al. Paired-End Analysis of
1080 Transcription Start Sites in *Arabidopsis* Reveals Plant-Specific Promoter Signatures. *Plant Cell.*
1081 2014;26(7):2746.

1082 55. Li H, Hou J, Bai L, Hu C, Tong P, Kang Y, et al. Genome-wide analysis of core promoter
1083 structures in *Schizosaccharomyces pombe* with DeepCAGE. *RNA Biol.* 2015;12(5):525-37.

1084 56. Yamashita R, Sathira NP, Kanai A, Tanimoto K, Arauchi T, Tanaka Y, et al. Genome-wide
1085 characterization of transcriptional start sites in humans by integrative transcriptome analysis.
1086 *Genome Res.* 2011;21(5):775-89.

1087 57. Rach EA, Winter DR, Benjamin AM, Corcoran DL, Ni T, Zhu J, et al. Transcription initiation
1088 patterns indicate divergent strategies for gene regulation at the chromatin level. *PLoS Genet.*
1089 2011;7(1):e1001274.

1090 58. Lenhard B, Sandelin A, Carninci P. Metazoan promoters: emerging characteristics and insights
1091 into transcriptional regulation. *Nat Rev Genet.* 2012;13(4):233-45.

1092 59. Natsoulis G, Hilger F, Fink GR. The *HTS1* gene encodes both the cytoplasmic and
1093 mitochondrial histidine tRNA synthetases of *S. cerevisiae*. *Cell.* 1986;46(2):235-43.

1094 60. Carlson M, Botstein D. Two differentially regulated mRNAs with different 5' ends encode
1095 secreted with intracellular forms of yeast invertase. *Cell.* 1982;28(1):145-54.

1096 61. Ushijima T, Hanada K, Gotoh E, Yamori W, Kodama Y, Tanaka H, et al. Light Controls Protein
1097 Localization through Phytochrome-Mediated Alternative Promoter Selection. *Cell*. 2017;171(6):1316-
1098 25.e12.

1099 62. Nieke S, Yasmin N, Kakugawa K, Yokomizo T, Muroi S, Taniuchi I. Unique N-terminal
1100 sequences in two Runx1 isoforms are dispensable for Runx1 function. *BMC Developmental Biology*.
1101 2017;17(1):14.

1102 63. Rawal Y, Chereji RV, Valabhoju V, Qiu H, Ocampo J, Clark DJ, et al. Gcn4 Binding in Coding
1103 Regions Can Activate Internal and Canonical 5' Promoters in Yeast. *Mol Cell*. 2018;70(2):297-311.e4.

1104 64. Zhou S, Sternglanz R, Neiman AM. Developmentally regulated internal transcription initiation
1105 during meiosis in budding yeast. *PLoS One*. 2017;12(11):e0188001.

1106 65. Nuckolls NL, Nidamangala Srinivasa A, Mok AC, Helston RM, Bravo Núñez MA, Lange JJ, et al.
1107 *S. pombe* wtf drivers use dual transcriptional regulation and selective protein exclusion from spores
1108 to cause meiotic drive. *PLoS Genet*. 2022;18(12):e1009847.

1109 66. Tresenrider A, Morse K, Jorgensen V, Chia M, Liao H, van Werven FJ, et al. Integrated
1110 genomic analysis reveals key features of long undecoded transcript isoform-based gene repression.
1111 *Mol Cell*. 2021;81(10):2231-45.e11.

1112 67. Chen J, Tresenrider A, Chia M, McSwiggen DT, Spedale G, Jorgensen V, et al. Kinetochore
1113 inactivation by expression of a repressive mRNA. *Elife*. 2017;6.

1114 68. Kurihara Y, Makita Y, Kawashima M, Fujita T, Iwasaki S, Matsui M. Transcripts from
1115 downstream alternative transcription start sites evade uORF-mediated inhibition of gene expression
1116 in *Arabidopsis*. *Proc Natl Acad Sci U S A*. 2018;115(30):7831-6.

1117 69. Andersson R, Gebhard C, Miguel-Escalada I, Hoof I, Bornholdt J, Boyd M, et al. An atlas of
1118 active enhancers across human cell types and tissues. *Nature*. 2014;507(7493):455-61.

1119 70. Demircioğlu D, Cukuroglu E, Kindermans M, Nandi T, Calabrese C, Fonseca NA, et al. A Pan-
1120 cancer Transcriptome Analysis Reveals Pervasive Regulation through Alternative Promoters. *Cell*.
1121 2019;178(6):1465-77.e17.

1122 71. Mao Y, Chen C. The Hap Complex in Yeasts: Structure, Assembly Mode, and Gene Regulation.
1123 *Front Microbiol*. 2019;10:1645.

1124 72. Werner-Washburne M, Braun E, Johnston GC, Singer RA. Stationary phase in the yeast
1125 *Saccharomyces cerevisiae*. *Microbiol Rev*. 1993;57(2):383-401.

1126 73. Sagot I, Laporte D. The cell biology of quiescent yeast - a diversity of individual scenarios. *J
1127 Cell Sci*. 2019;132(1).

1128 74. Novačić A, Menéndez D, Ljubas J, Barbarić S, Stutz F, Soudet J, et al. Antisense non-coding
1129 transcription represses the PHO5 model gene at the level of promoter chromatin structure. *PLoS
1130 Genet*. 2022;18(10):e1010432.

1131 75. Asada R, Umeda M, Adachi A, Senmatsu S, Abe T, Iwasaki H, et al. Recruitment and delivery
1132 of the fission yeast Rst2 transcription factor via a local genome structure counteracts repression by
1133 Tup1-family corepressors. *Nucleic Acids Res*. 2017;45(16):9361-71.

1134 76. Wang Y, Pawar S, Dutta O, Wang K, Rivera A, Xue C. Macrophage Mediated
1135 Immunomodulation During *Cryptococcus* Pulmonary Infection. *Front Cell Infect Microbiol*.
1136 2022;12:859049.

1137 77. Brown SM, Campbell LT, Lodge JK. *Cryptococcus neoformans*, a fungus under stress. *Curr
1138 Opin Microbiol*. 2007;10(4):320-5.

1139 78. Muller FL, Liu Y, Van Remmen H. Complex III releases superoxide to both sides of the inner
1140 mitochondrial membrane. *J Biol Chem*. 2004;279(47):49064-73.

1141 79. Colot HV, Loros JJ, Dunlap JC. Temperature-modulated alternative splicing and promoter use
1142 in the Circadian clock gene frequency. *Mol Biol Cell*. 2005;16(12):5563-71.

1143 80. Inoue T, Toji H, Tanaka M, Takama M, Hasegawa-Shiro S, Yamaki Y, et al. Alternative
1144 transcription start sites of the enolase-encoding gene enoA are stringently used in
1145 glycolytic/gluconeogenic conditions in *Aspergillus oryzae*. *Curr Genet*. 2020;66(4):729-47.

1146 81. Park AR, Son H, Min K, Park J, Goo JH, Rhee S, et al. Autoregulation of ZEB2 expression for
1147 zearalenone production in *Fusarium graminearum*. *Mol Microbiol*. 2015;97(5):942-56.

1148 82. Winston F, Dollard C, Ricupero-Hovasse SL. Construction of a set of convenient
1149 *Saccharomyces cerevisiae* strains that are isogenic to S288C. *Yeast*. 1995;11(1):53-5.

1150 83. Varma A, Kwon-Chung KJ. Rapid method to extract DNA from *Cryptococcus neoformans*. *J*
1151 *Clin Microbiol*. 1991;29:810-2.

1152 84. Moyrand F, Lafontaine I, Fontaine T, Janbon G. *UGE1* and *UGE2* regulate the UDP-
1153 glucose/UDP-galactose equilibrium in *Cryptococcus neoformans*. *Eukaryot Cell*. 2008;7:2069-77.

1154 85. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. *Nat Methods*.
1155 2012;9(4):357-9.

1156 86. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of
1157 transcriptomes in the presence of insertions, deletions and gene fusions. *Genome Biol*.
1158 2013;14(4):R36-R.

1159 87. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-
1160 seq data with DESeq2. *Genome Biol*. 2014;15:550.

1161 88. de Jonge WJ, Brok M, Kemmeren P, Holstege FCP. An Optimized Chromatin
1162 Immunoprecipitation Protocol for Quantification of Protein-DNA Interactions. *STAR Protoc*.
1163 2020;1(1):100020.

1164 89. Li H. Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics*.
1165 2018;34(18):3094-100.

1166 90. Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-
1167 range mass accuracies and proteome-wide protein quantification. *Nature Biotechnology*.
1168 2008;26(12):1367-72.

1169 91. Lin J, Fan Y, Lin X. Transformation of *Cryptococcus neoformans* by electroporation using a
1170 transient CRISPR-Cas9 expression (TRACE) system. *Fungal Genet Biol*. 2020;138:103364.

1171 92. Arras SD, Chitty JL, Blake KL, Schulz BL, Fraser JA. A genomic safe haven for mutant
1172 complementation in *Cryptococcus neoformans*. *PLoS One*. 2015;10(4):e0122916.

1173 93. Summers DK, Perry DS, Rao B, Madhani HD. Coordinate genomic association of transcription
1174 factors controlled by an imported quorum sensing peptide in *Cryptococcus neoformans*. *PLoS Genet*.
1175 2020;16(9):e1008744.

1176 94. Saveanu C, Rousselle JC, Lenormand P, Namane A, Jacquier A, Fromont-Racine M. The p21-
1177 activated protein kinase inhibitor Skb15 and its budding yeast homologue are 60S ribosome assembly
1178 factors. *Mol Cell Biol*. 2007;27(8):2897-909.

1179 95. Huang MY, Joshi MB, Boucher MJ, Lee S, Loza LC, Gaylord EA, et al. Short homology-directed
1180 repair using optimized Cas9 in the pathogen *Cryptococcus neoformans* enables rapid gene deletion
1181 and tagging. *Genetics*. 2022;220(1).

1182 96. Upadhyra R, Lam WC, Maybruck BT, Donlin MJ, Chang AL, Kayode S, et al. A fluorogenic *C*.
1183 *neoformans* reporter strain with a robust expression of m-cherry expressed from a safe haven site in
1184 the genome. *Fungal Genet Biol*. 2017;108:13-25.

1185 97. Ralph P, Nakoinz I. Phagocytosis and cytolysis by a macrophage tumour and its cloned cell
1186 line. *Nature*. 1975;257(5525):393-4.

1187 98. Fukasawa Y, Tsuji J, Fu SC, Tomii K, Horton P, Imai K. MitoFates: improved prediction of
1188 mitochondrial targeting sequences and their cleavage sites. *Mol Cell Proteomics*. 2015;14(4):1113-
1189 26.

1190

1191

1192 **Figure Legends**

1193

1194 **Fig 1. TSS cluster classification, motif enrichment, and the relationship with gene**
1195 **expression**

1196 (A) The distribution of TSS clusters in terms of cluster width (Size) and shape index (SI) is
1197 represented as a 2D density plot in which Size and SI distribution of TSS clusters display a
1198 bimodal pattern. Corresponding histogram of Size and SI are projected on the x-axis and y-
1199 axis, respectively. (B) Histogram (bold blue line) and density plot (bold black line) of the first
1200 principal component (PC1) of Size and SI. Two subpopulations of PC1 are detected by
1201 statistical test using “MixtureInf” R package and represented as the theoretical density plot
1202 (dotted black line). (C) Upper panel: Enrichment and position relative to the major position
1203 within the TSS cluster of 6 detected motifs within the promoter sequence. Lower panel:
1204 Percentage of presence of each motif in Sharp and Broad clusters associated genes. (D) Score
1205 of gene expression change for TATA-box-harboring genes (pink) or devoid of TATA-box
1206 (blue) are represented as dots. Dot size is proportional to the percentage of each score value in
1207 y-axis. Sample sizes n, mean (red dots) and confidence interval (red lines) of the mean are
1208 indicated for both groups. Significance was computed using Wilcoxon rank sum test, *p*-value
1209 < 0.0001. (E) Magnitude of gene expression change for TATA-box-harboring genes and
1210 genes devoid of TATA-box is depicted as violin plots and box plots. Average of Absolute
1211 Log Fold Change in 4 growth conditions compared to WT (main text) is on y-axis. Sample
1212 sizes n are indicated for both groups. Significance was computed using Wilcoxon rank sum
1213 test, *p*-value < 0.0001. The data underlying this Figure can be found in S1 Data.

1214

1215

1216 **Fig 2. Relationship between TSS cluster shape, TATA-box and gene expression dynamic.**

1217 (A) Magnitude of gene expression change of Sharp cluster genes and Broad cluster genes is
1218 depicted as violin plots and box plots. Average of Absolute Log Fold Change in 4 growth
1219 conditions compared to WT (main text) is on y-axis. Sample sizes n are indicated for each
1220 group. Significance was computed using Wilcoxon rank sum test, p-value <0.05. (B)
1221 Stratification analysis comparing TATA-box-harboring genes and TATA-box-devoid genes
1222 within those having Sharp clusters (left panel) and those with Broad clusters (right panel).
1223 Sample sizes n are indicated for each group. Significance was computed using Wilcoxon rank
1224 sum test, p-value < 0.0001 for both comparisons. (C) Stratification analysis comparing genes
1225 with Sharp clusters and genes with Broad clusters within TATA-box-harboring genes (left
1226 panel) and TATA-box-devoid genes (right panel). Sample sizes n are indicated for each
1227 group. Significance was computed using Wilcoxon rank sum test, p-value > 0.05 for both
1228 comparisons. The data underlying this Figure can be found in S1 Data.

1229

1230

1231 **Fig 3. altTSS usage regulates the presence or absence of uORFs within the mRNA**
1232 **impacting its sensitivity to NMD.** Among 3,055 uAUG containing genes in *C.*
1233 *deneoformans*, genes having alternative TSS within their TL sequence are more resistant to
1234 NMD. (A) Cumulative distribution plot of Log fold change between *upf1Δ* mutant and WT at
1235 30°C are generated for genes which use an altTSS at 30°C (blue line) and genes that do not
1236 use an altTSS at 30°C (red line). A one-sided Kolmogorov–Smirnov test shows that these
1237 differences are significant (p-value = 1.95 x 10⁻¹⁰). (B) IGV visualization of RNA-seq and
1238 TSS-seq at the CNA08250 locus. The gene CNA08250 possesses an alternative TSS that
1239 skips the uORFs of the transcript leader sequence. At 30°C, the alternative TSS is

1240 prominently used, resulting in the short mRNA isoform devoid of uORF. The data underlying
1241 this Figure can be found in S1 Data.

1242

1243 **Fig 4. altTSS usage can result in the production of proteins shorter than the annotated**
1244 **ones, lacking N-terminal targeting motif** and targeted to a different organelle. Alluvial
1245 diagram depicting the predicted localization of long and short protein isoforms as predicted by
1246 DeepLoc 2.0 (41).

1247

1248

1249 **Fig 5. Mae102 subcellular localization is regulated through alternative TSS usage. (A)**
1250 IGV visualization of RNA-seq and TSS-seq at the *MAE102* locus. In exponential phase at
1251 30°C cells mainly use an altTSS (TSS2) located 19 bp downstream of the annotated ATG.
1252 The shorter mRNA produces a protein isoform lacking the mitochondria targeting signal
1253 (MTS, red box) as predicted by DeepLoc 2.0 and MitoFates (41, 98). In stationary phase at
1254 30°C, the annotated TSS (TSS1) is mainly used to produce a full-length transcript which is
1255 translated in a protein containing an MTS at its N-terminal. In exponential phase at 30°C,
1256 usage of the downstream TSS2 produces a protein expected to go mainly to cytosol. The
1257 percentages indicate the proportion of each TSS cluster used in each condition. Detailed
1258 numbers are given in S8 Table. alternative usage of the two TSS clusters (B) DIC and
1259 fluorescent microscopy images of *C. neoformans* cells expressing a Mae102-mNeonGreen
1260 fusion protein (green) in different mutants: WT, *mae102-MTSΔ*, *mae102-M1R* and *tur1Δ*.
1261 Mitochondria are stained using MitoTracker (red). The percentages refer to the proportion of
1262 cells with a Mae102 nuclear localization when are grown under exponential phase.

1263

1264

1265 **Fig 6. altTSS usage regulates the production of TRASS in *Cryptococcus*** (A) IGV
1266 visualization of RNA-seq and TSS-seq at the CNC03460 locus when *C. deneoformans* cells
1267 were cultivated at 30°C under exponential (E30) or stationary (S30) phase, respectively. The
1268 percentages indicate the proportion of each TSS cluster used in each condition. Detailed
1269 numbers are given in S8 Table. (B) Northern-blot validation of the alternative RNA
1270 molecule production. For CNC03460 the probe was amplified using primers specific of the
1271 second half of the gene (arrows). The actin gene (*ACT1*) was used as reference.

1272

1273

1274 **Fig 7. Differential analysis of altTSS usage in response to the growth phase and**
1275 **temperature changes** (A) Venn diagram illustration the overlap between the altTSS usage
1276 regulation (FDR < 0.05) in 4 conditions: exponential phase (E30), stationary phase (S30) at
1277 30°C, exponential phase (E37), stationary phase (S37) at 37°C in *C. neoformans*. (B) IGV
1278 visualization of RNA-seq and TSS-seq of examples altTSS usage regulated by the
1279 temperature and the growth phase. The percentages indicate the proportion of each TSS
1280 cluster used in each condition. Detailed numbers are given in S8 Table. qRT-PCR
1281 confirmation of these regulations was performed using primers specific of one or both
1282 isoforms. Y-axis shows 1000*fold-change compared to the number of *ACT1* mRNA
1283 molecules. Experiments were performed in biological triplicates and technical duplicates.
1284 Error bars are shown median +/-standard deviation. Green and red arrows indicate the
1285 position of the primers used for these experiments.

1286

1287

1288 **Fig 8. Tur1 regulates the altTSS usage at *PKP1* during the transition from exponential**
1289 **phase to stationary phase at 30°C.** (A) RT-qPCR measuring the level of the long and short
1290 mRNA isoforms of *PKP1* in WT, *tur1Δ*, and the complemented *tur1Δ+TUR1* strains grown in
1291 stationary or exponential phase at 30°C. Y-axis shows 1000*fold-change compared to the
1292 number of *ACT1* mRNA molecules (B) RT-qPCR measuring the level of the long and short
1293 mRNA isoforms of *PKP1* in a *P_{GAL7}-2xFlag-CBP-TUR1* strain in exponential phase and
1294 stationary phase at 30°C, cultured in YPD (glucose) or YPGAL (galactose). Y-axis shows
1295 1000*fold-change compared to the number of *ACT1* mRNA molecules. Experiments were
1296 performed in biological triplicates and technical duplicates. Error bars are shown median +/-
1297 standard deviation. (C) Western-blot analysis of *TUR1* conditional expression. Tur1 was
1298 detected using an anti-flag antibody and actin was used as control. The data underlying this
1299 Figure can be found in S1 Data.

1300

1301 **Fig 9. Comparative differential gene expression analysis during the transition**
1302 **exponential to stationary phase in the WT and *tur1Δ* strains.** (A) Number of genes
1303 significantly regulated in WT and *tur1Δ* strains during the exponential to stationary phase
1304 transition at 30°C determined by DeSEQ2 (2-fold change; adjusted *p*-value < 0.05). (B) Venn
1305 diagram describing the overlap of genes downregulated during the exponential to stationary
1306 phase transition at 30°C in WT and *tur1Δ* strains. The data underlying this Figure can be
1307 found in S1 Data.

1308

1309 **Fig 10. Tur1 is a global regulator of altTSS usage in *C. neoformans*.** (A) Venn diagram
1310 depicting the overlap between altTSS regulated genes during transition from exponential
1311 phase to stationary phase in the WT and *tur1Δ* strains. (B) IGV visualization of RNA-seq and

1312 TSS-seq data at representative altTSS regulated genes in WT and *tur1Δ* strains grown in
1313 exponential phase (E30) and stationary phase (S30) at 30°C. The percentages indicate the
1314 proportion of each TSS cluster used in each condition. Detailed numbers are given in S9
1315 Table. The position of the DamID-Seq methylated residues in exponential phase are indicated
1316 at the locus CNAG_00047.

1317

1318 **Fig 11. Tur1 regulates altTSS usage at MAE102.** (A) IGV visualization of RNA-seq and
1319 TSS-seq of CNAG_06374 in WT and *tur1Δ* strain grown in exponential phase (E30) and
1320 stationary phase (S30) at 30°C. The percentages indicate the proportion of each TSS cluster
1321 used in each condition. Detailed numbers are given in S9 Table. (B) RT-qPCR analysis of the
1322 level of the long and short *MAE102* mRNA isoforms in WT, *tur1Δ*, and complemented *tur1Δ*
1323 + *SH1::TUR1* strains grown in exponential or stationary phase at 30°C. Y-axis shows
1324 1000*fold-change compared to the number of *ACT1* mRNA molecules. Experiments were
1325 performed in biological triplicates and technical duplicates. Error bars are shown median +/-
1326 standard deviation. The data underlying this Figure can be found in S1 Data.

1327

1328 **Fig 12. Tur1 regulates resistance to menadione, antimycin A and macrophage**
1329 **phagocytosis.** (A) Results of resistance disc assays. 2 mM menadione and 5 µg/mL
1330 antimycin A filter discs were used on YPD plates. Plates were incubated at 30°C for 3 days
1331 and photographed. (B) Macrophage phagocytosis assay shows the phagocytic index for
1332 unopsonized *C. neoformans* WT, *tur1Δ*, and complemented *tur1Δ+TUR1* strains as described
1333 in Material and Methods. The data underlying this Figure can be found in S1 Data.

1334

1335 **Fig 13: Tentative model for Tur1 start site selection.** At the *PKP1* locus, Tur1 binds to an
1336 open chromatin region during exponential phase. In stationary phase, the increased usage of
1337 TSS1 changes the chromatin structure and Tur1 may recruit another TF to activate TSS2
1338 usage. In addition, Tur1 could control the expression of positive or negative regulators acting
1339 at other sites regulated by aTSS.

1340

1341 **SI legends**

1342

1343 **S1 Table. List of primers used in this study**

1344 **S2 Table. List of strains used in this study**

1345 **S3 Table. List of plasmids used in this study**

1346 **S4 Table. List of genes with altTSS clusters identified in *C. neoformans* and *C.***

1347 ***deneoformans*.** GeneID of genes in *C. neoformans* or *C. deneoformans* and the ortholog
1348 genes in the other species, TSS clusters identified by TSS-seq in this study with start position
1349 (start), end position (stop), and the position which is supported by the highest number of TSS-
1350 seq read within that cluster (max), the strand of the gene, and the annotation of TSS clusters
1351 as "Annotated" or "Alternative" as in Methods.

1352 **S5 Table. List of genes for which the condition dependent regulation of altTSS usage**
1353 **results in the production of protein isoforms with different subcellular localization as**
1354 **predicted by Deeploc2.0**

1355 **S6 Table. N-terminomic analysis. (A) Peptides identified by N-terminomic. (B) Peptides**
1356 **specific of mRNAs resulting from altTSS usage identified by N-terminomic.**

1357 **S7 Table. List of genes regulated by altTSS in response to change in temperature or/and**
1358 **growth phase.** GeneID of genes identified as regulated by alternative TSS usage in this study,
1359 followed by TSS clusters, their positions, and their normalized expression in each replicates
1360 as described in Methods, mean normalized expression in each condition, difference in mean
1361 normalized expression and False discovery rate of the differential comparison (FDR).

1362

1363 **S8 Table. List of genes regulated by the exponential to stationary phase transition in the**
1364 **WT and *tur1A* in *C. neoformans***

1365 **S9 Table. List of genes with at least 2 TSSs and at least 20 TSS reads in all four samples**
1366 **(WT E30, WTS30, *tur1A* E30 and *tur1A* S30).** GeneID of genes identified as regulated by
1367 alternative TSS usage in this study, followed by TSS clusters, their positions, and their
1368 normalized expression in each replicates as described in Methods, mean normalized
1369 expression in each condition, difference in mean normalized expression and False discovery
1370 rate of the differential comparison (FDR).

1371 **S10 Table. S10 Table positions and weight to the peaks identified by ChIP-seq analysis**

1372 **S11 Table. Position of the methylated adenine residues identified by DamID-Seq and**
1373 **specific of either stationary or exponential phase.**

1374

1375

1376 **Supplementary figures**

1377 **Supplementary Figure S1 : TSS cluster sizes obtained after directly merging the twelve**
1378 **gff files originally generated in Wallace *et al* (14).**

1379

1380 **Supplementary Figure S2. TSS clusterization using *C. neoformans* TSS-seq data**
1381 **obtained in three other growth conditions also revealed two types of TSS (broad and**
1382 **sharp).** (A) Stationary phase 30°C (B) exponential phase 37°C, and (C) stationary phase
1383 37°C. Left. Distribution of the TSS clusters in terms of cluster width (Size) and shape index
1384 (SI) is represented as a 2D density plot in which Size and SI distribution of TSS clusters
1385 display a bimodal pattern. Corresponding histogram of Size and SI are projected on x-axis and
1386 y-axis, respectively. Right. Histogram (bold blue line) and density plot (bold black line) of the
1387 first principal component (PC1) of Size and SI. Two subpopulations of PC1 are detected by
1388 statistical test using “MixtureInf” R package and represented as the theoretical density plot
1389 (dotted black line). The data underlying this Figure can be found in S1 Data.

1390

1391 **Supplementary Figure S3. Similar motif enrichment was observed associated with broad**
1392 **and sharp clusters generated from each set of TSS-seq data.** Enrichments and positions
1393 relative to the major position within the TSS cluster of 6 detected motifs within the TL
1394 sequence.

1395

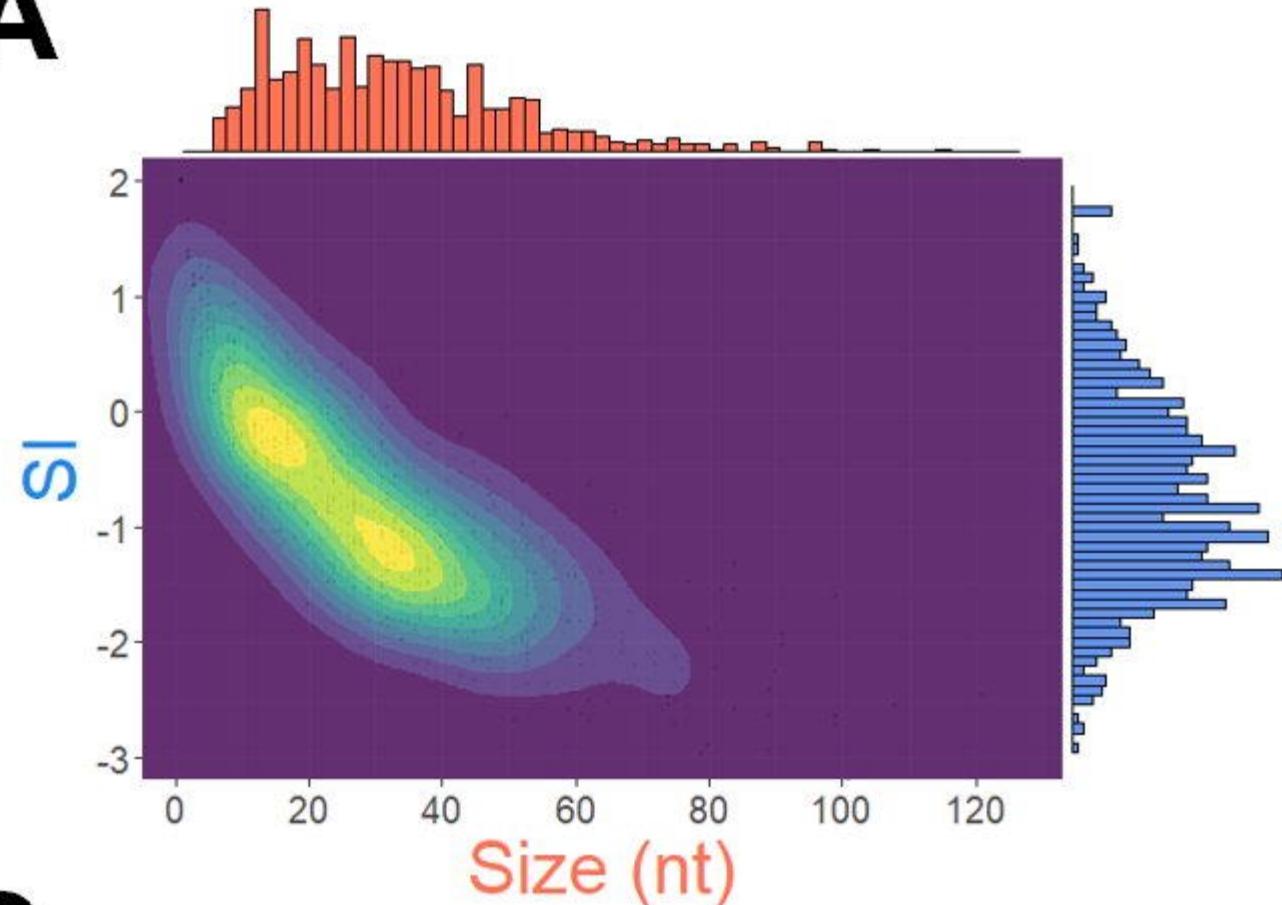
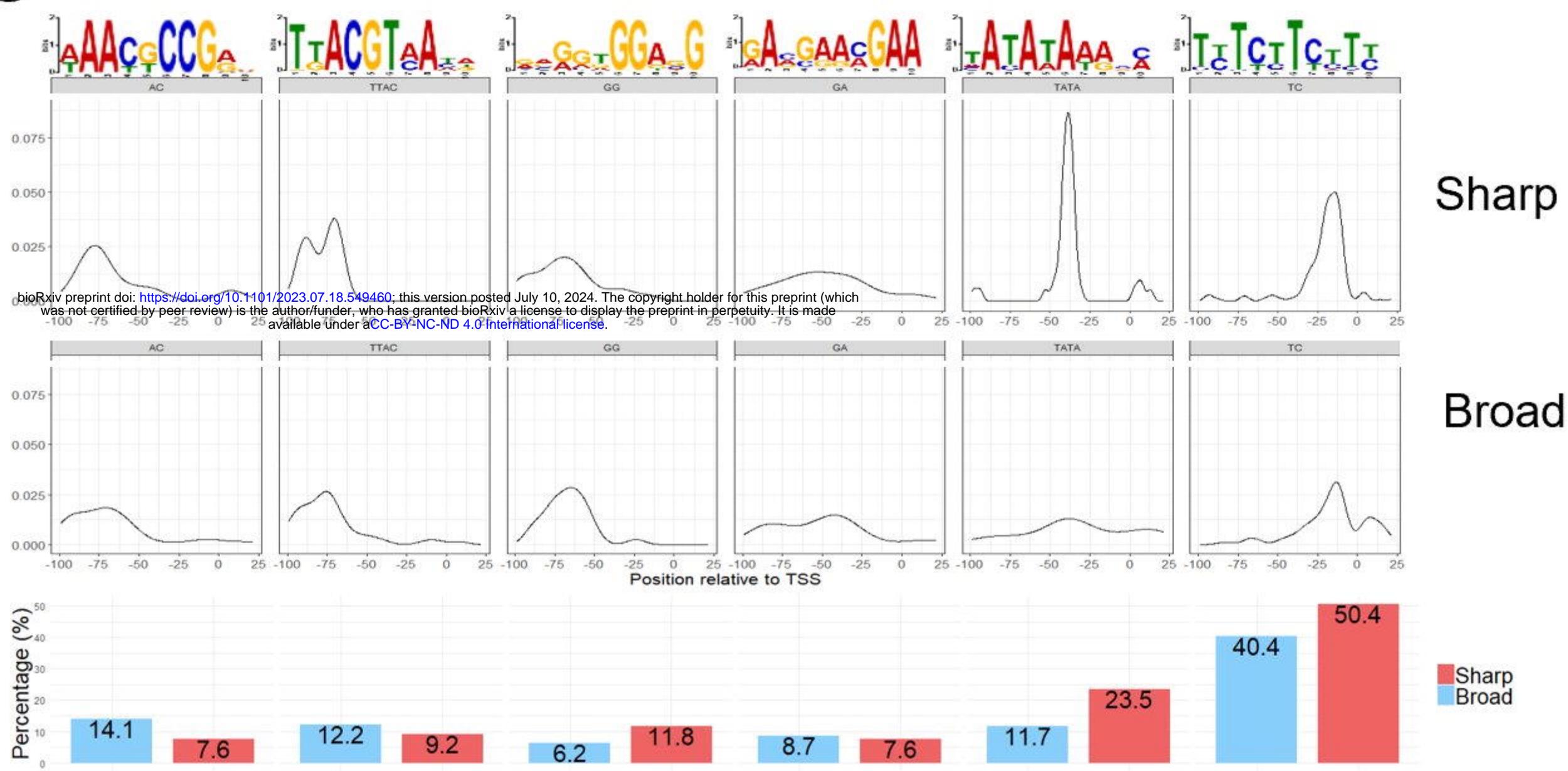
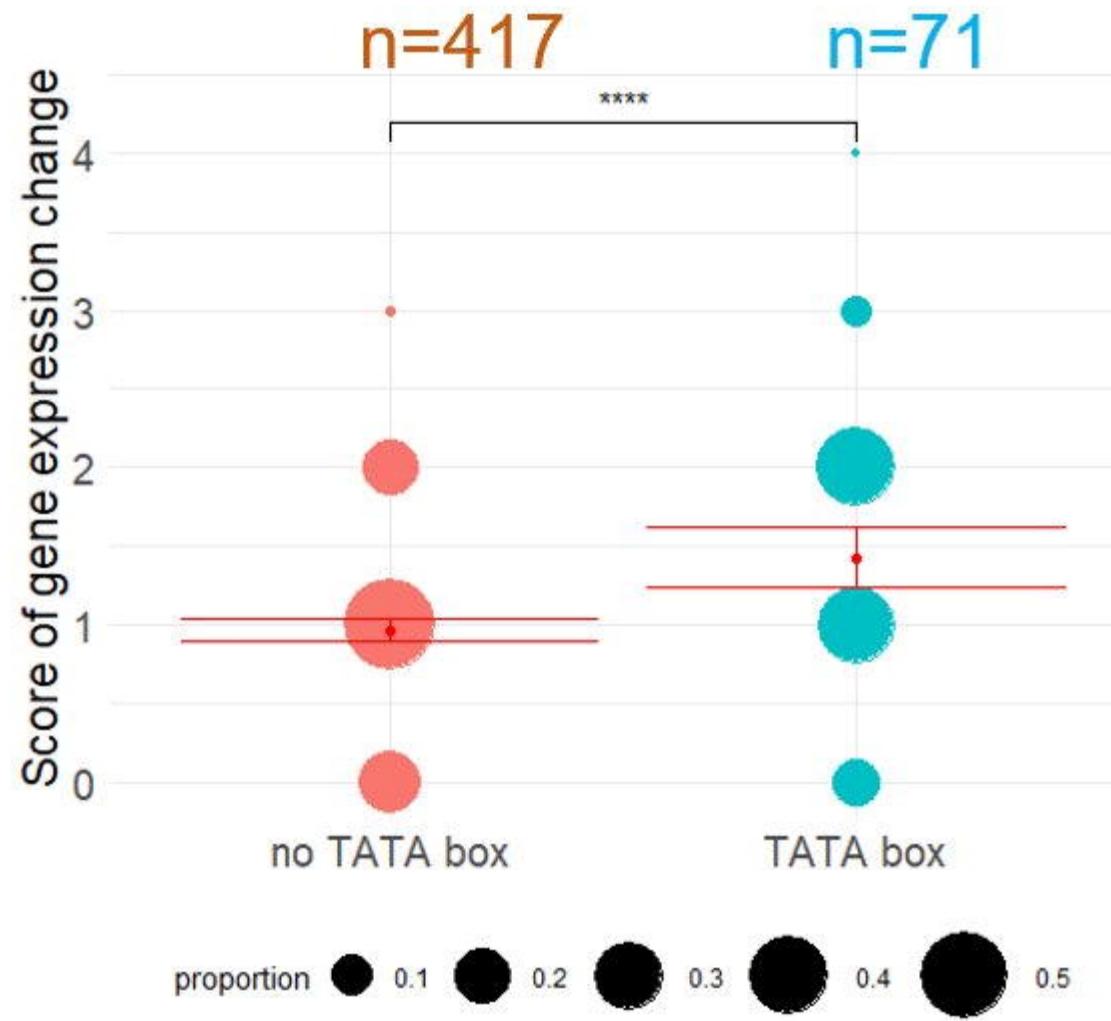
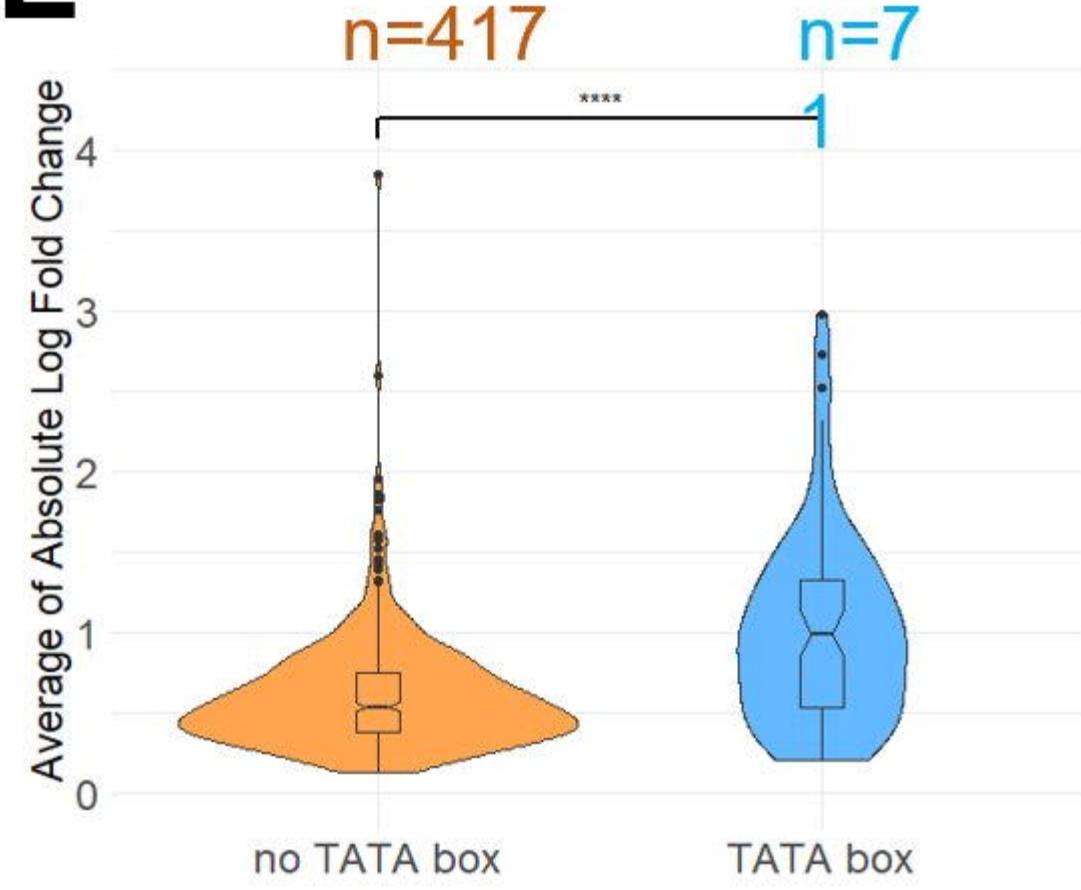
1396 **Supplementary figure S4. Mae102 localization under exponential phase.** The number of
1397 cells with Mea102 nuclear localization is indicated

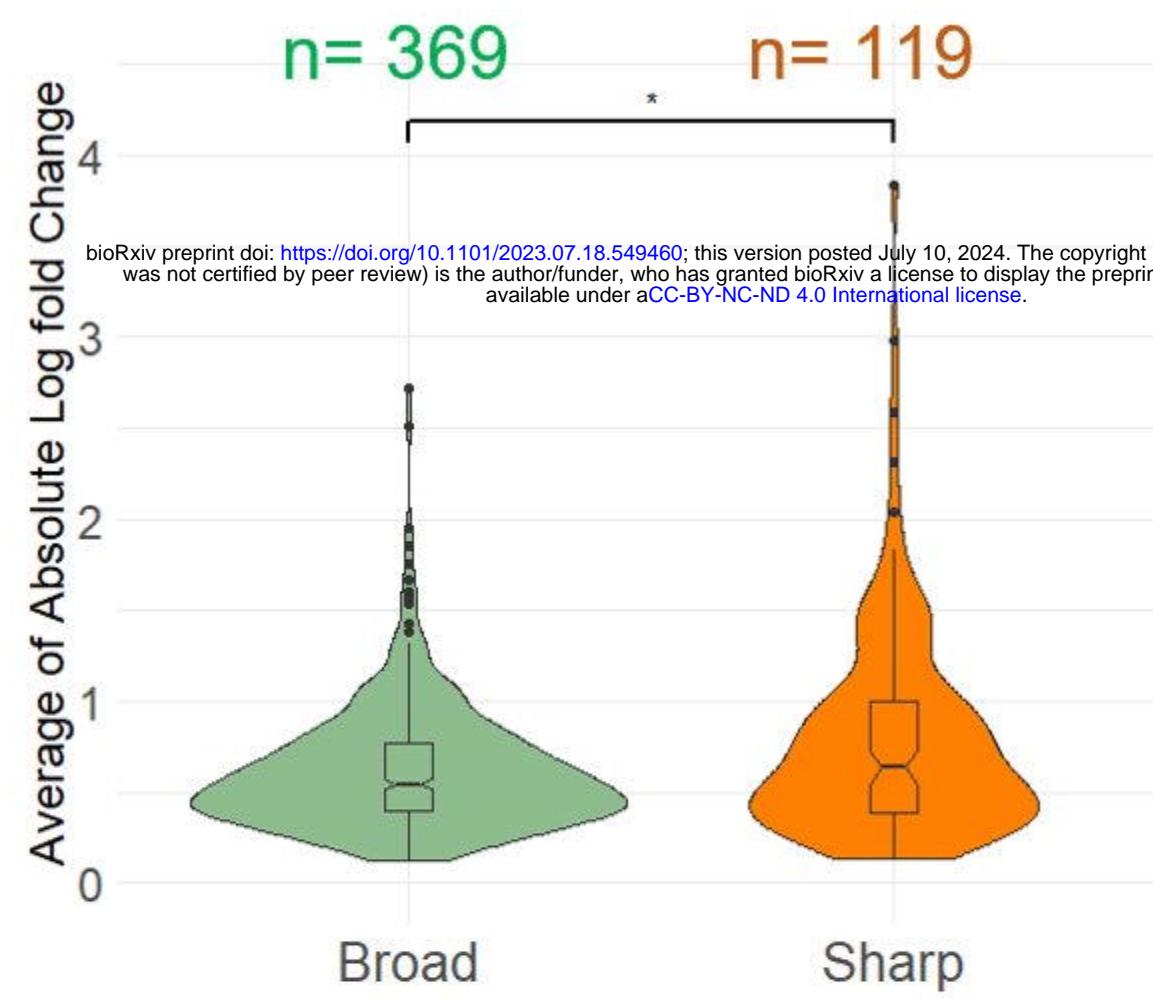
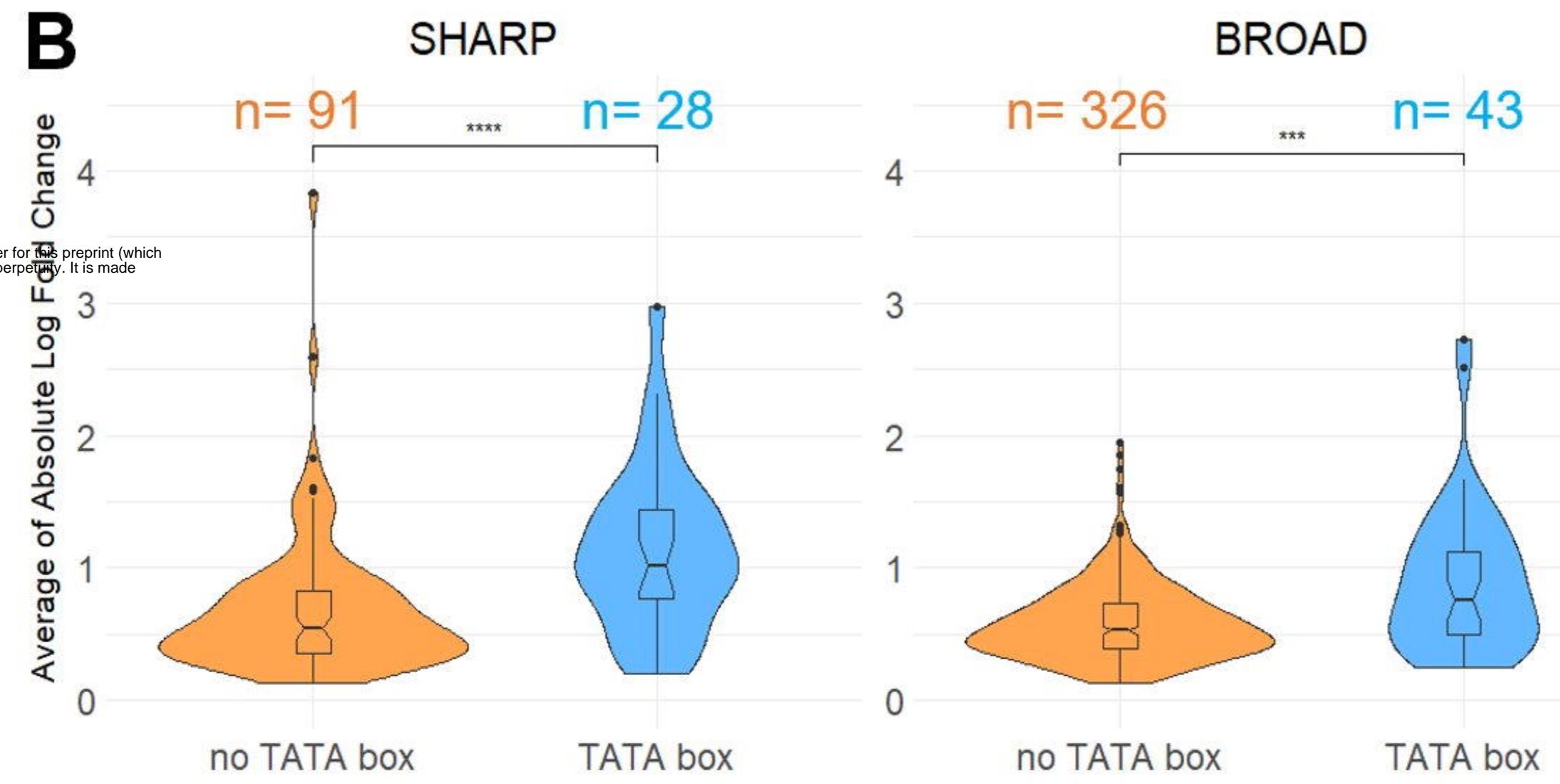
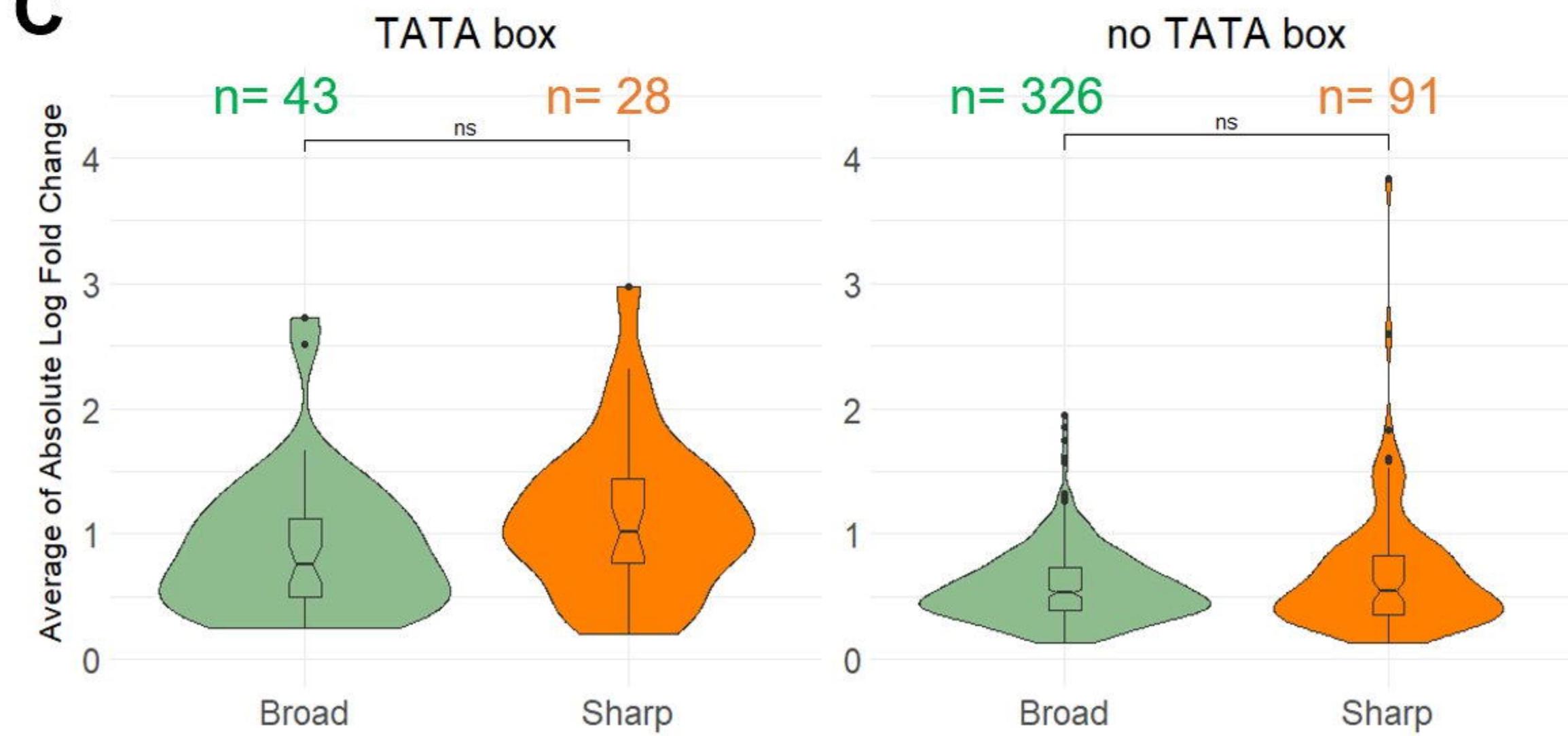
1398 **Supplementary Figure S5. altTSS usage regulation of *SOD1* and *SOD2* genes in**
1399 **exponential and stationary phases.** IGV visualization of RNA-seq (upper tracks) and TSS-
1400 seq (bottom tracks) at the CNAG_01019 (*SOD1*) and CNAG_04388 (*SOD2*) loci when *C.*
1401 *neoformans* cells were cultivated at 30°C under exponential or stationary phase, respectively.

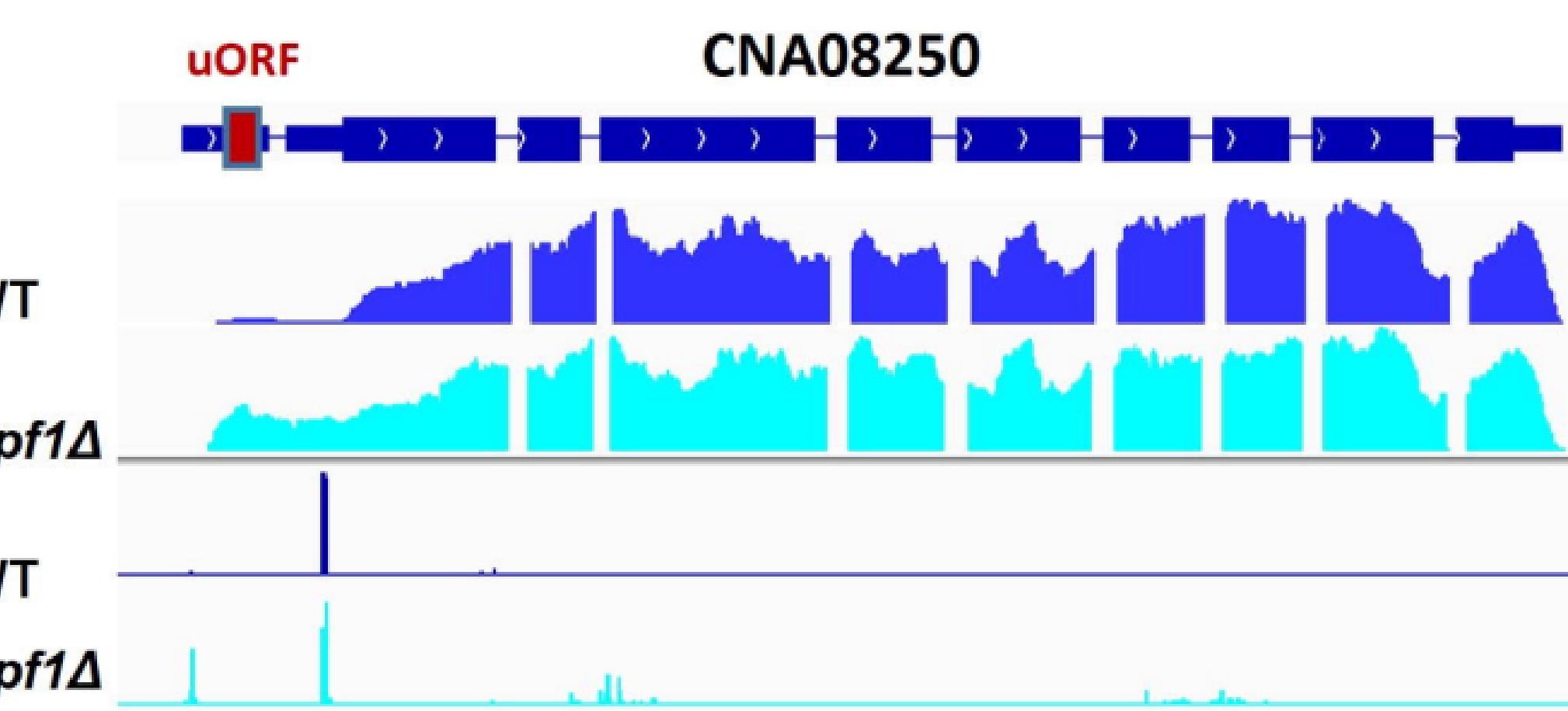
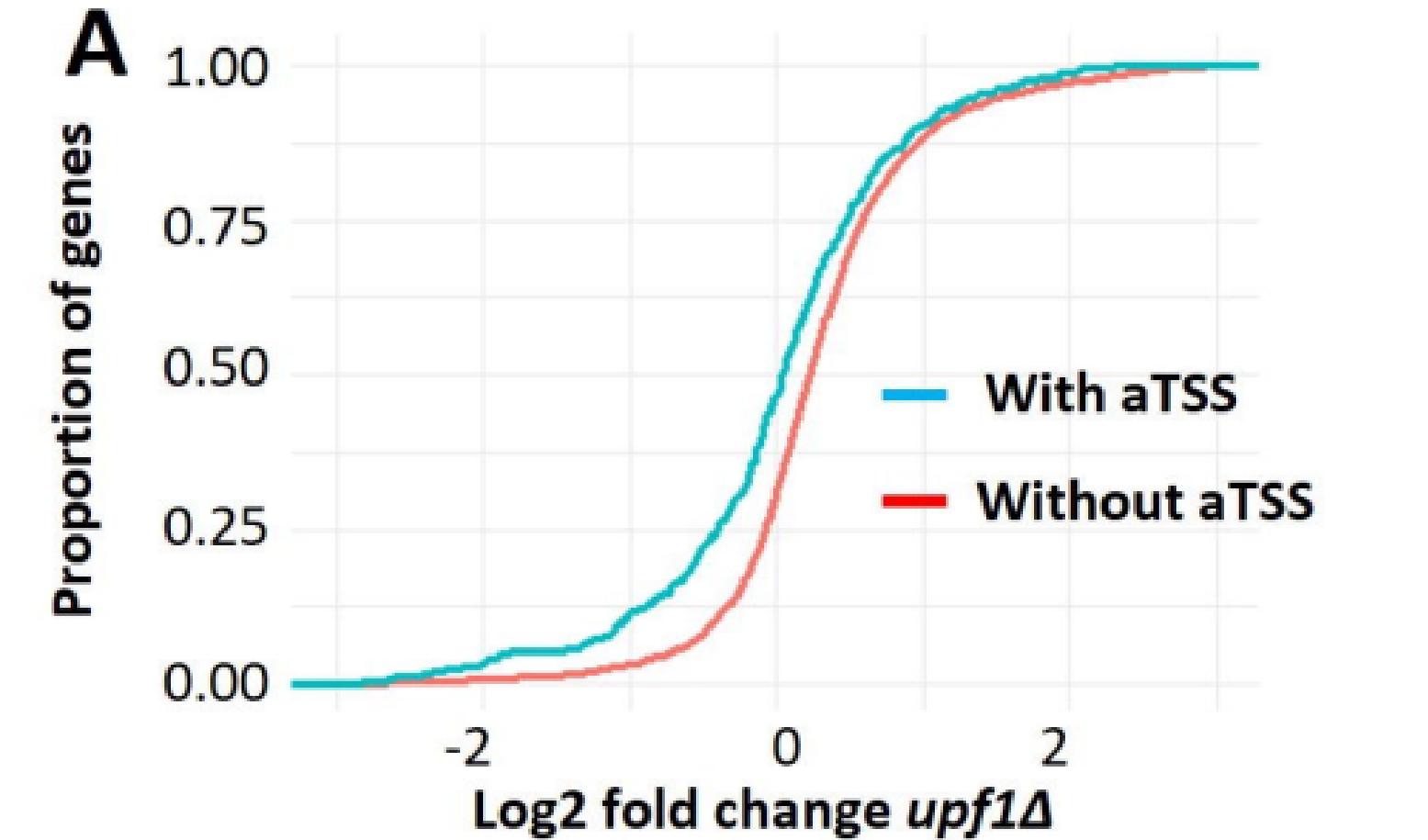
1402

1403 **Supplementary Figure S6. Apparent “non-conserved” altTSS can be conserved between**
1404 ***C. neoformans* and *C. deneoformans*.** IGV visualization of RNA-seq and TSS-seq at the
1405 *VPS70* and *PKP1* loci of *C. neoformans* and *C. deneoformans* obtained when cells were
1406 cultivated at 30°C under stationary phase. At the *C. deneoformans* *VPS70* gene, the same
1407 altTSS observed in *C. neoformans* is visible albeit very poorly used. At the *C. deneoformans*
1408 *PKP1* gene, an altTSS is also visible but not at the same position as the one observed in *C.*
1409 *neoformans*. Interestingly, in both cases, the regulation of altTSS is reversed between species.

1410





1411 **Supplementary Figure S7. Sensitivity of the *tur1Δ* mutant to oxidative agents.** 10-fold
1412 serial dilutions (starting with 10⁷ cells/mL) of the wildtype (WT), *tur1* mutant (*tur1Δ*) and
1413 complemented strain (*tur1Δ TUR1*) cells were spotted on YPD medium containing Cumene
1414 hydroperoxide (CHP), NaNO₂, Sodium dithiocarbamate, rotenone, Dimethyl malonate, or
1415 oligomycin. Plates were incubated 3 days at 30°C before being photographed




1416

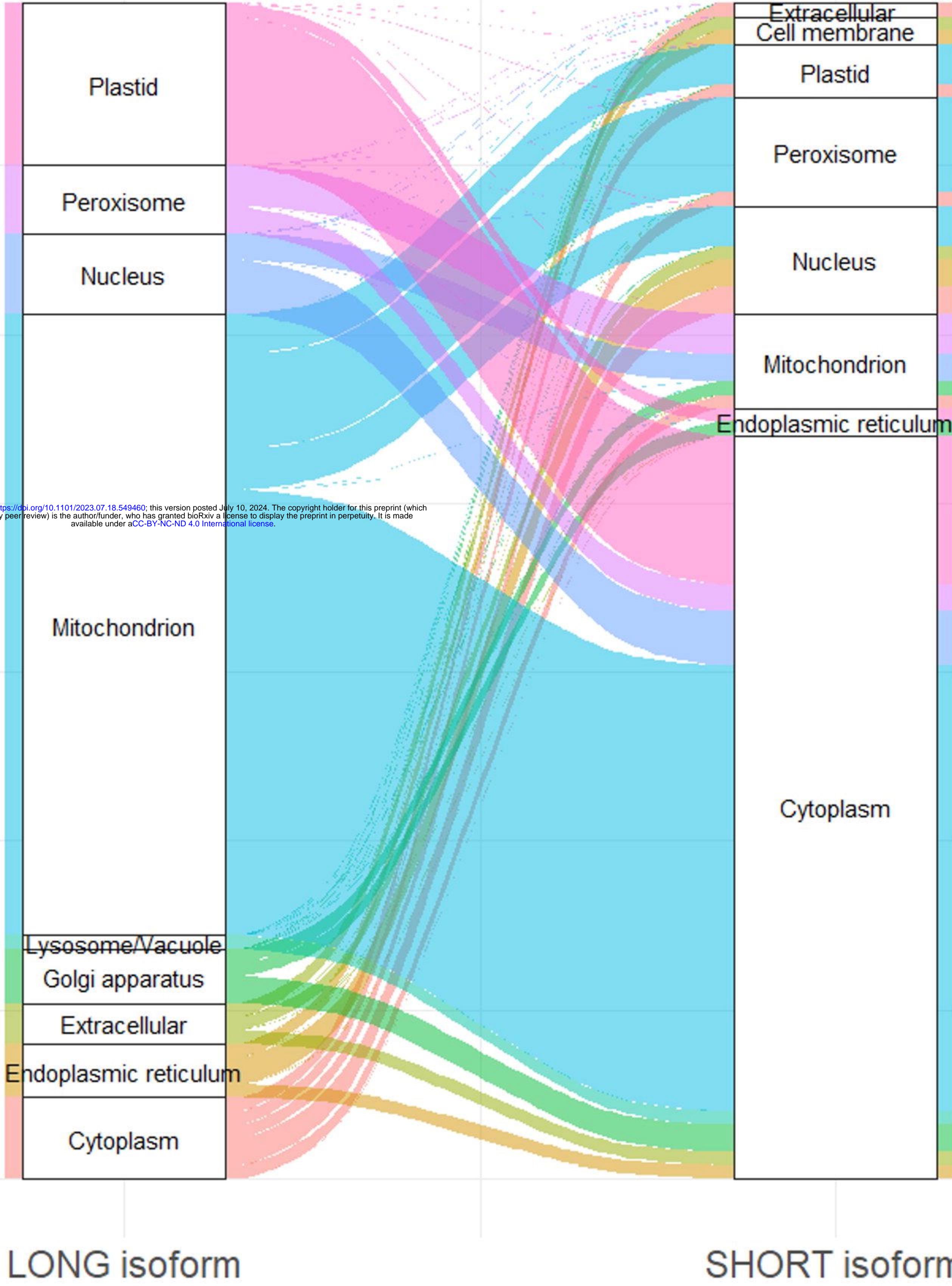


1417 **Supplementary Figure S8. Optimization of TSS data clusterization.** (A) Left panel:
1418 Cumulative percentage of clusters that reach size when testing a range of d values from 1 to
1419 50. Right panel: Correlation between d and percentage of clusters that reach a maximum size.
1420 The red rectangle illustrates the areas where d runs from 12 to 18 in both panels. (B) Left
1421 panel: The data in (A) is modelized as the red smooth curve. Right panel: Correlation between
1422 d and modelized percentage of clusters that reach maximum size, which reaches the
1423 maximum value at d=17 (red line). The data underlying this Figure can be found in S1 Data.

1424

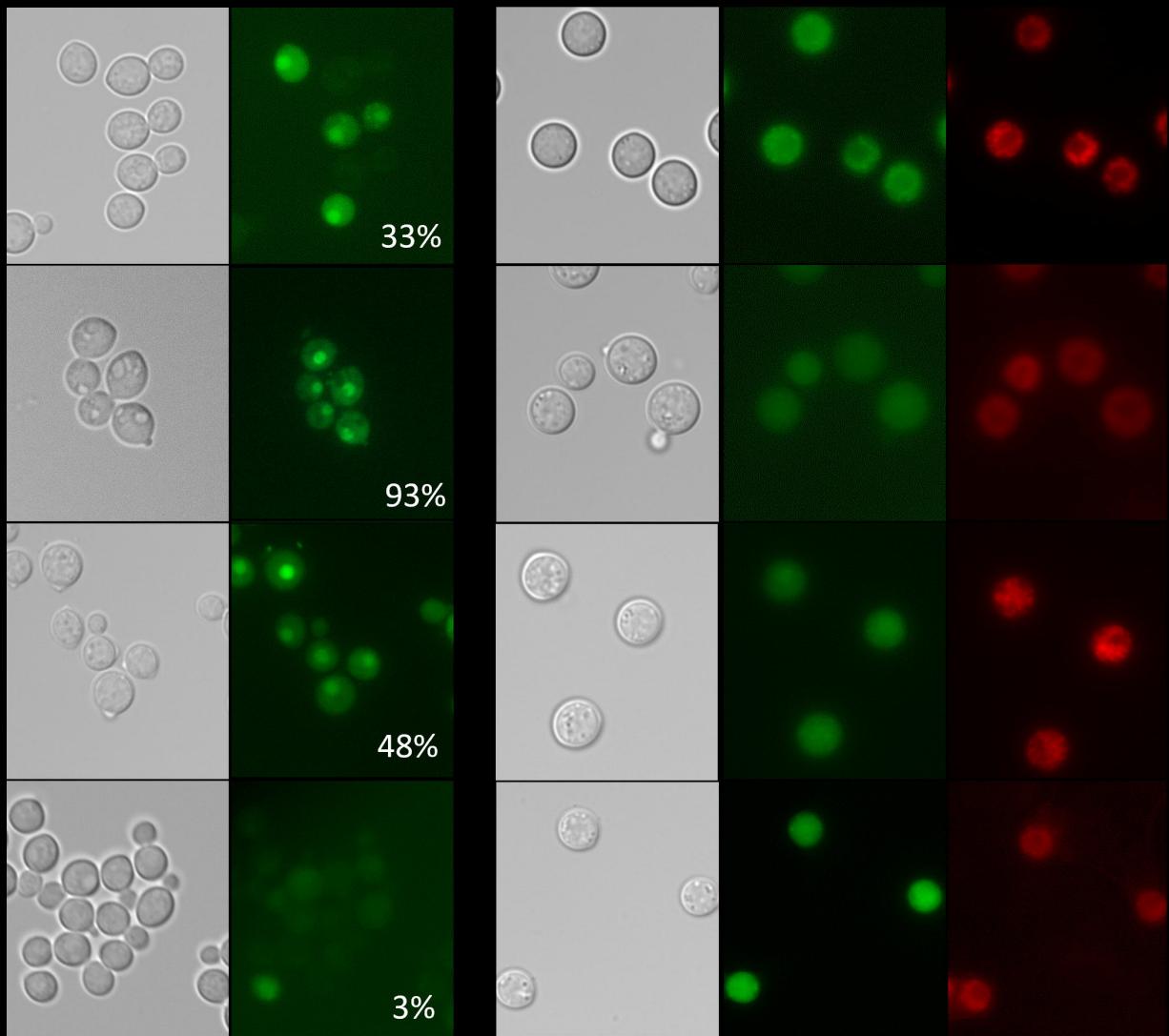
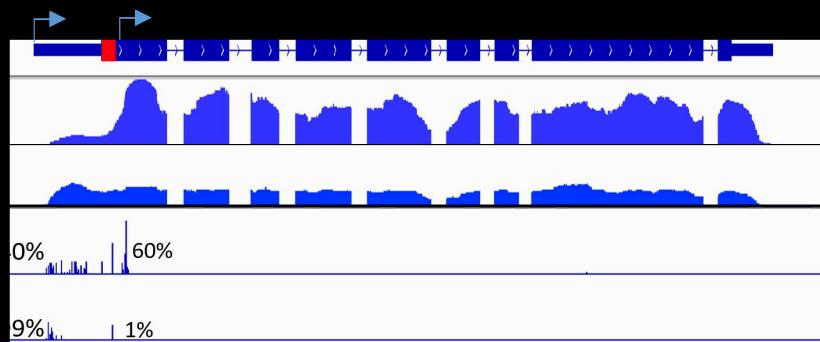
1425

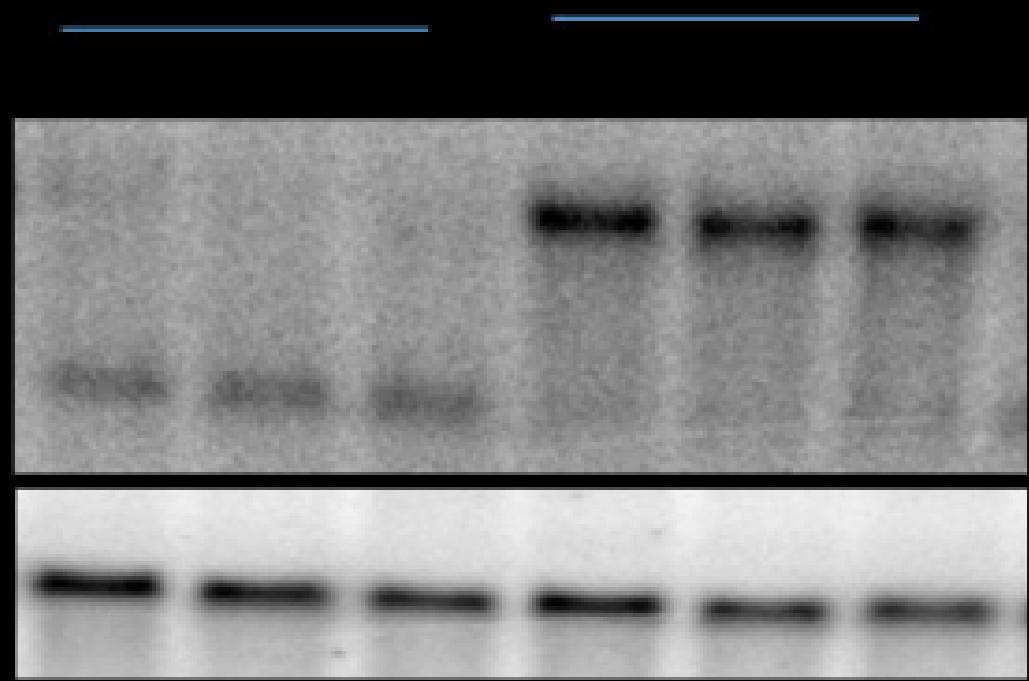
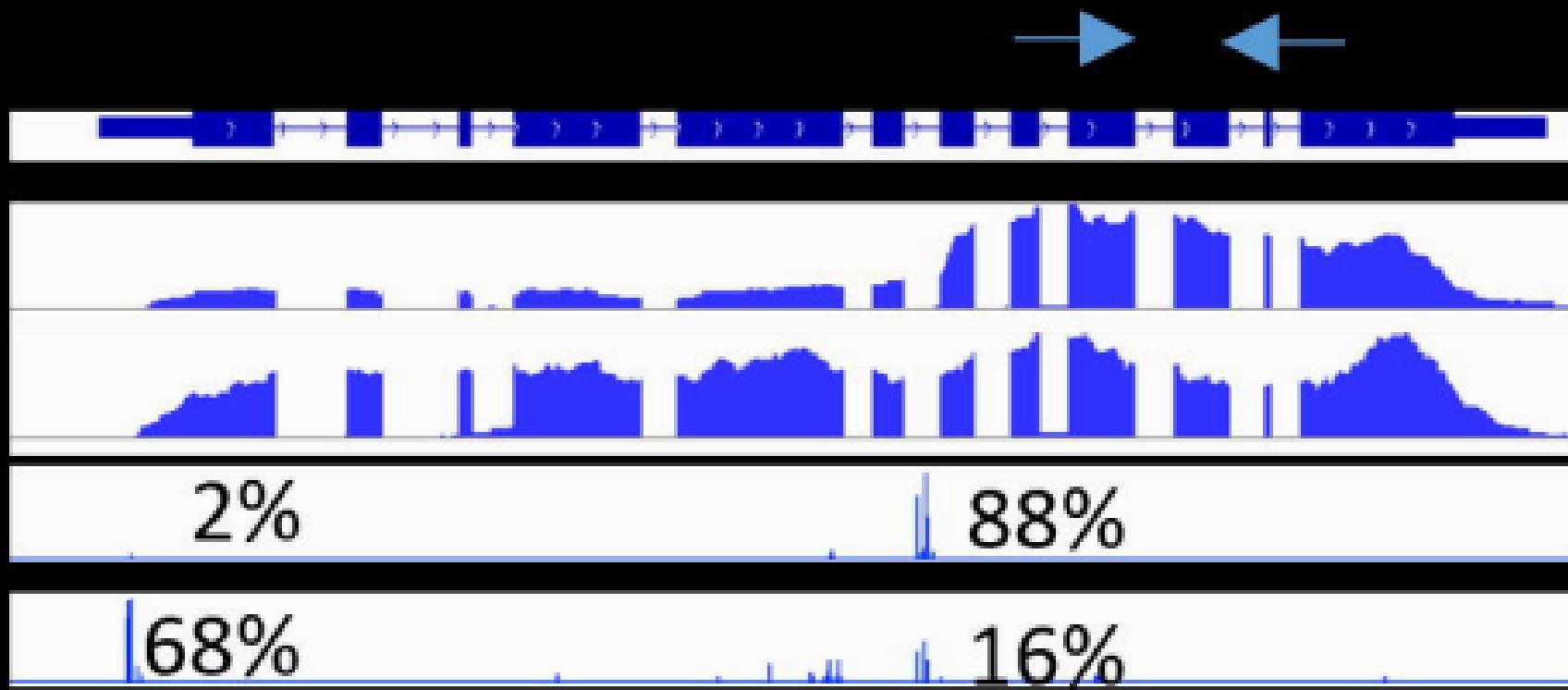
A**B****C****D****E**

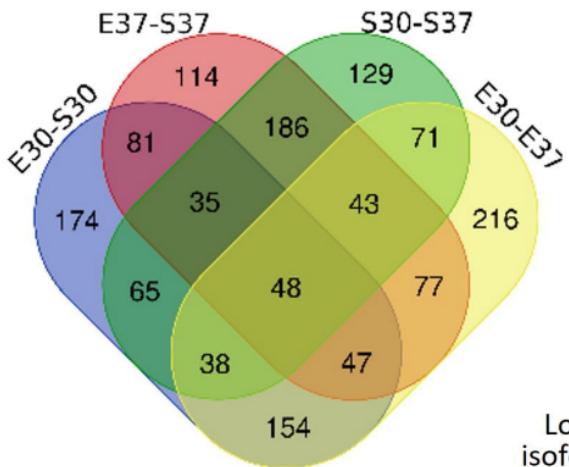
A**B****C**


Number of genes

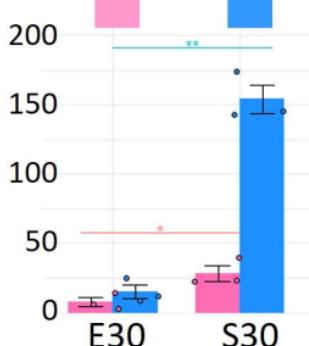
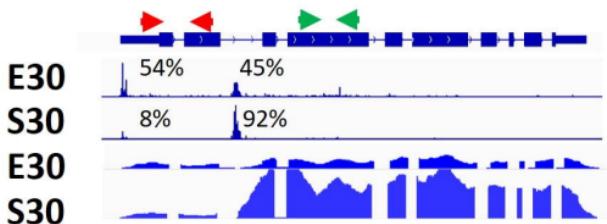
75



50

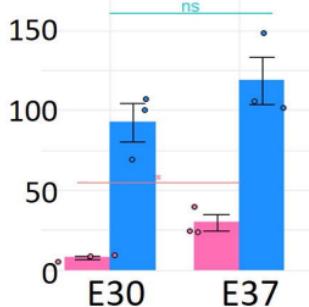
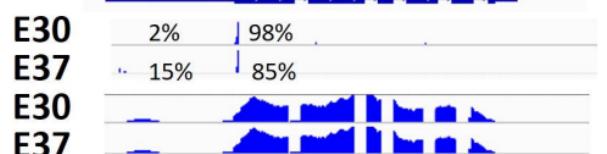


25


0

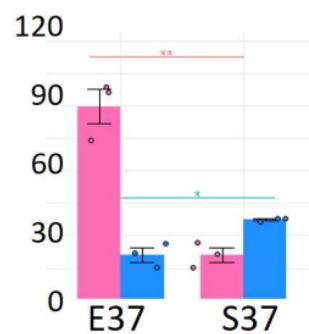
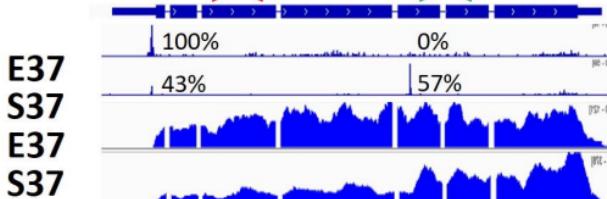
TSS1 TSS2 CNAG 06374 (MAE102)

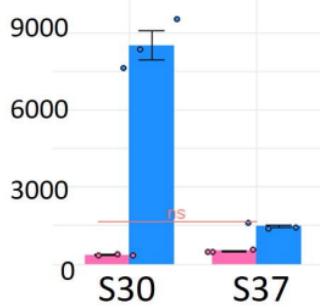
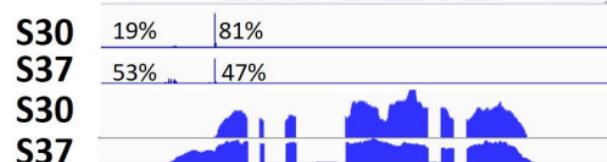



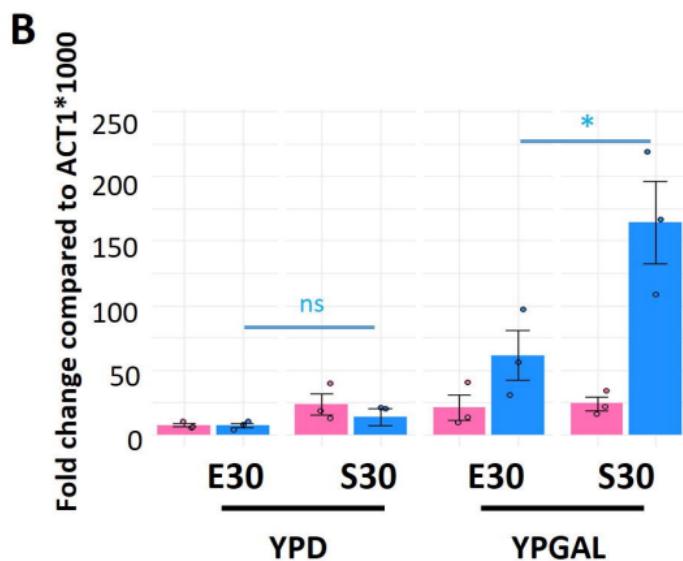
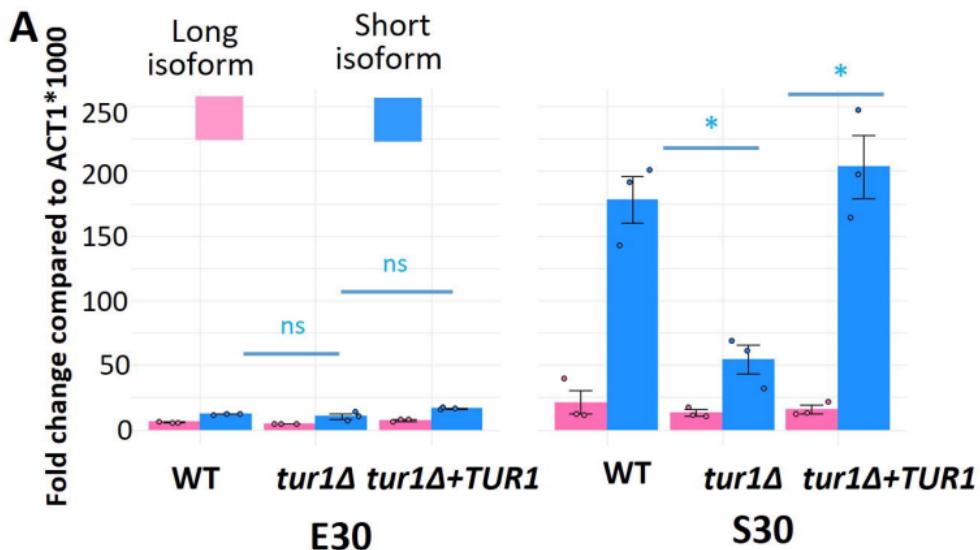
A



Long isoform Short isoform

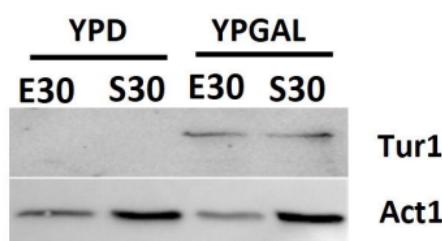
B



CNAG_00047 (*PKP1*)

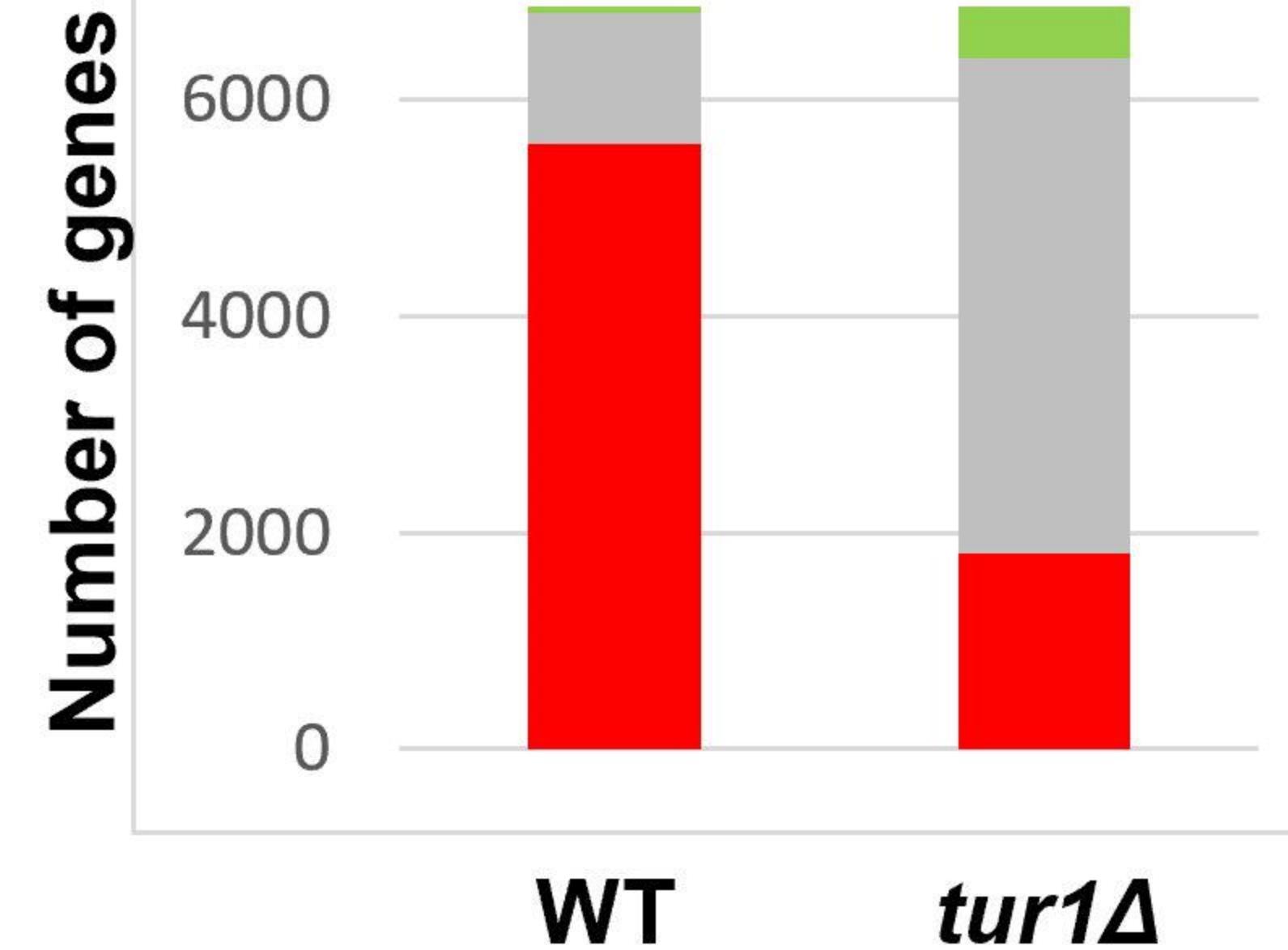


CNAG_03239

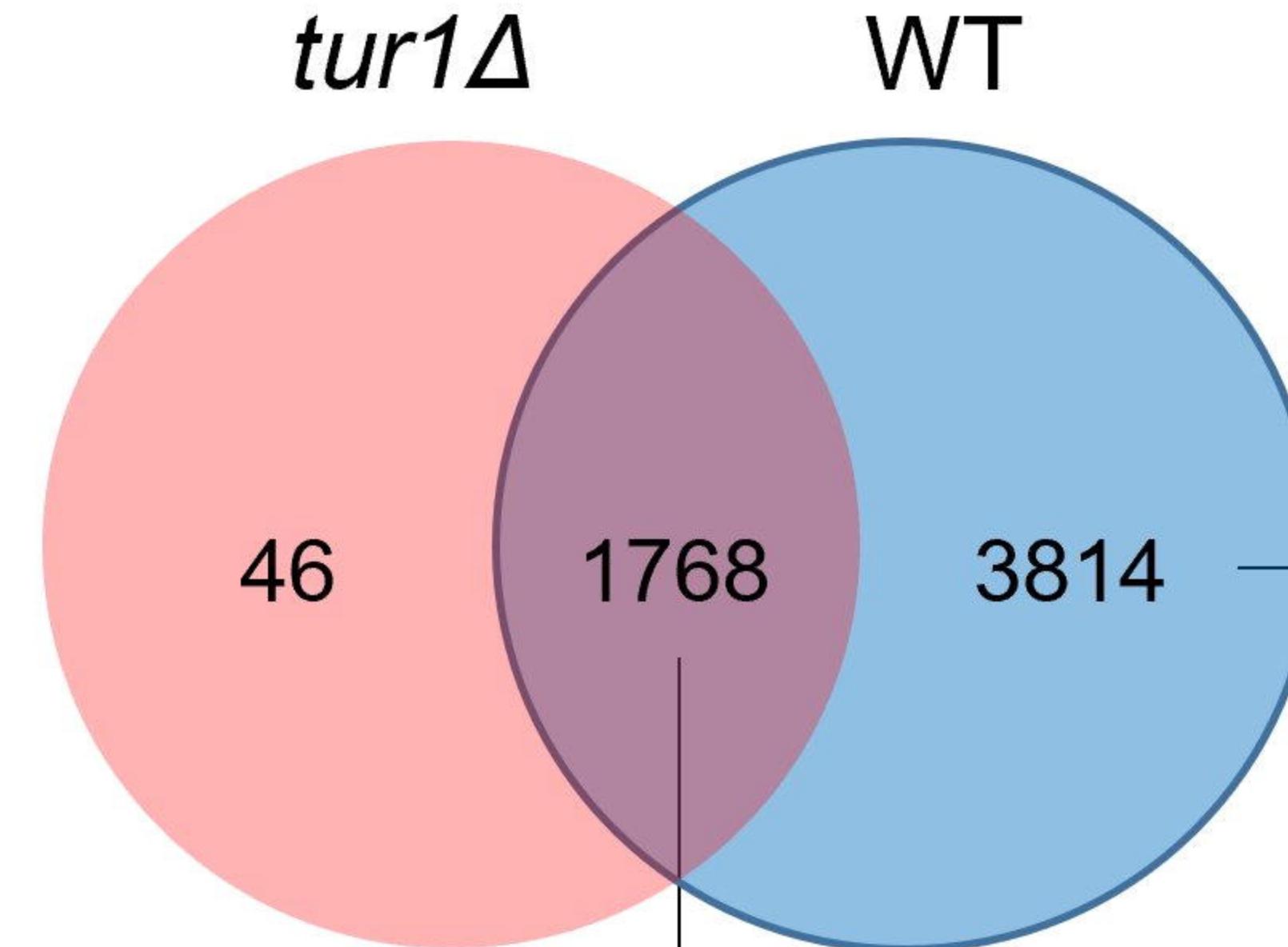



CNAG_00812 (*IRR1*)

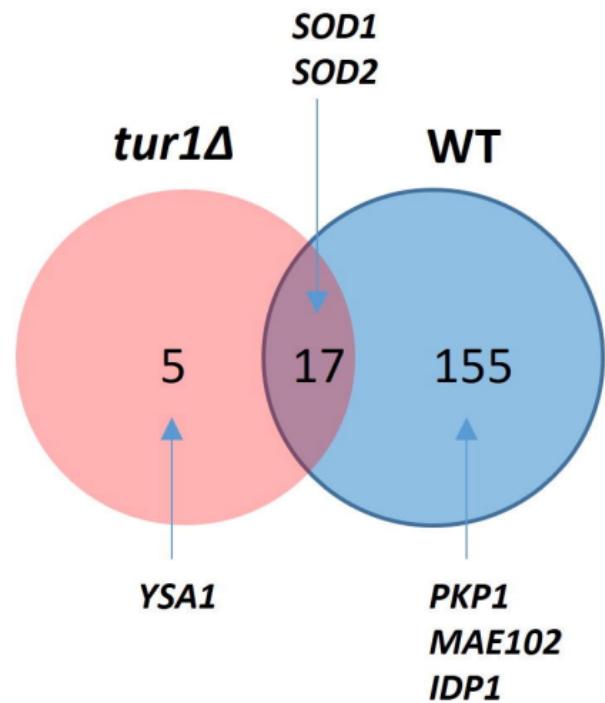
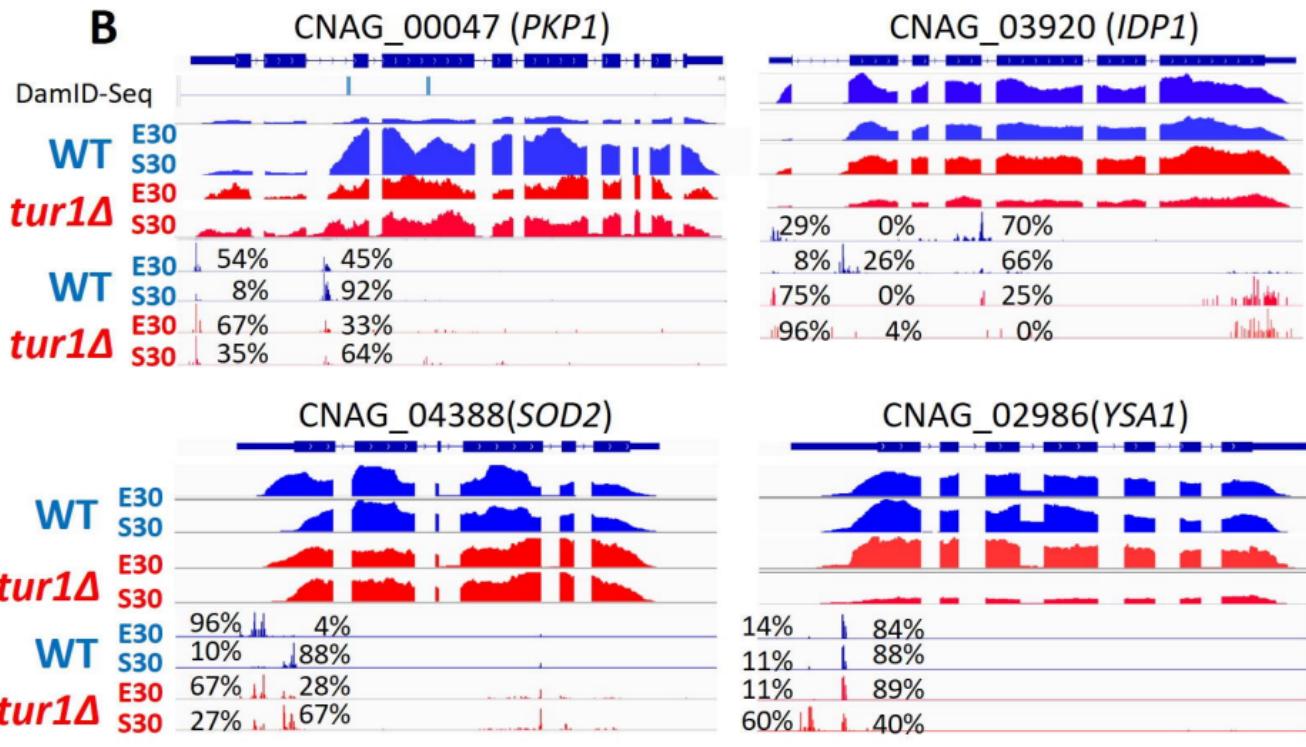


CNAG_01272

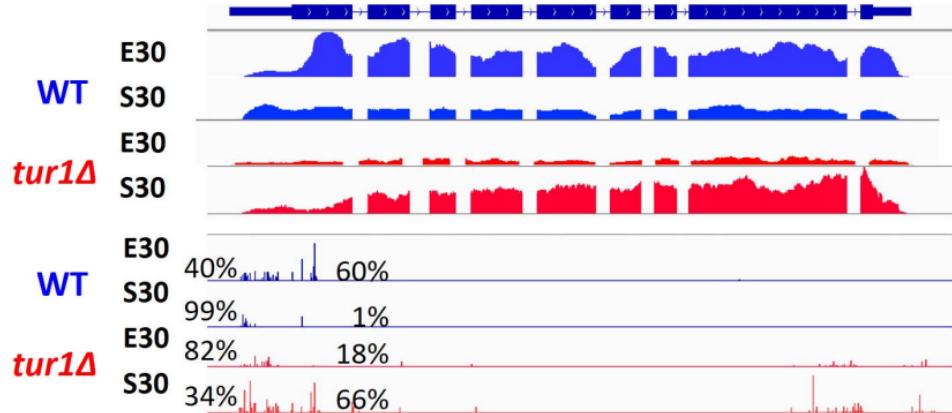



C *P_{GAL7}::2xFlag-CBP::TUR1*

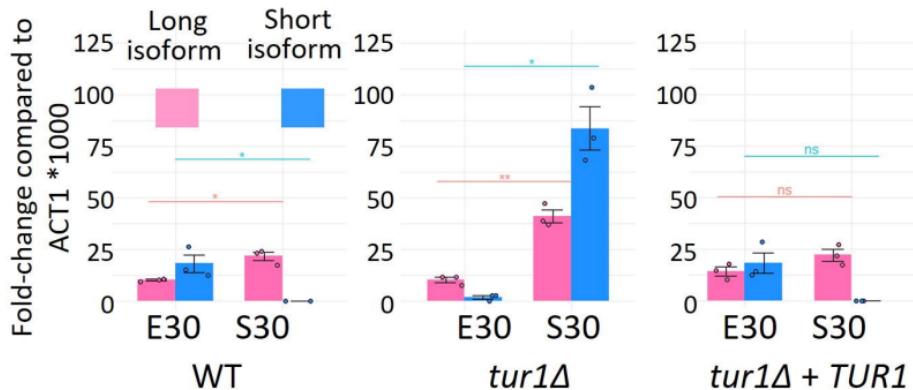
A

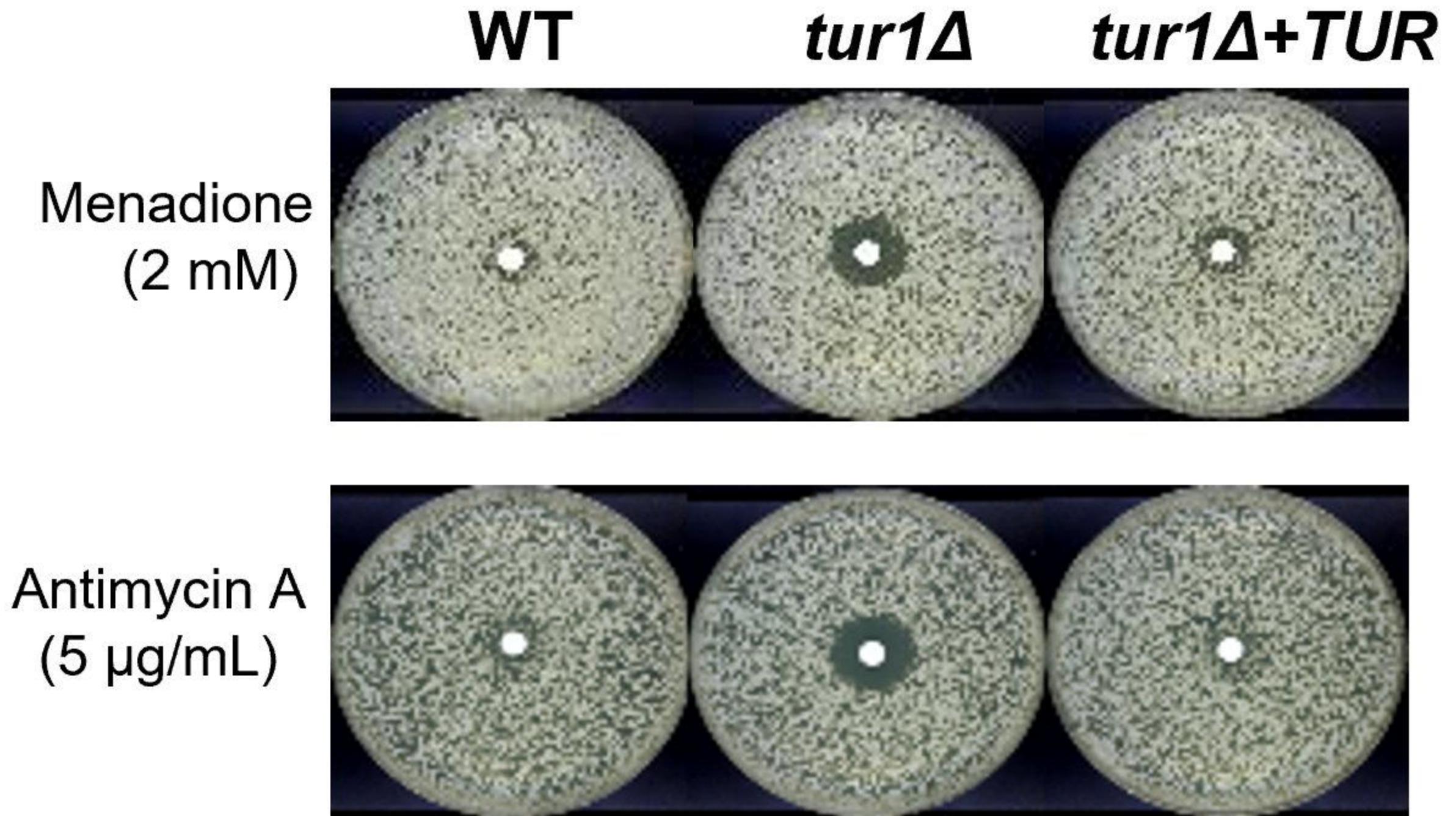
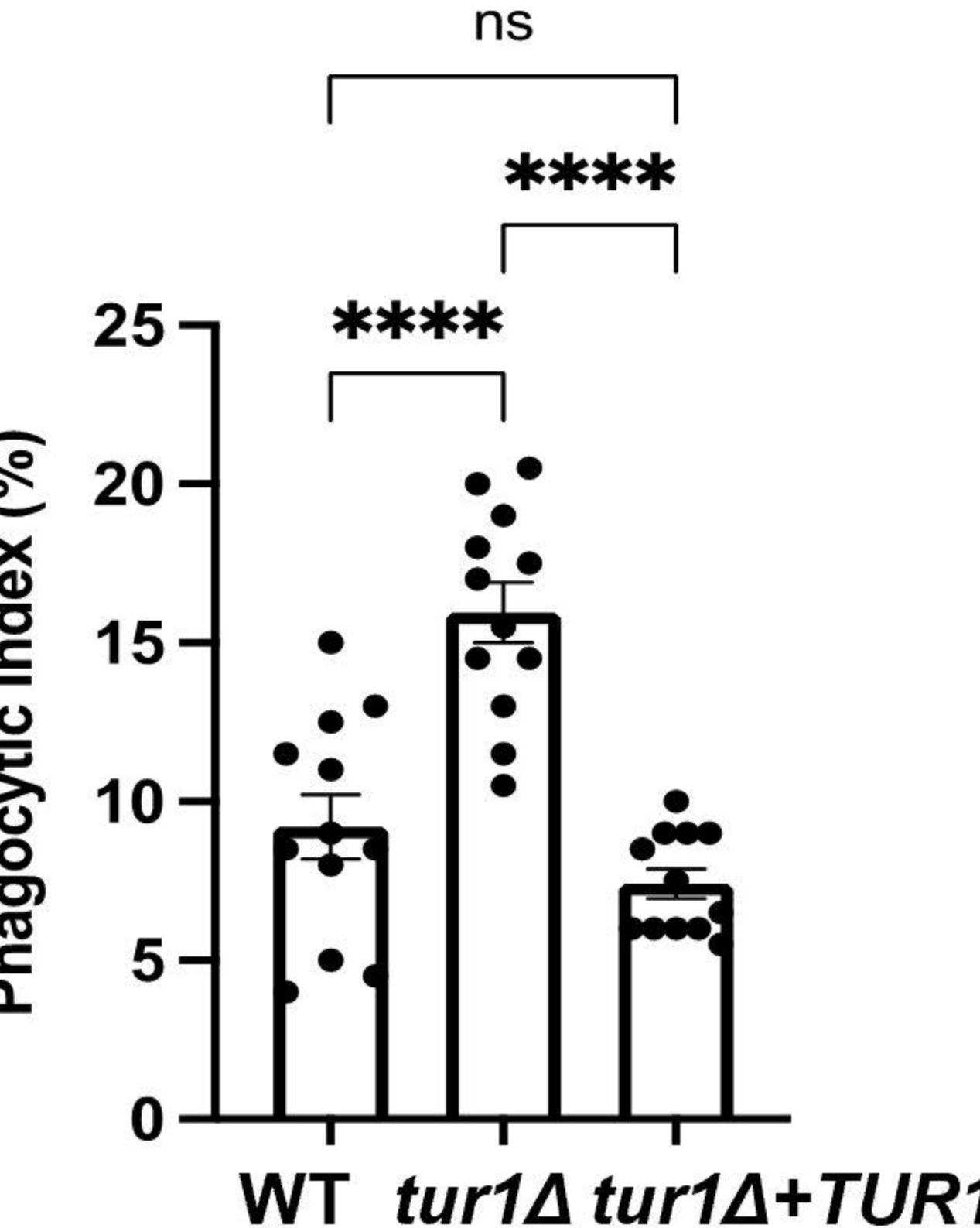



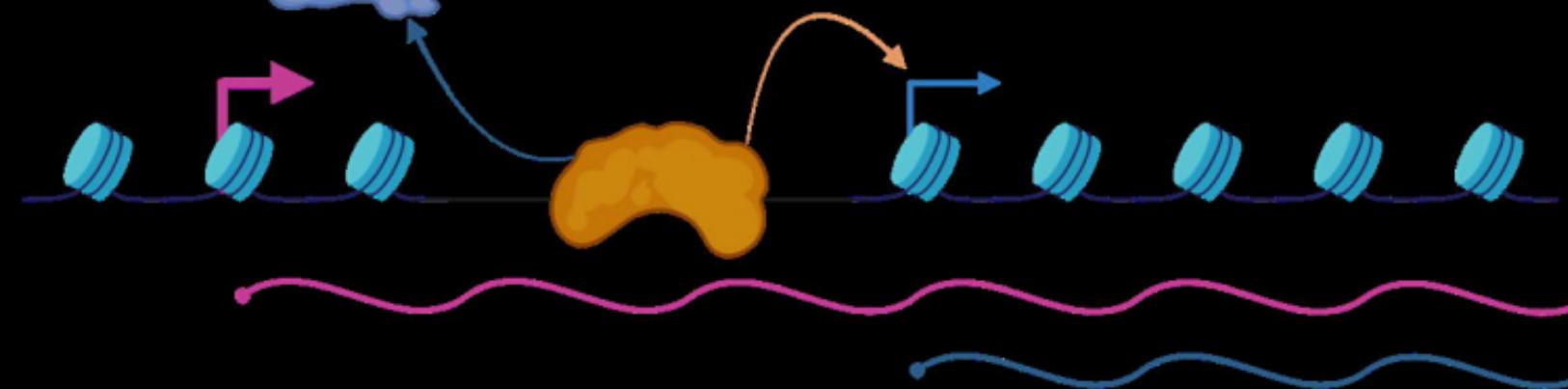
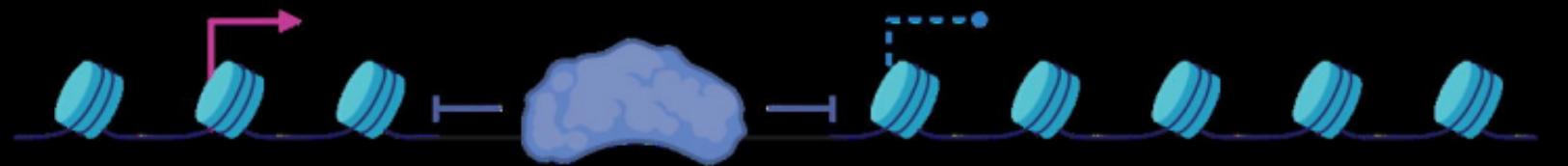
B


Regulation of transcription from PolII promoter, Transcription from PolII promoter, Sequence specific DNA binding PolII transcription factor activity, Regulation of transcription DNA template, Zinc ion binding

Ribosome, Translation, Structural constituent of ribosome, Ribonucleoprotein complex, Intracellular


A**B**



A



CNAG_06374 (MAE102)

B

A**B**

