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Abstract 

Effective population size (Ne) is a pivotal evolutionary parameter with crucial implications in conservation 

practice and policy. Genetic methods to estimate Ne have been preferred over demographic methods because 

they rely on genetic data rather than time-consuming ecological monitoring. Methods based on linkage 

disequilibrium, in particular, have become popular in conservation as they require a single sampling and 

provide estimates that refer to recent generations. A software programme based on the linkage disequilibrium 

method, GONE, looks particularly promising to estimate contemporary and recent-historical Ne (up to 200 

generations in the past). Genomic datasets from non-model species, especially plants, may present some 

constraints to the use of GONE, as linkage maps and reference genomes are seldom available, and SNP 

genotyping is usually based on reduced-representation methods. In this study, we use empirical datasets from 

four plant species to explore the limitations of plant genomic datasets when estimating Ne using the algorithm 

implemented in GONE, in addition to exploring some typical biological limitations that may affect Ne 

estimation using the linkage disequilibrium method, such as the occurrence of population structure. We show 

how accuracy and precision of Ne estimates potentially change with the following factors: occurrence of 

missing data, limited number of SNPs/individuals sampled, and lack of information about the location of SNPs 

on chromosomes, with the latter producing a significant bias, previously unexplored with empirical data. We 

finally compare the Ne estimates obtained in GONE for the last generations with the contemporary Ne 

estimates obtained in the programmes currentNe and NeEstimator. 
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Introduction 

Effective population size (Ne) is an evolutionary parameter introduced by Sewall Wright (Wright 

1931), which determines the rate of genetic change due to genetic drift and is therefore linked with 

inbreeding and loss of genetic variation in populations, including adaptive potential (Franklin 1980; 

Jamieson and Allendorf 2012; Waples 2022). The importance of contemporary effective population 

size in conservation biology is increasingly recognized, and the concept implemented in conservation 

practice (Luikart et al. 2010; Frankham et al. 2014; Montes et al. 2016) and policy (Hoban et al. 2013; 

Graudal et al. 2014; Kershaw et al. 2022; O’Brien et al. 2022). For example, Ne has been included as a 

headline genetic indicator to support Goal A and Target 4 of the Kunming-Montreal Global 

Biodiversity Framework of the UN’s Convention on Biological Diversity (CBD 2022), as the proportion 

of populations within species with Ne > 500, that are expected to have sufficient genetic diversity to 

adapt to environmental change (Jamieson and Allendorf 2012; Hoban et al. 2020).  

Contemporary Ne can be estimated using demographic or genetic methods (Wright 1969; Luikart et 

al. 2010; Wang et al. 2016; Waples 2016; Felsenstein 2019). Demographic estimators require 

detailed ecological observations over time for the populations of interest (Wright 1969; Nunney 

1993; Felsenstein 2019), which is not necessary for genetic estimators (Wang et al. 2016; Waples 

2016). Methods that can provide Ne estimates based on a single sampling point in time (Wang 2016) 

have become particularly popular, especially in studies focused on species for which budget and 

time allocated are limited, elusive species that are difficult to track and monitor (Luikart et al. 2010), 

and species for which information about distribution is scarce. The current biodiversity crisis and the 

limited resources for conservation have recently fuelled the development and application of Ne 

estimators that rely on cost-effective, non-genetic proxy data across a wide range of species of 

conservation concern (Hoban et al. 2020, 2021a). Population census size, NC, has been used to infer 

Ne when genetic Ne estimates are not available, relying on the ratio Ne/NC = 0.1 (where NC is the adult 

census size of a population) (Palstra and Fraser 2012; Frankham et al. 2014; Hoban et al. 2021b). This 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 20, 2024. ; https://doi.org/10.1101/2023.07.18.549323doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.18.549323
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

rule-of-thumb ratio is pragmatic for conservation (but see Fady and Bozzano 2021), as shown in 

application tests in different countries for different species of conservation concern (Thurfjell et al. 

2022; Hoban et al. 2023). However, research needs to progress to better understand Ne estimation 

methods and potential deviations from the ratio Ne/NC = 0.1, which are expected for example across 

populations within species or in species with life-history traits that favour individual persistence 

(Jamieson and Allendorf 2012; Hoban et al. 2020, 2021b; Frankham 2021; Laikre et al. 2021; Gargiulo 

et al. 2023). Current genetic estimators of contemporary Ne work well in small and isolated 

populations, which match many populations of conservation concern, but they are difficult to apply 

in species with a large and continuous distribution (Fady and Bozzano 2021; Santos-del-Blanco et al. 

2022). In such species, genetic isolation by distance, overlapping generations, and difficulty to define 

representative sampling strategies can affect the accuracy of estimates of NC, Ne and their ratio 

(Neel et al. 2013; Nunney 2016; Santos-del-Blanco et al. 2022). Plant species embody some of the 

features mentioned above, as they often have complex life-history traits (e.g., overlapping 

generations, long lifespans), reproductive systems (i.e., mixed clonal and sexual reproduction, mixed 

selfing and outcrossing strategies) and continuous distribution ranges (Petit and Hampe 2006; De 

Kort et al. 2021). Therefore, they are particularly interesting to help improve our understanding of Ne 

estimation methods. 

Genetic drift generates associations between alleles at different loci, known as linkage 

disequilibrium (LD), at a rate inversely proportional to Ne (Hill, 1981; Waples et al. 2016). LD between 

loci can be used to obtain a robust estimate of contemporary Ne from genetic data at a single time 

point, and this explains the popularity of the LD method compared to the earlier developed two-

sample temporal methods (Luikart et al. 2010; Waples 2023) and the development of numerous 

tools for the estimation of LDNe from genetic and genomic data (Do et al. 2014; Barbato et al. 2015; 

Wang et al. 2016; Santiago et al. 2020). The Ne estimates obtained with the LD method generally 

refer to a few generations back in time (Luikart et al. 2010; Do et al. 2014) and, depending on the 

genetic distances between loci, it is possible to obtain Ne at different times in the past (Santiago et 
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al. 2023; see also the review on timescales of Ne estimates in Nadachowska-Brzyska et al. 2022). In 

particular, LD between closely linked loci can be used to estimate Ne over the historical past (Sved 

1971; Hayes et al. 2003; Qanbari et al. 2010; Do et al. 2014; Barbato et al. 2015; Wang et al. 2016; 

Santiago et al. 2020), whereas loosely linked or unlinked loci can be used to estimate Ne in the 

recent past (Waples 2006a; Waples and Do 2008; Sved et al. 2013; Wang et al. 2016; Qanbari 2019). 

However, as other methods to estimate Ne, the LD method is not devoid of biases and drawbacks, 

mostly relating to the assumption that the population is isolated, which is rarely satisfied (Hill 1981; 

England et al. 2010; Waples and England 2011; Waples 2023), and to the occurrence of age-structure 

in populations (Nunney 1991; Yonezawa 1997; Waples and Do 2010; Robinson and Moyer 2013; 

Waples et al. 2014; Hössjer et al. 2016; Ryman et al. 2019). 

In this study, we aimed to explore the limitations of plant genomic datasets when estimating 

contemporary Ne. We mostly focused on estimating Ne using the software programme GONE 

(Santiago et al. 2020), but we also provide Ne estimates obtained in NeEstimator (Do et al. 2014) and 

the recently developed programme, currentNe (Santiago et al. 2023). These programmes provide 

recent historical and contemporary Ne estimates, respectively, using the LD method, though they 

differ mostly in the data requirement and timescales of estimates provided. GONE is the first 

programme using the LD method capable of exploiting the full range of LD among loci in a dataset, 

therefore providing Ne estimates that are reliable up to 200 generations ago; NeEstimator and 

currentNe provide Ne estimates that represent the average over few recent generations, and the 

exact number of generations representing an estimate increases with the number of chromosomes 

of the species (Santiago et al. 2023). 

We explored the technical requirements of GONE by conducting power analyses aimed at testing 

how the number of SNPs, the proportion of missing data, the number of individuals, the lack of 

information about the location of SNPs on chromosomes, and the occurrence of population 

structure might affect Ne estimation. The Ne estimates obtained in GONE were then compared to the 
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ones obtained in NeEstimator and currentNe, and discussed in light of the biological and ecological 

features of the species. Our findings help better understand the limitations and potentialities of 

genomic datasets when estimating LD-based, one-sample Ne, providing new insights on how to use 

current methods. 

 

Methods 

Datasets 

We selected four datasets obtained with different high-throughput sequencing techniques from 

different plant taxa (Symphonia globulifera L.f. (Clusiaceae), Mercurialis annua L. (Euphorbiaceae), 

Fagus sylvatica L. (Fagaceae), Prunus armeniaca L. (Rosaceae)), to represent different botanical 

groups, ecosystems, generation times and reproductive strategies. Sampling strategies in the 

datasets encompassed different sample sizes for markers and individuals, and datasets featured 

distinct levels of population genetic structure (Table 1).  

For boarwood, S. globulifera s.l., a widespread and predominantly outcrossing evergreen tree typical 

of mature rainforests in Africa and the Neotropics (Degen et al. 2004; Torroba-Balmori et al. 2017), 

we used the targeted sequence capture dataset described in Schmitt et al. (2021). Three sympatric 

gene pools were identified in a lowland forest in French Guiana, likely corresponding to three 

biological species, described as Symphonia sp. 1, Symphonia sp. 2 and Symphonia sp. 3 (Schmitt et al. 

2021). To avoid the influence of admixture on the estimation of Ne, we first divided the dataset in 

three subsets based on the analysis of genetic structure performed in the software Admixture v1.3.0 

(see Schmitt et al. 2021), selecting only the individuals with a Q-value (cluster membership 

coefficient) ≥ 95% to each of the three genetic clusters (Species 1, Species 2 and Species 3; 
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Supplementary File 1). We then selected the 125 genomic scaffolds with the largest number of SNPs 

(see Table 1).  

For the annual mercury, M. annua, an annual plant with variable mating systems (monoecious, 

dioecious, androdioecious), ploidy levels (2x, 4x-12x) (Obbard et al. 2006b, a), potential to produce 

seed banks, and typical of open or disturbed habitats in Europe and North Africa, we used the gene 

capture data set described in (González-Martínez et al. 2017), obtained from 40 diploid dioecious 

individuals grown from seeds, representative of ten localities and three main gene pools in the 

species (as described after the fastStructure analysis in González-Martínez et al. 2017). We selected 

the 48 scaffolds with the largest number of SNPs and ran the analyses by considering separately 

each gene pool: (1) ancestral populations from Turkey and Greece (“Core”), (2) range-front 

populations from northeastern Spain (“Mediterranean”), or (3) range-front populations from 

northern France and the UK (“Atlantic”) (see Table 1).  

For the common beech, F. sylvatica, a deciduous predominantly outcrossing tree of European 

temperate forests (Merzeau et al. 1994), we analysed genomic scaffolds from a single, contiguous 

stand (plot N1; (Oddou-Muratorio et al. 2021)) within a relatively isolated French population (Mt. 

Ventoux, southeastern France), in which population genetic structure is neither observed nor 

expected (Csilléry et al. 2014). Mapping of short-reads paired Illumina sequences was independently 

performed for each one of the 167 individuals of the population against the genome assembly 

(available at www.genoscope.cns.fr/plants) using bwa-mem2 2.0 (Li and Durbin 2009). SNPs were 

first called using GATK 3.8 (Van der Auwera and O’Connor 2020) using the following parameters: -nct 

20 -variant_index_type LINEAR variant_index_parameter 128000. SNPs were also called using 

samtools v1.10 / bcftools v1.9 (Danecek et al. 2021) with default parameters. Following these two 

SNPs calling steps, we performed a three-steps filtering process: (i) only diallelic SNPs were kept, (ii) 

the minimum allele frequency (MAF, upper case used at the individual level), calculated on the basis 

of all the reads containing the SNP, was set to 30% (note that GONE does not require the application 
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of MAF filtering, and such filtering might cause a small upward bias in the estimation), (iii) individual 

genotypes with sequencing depth less than 10 were recoded into « ./. » meaning that both alleles 

are missing. We then identified SNPs found by both GATK and samtools using the - diff flag of 

vcftools v0.1.15 with tabix-0.2.5 (Danecek et al. 2011). A nucleotide polymorphism was considered 

to be a SNP if at least one individual was found to be heterozygous at the position. On average, for 

each individual, 88.5% of the sequencing reads mapped properly onto the assembly. The final VCF 

contained 18,192,174 variants, and is available at the Portail Data INRAe (doi:10.57745/FJRYI1). 

We re-ordered the 406 genomic scaffolds available based on their number of SNPs, and selected 150 

scaffolds with the largest number of SNPs. We tested different combinations of input subsets, with 

numbers of scaffolds ranging from 12 to 150 (provided that SNPs per scaffold < 1 million and total 

number of SNPs < 10 millions, see the requirements of GONE below), and numbers of individuals 

ranging from 5 to 167 (total sample size).  

For the apricot, P. armeniaca, we estimated Ne using whole genome resequencing data (21× depth 

of coverage by ILLUMINA technology) for wild Central Asian, self-incompatible populations of the 

species (Groppi et al. 2021). Variant sites were mapped to the eight chromosomes of the species and 

ranged between 2.3 and 6.2 million per chromosome (total number of variant sites: 24 M). As these 

exceeded the total number allowed in GONE, we downsampled the number of SNPs prior to the 

analyses. We also analysed the datasets by considering the different gene pools recovered in Groppi 

et al. (2021) (Supp. Fig. S20), namely the Southern (red cluster) and Northern (yellow cluster) gene 

pools, as obtained in fastStructure (Raj et al. 2014) (see next subsection).  

 

Data analyses in GONE 

Analyses for all species. We performed Ne estimation in the software GONE (Santiago et al. 2020). 

GONE generates contemporary or recent historical estimates of Ne (i.e., in the 100-200 most recent 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 20, 2024. ; https://doi.org/10.1101/2023.07.18.549323doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.18.549323
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 

generations) using the LD method. GONE requires linkage information, ideally represented by SNPs 

mapped to chromosomes. Chromosome mapping is rarely available for non-model species, and in 

our case was only fully available for the apricot (P. armeniaca) dataset. In the absence of 

chromosome mapping information for the other species, we treated genomic scaffolds as 

chromosomes. In terms of requirements, GONE accepts a maximum number of chromosomes of 200 

and a maximum number of SNPs of 10 million, with a maximum number of SNPs per chromosome of 

1 million, although the software uses up to 50,000 random SNPs per chromosome for the 

computations when the total number of SNP is larger. A complete workflow of the analyses carried 

out in GONE is available at https://github.com/Ralpina/Ne-plant-genomic-datasets (Gargiulo, 2023); 

the input parameter file used for the final analyses is available in Supplementary File 2. 

Influence of missing data on Ne estimation. The influence of missing data on Ne estimation in GONE 

was evaluated using the dataset from F. sylvatica. After keeping 67 individuals with less than 95% 

missing data, we permuted individuals (without replacement) to generate 150 datasets of 35 

individuals, and estimated Ne in GONE for each dataset. Proportion of missing data per individual for 

each permuted dataset was calculated in vcftools v0.1.16 (Danecek et al. 2011) from an average of 

~25% to 95%; results were plotted in R v4.2.2 (R Core Team 2019). In addition, we used the dataset 

of P. armeniaca to evaluate how Ne changed when manually introducing missing data. We selected 

all individuals from the Northern gene pool with a Q-value (cluster membership coefficient) ≥ 99% 

(77 individuals) to rule out the influence of admixture, and replaced some of the individual 

genotypes with missing values using a custom script (available at: https://github.com/Ralpina/Ne-

plant-genomic-datasets). We generated two datasets with a proportion of missing data per 

individual of 20% and 40%, respectively, and then computed Ne in GONE for each dataset obtained. 

Influence of number of SNPs on Ne estimation. The influence of the number of SNPs on Ne estimation 

in GONE was evaluated using the dataset of P. armeniaca. From the Northern gene pool, we first 

selected the individuals with a Q-value ≥ 99% to rule out the influence of admixture. We drew 
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random subsets of variant sites (without replacement) including 40K, 80K, 150K, 300K, 500K, 3.5M, 

7M, and 10M SNPs, respectively, and generated 50 replicates for each subset; we then estimated Ne 

in GONE for each subset and obtained the geometric mean and the 95% confidence intervals across 

the 50 replicate subsets with the same number of SNPs (using the functions exp(mean(log(x))) and 

quantile in R).  

Influence of sample size on Ne estimation. We used the Northern gene pool of P. armeniaca to assess 

how Ne estimates changed depending on the number of samples considered and the uncertainty 

associated with individual sampling. We first downsampled the number of SNPs to 3.5M (to satisfy 

GONE requirements), and varied the sample sizes included in the analyses from 15 to 75 (i.e., 

approx. the total number of individuals of the Northern gene pool with a Q-value ≥ 99%). For each 

sample size group, we generated 50 subsets (without replacement within the subset) of individuals 

and estimated Ne in GONE for each subset; we then estimated the geometric mean and the 95% 

confidence intervals across subsets with the same sample size (using the functions 

stat_summary(fun.data = median_hilow, fun.args = list(conf.int = 0.95) and stat_summary(fun = 

"geometric.mean" (psych package) in R). 

Influence of population admixture on Ne estimation. We also evaluated how genetic structure within 

gene pools influenced Ne estimation in GONE for both the Southern and Northern gene pools of P. 

armeniaca. We first downsampled the number of SNPs to 3.5M to satisfy GONE requirements, as 

described above. We then distributed the individuals of each gene pool into five (overlapping) 

subsets based on individual Q-values (lower bounds of 70%, 80%, 90%, 95%, and 99%), resampled 

individuals (without replacement) in each Q-value subset 50 times, standardising sample sizes to the 

sample size of the smallest Q-value subset within a gene pool (i.e., 21 individuals as in the 99% Q-

value subset of the Southern gene pool and 77 individuals as in the 99% Q-value subset of the 

Northern gene pool, see Supplementary Table S1 for original sample sizes). We then estimated Ne in 

GONE and obtained 95% confidence intervals across the 50 resampled datasets of the same Q-value 
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subset within a gene pool (using the R function stat_summary mentioned above). We also combined 

all individuals from the two gene pools (255 individuals), resampled 77 individuals 50 times without 

replacement, and estimated Ne in GONE and the related confidence intervals as explained above. 

Effect of using genomic scaffolds rather than chromosomes. We evaluated the effect of using 

genomic scaffolds to estimate linkage groups when chromosome information is not available. Using 

the downsampled dataset of 3.5M SNPs from P. armeniaca, we selected from the Northern gene 

pool 45 random individuals with a Q-value ≥ 99%, to rule out the influence of admixture. For this 

dataset, five different chromosome maps were then created, progressively assigning SNPs to 8 (true 

value), 16, 32, 64 and 128 chromosomes (as if they were genomic scaffolds, see script and related 

explanation at https://github.com/Ralpina/Ne-plant-genomic-datasets#4-effect-of-using-genomic-

scaffolds-instead-of-chromosomes-on-ne-estimation). We then estimated Ne in GONE using five 

corresponding chromosome map files and keeping the same ped (genotypes) file. 

 

Data analyses in NeEstimator 

We also used the LD method as implemented in the software NeEstimator v2 (Do et al. 2014) to 

estimate Ne in our datasets. NeEstimator assumes that SNPs are independently segregating 

(typically, SNPs at short physical distances, for example those in the same short genomic scaffolds or 

loci, are filtered previous to analysis, see below), and therefore it provides an Ne estimate based on 

the LD generated by random genetic drift, which reflects Ne in very recent generations (Waples et al. 

2016). However, accuracy and precision will be both affected by (1) the assumption of independent 

segregation in genomic data sets, as SNPs are necessarily packed on a limited number of 

chromosomes and thus they provide non-independent information, and especially (2) the 

occurrence of overlapping pairs of loci, each locus appearing in multiple pairwise comparisons (i.e., 

two aspects of the issue known as pseudoreplication; (Purcell et al. 2007; Waples et al. 2016; 2022; 
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Waples 2023)). Although the influence of this issue on bias and precision is difficult to address 

completely, some bias corrections have been proposed, for example applying a correction based on 

the genome size of the species being analysed (formula in Waples et al. 2016), restrict comparisons 

to pairs of loci occurring on different chromosomes (Waples 2023), or using only one SNP per 

scaffold or thinning scaffolds based on discrete window sizes (Purcell et al. 2007). To adjust for the 

bias, we therefore applied the correction in Waples et al. (2016), by dividing the Ne estimates 

obtained by y=0.098+0.219 × ln(Chr), where Chr is the haploid number of chromosomes, when 

information about the number of chromosomes was available.  

As low-frequency alleles upwardly bias Ne, we followed the recommendations in Waples (2023) and 

excluded singleton alleles (Waples and Do 2010; Waples 2023). We also ran the analyses without 

applying a filter for rare alleles, to be able to compare the results obtained in NeEstimator with 

those from GONE and currentNe. Confidence intervals were obtained via jackknifing over samples 

(Do et al. 2014; Jones et al. 2016). As NeEstimator cannot handle very large datasets (with > 100,000 

loci, see https://www.molecularfisherieslaboratory.com.au/neestimator-software/), we reduced the 

number of SNPs in the F. sylvatica and P. armeniaca datasets by randomly subsampling 50,000 SNPs 

across chromosomes.  

 

Data analyses in currentNe 

We used the newly developed software programme currentNe (Santiago et al. 2023) to obtain 

contemporary Ne estimates that are directly comparable to the ones obtained in NeEstimator 

(referring to the most recent generations in the past). The practical advantages of currentNe are the 

possibility to include thousands of SNPs in the analyses (with an upper limit of 2 million loci), the lack 

of a minor allele frequencies requirement, and the lower computational effort. Moreover, the 

software produces confidence intervals around Ne based on artificial neural networks, can 
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accommodate complex mating systems and is accurate with small sample sizes (Santiago et al. 

2023). We estimated Ne in currentNe for all the species included in our study except S. globulifera 

s.l., as the software requires the number of chromosomes or the genome size in centiMorgans, 

which were not available for the species.  

 

Results and Discussion 

Data analyses in GONE 

Our study explores the limitations associated with genomic datasets when estimating Ne using the 

LD method as implemented in the programme GONE, and compares estimates of recent historical Ne 

obtained in GONE with estimates of contemporary Ne as obtained in NeEstimator and currentNe. 

Below, we will first focus on the limitations of plant genomic datasets as explored using the software 

GONE and then discuss the differences observed when Ne was calculated using GONE, NeEstimator 

and currentNe. 

One limitation usually associated with reduced representation sequencing datasets is the short 

length of the reads or scaffolds. We tested how this limitation would influence Ne estimation in 

GONE using the datasets of S. globulifera and M. annua. The estimation of Ne in GONE failed for the 

three biological species of S. globulifera, as the software returned the error “too few SNPs” for each 

of the three species datasets. This was caused by the relatively small number of SNPs per scaffold 

(averaging ~250 SNPs) and, in turn, by the relatively short length of the scaffolds (length ranging 

from 5,421 to 931 positions) which prevented GONE from producing reliable Ne estimates. Ne 

estimates were instead obtained for M. annua, whose average number of SNPs per contig was 670 

(Table 1).  
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Influence of missing data on Ne estimation 

The effect of missing data on Ne estimation is evident from the results obtained when analysing the 

dataset of F. sylvatica, and from the results obtained when analysing the dataset of P. armeniaca in 

which genotype data were manually excluded. For F. sylvatica, 35 individuals had a proportion of 

missing data < 50% (Fig. 1B). Increasing the proportion of missing data in the permuted datasets of 

35 individuals produced acute increases in Ne estimates in GONE (see Fig. 1A); for instance, 

increasing the median proportion of missing data per individual from 25% to 35% produced Ne 

estimates increasing from 200 to 3 millions. Likewise, when missing data proportion per individual of 

P. armeniaca increased above 20%, we obtained Ne estimates that were > 350 times larger than 

those obtained from the original dataset (average missing data proportion per individual ~ 8%) (Fig. 

2). This relationship between missing data and Ne estimates is consistent with what was previously 

found (e.g., Marandel et al. 2020), although the loss of accuracy in the Ne estimation is extreme and 

suggests that either individuals with > 20% missing data should be removed from the dataset before 

estimating Ne or SNPs with missing data in a given percentage of individuals (e.g., 50% by default 

assumed by GONE) should be removed, provided that the dataset includes a sufficient number of 

SNPs. However, in species with large effective population sizes, reducing the sample size (S) to a 

number << true Ne introduces further uncertainties in the Ne estimation using the LD method, 

regardless of the number of loci used (Marandel et al. 2019; Waples 2023), in addition to the 

sampling error already expected because of the finite sample size (e.g., Peel et al. 2013). 
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Figure 1. In (A), ranked median Ne estimates in the most recent generation in 150 datasets of 35 individuals 

with different proportions of missing data (excluding individuals with a proportion of missing data > 0.95) of F. 

sylvatica; ranges represent standard deviations for the proportion of missing data per individual. Analyses 

based on the dataset with the twenty-seven genomic scaffolds with the largest number of SNPs (excluding the 

scaffolds with > 1 M SNPs). In (B), proportion of missing data per individual in the complete dataset of F. 

sylvatica.  

 

(A) 

(B) 
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Figure 2. Influence of missing data on Ne estimation in GONE. Missing genotypes were manually introduced in 

the dataset of P. armeniaca, generating pseudo-genotypes with an average proportion of missing data ranging 

from 20% to 40%. The original dataset is shown for comparison (missing data = 8%). Note the different y-scales 

in the three facets. 

 

 

 

Influence of number of SNPs on Ne estimation 

The influence of the number of SNPs per chromosome was explored using the dataset from P. 

armeniaca (Northern gene pool), which was the only dataset with SNPs fully mapped to 

chromosomes. Increasing the number of SNPs per chromosome affected point Ne estimates only 

slightly, and influenced the apparent precision of the estimates more obviously, especially for a total 

number of SNPs above 300,000, corresponding to an average of 10,000 SNPs per chromosome of P. 

armeniaca used by GONE (Fig. 3). Accuracy and precision of Ne  estimates based on LD are expected 

to be affected by two types of pseudoreplication: (1) the non-independent information content 
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provided by thousands of linked SNPs, and especially (2) the occurrence of overlapping pairs of loci, 

each locus appearing multiple times in pairwise comparisons (Waples et al. 2016; 2022). Therefore, 

the narrower confidence intervals we obtained when increasing the number of SNPs are partially 

due to the inclusion of overlapping pairs of loci for the Ne estimation, which artificially increases the 

degrees of freedom that make CIs tight. The drop in the Ne geometric mean value associated with 

the dataset with >20,000 SNPs might be due to the inclusion of more physically linked SNPs, but it 

might also be due to the uncertainty associated with the specific SNPs included in the analysis. 

For practical purposes, our results show that adding more than 2,000 polymorphic SNPs per 

chromosome, with a large sample size (~75), does not substantially improve the accuracy and the 

precision of the estimation, in line with what is shown in previous studies focusing on LDNe 

(Marandel et al. 2020). Santiago et al. (2020) noted that the accuracy of the estimation is 

proportional to sample size and to the square root of SNPs pairs, and therefore researchers might 

partially compensate for small sample sizes by increasing the number of SNPs. However, as the 

information content of a dataset depends on the amount of recombination and on the pedigree of 

the individuals included in the analyses, an estimation based on a small number of samples will not 

necessarily be representative of the entire population, especially if Ne is large (King et al. 2018; 

Santiago et al. 2020; Waples 2023). Furthermore, the marginal benefit of increasing the number of 

SNPs beyond tens of thousands is counterbalanced by poor precision if CIs are generated using 

incorrect degrees of freedom, which is often the case with thousands of non-independent SNPs (Do 

et al. 2014; Jones et al. 2016; Moran et al. 2019; Luikart et al. 2021; Waples et al. 2022). Finally, 

Waples (2023) also points out that adding more than a few thousand SNPs increases the precision 

only slightly and is more beneficial when the true Ne is large. 
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Figure 3. Ne estimates obtained in GONE over the most recent generation for the Northern gene pool of 

Prunus armeniaca as a function of the number of SNPs. Points represent the geometric mean values across 50 

replicates; shaded area represents 95% confidence intervals across replicates. Note that GONE uses a 

maximum of 50,000 SNPs per chromosome, even if provided with a larger number (with 1 million per 

chromosome being the maximum number accepted); the number of SNPs in each of the eight subsets 

analysed ranged from 10
4
 to 10

7
, corresponding to a range of ~5,000 to ~20,000 polymorphic SNPs per 

chromosome used by GONE. 

 

 

Influence of sample size on Ne estimation  

We evaluated the influence of sample size using the Northern gene pool of P. armeniaca. Increasing 

sample sizes to over thirty samples led to more consistent Ne estimates and reduced the chances of 

obtaining Ne estimates only representative of a few individual pedigrees (Fig. 4), as previously 

observed when using the linkage disequilibrium method (Palstra and Ruzzante 2008; Waples and Do 

2010; Tallmon et al. 2010; Antao et al. 2011; Waples et al. 2016; Nunziata and Weisrock 2018; 

Marandel et al. 2019; Santiago et al. 2020). Including in the Ne estimation a number of samples that 
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is representative of the true Ne of the population is crucial in large populations, where the genetic 

drift signal in recent generations is weak (Palstra and Ruzzante 2008; Luikart et al. 2010; Do et al. 

2014; Barbato et al. 2015; Wang et al. 2016; Santiago et al. 2020; Waples 2023). On the contrary, 

small populations experience more genetic drift, hence the LD method is particularly powerful in 

such populations. Estimates of Ne remain small in small populations even with larger sample sizes, 

hence the important conservation implication that small populations cannot be mistaken for large 

populations (Waples and Do 2010; Waples et al. 2016; Santiago et al. 2020). For the Northern gene 

pool of wild apricots, we obtained an Ne estimate < 2,000 when sample size was equal to 15, and 

progressively obtained higher values increasing up to a plateau of Ne <4,000, for larger sample sizes. 

This confirms the expectation that a large sample size is needed to estimate a large Ne (Tallmon et al. 

2010; Antao et al. 2011).  
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Figure 4. Change in the Ne estimates as a function of sample size in P. armeniaca (Northern gene pool). Points 

represent geometric means across subsets of individuals, sampled without replacement 50 times. The insert 

also shows 95% confidence intervals (point ranges) estimated over the 50 replicate subsets.  

 

 

Influence of admixture on Ne estimation 

The impact of admixture on Ne estimation was explored using the dataset of P. armeniaca. Estimates 

of Ne in the most recent generation generally decreased when the Q-value of the individuals 

included in the analysis increased (Fig. 5A). The larger Ne estimates in the most recent generations 

(1-4) when including more admixed individuals are consistent with the upward bias predicted by 

Waples and England (Waples and England 2011) for a sampled subpopulation that does not include 

all potential parents (“drift LD”); with higher admixture proportions (Fig. 5A), the Ne estimated for 

each gene pool (subpopulation) using the LD method tends to approach the Ne of the 

metapopulation instead (Waples and England 2011). However, the Ne estimate we obtained when 

combining the two gene pools (“all” in Fig. 5A) was lower than the Ne estimate obtained when 

considering highly admixed individuals in the Northern gene pool (70% in the right panel of Fig. 5A). 

A downward bias in the Ne estimation is expected because of the Wahlund effect associated with 

sampling and analysing different gene pools together, and it is indicated as “mixture LD” (Waples 

and England 2011; Neel et al. 2013; Nunney 2016; Waples 2023). The Southern gene pool showed a 

contrasting trend; Ne estimates for the less admixed groups remained lower than that obtained 

when combining the two gene pools, possibly because the few samples from this gene pool 

contributed less (with any potential mixture LD) than the more abundant samples from the Northern 

gene pool (with their LD signal) (Fig. 5A). How the relationship between sampling and genetic 

structure practically affects Ne still deserves evaluation, as the effect on LDNe will depend on the 

relative strength of the “mixture LD” and the “drift LD” in the specific set of samples included in the 

analyses (Waples 2023). 
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Over the last 25 generations (Fig. 5B), we obtained higher Ne estimates when individuals from the 

Southern gene pool with a Q-value ≥ 99% were included. For the Northern gene pool, on the 

contrary, we obtained a lower Ne estimate when individuals with a Q-value ≥ 99% were included. 

The different demographic histories of the Northern and Southern gene pools certainly underlie the 

pattern observed, as the Southern gene pool seems to have undergone a recent bottleneck, whereas 

the Northern gene pool has a more stable demographic trend. The recent population decline for the 

Southern gene pool may be explained by the Soviet era and the current land-use change in the 

Fergana valley (mainly Uzbekistan) where native forests of wild apricot were partially replaced with 

crop species. Nevertheless, two more factors should be considered; first, the sample size of the 

Southern gene pool is smaller than that of the Northern gene pool (only 21 individuals vs. 77 

individuals drawn from each Q-value subset). Second, Santiago et al. (2020) warn about a typical 

artefactual bottleneck observed in GONE and caused by population structure (in Figure 2F of 

Santiago et al. 2020, considering a migration rate = 0.2%; Novo et al. 2023). As we observed a 

consistent trend regardless of the individual Q-value, and the drop in Ne is particularly evident with a 

Q-value = 99%, we interpret this Ne drop as a true bottleneck, with the caveat of reduced accuracy 

linked to a small sample size for the Southern gene pool.  
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Figure 5. Influence of population structure on GONE Ne estimates for the Northern and Southern gene pools of 

P. armeniaca. Q-values refer to the results of the fastStructure analysis performed in Groppi et al. (2021) 

(lower bounds of individual Q-value to the main genetic cluster). Ne was estimated over 50 datasets of 

resampled individuals (77 in each Q-value subset in the Northern gene pool and 21 in each Q-value subset in 

the Southern gene pool, reflecting differences in sample sizes). In (A), points represent the geometric mean 

and ranges represent 95% confidence intervals across 50 replicates; in (B), only geometric mean values of the 

Ne estimates across 50 replicates and in the last 25 generations are shown. Ne estimates obtained for the 

combined gene pools are also shown (“all” in (A) and “all inds” in (B)). 

 

 

Effect of using genomic scaffolds rather than chromosomes  

To evaluate the effect of using genomic scaffolds as a proxy for linkage groups when chromosome 

information is not available, we sorted SNPs from the P. armeniaca dataset into a progressively 

larger number of scaffolds or chromosomes assumed. This produced inconsistent Ne estimates 

across the datasets with increasing number of chromosomes assumed, with Ne values progressively 

(A) 

(B) 
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rising from around 3×103 for 8 chromosomes (true value) to > 8×105 when the number of 

chromosomes assumed was equal to 128 (Fig. 6). The algorithm implemented in GONE is based on 

the assumption that LD among pairs of SNPs at different genetic distances provides differential 

information about Ne at different times in the past (Santiago et al. 2020). Loosely linked loci give 

information about Ne in recent generations, as their recombination rate is higher and rate of LD-

decay slower than that of closely linked loci (Sved and Feldman 1973). Therefore, the behaviour of 

the Ne estimates observed in Fig. 6 can be explained by considering that when a chromosome is 

broken into smaller scaffolds, only closely linked loci will be available for the Ne estimation; pairs of 

SNPs at higher genetic distances (i.e., loosely linked loci) will be missing, inducing biases on recent Ne 

estimates. An inflated Ne in recent generations will therefore depend on having fewer random 

associations among loci useful to estimate LD (i.e., fewer loosely linked loci), which will unfold as 

having less genetic drift (i.e., a larger population). Consequently, Ne estimates obtained in GONE for 

M. annua and F. sylvatica may be biased upward since scaffolds were used as a proxy for 

chromosomes (Table 1).  
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Figure 6. Estimates of Ne calculated on datasets in which the same set of SNPs is assigned to a progressively 

larger number of assumed chromosomes, where 8 is the true number of chromosomes for P. armeniaca (per 

haploid count); 45 individuals from the Northern gene pool were used for this analysis. 

 

Ne estimates obtained in GONE, NeEstimator and currentNe 

As expected, Ne estimates obtained using NeEstimator and currentNe were more in agreement with 

one another compared with those obtained in GONE for the last generations (Table 2). GONE 

estimates for all species were larger than those obtained using the other programmes, especially in 

the Northern gene pool of P. armeniaca (GONE-Ne ~3500 for the last generation while NeEstimator-

Ne ~716.2, excluding singletons and after bias correction, and currentNe-Ne ~450 after bias 

correction). The point Ne estimate obtained in currentNe and its confidence intervals remained 

consistent even when we increased the number of SNPs included in the analysis, suggesting that 

there was no uncertainty associated with the SNPs included in the analysis. Estimates from 
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simulated populations in Santiago et al. (2023) showed consistency between the output of 

currentNe and NeEstimator, except when a small sample (10 individuals) was drawn from a very 

large population (Ne = 10,000) using 22,000 SNPs, in which case currentNe performed better. Our 

sample size for the Northern gene pool was much larger (77 individuals), and we do not expect the 

true Ne to be larger than 10,000. Therefore, when using the same dataset for currentNe and 

NeEstimator, we interpret the slight discrepancy between the two estimates to be associated with 

the different algorithms included in the programmes, which are affected in different ways by the 

occurrence of rare alleles and the deviations from random mating, among other things (Santiago et 

al. 2023). When considering the Southern gene pool, for which the true Ne is expected to be smaller 

than for the Northern gene pool (Groppi et al. 2021), the estimates obtained in NeEstimator (~80.9 

excluding singletons and after bias correction) and currentNe (~76.4 after bias correction) were more 

consistent. 

Another consideration is the downward bias on Ne estimates caused by localised sampling in 

continuous populations featuring isolation by distance (Neel et al. 2013; Nunney 2016; Santos-del-

Blanco et al. 2022; Waples 2023). If the range of sampling is similar in extent to the unknown 

effective range of dispersal, as it is likely the case in S. globulifera, estimates may not reflect the 

population-wide true Ne, but rather a quantity close to the neighbourhood size (Ns), i.e., the inverse 

of the probability of identity by descent of two uniting gametes (Santos-del-Blanco et al. 2022). In P. 

armeniaca, where the sampling window likely exceeded the breeding window by much, we may still 

expect a downward bias because of the mixture LD caused by the inclusion of genetically divergent 

individuals (Neel et al. 2013; Waples and England 2011; Waples 2023). However, this bias would not 

explain the discrepancy between the estimates obtained in GONE and those obtained with the other 

programmes for the Northern gene pool of P. armeniaca. In S. globulifera, for which we also expect 

a large Ne (> 1000), it was only possible to use NeEstimator, due to the short length of contigs (not 

appropriate when using GONE), and the lack of information about the number of chromosomes (as 

required by currentNe). Ne ranged from 86 (CI: 37-Infinite) in Species 3, to 380 (CI: 300-510) in 
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Species 2 and to 754 (CI: 623-949) in Species 1, although point estimates could not be corrected for 

physical linkage due to lack of information about chromosome number and are therefore biased 

downward (Table 2). Estimates for Species 3, in particular, displayed infinite confidence intervals, 

suggesting that the sample size might be not large enough to capture the genetic drift signal from 

the original population. However, the relative magnitude of the estimates obtained are in 

agreement with the availability of suitable habitats for the three species (Schmitt et al. 2021) and, all 

else being equal, we would generally expect these populations to have a long-term constant 

population size, considering that the Guianese rainforest has experienced a continuous forest cover 

since the last glacial maximum (Barthe et al. 2016).  

The uncertainty in Ne estimation using the LD method is particularly exacerbated in the dataset from 

F. sylvatica, where missing data also affect the estimation performed with the three programmes 

(GONE-Ne = 25 for the last generation, NeEstimator-Ne @2.3, excluding singletons and after bias 

correction for physical linkage, and currentNe-Ne @6.2 after bias correction for physical linkage), by 

reducing the usable sample size among pairs of loci (Peel et al. 2013; Do et al. 2014; Waples 2023). 

In general, missing data affect the precision of Ne estimates from the LD method whereas accuracy 

should be less affected (Nunziata and Weisrock 2018; Waples 2023), unless missing data occur non-

randomly and depend on the genotype, as it might be the case in the F. sylvatica dataset. 

For the only annual plant in our dataset, M. annua, we would expect Ne estimated with the LD 

method to mainly reflect the effective number of breeders, Nb (Luikart et al. 2021; Waples 2023) for 

the year of sampling, as individual cohorts were sampled (progeny of adults that reproduced in that 

specific year). Estimates in GONE were higher than those obtained in NeEstimator and currentNe 

(Table 2), also because of the bias induced by the lack of SNPs mapping (i.e., using scaffolds as a 

proxy for chromosomes in GONE). All point estimates fell within the estimated confidence intervals 

and usually denoted a small Ne, which is consistent with primarily reflecting the Nb for the 

population. In particular, point estimates in NeEstimator, excluding singletons and after bias 

correction for physical linkage, ranged from 29.1 for the Mediterranean gene pool to 33.8 for the 
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Core gene pool and 27.3 for the Atlantic gene pool. Point estimates in currentNe, after bias 

correction for physical linkage, ranged from 37.3 for the Mediterranean gene pool to 37.1 for the 

Core gene pool and 32 for the Atlantic gene pool. Even if the gene pool subdivision was consistent 

with the level of genetic admixture found in the individuals, it is still possible that estimates are 

biased downward because of mixture LD associated with mixing samples from different geographical 

locations (sampling window larger than breeding window). Furthermore, M. annua is able to survive 

through multi-annual seed banks (Crocker 1938) despite being an annual plant, and therefore the 

arithmetic mean across multigenerational Nb estimates would be needed to reliably estimate Ne 

rather than Nb (Nunney 2002; Waples 2006b).  

 

Practical recommendations when estimating contemporary Ne in GONE 

In this study, we have considered some of the technical limitations when estimating Ne from plant 

genomic datasets, including: (i) the occurrence of missing data, (ii) the limited number of 

SNPs/individuals sampled, (iii) the lack of genetic/linkage maps and of information about how SNPs 

map to chromosomes when estimating Ne using the software GONE. In addition, we have explored 

some biological limitations that may affect Ne estimation using the LD method, such as the 

occurrence of population structure, although we recognise that our exploration is not exhaustive, as 

other biological factors (i.e., associated with reproductive system and life-history traits) might affect 

Ne and its estimation. Our empirical results corroborate some previous findings, for example about 

the importance of having large samples sizes (ideally > 30 per subpopulation), especially when 

populations are large, and highlight the following requirements that genomic datasets should satisfy: 

@ non-random missing data should not exceed 20% per individual. Missing data also affect how 

SNPs are represented across loci and individuals sampled and can generate non-random patterns 

whose effect on Ne estimation is difficult to predict; 
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@ having a large number of SNPs (> tens of thousands) is potentially important to allow users to 

generate non-overlapping subsets of loci that reduce the influence of pseudoreplication on 

confidence intervals (Waples et al. 2022). However, increasing the number of SNPs beyond a few 

thousands per chromosome does not produce significant changes in Ne estimates, as we 

observed in wild apricots; Waples (2023) also observed that the benefit of adding over a few 

thousand SNPs on precision is little, but increases if the true Ne is very large. 

@ most importantly, having SNPs fully mapped to chromosomes is essential to obtain reliable 

estimates when using the software GONE; other programmes should be preferred to estimate 

contemporary Ne when SNPs mapping is not available (i.e., currentNe). 

In addition, the bias on Ne estimates due to the occurrence of gene flow and admixture can 

significantly affect the performance of single-sample estimators, as previously described (e.g., Neel 

et al. 2013). Other biases associated with (i) further sources population structure (i.e., overlapping 

generations, demographic fluctuations including bottlenecks, reproductive strategies causing 

variance in reproductive success, etc.) and (ii) further technical issues associated with sampling 

strategies and genomic datasets can add up and generate results that are misleading for 

conservation. Therefore, a careful consideration of the issues above is essential when designing and 

interpreting studies focused on the estimation of Ne and other related indicators for conservation. 

 

Data accessibility and Benefit-Sharing  

The SNP matrices used in this study can be accessed at the following links: 

https://doi.org/10.5281/zenodo.4727831 (Symphonia globulifera), 

https://datadryad.org/stash/dataset/doi:10.5061/dryad.74631 (Mercurialis annua), 

https://doi.org/10.57745/FJRYI1 (Fagus sylvatica), https://doi.org/10.5281/zenodo.8124822 (Prunus 
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armeniaca). The analyses carried out in this study and the related scripts are available at: 

https://github.com/Ralpina/Ne-plant-genomic-datasets (Gargiulo, 2023). 

Benefits Generated: benefits from this research accrue from the sharing of our data and results on 

public databases as described above. 
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Table 1. Details of the different plant genomic datasets analysed in the present study. 1 

Species 

name 

Life-

form 

Reproductive 

system of 

populations 

analysed 

Gene pools 

(#samples) 

Data type Average 

frequency 

of missing 

data per 

individual 

#chromoso

mes/scaffol

ds/contigs 

analysed in 

GONE  

Average 

#SNPs per 

scaffold or 

chromoso

me* 

Total 

#SNPs ** 

 

Reference Issues 

explored 

(affecting Ne 

estimation in 

GONE) 

Symphonia 

globulifera 

L.f. 

Perenn

ial 

(tree) 

Monoecious, 

mixed mating 

with 

predominant 

outcrossing 

(Degen et al. 

2004) 

Species 1 (228) 

Species 2 (107) 

Species 3 (30) 

Targeted 

sequence 

capture 

0.04 125 

(contigs) 

247 30,863 Schmitt et al. 

2021 

Minimum 

number of 

SNPs required 

Mercurialis 

annua L. 

Annual Various mating 

systems, 

analyses based 

on dioecious 

populations; 

obligate 

outcrosser 

(González-

Martínez et al. 

2017) 

Atlantic (12)  

Core (16) 

Mediterranean 

(12) 

Targeted gene 

(exome) 

capture 

0.01 48 (contigs) 670  32,151 

 

González-

Martínez et al. 

2017 

Influence of 

sample size 

Fagus 

sylvatica L. 

Perenn

ial 

(tree) 

Monoecious, 

predominant 

outcrossing 

(Merzeau et al. 

1994) 

Mt. Ventoux, 

France (167) 

Whole genome 

sequencing  

0.81 

(with 27 

scaffolds) 

12-150 

(scaffolds) 

~470K 

(with 27 

scaffolds) 

~13 M 

(with 27 

scaffolds) 

See data 

availability 

section 

Influence of 

missing data 

Prunus 

armeniaca 

L. 

Perenn

ial 

(tree) 

Monoecious, 

self-

incompatible 

(Groppi et al. 

2021) 

Southern (56) 

Northern (199) 

(see 

Supplementary 

Table 1) 

Whole genome 

sequencing  

0.07 8 

(chromoso

mes) 

~3 M 

(440K) 

~24 M (3.5 

M in the 

subsample

d dataset) 

Groppi et al. 

2021 

Influence of 

number of 

SNPs, of 

missing data, 

of sample size, 

of population 

structure, of 

.
C

C
-B

Y
-N

C
-N
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using scaffolds 

instead of 

chromosomes 

*in the map file, number of lines divided by number of scaffolds/chromosomes;  2 

**number of lines in the map file 3 

 4 

Table 2. Estimates of effective population sizes for each dataset analysed in GONE, NeEstimator, and currentNe.  5 

Species 

Gene pool 

(#samples) 

Ne in GONE  Ne in NeEstimator Ne in currentNe 

 #polymorp

hic loci
(1)

 

Ne
(2)

 #polymorp

hic loci
(3)

  

Ne (95% CI) 

- excluding 

singletons
(4)

 

Ne (95% CI) 

 - no MAF 

filtering 

#polymorphic 

loci 

Ne (90% CI)
(6)

 

S. 

globulifera 

 

Species 1 

(228) 

17,515  N/A 17,515 754 (623-949) 1,036 (841-1,340) N/A N/A 

Species 2 

(107) 

14,906 N/A 14,906 380 (300-510) 547 (409-813) N/A N/A 

Species 3 

(30) 

9,207 N/A 9,207 86 (37-Inf) 223 (65-Inf) N/A N/A 

M. annua 

 

Atlantic 

(12) 

17,854 

 

40 17,854 15 (7-58) 

 

27.3, after 

correction
(5)

 

22 (10-121) 

 

40, after 

correction
(5)

 

17,854 17.6 (13.3-23.3) 

 

32, after correction
(5)

 

Core (16) 27,874 123 27,874 18.6 (10.2-46.2) 

 

33.8, after 

correction
(5)

 

34.7 (18.3-131.3) 

 

63.1, after 

correction
(5)

 

27,874 20.4 (16.2-25.7) 

 

37.1, after 

correction
(5)

 

Mediterra

nean (12) 

18,032 103 18,032 16 (10-32) 

 

29.1, after 

26 (17-51) 

 

47.3, after 

18,032 20.5 (15.2-27.6) 

 

37.3, after 

.
C

C
-B

Y
-N

C
-N
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correction
(5)

 correction
(5)

 correction
(5)

 

F. 

sylvatica 

(35) 

322,185 

(12 

scaffolds) 

1,115,200 

(27 

scaffolds) 

25 (12 

scaffolds) 

 

360 (27 

scaffolds) 

41,103 (12 

scaffolds) 

1.5 

(1.1-1.4) 

 

2.3, after 

correction
(5)

 

1.1 

(0.8-0.9) 

 

1.7, after 

correction
(5)

 

1,238,257 (12 

scaffolds) 

4.0 

(5.0-5.0)  

 

6.2, after 

correction
(5)

 

P. 

armeniaca 

 

Southern 

(21) 

82,891 184 11,559 44.5 

(34.5-61.3) 

 

80.9, after 

correction
(5)

 

71.2 

(55.6-97.4) 

 

129.5, after 

correction
(5)

 

333,829 

(subset with 

1.5 million 

SNPs) 

42.0 (35.3-50.0) 

 

76.4, after 

correction
(5)

 

     11,120 

(subset with 

50,000 SNPs, 

as in 

NeEstimator) 

38.6 (31.5-47.3) 

 

70.2, after 

correction
(5)

 

Northern 

(77) 

116,285 3,526 16,100 393.9 

(252.8-838.6) 

 

716.2 after 

correction
(5)

 

510.2 

(311.3-1309.5) 

 

927.3 after 

correction
(5)

 

444,946 

(subset with 

1.5 million 

SNPs) 

251 (224.5-280.5) 

 

456.4, after 

correction
(5)

 

 

      17,794 

 

(subset with 

50,000 SNPs, 

as in 

NeEstimator) 

246.7 (215.6-282.3) 

 

448.5, after 

correction
(5)

 

(1) Number of polymorphic loci analysed in each programme. GONE only uses a subset of SNPs per chromosome (or scaffold), up to a maximum of 50,000 SNPs per 6 

chromosome (or scaffold), these are indicated in the OUTPUT_dataname file.  7 

(2) Ne in GONE for the last generation (geometric mean); no MAF filtering was applied, as recommended. 8 
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(3) Note that in NeEstimator and in currentNe, SNPs=loci. Polymorphic loci in NeEstimator = total number of loci minus number of non-polymorphic loci.  9 

(4) As low-frequency alleles upwardly bias Ne, we followed the recommendations in Waples (2023) and excluded singleton alleles. CIs in NeEstimator represent jackknife 10 

confidence intervals. 11 

(5) When the information about the number of chromosomes was available, estimates obtained in NeEstimator were corrected using (Ne estimate)/y, where y represents 12 
the formula in Waples et al. 2016: y=0.098+0.219 × ln(Chr), with Chr as the (haploid) number of chromosomes; M. annua: 8 chromosomes, F. sylvatica: 12 chromosomes, P. 13 

armeniaca: 8 chromosomes. 14 

(6) Ne estimation by integration over the whole genome as output by currentNe. 15 
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