

Estimation of contemporary effective population size in plant populations: limitations of genomic datasets

Running title: N_e estimation: limitations of genomic datasets

**Roberta Gargiulo^{1*}, Véronique Decroocq², Santiago C. González-Martínez³,
Ivan Paz-Vinas^{4,5}, Jean-Marc Aury⁶, Isabelle Lesur Kupin³, Christophe
Plomion³, Sylvain Schmitt⁷, Ivan Scotti⁸, Myriam Heuertz³**

1 Royal Botanic Gardens, Kew, Richmond, Surrey, UK

2 INRAE, Univ. Bordeaux, UMR 1332 BFP, Villenave d'Ornon, France

3 INRAE, Univ. Bordeaux, Biogeco, Cestas, France

4 Department of Biology, Colorado State University, Fort Collins, Colorado, USA

5 Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622, Villeurbanne, France

6 Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France

7 AMAP, Univ. Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France

8 INRAE, URFM, Avignon, France

*corresponding author: r.gargiulo@kew.org; robertaxgargiulo@gmail.com

Abstract

Effective population size (N_e) is a pivotal evolutionary parameter with crucial implications in conservation practice and policy. Genetic methods to estimate N_e have been preferred over demographic methods because they rely on genetic data rather than time-consuming ecological monitoring. Methods based on linkage disequilibrium, in particular, have become popular in conservation as they require a single sampling and provide estimates that refer to recent generations. A software programme based on the linkage disequilibrium method, GONE, looks particularly promising to estimate contemporary and recent-historical N_e (up to 200 generations in the past). Genomic datasets from non-model species, especially plants, may present some constraints to the use of GONE, as linkage maps and reference genomes are seldom available, and SNP genotyping is usually based on reduced-representation methods. In this study, we use empirical datasets from four plant species to explore the limitations of plant genomic datasets when estimating N_e using the algorithm implemented in GONE, in addition to exploring some typical biological limitations that may affect N_e estimation using the linkage disequilibrium method, such as the occurrence of population structure. We show how accuracy and precision of N_e estimates potentially change with the following factors: occurrence of missing data, limited number of SNPs/individuals sampled, and lack of information about the location of SNPs on chromosomes, with the latter producing a significant bias, previously unexplored with empirical data. We finally compare the N_e estimates obtained in GONE for the last generations with the contemporary N_e estimates obtained in the programmes currentNe and NeEstimator.

Keywords

conservation genomics, effective population size, GONE, linkage disequilibrium, plants

Introduction

Effective population size (N_e) is an evolutionary parameter introduced by Sewall Wright (Wright 1931), which determines the rate of genetic change due to genetic drift and is therefore linked with inbreeding and loss of genetic variation in populations, including adaptive potential (Franklin 1980; Jamieson and Allendorf 2012; Waples 2022). The importance of contemporary effective population size in conservation biology is increasingly recognized, and the concept implemented in conservation practice (Luikart et al. 2010; Frankham et al. 2014; Montes et al. 2016) and policy (Hoban et al. 2013; Graudal et al. 2014; Kershaw et al. 2022; O'Brien et al. 2022). For example, N_e has been included as a headline genetic indicator to support Goal A and Target 4 of the Kunming-Montreal Global Biodiversity Framework of the UN's Convention on Biological Diversity (CBD 2022), as the proportion of populations within species with $N_e > 500$, that are expected to have sufficient genetic diversity to adapt to environmental change (Jamieson and Allendorf 2012; Hoban et al. 2020).

Contemporary N_e can be estimated using demographic or genetic methods (Wright 1969; Luikart et al. 2010; Wang et al. 2016; Waples 2016; Felsenstein 2019). Demographic estimators require detailed ecological observations over time for the populations of interest (Wright 1969; Nunney 1993; Felsenstein 2019), which is not necessary for genetic estimators (Wang et al. 2016; Waples 2016). Methods that can provide N_e estimates based on a single sampling point in time (Wang 2016) have become particularly popular, especially in studies focused on species for which budget and time allocated are limited, elusive species that are difficult to track and monitor (Luikart et al. 2010), and species for which information about distribution is scarce. The current biodiversity crisis and the limited resources for conservation have recently fuelled the development and application of N_e estimators that rely on cost-effective, non-genetic proxy data across a wide range of species of conservation concern (Hoban et al. 2020, 2021a). Population census size, N_C , has been used to infer N_e when genetic N_e estimates are not available, relying on the ratio $N_e/N_C = 0.1$ (where N_C is the adult census size of a population) (Palstra and Fraser 2012; Frankham et al. 2014; Hoban et al. 2021b). This

rule-of-thumb ratio is pragmatic for conservation (but see Fady and Bozzano 2021), as shown in application tests in different countries for different species of conservation concern (Thurfjell et al. 2022; Hoban et al. 2023). However, research needs to progress to better understand N_e estimation methods and potential deviations from the ratio $N_e/N_c = 0.1$, which are expected for example across populations within species or in species with life-history traits that favour individual persistence (Jamieson and Allendorf 2012; Hoban et al. 2020, 2021b; Frankham 2021; Laikre et al. 2021; Gargiulo et al. 2023). Current genetic estimators of contemporary N_e work well in small and isolated populations, which match many populations of conservation concern, but they are difficult to apply in species with a large and continuous distribution (Fady and Bozzano 2021; Santos-del-Blanco et al. 2022). In such species, genetic isolation by distance, overlapping generations, and difficulty to define representative sampling strategies can affect the accuracy of estimates of N_c , N_e and their ratio (Neel et al. 2013; Nunney 2016; Santos-del-Blanco et al. 2022). Plant species embody some of the features mentioned above, as they often have complex life-history traits (e.g., overlapping generations, long lifespans), reproductive systems (i.e., mixed clonal and sexual reproduction, mixed selfing and outcrossing strategies) and continuous distribution ranges (Petit and Hampe 2006; De Kort et al. 2021). Therefore, they are particularly interesting to help improve our understanding of N_e estimation methods.

Genetic drift generates associations between alleles at different loci, known as linkage disequilibrium (LD), at a rate inversely proportional to N_e (Hill, 1981; Waples et al. 2016). LD between loci can be used to obtain a robust estimate of contemporary N_e from genetic data at a single time point, and this explains the popularity of the LD method compared to the earlier developed two-sample temporal methods (Luikart et al. 2010; Waples 2023) and the development of numerous tools for the estimation of LDN_e from genetic and genomic data (Do et al. 2014; Barbato et al. 2015; Wang et al. 2016; Santiago et al. 2020). The N_e estimates obtained with the LD method generally refer to a few generations back in time (Luikart et al. 2010; Do et al. 2014) and, depending on the genetic distances between loci, it is possible to obtain N_e at different times in the past (Santiago et

al. 2023; see also the review on timescales of N_e estimates in Nadachowska-Brzyska et al. 2022). In particular, LD between closely linked loci can be used to estimate N_e over the historical past (Sved 1971; Hayes et al. 2003; Qanbari et al. 2010; Do et al. 2014; Barbato et al. 2015; Wang et al. 2016; Santiago et al. 2020), whereas loosely linked or unlinked loci can be used to estimate N_e in the recent past (Waples 2006a; Waples and Do 2008; Sved et al. 2013; Wang et al. 2016; Qanbari 2019). However, as other methods to estimate N_e , the LD method is not devoid of biases and drawbacks, mostly relating to the assumption that the population is isolated, which is rarely satisfied (Hill 1981; England et al. 2010; Waples and England 2011; Waples 2023), and to the occurrence of age-structure in populations (Nunney 1991; Yonezawa 1997; Waples and Do 2010; Robinson and Moyer 2013; Waples et al. 2014; Hössjer et al. 2016; Ryman et al. 2019).

In this study, we aimed to explore the limitations of plant genomic datasets when estimating contemporary N_e . We mostly focused on estimating N_e using the software programme GONE (Santiago et al. 2020), but we also provide N_e estimates obtained in NeEstimator (Do et al. 2014) and the recently developed programme, currentNe (Santiago et al. 2023). These programmes provide recent historical and contemporary N_e estimates, respectively, using the LD method, though they differ mostly in the data requirement and timescales of estimates provided. GONE is the first programme using the LD method capable of exploiting the full range of LD among loci in a dataset, therefore providing N_e estimates that are reliable up to 200 generations ago; NeEstimator and currentNe provide N_e estimates that represent the average over few recent generations, and the exact number of generations representing an estimate increases with the number of chromosomes of the species (Santiago et al. 2023).

We explored the technical requirements of GONE by conducting power analyses aimed at testing how the number of SNPs, the proportion of missing data, the number of individuals, the lack of information about the location of SNPs on chromosomes, and the occurrence of population structure might affect N_e estimation. The N_e estimates obtained in GONE were then compared to the

ones obtained in NeEstimator and currentNe, and discussed in light of the biological and ecological features of the species. Our findings help better understand the limitations and potentialities of genomic datasets when estimating LD-based, one-sample N_e , providing new insights on how to use current methods.

Methods

Datasets

We selected four datasets obtained with different high-throughput sequencing techniques from different plant taxa (*Sympodia globulifera* L.f. (Clusiaceae), *Mercurialis annua* L. (Euphorbiaceae), *Fagus sylvatica* L. (Fagaceae), *Prunus armeniaca* L. (Rosaceae)), to represent different botanical groups, ecosystems, generation times and reproductive strategies. Sampling strategies in the datasets encompassed different sample sizes for markers and individuals, and datasets featured distinct levels of population genetic structure (Table 1).

For boarwood, *S. globulifera* s.l., a widespread and predominantly outcrossing evergreen tree typical of mature rainforests in Africa and the Neotropics (Degen et al. 2004; Torroba-Balmori et al. 2017), we used the targeted sequence capture dataset described in Schmitt et al. (2021). Three sympatric gene pools were identified in a lowland forest in French Guiana, likely corresponding to three biological species, described as *Sympodia* sp. 1, *Sympodia* sp. 2 and *Sympodia* sp. 3 (Schmitt et al. 2021). To avoid the influence of admixture on the estimation of N_e , we first divided the dataset in three subsets based on the analysis of genetic structure performed in the software Admixture v1.3.0 (see Schmitt et al. 2021), selecting only the individuals with a Q-value (cluster membership coefficient) $\geq 95\%$ to each of the three genetic clusters (Species 1, Species 2 and Species 3;

Supplementary File 1). We then selected the 125 genomic scaffolds with the largest number of SNPs (see Table 1).

For the annual mercury, *M. annua*, an annual plant with variable mating systems (monoecious, dioecious, androdioecious), ploidy levels (2x, 4x-12x) (Obbard et al. 2006b, a), potential to produce seed banks, and typical of open or disturbed habitats in Europe and North Africa, we used the gene capture data set described in (González-Martínez et al. 2017), obtained from 40 diploid dioecious individuals grown from seeds, representative of ten localities and three main gene pools in the species (as described after the fastStructure analysis in González-Martínez et al. 2017). We selected the 48 scaffolds with the largest number of SNPs and ran the analyses by considering separately each gene pool: (1) ancestral populations from Turkey and Greece (“Core”), (2) range-front populations from northeastern Spain (“Mediterranean”), or (3) range-front populations from northern France and the UK (“Atlantic”) (see Table 1).

For the common beech, *F. sylvatica*, a deciduous predominantly outcrossing tree of European temperate forests (Merzeau et al. 1994), we analysed genomic scaffolds from a single, contiguous stand (plot N1; (Oddou-Muratorio et al. 2021)) within a relatively isolated French population (Mt. Ventoux, southeastern France), in which population genetic structure is neither observed nor expected (Csilléry et al. 2014). Mapping of short-reads paired Illumina sequences was independently performed for each one of the 167 individuals of the population against the genome assembly (available at www.genoscope.cns.fr/plants) using bwa-mem2 2.0 (Li and Durbin 2009). SNPs were first called using GATK 3.8 (Van der Auwera and O’Connor 2020) using the following parameters: -nct 20 -variant_index_type LINEAR variant_index_parameter 128000. SNPs were also called using samtools v1.10 / bcftools v1.9 (Danecek et al. 2021) with default parameters. Following these two SNPs calling steps, we performed a three-steps filtering process: (i) only diallelic SNPs were kept, (ii) the minimum allele frequency (MAF, upper case used at the individual level), calculated on the basis of all the reads containing the SNP, was set to 30% (note that GONE does not require the application

of MAF filtering, and such filtering might cause a small upward bias in the estimation), (iii) individual genotypes with sequencing depth less than 10 were recoded into « ./ » meaning that both alleles are missing. We then identified SNPs found by both GATK and samtools using the - diff flag of vcftools v0.1.15 with tabix-0.2.5 (Danecek et al. 2011). A nucleotide polymorphism was considered to be a SNP if at least one individual was found to be heterozygous at the position. On average, for each individual, 88.5% of the sequencing reads mapped properly onto the assembly. The final VCF contained 18,192,174 variants, and is available at the Portail Data INRAe (doi:10.57745/FJRYI1).

We re-ordered the 406 genomic scaffolds available based on their number of SNPs, and selected 150 scaffolds with the largest number of SNPs. We tested different combinations of input subsets, with numbers of scaffolds ranging from 12 to 150 (provided that SNPs per scaffold < 1 million and total number of SNPs < 10 millions, see the requirements of GONE below), and numbers of individuals ranging from 5 to 167 (total sample size).

For the apricot, *P. armeniaca*, we estimated N_e using whole genome resequencing data (21x depth of coverage by ILLUMINA technology) for wild Central Asian, self-incompatible populations of the species (Groppi et al. 2021). Variant sites were mapped to the eight chromosomes of the species and ranged between 2.3 and 6.2 million per chromosome (total number of variant sites: 24 M). As these exceeded the total number allowed in GONE, we downsampled the number of SNPs prior to the analyses. We also analysed the datasets by considering the different gene pools recovered in Groppi et al. (2021) (Supp. Fig. S20), namely the Southern (red cluster) and Northern (yellow cluster) gene pools, as obtained in fastStructure (Raj et al. 2014) (see next subsection).

Data analyses in GONE

Analyses for all species. We performed N_e estimation in the software GONE (Santiago et al. 2020). GONE generates contemporary or recent historical estimates of N_e (i.e., in the 100-200 most recent

generations) using the LD method. GONE requires linkage information, ideally represented by SNPs mapped to chromosomes. Chromosome mapping is rarely available for non-model species, and in our case was only fully available for the apricot (*P. armeniaca*) dataset. In the absence of chromosome mapping information for the other species, we treated genomic scaffolds as chromosomes. In terms of requirements, GONE accepts a maximum number of chromosomes of 200 and a maximum number of SNPs of 10 million, with a maximum number of SNPs per chromosome of 1 million, although the software uses up to 50,000 random SNPs per chromosome for the computations when the total number of SNP is larger. A complete workflow of the analyses carried out in GONE is available at <https://github.com/Ralpina/Ne-plant-genomic-datasets> (Gargiulo, 2023); the input parameter file used for the final analyses is available in Supplementary File 2.

Influence of missing data on N_e estimation. The influence of missing data on N_e estimation in GONE was evaluated using the dataset from *F. sylvatica*. After keeping 67 individuals with less than 95% missing data, we permuted individuals (without replacement) to generate 150 datasets of 35 individuals, and estimated N_e in GONE for each dataset. Proportion of missing data per individual for each permuted dataset was calculated in vcftools v0.1.16 (Danecek et al. 2011) from an average of ~25% to 95%; results were plotted in R v4.2.2 (R Core Team 2019). In addition, we used the dataset of *P. armeniaca* to evaluate how N_e changed when manually introducing missing data. We selected all individuals from the Northern gene pool with a Q-value (cluster membership coefficient) $\geq 99\%$ (77 individuals) to rule out the influence of admixture, and replaced some of the individual genotypes with missing values using a custom script (available at: <https://github.com/Ralpina/Ne-plant-genomic-datasets>). We generated two datasets with a proportion of missing data per individual of 20% and 40%, respectively, and then computed N_e in GONE for each dataset obtained.

Influence of number of SNPs on N_e estimation. The influence of the number of SNPs on N_e estimation in GONE was evaluated using the dataset of *P. armeniaca*. From the Northern gene pool, we first selected the individuals with a Q-value $\geq 99\%$ to rule out the influence of admixture. We drew

random subsets of variant sites (without replacement) including 40K, 80K, 150K, 300K, 500K, 3.5M, 7M, and 10M SNPs, respectively, and generated 50 replicates for each subset; we then estimated N_e in GONE for each subset and obtained the geometric mean and the 95% confidence intervals across the 50 replicate subsets with the same number of SNPs (using the functions `exp(mean(log(x)))` and `quantile` in R).

Influence of sample size on N_e estimation. We used the Northern gene pool of *P. armeniaca* to assess how N_e estimates changed depending on the number of samples considered and the uncertainty associated with individual sampling. We first downsampled the number of SNPs to 3.5M (to satisfy GONE requirements), and varied the sample sizes included in the analyses from 15 to 75 (i.e., approx. the total number of individuals of the Northern gene pool with a Q-value $\geq 99\%$). For each sample size group, we generated 50 subsets (without replacement within the subset) of individuals and estimated N_e in GONE for each subset; we then estimated the geometric mean and the 95% confidence intervals across subsets with the same sample size (using the functions `stat_summary(fun.data = median_hilow, fun.args = list(conf.int = 0.95))` and `stat_summary(fun = "geometric.mean"` (psych package) in R).

Influence of population admixture on N_e estimation. We also evaluated how genetic structure within gene pools influenced N_e estimation in GONE for both the Southern and Northern gene pools of *P. armeniaca*. We first downsampled the number of SNPs to 3.5M to satisfy GONE requirements, as described above. We then distributed the individuals of each gene pool into five (overlapping) subsets based on individual Q-values (lower bounds of 70%, 80%, 90%, 95%, and 99%), resampled individuals (without replacement) in each Q-value subset 50 times, standardising sample sizes to the sample size of the smallest Q-value subset within a gene pool (i.e., 21 individuals as in the 99% Q-value subset of the Southern gene pool and 77 individuals as in the 99% Q-value subset of the Northern gene pool, see Supplementary Table S1 for original sample sizes). We then estimated N_e in GONE and obtained 95% confidence intervals across the 50 resampled datasets of the same Q-value

subset within a gene pool (using the R function *stat_summary* mentioned above). We also combined all individuals from the two gene pools (255 individuals), resampled 77 individuals 50 times without replacement, and estimated N_e in GONE and the related confidence intervals as explained above.

Effect of using genomic scaffolds rather than chromosomes. We evaluated the effect of using genomic scaffolds to estimate linkage groups when chromosome information is not available. Using the downsampled dataset of 3.5M SNPs from *P. armeniaca*, we selected from the Northern gene pool 45 random individuals with a Q-value $\geq 99\%$, to rule out the influence of admixture. For this dataset, five different chromosome maps were then created, progressively assigning SNPs to 8 (true value), 16, 32, 64 and 128 chromosomes (as if they were genomic scaffolds, see script and related explanation at <https://github.com/Ralpina/Ne-plant-genomic-datasets#4-effect-of-using-genomic-scaffolds-instead-of-chromosomes-on-ne-estimation>). We then estimated N_e in GONE using five corresponding chromosome map files and keeping the same ped (genotypes) file.

Data analyses in NeEstimator

We also used the LD method as implemented in the software NeEstimator v2 (Do et al. 2014) to estimate N_e in our datasets. NeEstimator assumes that SNPs are independently segregating (typically, SNPs at short physical distances, for example those in the same short genomic scaffolds or loci, are filtered previous to analysis, see below), and therefore it provides an N_e estimate based on the LD generated by random genetic drift, which reflects N_e in very recent generations (Waples et al. 2016). However, accuracy and precision will be both affected by (1) the assumption of independent segregation in genomic data sets, as SNPs are necessarily packed on a limited number of chromosomes and thus they provide non-independent information, and especially (2) the occurrence of overlapping pairs of loci, each locus appearing in multiple pairwise comparisons (i.e., two aspects of the issue known as pseudoreplication; (Purcell et al. 2007; Waples et al. 2016; 2022;

Waples 2023)). Although the influence of this issue on bias and precision is difficult to address completely, some bias corrections have been proposed, for example applying a correction based on the genome size of the species being analysed (formula in Waples et al. 2016), restrict comparisons to pairs of loci occurring on different chromosomes (Waples 2023), or using only one SNP per scaffold or thinning scaffolds based on discrete window sizes (Purcell et al. 2007). To adjust for the bias, we therefore applied the correction in Waples et al. (2016), by dividing the N_e estimates obtained by $y=0.098+0.219 \times \ln(Chr)$, where Chr is the haploid number of chromosomes, when information about the number of chromosomes was available.

As low-frequency alleles upwardly bias N_e , we followed the recommendations in Waples (2023) and excluded singleton alleles (Waples and Do 2010; Waples 2023). We also ran the analyses without applying a filter for rare alleles, to be able to compare the results obtained in NeEstimator with those from GONE and currentNe. Confidence intervals were obtained via jackknifing over samples (Do et al. 2014; Jones et al. 2016). As NeEstimator cannot handle very large datasets (with $> 100,000$ loci, see <https://www.molecularfisherieslaboratory.com.au/neestimator-software/>), we reduced the number of SNPs in the *F. sylvatica* and *P. armeniaca* datasets by randomly subsampling 50,000 SNPs across chromosomes.

Data analyses in currentNe

We used the newly developed software programme currentNe (Santiago et al. 2023) to obtain contemporary N_e estimates that are directly comparable to the ones obtained in NeEstimator (referring to the most recent generations in the past). The practical advantages of currentNe are the possibility to include thousands of SNPs in the analyses (with an upper limit of 2 million loci), the lack of a minor allele frequencies requirement, and the lower computational effort. Moreover, the software produces confidence intervals around N_e based on artificial neural networks, can

accommodate complex mating systems and is accurate with small sample sizes (Santiago et al. 2023). We estimated N_e in currentNe for all the species included in our study except *S. globulifera* s.l., as the software requires the number of chromosomes or the genome size in centiMorgans, which were not available for the species.

Results and Discussion

Data analyses in GONE

Our study explores the limitations associated with genomic datasets when estimating N_e using the LD method as implemented in the programme GONE, and compares estimates of recent historical N_e obtained in GONE with estimates of contemporary N_e as obtained in NeEstimator and currentNe. Below, we will first focus on the limitations of plant genomic datasets as explored using the software GONE and then discuss the differences observed when N_e was calculated using GONE, NeEstimator and currentNe.

One limitation usually associated with reduced representation sequencing datasets is the short length of the reads or scaffolds. We tested how this limitation would influence N_e estimation in GONE using the datasets of *S. globulifera* and *M. annua*. The estimation of N_e in GONE failed for the three biological species of *S. globulifera*, as the software returned the error “too few SNPs” for each of the three species datasets. This was caused by the relatively small number of SNPs per scaffold (averaging ~250 SNPs) and, in turn, by the relatively short length of the scaffolds (length ranging from 5,421 to 931 positions) which prevented GONE from producing reliable N_e estimates. N_e estimates were instead obtained for *M. annua*, whose average number of SNPs per contig was 670 (Table 1).

Influence of missing data on N_e estimation

The effect of missing data on N_e estimation is evident from the results obtained when analysing the dataset of *F. sylvatica*, and from the results obtained when analysing the dataset of *P. armeniaca* in which genotype data were manually excluded. For *F. sylvatica*, 35 individuals had a proportion of missing data < 50% (Fig. 1B). Increasing the proportion of missing data in the permuted datasets of 35 individuals produced acute increases in N_e estimates in GONE (see Fig. 1A); for instance, increasing the median proportion of missing data per individual from 25% to 35% produced N_e estimates increasing from 200 to 3 millions. Likewise, when missing data proportion per individual of *P. armeniaca* increased above 20%, we obtained N_e estimates that were > 350 times larger than those obtained from the original dataset (average missing data proportion per individual ~ 8%) (Fig. 2). This relationship between missing data and N_e estimates is consistent with what was previously found (e.g., Marandell et al. 2020), although the loss of accuracy in the N_e estimation is extreme and suggests that either individuals with > 20% missing data should be removed from the dataset before estimating N_e or SNPs with missing data in a given percentage of individuals (e.g., 50% by default assumed by GONE) should be removed, provided that the dataset includes a sufficient number of SNPs. However, in species with large effective population sizes, reducing the sample size (S) to a number << true N_e introduces further uncertainties in the N_e estimation using the LD method, regardless of the number of loci used (Marandell et al. 2019; Waples 2023), in addition to the sampling error already expected because of the finite sample size (e.g., Peel et al. 2013).

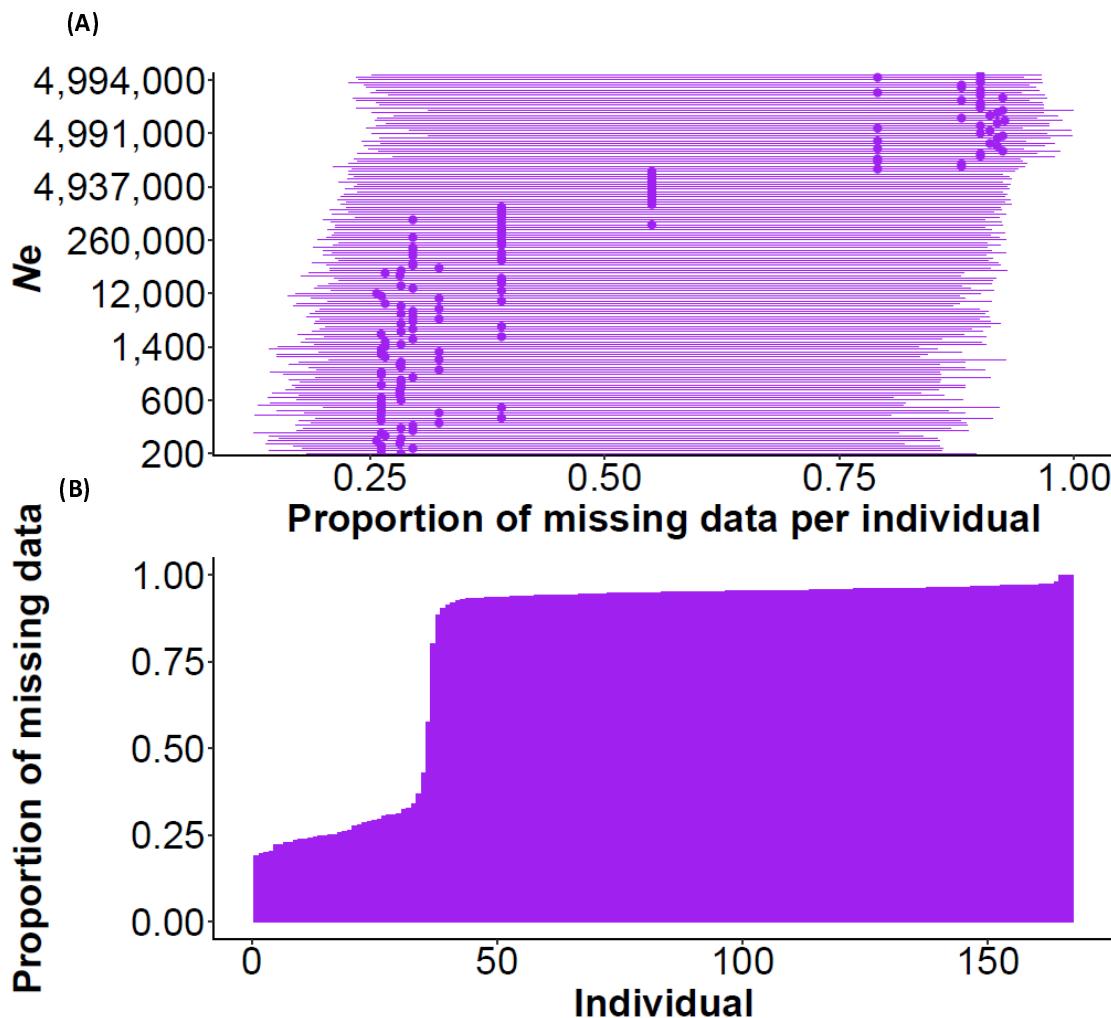


Figure 1. In (A), ranked median N_e estimates in the most recent generation in 150 datasets of 35 individuals with different proportions of missing data (excluding individuals with a proportion of missing data > 0.95) of *F. sylvatica*; ranges represent standard deviations for the proportion of missing data per individual. Analyses based on the dataset with the twenty-seven genomic scaffolds with the largest number of SNPs (excluding the scaffolds with > 1 M SNPs). In (B), proportion of missing data per individual in the complete dataset of *F. sylvatica*.

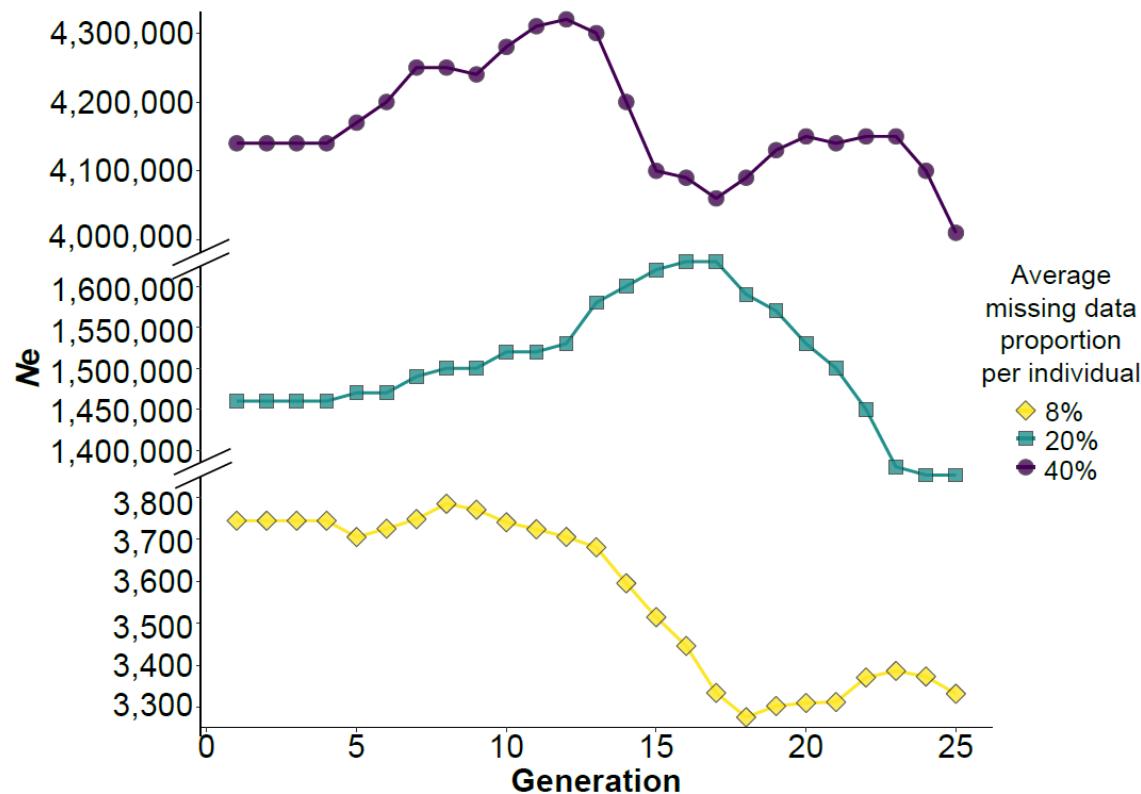


Figure 2. Influence of missing data on N_e estimation in GONE. Missing genotypes were manually introduced in the dataset of *P. armeniaca*, generating pseudo-genotypes with an average proportion of missing data ranging from 20% to 40%. The original dataset is shown for comparison (missing data = 8%). Note the different y-scales in the three facets.

Influence of number of SNPs on N_e estimation

The influence of the number of SNPs per chromosome was explored using the dataset from *P. armeniaca* (Northern gene pool), which was the only dataset with SNPs fully mapped to chromosomes. Increasing the number of SNPs per chromosome affected point N_e estimates only slightly, and influenced the apparent precision of the estimates more obviously, especially for a total number of SNPs above 300,000, corresponding to an average of 10,000 SNPs per chromosome of *P. armeniaca* used by GONE (Fig. 3). Accuracy and precision of N_e estimates based on LD are expected to be affected by two types of pseudoreplication: (1) the non-independent information content

provided by thousands of linked SNPs, and especially (2) the occurrence of overlapping pairs of loci, each locus appearing multiple times in pairwise comparisons (Waples et al. 2016; 2022). Therefore, the narrower confidence intervals we obtained when increasing the number of SNPs are partially due to the inclusion of overlapping pairs of loci for the N_e estimation, which artificially increases the degrees of freedom that make CIs tight. The drop in the N_e geometric mean value associated with the dataset with >20,000 SNPs might be due to the inclusion of more physically linked SNPs, but it might also be due to the uncertainty associated with the specific SNPs included in the analysis.

For practical purposes, our results show that adding more than 2,000 polymorphic SNPs per chromosome, with a large sample size (~75), does not substantially improve the accuracy and the precision of the estimation, in line with what is shown in previous studies focusing on LD N_e (Marandel et al. 2020). Santiago et al. (2020) noted that the accuracy of the estimation is proportional to sample size and to the square root of SNPs pairs, and therefore researchers might partially compensate for small sample sizes by increasing the number of SNPs. However, as the information content of a dataset depends on the amount of recombination and on the pedigree of the individuals included in the analyses, an estimation based on a small number of samples will not necessarily be representative of the entire population, especially if N_e is large (King et al. 2018; Santiago et al. 2020; Waples 2023). Furthermore, the marginal benefit of increasing the number of SNPs beyond tens of thousands is counterbalanced by poor precision if CIs are generated using incorrect degrees of freedom, which is often the case with thousands of non-independent SNPs (Do et al. 2014; Jones et al. 2016; Moran et al. 2019; Luikart et al. 2021; Waples et al. 2022). Finally, Waples (2023) also points out that adding more than a few thousand SNPs increases the precision only slightly and is more beneficial when the true N_e is large.

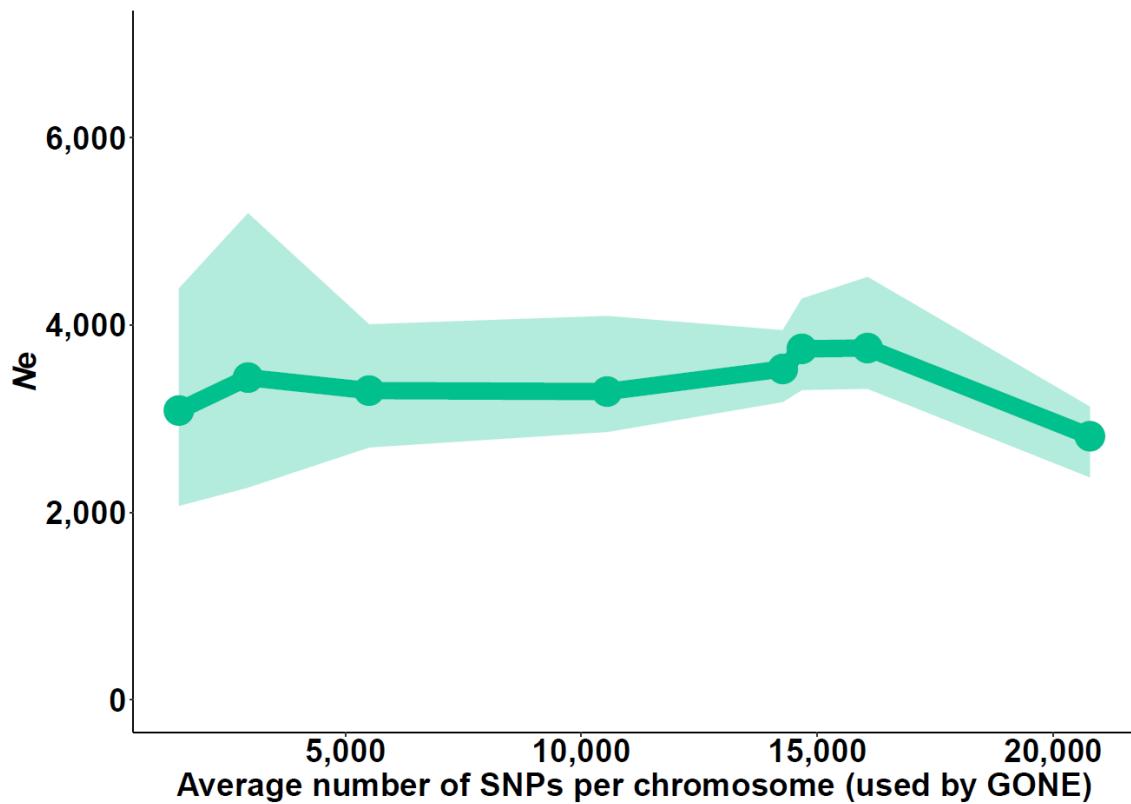


Figure 3. N_e estimates obtained in GONE over the most recent generation for the Northern gene pool of *Prunus armeniaca* as a function of the number of SNPs. Points represent the geometric mean values across 50 replicates; shaded area represents 95% confidence intervals across replicates. Note that GONE uses a maximum of 50,000 SNPs per chromosome, even if provided with a larger number (with 1 million per chromosome being the maximum number accepted); the number of SNPs in each of the eight subsets analysed ranged from 10^4 to 10^7 , corresponding to a range of ~5,000 to ~20,000 polymorphic SNPs per chromosome used by GONE.

Influence of sample size on N_e estimation

We evaluated the influence of sample size using the Northern gene pool of *P. armeniaca*. Increasing sample sizes to over thirty samples led to more consistent N_e estimates and reduced the chances of obtaining N_e estimates only representative of a few individual pedigrees (Fig. 4), as previously observed when using the linkage disequilibrium method (Palstra and Ruzzante 2008; Waples and Do 2010; Tallmon et al. 2010; Antao et al. 2011; Waples et al. 2016; Nunziata and Weisrock 2018; Marandell et al. 2019; Santiago et al. 2020). Including in the N_e estimation a number of samples that

is representative of the true N_e of the population is crucial in large populations, where the genetic drift signal in recent generations is weak (Palstra and Ruzzante 2008; Luikart et al. 2010; Do et al. 2014; Barbato et al. 2015; Wang et al. 2016; Santiago et al. 2020; Waples 2023). On the contrary, small populations experience more genetic drift, hence the LD method is particularly powerful in such populations. Estimates of N_e remain small in small populations even with larger sample sizes, hence the important conservation implication that small populations cannot be mistaken for large populations (Waples and Do 2010; Waples et al. 2016; Santiago et al. 2020). For the Northern gene pool of wild apricots, we obtained an N_e estimate $< 2,000$ when sample size was equal to 15, and progressively obtained higher values increasing up to a plateau of $N_e \approx 4,000$, for larger sample sizes. This confirms the expectation that a large sample size is needed to estimate a large N_e (Tallmon et al. 2010; Antao et al. 2011).

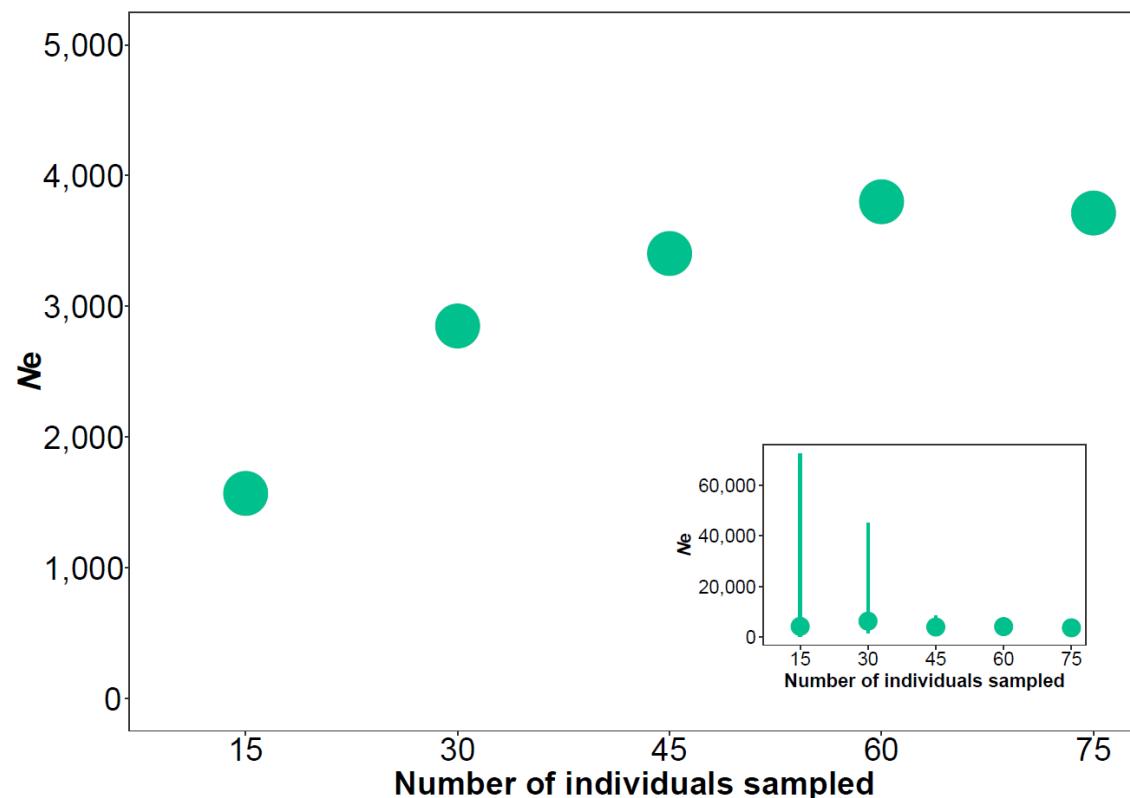


Figure 4. Change in the N_e estimates as a function of sample size in *P. armeniaca* (Northern gene pool). Points represent geometric means across subsets of individuals, sampled without replacement 50 times. The insert also shows 95% confidence intervals (point ranges) estimated over the 50 replicate subsets.

Influence of admixture on N_e estimation

The impact of admixture on N_e estimation was explored using the dataset of *P. armeniaca*. Estimates of N_e in the most recent generation generally decreased when the Q-value of the individuals included in the analysis increased (Fig. 5A). The larger N_e estimates in the most recent generations (1-4) when including more admixed individuals are consistent with the upward bias predicted by Waples and England (Waples and England 2011) for a sampled subpopulation that does not include all potential parents (“drift LD”); with higher admixture proportions (Fig. 5A), the N_e estimated for each gene pool (subpopulation) using the LD method tends to approach the N_e of the metapopulation instead (Waples and England 2011). However, the N_e estimate we obtained when combining the two gene pools (“all” in Fig. 5A) was lower than the N_e estimate obtained when considering highly admixed individuals in the Northern gene pool (70% in the right panel of Fig. 5A). A downward bias in the N_e estimation is expected because of the Wahlund effect associated with sampling and analysing different gene pools together, and it is indicated as “mixture LD” (Waples and England 2011; Neel et al. 2013; Nunney 2016; Waples 2023). The Southern gene pool showed a contrasting trend; N_e estimates for the less admixed groups remained lower than that obtained when combining the two gene pools, possibly because the few samples from this gene pool contributed less (with any potential mixture LD) than the more abundant samples from the Northern gene pool (with their LD signal) (Fig. 5A). How the relationship between sampling and genetic structure practically affects N_e still deserves evaluation, as the effect on LDNe will depend on the relative strength of the “mixture LD” and the “drift LD” in the specific set of samples included in the analyses (Waples 2023).

Over the last 25 generations (Fig. 5B), we obtained higher N_e estimates when individuals from the Southern gene pool with a Q-value $\geq 99\%$ were included. For the Northern gene pool, on the contrary, we obtained a lower N_e estimate when individuals with a Q-value $\geq 99\%$ were included. The different demographic histories of the Northern and Southern gene pools certainly underlie the pattern observed, as the Southern gene pool seems to have undergone a recent bottleneck, whereas the Northern gene pool has a more stable demographic trend. The recent population decline for the Southern gene pool may be explained by the Soviet era and the current land-use change in the Fergana valley (mainly Uzbekistan) where native forests of wild apricot were partially replaced with crop species. Nevertheless, two more factors should be considered; first, the sample size of the Southern gene pool is smaller than that of the Northern gene pool (only 21 individuals vs. 77 individuals drawn from each Q-value subset). Second, Santiago et al. (2020) warn about a typical artefactual bottleneck observed in GONE and caused by population structure (in Figure 2F of Santiago et al. 2020, considering a migration rate = 0.2%; Novo et al. 2023). As we observed a consistent trend regardless of the individual Q-value, and the drop in N_e is particularly evident with a Q-value = 99%, we interpret this N_e drop as a true bottleneck, with the caveat of reduced accuracy linked to a small sample size for the Southern gene pool.

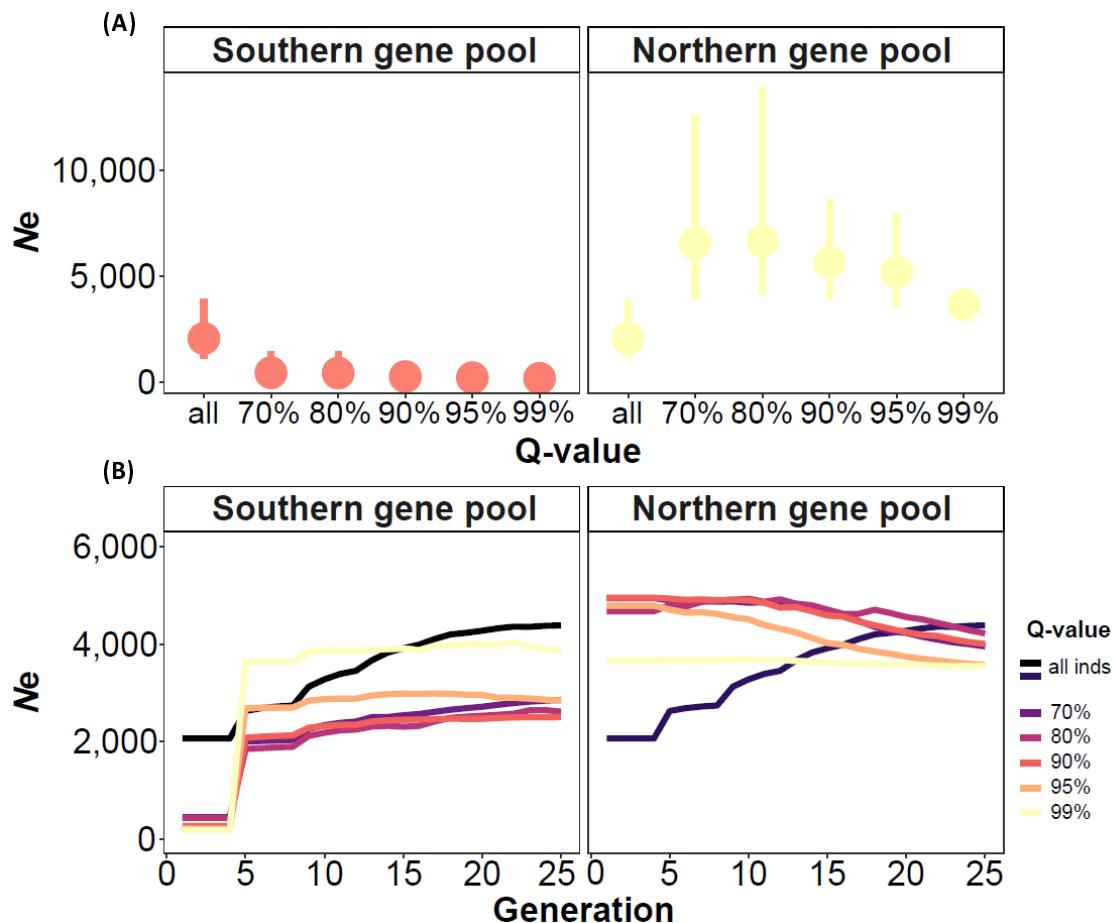


Figure 5. Influence of population structure on GONE N_e estimates for the Northern and Southern gene pools of *P. armeniaca*. Q-values refer to the results of the fastStructure analysis performed in Groppi et al. (2021) (lower bounds of individual Q-value to the main genetic cluster). N_e was estimated over 50 datasets of resampled individuals (77 in each Q-value subset in the Northern gene pool and 21 in each Q-value subset in the Southern gene pool, reflecting differences in sample sizes). In (A), points represent the geometric mean and ranges represent 95% confidence intervals across 50 replicates; in (B), only geometric mean values of the N_e estimates across 50 replicates and in the last 25 generations are shown. N_e estimates obtained for the combined gene pools are also shown ("all" in (A) and "all inds" in (B)).

Effect of using genomic scaffolds rather than chromosomes

To evaluate the effect of using genomic scaffolds as a proxy for linkage groups when chromosome information is not available, we sorted SNPs from the *P. armeniaca* dataset into a progressively larger number of scaffolds or chromosomes assumed. This produced inconsistent N_e estimates across the datasets with increasing number of chromosomes assumed, with N_e values progressively

rising from around 3×10^3 for 8 chromosomes (true value) to $> 8 \times 10^5$ when the number of chromosomes assumed was equal to 128 (Fig. 6). The algorithm implemented in GONE is based on the assumption that LD among pairs of SNPs at different genetic distances provides differential information about N_e at different times in the past (Santiago et al. 2020). Loosely linked loci give information about N_e in recent generations, as their recombination rate is higher and rate of LD-decay slower than that of closely linked loci (Sved and Feldman 1973). Therefore, the behaviour of the N_e estimates observed in Fig. 6 can be explained by considering that when a chromosome is broken into smaller scaffolds, only closely linked loci will be available for the N_e estimation; pairs of SNPs at higher genetic distances (i.e., loosely linked loci) will be missing, inducing biases on recent N_e estimates. An inflated N_e in recent generations will therefore depend on having fewer random associations among loci useful to estimate LD (i.e., fewer loosely linked loci), which will unfold as having less genetic drift (i.e., a larger population). Consequently, N_e estimates obtained in GONE for *M. annua* and *F. sylvatica* may be biased upward since scaffolds were used as a proxy for chromosomes (Table 1).

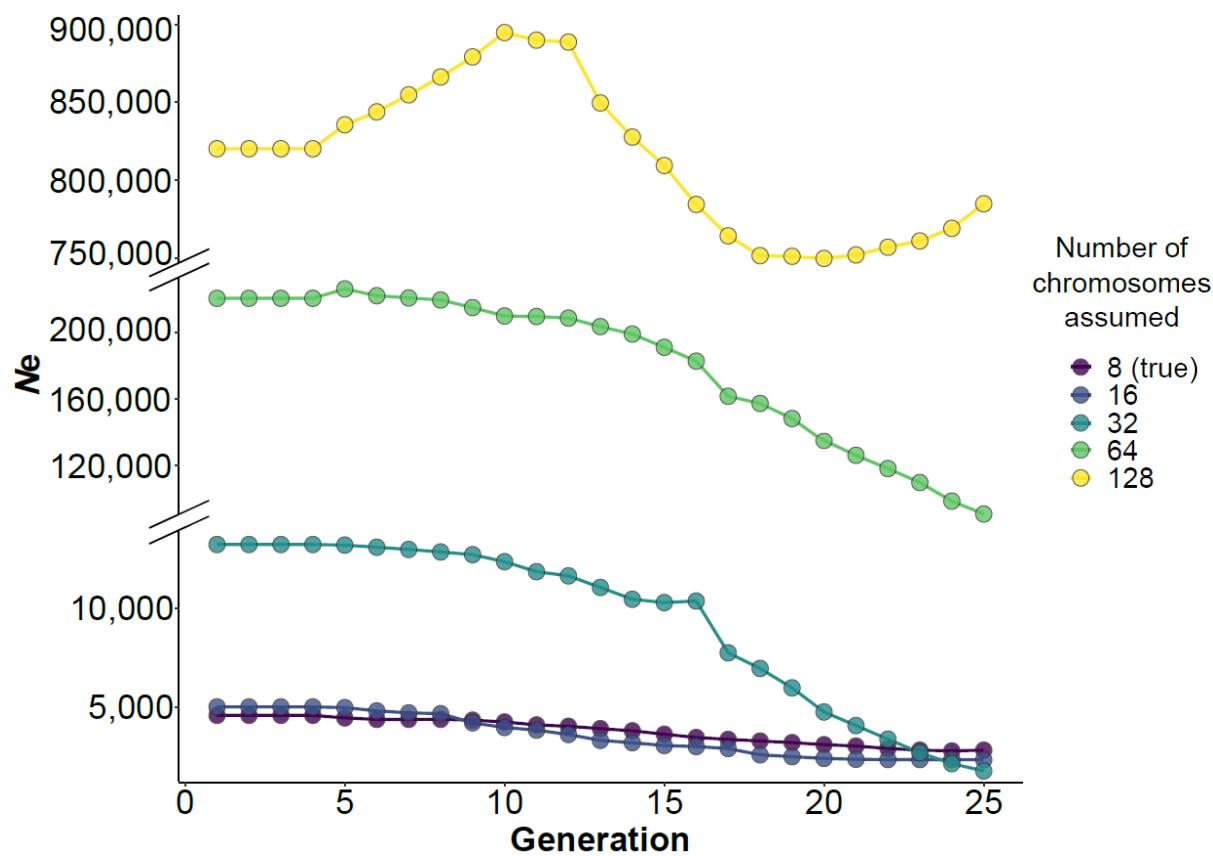


Figure 6. Estimates of N_e calculated on datasets in which the same set of SNPs is assigned to a progressively larger number of assumed chromosomes, where 8 is the true number of chromosomes for *P. armeniaca* (per haploid count); 45 individuals from the Northern gene pool were used for this analysis.

N_e estimates obtained in GONE, NeEstimator and currentNe

As expected, N_e estimates obtained using NeEstimator and currentNe were more in agreement with one another compared with those obtained in GONE for the last generations (Table 2). GONE estimates for all species were larger than those obtained using the other programmes, especially in the Northern gene pool of *P. armeniaca* (GONE- N_e ~3500 for the last generation while NeEstimator- N_e ~716.2, excluding singletons and after bias correction, and currentNe- N_e ~450 after bias correction). The point N_e estimate obtained in currentNe and its confidence intervals remained consistent even when we increased the number of SNPs included in the analysis, suggesting that there was no uncertainty associated with the SNPs included in the analysis. Estimates from

simulated populations in Santiago et al. (2023) showed consistency between the output of currentNe and NeEstimator, except when a small sample (10 individuals) was drawn from a very large population ($N_e = 10,000$) using 22,000 SNPs, in which case currentNe performed better. Our sample size for the Northern gene pool was much larger (77 individuals), and we do not expect the true N_e to be larger than 10,000. Therefore, when using the same dataset for currentNe and NeEstimator, we interpret the slight discrepancy between the two estimates to be associated with the different algorithms included in the programmes, which are affected in different ways by the occurrence of rare alleles and the deviations from random mating, among other things (Santiago et al. 2023). When considering the Southern gene pool, for which the true N_e is expected to be smaller than for the Northern gene pool (Groppi et al. 2021), the estimates obtained in NeEstimator (~ 80.9 excluding singletons and after bias correction) and currentNe (~ 76.4 after bias correction) were more consistent.

Another consideration is the downward bias on N_e estimates caused by localised sampling in continuous populations featuring isolation by distance (Neel et al. 2013; Nunney 2016; Santos-del-Blanco et al. 2022; Waples 2023). If the range of sampling is similar in extent to the unknown effective range of dispersal, as it is likely the case in *S. globulifera*, estimates may not reflect the population-wide true N_e , but rather a quantity close to the neighbourhood size (N_s), i.e., the inverse of the probability of identity by descent of two uniting gametes (Santos-del-Blanco et al. 2022). In *P. armeniaca*, where the sampling window likely exceeded the breeding window by much, we may still expect a downward bias because of the mixture LD caused by the inclusion of genetically divergent individuals (Neel et al. 2013; Waples and England 2011; Waples 2023). However, this bias would not explain the discrepancy between the estimates obtained in GONE and those obtained with the other programmes for the Northern gene pool of *P. armeniaca*. In *S. globulifera*, for which we also expect a large N_e (> 1000), it was only possible to use NeEstimator, due to the short length of contigs (not appropriate when using GONE), and the lack of information about the number of chromosomes (as required by currentNe). N_e ranged from 86 (CI: 37-Infinite) in Species 3, to 380 (CI: 300-510) in

Species 2 and to 754 (CI: 623-949) in Species 1, although point estimates could not be corrected for physical linkage due to lack of information about chromosome number and are therefore biased downward (Table 2). Estimates for Species 3, in particular, displayed infinite confidence intervals, suggesting that the sample size might be not large enough to capture the genetic drift signal from the original population. However, the relative magnitude of the estimates obtained are in agreement with the availability of suitable habitats for the three species (Schmitt et al. 2021) and, all else being equal, we would generally expect these populations to have a long-term constant population size, considering that the Guianese rainforest has experienced a continuous forest cover since the last glacial maximum (Barthe et al. 2016).

The uncertainty in N_e estimation using the LD method is particularly exacerbated in the dataset from *F. sylvatica*, where missing data also affect the estimation performed with the three programmes (GONE- N_e = 25 for the last generation, NeEstimator- N_e = 2.3, excluding singletons and after bias correction for physical linkage, and currentNe- N_e = 6.2 after bias correction for physical linkage), by reducing the usable sample size among pairs of loci (Peel et al. 2013; Do et al. 2014; Waples 2023). In general, missing data affect the precision of N_e estimates from the LD method whereas accuracy should be less affected (Nunziata and Weisrock 2018; Waples 2023), unless missing data occur non-randomly and depend on the genotype, as it might be the case in the *F. sylvatica* dataset.

For the only annual plant in our dataset, *M. annua*, we would expect N_e estimated with the LD method to mainly reflect the effective number of breeders, N_b (Luikart et al. 2021; Waples 2023) for the year of sampling, as individual cohorts were sampled (progeny of adults that reproduced in that specific year). Estimates in GONE were higher than those obtained in NeEstimator and currentNe (Table 2), also because of the bias induced by the lack of SNPs mapping (i.e., using scaffolds as a proxy for chromosomes in GONE). All point estimates fell within the estimated confidence intervals and usually denoted a small N_e , which is consistent with primarily reflecting the N_b for the population. In particular, point estimates in NeEstimator, excluding singletons and after bias correction for physical linkage, ranged from 29.1 for the Mediterranean gene pool to 33.8 for the

Core gene pool and 27.3 for the Atlantic gene pool. Point estimates in current N_e , after bias correction for physical linkage, ranged from 37.3 for the Mediterranean gene pool to 37.1 for the Core gene pool and 32 for the Atlantic gene pool. Even if the gene pool subdivision was consistent with the level of genetic admixture found in the individuals, it is still possible that estimates are biased downward because of mixture LD associated with mixing samples from different geographical locations (sampling window larger than breeding window). Furthermore, *M. annua* is able to survive through multi-annual seed banks (Crocker 1938) despite being an annual plant, and therefore the arithmetic mean across multigenerational N_b estimates would be needed to reliably estimate N_e rather than N_b (Nunney 2002; Waples 2006b).

Practical recommendations when estimating contemporary N_e in GONE

In this study, we have considered some of the technical limitations when estimating N_e from plant genomic datasets, including: (i) the occurrence of missing data, (ii) the limited number of SNPs/individuals sampled, (iii) the lack of genetic/linkage maps and of information about how SNPs map to chromosomes when estimating N_e using the software GONE. In addition, we have explored some biological limitations that may affect N_e estimation using the LD method, such as the occurrence of population structure, although we recognise that our exploration is not exhaustive, as other biological factors (i.e., associated with reproductive system and life-history traits) might affect N_e and its estimation. Our empirical results corroborate some previous findings, for example about the importance of having large samples sizes (ideally > 30 per subpopulation), especially when populations are large, and highlight the following requirements that genomic datasets should satisfy:

- ☒ non-random missing data should not exceed 20% per individual. Missing data also affect how SNPs are represented across loci and individuals sampled and can generate non-random patterns whose effect on N_e estimation is difficult to predict;

- ② having a large number of SNPs (> tens of thousands) is potentially important to allow users to generate non-overlapping subsets of loci that reduce the influence of pseudoreplication on confidence intervals (Waples et al. 2022). However, increasing the number of SNPs beyond a few thousands per chromosome does not produce significant changes in N_e estimates, as we observed in wild apricots; Waples (2023) also observed that the benefit of adding over a few thousand SNPs on precision is little, but increases if the true N_e is very large.
- ② most importantly, having SNPs fully mapped to chromosomes is essential to obtain reliable estimates when using the software GONE; other programmes should be preferred to estimate contemporary N_e when SNPs mapping is not available (i.e., currentNe).

In addition, the bias on N_e estimates due to the occurrence of gene flow and admixture can significantly affect the performance of single-sample estimators, as previously described (e.g., Neel et al. 2013). Other biases associated with (i) further sources population structure (i.e., overlapping generations, demographic fluctuations including bottlenecks, reproductive strategies causing variance in reproductive success, etc.) and (ii) further technical issues associated with sampling strategies and genomic datasets can add up and generate results that are misleading for conservation. Therefore, a careful consideration of the issues above is essential when designing and interpreting studies focused on the estimation of N_e and other related indicators for conservation.

Data accessibility and Benefit-Sharing

The SNP matrices used in this study can be accessed at the following links:

<https://doi.org/10.5281/zenodo.4727831> (*Sympmania globulifera*),

<https://datadryad.org/stash/dataset/doi:10.5061/dryad.74631> (*Mercurialis annua*),

<https://doi.org/10.57745/FJRYI1> (*Fagus sylvatica*), <https://doi.org/10.5281/zenodo.8124822> (*Prunus*

armeniaca). The analyses carried out in this study and the related scripts are available at: <https://github.com/Ralpina/Ne-plant-genomic-datasets> (Gargiulo, 2023).

Benefits Generated: benefits from this research accrue from the sharing of our data and results on public databases as described above.

Acknowledgements and Funding information

This study was carried out within the short-term scientific mission “Estimating effective population size in genomic datasets: test of methods and assumptions”, organised by Working Group 2 of the European Cost Action CA18134 “Genomic Biodiversity Knowledge for Resilient Ecosystems (G-BiKE)”. The work on *F. sylvatica* was supported by the Genoscope, the Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA) and France Génomique (ANR-10-INBS-09-08). We are grateful to the Genotoul bioinformatics platform Toulouse Occitanie (Bioinfo Genotoul, <https://doi.org/10.15454/1.5572369328961167E12>), to the Bordeaux Bioinformatics Center (CBiB), and to the Royal Botanic Gardens, Kew HPC (KewHPC) for providing computing and storage resources. We thank Enrique Santiago and Armando Caballero for their suggestions on how to interpret parameters and results using the software GONE and currentNe, and Stéphane Decroocq for the assistance with the wild apricot dataset. We thank Iris Biebach, Alice Brambilla, Christine Grossen, Jo Howard-McCombe, and all the other members of the G-BiKE Working Group 2 chaired by Mike Bruford for the useful discussions about N_e estimation methods and strategies. IP-V was supported by the U.S. Geological Survey Powell Center for Synthesis and Analysis.

1 **Table 1.** Details of the different plant genomic datasets analysed in the present study.

Species name	Life-form	Reproductive system of populations analysed	Gene pools (#samples)	Data type	Average frequency of missing data per individual	#chromosomes/scaffolds/contigs analysed in GONE	Average #SNPs per scaffold or chromosome*	Total #SNPs **	Reference	Issues explored (affecting N_e estimation in GONE)
<i>Sympomia globulifera</i> L.f.	Perennial (tree)	Monoecious, mixed mating with predominant outcrossing (Degen et al. 2004)	Species 1 (228) Species 2 (107) Species 3 (30)	Targeted sequence capture	0.04	125 (contigs)	247	30,863	Schmitt et al. 2021	Minimum number of SNPs required
<i>Mercurialis annua</i> L.	Annual	Various mating systems, analyses based on dioecious populations; obligate outcrosser (González-Martínez et al. 2017)	Atlantic (12) Core (16) Mediterranean (12)	Targeted gene (exome) capture	0.01	48 (contigs)	670	32,151	González-Martínez et al. 2017	Influence of sample size
<i>Fagus sylvatica</i> L.	Perennial (tree)	Monoecious, predominant outcrossing (Merzeau et al. 1994)	Mt. Ventoux, France (167)	Whole genome sequencing	0.81 (with 27 scaffolds)	12-150 (scaffolds)	~470K (with 27 scaffolds)	~13 M (with 27 scaffolds)	See data availability section	Influence of missing data
<i>Prunus armeniaca</i> L.	Perennial (tree)	Monoecious, self-incompatible (Groppi et al. 2021)	Southern (56) Northern (199) (see Supplementary Table 1)	Whole genome sequencing	0.07	8 (chromosomes)	~3 M (440K)	~24 M (3.5 M in the subsampled dataset)	Groppi et al. 2021	Influence of number of SNPs, of missing data, of sample size, of population structure, of

											using scaffolds instead of chromosomes
--	--	--	--	--	--	--	--	--	--	--	--

2 *in the map file, number of lines divided by number of scaffolds/chromosomes;

3 **number of lines in the map file

4

5 Table 2. Estimates of effective population sizes for each dataset analysed in GONE, NeEstimator, and currentNe.

Species Gene pool (#samples)	N_e in GONE		N_e in NeEstimator			N_e in currentNe	
	#polymorphic loci ⁽¹⁾	N_e ⁽²⁾	#polymorphic loci ⁽³⁾	N_e (95% CI) - excluding singletons ⁽⁴⁾	N_e (95% CI) - no MAF filtering	#polymorphic loci	N_e (90% CI) ⁽⁶⁾
<i>S. globulifera</i>	17,515	N/A	17,515	754 (623-949)	1,036 (841-1,340)	N/A	N/A
Species 1 (228)							
Species 2 (107)	14,906	N/A	14,906	380 (300-510)	547 (409-813)	N/A	N/A
Species 3 (30)	9,207	N/A	9,207	86 (37-Inf)	223 (65-Inf)	N/A	N/A
<i>M. annua</i>	17,854	40	17,854	15 (7-58)	22 (10-121)	17,854	17.6 (13.3-23.3)
Atlantic (12)				27.3, after correction ⁽⁵⁾	40, after correction ⁽⁵⁾		32, after correction ⁽⁵⁾
Core (16)	27,874	123	27,874	18.6 (10.2-46.2)	34.7 (18.3-131.3)	27,874	20.4 (16.2-25.7)
				33.8, after correction ⁽⁵⁾	63.1, after correction ⁽⁵⁾		37.1, after correction ⁽⁵⁾
Mediterranean (12)	18,032	103	18,032	16 (10-32)	26 (17-51)	18,032	20.5 (15.2-27.6)
				29.1, after	47.3, after		37.3, after

				correction ⁽⁵⁾	correction ⁽⁵⁾		correction ⁽⁵⁾
<i>F. sylvatica</i> (35)	322,185 (12 scaffolds) 1,115,200 (27 scaffolds)	25 (12 scaffolds) 360 (27 scaffolds)	41,103 (12 scaffolds)	1.5 (1.1-1.4) 2.3, after correction ⁽⁵⁾	1.1 (0.8-0.9) 1.7, after correction ⁽⁵⁾	1,238,257 (12 scaffolds)	4.0 (5.0-5.0) 6.2, after correction ⁽⁵⁾
<i>P. armeniaca</i> Southern (21)	82,891	184	11,559	44.5 (34.5-61.3) 80.9, after correction ⁽⁵⁾	71.2 (55.6-97.4) 129.5, after correction ⁽⁵⁾	333,829 (subset with 1.5 million SNPs)	42.0 (35.3-50.0) 76.4, after correction ⁽⁵⁾
						11,120 (subset with 50,000 SNPs, as in NeEstimator)	38.6 (31.5-47.3) 70.2, after correction ⁽⁵⁾
Northern (77)	116,285	3,526	16,100	393.9 (252.8-838.6) 716.2 after correction ⁽⁵⁾	510.2 (311.3-1309.5) 927.3 after correction ⁽⁵⁾	444,946 (subset with 1.5 million SNPs)	251 (224.5-280.5) 456.4, after correction ⁽⁵⁾
						17,794 (subset with 50,000 SNPs, as in NeEstimator)	246.7 (215.6-282.3) 448.5, after correction ⁽⁵⁾

6 (1) Number of polymorphic loci analysed in each programme. GONE only uses a subset of SNPs per chromosome (or scaffold), up to a maximum of 50,000 SNPs per
7 chromosome (or scaffold), these are indicated in the OUTPUT_datafilename file.

8 (2) N_e in GONE for the last generation (geometric mean); no MAF filtering was applied, as recommended.

- 9 (3) Note that in NeEstimator and in currentNe, SNPs=loci. Polymorphic loci in NeEstimator = total number of loci minus number of non-polymorphic loci.
- 10 (4) As low-frequency alleles upwardly bias N_e , we followed the recommendations in Waples (2023) and excluded singleton alleles. CIs in NeEstimator represent jackknife
11 confidence intervals.
- 12 (5) When the information about the number of chromosomes was available, estimates obtained in NeEstimator were corrected using $(N_e \text{ estimate})/y$, where y represents
13 the formula in Waples et al. 2016: $y=0.098+0.219 \times \ln(Chr)$, with Chr as the (haploid) number of chromosomes; *M. annua*: 8 chromosomes, *F. sylvatica*: 12 chromosomes, *P.*
14 *armeniaca*: 8 chromosomes.
- 15 (6) N_e estimation by integration over the whole genome as output by currentNe.

16 **References**

- 17 Antao T, Pérez-Figueroa A, Luikart G (2011) Early detection of population declines: high power of
18 genetic monitoring using effective population size estimators. *Evol Appl* 4:144–154
- 19 Barbato M, Orozco-terWengel P, Tapio M, Bruford MW (2015) SNeP: a tool to estimate trends in
20 recent effective population size trajectories using genome-wide SNP data. *Front Genet* 6:109
- 21 Barthe S, Binelli G, Hérault B, et al (2017) Tropical rainforests that persisted: inferences from the
22 Quaternary demographic history of eight tree species in the Guiana shield. *Mol Ecol* 26:1161–
23 1174.
- 24 CBD (2022) Kunming-Montreal Global biodiversity framework.
25 <https://www.cbd.int/doc/decisions/cop-15/cop-15-dec-05-en.pdf>
- 26 Crocker W (1938) Life-span of seeds. *Bot Rev* 4:235–274.
- 27 Csilléry K, Lalagüe H, Vendramin GG, et al (2014) Detecting short spatial scale local adaptation and
28 epistatic selection in climate-related candidate genes in European beech (*Fagus sylvatica*)
29 populations. *Mol Ecol* 23:4696–4708
- 30 Danecek P, Auton A, Abecasis G, et al (2011) The variant call format and VCFtools. *Bioinformatics*
31 27:2156–2158
- 32 Danecek P, Bonfield JK, Liddle J, et al (2021) Twelve years of SAMtools and BCFtools. *Gigascience* 10.:
33 <https://doi.org/10.1093/gigascience/giab008>
- 34 Degen B, Bandou E, Caron H (2004) Limited pollen dispersal and biparental inbreeding in *Sympmania*
35 *globulifera* in French Guiana. *Heredity* 93:585–591
- 36 De Kort H, Prunier JG, Duceatz S, et al (2021) Life history, climate and biogeography interactively
37 affect worldwide genetic diversity of plant and animal populations. *Nat Commun* 12:516
- 38 Do C, Waples RS, Peel D, et al (2014) NeEstimator v2: re-implementation of software for the
39 estimation of contemporary effective population size (N_e) from genetic data. *Mol Ecol Resour*
40 14:209–214
- 41 England PR, Luikart G, Waples RS (2010) Early detection of population fragmentation using linkage
42 disequilibrium estimation of effective population size. *Conserv Genet* 11:2425–2430
- 43 Fady B, Bozzano M (2021) Effective population size does not make a practical indicator of genetic
44 diversity in forest trees. *Biol Conserv* 253:108904
- 45 Felsenstein J (2019) Theoretical Evolutionary Genetics. University of Washington
- 46 Frankham R (2021) Improvements to proposed genetic indicator for CBD. *Biological Conservation*
- 47 Frankham R, Bradshaw CJA, Brook BW (2014) Genetics in conservation management: Revised
48 recommendations for the 50/500 rules, Red List criteria and population viability analyses. *Biol*
49 *Conserv* 170:56–63
- 50 Franklin IR (1980) Evolutionary change in small populations
- 51 Gargiulo R (2023) Ralpina/Ne-plant-genomic-datasets: Ne-plant-genomic-datasets v1.5 (v.1.5).
52 Zenodo. <https://doi.org/10.5281/zenodo.10371894>

- 53 Gargiulo R, Waples RS, Grow AK, et al (2023) Effective population size in a partially clonal plant is not
54 predicted by the number of genetic individuals. *Evol Appl* 16:750–766
- 55 González-Martínez SC, Ridout K, Pannell JR (2017) Range expansion compromises adaptive evolution
56 in an outcrossing plant. *Curr Biol* 27:2544–2551.e4
- 57 Graudal L, Aravanopoulos F, Bennadji Z, et al (2014) Global to local genetic diversity indicators of
58 evolutionary potential in tree species within and outside forests. *For Ecol Manage* 333:35–51
- 59 Groppi A, Liu S, Cornille A, et al (2021) Population genomics of apricots unravels domestication
60 history and adaptive events. *Nature Communications* 12
- 61 Hayes BJ, Visscher PM, McPartlan HC, Goddard ME (2003) Novel multilocus measure of linkage
62 disequilibrium to estimate past effective population size. *Genome Res* 13:635–643
- 63 Hill WG (1981) Estimation of effective population size from data on linkage disequilibrium. *Genet Res*
64 38:209–216
- 65 Hoban S, Bruford M, D'Urban Jackson J, et al (2020) Genetic diversity targets and indicators in the
66 CBD post-2020 Global Biodiversity Framework must be improved. *Biol Conserv* 248:108654
- 67 Hoban S, Bruford MW, Funk WC, et al (2021a) Global Commitments to Conserving and Monitoring
68 Genetic Diversity Are Now Necessary and Feasible. *Bioscience* 71:964–976
- 69 Hoban S, da Silva JM, Mastretta-Yanes A, et al (2023) Monitoring status and trends in genetic
70 diversity for the Convention on Biological Diversity: An ongoing assessment of genetic
71 indicators in nine countries. *Conserv Lett*. <https://doi.org/10.1111/conl.12953>
- 72 Hoban SM, Hauffe HC, Pérez-España S, et al (2013) Bringing genetic diversity to the forefront of
73 conservation policy and management. *Conserv Genet Resour* 5:593–598
- 74 Hoban S, Paz-Vinas I, Aitken S, et al (2021b) Effective population size remains a suitable, pragmatic
75 indicator of genetic diversity for all species, including forest trees. *Biol Conserv* 253:108906
- 76 Hössjer O, Laikre L, Ryman N (2016) Effective sizes and time to migration-drift equilibrium in
77 geographically subdivided populations. *Theor Popul Biol* 112:139–156
- 78 Jamieson IG, Allendorf FW (2012) How does the 50/500 rule apply to MVPs? *Trends Ecol Evol*
79 27:578–584
- 80 Jones AT, Ovenden JR, Wang Y-G (2016) Improved confidence intervals for the linkage disequilibrium
81 method for estimating effective population size. *Heredity* 117:217–223
- 82 Kershaw F, Bruford MW, Funk WC, et al (2022) The Coalition for Conservation Genetics: Working
83 across organizations to build capacity and achieve change in policy and practice. *Conservat Sci
84 and Prac* 4. <https://doi.org/10.1111/csp2.12635>
- 85 King L, Wakeley J, Carmi S (2018) A non-zero variance of Tajima's estimator for two sequences even
86 for infinitely many unlinked loci. *Theor Popul Biol* 122:22–29
- 87 Laikre L, Hohenlohe PA, Allendorf FW, et al (2021) Authors' Reply to Letter to the Editor: Continued
88 improvement to genetic diversity indicator for CBD. *Conserv Genet* 22:533–536
- 89 Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform.
90 *Bioinformatics* 25:1754–1760

- 91 Luikart G, Antao T, Hand BK, et al (2021) Detecting population declines via monitoring the effective
92 number of breeders (N_b). *Mol Ecol Resour* 21:379–393
- 93 Luikart G, Ryman N, Tallmon DA, et al (2010) Estimation of census and effective population sizes: the
94 increasing usefulness of DNA-based approaches. *Conserv Genet* 11:355–373
- 95 Marandel F, Charrier G, Lamy J-B, et al (2020) Estimating effective population size using RADseq:
96 Effects of SNP selection and sample size. *Ecol Evol* 10:1929–1937
- 97 Marandel F, Lorance P, Berthelé O, et al (2019) Estimating effective population size of large marine
98 populations, is it feasible? *Fish Fish* 20:189–198
- 99 Merzeau D, Comps B, Thiébaut B, Letouzey J (1994) Estimation of *Fagus sylvatica* L. mating system
100 parameters in natural populations. *Annales des Sciences Forestières* 51:163–173
- 101 Montes I, Iriondo M, Manzano C, et al (2016) No loss of genetic diversity in the exploited and
102 recently collapsed population of Bay of Biscay anchovy (*Engraulis encrasicolus*, L.). *Mar Biol*
103 163:98
- 104 Moran BM, Hench K, Waples RS, et al (2019) The evolution of microendemism in a reef fish
105 (*Hypoplectrus maya*). *Mol Ecol* 28:2872–2885
- 106 Nadachowska-Brzyska K, Konczal M, Babik W (2022) Navigating the temporal continuum of effective
107 population size. *Methods Ecol Evol* 13:22–41
- 108 Neel MC, McKelvey K, Ryman N, et al (2013) Estimation of effective population size in continuously
109 distributed populations: there goes the neighborhood. *Heredity* 111:189–199
- 110 Novo I, Ordás P, Moraga N, et al (2023) Impact of population structure in the estimation of recent
111 historical effective population size by the software GONE. *Genetics Sel Evol* 55:86.
- 112 Novo I, Pérez-Pereira N, Santiago E, et al (2023) An empirical test of the estimation of historical
113 effective population size using *Drosophila melanogaster*. *Mol Ecol Resour* 23:1632–1640
- 114 Nunney L (2016) The effect of neighborhood size on effective population size in theory and in
115 practice. *Heredity* 117:224–232
- 116 Nunney L (1991) The influence of age structure and fecundity on effective population size. *Proc Biol
117 Sci* 246:71–76
- 118 Nunney L (1993) The influence of mating system and overlapping generations on effective
119 population size. *Evolution* 47:1329–1341
- 120 Nunziata SO, Weisrock DW (2018) Estimation of contemporary effective population size and
121 population declines using RAD sequence data. *Heredity* 120:196–207
- 122 Obbard DJ, Harris SA, Buggs RJA, Pannell JR (2006a) Hybridization, polyploidy, and the evolution of
123 sexual systems in *Mercurialis* (Euphorbiaceae). *Evolution* 60:1801–1815
- 124 Obbard DJ, Harris SA, Pannell JR (2006b) Sexual systems and population genetic structure in an
125 annual plant: testing the metapopulation model. *Am Nat* 167:354–366
- 126 O'Brien D, Laikre L, Hoban S, et al (2022) Bringing together approaches to reporting on within
127 species genetic diversity. *J Appl Ecol* 59:2227–2233

- 128 Oddou-Muratorio S, Gauzere J, Angeli N, et al (2021) Phenotypic and genotypic data of a European
129 beech (*Fagus sylvatica* L.) progeny trial issued from three plots along an elevation gradient in
130 Mont Ventoux, South-Eastern France. *Ann For Sci* 78. <https://doi.org/10.1007/s13595-021-01105-9>
- 132 Palstra FP, Fraser DJ (2012) Effective/census population size ratio estimation: a compendium and
133 appraisal. *Ecol Evol* 2:2357–2365
- 134 Palstra FP, Ruzzante DE (2008) Genetic estimates of contemporary effective population size: what
135 can they tell us about the importance of genetic stochasticity for wild population persistence?
136 *Mol Ecol* 17:3428–3447
- 137 Peel D, Waples RS, Macbeth GM, et al (2013) Accounting for missing data in the estimation of
138 contemporary genetic effective population size (N_e). *Mol Ecol Resour* 13:243–253
- 139 Petit RJ, Hampe A (2006) Some evolutionary consequences of being a tree. *Annu Rev Ecol Evol Syst*
140 37:187–214
- 141 Purcell S, Neale B, Todd-Brown K, et al (2007) PLINK: a tool set for whole-genome association and
142 population-based linkage analyses. *Am J Hum Genet* 81:559–575
- 143 Qanbari S (2019) On the extent of linkage disequilibrium in the genome of farm animals. *Front Genet*
144 10:1304
- 145 Qanbari S, Pimentel ECG, Tetens J, et al (2010) The pattern of linkage disequilibrium in German
146 Holstein cattle. *Anim Genet* 41:346–356
- 147 Raj A, Stephens M, Pritchard JK (2014) fastSTRUCTURE: variational inference of population structure
148 in large SNP data sets. *Genetics* 197:573–589
- 149 R Core Team (2019) R: A language and environment for statistical computing. R Foundation for
150 Statistical Computing, Vienna, Austria. Version 3.6.1. Citeseer. URL <https://www.R-project.org/>.
- 151 Robinson JD, Moyer GR (2013) Linkage disequilibrium and effective population size when
152 generations overlap. *Evol Appl* 6:290–302
- 153 Ryman N, Laikre L, Hössjer O (2019) Do estimates of contemporary effective population size tell us
154 what we want to know? *Mol Ecol* 28:1904–1918
- 155 Santiago E, Caballero A, Köpke C, Novo I (2023) Estimation of the contemporary effective population
156 size from SNP data while accounting for mating structure. *Mol Ecol Resour*
- 157 Santiago E, Novo I, Pardiñas AF, et al (2020) Recent demographic history inferred by high-resolution
158 analysis of linkage disequilibrium. *Mol Biol Evol* 37:3642–3653
- 159 Santos-del-Blanco L, Olsson S, Budde KB, et al (2022) On the feasibility of estimating contemporary
160 effective population size (N_e) for genetic conservation and monitoring of forest trees. *Biol
161 Conserv* 273:109704
- 162 Schmitt S, Tysklind N, Héault B, Heuertz M (2021) Topography drives microgeographic adaptations
163 of closely related species in two tropical tree species complexes. *Mol Ecol* 30:5080–5093
- 164 Sved JA (1971) Linkage disequilibrium and homozygosity of chromosome segments in finite
165 populations. *Theor Popul Biol* 2:125–141

- 166 Sved JA, Cameron EC, Gilchrist AS (2013) Estimating effective population size from linkage
167 disequilibrium between unlinked loci: theory and application to fruit fly outbreak populations.
168 *PLoS One* 8:e69078
- 169 Sved JA, Feldman MW (1973) Correlation and probability methods for one and two loci. *Theor Popul
170 Biol* 4:129–132
- 171 Tallmon DA, Gregovich D, Waples RS, et al (2010) When are genetic methods useful for estimating
172 contemporary abundance and detecting population trends? *Mol Ecol Resour* 10:684–692
- 173 Thurfjell H, Laikre L, Ekblom R, et al (2022) Practical application of indicators for genetic diversity in
174 CBD post-2020 global biodiversity framework implementation. *Ecol Indic* 142:109167
- 175 Torroba-Balmori P, Budde KB, Heer K, et al (2017) Altitudinal gradients, biogeographic history and
176 microhabitat adaptation affect fine-scale spatial genetic structure in African and Neotropical
177 populations of an ancient tropical tree species. *PLoS One* 12:e0182515
- 178 Van der Auwera GA, O'Connor BD (2020) Genomics in the Cloud: Using Docker, GATK, and WDL in
179 Terra. “O'Reilly Media, Inc.”
- 180 Wang J (2016) A comparison of single-sample estimators of effective population sizes from genetic
181 marker data. *Mol Ecol* 25:4692–4711
- 182 Wang J, Santiago E, Caballero A (2016) Prediction and estimation of effective population size.
183 *Heredity* 117:193–206
- 184 Waples RK, Larson WA, Waples RS (2016) Estimating contemporary effective population size in non-
185 model species using linkage disequilibrium across thousands of loci. *Heredity* 117:233–240
- 186 Waples RS (2006a) A bias correction for estimates of effective population size based on linkage
187 disequilibrium at unlinked gene loci. *Conserv Genet* 7:167–184
- 188 Waples RS (2006b) Seed banks, salmon, and sleeping genes: effective population size in
189 semelparous, age-structured species with fluctuating abundance. *Am Nat* 167:118–135.
- 190 Waples RS (2016) Making sense of genetic estimates of effective population size. *Mol Ecol* 25:4689–
191 4691
- 192 Waples RS (2022) What is N_e anyway? *J Hered* 113:371–379
- 193 Waples RS (2023) Practical application of the linkage disequilibrium method for estimating
194 contemporary effective population size: A review. *Mol Ecol Resour*
- 195 Waples RS, Antao T, Luikart G (2014) Effects of overlapping generations on linkage disequilibrium
196 estimates of effective population size. *Genetics* 197:769–780
- 197 Waples RS, Do C (2008) Idne: a program for estimating effective population size from data on linkage
198 disequilibrium. *Mol Ecol Resour* 8:753–756
- 199 Waples RS, Do C (2010) Linkage disequilibrium estimates of contemporary N_e using highly variable
200 genetic markers: a largely untapped resource for applied conservation and evolution. *Evol Appl
201* 3:244–262
- 202 Waples RS, England PR (2011) Estimating contemporary effective population size on the basis of
203 linkage disequilibrium in the face of migration. *Genetics* 189:633–644

- 204 Waples RS, Waples RK, Ward EJ (2022) Pseudoreplication in genomic-scale data sets. *Mol Ecol Resour* 22:503–518
- 206 Wright S (1931) Evolution in Mendelian Populations. *Genetics* 16:97–159
- 207 Wright S (1969) Evolution and the genetics of Populations Volume 2: The Theory of Gene Frequencies. The University of Chicago Press, Chicago
- 209 Yonezawa K (1997) Effective population size of plant species propagating with a mixed sexual and
210 asexual reproduction system. *Genet Res* 70:251–258
- 211