

1 **A nearly complete and phased genome assembly of a Colombian**

2 ***Trypanosoma cruzi* Tcl strain and the evolution of gene families**

3 Maria Camila Hoyos Sanchez^{1,3}, Hader Sebastian Ospina Zapata², Brayhan Dario

4 Suarez², Carlos Ospina², Hamilton Julian Barbosa², Julio Cesar Carranza

5 Martinez², Gustavo Adolfo Vallejo², Daniel Urrea Montes², Jorge Duitama^{1,*}

6 1 Systems and Computing Engineering Department, Universidad de los Andes, Bogotá,

7 Colombia.

8 2 Laboratorio de Investigaciones en Parasitología Tropical (LIPT), Universidad del Tolima,

9 Ibagué, Colombia.

10 3 School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA

11 *Corresponding author: ja.duitama@uniandes.edu.co

12 **Abstract**

13 Chagas is an endemic disease in tropical regions of Latin America, caused by the parasite

14 *Trypanosoma cruzi*. High intraspecies variability and genome complexity have been

15 challenges for the development of genomic variation databases, needed to conduct

16 studies in evolution, population genomics, and identification of genomic elements related

17 to virulence and drug resistance in *T. cruzi*. Here we present a chromosome-level phased

18 assembly of a *T. cruzi* strain (Dm25), isolated from a reservoir of the species *Didelphis*

19 *marsupialis* located at the Tolima department in Colombia, and belonging to the Tcl DTU.

20 We obtained a primary haplotype composed of 32 chromosomes, 30 of them assembled in

21 a single contig, and one complete copy of the maxicircle. While 29 chromosomes show a

22 large collinearity with the assembly of the Brazil A4 strain, three chromosomes with a high

23 density of repeat elements show a large divergence, compared to the Brazil A4 assembly.

24 Considering that the distribution of heterozygous sites suggest that Dm25 is diploid, we

26 assembled a second haplotype for 31 chromosomes, achieving an average of three
27 contigs per chromosome. Nucleotide and protein evolution statistics indicate that *T. cruzi*
28 Marinkellei separated before the diversification of *T. cruzi* in the known DTUs.
29 Interchromosomal paralogs of dispersed gene families and histones appeared before but
30 at the same time have a more strict purifying selection, compared to other repeat families.
31 Previously unreported large tandem arrays of protein kinases and histones were identified
32 in this assembly. Over one million variants obtained from Illumina reads aligned to the
33 primary assembly clearly separate the main DTUs. We expect that this new assembly will
34 be a valuable resource for further studies on evolution and functional genomics of
35 *Trypanosomatids*.

36 **Keywords:** *Trypanosoma cruzi*; Genomics; Chagas; Evolution; Gene families

37

38 INTRODUCTION

39 Chagas disease (CD), also known as American trypanosomiasis, is a tropical disease
40 caused by the protozoan parasite *Trypanosoma cruzi* that belongs to the Kinetoplastida
41 class and the Trypanosomatidae family (Rassi, Rassi, & De Rezende, 2012). This disease
42 is a public health problem, it is estimated that around 6 to 7 million people worldwide are
43 infected with *T. cruzi* (WHO, 2020). About 30,000 new cases are registered each year, an
44 average of 12,000 deaths, and 9,000 newborns are infected during pregnancy (OPS, n.d.).
45 Particularly in Colombia, a prevalence between 700,000-1,200,000 infected people and
46 8,000,000 individuals at risk of acquiring the infection has been estimated (MinSalud,
47 2010).

48 CD is found mainly in endemic areas of 21 Latin American countries, including Colombia.
49 However, in recent decades it has spread to other countries such as the United States,

50 Canada, and some European and African countries, due to the migration of the infected
51 population (Schmunis & Yadon, 2010; WHO, 2020) or the presence of the vector and
52 parasite (Curtis-Robles et al., 2018).

53 The life cycle of the parasite is complex since it has several forms of development in
54 vectors and mammalian hosts, such as metacyclic trypomastigote (infective form),
55 amastigote (intracellular form), epimastigotes (replicate form in the vector insect)
56 (Echeverria & Morillo, 2019; Rassi et al., 2012). More than 150 species of domestic or wild
57 mammals, such as dogs, cats, rodents, common opossum and armadillos, can be
58 reservoirs of the parasite (Echeverria & Morillo, 2019; Rassi et al., 2012). In addition,
59 about 152 species of triatomine insects are known and all have the potential to act as
60 vectors of *T. cruzi* (De Oliveira et al., 2018).

61 *T. cruzi* is considered a parasite with a wide genetic diversity (Jiménez et al., 2019;
62 Manoel-Caetano & Silvia, 2007; Zingales et al., 2018). This parasite has been classified
63 into 7 different Discrete Typing Units (DTU) (TcI-TcVI and TcBat) (Tibayrenc, 1998; Sturm
64 et al., 2003; Zingales et al., 2012; Barnabé, Mobarec, Jurado, Cortez, & Breniere, 2016;
65 Marcili et al., 2009). Additionally, subdivisions or genotypes within some DTUs such as *T.*
66 *cruzi* I (TcI) have been suggested (Cura et al., 2010; Falla et al., 2009; Gómez-Hernández
67 et al., 2019; Herrera et al., 2007, Herrera et al., 2009; Llewellyn et al., 2009), which
68 demonstrates the wide genetic variability of the parasite. The different DTUs present
69 associations with transmission cycles, geography, vector species, and clinical
70 manifestation to a certain extent (Hernández, Salazar, et al., 2016; Zingales et al., 2012).
71 The variability of *T. cruzi* isolates circulating in Colombia and their association with the
72 eco-epidemiology of Chagas disease have been studied for several years. The results
73 show that the Colombian *T. cruzi* isolates present great genetic variability and suggest that

74 T_cI is predominant throughout the territory (Triana et al., 2006; Mejia-Jaramillo et al., 2009;
75 Ramirez et al., 2013; Villa et al., 2013). Particularly, T_cI has been associated with heart
76 disease in chagasic patients in Colombia (Ramírez et al., 2010).

77 This extensive genetic variability is a result of the complexity of its genome. It has been
78 widely reported that the genome of *T. cruzi* has extraordinary plasticity between strains,
79 with a total length ranging between 40-140 Mb (Díaz-Viraqué et al., 2019; Souza et al.,
80 2011). It is considered a generally diploid organism with the presence of aneuploidy in
81 some hybrid strains (Minning, et al., 2011; Reis-Cunha et al., 2015; Souza et al., 2011). Its
82 proteome has about 22,000 proteins (El-sayed et al., 2005). More than 50% of the
83 genome consists of repetitive sequences, mainly represented by large multigene families
84 encoding surface proteins, retrotransposons, telomeric repeats, and satellites (El-sayed et
85 al., 2005; Reis-cunha et al., 2015).

86 In addition to its nuclear DNA, *T. cruzi* has an extranuclear DNA network located in its
87 single mitochondria, called kinetoplast DNA (kDNA) (Rassi et al. al., 2012). This DNA can
88 represent up to 20-25% of the total cellular DNA. The kDNA maxicircles are equivalent to
89 the mitochondrial genome of other eukaryotes and contain the genes coding for rRNA and
90 mitochondrial proteins involved in the electron transport chain (Simpson et al., 1987;
91 Westenberger et al., 2006). Despite the relatively small total length of the molecule (about
92 40 Kbp), the assembly of this molecule has been difficult because more than half of the
93 DNA sequence is composed of two complex repetitive structures (Gerasimov et al., 2020).

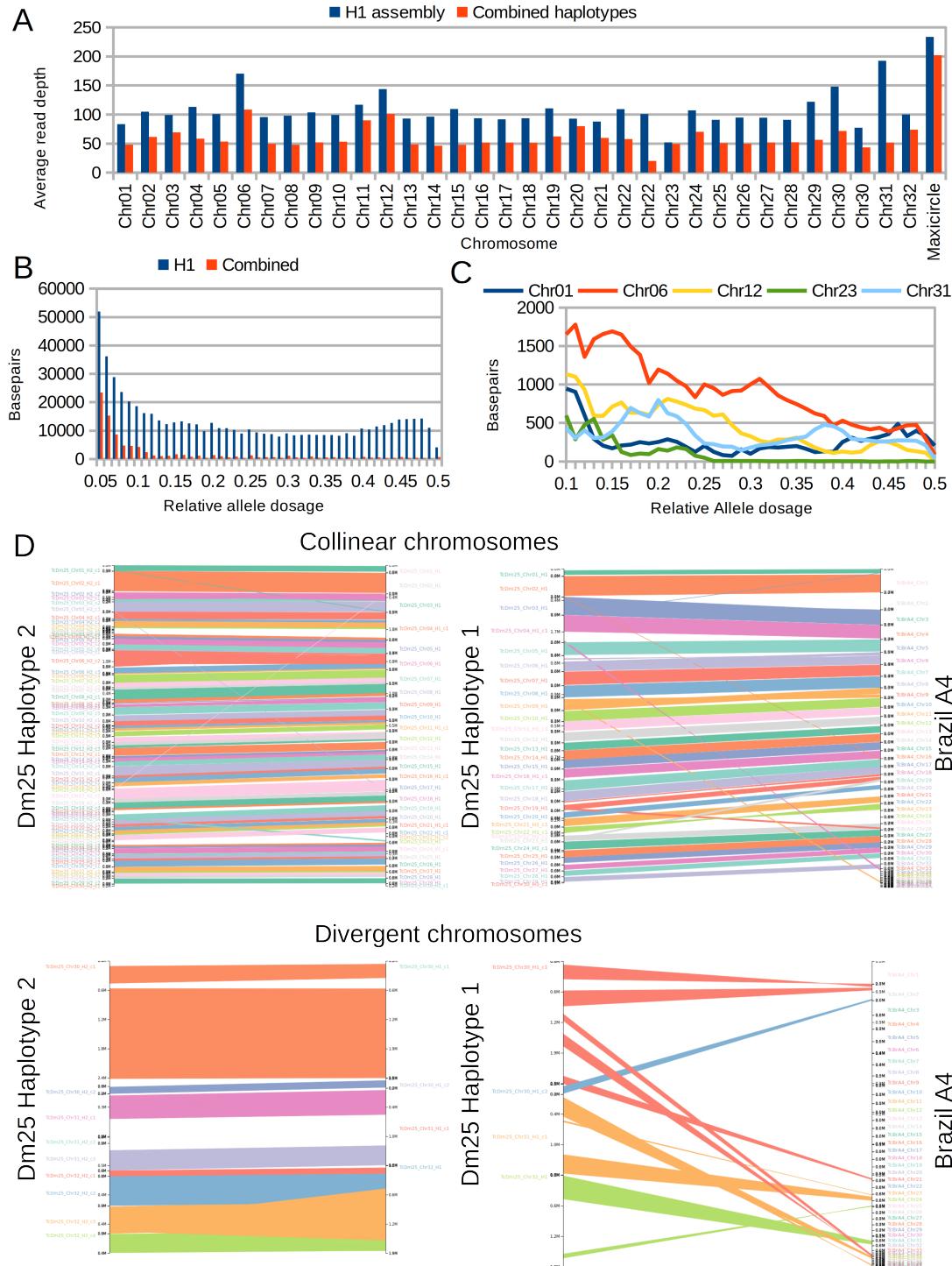
94 The molecule is structured in at least three main compartments, a gene-rich conserved
95 region of about 15 Kbp, a short repetitive region called P5, and a long repetitive region
96 called P12 (Berná et al., 2021). Unit length, number of repeats, and the composition of the
97 repeat sequence differ between the two regions.

98 *T. cruzi* reference genomes have been highly fragmented and underrepresented for many
99 years due to their genomic complexity and the nature of the data produced by short-read
100 sequencing technologies (El-sayed, et al., 2005; Franzén et al., 2011; Grisard, et al.,
101 2014). For this reason, interest has grown in using long-read technologies to improve the
102 assembly of repetitive regions. In recent years, some *T. cruzi* genomes have been
103 published with these technologies (Supplementary Table 1), improving the understanding
104 of the genome but have also shown the wide variability within and between DTUs and
105 strains of the parasite (Berná et al., 2018; Callejas-Hernández, Rastrojo, Poveda, Gironès,
106 & Fresno, 2018; Wang et al., 2020).

107 Although knowledge of the *T. cruzi* genome has been expanded in Colombia, there is no
108 detailed description of the composition of the genome that includes the distribution of
109 multigenic families and genetic diversity based on a genome sequenced with long reads
110 technologies. Neither has the complete organization of the kDNA maxicircle been
111 described in Colombian isolates belonging to the DTU Tcl. In this paper, the sequencing of
112 *T. cruzi* (Tcl) isolated from Colombia was carried out using the new PacBio methodology –
113 High Fidelity (HiFi), and a description of the genome is reported that includes assembly,
114 annotation, and also the genetic diversity between DTUs and comparative genomics.

115 **RESULTS**

116 **A phased genome assembly for the *T. cruzi* strain Dm25**


117 We performed long read whole genome sequencing of the *T. cruzi* strain Dm25 in
118 exponential growth phase following the PacBio HiFi sequencing protocol. An initial
119 molecular characterization of the strain determined that it belongs to the *T. cruzi* DTU Tcl
120 without presenting mixed infection with *T. rangeli* or another *T. cruzi* DTUs.
121 (Supplementary Figure 1). This platform provided 206,520 sequences with an average

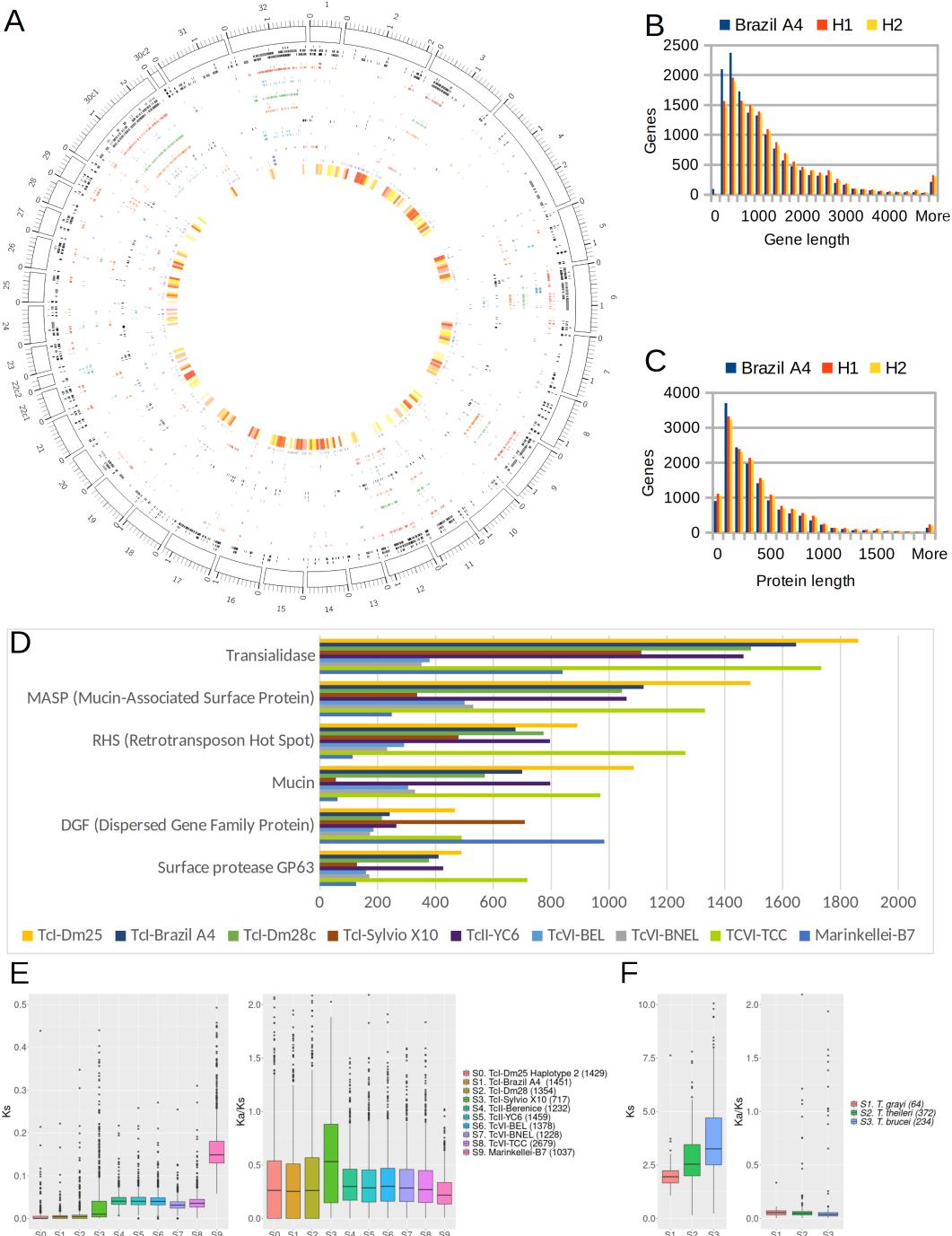
122 length of 20,997 bp. The median sequence quality was Q26, with all sequences having a
123 quality greater than Q20. After evaluation of several options for genome assembly, we
124 obtained partially phased assemblies from these reads running the tools Hifiasm and
125 NGSEP. After evaluation and manual selection of the contigs, we built a combined phased
126 assembly for Dm25.

127 The first haplotype (H1) can be considered a primary assembly and it is composed of 35
128 contigs representing 32 pseudo chromosomes and one copy of the maxicircle. Almost all
129 chromosomes (30) were assembled in one single contig, and telomeric repeats
130 [(TTAGGG)n] were identified on both chromosome ends for 24 single chromosome contigs
131 and for the two chromosomes assembled in two contigs. The total length of this haplotype
132 is 38.68 Mbp, and the median (N50) length is 1.23 Mbp (Supplementary Figure 2).
133 Performing quality assessment through mapping of conserved genes, only one of the 130
134 conserved genes in Euglenozoa was fragmented. The remaining 129 genes were uniquely
135 mapped to the assembly.

136 To assess the ploidy of each chromosome, we realigned the reads to the H1 assembly
137 and we calculated the average read depth for each chromosome, and the distribution of
138 allele dosages for sites having more than one allele call. Figure 1A shows that the average
139 read depth varies around 100x for most chromosomes. Chromosomes 6, 12, 30 and 31
140 are the main outliers with average read depths ranging from 144x to 192x, suggesting that
141 chromosomes 6, 12 and 30 are triploid and chromosome 31 is tetraploid. Conversely, the
142 average read depth of chromosome 23 is about 51x, which suggests that only one copy of
143 this chromosome is present in Dm25. Based on the average read depth, we predicted that
144 between four and five copies of the maxicircle were present in Dm25. Figure 1B shows the
145 genome wide distribution of relative allele dosages in sites with more than one allele call.

146 The peak close to 0.5 suggests that most of the genome is diploid. However,
147 chromosome-specific distributions seem to support the aneuploidies predicted by the read
148 depth distribution. Figure 1C shows these distributions for the presumably aneuploid
149 chromosomes 6, 12, and 31. The figure also shows the distribution for a control diploid
150 chromosome (chr1) and for the haploid chromosome 23. The peak close to 0.33 for
151 chromosome 6 supports that this chromosome has three copies. The peaks close to 0.25
152 and 0.5 suggest that chromosome 31 is tetraploid. These predictions are consistent with
153 the average read depth. The signal of chromosome 12 suggests a tetraploid chromosome,
154 but the read depth suggests that only three copies are present. A possible explanation for
155 this pattern is that four copies are present for about half of the chromosome.
156 Considering the expected ploidy for each chromosome, we selected contigs from the
157 automated assemblies to generate a second haplotype (H2). This haplotype was more
158 fragmented having 96 contigs, which represents an average of about three contigs per
159 chromosome. The total length in this case was 37.3 Mbp and the N50 was 572 Kbp
160 (Figure 1D). Only five of the 130 conserved genes in Euglenozoa were not found in the
161 second haplotype. Four of these genes are located in the haploid chromosome 23, which
162 was included only in the first haplotype. The same gene fragmented in H1 was fragmented
163 in this haplotype. Two copies were identified for two of the 124 remaining genes. Taking
164 into account the possible aneuploidies and copy number variation suggested by the read
165 depth analysis, we further generated a partial third haplotype (H3) composed of 83 small
166 contigs adding to 8.05 Mbp. Most sequences (53 sequences adding to 5.32 Mbp) in this
167 haplotype were assigned to the repetitive or polyploid chromosomes 4, 6, 12, 30 and 31.
168 The final genome is a concatenation of these three haplotype assemblies and aims to
169 represent the complete haplotype diversity within the Dm25 genome.

Figure 1. A. Average read depth per chromosome of HiFi reads aligned to the primary haplotype and to the complete phased assembly. **B-C.** Histograms of overall allele dosages in sites with two observed alleles. **B.** Complete genome **C.** Individual chromosomes. **D.** Synteny-based alignment between the assembled haplotypes of the genome of Dm25 and between the first haplotype and the Brazil A4 genome assembly.


174 We compared the assembled haplotypes of Dm25 with the genome assembly of the Brazil
175 A4 isolate (Wang et al. 2020) which is the current most accurate haploid assembly of a TcI
176 strain. We did not use this genome to merge contigs to avoid misassemblies produced by
177 true structural variation between Dm25 and A4. However, we used the A4 genome as a
178 reference to sort and orient the chromosomes of the first haplotype that were clearly
179 collinear with A4 chromosomes. We identified two types of chromosomes based on this
180 comparison (Figure 1D). One to one relationships could be identified between
181 chromosomes of Dm25 and chromosomes of A4 for 29 of the 32 chromosomes. The
182 remaining three chromosomes showed a high level of structural variation between the
183 Dm25 and the A4 genome. Chromosome 30 of Dm25 could be mapped to chromosome 2
184 of A4. However, at least two different syntenies could be identified, suggesting a
185 translocation of this chromosome between the strains. Moreover, this chromosome
186 included two complete copies of the sequences reported as chromosome 21 and
187 chromosome 36 in the A4 genome. Consistent with Wang et al. (2020), we found that this
188 chromosome is almost entirely composed of copies of the most repetitive gene families in
189 *T. cruzi*. Chromosome 31 of Dm25, could be mapped partially to chromosome 24 of A4.
190 However, it also included complete copies of the sequences labeled as chromosome 37
191 and chromosome 43 of A4. The two chromosome copies of Dm25 could be assembled in
192 one and three contigs respectively. However, a large divergence was observed between
193 the two copies in the central part of the chromosome. Finally, chromosome 32 of Dm25
194 (haplotypes assembled in one and four contigs) included segments syntenic with
195 sequences termed as chromosomes 25, 32, 35, 38 and 39 of A4.
196
197

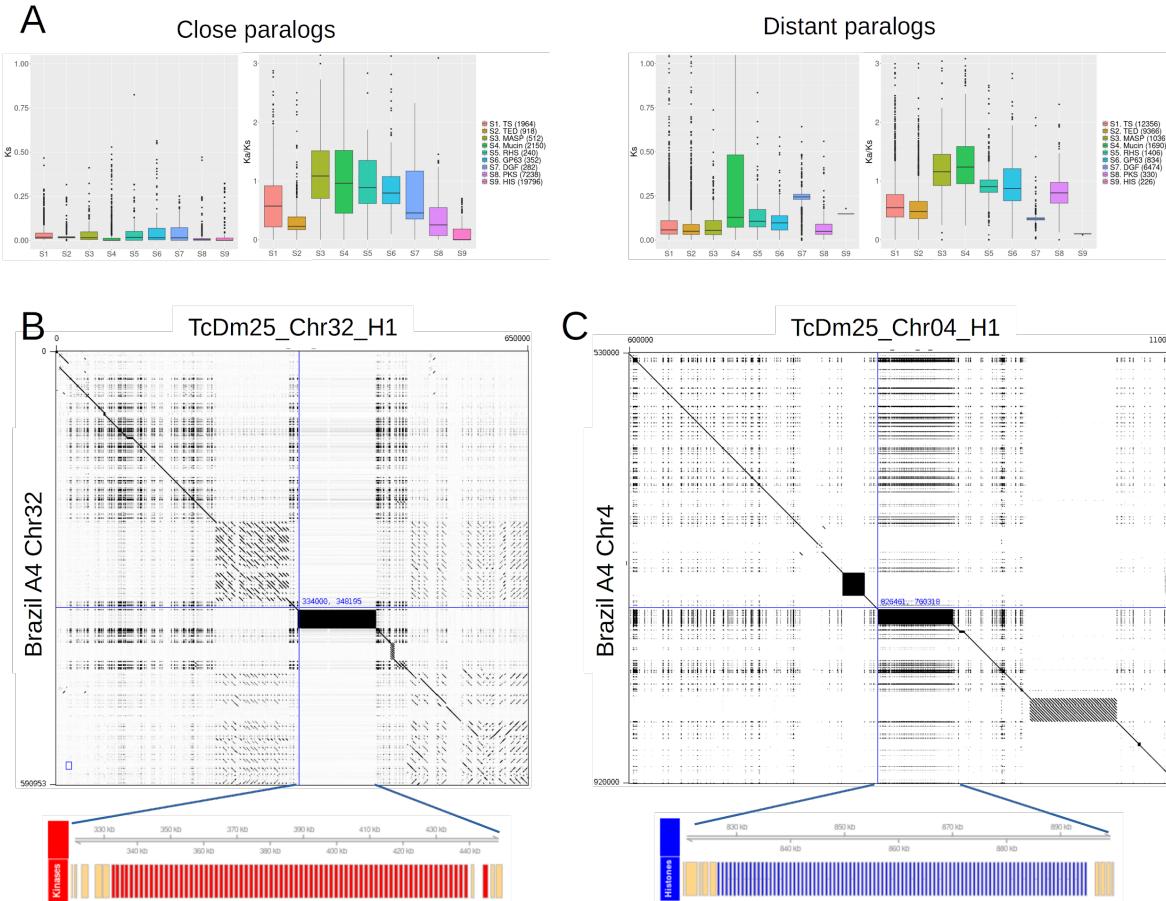
198 **Gene annotation and protein evolution in *Trypanosoma* species**

199 We identified 47,772 transposable elements (TEs) in the combined assembly, covering
200 36.4 Mbp (44%) of the assembly (Supplementary Table 2). Figure 2A displays the density
201 of repetitive elements across the H1 haplotype. The percentage of the genome covered by
202 TEs was larger for the haplotype H1 (48%), compared to H2 (38%) and H3 (35%),
203 probably because a larger number of copies of TEs could be assembled in the contigs
204 included in H1. Most TEs (25,355 covering 24.3 Mbp of the genome) were annotated as
205 “Unknown”.

206 Following the pipeline implemented in the Companion website (Steinbiss et al., 2016), we
207 annotated 29,544 genes for the complete assembly. The completeness of H1 translated
208 into a larger number of annotated genes (14,207), compared to H2 (13,679). The gene
209 catalog was complemented with 1,658 additional genes annotated in H3. Compared to the
210 available annotation of the Brazil A4 strain, the annotation of each haplotype has about the
211 same number of genes. However, the lengths of the genes annotated in H1 and H2 (about
212 1.4Kbp) are on average about 200bp larger than the lengths of the genes annotated in A4
213 (Figure 2B). Consequently, proteins annotated in the two haplotypes are about 45 amino
214 acids longer than those annotated in A4 (Figure 2C).

215

216 **Figure 2. A.** Distribution of genes and repeat elements in the primary assembly of the Dm25 strain. Tracks
217 show repeat density, Transialidases, Transposable element domains, Mucin-Associated surface proteins,
218 Mucines, Retrotransposon hot Spots, Surface proteases, Dispersed gene families, Kinases and density of
219 single copy genes. **B-C.** Length distribution for genes and proteins annotated in the two haplotypes of
220 TcDm25, and in the Brazil A4 strain. **D.** Number of copies of the six main gene families, compared with those
221 reported in previous studies. **E-F.** Distributions of synonymous nucleotide divergence rate (Ks) and relative
222 non-synonymous to synonymous divergence rate (Ka/Ks) for pairs of orthologs, comparing the primary
223 assembly of TcDm25 (H1) with other *T. cruzi* assemblies (**E**) and with assemblies of other species (**F**).


224 Combining protein family annotations with homologies between Dm25 and annotated
225 genes in the A4 transcriptome, we found a large and consistent number of copies of the
226 main protein families: Transialidase (TS), Mucin-Associated Surface Protein (MASP),
227 Retrotransposon Hot Spot (RHS), Mucin, Dispersed Gene Family (DGF) and Surface
228 Protease GP63. Figures 2A and 2D show the distribution of these gene families across the
229 genome and the number of genes per family. Based on protein domains and orthology, we
230 also identified large families of protein kinases (PKS) and core histone proteins (HIS). We
231 observed a large overlap between the TS, MASP, RHS, DGF, and MUC families with
232 annotated TEs. In contrast, the protein kinases did not overlap with annotations of
233 transposable elements.

234 We analyzed the nucleotide and protein evolution between genes annotated in our
235 assembly and genes annotated in other *T. cruzi* assemblies. Figure 2D shows the
236 normalized differences in synonymous sites (Ks) comparing synteny orthologs of the
237 haplotype H1 with other *T. cruzi* assemblies, including the haplotype H2. The Ks values
238 are on average below 0.02 for comparisons with Tc1 assemblies, although a larger
239 variance is observed in the comparison with the strain Sylvio, compared to H2, A4 and
240 Dm28. The Ks values obtained from orthologs with assemblies of other DTUs are
241 significantly higher than those obtained from comparisons within Tc1 (p -value $< 10^{-16}$ of a
242 Wilcoxon rank test). However, the absolute values are on average lower than 0.05, except
243 for the comparison against the assembly of a *T. cruzi* marinkellei strain, for which the
244 average increases to 0.15. In contrast, the Ks values of synteny orthologs between the
245 first haplotype of Dm25 and the genes annotated in other species are on average above 2
246 (Figure 2E). This suggests high divergence times between *T. cruzi* and other species with
247 contiguous assemblies (*T. grayi*, *T. thelleri* and *T. brucei*).

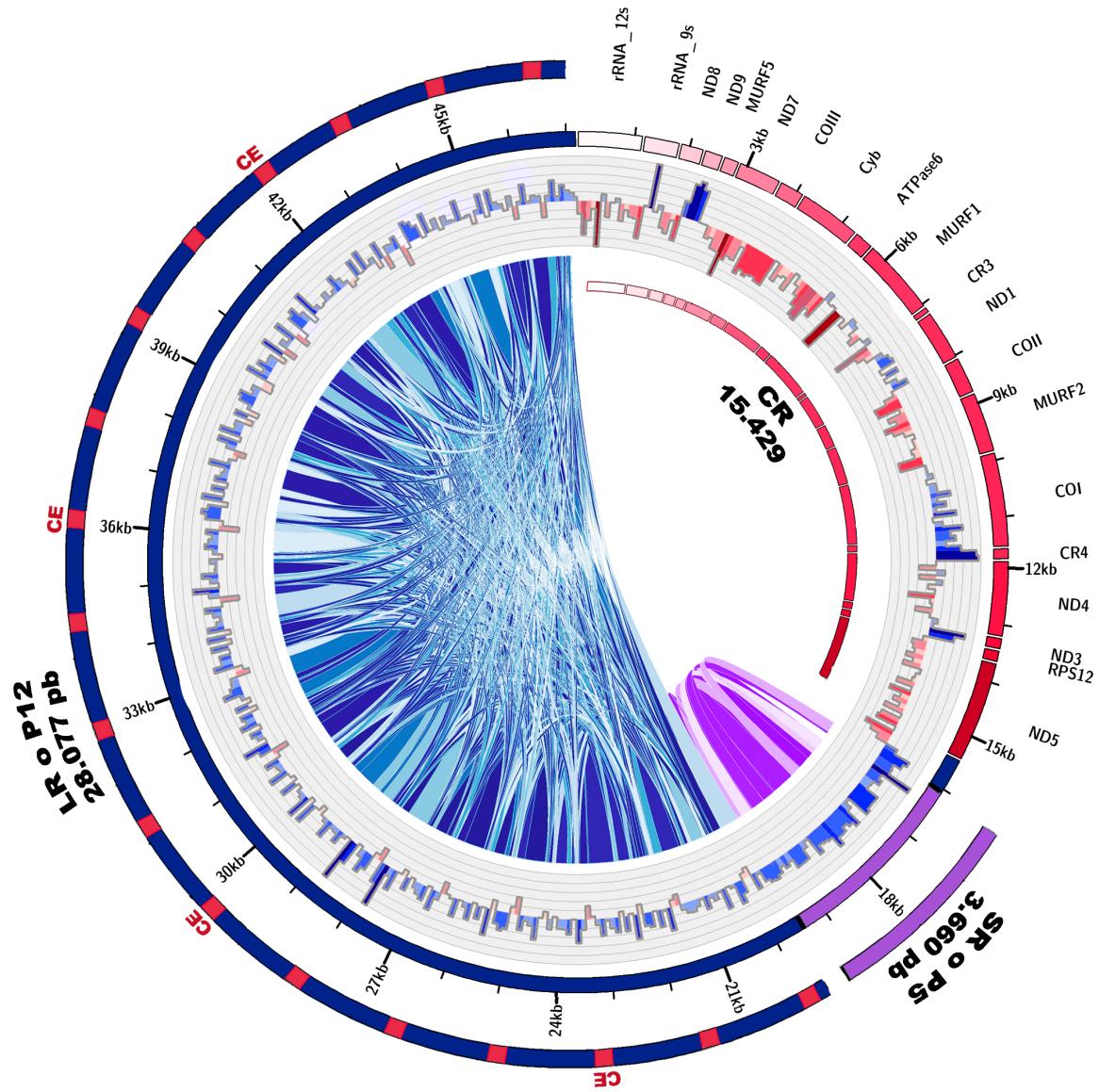
248 We also investigated the behavior of protein evolution for single copy synteny orthologs
249 within and between species. For each pair of unique synteny orthologs, we calculated the
250 ratio between normalized non-synonymous and synonymous mutations (Ka/Ks). According
251 to the neutral theory of evolution, this value should be close to 1 for genes not affected by
252 selection. Values lower than 1 indicate purifying selection and values higher than 1
253 indicate positive selection and rapid protein evolution. Most Ka/Ks values for orthologs
254 within species fall below 1 with averages between 0.3 and 0.5 (Figure 2D), which suggests
255 that most core genes are subject to some level of protein conservation through purifying
256 selection. Outliers have $Ka/Ks > 1$ and are genes with rapid protein evolution. Conversely,
257 the Ka/Ks values for orthologs between species were on average lower than 0.1 (Figure
258 2E). This result which at first sight looks surprising can be explained because very few
259 orthologs could be identified between these species, and hence these genes are probably
260 those with the highest selective pressure for protein conservation.

261 Regarding multicopy gene families, Figure 3A shows the distribution of Ks and Ka/Ks
262 values, differentiating paralogs by physical proximity in the genome. The Ks values were
263 significantly lower for close paralogs, compared to distant paralogs, suggesting that
264 tandem duplications are more recent than interspersed duplications. The difference was
265 larger for Mucin and especially for DGF paralogs, compared to other families. This
266 suggests that the diversification and spread of the DGF paralogs across the genome
267 happened at a much older time compared to other families. Ka/Ks values were closer to 1
268 compared to the values obtained from single copy orthologs, suggesting that these genes
269 are subject to a more relaxed purifying selection, compared to single copy genes. The
270 averages for both close and distant paralogs of the MASP and Mucin families were larger
271 than 1, suggesting a faster protein evolution, compared to the other families. Conversely,

272 close paralogs of the TED, PKS and HIS families and distant paralogs of the DGF and HIS
273 families have a Ka/Ks distribution similar to that observed for single copy orthologs. The
274 latter case suggests that purifying selection is acting to preserve the protein sequence of
275 DGF and HIS paralogs.

277 **Figure 3. A.** Distributions of synonymous nucleotide divergence rate (ks) and relative non-synonymous to
278 synonymous divergence rate (ka/ks) for pairs of paralogs of the six main multicopy gene families, and for
279 protein kinases (PKS) and histones (HIS), discriminating tandem (close) paralogs from distant paralogs. **B.** 280 Alignment of chromosome 32 of the haplotype H1 of Dm25 with chromosome 32 of Brazil A4. The lower track
281 highlights a tandem array of protein kinases spanning the black rectangle. **C.** Alignment of chromosome 4 of
282 the haplotype H1 of Dm25 with chromosome 4 of Brazil A4. The lower track highlights a tandem array of
283 histones spanning the black rectangle.

284


285 In contrast to the gene families described in previous studies, close paralog pairs of
286 protein kinases (7,238) were much abundant than distant paralog pairs (330). The reason
287 for this is that most genes in this family resulted from a recent tandem duplication

288 generating 71 copies of protein kinases spanning 200 kbp of chromosome 32 (Figure 3B).
289 The syntenic region in the haplotype H2 contains 67 homolog copies (Supplementary
290 Figure 3). This duplication event was not clearly observed in previous genome assemblies.
291 A tandem array of 9 homologs in the Brazil A4 assembly are located in the syntenic region
292 of the contig termed Chr32 (Figure 3B). Besides this, 20 additional homologs are located
293 in three contigs smaller than 32 kbp and not assigned to chromosomes. This suggests that
294 a similar expansion could be present in the Brazil A4 assembly but that it could not be
295 completely reconstructed due to technical limitations of the sequencing technology or the
296 assembly pipeline. The comparison with the genome assembly of the Dm28 strain
297 revealed a similar situation (Supplementary Table 3). Tandem arrays of 28 and 8 copies
298 were identified in two contigs of 101 kbp and 22 kbp respectively. Conversely, no
299 orthologs were identified in the Sylvio genome assembly. Comparing with assemblies of
300 strains belonging to other DTUs, tandem arrays of 12, 22, and 16 homologs were
301 observed in one contig of the Berenice assembly and two contigs of the TCC assembly.
302 The annotation also revealed two large recent tandem duplications of core histones,
303 located in chromosomes Chr04 (69 copies in H1, 33 copies in H2, Supplementary Figure
304 4) and Chr18 (46 copies in H1, 43 copies in H2). This expansion is not observed in the
305 Brazil A4 assembly (Figure 3C). The assembly of the Sylvio strain was the only TcI
306 assembly in which homolog tandem arrays were identified, having 95 copies homolog to
307 the array on Chr04 and 34 copies homolog to the array in Chr18 (Supplementary Table 3).
308 Two tandem arrays of 21 and 44 genes, both homologous to the array located on Chr18
309 were identified in two separate contigs of Dm28. Regarding other DTUs, only the TCC
310 assembly has three tandem arrays of 42, 19 and 22 genes. While the first array is

311 homologous to the array on Chr04 of Dm25, the other two arrays are homologous to the
312 array on Chr18.

313 **Complete reconstruction of the *T. cruzi* (Tcl) Dm 25 maxicircle**

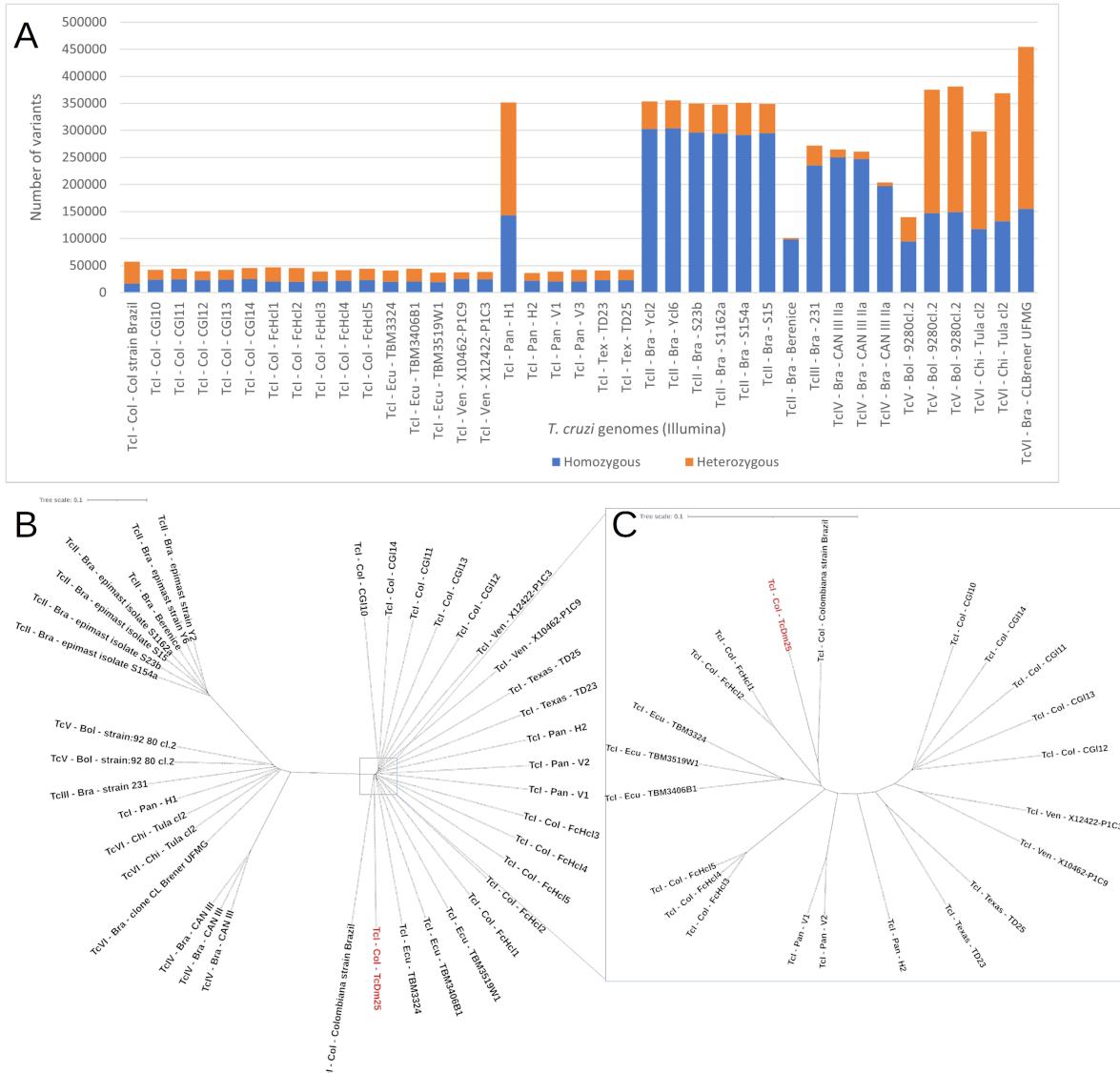
314 Kinetoplastid molecules were sampled in the genome assembly of Dm25, obtaining a
315 complete reconstruction of the maxicircle. After circularization and sorting, the total length
316 of this assembly was 47,166 bp (Figure 4). Performing gene annotation we identified 18
317 protein coding genes: the subunits ND1, ND3, ND4, ND5, ND7, ND8, ND9 of the NADH
318 dehydrogenase, the cytochrome B (CyB), the subunits I, II y III of the cytochrome c
319 oxidase (COI, COII, COIII), the ATPase six (ATP6), the ribosomal protein S12 (RSP12),
320 and five genes with unknown function (MURF1, MURF2, MURF5, CR3, CR4). We also
321 found two ribosomal RNA genes (12S, 9S). The 12S gene was used to mark the start of
322 the circular sequence in the assembly. These genes make up the entire conserved region
323 of the Maxicircle, which is consistent with the maxicircle structure defined by Ruvalcaba-
324 Trejo & Sturm (2011). Gene lengths and orientations were similar to those reported in
325 previous studies (Callejas-Hernández et al., 2021; Westenberger et al., 2006; Ruvalcaba-
326 Trejo & Sturm, 2011; Berná et al., 2021). The total length of the conserved region is
327 15,429 bp (32.7% of the total) and the GC-content is 25.34%. Most of the region has an
328 excess of cytosine relative to guanine in the positive strand, which is measured by a
329 negative GC-skew statistic (Westenberger et al., 2006). The seven genes that are
330 annotated in the negative strand (ND9, MURF5, MURF1, ND1, COI, CR4 and ND3)
331 overlap with segments showing a neutral or a positive GC-skew.

332

333 **Figure 4.** Assembly of the maxicircle of the *T. cruzi* strain Dm25. Protein coding genes in the conserved region
334 (CR) are shown in the external red rectangles. The divergent region is divided into the P5 region (purple) and
335 the P12 region (blue). Conserved elements (CE) across the P12 region are shown as red rectangles. The
336 central histogram shows the GC-skew, positive values are in red and negative values are shown in blue
337 (windows size 100 bp). Internal bands show the homology relationships making up the P5 and P12 variable
338 regions.

339

340 The remaining 31,737 bp (67.3% of the assembly) corresponds to the variable region. The
341 GC-content of this region (21.39%) is lower than that of the conserved region. Following
342 previous works (Berná et al. 2021, Gerasimov et al., 2020), we divided this region into a


343 small subregion (3,660 bp), termed P5, and a long subregion (28,077 bp), termed P12.
344 The two regions are composed of a series of tandem repeats with unit lengths around
345 150bp for the short region, and 1,500bp for the long region. Nucleotide identity between
346 pairs of repeat copies ranged from 75.6% to 100%. Comparing the P12 region with
347 previous assemblies, we identified 18 palindromic conserved elements, which are known
348 to be involved in different molecular processes such as the replication of the mitochondrial
349 DNA (Gerasimov et al., 2020).

350 **Genetic variability in *T. cruzi***

351 To evaluate the use of our haploid genome assembly as a reference for diversity studies,
352 we reanalyzed publicly available WGS Illumina reads sequenced from 39 *T. cruzi* strains
353 classified in different DTUs (Supplementary Table 4). The number of reads of the
354 downloaded sequences was highly variable and the mapping rate ranged from 34% (2
355 samples) to 86% (Supplementary Figure 5).

356 A raw dataset of 1,018,520 single nucleotide variants was found in all Illumina sequences
357 mapped to the first haplotype of the Dm25 assembly. Figure 5A shows that the Tcl group
358 has the least number of variants, except for the H1 strain from Panama, which has about 6
359 times more variants. The number of variants of the H1 strain is similar to the variants of the
360 TcV group. Strains Berenice and 9280cl.2 had a significantly lower number of variants
361 compared to their groups, this is due to the low number of reads sequenced in these
362 strains (Supplementary Figure 4). In general, these results are consistent with previous
363 molecular characterization showing that the Dm25 strain belongs to the Tcl group.

364

365

366 **Figure 5.** Genomic variants identified between Illumina reads of *T. cruzi* strains from different DTUs and our
367 haploid *T. cruzi* assembly (H1). **A.** Number of homozygous and heterozygous variants in *T. cruzi* strains. **B.**
368 Neighbor joining clustering of genetic distances between *T. cruzi* strains, including the
369 haploid TcDm25 assembly. **C.** close up of the variability within TcI. The names indicate the DTU – country of
370 isolation – strain. Bra: Brazil, Bol: Bolivia, Pan: Panama, Chi: Chile, Col: Colombia, Ven: Venezuela, Ecu:
371 Ecuador.

372

373 We derived a neighbor joining clustering from the variants identified in the *T. cruzi* strains
374 with Illumina reads (Figure 5B). All the strains from TcI were grouped in the same node,
375 except for the H1 strain from Panama which is consistent with Figure 5A. Likewise, the

376 TcII strains were grouped on the left side of the clustering. The TcIII, TcV, and TcVI groups
377 were grouped in a node, together with the TcI strain from Panama. This node looks
378 intermediate between TcI and TcII groups. Although the reads of Dm25 were not obtained
379 by Illumina technology, we were able to confirm that Dm25 strain belongs to the TcI group
380 with this analysis.

381 Figure 5C shows a close look at the clustering within the TcI group. The CGI strains, which
382 are parasites isolated from a patient with HIV and cardiomyopathy, are clustered together
383 on the right side of the figure. The FcHcl strains, which correspond to parasites isolated
384 from an acute chagasic patient infected by oral transmission, formed two distinct groups.
385 The Colombiana strain was placed close to Dm25 but the separation suggests a level of
386 divergence between these strains larger than that observed within the other groups. In
387 general, a grouping by countries is observed, except for the strains from Colombia.

388 **DISCUSSION**

389 The development of sequencing methods to obtain high-quality long read DNA sequencing
390 data enabled the complete characterization of complex genomes, including phase
391 reconstructions for diploid and even polyploid species. In this work, we report the nearly
392 complete and phased assembly of a Colombian TcI strain of *T. cruzi*. The use of the
393 PacBio HiFi technology allowed us to annotate and analyze a complete catalog of the
394 most important repetitive structures, including transposable elements and multicopy gene
395 families. Compared to previous efforts using the Oxford Nanopore technology (Wang et
396 al., 2021), the small error rate of HiFi reads allowed us to identify heterozygous sites,
397 make inferences about ploidy per chromosome, and reconstruct two haplotypes for diploid
398 and aneuploid chromosomes. A wide variability between the haplotypes of TcI and even
399 within the TcI haplotypes was evidenced, especially for three chromosomes, which are

400 enriched for multicopy gene families. This confirms the broad plasticity of the genome and
401 the strain-specific evolution of *T. cruzi* previously reported (Berná et al., 2018; Callejas-
402 Hernandez et al., 2018; Díaz-Viraqué et al., 2019; Talavera-Lopez et al., 2021; Wang et
403 al., 2021). Further improvements in read quality and length of long read sequencing
404 technologies will facilitate the full reconstruction of large numbers of strains of genomes for
405 pathogens with complex genomes such as those in the *Trypanosomatidae* family. This will
406 allow researchers to characterize and analyze the function and evolution of the expectedly
407 large haplotype variability segregating within *T. cruzi*.

408 The total length of the genome assembly of Dm25 (84 Mbp) is consistent with previous
409 flow cytometry experiments in which the total genome size was estimated to fluctuate
410 between 80 and 150 Mbp (Lewis et al., 2009). The percentage of the genome covered by
411 repetitive elements (~47%) is also consistent with previous reports (Reis-Cunha et al.,
412 2015; Wang et al., 2021), and only differs from the percentage reported for the Sylvio X10
413 strain, which was only 18.43% (Talavera-Lopez et al., 2021). Even using long reads,
414 heterozygosity and a large percentage of repetitive elements are the main difficulties to
415 obtain chromosome-level genome assemblies (Jarvis et al., 2022). Part of the complexity
416 of the *T. cruzi* genome is evidenced by the presence of different aneuploidies. Recent
417 studies also support the presence of aneuploidies in the genomes of Tcl strains (Cruz-
418 Saavedra et al., 2022). In particular, chromosome 31 seems to have a consistent increase
419 in number of copies, compared to diploid chromosomes (Reis-Cunha et al., 2015). One of
420 the characteristics of this chromosome is the abundance of genes related to protein
421 glycosylation, such as mucin surface proteins. These proteins can be related to the
422 survival of *T. cruzi* during the infection process (Buscaglia et al., 2006; De Pablos et al.,
423 2012). Previous studies also have investigated the role of aneuploidies to facilitate a rapid

424 adaptation of the pathogen across its life cycle, while moving from an invertebrate to a
425 vertebrate host, through modulation of allele dosages (Dujardin et al., 2014; Reis-Cunha et
426 al., 2018).

427 The number of gene copies per family identified within each haplotype was consistent with
428 previous studies (Berná et al., 2018, Wang et al., 2021). The analysis of nucleotide and
429 protein evolution over paralog pairs provides insights into the relative times of expansion
430 of the different families, and their level of protein conservation. With the exception of
431 Mucins and dispersed gene families (DGF), the ks value in most comparisons between
432 paralogs was below 0.2. The similarity of these distributions with the distribution of ks
433 values for core orthologs against the *T. cruzi* marinkellei assembly, suggests that most of
434 the observable expansions of gene families occurred along the diversification of the
435 species. As expected, tandem paralogs seem to have appeared at a smaller time,
436 compared to distant paralogs. The distribution of ka/ks values suggests that protein
437 sequences of multicopy gene families evolve faster than core genes, thanks to a more
438 relaxed purifying selection. A notable exception to this pattern is the case of distant copies
439 of dispersed gene families (DGF). The expansion of this family seems to occur at a much
440 older time, compared to the other families, but at the same time, the ka/ks values suggest
441 a high level of protein conservation. High protein conservation and lack of positive
442 selection in this family were previously reported in a study in which Shannon entropy was
443 used as a measure of variability across a protein sequence alignment (Kawashita et al.,
444 2009). This is surprising taking into account that subtelomeric regions contain copies of
445 DGF genes (Moraes et al., 2012). These regions usually have higher levels of homologous
446 recombination and are even subject to ectopic recombination, which increases the
447 variability of genes present in these regions (Christiaens et al., 2012). Moreover, recent

448 studies reported that many subtelomeric coding sequences of DGF genes serve as
449 replication origins (de Araujo et al., 2020), and that up to 80% of DGF genes include
450 dynamic nucleosomes (Lima et al., 2021). It has also been shown that DGF genes are
451 expressed in the three life cycle stages (Kawashita et al., 2009, Lander et al., 2010).
452 Further studies are needed to elucidate why the pathogen requires protein conservation
453 for this family.

454 Beyond the well characterized repeat families, we observed three recent expansions of
455 protein kinases and histones. A comparative analysis of public assemblies within the
456 syntenic regions that could be identified suggests that these expansions are not a unique
457 feature of TcDm25, but that the expansions could not be fully characterized due to the lack
458 of completeness of previous assemblies. Gene copies of the expansion of protein kinases
459 in chromosome 32 belong to the TcCK1.2 gene family. This is a casein kinase 1 (CK1)
460 which is a signaling serine/threonine protein. These proteins are involved in different
461 cellular processes such as protein trafficking, cell cycle regulation, cytokinesis, DNA repair
462 and apoptosis (Spadafora et al., 2002; Knippschild et al., 2005). TcCK1.2 is more
463 expressed in the amastigote stage, compared to the epimastigote and the trypomastigote
464 stages (Spadafora et al., 2002). Orthologs TcCK1.2 in *L. donovani* (Rachidi et al., 2014)
465 and *T. brucei* (Urbaniak., 2009) are crucial for parasite survival in the amastigote stage.
466 This suggests that the expansion of TcCK1.2 could be related to an adaptation
467 mechanism. Likewise, gene copies of the expansion of histones found in chromosome 4
468 belong to the histone variant H2B.V. Histones play a key role in the organization of the
469 chromatin structure and gene expression in *T. cruzi* (de Lima et al., 2020). Previous
470 studies analyzing chromatin extracts (de Jesus et al., 2017), ChIP-seq data and
471 performing knockout experiments (Roson et al., 2022) showed that this variant is

472 associated with nucleosome instability and that it is more expressed in epimastigotes
473 compared to trypomastigotes. This suggests that H2B.V genes can be related to
474 chromatin structure changes and modulation of transcription rates (Elias et al., 2001).
475 Further functional experiments are needed to reveal the relationship between gene copy
476 number and expression changes during host-pathogen interactions.

477 Nucleotide evolution statistics on core orthologs suggest that there is a large gap in the
478 range of species that need to be sequenced to obtain a full reconstruction of the
479 evolutionary history of *Trypanosomatidae*. The closest species to *T. cruzi* that we could
480 identify with a publicly available genome was *T. grayi*. The average ks values for core
481 ortholog pairs were close to two, suggesting a very large divergence time between these
482 species. High protein conservation was observed in these paralogs, suggesting that only
483 ultraconserved essential proteins were included in this comparison.

484 The use of high-quality long reads allowed to obtain a complete and direct assembly of the
485 maxicircle, without any scaffolding or curation steps. The complex pattern of long and
486 short repetitive elements present in the divergent region explains why the Maxicircle can
487 not be fully reconstructed using short read technologies (Urrea et al., 2019; Lin et al.,
488 2015). The total length of our assembly (47 Kbp) is within the range between 35 Kbp and
489 51 Kbp estimated by previous studies (Berná et al., 2021). The organization of the
490 molecule in a gene rich conserved region and two divergent and repeat rich regions is
491 also consistent with previous assemblies. Previous studies in *T. brucei* showed that this
492 region contains binding sites for the topoisomerase II, which indicates that this region is
493 important for the replication of the molecule (Myler et al., 1993). Recent studies in *T. vivax*
494 indicate that the variable region can have a large variability within species because copies

495 of repetitive elements can recombine, producing presence/absence variants and even
496 rearrangements (Greif et al., 2021)

497 Based on the reanalysis of publicly available Illumina data, we show that the primary
498 assembly of TcDm25 can serve as a reference for population genomic studies in *T. cruzi*.
499 A wide variation in the number of variants in the different DTUs was evidenced, which is
500 consistent with the reported genomic heterogeneity (Talavera-Lopez et al., 2021; Wang et
501 al., 2021). Sample clustering based on SNP variation separates the reported DTUs
502 (Zingales et al., 2009). A single NJ cluster includes the TcIII, TcV, and TcVI groups
503 because TcV and TcVI are hybrids of TcIII and TcII (Zingales et al., 2009) although a more
504 comprehensive sampling within DTUs is needed to corroborate this hypothesis. The
505 genetic proximity between TcIII, TcV and TcVI strains has been reported in previous
506 studies with markers such as gGAPDH where it has been impossible to separate hybrid
507 strains from parental strains (Brandão et al., 2020). In addition, it was possible to
508 corroborate the erroneous assignment of the H1 strain (from Panama) to the TcI group
509 (Majeau et al., 2021). We expect that this resource will be very valuable for different
510 research groups performing evolutionary, functional and population genomic analysis in *T.*
511 *cruzi* and other related tropical pathogens.

512 METHODS

513 ***Sampling area and parasite culture***

514 The capture of the host *Didelphis marsupialis* was carried out in the municipality of
515 Coyaima, department of Tolima (coordinates 3.8025-75.19833), using baited tomahawk
516 traps (Supplementary Figure 6). The collected specimen was sedated and individualized,
517 to later take a blood sample, with the purpose of performing a blood culture in a biphasic
518 medium (NNN: Novi, Nicolle, McNeal / LIT: Liver Infusion Tryptose). The strain of *T. cruzi*

519 isolated was then cryopreserved in liquid nitrogen at the Laboratorio de Investigaciones de
520 Parasitología Tropical (LIPT) of Universidad del Tolima until use. The isolate identified as
521 Dm25 was thawed and placed in NNN culture medium with LIT supplemented with 15%
522 fetal bovine serum (FBS) and 100 IU/ml gentamicin/ampicillin mixture at 28° C for its log-
523 phase growth, allowed obtaining 10⁸ parasites for the molecular characterization and
524 whole genome sequencing (WGS).

525 ***Molecular characterization***

526 Species identification was based on the amplification of the hypervariable region of
527 trypanosomatid minicircles using primers S35 (5-AAA TAA TGT ACG GGT GGA GAT
528 GCA TGA-3), S36 (5-GGG TTC GAT TGG GGT TGG TGT-3) and KP1L (5-ATA CAA
529 CAC TCT CTA TAT CAG G-3) as proposed by Vallejo et al. (2002). Finally, the
530 amplification products were visualized by electrophoresis with 6% polyacrylamide gels,
531 stained with silver nitrate, and 1kb Plus DNA Ladder (Invitrogen ™ by ThermoFisher
532 Scientific, Product 10787018).

533 For the genotyping of the *T. cruzi* isolate within the Discrete Taxonomic Unit corresponding
534 to lineage I (DTU I) or II (DTU II), the intergenic region of the spliced-leader gene (SL-IR)
535 was amplified using the primers proposed by Souto et al. (1996), TCC/TCI/TCII, which
536 amplifies a product of 300 bp corresponding to DTU II and 350 bp corresponding to DTU I.
537 The amplification products were visualized in agarose gel electrophoresis stained with 2%
538 Ethidium Bromide.

539 ***DNA extraction and genome sequencing***

540 DNA extraction from *T. cruzi* epimastigotes was performed using the Gentra Puregene kit
541 (Qiagen) to obtain high molecular weight DNA. The DNA was quantified with the
542 NanoDrop 2000 spectrophotometer (Thermo Scientific, USA). The integrity of the DNA

543 was verified by electrophoresis with a 2% agarose gel (90V for 30 minutes). *T. cruzi* DNA
544 sequencing was performed using Pacific Bioscience (PacBio) HiFi technology at 100X
545 average read depth.

546 ***Sequence assembly and quality assessment***

547 An initial phased *de novo* assembly of the *T. cruzi* strain Dm25 was performed running
548 Hifiasm v0.12(r304) (Cheng et al., 2021) and the Next Generation Sequencing Experience
549 Platform (NGSEP) v4.3.1 using the Assembler command with k-mer length 25, window
550 length 40 and ploidy of 2 (Gonzalez-Garcia et al. 2023). Contigs were aligned to the
551 publicly available haploid genome assembly of the TcI Brazil A4 strain using Minimap2
552 v2.22 (Li et al., 2018). Based on these alignments, the contigs of both haplotypes were
553 manually sorted and for each chromosome contigs making the haplotypes H1 and H2
554 were selected manually. We aligned the PacBio reads to a concatenated H1/H2 assembly,
555 called heterozygous variants using NGSEP, and calculated mean read depths using
556 samtools v1.16 (Danecek et al., 2021) to determine genomic regions showing evidence of
557 the presence of a third haplotype. Unassigned contigs were also mapped to the H1/H2
558 assembly to select contigs likely to belong to the third haplotype. Reads were mapped
559 again to a concatenated genome including the H3 contigs to validate that the H3 contigs
560 will have good read coverage.

561 Genome statistics were obtained running QUAST v5.02 (Gurevich et al., 2013). Per base
562 quality assessment through mapping of conserved genes was assessed using BUSCO
563 v5.3.2 searching the reference dataset of 130 genes in Euglenozoa (Manni et al., 2021).

564 ***Genome Annotation***

565 We generated an initial database of Transposable elements using Repeat Modeler (Flynn
566 et al., 2020). We mapped this initial database to the genome using Repeat Masker

567 (<http://www.repeatmasker.org/>). We also executed the TransposonsFinder command of
568 NGSEP (Gonzalez-Garcia et al., 2023b) to map the database generated with Repeat
569 Modeler and annotate the regions including transposable elements in the genome
570 assembly of *T. cruzi* (TcDm25). We executed a separate process for each haplotype and
571 executed two rounds of identification.

572 We ran the Companion software for structural and functional annotation of the genome of
573 *T. cruzi* (Steinbiss et al., 2016). Companion combines the tool RATT (Otto et al., 2011) to
574 transfer models of publicly available assemblies, with ab-initio predictions obtained with
575 SNAP (Korf, 2004), and AUGUSTUS (Stanke et al., 2006). Functional annotation is
576 performed by transferring annotations from orthologs obtained running OrthoMCL (Li et al.,
577 2003), and performing blast searches to the Pfam-A database (Finn et al., 2014).
578 Additionally, this software takes into account that the genes of kinetoplastids such as
579 *Trypanosoma* and *Leishmania* are organized in large directional groups of genes that are
580 transcribed together as polycistrons. Hence, this software has a filtering method to
581 eliminate the over-prediction of genes on the complementary strand. Genes belonging to
582 multicopy gene families were identified combining genes with direct annotations of
583 characteristic PFam domains with orthologs of genes in the Brazil A4 strain belonging to
584 the family.

585 ***Ploidy determination***

586 Absolute chromosomal ploidy of *T. cruzi* assemblies was determined by estimating allele
587 frequencies from the proportion of occurrence of each heterozygous site using the
588 RelativeAlleleCounts command in NGSEP (Urrea et al., 2018).

589

590

591 **Genome alignments and sequence evolution statistics**

592 Pairwise genome-wide comparisons between the haplotypes of Dm25 and among the
593 publicly available genome assemblies included in this study were performed running the
594 GenomesAligner command of NGSEP (Tello et al., 2023). Assemblies were selected from
595 the TriTrypDB database of VEuPathDB (Amos et al., 2021) based on their contiguity, which
596 is related to the use of Sanger or long-read technologies. Dotplots of local alignment were
597 performed using Gepard v1.40 (Krumsiek et al., 2007). To calculate nucleotide and protein
598 evolution statistics (Ks and ka/ks) the DNA coding sequences of homologs inferred from
599 each pairwise comparison were aligned keeping codon information and the command
600 codeml of paml v4.9j (Yang, 2007) was used.

601 **Determination of variants between DTUs of *T. cruzi***

602 To determine variants between *T. cruzi* genomes from different DTUs, 33 Illumina-
603 sequenced *T. cruzi* genomes were obtained from the TriTrypDB database
604 (<https://tritrypdb.org>) (Supplementary Table 4) (Majeau et al., 2021). The mapping of
605 Illumina reads to TcDm25 H1 haplotype assembly was performed using NGSEP 4.2.1.
606 The same tool was used to call the variants, the functional annotation of the variants, the
607 genotyping quality filter and to obtain the statistics. Finally, a distance matrix was made
608 from the variants and a dendrogram in the iTOL tool (Letunic & Bork, 2021).

609 **Maxicircle genome assembly and annotation**

610 We used BLAST+ (v2.11.0) (Altschul et al., 1990) to search known maxicircle sequences
611 in the assembly obtained with NGSEP. Known maxicircles were downloaded from the
612 databases NCBI nucleotide and TriTrypDB. We used EMBOSS (Rice et al., 2000) to filter
613 out contigs with GC-content less than expected. The maxicircle was manually annotated,
614 looking for base pair level synteny between the assembly and the annotated maxicircle

615 sequences using BLAST and ARTEMIS v. 18.1.0 (Carver et al., 2012). These tools were
616 also useful to identify and deduplicate repeated extremes and to orient the contig. BLAST+
617 v2.11.0) was also run with a maximum e-value of 10-6 to find tandem repeats and define
618 the variable regions. The annotated sequence was visualized using Circos v0.69
619 (Krzywinski et al., 2009).

620 **DATA AVAILABILITY**

621 The data used in this study is available at the NCBI sequence read archive (SRA)
622 database (<https://www.ncbi.nlm.nih.gov/sra>) with bioproject accession number
623 PRJNA994590. The genome assembly is available at the Assembly database of NCBI
624 (<https://www.ncbi.nlm.nih.gov/assembly/>) within the same bioproject accession number.

625 **ACKNOWLEDGMENT**

626 The work presented in this manuscript was funded by the Colombian Ministry of Sciences
627 research fund “Patrimonio Autónomo Fondo Nacional de Financiamiento Para la Ciencia,
628 la Tecnología Y la Innovación Francisco José de Caldas”, through the grant with contract
629 number 80740-441-2020, awarded to JD. We also acknowledge the IT Services
630 Department and ExaCore of the Vice Presidency for Research & Creation at Universidad
631 de Los Andes for their technical support to perform the computational analysis.

632 **COMPETING INTERESTS**

633 The authors declare that they have no competing interests regarding the results presented
634 in this manuscript.

635 **REFERENCES**

636 Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment
637 search tool. *Journal of molecular biology*, 215(3), 403–410. [https://doi.org/10.1016/S0022-2836\(05\)80360-2](https://doi.org/10.1016/S0022-2836(05)80360-2)
638 Amos B, Aurrecoechea C, Barba M, et al. (2021). VEuPathDB: the eukaryotic pathogen, vector and
639 host bioinformatics resource center, *Nucleic Acids Research* 50(D1): D898–D911.
640 <https://doi.org/10.1093/nar/gkab929>
642 Barnabé, C., Molarec, H. I., Jurado, M. R., Cortez, J. A., & Breniére, S. F. (2016). Reconsideration

643 of the seven discrete typing units within the species *Trypanosoma cruzi*, a new proposal of three
644 reliable mitochondrial clades. *Infection, Genetics and Evolution*, 39, 176–186.
645 <https://doi.org/10.1016/j.meegid.2016.01.029>

646 Berná, L., Rodriguez, M., Chiribao, M. L., Parodi-Talice, A., Pita, S., Rijo, G., ... Robello, C. (2018).
647 Expanding an expanded genome: long-read sequencing of *Trypanosoma cruzi*. *Microbial
648 Genomics*, 4(5). <https://doi.org/10.1099/mgen.0.000177>

649 Berná, L., Greif, G., Pita, S., Faral-Tello, P., Díaz-Viraquén, F., Souza, R. D. C. M. D., Vallejo, G.,
650 Alvarez-Valin, F. & Robello, C. (2021). Maxicircle architecture and evolutionary insights into
651 *Trypanosoma cruzi* complex. *PLoS neglected tropical diseases*, 15(8), e0009719.

652 Brandão, E., Xavier, S. C., Rocha, F. L., Lima, C. F., Candeias, I. Z., Lemos, F. G., ... & Roque, A.
653 L. (2020). Wild and Domestic Canids and Their Interactions in the Transmission Cycles of
654 *Trypanosoma cruzi* and *Leishmania* spp. in an Area of the Brazilian Cerrado. *Pathogens*, 9(10),
655 818.

656 Buscaglia CA, Campo VA, ACC F, Di Noia JM. (2006). *Trypanosoma cruzi* Surface mucins: host-
657 dependent coat diversity. *Nature Reviews Microbiology* 4: 229-236.

658 Callejas-Hernández, F., Rastrojo, A., Poveda, C., Gironès, N., & Fresno, M. (2018). Genomic
659 assemblies of newly sequenced *Trypanosoma cruzi* strains reveal new genomic expansion and
660 greater complexity. *Scientific Reports*, 8(1), 1–13. <https://doi.org/10.1038/s41598-018-32877-2>

661 Callejas-Hernández, F., Herreros-Cabello, A., del Moral-Salmoral, J., Fresno, M., & Gironès, N.
662 (2021). The complete mitochondrial DNA of *Trypanosoma cruzi*: Maxicircles and minicircles.
663 *Frontiers in cellular and infection microbiology*, 556.

664 Carver, T., Harris, S. R., Berriman, M., Parkhill, J., & McQuillan, J. A. (2012). Artemis: an integrated
665 platform for visualization and analysis of high-throughput sequence-based experimental data.
666 *Bioinformatics*, 28(4), 464-469.

667 Cheng, H., Concepcion, G.T., Feng, X., Zhang, H., Li H. (2021) Haplotype-resolved de novo
668 assembly using phased assembly graphs with hifiasm. *Nat Methods*, 18:170-175.
669 <https://doi.org/10.1038/s41592-020-01056-5>

670 Christiaens, J., F., Van Mulders, S. E., Duitama, J., et al. (2012). Functional divergence of gene
671 duplicates through ectopic recombination. *EMBO reports* 13:1145-1151.
672 <https://doi.org/10.1038/embor.2012.157>

673 Cruz-Saavedra L, Schwabl P, Vallejo GA, Carranza JC, Muñoz M, Patino LH, Paniz-Mondolfi A,
674 Llewellyn MS, Ramírez JD. (2022). Genome plasticity driven by aneuploidy and loss of
675 heterozygosity in *Trypanosoma cruzi*. *Microbial Genomics* 8(6): mgen000843.
676 <http://doi.org/10.1099/mgen.0.000843>

677 Cura, C. I., Mejía-jaramillo, A. M., Duffy, T., Burgos, J. M., Rodriguez, M., Cardinal, M. V., ...
678 Schijman, A. G. (2010). *Trypanosoma cruzi* I genotypes in different geographical regions and
679 transmission cycles based on a microsatellite motif of the intergenic spacer of spliced-leader genes
680 q. *International Journal for Parasitology*, 40(14), 1599–1607.
681 <https://doi.org/10.1016/j.ijpara.2010.06.006>

682 Curtis-Robles R, Hamer SA, Lane S, Levy MZ, Hamer GL. 2018. Bionomics and spatial distribution
683 of triatomine vectors of *Trypanosoma cruzi* in Texas, USA. *The American Journal of Tropical
684 Medicine and Hygiene*. 98(1): 113-121.

685 Danecek P, Bonfield JK, Liddle J, et al. (2021). Twelve years of SAMtools and BCFtools.
686 GigaScience 10(2): giab008. <https://doi.org/10.1093/gigascience/giab008>

687 de Araujo CB, da Cunha JPC, Inada DT, Damasceno J, Lima ARJ, Hiraiwa P, Marques C,
688 Gonçalves E, Nishiyama-Junior MY, McCulloch R, Elias MC. (2020). Replication origin location
689 might contribute to genetic variability in *Trypanosoma cruzi*. *BMC Genomics* 21(1): 414.
690 <http://doi.org/10.1186/s12864-020-06803-8>

691 de Jesus TCL, Calderano SG, Vitorino FN de L, Llanos RP, Lopes M de C, Araujo CB de, et al.
692 (2017). Quantitative Proteomic Analysis of Replicative and Nonreplicative Forms Reveals Important
693 Insights into Chromatin Biology of *Trypanosoma cruzi*. *Mol Cell Proteomics* 16: 23–38.
694 <https://doi.org/10.1074/mcp.M116.061200>

695 de Lima LP, Poubel SB, Yuan ZF, Roson JN, Vitorino FNL, Holetz FB, Garcia BA, da Cunha JPC.

696 (2020). Improvements on the quantitative analysis of *Trypanosoma cruzi* histone post translational
697 modifications: study of changes in epigenetic marks through the parasite's metacyclogenesis and
698 life cycle. *J Proteomics* 225:103847. <https://doi.org/10.1016/j.jprot.2020.103847>.

699 de Oliveira, A. B., Chaboli, K. C., Lima, C. H., Fernanda, F., & Azeredo-Oliverira, T. V. (2018).
700 Parasite–Vector Interaction of Chagas Disease: A Mini-Review. *American Journal of Tropical
701 Medicine and Hygiene*, 98(3), 653–655. <https://doi.org/10.4269/ajtmh.17-0657>

702 De Pablos LM, Osuna A. (2012). Multigene families in *Trypanosoma cruzi* and their role in
703 infectivity. *Infect Immun.* 80(7): 2258-2264. <http://doi.org/10.1128/IAI.06225-11>

704 Díaz-Viraqué, F., Pita, S., Greif, G., Moreira de Souza, R., Iraola, G., & Robello, C. (2019).
705 Nanopore sequencing significantly improves genome assembly of the protozoan parasite
706 *Trypanosoma cruzi*. *Genome Biology and Evolution*, 11(7), 1952–1957.
707 <https://doi.org/10.1093/gbe/evz129>

708 Dujardin JC, Mannaert A, Durrant C, Cotton JA. (2014). Mosaic aneuploidy in *Leishmania*: the
709 perspective of whole genome sequencing. *Trends in Parasitology* 30:554-555.
710 <https://doi.org/10.1016/j.pt.2014.09.004>.

711 Echeverria, L. E., & Morillo, C. A. (2019). American Trypanosomiasis (Chagas Disease). *Infectious
712 Disease Clinics of North America*, 33(1), 119–134. <https://doi.org/10.1016/j.idc.2018.10.015>

713 Elias MC, Marques-Porto R, Freymuller E, Schenkman S. Transcription rate modulation through the
714 *Trypanosoma cruzi* life cycle occurs in parallel with changes in nuclear organisation. *Mol Biochem
715 Parasitol.* 2001; 112: 79–90. [https://doi.org/10.1016/s0166-6851\(00\)00349-2](https://doi.org/10.1016/s0166-6851(00)00349-2) PMID: 11166389

716 El-sayed, N. M., Myler, P. J., Bartholomeu, D. C., Nilsson, D., Aggarwal, G., Westenberger, S. J., ...
717 Vogt, C. (2005). The genome sequence of *Trypanosoma cruzi*, etiologic agent of Chagas disease.
718 *Science*, 309, 409–415.

719 Falla, A., Herrera, C., Fajardo, A., Montilla, M., Adolfo, G., & Guhl, F. (2009). Haplotype
720 identification within *Trypanosoma cruzi* I in Colombian isolates from several reservoirs, vectors and
721 humans. *Acta Tropica*, 110(1), 15–21. <https://doi.org/10.1016/j.actatropica.2008.12.003>

722 Finn R.D. Bateman A. Clements J. Coggill P. Eberhardt R.Y. Eddy S.R. Heger A. Hetherington K.
723 Holm L. Mistry J. et al. (2014). Pfam: the protein families database *Nucleic Acids Res.* 42 D222
724 D230

725 Flynn JM, Hubley R, Goubert C, Rosen J, Clark AG, Feschotte C, Smit AF. RepeatModeler2 for
726 automated genomic discovery of transposable element families. *Proc Natl Acad Sci U S A.* 2020
727 Apr 28;117(17):9451-9457. doi: 10.1073/pnas.1921046117. Epub 2020 Apr 16. PMID: 32300014;
728 PMCID: PMC7196820.

729 Franzén, O., Ochaya, S., Sherwood, E., Lewis, M. D., Llewellyn, M. S., Miles, M. A., & Andersson,
730 B. (2011). Shotgun sequencing analysis of *Trypanosoma cruzi* I Sylvio X10/1 and comparison with
731 *T. cruzi* VI CL Brener. *PLoS Negl Trop*, 5(3), 1–9. <https://doi.org/10.1371/journal.pntd.0000984>

732 Gerasimov, E. S., Zamyatnina, K. A., Matveeva, N. S., Rudenskaya, Y. A., Kraeva, N., Kolesnikov,
733 A. A., & Yurchenko, V. (2020). Common structural patterns in the maxicircle divergent region of
734 *Trypanosomatidae*. *Pathogens*, 9(2), 100.

735 Gonzalez-Garcia, L., Guevara-Barrientos, D., Lozano-Arce, D., Gil, J., Díaz-Riaño, J., Duarte, E., ...
736 & Duitama, J. (2023). New algorithms for accurate and efficient de novo genome assembly from
737 long DNA sequencing reads. *Life Science Alliance*, 6(5).

738 Gonzalez-García, L. N., Lozano-Arce, D., Londoño, J. P., Guyot, R., & Duitama, J. (2023b).
739 Efficient homology-based annotation of transposable elements using minimizers. *Applications in
740 Plant Sciences*, e11520.

741 Gómez-Hernández, C., Pérez, S. D., Rezende-oliveira, K., Barbosa, C. G., Lages-silva, E.,
742 Ramírez, L. E., & Ramírez, J. D. (2019). Evaluation of the multispecies coalescent method to
743 explore intra- *Trypanosoma cruzi* I relationships and genetic diversity. *Parasitology*, 146(8), 1063–
744 1074.

745 Greif, G., Rodriguez, M., Bontempi, I., Robello, C., & Alvarez-Valin, F. (2021) Different kinetoplast
746 degradation patterns in American *Trypanosoma vivax* strains: Multiple independent origins or fast
747 evolution?. *Genomics*. 113(2), 843-853. doi: 10.1016/j.ygeno.2020.12.037.

748 Grisard, E. C., Ribeiro, M., Paula, G., & Stoco, H. (2014). *Trypanosoma cruzi* Clone Dm28c Draft

749 *Genome Sequence*. 2(1), 2–3. <https://doi.org/10.1128/genomeA.01114-13>. Copyright
750 Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome
751 assemblies. *Bioinformatics*. 2013 Apr 15;29(8):1072–5. doi: 10.1093/bioinformatics/btt086. Epub
752 2013 Feb 19. PMID: 23422339; PMCID: PMC3624806.

753 Hernández, C., Salazar, C., Brochero, H., Teherán, A., Buitrago, L. S., Vera, M., ... Ramírez, J. D.
754 (2016). Untangling the transmission dynamics of primary and secondary vectors of *Trypanosoma*
755 *cruzi* in Colombia: parasite infection, feeding sources and discrete typing units. *Parasites &*
756 *Vectors*, 9(620), 1–12. <https://doi.org/10.1186/s13071-016-1907-5>

757 Herrera, C., Bargues, M. D., Fajardo, A., Montilla, M., Triana, O., Adolfo, G., & Guhl, F. (2007).
758 Identifying four *Trypanosoma cruzi* I isolate haplotypes from different geographic regions in
759 Colombia. *Infection, Genetics and Evolution*, 7, 535–539.
760 <https://doi.org/10.1016/j.meegid.2006.12.003>

761 Herrera, C., Guhl, F., Falla, A., Fajardo, A., Montilla, M., Vallejo, G. A., & Bargues, M. D. (2009).
762 Genetic Variability and Phylogenetic Relationships within *Trypanosoma cruzi* I Isolated in Colombia
763 Based on Miniexon Gene Sequences. *Journal of Parasitology Research*, 2009(897364), 1–9.
764 <https://doi.org/10.1155/2009/897364>

765 Jarvis, E.D., Formenti, G., Rhie, A. et al. (2022). Semi-automated assembly of high-quality diploid
766 human reference genomes. *Nature* 611, 519–531. <https://doi.org/10.1038/s41586-022-05325-5>

767 Jiménez, P., Jaimes, J., Poveda, C., & Ramírez, J. D. (2019). A systematic review of the
768 *Trypanosoma cruzi* genetic heterogeneity, host immune response and genetic factors as plausible
769 drivers of chronic chagasic cardiomyopathy. *Parasitology*, 146(3), 269–283.

770 Kawashita SY, da Silva CV, Mortara RA, Burleigh BA, Briones MR. (2009). Homology, paralogy and
771 function of DGF-1, a highly dispersed *Trypanosoma cruzi* specific gene family and its implications
772 for information entropy of its encoded proteins. *Molecular and Biochemical Parasitology*. 165 (1):19–
773 31. <http://doi.org/10.1016/j.molbiopara.2008.12.010>

774 Knippschild, U., Gocht, A., Wolff, S., Huber, N., Lohler, J., and Stoter, M. (2005). The casein kinase
775 1 family: participation in multiple cellular processes in eukaryotes. *Cell Signal* 17 (6), 675–689. doi:
776 10.1016/j.cellsig.2004.12.011

777 Korf I. (2004). Gene finding in novel genomes *BMC Bioinform*, 5 59

778 Krumsiek J, Arnold R, Rattei T. (2007). Gepard: A rapid and sensitive tool for creating dotplots on
779 genome scale. *Bioinformatics* 23(8): 1026–1028.

780 Krzywinski, M., Schein, J., Birol, I., Connors, J., Gascoyne, R., Horsman, D., ... & Marra, M. A.
781 (2009). Circos: an information aesthetic for comparative genomics. *Genome research*, 19(9), 1639–
782 1645.

783 Lander, N.; Bernal, C.; Diez, N.; Añez, N.; Docampo, R.; Ramirez, J.L. (2010). Localization and
784 developmental regulation of a disperse gene family 1 protein in *Trypanosoma cruzi*. *Infect. Immun.*
785 78, 231–241.

786 Letunic, I. & Bork, P. (2021). Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree
787 display and annotation, *Nucleic Acids Research*, Volume 49, Issue W1, W293–
788 W296, <https://doi.org/10.1093/nar/gkab301>

789 Lewis, M. D., Llewellyn, M. S., Gaunt, M. W., Yeo, M., Carrasco, H. J., & Miles, M. A. (2009). Flow
790 cytometric analysis and microsatellite genotyping reveal extensive DNA content variation in
791 *Trypanosoma cruzi* populations and expose contrasts between natural and experimental hybrids.
792 *International journal for parasitology*, 39(12), 1305–1317.jo

793 Li, H. (2018). Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics*, 34(18),
794 3094–3100. <https://doi.org/10.1093/bioinformatics/bty191>

795 Li L, Stoeckert C.J. Roos D.S.(2003). OrthoMCL: identification of ortholog groups for eukaryotic
796 genomes *Genome Res.* 13 2178 2189

797 Lima ARJ, de Araujo CB, Bispo S, Patané J, Silber AM, Elias MC, et al. (2021) Nucleosome
798 landscape reflects phenotypic differences in *Trypanosoma cruzi* life forms. *PLoS Pathogens* 17(1):
799 e1009272. <https://doi.org/10.1371/journal.ppat.1009272>

800 Lin, R. H., Lai, D. H., Zheng, L. L., Wu, J., Lukeš, J., Hide, G., & Lun, Z. R. (2015). Analysis of the
801 mitochondrial maxicircle of *Trypanosoma lewisi*, a neglected human pathogen. *Parasites & vectors*,

802 8(1), 1-11. <https://doi.org/10.1186/s13071-015-1281-8>.

803 Llewellyn, M. S., Miles, M. A., Carrasco, H. J., Lewis, M. D., Yeo, M., Vargas, J., ... Gaunt, M. W.

804 (2009). Genome-Scale Multilocus Microsatellite Typing of *Trypanosoma cruzi* Discrete Typing Unit I

805 Reveals Phylogeographic Structure and Specific Genotypes Linked to Human Infection. *PLoS*

806 *Pathology*, 5(5), 1–9. <https://doi.org/10.1371/journal.ppat.1000410>

807 Majeau, A., Murphy, L., Herrera, C., & Dumonteil, E. (2021). Assessing *Trypanosoma cruzi* Parasite

808 Diversity through Comparative Genomics: Implications for Disease Epidemiology and

809 Diagnostics. *Pathogens (Basel, Switzerland)*, 10(2), 212.

810 <https://doi.org/10.3390/pathogens10020212>

811 Manni, M., Berkeley, M. R., Seppey, M., & Zdobnov, E. M. (2021). BUSCO: assessing genomic

812 data quality and beyond. *Current Protocols*, 1(12), e323.

813 Manoel-Caetano, F. da S., & Silvia, A. E. (2007). Implications of genetic variability of *Trypanosoma*

814 *cruzi* for the pathogenesis of Chagas disease. *Cadernos de Saúde Pública*, 23(10), 2263–2274.

815 Marcili, A., Lima, L., Cavazzana, M., Junqueira, A. C. V., Veludo, H. H., Da Silva, F. M., ... Teixeira,

816 M. M. G. (2009). A new genotype of *Trypanosoma cruzi* associated with bats evidenced by

817 phylogenetic analyses using SSU rDNA, cytochrome b and Histone H2B genes and genotyping

818 based on ITS1 rDNA A new genotype of *Trypanosoma cruzi* associated with bats evidenced by

819 phylog. *Parasitology*, 136(6), 641–655. <https://doi.org/10.1017/S0031182009005861>

820 Mejía-Jaramillo, A. M., Peña, V. H., & Triana-Chávez, O. (2009). *Trypanosoma cruzi*: biological

821 characterization of lineages I and II supports the predominance of lineage I in Colombia.

822 *Experimental parasitology*, 121(1), 83-91.

823 Ministerio de Salud y Protección Social. (2010). Guía Protocolo para la vigilancia en salud pública

824 de Chagas. Bogotá. Instituto Nacional de Salud, 7. <https://www.minsalud.gov.co/Documents/Salud%20P%C3%BAblica/Ola%20invernal/Protocolo%20Chagas.pdf>

825 Minning, T. A., Weatherly, D. B., Flibotte, S., & Tarleton, R. L. (2011). Widespread , focal copy

826 number variations (CNV) and whole chromosome aneuploidies in *Trypanosoma cruzi* strains

827 revealed by array comparative genomic hybridization. *BMC Genomics*, 12(139), 1–11.

828 Moraes Barros RR, Marini MM, Antonio CR, Cortez DR, Miyake AM, Lima FM, et al. (2012).

829 Anatomy and evolution of telomeric and subtelomeric regions in the human protozoan parasite

830 *Trypanosoma cruzi*. *BMC Genomics* 13: 229.

831 Myler, P. J., Glick, D., Feagin, J. E., Morales, T. H., & Stuart, K. D. (1993). Structural organization of

832 the maxicircle variable region of *Trypanosoma brucei*: identification of potential replication origins

833 and topoisomerase II binding sites. *Nucleic acids research*, 21(3), 687-694.

834 Organización Panamericana de Salud (n.d). Enfermedad de Chagas.

835 <https://www.paho.org/es/temas/enfermedad-chagas>

836 Otto T.D. Dillon G.P. Degrave W.S. Berriman M. RATT: Rapid Annotation Transfer Tool *Nucleic*

837 *Acids Res.* 2011 39 e57

838 Rachidi N, Taly JF, Durieu E, et al., "Pharmacological assessment defines *Leishmania donovani*

839 casein kinase 1 as a drug target and reveals important functions in parasite viability and intracellular

840 infection," *Antimicrobial Agents and Chemotherapy*, vol. 58, no. 3, pp. 1501–1515, 2014.

841 Ramírez, J. D., Guhl, F., Rendón, L. M., Rosas, F., Marin-neto, J. A., & Morillo, C. A. (2010).

842 Chagas Cardiomyopathy Manifestations and *Trypanosoma cruzi* Genotypes Circulating in Chronic

843 Chagasic Patients. *PLoS Neglected Tropical Diseases*, 4(11), 1–9.

844 <https://doi.org/10.1371/journal.pntd.0000899>

845 Ramírez, J. D., Tapia-calle, G., & Guhl, F. (2013). Genetic structure of *Trypanosoma cruzi* in

846 Colombia revealed by a High-throughput Nuclear Multilocus Sequence Typing (nMLST) approach.

847 *BMC Genetics*, 14(96).

848 Rassi, A. J., Rassi, A., & De Rezende, J. M. (2012). American Trypanosomiasis (Chagas Disease).

849 *Infectious Disease Clinics of North America*, 26, 275–291. <https://doi.org/10.1016/j.idc.2012.03.002>

850 Reis-cunha, J. L., Rodrigues-Luiz, G. F., Valdivia, H. O., Baptista, R. P., Mendes, T. A. O., Morais,

851 G. L. De, ... Bartholomeu, D. C. (2015). Chromosomal copy number variation reveals differential

852 levels of genomic plasticity in distinct *Trypanosoma cruzi* strains. *BMC Genomics*, 16(499), 1–15.

853 <https://doi.org/10.1186/s12864-015-1680-4>

855 Reis-Cunha, J.L., Valdivia, H.O., Bartholomeu, D.C. (2018). Gene and Chromosomal Copy Number
856 Variations as an Adaptive Mechanism Towards a Parasitic Lifestyle in Trypanosomatids. *Current*
857 *Genomics* 19, 87-97.

858 Rice, P., Longden, I., & Bleasby, A. (2000). EMBOSS: the European Molecular Biology Open
859 Software Suite. *Trends in genetics : TIG*, 16(6), 276–277. [https://doi.org/10.1016/s0168-9525\(00\)02024-2](https://doi.org/10.1016/s0168-9525(00)02024-2)

860 Rosón JN, Vitarelli MO, Costa-Silva HM, Pereira KS, Pires DDS, Lopes LS, Cordeiro B, Kraus AJ,
861 Cruz KNT, Calderano SG, Fragoso SP, Siegel TN, Elias MC, da Cunha JPC. H2B.V demarcates
862 divergent strand-switch regions, some tDNA loci, and genome compartments in *Trypanosoma cruzi*
863 and affects parasite differentiation and host cell invasion. *PLoS Pathog.* 2022 Feb
864 18;18(2):e1009694. doi: 10.1371/journal.ppat.1009694

865 Ruvalcaba-Trejo, L. I. & Sturm, N. R. (2011). The *Trypanosoma cruzi* Sylvio X10 strain maxicircle
866 sequence: the third musketeer. *BMC Genomics*. 12:58. doi: 10.1186 / 1471-2164-12-58

867 Schmunis, G. A., & Yadon, Z. E. (2010). Chagas disease: A Latin American health problem
868 becoming a world health problem. *Acta Tropica*, 115(1–2), 14–21.
869 <https://doi.org/10.1016/j.actatropica.2009.11.003>

870 Simpson, L., Neckelmann, N., de La Cruz, V. F., Simpson, A. M., Feagin, J. E., Jasmer, D. P., &
871 Stuart, J. E. (1987). Comparison of the maxicircle (mitochondrial) genomes of *Leishmania*
872 *tarentolae* and *Trypanosoma brucei* at the level of nucleotide sequence. *Journal of Biological*
873 *Chemistry*, 262(13), 6182-6196.

874 Souto, R. P., Fernandes, O., Macedo, A. M., Campbell, D. A., & Zingales, B. (1996). DNA markers
875 define two major phylogenetic lineages of *Trypanosoma cruzi*. *Molecular and biochemical*
876 *parasitology*, 83(2), 141-152.

877 Souza, R. T., Lima, F. M., Barros, R. M., Cortez, D. R., Santos, M. F., Cordero, E. M., ... Da
878 Silveira, J. F. (2011). Genome Size, Karyotype Polymorphism and Chromosomal Evolution in
879 *Trypanosoma cruzi*. *PLoS ONE*, 6(8), 1–14. <https://doi.org/10.1371/journal.pone.0023042>

880 Spadafora C, Repetto Y, Torres C, Pino L, Robello C, Morello A, Gamarro F, Castanys S. Two
881 casein kinase 1 isoforms are differentially expressed in *Trypanosoma cruzi*. *Mol Biochem Parasitol.*
882 2002 Sep-Oct;124(1-2):23-36. doi: 10.1016/s0166-6851(02)00156-1. PMID: 12387847.

883 Stanke M, Schöffmann O, Morgenstern B, Waack S. (2006). Gene prediction in eukaryotes with a
884 generalized hidden Markov model that uses hints from external sources *BMC Bioinform.* 7 62

885 Steinbiss, S., Silva-franco, F., Brunk, B., Foth, B., Hertz-fowler, C., Berriman, M., & Otto, T. D.
886 (2016). Companion : a web server for annotation and analysis of parasite genomes. *Nucleic Acids*
887 *Research*, 44(1), 29–34. <https://doi.org/10.1093/nar/gkw292>

888 Sturm, N. R., Vargas, N. S., Westenberger, S. J., Zingales, B., & Campbell, D. A. (2003). Evidence
889 for multiple hybrid groups in *Trypanosoma cruzi*. *International Journal for Parasitology*, 33(3), 269–
890 279.

891 Talavera-López, C., Messenger, L. A., Lewis, M. D., Yeo, M., Reis-Cunha, J. L., Matos, G. M., ... &
892 Andersson, B. (2021). Repeat-driven generation of antigenic diversity in a major human pathogen,
893 *Trypanosoma cruzi*. *Frontiers in cellular and infection microbiology*, 11, 614665.

894 Tello D, Gonzalez-Garcia LN, Gomez J, Zuluaga-Monares JC, Garcia R, Angel R, Mahecha D,
895 Duarte E, Leon MDR, Reyes F, Escobar-Velásquez C, Linares-Vásquez M, Cardozo N, Duitama J.
896 (2023). NGSEP 4: Efficient and accurate identification of orthogroups and whole-genome
897 alignment. *Mol Ecol Resour.* Apr;23(3):712-724. doi: 10.1111/1755-0998.13737. Epub 2022 Nov
898 27. PMID: 36377253.

899 Tibayrenc, M. (1998). Genetic epidemiology of parasitic protozoa and other infectious agents: the
900 need for an integrated approach. *Int J Parasitol*, 28(1), 85–104.

901 Triana O, Ortiz S, Dujardin JC, Solari A. 2006. *Trypanosoma cruzi*: Variability of stock from
902 Colombia determined by molecular karyotype and minicircle Southern blot analysis. *Experimental*
903 *Parasitology*, 113; 62-66.

904 Urbaniak M.D., “Casein kinase 1 isoform 2 is essential for bloodstream form *Trypanosoma brucei*,”
905 *Molecular and Biochemical Parasitology*, vol. 166, no. 2, pp. 183–185, 2009.

906 Urrea, D. A., Duitama, J., Imamura, H., Alzate, J. F., Gil, J., Muñoz, N., ... Triana-Chavez, O.

908 (2018). Genomic Analysis of Colombian *Leishmania panamensis* strains with different level of
909 virulence. *Scientific Reports*, 1–16. <https://doi.org/10.1038/s41598-018-35778-6>

910 Urrea D.A., Triana-Chavez O., Alzate J.F. (2019). Mitochondrial genomics of human pathogenic
911 parasite *Leishmania* (*Viannia*) *panamensis*. *PeerJ* 7:e7235. <http://doi.org/10.7717/peerj.7235>

912 Vallejo, G. A., Guhl, F., Carranza, J. C., Lozano, L. E., Sánchez, J. L., Jaramillo, J. C., ... &
913 Steindel, M. (2002). kDNA markers define two major *Trypanosoma rangeli* lineages in Latin-
914 America. *Acta Tropica*, 81(1), 77–82.

915 Villa LM, Guhl F, Zabala D, Ramírez JD, Urrea DA, Diana Carolina Hernández, Zulma Cucunubá,
916 Marleny Montilla, Julio César Carranza, Karina Rueda, Jorge Eduardo Trujillo, Gustavo Adolfo
917 Vallejo (2013). The identification of two *Trypanosoma cruzi* I genotypes from domestic and sylvatic
918 transmission cycles in Colombia based on a single polymerase chain reaction amplification of the
919 spliced-leader intergenic region. *Mem Inst Oswaldo Cruz, Rio de Janeiro*, Vol. 108(7): 932–935

920 Wang W, Peng D, Baptista RP, Li Y, Kissinger JC, Tarleton RL (2021) Strain-specific genome
921 evolution in *Trypanosoma cruzi*, the agent of Chagas disease. *PLoS Pathog* 17(1): e1009254.
922 <https://doi.org/10.1371/journal.ppat.1009254>

923 Westenberger, S. J., Barnabé, C., Campbell, D. A., & Sturm, N. R. (2005). Two Hybridization
924 Events Define the Population Structure of *Trypanosoma cruzi*. *Genetics*, 171(2), 527–543.
925 <https://doi.org/10.1534/genetics.104.038745>

926 World Health Organization. (2020). Chagas disease (also known as American trypanosomiasis).
927 Retrieved from [https://www.who.int/en/news-room/fact-sheets/detail/chagas-disease-\(american-trypanosomiasis\)](https://www.who.int/en/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis))

929 Yang, Z. (2007). PAML 4: a program package for phylogenetic analysis by maximum likelihood.
930 *Molecular Biology and Evolution* 24: 1586–1591.

931 Zingales, B, Andrade, S. G., Briones, M. R. S., Campbell, D. A., Chiari, E., Fernandes, O., ...
932 Schijman, A. G. (2009). A new consensus for *Trypanosoma cruzi* intraspecific nomenclature:
933 second revision meeting recommends TcI to TcVI. *Memórias Do Instituto Oswaldo Cruz*, 104(7),
934 1051–1054.

935 Zingales, Bianca, Miles, M. A., Campbell, D. A., Tibayrenc, M., Macedo, A. M., Teixeira, M. M. G.,
936 ... Sturm, N. R. (2012). Infection, Genetics and Evolution The revised *Trypanosoma cruzi*
937 subspecific nomenclature: Rationale, epidemiological relevance and research applications.
938 *Infection, Genetics and Evolution*, 12(2), 240–253. <https://doi.org/10.1016/j.meegid.2011.12.009>

939 Zingales B. (2018). *Trypanosoma cruzi* genetic diversity: Something new for something known
940 about Chagas disease manifestations, serodiagnosis and drug sensitivity. *Acta Trop* 184:38–52