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Abstract

Chagas is an endemic disease in tropical regions of Latin America, caused by the parasite

Trypanosoma  cruzi.  High  intraspecies  variability  and  genome  complexity  have  been

challenges  for  the  development  of  genomic  variation  databases,  needed  to  conduct

studies in evolution, population genomics, and identification of genomic elements related

to virulence and drug resistance in T. cruzi. Here we present a chromosome-level phased

assembly of a  T. cruzi strain (Dm25), isolated from a reservoir of the species  Didelphis

marsupialis located at the Tolima department in Colombia, and belonging to the TcI DTU.

We obtained a primary haplotype composed of 32 chromosomes, 30 of them assembled in

a single contig, and one complete copy of the maxicircle. While 29 chromosomes show a

large collinearity with the assembly of the Brazil A4 strain, three chromosomes with a high

density of repeat elements show a large divergence, compared to the Brazil A4 assembly.

Considering that the distribution of heterozygous sites suggest that Dm25 is diploid, we
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assembled  a  second  haplotype  for  31  chromosomes,  achieving  an  average  of  three

contigs per chromosome. Nucleotide and protein evolution statistics indicate that T. cruzi

Marinkellei  separated  before  the  diversification  of  T.  cruzi in  the  known  DTUs.

Interchromosomal paralogs of dispersed gene families and histones appeared before but

at the same time have a more strict purifying selection, compared to other repeat families.

Previously unreported large tandem arrays of protein kinases and histones were identified

in this assembly. Over one million variants obtained from Illumina reads aligned to the

primary assembly clearly separate the main DTUs. We expect that this new assembly will

be  a  valuable  resource  for  further  studies  on  evolution  and  functional  genomics  of

Trypanosomatids.
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INTRODUCTION

Chagas disease (CD),  also  known as American trypanosomiasis,  is  a tropical  disease

caused by the protozoan parasite  Trypanosoma cruzi that belongs to the Kinetoplastida

class and the Trypanosomatidae family (Rassi, Rassi, & De Rezende, 2012). This disease

is a public health problem, it is estimated that around 6 to 7 million people worldwide are

infected with T. cruzi (WHO, 2020). About 30,000 new cases are registered each year, an

average of 12,000 deaths, and 9,000 newborns are infected during pregnancy (OPS, n.d).

Particularly in Colombia, a prevalence between 700,000-1,200,000 infected people and

8,000,000 individuals  at  risk  of  acquiring  the infection  has been estimated (MinSalud,

2010).

CD is found mainly in endemic areas of 21 Latin American countries, including Colombia.

However, in recent decades it has spread to other countries such as the United States,
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Canada, and some European and African countries, due to the migration of the infected

population (Schmunis & Yadon,  2010;  WHO, 2020) or  the presence of the vector  and

parasite (Curtis-Robles et al., 2018).

The life cycle of  the parasite is complex since it  has several  forms of  development in

vectors  and  mammalian  hosts,  such  as  metacyclic  trypomastigote  (infective  form),

amastigote  (intracellular  form),  epimastigotes  (replicate  form  in  the  vector  insect)

(Echeverria & Morillo, 2019; Rassi et al., 2012). More than 150 species of domestic or wild

mammals,  such  as  dogs,  cats,  rodents,  common  opossum  and  armadillos,  can  be

reservoirs  of  the parasite (Echeverria  & Morillo,  2019;  Rassi  et  al.,  2012).  In  addition,

about 152 species of triatomine insects are known and all  have the potential to act as

vectors of T. cruzi (De Oliveira et al., 2018).

T.  cruzi is  considered  a  parasite  with  a  wide  genetic  diversity  (Jiménez  et  al.,  2019;

Manoel-Caetano & Silvia, 2007; Zingales et al., 2018). This parasite has been classified

into 7 different Discrete Typing Units (DTU) (TcI-TcVI and TcBat) (Tibayrenc, 1998; Sturm

et al.,, 2003; Zingales et al., 2012; Barnabé, Mobarec, Jurado, Cortez, & Breniere, 2016;

Marcili et al., 2009). Additionally, subdivisions or genotypes within some DTUs such as T.

cruzi I (TcI) have been suggested (Cura et al., 2010; Falla et al., 2009; Gómez-Hernández

et  al.,  2019;  Herrera et  al.,  2007,  Herrera et  al.,  2009;  Llewellyn  et  al.,  2009),  which

demonstrates  the  wide  genetic  variability  of  the  parasite.  The  different  DTUs  present

associations  with  transmission  cycles,  geography,  vector  species,  and  clinical

manifestation to a certain extent (Hernández, Salazar, et al., 2016; Zingales et al., 2012).

The variability of  T. cruzi isolates circulating in Colombia and their association with the

eco-epidemiology of  Chagas disease have been studied for  several years.  The results

show that the Colombian T. cruzi isolates present great genetic variability and suggest that
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TcI is predominant throughout the territory (Triana et al., 2006; Mejia-Jaramillo et al., 2009;

Ramirez et al., 2013; Villa et al., 2013). Particularly, TcI has been associated with heart

disease in chagasic patients in Colombia (Ramírez et al., 2010).

This extensive genetic variability is a result of the complexity of its genome. It has been

widely reported that the genome of  T. cruzi has extraordinary plasticity between strains,

with a total length ranging between 40-140 Mb (Díaz-Viraqué et al., 2019; Souza et al.,

2011). It is considered a generally diploid organism with the presence of aneuploidy in

some hybrid strains (Minning, et al., 2011; Reis-Cunha et al., 2015; Souza et al., 2011). Its

proteome  has  about  22,000  proteins  (El-sayed  et  al.,  2005).  More  than  50%  of  the

genome consists of repetitive sequences, mainly represented by large multigene families

encoding surface proteins, retrotransposons, telomeric repeats, and satellites (El-sayed et

al., 2005; Reis-cunha et al., 2015).

In addition to its nuclear DNA,  T. cruzi has an extranuclear DNA network located in its

single mitochondria, called kinetoplast DNA (kDNA) (Rassi et al. al., 2012). This DNA can

represent up to 20-25% of the total cellular DNA. The kDNA maxicircles are equivalent to

the mitochondrial genome of other eukaryotes and contain the genes coding for rRNA and

mitochondrial  proteins  involved  in  the  electron  transport  chain  (Simpson  et  al.,  1987;

Westenberger et al., 2006). Despite the relatively small total length of the molecule (about

40 Kbp), the assembly of this molecule has been difficult because more than half of the

DNA sequence is composed of two complex repetitive structures (Gerasimov et al., 2020).

The molecule is structured in at least three main compartments, a gene-rich conserved

region of about 15 Kbp, a short repetitive region called P5, and a long repetitive region

called P12 (Berná et al., 2021). Unit length, number of repeats, and the composition of the

repeat sequence differ between the two regions.   
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T. cruzi reference genomes have been highly fragmented and underrepresented for many

years due to their genomic complexity and the nature of the data produced by short-read

sequencing  technologies  (El-sayed,  et  al.,  2005;  Franzén  et  al.,  2011;  Grisard,  et  al.,

2014). For this reason, interest has grown in using long-read technologies to improve the

assembly  of  repetitive  regions.  In  recent  years,  some T.  cruzi  genomes  have  been

published with these technologies (Supplementary Table 1), improving the understanding

of the genome but have also shown the wide variability within and between DTUs and

strains of the parasite (Berná et al., 2018; Callejas-Hernández, Rastrojo, Poveda, Gironès,

& Fresno, 2018; Wang et al., 2020).

Although knowledge of the T. cruzi genome has been expanded in Colombia, there is no

detailed  description  of  the composition  of  the genome that  includes  the distribution  of

multigenic families and genetic diversity based on a genome sequenced with long reads

technologies.  Neither  has  the  complete  organization  of  the  kDNA  maxicircle  been

described in Colombian isolates belonging to the DTU TcI. In this paper, the sequencing of

T. cruzi (TcI) isolated from Colombia was carried out using the new PacBio methodology –

High Fidelity (HiFi), and a description of the genome is reported that includes assembly,

annotation, and also the genetic diversity between DTUs and comparative genomics.

RESULTS

A phased genome assembly for the T. cruzi strain Dm25

We  performed  long  read  whole  genome  sequencing  of  the  T.  cruzi  strain Dm25  in

exponential  growth  phase  following  the  PacBio  HiFi  sequencing  protocol.  An  initial

molecular characterization of the strain determined that it belongs to the T. cruzi DTU TcI

without  presenting  mixed  infection  with  T.  rangeli or  another  T.  cruzi DTUs.

(Supplementary Figure 1).  This  platform provided 206,520 sequences with an average
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length of 20,997 bp. The median sequence quality was Q26, with all sequences having a

quality greater than Q20. After evaluation of several options for genome assembly, we

obtained  partially  phased  assemblies  from these reads  running  the  tools  Hifiasm and

NGSEP. After evaluation and manual selection of the contigs, we built a combined phased

assembly for Dm25. 

The first haplotype (H1) can be considered a primary assembly and it is composed of 35

contigs representing 32 pseudo chromosomes and one copy of the maxicircle. Almost all

chromosomes  (30)  were  assembled  in  one  single  contig,  and  telomeric  repeats

[(TTAGGG)n] were identified on both chromosome ends for 24 single chromosome contigs

and for the two chromosomes assembled in two contigs. The total length of this haplotype

is   38.68  Mbp,  and  the median  (N50)  length  is  1.23  Mbp (Supplementary  Figure  2).

Performing quality assessment through mapping of conserved genes, only one of the 130

conserved genes in Euglenozoa was fragmented. The remaining 129 genes were uniquely

mapped to the assembly.

To assess the ploidy of each chromosome, we realigned the reads to the H1 assembly

and we calculated the average read depth for each chromosome, and the distribution of

allele dosages for sites having more than one allele call. Figure 1A shows that the average

read depth varies around 100x for most chromosomes. Chromosomes 6, 12, 30 and 31

are the main outliers with average read depths ranging from 144x to 192x, suggesting that

chromosomes 6, 12 and 30 are triploid and chromosome 31 is tetraploid. Conversely, the

average read depth of chromosome 23 is about 51x, which suggests that only one copy of

this chromosome is present in Dm25. Based on the average read depth, we predicted that

between four and five copies of the maxicircle were present in Dm25. Figure 1B shows the

genome wide distribution of relative allele dosages in sites with more than one allele call.
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The  peak  close  to  0.5  suggests  that  most  of  the  genome  is  diploid.  However,

chromosome-specific distributions seem to support the aneuploidies predicted by the read

depth  distribution.  Figure  1C  shows  these  distributions  for  the  presumably  aneuploid

chromosomes 6, 12, and 31. The figure also shows the distribution for a control diploid

chromosome (chr1)  and  for  the  haploid  chromosome 23.  The  peak  close  to  0.33  for

chromosome 6 supports that this chromosome has three copies. The peaks close to 0.25

and 0.5 suggest that chromosome 31 is tetraploid. These predictions are consistent with

the average read depth. The signal of chromosome 12 suggests a tetraploid chromosome,

but the read depth suggests that only three copies are present. A possible explanation for

this pattern is that four copies are present for about half of the chromosome.

Considering  the  expected  ploidy  for  each  chromosome,  we  selected  contigs  from the

automated assemblies to generate a second haplotype (H2). This haplotype was more

fragmented having 96 contigs, which represents an average of about three contigs per

chromosome.  The total  length  in  this  case was 37.3 Mbp and the N50 was 572 Kbp

(Figure 1D). Only five of the 130 conserved genes in Euglenozoa were not found in the

second haplotype. Four of these genes are located in the haploid chromosome 23, which

was included only in the first haplotype. The same gene fragmented in H1 was fragmented

in this haplotype. Two copies were identified for two of the 124 remaining genes. Taking

into account the possible aneuploidies and copy number variation suggested by the read

depth analysis, we further generated a partial third haplotype (H3) composed of 83 small

contigs adding to 8.05 Mbp. Most sequences (53 sequences adding to 5.32 Mbp) in this

haplotype were assigned to the repetitive or polyploid chromosomes 4, 6, 12, 30 and 31.

The final  genome is a concatenation of these three haplotype assemblies and aims to

represent the complete haplotype diversity within the Dm25 genome.
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Figure 1. A. Average read depth per chromosome of HiFi reads aligned to the primary haplotype and to the
complete phased assembly.  B-C. Histograms of overall allele dosages in sites with two observed alleles.  B.
Complete  genome  C. Individual  chromosomes.  D. Synteny-based  alignment  between  the  assembled
haplotypes of the genome of Dm25 and between the first haplotype and the Brazil A4 genome assembly.
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We compared the assembled haplotypes of Dm25 with the genome assembly of the Brazil

A4 isolate (Wang et al. 2020) which is the current most accurate haploid assembly of a TcI

strain. We did not use this genome to merge contigs to avoid misassemblies produced by

true structural variation between Dm25 and A4. However, we used the A4 genome as a

reference to  sort  and orient  the chromosomes of  the  first  haplotype that  were clearly

collinear with A4 chromosomes. We identified two types of chromosomes based on this

comparison  (Figure  1D).  One  to  one  relationships  could  be  identified  between

chromosomes of  Dm25 and chromosomes of  A4 for  29 of  the  32 chromosomes.  The

remaining three chromosomes showed a high level  of  structural  variation between the

Dm25 and the A4 genome. Chromosome 30 of Dm25 could be mapped to chromosome 2

of  A4.  However,  at  least  two  different  syntenies  could  be  identified,  suggesting  a

translocation  of  this  chromosome  between  the  strains.  Moreover,  this  chromosome

included  two  complete  copies  of  the  sequences  reported  as  chromosome  21  and

chromosome 36 in the A4 genome. Consistent with Wang et al. (2020), we found that this

chromosome is almost entirely composed of copies of the most repetitive gene families in

T. cruzi. Chromosome 31 of Dm25, could be mapped partially to chromosome 24 of A4.

However, it also included complete copies of the sequences labeled as chromosome 37

and chromosome 43 of A4. The two chromosome copies of Dm25 could be assembled in

one and three contigs respectively. However, a large divergence was observed between

the two copies in the central part of the chromosome. Finally, chromosome 32 of Dm25

(haplotypes  assembled  in  one  and  four  contigs)  included  segments  syntenic  with

sequences termed as chromosomes 25, 32, 35, 38 and 39 of A4.
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Gene annotation and protein evolution in Trypanosoma species

We identified 47,772 transposable elements (TEs) in the combined assembly, covering

36.4 Mbp (44%) of the assembly (Supplementary Table 2). Figure 2A displays the density

of repetitive elements across the H1 haplotype. The percentage of the genome covered by

TEs  was  larger  for  the  haplotype  H1  (48%),  compared  to  H2  (38%)  and  H3  (35%),

probably because a larger number of copies of TEs could be assembled in the contigs

included in H1. Most TEs (25,355 covering 24.3 Mbp of the genome) were annotated as

“Unknown”.

Following the pipeline implemented in the Companion website (Steinbiss et al., 2016), we

annotated 29,544 genes for the complete assembly. The completeness of H1 translated

into a larger number of annotated genes (14,207), compared to H2 (13,679). The gene

catalog was complemented with 1,658 additional genes annotated in H3. Compared to the

available annotation of the Brazil A4 strain, the annotation of each haplotype has about the

same number of genes. However, the lengths of the genes annotated in H1 and H2 (about

1.4Kbp) are on average about 200bp larger than the lengths of the genes annotated in A4

(Figure 2B). Consequently, proteins annotated in the two haplotypes are about 45 amino

acids longer than those annotated in A4 (Figure 2C).
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Figure 2. A. Distribution of genes and repeat elements in the primary assembly of the Dm25 strain. Tracks
show repeat  density,  Transialidases,  Transposable  element  domains,  Mucin-Associated  surface  proteins,
Mucines, Retrotransposon hot Spots,  Surface proteases, Dispersed gene families,  Kinases and density of
single  copy  genes.  B-C.  Length  distribution  for  genes  and  proteins  annotated  in  the  two  haplotypes  of
TcDm25, and in the Brazil A4 strain. D. Number of copies of the six main gene families, compared with those
reported in previous studies.  E-F. Distributions of synonymous nucleotide divergence rate (ks) and relative
non-synonymous  to  synonymous  divergence  rate  (ka/ks)  for  pairs  of  orthologs,  comparing  the  primary
assembly of TcDm25 (H1) with other T. cruzi assemblies (E) and with assemblies of other species (F).
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Combining  protein  family  annotations  with  homologies  between  Dm25  and  annotated

genes in the A4 transcriptome, we found a large and consistent number of copies of the

main  protein  families:  Transialidase  (TS),  Mucin-Associated  Surface  Protein  (MASP),

Retrotransposon  Hot  Spot  (RHS),  Mucin,  Dispersed  Gene Family  (DGF)  and  Surface

Protease GP63. Figures 2A and 2D show the distribution of these gene families across the

genome and the number of genes per family. Based on protein domains and orthology, we

also identified large families of protein kinases (PKS) and core histone proteins (HIS). We

observed a large overlap between the TS, MASP, RHS, DGF, and MUC families with

annotated  TEs.  In  contrast,  the  protein  kinases  did  not  overlap  with  annotations  of

transposable elements.

We  analyzed  the  nucleotide  and  protein  evolution  between  genes  annotated  in  our

assembly  and  genes  annotated  in  other  T.  cruzi  assemblies.  Figure  2D  shows  the

normalized  differences  in  synonymous  sites  (Ks)  comparing  synteny  orthologs  of  the

haplotype H1 with other  T. cruzi assemblies, including the haplotype H2. The Ks values

are  on  average  below  0.02  for  comparisons  with  TcI  assemblies,  although  a  larger

variance is observed in the comparison with the strain Sylvio, compared to H2, A4 and

Dm28.  The  Ks  values  obtained  from  orthologs  with  assemblies  of  other  DTUs  are

significantly higher than those obtained from comparisons within TcI (p-value < 10-16 of a

Wilcoxon rank test). However, the absolute values are on average lower than 0.05, except

for  the comparison against  the assembly of  a  T. cruzi  marinkellei  strain,  for  which the

average increases to 0.15. In contrast, the Ks values of synteny orthologs between the

first haplotype of Dm25 and the genes annotated in other species are on average above 2

(Figure 2E). This suggests high divergence times between T. cruzi and other species with

contiguous assemblies (T. grayi, T. thelleri and T. brucei).
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We also investigated the behavior of protein evolution for single copy synteny orthologs

within and between species. For each pair of unique synteny orthologs, we calculated the

ratio between normalized non-synonymous and synonymous mutations (Ka/Ks). According

to the neutral theory of evolution, this value should be close to 1 for genes not affected by

selection.  Values  lower  than  1  indicate  purifying  selection  and  values  higher  than  1

indicate positive selection and rapid protein evolution.  Most Ka/Ks values for orthologs

within species fall below 1 with averages between 0.3 and 0.5 (Figure 2D), which suggests

that most core genes are subject to some level of protein conservation through purifying

selection. Outliers have Ka/Ks>1 and are genes with rapid protein evolution. Conversely,

the Ka/Ks values for orthologs between species were on average lower than 0.1 (Figure

2E). This result which at first sight looks surprising can be explained because very few

orthologs could be identified between these species, and hence these genes are probably

those with the highest selective pressure for protein conservation.

Regarding multicopy gene families,  Figure  3A shows the distribution  of  Ks  and Ka/Ks

values, differentiating paralogs by physical proximity in the genome. The Ks values were

significantly  lower  for  close  paralogs,  compared  to  distant  paralogs,  suggesting  that

tandem duplications are more recent than interspersed duplications. The difference was

larger  for  Mucin  and  especially  for  DGF  paralogs,  compared  to  other  families.  This

suggests  that  the  diversification  and  spread  of  the  DGF paralogs  across  the genome

happened at a much older time compared to other families. Ka/Ks values were closer to 1

compared to the values obtained from single copy orthologs, suggesting that these genes

are subject to a more relaxed purifying selection, compared to single copy genes. The

averages for both close and distant paralogs of the MASP and Mucin families were larger

than 1, suggesting a faster protein evolution, compared to the other families. Conversely,
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close paralogs of the TED, PKS and HIS families and distant paralogs of the DGF and HIS

families have a Ka/Ks distribution similar to that observed for single copy orthologs. The

latter case suggests that purifying selection is acting to preserve the protein sequence of

DGF and HIS paralogs.

Figure 3. A.  Distributions of synonymous nucleotide divergence rate (ks) and relative non-synonymous to
synonymous divergence rate (ka/ks) for pairs of paralogs of the six main multicopy gene families, and for
protein kinases (PKS) and histones (HIS), discriminating tandem (close) paralogs from distant paralogs.  B.
Alignment of chromosome 32 of the haplotype H1 of Dm25 with chromosome 32 of Brazil A4. The lower track
highlights a tandem array of protein kinases spanning the black rectangle. C. Alignment of chromosome 4 of
the haplotype H1 of Dm25 with chromosome 4 of Brazil  A4. The lower track highlights a tandem array of
histones spanning the black rectangle.

In  contrast  to  the  gene  families  described  in  previous  studies,  close  paralog  pairs  of

protein kinases (7,238) were much abundant than distant paralog pairs (330). The reason

for  this  is  that  most  genes  in  this  family  resulted  from  a  recent  tandem  duplication
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generating 71 copies of protein kinases spanning 200 kbp of chromosome 32 (Figure 3B).

The syntenic  region in  the  haplotype H2 contains  67 homolog copies  (Supplementary

Figure 3). This duplication event was not clearly observed in previous genome assemblies.

A tandem array of 9 homologs in the Brazil A4 assembly are located in the syntenic region

of the contig termed Chr32 (Figure 3B). Besides this, 20 additional homologs are located

in three contigs smaller than 32 kbp and not assigned to chromosomes. This suggests that

a similar expansion could be present in the Brazil A4 assembly but that it could not be

completely reconstructed due to technical limitations of the sequencing technology or the

assembly  pipeline.  The  comparison  with  the  genome  assembly  of  the  Dm28  strain

revealed a similar situation (Supplementary Table 3). Tandem arrays of 28 and 8 copies

were  identified  in  two  contigs  of  101  kbp  and  22  kbp  respectively.  Conversely,  no

orthologs were identified in the Sylvio genome assembly. Comparing with assemblies of

strains  belonging  to  other  DTUs,  tandem  arrays  of  12,  22,  and  16  homologs  were

observed in one contig of the Berenice assembly and two contigs of the TCC assembly.

The  annotation  also  revealed  two  large  recent  tandem  duplications  of  core  histones,

located in chromosomes Chr04 (69 copies in H1, 33 copies in H2, Supplementary Figure

4) and Chr18 (46 copies in H1, 43 copies in H2). This expansion is not observed in the

Brazil  A4  assembly  (Figure  3C).  The  assembly  of  the  Sylvio  strain  was  the  only  TcI

assembly in which homolog tandem arrays were identified, having 95 copies homolog to

the array on Chr04 and 34 copies homolog to the array in Chr18 (Supplementary Table 3).

Two tandem arrays of 21 and 44 genes, both homologous to the array located on Chr18

were identified in two separate contigs of Dm28. Regarding other DTUs, only the TCC

assembly  has  three  tandem  arrays  of  42,  19  and  22  genes.  While  the  first  array  is
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homologous to the array on Chr04 of Dm25, the other two arrays are homologous to the

array on Chr18.  

Complete reconstruction of the T. cruzi (TcI) Dm 25 maxicircle

Kinetoplastid  molecules  were sampled in  the  genome assembly  of  Dm25,  obtaining  a

complete reconstruction of the maxicircle. After circularization and sorting, the total length

of this assembly was 47,166 bp (Figure 4). Performing gene annotation we identified 18

protein coding genes:  the subunits ND1, ND3, ND4, ND5, ND7, ND8, ND9 of the NADH

dehydrogenase,  the  cytochrome B (CyB),  the  subunits  I,  II  y  III  of  the  cytochrome c

oxidase (COI, COII, COIII), the ATPase six (ATP6), the ribosomal protein S12 (RSP12),

and five genes with unknown function (MURF1, MURF2, MURF5, CR3, CR4). We also

found two ribosomal RNA genes (12S, 9S). The 12S gene was used to mark the start of

the circular sequence in the assembly. These genes make up the entire conserved region

of the Maxicircle, which is consistent with the maxicircle structure defined by Ruvalcaba-

Trejo & Sturm (2011). Gene lengths and orientations were similar  to those reported in

previous studies (Callejas-Hernández et al., 2021; Westenberger et al., 2006; Ruvalcaba-

Trejo & Sturm, 2011;  Berná et  al.,  2021).  The total  length of  the conserved region is

15,429 bp (32.7% of the total) and the GC-content is 25.34%. Most of the region has an

excess of  cytosine relative  to guanine in  the positive  strand,  which is  measured by a

negative  GC-skew  statistic  (Westenberger  et  al.,  2006).  The  seven  genes  that  are

annotated  in  the  negative  strand  (ND9,  MURF5,  MURF1,  ND1,  COI,  CR4  and  ND3)

overlap with segments showing a neutral or a positive GC-skew.
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Figure 4. Assembly of the maxicircle of the T. cruzi strain Dm25. Protein coding genes in the conserved region
(CR) are shown in the external red rectangles. The divergent region is divided into the P5 region (purple) and
the P12 region (blue). Conserved elements (CE) across the P12 region are shown as red rectangles. The
central  histogram shows the GC-skew, positive values are in  red and negative values are shown in blue
(windows size 100 bp). Internal bands show the homology relationships making up the P5 and P12 variable
regions.

The remaining 31,737 bp (67.3% of the assembly) corresponds to the variable region. The

GC-content of this region (21.39%) is lower than that of the conserved region. Following

previous works (Berná et al. 2021, Gerasimov et al., 2020), we divided this region into a

17

332

333
334
335
336
337
338

339
340

341

342

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 19, 2023. ; https://doi.org/10.1101/2023.07.17.549441doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.17.549441
http://creativecommons.org/licenses/by/4.0/


small subregion (3,660 bp), termed P5, and a long subregion (28,077 bp), termed P12.

The two regions are composed of a series of tandem repeats with unit  lengths around

150bp for the short region, and 1,500bp for the long region. Nucleotide identity between

pairs  of  repeat  copies  ranged  from  75.6% to  100%.  Comparing  the  P12  region  with

previous assemblies, we identified 18 palindromic conserved elements, which are known

to be involved in different molecular processes such as the replication of the mitochondrial

DNA (Gerasimov et al., 2020).

Genetic variability in T. cruzi

To evaluate the use of our haploid genome assembly as a reference for diversity studies,

we reanalyzed publicly available WGS Illumina reads sequenced from 39 T. cruzi strains

classified  in  different  DTUs  (Supplementary  Table  4).  The  number  of  reads  of  the

downloaded sequences was highly variable and the mapping rate ranged from 34% (2

samples) to 86% (Supplementary Figure 5).

A raw dataset of 1,018,520 single nucleotide variants was found in all Illumina sequences

mapped to the first haplotype of the Dm25 assembly. Figure 5A shows that the TcI group

has the least number of variants, except for the H1 strain from Panama, which has about 6

times more variants. The number of variants of the H1 strain is similar to the variants of the

TcV group. Strains Berenice and 9280cl.2 had a significantly lower number of variants

compared to their groups,  this is due to the low number of reads sequenced in these

strains (Supplementary Figure 4). In general, these results are consistent with previous

molecular characterization showing that the Dm25 strain belongs to the TcI group.
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Figure 5. Genomic variants identified between Illumina reads of T. cruzi strains from different DTUs and our
haploid  T. cruzi  assembly (H1).  A. Number of homozygous and heterozygous variants in T. cruzi  strains. B.
Neighbor joining clustering of genetic distances between  T. cruzi strains from different DTUs, including the
haploid TcDm25 assembly. C. close up of the variability within TcI. The names indicate the DTU – country of
isolation – strain. Bra: Brazil,  Bol: Bolivia, Pan: Panama, Chi: Chile, Col: Colombia, Ven: Venezuela, Ecu:
Ecuador.

We derived a neighbor joining clustering from the variants identified in the T. cruzi strains

with Illumina reads (Figure 5B). All the strains from TcI were grouped in the same node,

except for the H1 strain from Panama which is consistent with Figure 5A. Likewise, the
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TcII strains were grouped on the left side of the clustering. The TcIII, TcV, and TcVI groups

were  grouped  in  a  node,  together  with  the  TcI  strain  from Panama.  This  node  looks

intermediate between TcI and TcII groups. Although the reads of Dm25 were not obtained

by Illumina technology, we were able to confirm that Dm25 strain belongs to the TcI group

with this analysis.

Figure 5C shows a close look at the clustering within the TcI group. The CGl strains, which

are parasites isolated from a patient with HIV and cardiomyopathy, are clustered together

on the right side of the figure. The FcHcI strains, which correspond to parasites isolated

from an acute chagasic patient infected by oral transmission, formed two distinct groups.

The Colombiana strain was placed close to Dm25 but the separation suggests a level of

divergence between these strains larger than that observed within the other groups. In

general, a grouping by countries is observed, except for the strains from Colombia.

DISCUSSION

The development of sequencing methods to obtain high-quality long read DNA sequencing

data  enabled  the  complete  characterization  of  complex  genomes,  including  phase

reconstructions for diploid and even polyploid species. In this work, we report the nearly

complete and phased assembly of  a Colombian TcI  strain of  T. cruzi.  The use of  the

PacBio HiFi technology allowed us to annotate and analyze a complete catalog of the

most important repetitive structures, including transposable elements and multicopy gene

families. Compared to previous efforts using the Oxford Nanopore technology (Wang et

al.,  2021), the small  error rate of HiFi  reads allowed us to identify heterozygous sites,

make inferences about ploidy per chromosome, and reconstruct two haplotypes for diploid

and aneuploid chromosomes. A wide variability between the haplotypes of TcI and even

within the TcI haplotypes was evidenced, especially for three chromosomes, which are
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enriched for multicopy gene families. This confirms the broad plasticity of the genome and

the strain-specific evolution of  T. cruzi previously reported (Berná et al., 2018; Callejas-

Hernandez et al., 2018; Díaz-Viraqué et al., 2019; Talavera-Lopez et al., 2021; Wang et

al.,  2021).  Further  improvements  in  read  quality  and  length  of  long  read  sequencing

technologies will facilitate the full reconstruction of large numbers of strains of genomes for

pathogens with complex genomes such as those in the Trypanosomatidae family. This will

allow researchers to characterize and analyze the function and evolution of the expectedly

large haplotype variability segregating within T. cruzi.

The total length of the genome assembly of Dm25 (84 Mbp) is consistent with previous

flow cytometry experiments in which the total  genome size was estimated to fluctuate

between 80 and 150 Mbp (Lewis et al., 2009). The percentage of the genome covered by

repetitive elements (~47%) is also consistent  with previous reports (Reis-Cunha et  al.,

2015: Wang et al., 2021), and only differs from the percentage reported for the Sylvio X10

strain,  which  was only  18.43% (Talavera-Lopez et  al.,  2021).  Even  using  long  reads,

heterozygosis and a large percentage of repetitive elements are the main difficulties to

obtain chromosome-level genome assemblies (Jarvis et al., 2022). Part of the complexity

of the  T. cruzi genome is evidenced by the presence of different aneuploidies.  Recent

studies also support the presence of aneuploidies in the genomes of TcI strains (Cruz-

Saavedra et al., 2022). In particular, chromosome 31 seems to have a consistent increase

in number of copies, compared to diploid chromosomes (Reis-Cunha et al., 2015). One of

the  characteristics  of  this  chromosome is  the  abundance  of  genes  related  to  protein

glycosylation,  such  as  mucin  surface  proteins.  These  proteins  can  be  related  to  the

survival of  T. cruzi during the infection process (Buscaglia et al., 2006; De Pablos et al.,

2012). Previous studies also have investigated the role of aneuploidies to facilitate a rapid

21

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 19, 2023. ; https://doi.org/10.1101/2023.07.17.549441doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.17.549441
http://creativecommons.org/licenses/by/4.0/


adaptation of the pathogen across its life cycle, while moving from an invertebrate to a

vertebrate host, through modulation of allele dosages (Dujardin et al., 2014; Reis-Cunha et

al., 2018).

The number of gene copies per family identified within each haplotype was consistent with

previous studies (Berná et al., 2018, Wang et al., 2021). The analysis of nucleotide and

protein evolution over paralog pairs provides insights into the relative times of expansion

of  the  different  families,  and their  level  of  protein  conservation.  With  the exception  of

Mucins and dispersed gene families (DGF), the ks value in most comparisons between

paralogs was below 0.2.  The similarity of these distributions with the distribution of  ks

values for core orthologs against the T. cruzi marinkellei assembly, suggests that most of

the  observable  expansions  of  gene  families  occurred  along  the  diversification  of  the

species.  As  expected,  tandem  paralogs  seem  to  have  appeared  at  a  smaller  time,

compared  to  distant  paralogs.  The  distribution  of  ka/ks  values  suggests  that  protein

sequences of multicopy gene families evolve faster than core genes, thanks to a more

relaxed purifying selection. A notable exception to this pattern is the case of distant copies

of dispersed gene families (DGF). The expansion of this family seems to occur at a much

older time, compared to the other families, but at the same time, the ka/ks values suggest

a  high  level  of  protein  conservation.  High  protein  conservation  and  lack  of  positive

selection in this family were previously reported in a study in which Shannon entropy was

used as a measure of variability across a protein sequence alignment (Kawashita et al.,

2009). This is surprising taking into account that subtelomeric regions contain copies of

DGF genes (Moraes et al., 2012). These regions usually have higher levels of homologous

recombination  and  are  even  subject  to  ectopic  recombination,  which  increases  the

variability of genes present in these regions (Christiaens et al., 2012).  Moreover, recent
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studies  reported  that  many  subtelomeric  coding  sequences  of  DGF  genes  serve  as

replication origins (de Araujo et  al.,  2020),  and that  up to 80% of  DGF genes include

dynamic nucleosomes (Lima et al., 2021). It has also been shown that DGF genes are

expressed in  the three life  cycle stages (Kawashita et  al.,  2009,  Lander  et  al.,  2010).

Further studies are needed to elucidate why the pathogen requires protein conservation

for this family.

Beyond the well characterized repeat families, we observed three recent expansions of

protein  kinases  and  histones.  A  comparative  analysis  of  public  assemblies  within  the

syntenic regions that could be identified suggests that these expansions are not a unique

feature of TcDm25, but that the expansions could not be fully characterized due to the lack

of completeness of previous assemblies. Gene copies of the expansion of protein kinases

in chromosome 32 belong to the TcCK1.2 gene family. This is a casein kinase 1 (CK1)

which  is  a  signaling  serine/threonine  protein.  These  proteins  are  involved  in  different

cellular processes such as protein trafficking, cell cycle regulation, cytokinesis, DNA repair

and  apoptosis  (Spadafora  et  al.,  2002;  Knippschild  et  al.,  2005).  TcCK1.2  is  more

expressed in the amastigote stage, compared to the epimastigote and the trypomastigote

stages (Spadafora et al., 2002). Orthologs TcCK1.2 in  L. donovani (Rachidi et al., 2014)

and T. brucei (Urbaniak., 2009) are crucial for parasite survival in the amastigote stage.

This  suggests  that  the  expansion  of  TcCK1.2  could  be  related  to  an  adaptation

mechanism. Likewise, gene copies of the expansion of histones found in chromosome 4

belong to the histone variant H2B.V. Histones play a key role in the organization of the

chromatin  structure  and  gene  expression  in  T.  cruzi (de  Lima et  al.,  2020).  Previous

studies  analyzing  chromatin  extracts  (de  Jesus  et  al.,  2017),  ChIP-seq  data  and

performing  knockout  experiments  (Roson  et  al.,  2022)  showed  that  this  variant  is
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associated  with  nucleosome instability  and that  it  is  more expressed in  epimastigotes

compared  to  trypomastigotes.  This  suggests  that  H2B.V  genes  can  be  related  to

chromatin  structure changes and modulation  of  transcription  rates (Elias  et  al.,  2001).

Further functional experiments are needed to reveal the relationship between gene copy

number and expression changes during host-pathogen interactions.

Nucleotide evolution statistics on core orthologs suggest that there is a large gap in the

range  of  species  that  need  to  be  sequenced  to  obtain  a  full  reconstruction  of  the

evolutionary history of  Trypanosomatidae. The closest species to  T. cruzi that we could

identify with a publicly available genome was  T. grayi. The average ks values for core

ortholog pairs were close to two, suggesting a very large divergence time between these

species. High protein conservation was observed in these paralogs, suggesting that only

ultraconserved essential proteins were included in this comparison.

The use of high-quality long reads allowed to obtain a complete and direct assembly of the

maxicircle,  without  any scaffolding or  curation steps.  The complex pattern of  long and

short repetitive elements present in the divergent region explains why the Maxicircle can

not be fully reconstructed using short  read technologies (Urrea et al.,  2019; Lin et al.,

2015). The total length of our assembly (47 Kbp)  is within the range between 35 Kbp and

51  Kbp  estimated  by  previous  studies  (Berná  et  al.,  2021).  The  organization  of  the

molecule in a  gene rich conserved region and two divergent and repeat rich regions is

also consistent with previous assemblies. Previous studies in  T. brucei showed that this

region contains binding sites for the topoisomerase II, which indicates that this region is

important for the replication of the molecule (Myler et al., 1993) . Recent studies in T. vivax

indicate that the variable region can have a large variability within species because copies
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of  repetitive  elements  can  recombine,  producing  presence/absence  variants  and  even

rearrangements (Greif et al., 2021)

Based on the reanalysis  of  publicly  available  Illumina data,  we show that  the primary

assembly of TcDm25 can serve as a reference for population genomic studies in T. cruzi.

A wide variation in the number of variants in the different DTUs was evidenced, which is

consistent with the reported genomic heterogeneity (Talavera-Lopez et al., 2021; Wang et

al.,  2021).  Sample  clustering  based  on  SNP  variation  separates  the  reported  DTUs

(Zingales  et  al.,  2009).  A  single  NJ  cluster  includes  the  TcIII,  TcV,  and  TcVI  groups

because TcV and TcVI are hybrids of TcIII and TcII (Zingales et al., 2009) although a more

comprehensive  sampling  within  DTUs  is  needed  to  corroborate  this  hypothesis.  The

genetic  proximity  between  TcIII,  TcV and  TcVI  strains  has been  reported  in  previous

studies with markers such as gGAPDH where it has been impossible to separate hybrid

strains  from  parental  strains  (Brandão  et  al.,  2020).  In  addition,  it  was  possible  to

corroborate the erroneous assignment of the H1 strain (from Panama) to the TcI group

(Majeau et  al.,  2021).  We expect  that  this  resource will  be very valuable  for  different

research groups performing evolutionary, functional and population genomic analysis in T.

cruzi and other related tropical pathogens.

METHODS

Sampling area and parasite culture

The  capture  of  the  host  Didelphis  marsupialis was  carried  out  in  the  municipality  of

Coyaima, department of Tolima (coordinates 3.8025-75.19833), using baited tomahawk

traps (Supplementary Figure 6). The collected specimen was sedated and individualized,

to later take a blood sample, with the purpose of performing a blood culture in a biphasic

medium (NNN: Novi, Nicolle, McNeal / LIT: Liver Infusion Tryptose). The strain of T. cruzi
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isolated was then cryopreserved in liquid nitrogen at the Laboratorio de Investigaciones de

Parasitología Tropical (LIPT) of Universidad del Tolima until use. The isolate identified as

Dm25 was thawed and placed in NNN culture medium with LIT supplemented with 15%

fetal bovine serum (FBS) and 100 IU/ml gentamicin/ampicillin mixture at 28° C for its log-

phase  growth,  allowed  obtaining  108 parasites  for  the  molecular  characterization  and

whole genome sequencing (WGS).

Molecular characterization

Species  identification  was  based  on  the  amplification  of  the  hypervariable  region  of

trypanosomatid minicircles using primers S35 (5-AAA TAA TGT ACG GGT GGA GAT

GCA TGA-3), S36 (5-GGG TTC GAT TGG GGT TGG TGT-3 ) and KP1L (5-ATA CAA

CAC  TCT  CTA  TAT  CAG  G-3)  as  proposed  by  Vallejo  et  al.  (2002).  Finally,  the

amplification products were visualized by electrophoresis  with 6% polyacrylamide gels,

stained  with  silver  nitrate,  and  1kb  Plus  DNA Ladder  (Invitrogen  ™ by  ThermoFisher

Scientific, Product 10787018).

For the genotyping of the T. cruzi isolate within the Discrete Taxonomic Unit corresponding

to lineage I (DTU I) or II (DTU II), the intergenic region of the spliced-leader gene (SL-IR)

was amplified using the primers proposed by Souto et al. (1996), TCC/TCI/TCII, which

amplifies a product of 300 bp corresponding to DTU II and 350 bp corresponding to DTU I.

The amplification products were visualized in agarose gel electrophoresis stained with 2%

Ethidium Bromide.

DNA extraction and genome sequencing

DNA extraction from T. cruzi epimastigotes was performed using the Gentra Puregene kit

(Qiagen)  to  obtain  high  molecular  weight  DNA.  The  DNA  was  quantified  with  the

NanoDrop 2000 spectrophotometer (Thermo Scientific,  USA).  The integrity of the DNA
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was verified by electrophoresis with a 2% agarose gel (90V for 30 minutes). T. cruzi DNA

sequencing was performed using Pacific  Bioscience (PacBio)  HiFi  technology at  100X

average read depth.

Sequence assembly and quality assessment

An initial phased  de novo assembly of the  T. cruzi strain Dm25 was performed running

Hifiasm v0.12(r304) (Cheng et al., 2021) and the Next Generation Sequencing Experience

Platform (NGSEP) v4.3.1 using the Assembler command with k-mer length 25, window

length 40 and ploidy  of  2 (Gonzalez-Garcia  et  al.  2023).  Contigs  were aligned to the

publicly available haploid genome assembly of the TcI Brazil  A4 strain using Minimap2

v2.22 (Li et al., 2018). Based on these alignments, the contigs of both haplotypes were

manually sorted and for each chromosome contigs making the haplotypes H1 and H2

were selected manually. We aligned the PacBio reads to a concatenated H1/H2 assembly,

called  heterozygous  variants  using  NGSEP,  and  calculated  mean  read  depths  using

samtools v1.16 (Danecek et al., 2021) to determine genomic regions showing evidence of

the presence of a third haplotype. Unassigned contigs were also mapped to the H1/H2

assembly to select contigs likely to belong to the third haplotype. Reads were mapped

again to a concatenated genome including the H3 contigs to validate that the H3 contigs

will have good read coverage. 

Genome statistics were obtained running QUAST v5.02 (Gurevich et al., 2013). Per base

quality assessment through mapping of conserved genes was assessed using BUSCO

v5.3.2 searching the reference dataset of 130 genes in Euglenozoa (Manni et al., 2021).

Genome Annotation

We generated an initial database of Transposable elements using Repeat Modeler (Flynn

et  al.,  2020).  We  mapped  this  initial  database  to  the  genome  using  Repeat  Masker
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(http://www.repeatmasker.org/).  We also executed the TransposonsFinder  command of

NGSEP (Gonzalez-Garcia  et  al.,  2023b)  to  map the database  generated with  Repeat

Modeler  and  annotate  the  regions  including  transposable  elements  in  the  genome

assembly of T. cruzi (TcDm25). We executed a separate process for each haplotype and

executed two rounds of identification.

We ran the Companion software for structural and functional annotation of the genome of

T. cruzi (Steinbiss et al., 2016). Companion combines the tool RATT (Otto et al., 2011) to

transfer models of publicly available assemblies, with ab-initio predictions obtained with

SNAP  (Korf,  2004),  and  AUGUSTUS  (Stanke  et  al.,  2006).  Functional  annotation  is

performed by transferring annotations from orthologs obtained running OrthoMCL (Li et al.,

2003),  and  performing  blast  searches  to  the  Pfam-A  database  (Finn  et  al.,  2014).

Additionally,  this  software takes into  account  that  the genes of  kinetoplastids  such as

Trypanosoma and Leishmania are organized in large directional groups of genes that are

transcribed  together  as  polycistrons.  Hence,  this  software  has  a  filtering  method  to

eliminate the over-prediction of genes on the complementary strand. Genes belonging to

multicopy  gene  families  were  identified  combining  genes  with  direct  annotations  of

characteristic PFam domains with orthologs of genes in the Brazil A4 strain belonging to

the family.

Ploidy determination

Absolute chromosomal ploidy of T. cruzi assemblies was determined by estimating allele

frequencies  from  the  proportion  of  occurrence  of  each  heterozygous  site  using  the

RelativeAlleleCounts command in NGSEP (Urrea et al., 2018).
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Genome alignments and sequence evolution statistics

Pairwise  genome-wide  comparisons between the haplotypes of  Dm25 and among the

publicly available genome assemblies included in this study were performed running the

GenomesAligner command of NGSEP (Tello et al., 2023). Assemblies were selected from

the TritrypDB database of VEuPathDB (Amos et al., 2021) based on their contiguity, which

is related to the use of Sanger or long-read technologies. Dotplots of local alignment were

performed using Gepard v1.40 (Krumsiek et al., 2007). To calculate nucleotide and protein

evolution statistics (Ks and ka/ks) the DNA coding sequences of homologs inferred from

each pairwise  comparison were aligned  keeping  codon information  and the command

codeml of paml v4.9j (Yang, 2007) was used. 

Determination of variants between DTUs of T. cruzi

To  determine  variants  between  T.  cruzi genomes  from  different  DTUs,  33  Illumina-

sequenced  T.  cruzi genomes  were  obtained  from  the  TriTrypDB  database

(https://tritrypdb.org)  (Supplementary  Table  4)  (Majeau  et  al.,  2021).  The  mapping  of

Illumina reads to  TcDm25 H1 haplotype assembly was performed using NGSEP 4.2.1.

The same tool was used to call the variants, the functional annotation of the variants, the

genotyping quality filter and to obtain the statistics. Finally, a distance matrix was made

from the variants and a dendrogram in the iTOL tool (Letunic & Bork, 2021).

Maxicircle genome assembly and annotation

We used BLAST+ (v2.11.0) (Altschul et al., 1990) to search known maxicircle sequences

in the assembly  obtained with NGSEP.  Known maxicircles  were downloaded from the

databases NCBI nucleotide and TriTrypDB. We used EMBOSS (Rice et al., 2000) to filter

out contigs with GC-content less than expected. The maxicircle was manually annotated,

looking for base pair level synteny between the assembly and the annotated maxicircle
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sequences using BLAST and ARTEMIS v. 18.1.0 (Carver et al., 2012). These tools were

also useful to identify and deduplicate repeated extremes and to orient the contig. BLAST+

v2.11.0) was also run with a maximum e-value of 10-6 to find tandem repeats and define

the  variable  regions.  The  annotated  sequence  was  visualized  using  Circos  v0.69

(Krzywinski et al., 2009).

DATA AVAILABILITY

The  data  used  in  this  study  is  available  at  the  NCBI  sequence  read  archive  (SRA)
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