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Abstract

Single-cell RNA sequencing predominantly employs short-read sequencing to characterize cell
types, states and dynamics; however, it is inadequate for comprehensive characterization of RNA
isoforms. Long-read sequencing technologies enable single-cell RNA isoform detection but are
hampered by lower throughput and unintended sequencing of artifacts. Here we developed
Single-cell Targeted Isoform Long-Read Sequencing (scTalLoR-seq), a hybridization capture
method which targets over a thousand genes of interest, improving the median number of
unique transcripts per cell by 29-fold. We used scTalLoR-seq to identify and quantify RNA
isoforms from ovarian cancer cell lines and primary tumors, yielding 10,796 single-cell
transcriptomes. Using long-read variant calling we revealed associations of expressed single
nucleotide variants (SNVs) with alternative transcript structures. In addition, phasing of SNVs
across transcripts facilitated measurement of allelic imbalance within distinct cell populations.
Overall, scTalLoR-seq is a long-read targeted RNA sequencing method and analytical

framework for exploring transcriptional variation at single-cell resolution.
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Introduction

Alternative RNA splicing is a key driver of proteome complexity and cellular phenotypic
diversity. Approximately 95% of human multi-exon genes are alternatively spliced and 15-25%
of human hereditary diseases and cancers are linked to alternative splicing"?3. Although
short-read RNA sequencing has been widely adopted to measure gene expression, it remains
challenging to identify full-length isoforms with only 20-40% of the human transcriptome being
assembled using gold standard isoform reconstruction tools**®. Additionally, alternative splicing,
cleavage and polyadenylation events have been shown to be highly tissue-specific’®. Thus, to
better understand cellular diversity and dynamics in health and disease, high-resolution
isoform-level transcriptomic information is required.

Single-cell RNA sequencing (scRNA-seq) has advanced our understanding of cellular
heterogeneity, delivering transformative insights into a wide array of pathologies including
autoimmune diseases®'?, neurological disorders''? and cancer''. To date, the vast majority of
single-cell RNA profiling studies have employed short-read sequencing to measure gene
expression which is typically quantified by counting reads derived from the 3’- or 5’-ends of
genes. While useful for gene expression analysis, identification of isoforms remains challenging
for single-cell short-read sequencing due to limited gene body coverage. To address this,
multiple groups have performed long-read sequencing of cDNA from single cells which enables
sequencing of full-length molecules'>%2. However, to accurately identify cell barcodes (CBs) and
unique molecular identifiers (UMIs), these strategies require short-read sequencing paired with
long-read sequencing or specialized library preparation steps to improve read accuracy at the
cost of sequencing throughput. Additionally, the majority of these studies have demonstrated
sequencing of a relatively small number of cells at low per-cell sequencing depth due to current
throughput limitations of long-read platforms' 8224 Recent efforts have been developed to
employ hybridization-based capture strategies to enrich selected genes of interest'”*. Gene
panel designs utilized in previous studies have typically focused on specific biological questions
and encompassed less than 50 target genes, which presents a challenge for cell annotation in
complex tissues and requires additional short-read sequencing'?. A particular issue inherent to
single-cell long-read library preparation and sequencing is the presence of unwanted artifacts
that consume valuable sequencing throughput. These artifactual reads do not exhibit the
expected cDNA structure after reverse transcription and amplification; rather, often contain
template switching by-products or lack adapter sequences’®.

To address the aforementioned shortcomings, we have developed single-cell targeted

isoform  long-read sequencing (scTalLoR-seq). scTalLoR-seq makes wuse of
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commercially-available or custom-designed gene panels to enrich for greater than 1,000 genes
of interest. Additionally, scTalLoR-seq mitigates the presence of artifacts common to single-cell
RNA-seq cDNA by enriching for molecules with the expected adapter sequence using
biotinylated PCR primers. Following both gene panel enrichment and artifact mitigation,
nanopore long-read sequencing is used to enable assignment, identification and quantification
of transcript isoforms in thousands of single cells.

Using scTalLoR-seq, we characterized differential transcript expression among three
ovarian cancer cell lines. To identify CBs and UMIs, short-read guided (SiCelLoRe) and
unguided (wf-single-cell) assignment approaches were compared, resulting in high
concordance. We then applied scTalLoR-seq with the unguided CB/UMI assignment method
wi-single-cell (i.e. sans supplemental short-read sequencing) to profile dissociated tumor cells
(DTCs) from two ovarian cancer patients. This enabled identification of isoforms, reconstruction
of immune repertoires and detection of expressed single nucleotide variants (SNVs) at the
single-cell level. Additionally, long-reads enabled SNV phasing to assemble haplotypes and
estimate allelic imbalance from individual tumor epithelial cells. Collectively, scTalLoR-seq
establishes an efficient approach for sensitive characterization of diverse transcript variants in

single cells.

Results
Targeted gene enrichment method development

To evaluate gene enrichment, we performed droplet-based single-cell 3'-end RNA
sequencing on a mixture of three human ovarian cancer lines (SK-OV-3, COV504, and
IGROV-1) (Fig. 1). The single-cell cDNA from this cell line mixture was used to evaluate a
variety of strategies aimed at determining optimal conditions for long-read sequencing (Fig. 2a,
Supplementary Fig. 1). Preliminary assessment of the targeted approach using a 10x
Genomics pan-cancer probe panel demonstrated efficient enrichment of cancer-associated
genes with short-read sequencing (Supplementary Notes). We next sought to maximize the
proportion of complete reads (i.e. reads containing both the template switch oligo (TSO) adapter
and poly(A) sequences) using long-read sequencing. A previously described artifact mitigation
(AM) approach was deployed to reduce TSO-TSO byproducts from library preparation® using
biotinylated PCR primers complementary to the Read1 sequence, which enabled
streptavidin-coated magnetic bead pull-down and subsequent amplification of complete cDNA
constructs. Compared to the targeted approach without AM, the targeted+AM strategy displayed

an 11.8% increase in complete read proportion concomitant with a marked decrease in
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TSO-TSO artifacts (Fig. 2b). Next, we investigated an orthogonal TSO-TSO depletion approach
based on circularization of targeted complete cDNA using rolling circle amplification to
concatemeric consensus (targeted+R2C2)'®'*(Methods). Compared to targeted+AM, the
targeted+R2C2 approach exhibited a slightly higher proportion of complete reads and fewer
TSO-TSO artifacts; however, it yielded much lower read throughput: 4.4M versus 18M average
passed reads per flow cell compared to the targeted+AM approach (Fig. 2b). Therefore, the
targeted+AM strategy displayed an optimal balance between increased complete read
proportion and higher read throughput. For this reason, the targeted+AM approach became the
basis of scTalLoR-seq, which was employed in subsequent targeted experiments.

Next, we investigated the efficiency and reproducibility of scTalLoR-seq by measuring
on-target gene expression levels. From read-depth normalized samples, we observe highly
correlated mean gene expression (r=0.92) between scTalLoR-seq and untargeted (i.e. no gene
enrichment) short-read sequencing, indicating that scTalLoR-seq faithfully recapitulates
quantitative expression patterns (Fig. 2c and Supplementary Fig. 2). Gene expression was
strongly correlated across replicates (r=0.95) with 98.8% gene overlap demonstrating the
reproducibility of scTalLoR-seq (Fig. 2d). Moreover, scTalLoR-seq resulted in a 16.4-fold
increase of on-target reads compared to untargeted long-read sequencing, yielding a significant
boost in read counts per gene (Mann-Whitney U test, P=3.7x10"%) (Fig. 2e). Finally,
scTalLoR-seq identified an additional 279 on-target genes and 2,484 annotated transcripts that
were not detected in the long-read untargeted approach, showcasing the increased sensitivity
enabled by enrichment (Fig. 2f). These results demonstrate that scTalLoR-seq improves gene
and transcript detection via efficient allocation of sequencing reads to targeted genes, while
preserving quantitative information.

Because higher error rates observed in nanopore sequencing reads can confound CB
and UMI assignment, strategies that leverage supplemental short-read sequencing data to
guide assignments have been developed'®*. We compared one such guided method,
SiCelLoRe'®, with an unguided approach, wf-single-cell (Methods). This unguided method
eliminates the requirement for supplemental short-read sequencing to assign CBs and UMIs
(Supplementary Fig. 3a). We observed a high degree of overlapping CBs between SiCelLoRe
and wif-single-cell assignments. These overlapping CBs encompass nearly all of those found in
the associated untargeted short-read sequencing data (Supplementary Fig. 3b). In addition,
UMI counts per CB from SiCeLoRe and wf-single-cell were highly correlated (r=0.97)

(Supplementary Fig. 3c). Similarly, gene expression for matched cell line populations was also
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highly correlated (Supplementary Fig. 3d). Taken together, these results indicate that

scTalLoR-seq is compatible with current guided and unguided CB/UMI assignment methods.

scTalLoR-seq enables detection of alternative splicing at the single-cell level

We sought to quantify the enrichment performance of scTalLoR-seq at the single-cell
level using genetically-deconvoluted cell populations from the ovarian cell line mixture (Fig. 3a).
Relative to the untargeted approach, scTalLoR-seq exhibited a 10-fold median increase in
on-target genes per cell and a 29-fold median increase in both on-target UMIs and transcripts
per cell (Fig. 3b). Additionally, the top-25 expressed genes from scTalLoR-seq were noticeably
depleted of mitochondrial and house-keeping genes that were abundant in the untargeted
approach (Supplementary Fig. 4). Next, we assessed whether scTalLoR-seq can be used to
identify alternative splicing events across the ovarian cancer cell lines. Using differential
transcript expression (Welch’s t-test), we identified significant cell line-specific isoform usage
(Benjamini-Hochberg adjusted P<0.05; Methods) (Supplementary Fig. 5). For example, we
identified alternative 5 splice site usage of exon 2 in PARP2, the frequency of which varied
across the three cell lines (Fig. 3c and Supplementary Fig. 6). Exon 2 of PARP2 is localized at
the N-terminal region which is known to facilitate activation on DNA single strand breaks.
Alternative splicing within this region may modulate the DNA damage sensing activity of
PARP22%. Additionally, we identified a predominant alternative 5’-UTR and first exon usage
event in the Rho-binding domain of RTKN specific to SK-OV-3 (Fig. 3d and Supplementary
Fig. 7). RTKN is a scaffold protein that interacts with GTP-bound Rho proteins to subsequently
regulate cell growth and transformation?’. Overall, we demonstrated the ability of scTalLoR-seq
to enrich for genes of interest, which enabled identification of differential isoform usage events

and alternative splicing patterns at the single-cell level.

Surveying the transcriptional landscape of an ovarian tumor microenvironment with
scTalLoR-seq

The tumor microenvironment (TME) is a complex niche characterized by dynamic
interactions among diverse cell types including epithelial, stromal and immune cells. To quantify
differential isoform usage and to annotate cell type populations within the TME, both pan-cancer
and immune enrichment panels were used to target a total of 2,243 genes. We performed
scTalLoR-seq on dissociated tumor cells (DTCs) from two stage-lll treatment-naive ovarian
cancer patients: P1 - high grade serous ovarian carcinoma (HGSOC), P2 - ovarian clear cell

carcinoma (OCCC). Long-read sequencing was performed on the PromethlON instrument
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resulting in a total of 371 million reads with a median of 4,020 and 1,867 UMIs per cell for P1
and P2, respectively. We detected 8,695 cells derived from the two patient samples and
identified 5 major cell groups (B cells, T/NK cells, myeloid, fibroblast and epithelial)
(Supplementary Fig. 8). Lineage-specific cell proportions were consistent between
scTalLoR-seq and untargeted short-read data generated from the same single-cell cDNA
(Supplementary Fig. 9). Of particular interest was sample P1 (n=2,482 cells) which was
analyzed to a greater extent since it contains a higher number of EPCAM+ tumor epithelial cells
(n=1,498) in addition to an even representation of both stromal and immune cells (Fig. 4a).
Differential expression analysis identified transcripts from genes that were consistent with
annotated cell identity such as expression of EPCAM in epithelial cells, multiple isoforms of
COL3A1 and COL1AZ2 in fibroblasts, CD3E and CD2 in T cells and distinct C1QB isoforms in
cells derived from the myeloid lineage (Fig. 4b).

Provided that alternative splicing events are prevalent in cancer and the associated
TME?%%, we analyzed differential isoform usage between all cell types. This analysis identified
43 significant events (Supplementary Table 2) including differential IL-32 isoform usage
between CD8+ T cells and PDGFRa-/B+ fibroblasts (Mann-Whitney U test; ENST00000530890
P=4.6x10° and ENST00000440815; P=1.6x10"*) (Fig. 4c). Expression of IL-32B isotype
(ENSTO00000440815) was dominant across all cell types; whereas, IL-328 (ENST00000530890)
expression was markedly low in PDGFRa-/B+ fibroblasts (Supplementary Fig. 10). IL-328 is
associated with hypoxic conditions in solid tumors and IL-326 inhibits NF-kB which counters the
epithelial-mesenchymal transition®.

Next, we turned our attention to the immune component of the TME, where current
single-cell TCR/BCR reconstruction with short-read sequencing requires supplemental library
preparation and is limited to 5-expression profiling. A recent single-cell long-read study was
unable to obtain sufficient read depth for low abundance TCR transcripts, indicating a need for
increased detection sensitivity®'. Thus, we asked whether scTalLoR-seq (3’-expression) would
be amenable to TCR repertoire profiling. scTalLoR-seq reads were processed by TRUST4
which performs single-cell repertoire reconstruction of TCR sequences®. Of the barcodes
associated with successfully assembled TCRs, 98% corresponded to annotated T cells (Fig. 4d)
and 85.9% had at least one chain (a and/or B) identified (Fig. 4e). With scTalLoR-seq, we
obtained a TCR a/ chain pairing rate of 49.7%, which is a two-fold improvement over previous
targeted and untargeted long-read strategies'”3. Within the expanded T cell population (n=56

cells), we identified 15 high-order clonotypes with more than two cells sharing identical CDR3
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regions. The CDR3 sequence CASSYYSTARAGYTF was detected in seven cells, representing
the largest observed clonotype population (Fig. 4f).

Characterization of the epithelial cell population was of particular interest because the
DTCs were derived from epithelial ovarian tumors. Long-read sequencing enables detection of
expressed SNVs that are outside the typical read length of short-read single-cell sequencing .
For example, using the long-read variant caller Clair3%*, we detected a SNV in exon 7 of the
tumor suppressor TP53 (chr17:7674241 G>C). This missense variant (S241C) alters the
DNA-binding domain of TP53 and is a likely pathogenic ovarian cancer mutation®. This SNV
was detected exclusively in a sub-population of epithelial cells, despite TP53 expression across
several other cell types (Fig. 4g). To further assess cancer-associated expression patterns
among the epithelial cells, we performed pathway activity analysis using PROGENy which
identified two signatures: JAK-STAT/NF-kB/TNFa and hypoxia (Fig. 4h). These two pathway
activities were correlated with gene expression patterns characteristic of tumor cells from
treatment-naive HGSOC patients: Cancer.3 and Cancer.6, respectively’®>. PROGENy signatures
and associated gene expression patterns were localized to distinct cell subsets within the
epithelial cell embedding (Fig. 4i and Supplementary Fig. 11a-d). Collectively, these data
suggest that a large fraction of the epithelial cells exhibit distinguishing cancer signaling
pathways consistent with ovarian cancer.

Overall, scTalLoR-seq effectively profiled the TME, enabling the discovery of cell
type-specific isoforms, high-sensitivity TCR reconstruction, identification of expressed SNVs and

detection of cancer-associated gene signatures.

Identifying structural transcript variation associated with expressed SNVs

After determining the ability of scTalLoR-seq to detect SNVs, we asked whether these
expressed variants were associated with differential transcript structures in HGSOC, as reported
in several other tissues and cell lines*®. We utilized a deep learning-based model called
SpliceAP” to predict and score cryptic splicing events associated with detected SNVs within the
tumor epithelial cell population (Fig. 5a). For the 82 hits from 1,669 SNVs (SpliceAl score>0.1)
(Fig. 5b), we identified transcript structure variation by assessing the coverage divergence (1-r?)
between reads matching the reference base (REF) or the alternative base (ALT) of a given SNV
site (Fig. 5a). Among the 82 queried hits, 44 displayed non-zero coverage divergence,
indicating a difference of transcript structure between REF and ALT alleles. The local extent of
coverage divergence was used to classify transcript structural events into two categories: “CDS”

for protein-coding regions and “UTR/Intron” for untranslated regions and introns (Fig. 5¢). We
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detected differential ELF3 transcript structures associated with chr1:202011127 A>C in exon 2
for which flanking retained introns were observed among REF reads (1,130 UMiIs in 574 cells);
whereas ALT reads (2,962 UMIs in 1,013 cells) exhibited normal splicing (Fig. 5d). ELF3 is a
transcription factor strongly expressed in epithelial tissue and has been shown to inhibit the
epithelial-to-mesenchymal transition'3® while supporting angiogenesis®. Another example of
differential transcript structures linked to an SNV (chr2:190975811 C>A) was observed with the
transcription factor STAT1, which exhibited distinct allele-specific events (REF = 2,501 UMIs in
525 cells and ALT = 1,254 UMIs in 353 cells) that spanned both CDS and UTR/Intron (Fig. 5e).
Taken together, scTalLoR-seq can provide insight into variation of transcript structures
associated with SNVs, leading towards enhanced understanding of transcriptional complexity

associated with genetic alteration in cancerous cells.

Phasing of expressed SNVs reveals allelic imbalance within tumor epithelial cells

Given the long-read output of scTalLoR-seq, we reasoned that transcripts containing
multiple SNVs could be used for haplotype reconstruction and subsequent allele-specific
expression analysis®*4%®4', We observed that the median number of SNVs per gene was two
(Supplemental Fig. 12a) and the median distance between SNVs of the same gene was 511
nucleotides (Supplementary Fig. 12b). Using multi-SNV reads, haplotypes were elucidated by
iteratively phasing SNVs along a given gene (Methods). Two haplotypes were reconstructed for
370 multi-SNV genes for which 94.6% of transcript reads had the majority of SNVs match a
haplotype sequence. Thus, these haplotypes are generally representative of observed
allele-specific transcripts.

Among the haplotypes, human leukocyte antigen (HLA) alleles were noteworthy given
their diversity and function in adaptive immunity*>. Consistent with their well-known
polymorphism, a large number of SNVs were detected in the HLA genes, ranging from 46 in
HLA-A to 8 in HLA-DRA (Supplementary Fig. 12c). We observed uneven mapping of transcript
reads between the two alleles; HLA-DRA exhibited a striking 3.6-fold bias for transcripts
mapping to haplotype 1 (H1) versus haplotype 2 (H2) (Fig. 6a). Imbalanced allele-specific
expression is recognized as a pervasive feature of cancer, potentially stemming from alterations
such as genomic structural variation and dysfunctional epigenetic regulation®*. Here, in the
context of HGSOC, we sought to systematically characterize the imbalanced allele-specific
expression between tumor epithelial cells and the residual TME cell populations. We identified
33 genes displaying imbalanced allelic expression within the epithelial cell population but not in

the remaining non-epithelial cells (Mann-Whitney U Test; Benjamini-Hochberg adjusted P<10®
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and P>0.05, respectively) (Fig. 6b,c). Among genes exhibiting epithelial-specific imbalanced
allelic expression, VEGFA and CD276 are therapeutic targets for treatment of ovarian
malignancies like HGSOC* (Fig 6b,d). With scTalLoR-seq, phasing of SNVs permitted
high-quality haplotype reconstruction and enabled quantitation of allele-specific expression

among cellular populations within ovarian tumor samples.

Discussion

Recent improvements in nanopore sequencing chemistries, basecalling accuracy and
bioinformatic tools have enabled single-cell long-read sequencing, which can deliver
unprecedented insights into cell type-specific transcriptional diversity. However, there remain
key challenges such as relatively lower throughput and template switch artifacts. Here, we
developed scTalLoR-seq to partially address these challenges using an enrichment procedure
that focuses on predetermined genes of interest while minimizing off-target artifacts. Because
this method relies on designed gene panels, prior biological knowledge is required to optimally
select hybridization probe sets. Fortunately, several expert-curated commercial probe
panels—like the ones used in this study—are available for a range of biological applications. The
use of custom probe panels further expands the scope of scTalLoR-seq to investigate specific
biological systems and non-model organisms. This approach was developed to optimally
allocate sequencing reads to hundreds or a few thousand genes of interest; whereas, current
methods shallowly survey the whole transcriptome'®#® or deeply examine a narrow set of target
genes'?®. With our approach, we demonstrate improved transcript detection sensitivity that
enables a myriad of applications ranging from differential isoform expression analysis to
discovery of sequence variants.

Fundamental to scRNA-seq is the ability to resolve reads by individual CBs and UMls,
which enables cell-specific quantitation of expression. Given the higher basecalling error rates
of nanopore sequencing compared to short-read sequencing, prior long-read single-cell
approaches have relied on supplemental short-read data to improve CB/UMI assignment
accuracy'®?. Despite the inherent errors of nanopore reads, we demonstrate that scTalLoR-seq
paired with the wf-single-cell workflow is capable of accurately producing single-cell
transcriptomes from a complex tumor tissue without the need for supplemental short-read
information.

Expansion of the scTalLoR-seq targeting panel to include immune-related genes
permitted TCR repertoire profiling. Despite T cells comprising only 12% of the total cell

population, scTalLoR-seq provided sufficient read depth at the TCR locus for highly specific and
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sensitive sequence reconstruction. While short-read TCR analysis typically requires specialized
library preparation and/or 5 RNA-seq, we demonstrate TCR reconstruction with scTalLoR-seq
using conventional 3' RNA-seq. Additionally, we were able to identify unique and expanded
clonotypes which could provide insight into TME-specific T cell interactions and tumor antigens.
Both the immune repertoires and the extent of clonal expansion are key determinants of the
anti-tumor response and outcomes*®¢,

Increased read depth and broader transcript coverage enabled more comprehensive
detection of expressed SNVs, which was fundamental for the characterization of transcript
structure alterations. Because many of these SNVs are proximal to annotated splice junctions,
we suspect sequence-specific impacts on spliceosome function may contribute to the observed
transcript structures. In some cases, a SNV and its associated site of structural divergence are
within an A/T-rich region, which may be susceptible to internal priming during reverse
transcription and/or second-strand synthesis*®. While such artifacts would be considered false
positives, we also observed opposing examples in which structural divergence was detected at
non-A/T-rich regions and at A/T-rich sites that lacked structural divergence. Taken together,
scTalLoR-seq enables the characterization of SNV-associated transcript structures which may
be particularly impactful in evaluating the functional consequences of cancer mutations.

By reconstructing haplotypes from multi-SNV reads, we identified imbalanced allelic
expression within tumor epithelial cells. Of potential therapeutic relevance is the observed
allele-specific expression of VEGFA, which is the target of bevacizumab (Avastin) for treatment
of platinum-resistant recurrent epithelial ovarian cancer®®®'. Additionally, CD276 showed
imbalanced allelic expression and is the target for clinical development as a cancer
immunotherapy*. Thus, beyond the fundamental biological insights enabled by scTalLoR-seq,
the ability to simultaneously characterize cell- and allele-specific transcriptional variation has the
potential to impact diagnostic and therapeutic approaches.

While we have highlighted many capabilities of scTalLoR-seq, there are several features
that can be developed to further improve this method. First, the analyses presented here
focused primarily on annotated transcripts. It remains to be seen what effect gene targeting has
on novel isoform discovery. Second, abortive reverse transcription hinders long-read analysis
due to truncated reads and may be addressed with alternative reverse transcription strategies.
Finally, we expect that this approach can be adapted to many of the emerging and existing
commercial scRNA-seq platforms (e.g. droplet, nanowell, and combinatorial indexing) in addition

to synergistic technologies like spatial transcriptomics. With these adaptations in mind,
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scTalLoR-seq provides an attractive option for efficient exploration of full-length transcriptomes,
especially for large-scale single-cell atlasing initiatives.

We developed scTalLoR-seq, a novel targeted long-read sequencing approach for
single-cell characterization of transcriptional variation. scTalLoR-seq efficiently allocates
sequencing throughput to improve detection and quantitation of transcripts of interest at multiple

resolutions: from exon structure down to single nucleotide variants.
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Methods

Single-cell isolation and 10X Genomics 3’ cDNA generation

Cell Lines

To evaluate sensitivity and the robustness of our method we obtained three ovarian cancer cell
lines SK-OV-3, IGROV1 and COV504. SK-OV-3 and IGROV1 were maintained in RPMI-1640
medium, supplemented with 10% fetal bovine serum (FBS) and 2 mM L-Glutamine. COV504
cells were maintained in DMEM supplemented with 10% FBS and 2 mM L-Glutamine. Cells
from each cell line were prepared following the 10x Genomics Cell Preparation Guide
(CG000053_CellPrepGuide_RevC) and combined at equal cell concentrations prior to loading
onto the 10x Genomics Chromium Controller at a concentration of 1000 cells/uL. cDNA
generated through the single-cell platform was then split for single-cell targeted long-read
enrichment (see below) or for generating scRNA-seq short-read libraries using the 10x v3.1
protocol (CG000204_ChromiumNextGEMSingleCell3'v3.1_RevD).

Dissociated Tumor Cells

Ovarian cancer dissociated tumor cells were purchased through Discovery Life Sciences
(Huntsville, AL). Both samples were stage lll, treatment naive with cancer subtypes Clear Cell
Carcinoma and High Grade Serous Carcinoma. All clinical metadata was de-identified and
samples were IRB compliant. Cells were thawed and prepared following the recommended 10x
Genomics Cell Preparation Guide shown above with minor adjustments. Cells were thawed for 2
minutes and placed into 15 mL of warm RPMI media containing 10% FBS media. Cells were
spun at 300g for 5 minutes. DNase | was added after the first spin to prevent clumping. Three
additional spins were performed with 1X PBS with 0.04% BSA to ensure proper removal of
DNase | prior to 10x loading. Cells were counted and checked for viability using Vi-Cell XR
(Beckman Coulter). The viability was 88.3% and 82.5% and the target capture was for 6000
cells prior to injection. Both the cell lines and primary tumor cells were run on Chip G using the
10x v3.1 kit for generating the cDNA (CG000204_ChromiumNextGEMSingleCell3'v3.1_RevD).
The cDNA amplification step was modified by extending the elongation time to 2 minutes rather
than the recommended 1 minute. cDNA generated through the droplet single-cell platform was
then split for either long-read enrichment or for preparing scRNA-seq short-read libraries using
the 10x v3.1 protocol (CG000204_ChromiumNextGEMSingleCell3'v3.1_RevD).

lllumina library generation and sequencing
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Whole transcriptome short-read libraries were dual-indexed and sequenced paired-end on the
lllumina NovaSeq 6000 p with the recommended 10x run parameters (Read 1 - 28 cycles, i7 -
10 cycles, i5 - 10 cycles and Read 2 - 90 cycles). Targeted short-read libraries were
dual-indexed and sequenced paired-end on the Illlumina NextSeq 2000 following the same run

parameters as shown above.

Single-cell targeted gene enrichment for long-read sequencing

Pre-Amplification

To be able to get the recommended 300 ng of input for gene enrichment, approximately 10 ng of
the 10x cDNA derived from the cell lines were split into two reactions and amplified an additional
5 cycles of PCR using two customized primers: (1) TruSeq Read 1 forward primer 5
(Fwd_partial_read1) and (2) partial TSO reverse primer (Rev_partial_TSO) (Supplementary
Table 3). The PCR reaction was carried out using 2X LongAmp Taq (NEB) with the following
PCR parameters 94°C for 3 minutes, with 5 cycles of 94°C 30 seconds, 60°C 15 seconds, and

65°C for 3 minutes, with a final extension of 65°C for 5 minutes. The cDNA was then purified

using 0.8X SPRI beads to remove unwanted primers and eluted in 30 uL H,O.

R2C2

Post-enriched cDNA was used for input into an R2C2 reaction following the protocol previously
described™. Briefly, 100 ng of the targeted cDNA was circularized using Gibson assembly
(NEBBuilder HiFi DNA assembly mix) with a custom splint that is compatible with 10x cDNA
containing both the Read1 (10X_UMI_Splint_Forward) and TSO sequences
(10X_UMI_Splint_Reverse) (Supplementary Table 3). Any non-circularized byproducts were
then digested using an exonuclease mixture of Lambda, Exo | and Exo Il (NEB) and incubated
at 37°C overnight. Post overnight digestion the reaction was cleaned up with 0.8X SPRI and
eluted in 30 pL. The circularized product was separated into three different reactions and
amplified using rolling circular amplification using Phi29 (NEB) and incubated at 30°C overnight.
To debranch the Phi29 product, a T7 endonuclease (NEB) digestion was performed and
incubated at 37°C on a thermal shaker at 1000 RPM for 2 hours. A final 0.5X SPRI purification

is performed to enrich longer molecules >500 bp, about 1 pg should be recovered.
Cell Lines

The pan-cancer gene panel (n=1,253 genes) was designed by 10x Genomics containing 120 bp

probes tiled across known annotated exons covering both sense and antisense strands. The
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cDNA hybridization using the pre-designed panels was performed following the 10x protocol
(CG000293_TargetedGeneExpression_SingleCell_UG_RevF) with minor changes. We
incorporated TSO blockers (1 uM) during Step 1.1 in the pre-hybridization pooling and drying
step (Supplementary Table 3). The pre-hybridization was carried out using 300 ng of cDNA, 20
ML of COT DNA, 0.8 pL of TSO blockers, and 2 uL of Universal Blockers. The samples were
dried using the SpeedVac Savant DNA120 concentrator (Thermo Fisher Scientific) on ‘Medium’
setting. Following the hybridization, 5 cycles of PCR were performed using the same cDNA
primers described in the Pre-Amplification step (1) Fwd_partial_read1 and (2) Rev_partial_ TSO
to amplify molecules off the bead. The following PCR conditions were the same as described in

the Pre-Amplification step.

Dissociated Tumor Cells

For the primary tumor samples the gene enrichment was performed as discussed above with
the exception that the same cDNA was separated into two enrichments one using the
pan-cancer gene panel (n=1,253 genes) and the other with the Immune gene panel (n=1,056
genes). The samples were targeted following the 10x protocol
(CG000293_TargetedGeneExpression_SingleCell UG_RevF) with minor changes as indicated
above incorporating TSO blockers. Following the hybridization, 5 cycles of PCR were performed
using the non-biotinylated primers (1) Fwd_3580_partial_read1_defined and (2)
Rev_PR2_partial_TSO_defined from the single-cell ONT protocol (Supplementary Table 3,
single-cell-transcriptomics-10x-SST_v9148_v111_revB). The PCR reaction was carried out
using 2X LongAmp Taq (NEB) with the following PCR parameters 94°C for 3 minutes, with 5
cycles of 94°C 30 seconds, 60°C 15 seconds, and 65°C for 3 minutes, with a final extension of
65°C for 5 minutes. The post cDNA hybridized product was then purified with 0.8X SPRI beads

to remove unwanted primers and eluted in 40 pL of H,O. cDNA concentration was measured

using Qubit dsDNA HS kit and the size distribution analyzed using Tapestation D5000 Screen
Tape (Agilent Technologies).

TSO Artifact Mitigation

Post hybridization artifact mitigation was performed using the biotinylated version of the forward
primer from the ONT protocol, [Btn]Fwd_3580_partial_read1_defined (Supplementary Table
3). The PCR reaction was carried out using 2X LongAmp Taqg (NEB) with the following PCR
parameters 94°C for 3 minutes, with 3 cycles of 94°C 30 seconds, 60°C 15 seconds, and 65°C

for 3 minutes, with a final extension of 65°C for 5 minutes. Full-length cDNA was captured using
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15 pL M270 streptavidin beads (Thermo Fisher Scientific) that were washed three times with
SSPE buffer (150 mM NaCl, 10 mM NaH,PO,, and 1 mM EDTA) and resuspended in 10 pL of
5X SSPE buffer (750 mM NacCl, 50 mM NaH,PO,, and 5 mM EDTA). The cDNA obtained from
the gene enrichment step was combined with 10 yL M270 beads and incubated at room
temperature for 15 minutes. After incubation, the cDNA-bead conjugate was washed twice with
1 mL of 1X SSPE. A final wash was performed with 200 pyL of 10 mM Tris-HCI (pH 8.0) and the
beads bound to the sample were resuspended in 10 yL H,O. A final PCR was performed
on-bead using the cDNA primers (cPRM) from the SQK-PCS111 kit following the PCR
conditions from the single-cell ONT protocol
(single-cell-transcriptomics-10x-SST_v9148 v111_revB). The cDNA was cleaned up with 0.8X
SPRI and eluted in 15 pL. The concentration and quality of the sample was evaluated with Qubit
dsDNA HS kit and Tapestation D5000 Screen Tape (Agilent Technologies). The expected

recovery was above 50 ng.

ONT library preparation and nanopore sequencing

Cell Lines

For the mixed ovarian cell lines, library preparation for nanopore sequencing was performed
according to the LSK-109 protocol (ONT). For the targeted mixed ovarian cell line samples, the
final libraries (targeted, targeted+AM and targeted+R2C2) were loaded onto a total of seven
MinION flowcells (FLO-MIN106D). Approximately 25-30 fmol of the library was loaded for each
run. The samples were sequenced for 72 hours and basecalled using Guppy v6.0.1. For the
un-targeted sample, library preparation was performed according to the LSK-110 protocol. A
total of 125 fmol was loaded onto a single PromethlON flowcell (FLO-PR002), sequenced for 72
hours and basecalled using Guppy v6.0.1.

Dissociated Tumor Cells

After post enrichment and artifact mitigation the rapid adapter addition was performed following
SQK-PCS111 protocol. Final libraries (125 fmol per library) across both patient samples were
loaded onto a total of 4 PromethlON flowcells (FLO-PRO002). The samples were sequenced for
72 hours and basecalled using Guppy v6.0.1.

Long-read CB and UMI assignment
"SiCelLoRe’

(https://qgithub.com/ucagenomix/sicelore/commit/b057aa0f7948d2e8f64140b8ec99c2f3bb4b6d5
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3) was used with default settings to process reads when companion short-read data were
available. When considering complete reads, 79.5% (average of 2 replicates) could be assigned
to a known cell barcode Of those, approximately 68% were matched to UMIs identified from
short-read sequencing. These values are consistent with recent single-cell nanopore long-read
sequencing efforts. Next, for CB/UMI assignment without companion short-read data, we used
‘wf-single-cell’ (https://qithub.com/epi2me-labs/wf-single-cell; v0.1.5) with default settings.
UMI-deduplication of the resultant tagged bam file was performed using "UMI-tools™ (v1.1.0) with
the following settings for both “group™ and ‘dedup’ functions: --per-cell --per-gene
--extract-umi-method=tag --umi-tag=UB --cell-tag=CB --gene-tag=GN. In general, we used the
GRCh38 human reference genome and GENCODE v32/Ensembl 98 annotations provided by
10x Genomics (2020-A; July 7, 2020;

https://support.10xgenomics.com/single-cell-gene-expression/software/downloads/latest).

Single-cell data analysis

Cell-by-transcript count matrices were generated directly from "SiCeLoRe" or from “lIsoQuant’
(v3.1.0) with default settings using CB-tagged bam files generated by “wf-single-cell’. The count
matrices were processed using ‘scanpy’ (v1.9.1) as follows: 1) normalize counts per cell
(target_sum=10°), 2) log1p transform, and 3) scale to unit variance and zero mean.
Unsupervised clustering of cell subgroups was performed using the Leiden algorithm applied to
the neighborhood graph of principal components. Differential expression of both genes and
transcripts computed using Welch’s t-test (method="t-test_overestim_var”). Geneset expression
scores were calculated using the “score_genes’ function from “scanpy’. Pathway activity scores
were calculated using the “progeny’ function (z_scores=TRUE, organism="Human", top=300,
perm=100) from 'PROGENy" (v1.18.0). For genetic-deconvolution of cell identity, we used
“souporcell” (v2.0) with known genotypes provided as a ‘BCFtools’-merged "Clair3"-derived .vcf
file. Cell multiplets were identified using “Scrublet’ (v0.2.3), implemented within “scanpy’ with
default settings. To integrate the expression matrices from the pan-cancer and immune panels,
we applied a scalar offset. From the transcripts of 258 genes shared between the two panels,
the scalar offset was computed as the mean slope of 10-fold cross-validated (CB-shuffled) linear
regression slopes (‘sklearn™ v1.0.1) using mean transcript expression (cell count-normalized
and log1p-transformed). Subsequently, single-cell transcript expression values corresponding to
the response variables were multiplied by the scalar offset. To construct the integrated
expression matrix, scaled transcript expression values private to the response variables were

joined (CB-matched) to the expression matrix corresponding to the predictor variables.
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T cell receptor reconstruction

The immune enrichment panel design comprises probes targeting the constant TCR
genes: TRAC, TRDC, TRBC2, and TRGC1. The TRBC1 and TRGC2 genes were not included
in the panel as they have high homology to selected probes. scTalLoR-seq reads were
processed by TRUST4 using the parameters “-ref human_IMGT+C.fa --barcode CB --UMI UB.”

Variant analysis

Cell subpopulation reads were aggregated from CB-tagged bam records using “pysam’
(v0.16.0.1), then variants were called using 'Clair3™ (v0.1-r11) with pretrained model
r941 _prom_hac g360+g422 (--platform=ont --enable _phase --fast mode). For analysis of
variants associated with transcript structural divergence, Clair3-derived variant calls were
filtered (DP>=100 and QUAL>=15). Variant calls were scored for cryptic splicing using "SpliceAl’
(v1.3.1, -D 500). Then, for each variant, aligned reads were partitioned by observed base
matching REF or ALT values (via ‘pysam’). Read coverage of resultant REF- and ALT-specific
bam files were computed using “bamCoverage” (v3.5.0, --binSize 1). The Pearson correlation
coefficient (r) between REF- and ALT-specific read coverage was calculated (minimum
depth>=50). The degree of transcript structural divergence was defined as the variance
unexplained (1-r%). For variants exhibiting non-zero coverage divergence, linear regression
residuals between REF- and ALT-specific coverage at single-base resolution were mapped to
annotated transcript structural features: CDS and UTR/Intron. Then, the proportion of bases
with residual z-score>0.5 within each structural feature was max-normalized per variant before
agglomerative hierarchical clustering (method=*ward”, metric="euclidean”) using ‘SciPy’
(v1.7.3).

Haplotype analysis

Only reads with at least two detected SNVs were considered for haplotype reconstruction. For
each gene, the observed variant status of each read was encoded as a vector of position-sorted
SNV sites (n=number of detected SNVs within the gene) with the following values:
undetermined=0, REF=1, ALT=2. The SNV vector with the highest read count was used as the
seed haplotype. For each element in this seed vector equal to 0 (i.e. undetermined), the variant

status was determined as follows:
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1. Identify all reads that contain at least one determined SNV site (REF=1 or ALT=2 ) from
the current SNV vector in addition to the undetermined site.

2. Update variant status at undetermined site based on highest frequency nucleotide
identity (REF or ALT) at that position.

Haplotype reconstruction was complete when all SNV sites were determined. Then,
allele-specific reads with a majority of SNVs (>50%) matching the haplotype were masked
before a second haplotype was determined as outlined above. The final allele-specific read
annotations were similar to above (i.e. majority of haplotype-matching SNVs per read) but omits
SNV sites with shared identity between H1 and H2.

Data and code availability
Sequencing data were deposited to NCBI Sequence Read Archive (SRA) under the BioProject

accession PRJNA993664. Code to be made available upon reasonable request.
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Fig. 1 - Overview of targeted single-cell long-read sequencing. Ovarian cell lines or
dissociated tumor cells are processed using droplet-based single-cell RNA-seq 3’-Gene
expression assay to obtain cDNA. Targeted enrichment is performed followed by nanopore
sequencing, cell barcode (CB) and unique molecular identifier (UMI) assignment and long-read
alignment. Downstream analysis enables measurement of isoforms, SNVs and allelic

expression at single-cell resolution.
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Fig. 2 - Targeted long-read sequencing optimization. a, Schematic detailing library
preparation methods (targeted, targeted+AM and targeted+R2C2) tested for enrichment based
long-read sequencing. b, Complete reads (left), TSO-TSO artifacts (middle) and number of
passed reads (right) across library preparation methods. ¢, Pseudobulk gene-level expression
between short-read untargeted and scTalLoR-seq library preparation methods. Log10(CPM +1),
CPM - Counts per million. d, Pseudobulk gene expression correlation for scTalLoR-seq across
replicates. e, Counts per gene density distributions for untargeted and scTalLoR-seq. f, Number
of genes and transcripts uniquely detected (single dot) or shared (‘connected’ or ’joint’ dots)
across untargeted and scTalLoR-seq.
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Fig. 3 - Single-cell enrichment metrics and cell-line specific alternative splicing. a, UMAP
visualization of 3 mixed (1:1:1) ovarian cell lines (COV504, IGROV-1, and SK-OV-3). b,
Comparison of on-target genes, UMIs and transcripts per cell across untargeted and
scTalLoR-seq library preparation methods. ¢, Cluster level PARP2 isoform proportions and
single-cell transcript UMAP visualization. Alternative 5 splice site within exon 2 of PARP2 is
indicated by the shaded pink rectangle in the transcript model. d, Cluster level RTKN isoform
proportions and single-cell transcript UMAP visualization Alternative 5’-UTR and first exon
usage of RTKN is indicated by the shaded pink rectangle in the transcript model.
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Fig. 4 - Profiling ovarian tumor cells with scTalLoR-seq. a, UMAP visualization of
dissociated tumor cells (n=2,482) from a HGSOC patient (P1). Scaled expression of cell-type
specific canonical marker genes are shown as additional UMAPs (right). b, Scaled expression of
the top-10 differentially expressed transcripts across single cells. The colored horizontal bar at
top corresponds to cell type annotations in a. ¢, IL-32 transcript models for theta and beta
isotypes and differential IL-32 isoform usage identified across CD8+ T cells and PDGFRa-/b+
Fibroblasts (Mann-Whitney U test). d, Zoomed in UMAP of T cells showing successfully
reconstructed TCRs. e, Proportion of T cells with TCR chain assignments: no chain identified
(N/A), one chain identified (a or B) or both chains identified (a & B). f, Higher-order (>2 cells)
clonotypes identified within T cells. The inner ring denotes the number of cells while the outer
ring denotes individual clonotoype frequency. g, Projection of TP53 mutation
(chr17:7674241_G>C) identified using Clair3 on UMAP of dissociated tumor cells. h, Correlation
between single-cell MSK HGSOC geneset expression and PROGENy pathway activity scores. i,
MSK HGSOC Cancer.3 (JAK-STAT/NF-kB/TNF-active) and Cancer.6 (Hypoxia-active) geneset
scores mapped to epithelial cell embedding.
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Fig. 5 - Identification of SNV associated differential transcript structures. a, Workflow for
detecting SNV associated differential transcript structures: (i) Obtain reads from ovarian tumor
epithelial cells (scTalLoR-seq), (ii) Determine SNVs using Clair3, (iii) Predict cryptic splice
events using SpliceAl, (iv) Compute coverage divergence between reference (REF) or
alternative (ALT) variant reads, (v) Identify differential transcript structures among SpliceAl hits
using coverage divergence. b, SNVs of genes exhibiting SpliceAl score above threshold value
of 0.1. Each SNV is colored by SpliceAl score (“Non-hits” - blue, “Hits” - orange) and whether a
hit also displays coverage divergence between REF and ALT (“Hit and divergent” - green) . c,
Hierarchical clustering based on extent of divergence at transcript structural elements (CDS and
UTR/Intron) of 44 “Hit and divergent” SNVs. d and e, Plots for ELF3 and STAT1, respectively:
normalized coverage tracks for REF and ALT and corresponding transcript model.
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Fig. 6 - Variant phasing enables measurement of allelic imbalance at the single-cell level.
a, Phased (H1 - blue, H2 - green) single-molecule read tracks for HLA-DRA. b, Allelic
expression (H1/H2) and proportions of cells detected for epithelial and non-epithelial groups
ranked by magnitude of imbalance. ¢ and d, Plots for HLA-DRA and VEGFA, respectively:
UMAP visualization of haplotype expression with epithelial cells highlighted in red and
non-epithelial cells highlighted in blue. Violin plots show significant cell type-specific allelic
imbalance (Mann-Whitney U test).
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Supplementary Note

Short-read untargeted and targeted sequencing

We performed droplet-based single-cell 3'-end RNA sequencing on a mixture of three human
ovarian cancer lines (SK-OV-3, COV504, and IGROV-1) and generated a whole transcriptome
short-read library (while reserving full-length cDNA) in addition to performing targeted gene
enrichment using the 10x Genomics Pan-Cancer panel comprising 1,253 genes. We performed
short-read sequencing on the untargeted and targeted libraries to depths of 796M and 173M
reads representing 62.2% and 89.5% sequencing saturation, respectively. Target enrichment
recovered 85.2% of barcodes found within the untargeted approach (“intersecting cell barcodes”
- orange); notably we observed that missing cell barcodes (“non-intersecting cell barcodes” -
blue) represented lower quality cells in the untargeted dataset with lower counts and higher
mitochondrial content (see figure below). These cells were likely excluded due to distinct cell
barcode/UMI cutoffs used in the targeted approach
(https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/algorith
ms/targeted#targeted-cell-calling). In addition to running Cell Ranger count on untargeted and
targeted libraries individually (targeted performed including the —--target-panel path option),
further analysis was performed using Cell Ranger targeted-compare. Sequencing the
untargeted and targeted libraries resulted in 4% and 82.1% of reads confidently mapped to the
targeted transcriptome respectively, representing a 17.7-fold mean read enrichment.
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Supplementary Fig. 1 - Long-read enrichment approaches

Schematic detailing enrichment optimization approaches for long read sequencing. The
untargeted approach contains an artifact mitigation step (+AM) using biotinylated probes against
R1 (read 1) primer. The targeted approach uses biotinylated probes for enriching genes of
interest only. The targeted+AM performs both gene enrichment and artifact mitigation and the
targeted+R2C2 approach utilizes gene enrichment combined with a rolling-circle amplification

based library preparation method for read consensus.
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Supplementary Fig. 2 - Mean gene expression correlations between methods.

Scatter plot grid containing pairwise comparisons at the pseudo bulk level across three
enrichment approaches in combination with short and long read sequencing. The x-axes are
indicated by the row labels at right and the y-axes are indicated by the column labels at top.
Correlations of mean gene expression are given as log10 (CPM+1). Pearson r is given for each

gene across methods.
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Supplementary Fig. 3 - Analysis of guided and unguided CB/UMI demultiplexing
approaches. a, Schematic of guided (i.e. SiCeLoRe; orange) and unguided (i.e. wf-single-cell,
green) approaches. b, Upset plot showing overlap of detected CBs across guided, unguided
and short-read approaches. ¢, Scatter plot showing UMI counts per CB for unguided vs guided
approaches. d, Heatmap showing Pearson correlation results for unguided vs guided
approaches with respect to cell line-specific mean gene expression. Tile color represents the

squared Pearson correlation coefficient.
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Supplementary Fig. 4 - Comparison of top-25 highly expressed genes.
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% of total counts

Short-read untargeted, long-read untargeted, and long-read targeted boxplots showing top-25

highly expressed genes (y axis) calculated as percent total counts (x-axis).
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Supplementary Fig. 5 - Differential transcript expression among three ovarian cancer cell
lines. Volcano plots showing differential transcript expression for each cell line vs. rest: left,
COV504 vs. IGROV-1 and SK-OV-3. center, IGROV-1 vs. COV504 and SK-OV-3. right,
SK-OV-3 vs. COV504 and IGROV-1. Only gene names have been used to annotate individual
transcripts in the plots. Significantly up-regulated transcripts are colored dark blue and
down-regulated transcripts are colored red. The x-axis units are log base 2 fold-change and the
y-axis units are negative log base 10 false discovery rate (Benjamini-Hochberg multiple testing

adjustment). Dashed lines represent 2 fold-change and P<0.05 significance thresholds.
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Supplementary Fig. 6 - PARP2 differential transcript usage among cell lines. IGV tracks
showing reads, segregated by cell line, aligned to PARP2. Two transcript models are shown
below the alignment tracks. The pink rectangle highlights structural variation of exon 2 and its

differential usage among the three cell lines.
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Supplementary Fig. 7 - RTKN differential transcript usage among cell lines. IGV tracks
showing reads, segregated by cell line, aligned to RTKN. Three transcript models are shown
below the alignment tracks. The pink rectangle highlights structural variation of the 5-UTR and
first exon and its differential usage among the three cell lines.
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Supplementary Fig. 8 - Patient 1 (P1) and Patient 2 (P2) cell annotations and expression

of canonical marker genes.

a, Gene-level UMAP projection of cells profiled from P1 processed with scTalLoR-seq workflow,

colors represent annotated cell types. b, Gene-level UMAP projection of cells profiled from P2

processed with scTalLoR-seq workflow, colors represent annotated cell types. ¢, Matrix plot

showing mean expression of canonical marker genes grouped by cell types found within P1.

The tile color represents a scaled expression from lowest (0) to highest (1) mean expression. d,

The same representation as in c for P2.
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Supplementary Fig. 9 - Major cell type proportions discerned with short- and long-read
(scTalLoR-seq) sequencing across patient samples.
Barplot showing cell type proportions across maijor cell types found within patient samples, P1

(High-grade serous ovarian cancer) and P2 (Clear Cell Carcinoma).
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Supplementary Fig. 10 - Cell type-specific IL32 differential transcript usage. Heatmap
showing relative mean IL32 isoform expression (y-axis) scaled per cell type (x-axis). The tile
color represents mean isoform expression relative to total IL32 expression within each cell type

(i.e. percent expression; see legend).
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Supplementary Fig. 11 - Single-cell correlations of PROGENy pathway activities and

cancer-associated gene signatures. 2D bin plots with each tile color-coded by cell count for

the following correlations: a, MSK Cancer.cell.3 expression signature vs. PROGENy JAK-STAT

pathway activity (Pearson r=0.79). b, MSK Cancer.cell.6 expression signature vs. PROGENy

Hypoxia pathway activity (Pearson r=0.68). ¢, MSK Cancer.cell.3 expression signature vs. MSK

Cancer.cell.6 expression signature (Pearson r=0.15). d, PROGENy Hypoxia pathway activity vs.
PROGENy JAK-STAT pathway activity (Pearson r=-0.08).
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Supplementary Fig. 12 - Characterization of SNV frequency and distribution. a, Density
distribution of detected SNVs per gene. b, Density distribution of distance between detected

SNVs. ¢, Top-20 genes based on number of detected SNVs.
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Supplementary Table 1

Sample Seq Type Enrichment Strategy Flow Cell Library Prep Passing N50
Reads
(M)

Mixed Ovarian ONT No Un-targeted FLO-PRO002 LSK-110 89.81 1420

Mixed Ovarian ONT Yes Pan Cancer FLO-MIN106D | LSK-109 9.54 1440
Targeted

Mixed Ovarian ONT Yes Pan Cancer FLO-MIN112 SQK-Q20EA 9.60 1540
Targeted

Mixed Ovarian ONT Yes Pan Cancer FLO-MIN106D | LSK-109 14.56 1230
Targeted +AM

Mixed Ovarian ONT Yes Pan Cancer FLO-MIN106D | LSK-109 9.54 1440
Targeted +AM

Mixed Ovarian ONT Yes Pan Cancer FLO-MIN106D | LSK-109 453 4410
Targeted + R2C2

Mixed Ovarian ONT Yes Pan Cancer FLO-MIN106D | LSK-109 5.32 4680
Targeted+ R2C2

Mixed Ovarian ONT Yes Pan Cancer FLO-MIN106D | LSK-109 3.55 5010
Targeted+ R2C2

Mixed Ovarian ONT Yes Pan Cancer FLO-MIN106D | LSK-109 3.25 5200
Targeted+R2C2

Mixed Ovarian lllumina Yes N/A P1 300 cycle 10X Lib Prep 60.65 N/A

Mixed Ovarian lllumina No N/A S2 10X Lib Prep 314.5 N/A

DTC_Patient 1 ONT No N/A FLO-PRO002 SQK-PCS111 151.04 970

DTC_Patient 1 ONT No N/A FLO-PRO002 SQK-PCS111 142.10 965

DTC_Patient 1 ONT Yes Immune FLO-PRO002 SQK-PCS111 88.35 1250
Targeted+AM

DTC_Patient 1 ONT Yes Pan Cancer FLO-PRO002 SQK-PCS111 87.3 1270
Targeted+AM

DTC_Patient 2 ONT Yes Immune FLO-PRO002 SQK-PCS111 100.3 1300
Targeted+AM

DTC_Patient 2 ONT Yes Pan Cancer FLO-PRO002 SQK-PCS111 95.26 1260
Targeted+AM

Supplementary Table 1 - Sequencing approaches and QC metrics. Read metrics across

short- and long-read sequencing experiments. Enrichment strategy used, flow cell types, library

preparation kit, passing reads and N50 are shown.
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Supplementary Table 2
cell_type cell_type transcript_id transcript_id log2fc log2fc adj_pval | adj_pval
group1 group2 group1 group2 group1 group2 group1 group2

Epithelial PDGFRa+/b+ Fibroblast ENST00000551241_OAS1 ENST00000202917_OAS1 25.14798355 |-8.292088509 |1.539655352 [303.8365371
Epithelial PDGFRa-/b+ Fibroblast |ENST00000433892_CD44 ENST00000425428_CD44 28.92649651 }-5.610807419(19.19197313 |17.14625666
Epithelial PDGFRa-/b+ Fibroblast [ENST00000579687_ICAM2 ENST00000449662_ICAM2 26.62352371 }-6.31666851 |[4.272842283 [20.23584951
Epithelial CD8+ Tcells [ENST00000559358_CD79B ENST00000392795_CD79B 26.9120388 |[5.32420969 |5.253282315(19.17861045
Epithelial CD8+ Tcells [ENST00000587992_ICAM3 ENST00000160262_ICAM3 5.071159363 }7.313385487 |37.90906839 |119.9610031
Epithelial CD8+ Tcells [ENST00000397857_ITGB2 ENST00000397846_ITGB2 26.7311039 |5.33238124815.065852457 |104.8593928
Epithelial CD4+ Tcells [ENST00000397857_ITGB2 ENST00000397846_ITGB2 26.7311039 [5.534425735|5.06315725 |121.5384365
Epithelial CD4+ Tcells [ENST00000317376_SPOCK2 ENST00000536168_SPOCK2  |26.99452972 }6.621021748|5.269401875 |172.6281979
Epithelial CD4+ Tcells [ENST00000513135_TNFRSF25 |[ENST00000356876_TNFRSF25 [25.02295876 |-5.524062634 |1.421938819 |74.24177565
Epithelial NK cells [ENST00000433892_CD44 ENST00000425428_CD44 28.92649651 }5.67753028919.42820613 |15.45279989
Epithelial NK cells [ENST00000559358_CD79B ENST00000392795_CD79B 26.9120388 |5.06444597215.305535154 |14.89713269
Epithelial NK cells [ENST00000339438_CSDE1 ENST00000533818_CSDE1 29.51158333 |5.88548708 |25.43342367 |15.61530617
Epithelial NK cells [ENST00000558469_CUX1 ENST00000547394_CUX1 26.16084099 [-5.287603855|3.13555046 |15.15083082
Epithelial NK cells [ENST00000409817_CXCR4 ENST00000241393_CXCR4 25.16540718 |-6.445358276 |1.444525735 |128.4669897
Epithelial NK cells ENST00000589484_DAZAP1 ENST00000590419_DAZAP1 26.48117447 [5.757906914 |4.214698382 |15.52142723
Epithelial NK cells [ENST00000450253_EIF4AE ENST00000515638_EIF4AE 27.15531158 }5.270740986 |5.993981849 |15.11424885
Epithelial NK cells [ENST00000610553_EWSR1 ENST00000485037_EWSR1 28.91420555 |-5.23763561218.72184672|15.10398688
Epithelial NK cells [ENST00000484194_HLA-E ENST00000493699_HLA-E 25.85902214 }5.4849648482.465774603 [30.91073139
Epithelial NK cells [ENST00000587992_ICAM3 ENST00000160262_ICAM3 30.55088043 |7.022383213 |44.04361269 |106.5846861
Epithelial NK cells [ENST00000527146_IFITM2 ENST00000399817_IFITM2 25.7280407 |6.6363058092.315677157 [162.3786385
Epithelial NK cells [ENST00000534507_IL32 ENST00000549213_IL32 29.8010788 }6.05545234729.0241439 [31.97949804
Epithelial NK cells [ENST00000268182_IQGAP1 ENST00000560218_IQGAP1 28.61159515 }-5.11726141 |15.81584002[14.99118163
Epithelial NK cells [ENST00000482429_LTB ENST00000429299_LTB 26.13475037 [-5.074635029|3.152354308 |108.4288332
Epithelial NK cells [ENST00000539616_MNAT1 ENST00000553354_MNAT1 28.00305557 }-5.92147254910.96362175 |15.62535024
Epithelial NK cells [ENST00000478268_MX1 ENST00000490220_MX1 28.45718193 |-5.452587605|14.10074914 |15.26601429
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Epithelial NK cells ENST00000530902_PPP2R2B |ENST00000394409_PPP2R2B |25.27556229 |-5.812587261|1.881190377 |15.53450127
Epithelial NK cells ENST00000537384_PRKAR1B |ENST00000400758_PRKAR1B |[27.86318207 |-5.326539516|9.722939295 [45.87648056
Epithelial NK cells [ENST00000258062_REPS1 ENST00000431346_REPS1 26.39013672 [-6.068675995|3.813781481 [31.97346061
Epithelial NK cells ENST00000536255_RPAIN ENST00000574003_RPAIN 33.34592438 [-5.759884834 |127.0649907 |15.48560643
Epithelial NK cells ENST00000256196_RRAS2 ENST00000531421_RRAS2 25.68914604 [-5.869750023 |2.521183453 |15.62973893
Epithelial NK cells [ENST00000478405_SPIN3 ENST00000638619_SPIN3 29.61260796 [-5.892885685|27.20618712|15.62498037
Epithelial NK cells ENST00000295754_TGFBR2  |ENST00000359013_TGFBR2  |26.24829292 |-5.78046608 |3.405474264 |15.53227297
Epithelial DCs ENST00000433892_CD44 ENST00000425428_CD44 28.92649651 |-5.69249010119.30584788 |17.40599075
Epithelial DCs [ENST00000587992_ICAM3 ENST00000160262_ICAM3 30.55088043 [-10.47030735|43.88204768 |300.9619647
Epithelial DCs [ENST00000521636_IDO1 ENST00000253513_IDO1 25.55454826 [-6.047535419|2.295939083 |165.3045902
Epithelial DCs ENST00000441671_LAG3 ENST00000203629_LAG3 25.01807213 |-5.146058083 |1.433436925 |63.41837784
PDGFRa+/b+ Fibroblast |CD8+ Tcells [ENST00000587992_ICAM3 ENST00000160262_ICAM3 5.070431709 [7.708373547|3.921013115 |14.87540772
PDGFRa+/b+ Fibroblast [CD4+ Tcells ENST00000587992_ICAM3 ENST00000160262_ICAM3 30.55015182 [-11.32203865 |4.627280745 |35.57702354
PDGFRa+/b+ Fibroblast [CD4+ Tcells ENST00000440815_IL32 ENST00000533097_IL32 6.431498528 [-5.079892635|22.40176913 [12.66753421
PDGFRa+/b+ Fibroblast [NK cells [ENST00000587992_ICAM3 ENST00000160262_ICAM3 30.55015182 |-7.417371273 |4.688621162 |13.1382252

PDGFRa+/b+ Fibroblast [DCs ENST00000587992_ICAM3 ENST00000160262_ICAM3 30.55015182 [10.86529541|4.598085166 |37.96596885
PDGFRa-/b+ Fibroblast |CD8+ Tcells ENST00000440815_IL32 ENST00000530890_IL32 5.615996838 [-5.253859997 |8.621392831 [5.940232191
ICD8+ Tcells DCs [ENST00000372988_CCND3 ENST00000372991_CCND3 30.15114212 1-5.235669613|3.021312019 |10.23042604

Supplementary Table 2 - Differential transcript usage across dissociated tumor cell types.
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cDNA Pre-Amplification

>Rev_partial_TSO /5Phos/NNNAAGCAGTGGTATCAACGCAGAG
>Fwd_partial_read1 /5Phos/NNNCTACACGACGCTCTTCCGATCT
/5Biosg/CAGCACTTGCCTGTCGCTCTATCTTCCTACACGAC
>[Btn]Fwd_3580_partial_read1_defined IGCTCTTCCGATCT
CAGCTTTCTGTTGGTGCTGATATTGCAAGCAGTGGTATCAACG
P>Rev_PR2_partial_TSO_defined ICAGAG
ICAGCACTTGCCTGTCGCTCTATCTTCCTACACGACGCTCTTCC
>Fwd_3580_partial_read1_defined (non-Biotinylated) GATCT

R2C2 (Gibson Assembl

IAGATCGGAAGAGCGTCGTGTAGTGAGGCTGATGAGTTCCATAN
>10X_UMI_Splint_Forward (R2C2) INNNNTATATNNNNNATCACTACTTAGTTTTTTGATAGCTTCAA
GCCAGAGTTGTCTTTTTCTCTTTGCTGGCAGTAAAAG

CTCTGCGTTGATACCACTGCTTAAAGGGATATTTTCGATCGCN
[NNNNATATANNNNNTTAGTGCATTTGATCCTTTTACTCCTCCT

> 10X_UMI_Splint_Reverse (R2C2) A AAGAACAACCTGACCCAGCAAAAGGTACACAATACTTTTACT

GCCAGCAAAGAG
>TSO_Block 1 ATGTACTCTGCGTTGATACCACTGCTT/3ddC/
>TSO_Block_2 AAGCAGTGGTATCAACGCAGAGTACAT/3ddC/

Supplementary Table 3 - Primers and oligonucleotides used in this study.
All oligonucleotides are shown in 5’ to 3’ direction and were ordered through Integrated DNA
Technologies (IDT).
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