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Abstract 
The relative contributions of genetic variation and experience in shaping the morphology of the adolescent 
brain are not fully understood. Using longitudinal data from 11,665 subjects in the ABCD Study®, we fit vertex-
wise variance components including family effects, genetic effects, and subject-level effects using a 
computationally efficient framework. Variance in cortical thickness and surface area is largely attributable to 
genetic influence, whereas sulcal depth is primarily explained by subject-level effects. Our results identify 
areas with heterogeneous distributions of heritability estimates that have not been seen in previous work using 
data from cortical regions. We discuss the biological importance of subject-specific variance and its 
implications for environmental influences on cortical development and maturation. 
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Introduction 
 
The heritability of cortical brain imaging phenotypes has been a subject of investigation for several years. Prior 
studies have employed both twin datasets (Chen et al. 2013) and genome-wide association studies (GWAS; 
Yang et al. 2017; Shadrin et al. 2021; van der Meer et al. 2021) to estimate the contribution of genetic variation 
to variance in cortical morphometry at the region of interest (ROI) and vertex level (Eyler et al. 2012; Chen et al. 
2015; Maes et al. 2023). Longitudinal datasets that capture changes in brain structure over time can provide 
novel insights into the heritability of brain structure. However, until recently, vertex-wise mixed-effects models 
assessing the influence of shared genetic variance, as well as family- and subject-specific variance, on cortical 
morphometry have not yet been available, due in part to the computational demand of running complex models 
on tens of thousands of cortical vertices. Here we used a novel computational method to apply mixed-effects 
models to the large sample and the longitudinal design of the Adolescent Brain Cognitive Development� Study 
(ABCD Study®), to estimate the contribution of genetic relatedness (heritability), shared family environment, 
and subject-specific variance to vertex-wise measures of brain morphometry. 
 
To examine the spatial distributions of random effects across vertex-wise cortical measures, we applied a 
novel method, Fast and Efficient Mixed-Effects Algorithm (FEMA; Parekh et al. 2023), which can model genetic 
relatedness as a continuous value ranging from 0 to 1, rather than assigning categorical variables based on 
kinship. FEMA also allows for the flexible specification of several random effects simultaneously including 
shared family, subject ID, and others(Parekh et al. 2023). By using the full ABCD Study® sample (n=11,880) 
rather than restricting our analyses to twins, we were able to better approximate the variance components that 
exist in a general population. This approach to heritability analysis also has the potential to capture more 
shared variance than the heritability estimates obtained from GWAS, which only model the additive effects that 
can be inferred from common SNPs and therefore may not capture variance attributable to structural variants, 
rare variants, or non-additive effects (Génin 2020). In addition, incorporation of genetic, family, and subject-
specific effects in the same model allows us to investigate the differential effects of genetics, shared 
environment, and otherwise unexplained contributions to within-subject stability. 
 
We estimated the contribution of additive genetic relatedness (akin to a heritability estimate), shared family 
environment (the extent to which siblings and twins share variance, coded as shared family ID), and the effect 
of subject (variance that is not explained by fixed effect covariates nor genetic/family structure, but 
nevertheless remains stable for a given subject over time). Of note, classical additive genetic / common 
environment / unique environment (ACE) models typically include data from a single timepoint and therefore 
cannot inspect the contribution of subject-specific variance in this manner. Using longitudinal neuroimaging 
data from the ABCD Study® release 4.0, we derived vertex-wise cortical thickness, cortical surface area, and 
sulcal depth. Then, for each vertex, we used the FEMA package (Parekh et al. 2023) to fit the model  
 

� ~ 1 � ��� � 	�
 � 	�����
 � 	�����
� � � � � � � � �  (1) 
 
where � represents the phenotype at each vertex; age, sex, MRI scanner, and scanner software version are 
fixed effect covariates; �, �, �, and � are the random effects, with their estimates corresponding to the 
proportion of variance in the phenotype (not explained by fixed effects) attributable to genetic similarity (�, 
modeled as the genetic relatedness between each pair of individuals within the same family, computed from 
SNP data), common family environment (�, coded as family ID), subject (�), and the remaining unexplained 
variance (�), respectively. Of note, the contribution of the random effect of subject (�) is equivalent to the intra-
class correlation coefficient (ICC) estimated using a mixed effects model to measure test-retest reliability (Zuo 
and Xing 2014). Thus, a high value for � denotes a phenotype with high test-retest reliability, high values for � 
reflect phenotypes that are highly heritable, and high values for � reflect phenotypes that are highly attributable 
to shared family environment. 

Materials and Methods 
Sample  
The ABCD Study® is an ongoing longitudinal multisite study within the United States that includes data from 
11,880 adolescents recruited from 21 data acquisition sites (Garavan et al. 2018; Volkow et al. 2018). Each 
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site obtained approval from their Institutional Review Board, and all participants and caregivers underwent 
verbal and written consent/assent. Exclusion criteria for the ABCD Study® include 1) lack of English proficiency 
in the child; 2) the presence of severe sensory, neurological, medical or intellectual limitations that would inhibit 
the child’s ability to comply with the study protocol; 3) an inability to complete an MRI scan at baseline. In this 
study, we used baseline and the first follow-up imaging data (acquired two years after the baseline) from ABCD 
release 4.0. We included all individuals with imaging and genomics data that passed quality control; analyses 
were restricted to observations with complete imaging and covariate data (final N = 11,402 at baseline, 7,695 
at 2 year follow-up, for a total of 19,097 observations; mean age at first visit = 9.92 years (SD = 0.62), mean 
age at second visit = 11.94 years (SD = 0.65)). Table 1 shows the demographics of the analytic sample at 
baseline and at the follow up. 
 

 Baseline 2 Year 
Follow-Up p 

n 11402 7695  
Number of Families 9529 6524  

interview_age (years), mean (SD) 9.92 (0.63) 11.94 (0.65) <0.001 

sex = M (%) 5931 (52.0) 4129 (53.7) 0.027 

household.income (%)  <0.001 

   [<50K] 3074 (29.5) 1718 (24.2)  
   [>=50K & <100K] 2949 (28.3) 2006 (28.3)  
   [>=100K] 4409 (42.3) 3374 (47.5)  
high.educ (%)  0.026 

   < HS Diploma 560 (4.9) 334 (4.4)  
   HS Diploma/GED 1078 (9.5) 677 (8.8)  
   Some College 2950 (25.9) 1908 (24.9)  
   Bachelor 2902 (25.5) 2022 (26.3)  
   Post Graduate Degree 3898 (34.2) 2734 (35.6)  
married = Yes (%) 7710 (68.2) 5251 (68.8) 0.405 

race.4level (%)  0.004 

   White 7267 (64.7) 5075 (66.8)  
   Black 1754 (15.6) 1059 (13.9)  
   Asian 263 (2.3) 157 (2.1)  
   Other/Mixed 1950 (17.4) 1307 (17.2)  
hisp = Yes (%) 2332 (20.7) 1487 (19.6) 0.054 

Table 1. Demographic data for age in months (mean, (SD)), sex at birth, household income, parental education, parental marital status, 
self-declared race, and endorsement of Hispanic ethnicity, stratified by time point (baseline and 2-year follow-up). Variable names from 
the tabulated data release are included in the table for replication. 

Genotyping, Genetic Principal Components and Genetic Relatedness 
Methods for collecting genetic data have been described in detail elsewhere (Uban et al. 2018). Briefly, a 
saliva sample was collected at the baseline visit, as well as a blood sample from twin pairs. The 
Smokescreen™ Genotyping array (Baurley et al. 2016) was used to assay over 500,000 single nucleotide 
polymorphisms (SNPs), which were used for genetic relatedness calculation using PC-Air (Conomos et al. 
2015) and PC-Relate (Conomos et al. 2016). PC-AiR captures ancestry information that is not confounded by 
relatedness by finding a set of unrelated individuals in the sample that have the highest divergent ancestry and 
computes the PCs in this set; the remaining related individuals are then projected into this space. PC-Relate 
computes a GRM that is Independent from ancestry effects as derived from PC-AiR. PC-AiR was run using the 
default suggested parameters from the GENESIS package (Gogarten et al. 2019), as described in previous 
work (Smith et al. 2023). Supplementary Figure 6 displays a histogram of the pairwise genetic relatedness 
values across the full sample (Supp. Fig. 6A) as well as the subset of pairs of participants with shared family ID 
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(Supp Fig. 6B). Of the 2011 pairs of individuals that shared a family ID, 1868 pairs had genomic relatedness 
data; of these, 1378 pairs had genetic relatedness between 0.25 and 0.75 (most likely full siblings or dizygotic 
twins) and 389 pairs had genetic relatedness greater than 0.75 (most likely monozygotic twins). 
 

MRI acquisition and image processing 
The ABCD Study® MRI data were collected across 21 research sites using Siemens Prisma, GE 750 and 
Philips Achieva and Ingenia 3 T scanners. Scanning protocols were harmonized across sites. Details of 
imaging acquisition and processing protocols used in the ABCD Study® have been described previously 
(Casey et al. 2018; Hagler et al. 2019). Briefly, T1-weighted images were acquired using a 3D magnetization-
prepared rapid acquisition gradient echo (MPRAGE) scan with 1 mm isotropic resolution and no multiband 
acceleration. T1w structural images were corrected for gradient nonlinearity distortions using scanner-specific, 
nonlinear transformations provided by MRI scanner manufacturers (Wald et al. 2001; Jovicich et al. 2006). 
Intensity inhomogeneity correction was performed by applying smoothly varying, estimated B1-bias field 
(Hagler et al. 2019). Images were rigidly registered using a cross-sectional framework and resampled into 
alignment with a pre-existing, in-house, averaged, reference brain with 1.0 mm isotropic resolution (Hagler et al. 
2019). Cortical surface reconstruction was conducted using FreeSurfer v7.1.1, which includes tools for 
estimation of various measures of brain morphometry and uses routinely acquired T1w MRI volumes (Dale and 
Sereno 1993; Dale et al. 1999; Fischl, Sereno, and Dale 1999; Fischl, Sereno, Tootell, et al. 1999; Fischl and 
Dale 2000; Fischl et al. 2001, 2002, 2004; Ségonne et al. 2004, 2007). The cortical parcellation used in this 
analysis was conducted in FreeSurfer using the Desikan-Kiliany cortical atlas (Desikan et al. 2006). All 
analyses included only those participants who were recommended for inclusion in post-processed sMRI quality 
control (imgincl_t1w_include==1). 
 

Statistical analysis 
The classic ACE model used to estimate heritability is equivalent to a linear mixed-effects (LME) model 
specified as follows: 
 

�� � � � 
��� �  �� � �� � ��  (2)  

where yi is the trait value of the ith scan; μ is the overall mean; xi denotes a vector of covariates; and Ai , Ci , Ei 
represent latent additive genetic, common family and unique environmental random effects, respectively. Over 
subjects, the covariance of these three terms are ��

�Σ�,  ��
�Σ�, and ��

��; Σ� is given by the genetic relatedness, 
which could be a kinship coefficient (e.g. ½ for siblings or dizygotic twins) or, as we have done, the SNP-wise 
genetic similarity similar to previous methods (Yang et al. 2011); Σ� has 1's on off-diagonals for any family 
pairs, 0 otherwise.  
 
For longitudinal datasets incorporating data from multiple timepoints for a given participant, an additional 
random effect S can be incorporated: 
 

 �� � � � 
��� �  �� � �� � �� � ��  (3)  
 

where Si is the random effect of subject (e.g., subject ID), and the vector of covariates xi includes a fixed effect 
to incorporate multiple timepoints (e.g., age). The covariance of the subject effect is ��

�Σ�, where Σ� has 1's on 
off diagonals observation pairs from the same subject; with a subject effect modeled, the final effect �� 
corresponds to a pure intrasubject measurement error. Note that the total residual variance, ����	


� � ��
� � ��

� �
��
� � ��

�, is the same variance that would be estimated in a cross-sectional analysis of unrelated subjects, and 
demonstrates how this approach decomposes all phenotypic variance into meaningful components. 
 
Vertex-wise analysis 
Univariate linear mixed effects models (LMMs) were applied at each vertex to model cortical morphometry 
(cortical thickness, cortical surface area, sulcal depth) as the dependent variables.  
All of the results shown are from a model including age, sex, MRI scanner and software version as fixed 
covariates. Random effects were modeled as genetic relatedness (A) and subject (S) nested within shared 
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family groups (C). All LMMs were run using the publicly available FEMA software package (Parekh et al. 2023), 
which handles voxel- and vertex-wise data and can incorporate a matrix of SNP-derived genetic relatedness. 
 
For the main results, vertex-wise statistical maps present ��, the proportion of residual variance that is 
explained by variance in the random effect of interest. Unthresholded �� maps are presented in the main 
figures to provide a comprehensive description of the continuous distribution of effects. Supplementary Figure 
1 displays the total residual variance, ����	


� , which is the total unexplained variance after accounting for the 
fixed effects in the model (age, sex, scanner, and software). ����	


�  is displayed in units that match the units of 
the phenotype of interest (mm or mm2) and represents the total phenotypic variance that is then partitioned into 
A, C, S, and E components.  
 
Region-of-interest (ROI) analyses 
To visualize the distribution of test statistics by region of interest (ROI), the vertex-level test statistics were 
mapped to the corresponding regions of interest (ROIs) in the Desikan-Kiliany 40 Atlas (Desikan et al. 2006). 
Violin plots were generated to show the distribution of vertex-level effects across all vertices within each ROI 
mask, stratified by hemisphere, to highlight the range of effects within each ROI.  
 
All statistical analyses were conducted using custom code in MATLAB v2020a. FEMA is publicly available on 
GitHub (https://github.com/cmig-research-group/cmig_tools). 

Results 
 
Supplementary Figure 1 presents the total residual variance, ��

���	
, for cortical thickness, cortical surface 
area, and sulcal depth. The total residual variance ��

���	
 represents the phenotypic variance that is 
unexplained by the fixed effects included in our model; ��

���	
 is partitioned into �, �, �, and � components. 
Cortical thickness had a relatively uniform distribution of total residual variance, with the largest variances 
occurring in the temporal pole. Cortical surface area exhibited the largest residual variances in the lateral 
frontal and occipital cortices, with notably lower residual variances occurring in the primary motor cortex, 
primary sensory cortex, medial frontal, and medial temporal cortices. Sulcal depth exhibited the largest range 
in total residual variance, with most regions exhibiting relatively smaller variances whereas the superior parietal 
lobule exhibited larger residual variances bilaterally. Regions with lower residual variances may represent 
portions of the cortex that are genetically conserved, whereas regions with higher residual variance may be 
prone to exhibiting individual differences based on genetic and environmental factors. 
 

 

Common Environment (C)

Additive Genetic (A)

Subject (S)

Proportion of Variance (σ2)
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Figure 1. Additive genetic (A), common environment (C), and subject-specific variance (S) components in cortical surface area, 
presented vertex-wise as a fraction of total residual variance. 

 
Figure 1 presents vertex-wise variance component estimates for cortical surface area as a fraction of total 
residual variance, ��

���	
. The shared environment (�) component accounted for a small proportion of residual 
variance across the whole brain (Fig. 1), mostly limited to the bilateral temporal poles, medial frontal and 
occipital cortices, and parts of the primary motor and primary somatosensory cortices. Supp. Fig. 2 displays 
the distribution of random effects estimates within each region of interest (ROI); � estimates ranged from 0.11 
(supramarginal gyrus) to 0.26 (temporal pole; Supp. Fig. 2). The � component accounted for a larger 
proportion of variance, with the strongest contributions in the medial frontal and occipital cortices, as well as 
the superior frontal gyrus and subregions of the superior temporal and insular cortices (Fig. 1). When grouping 
vertices by ROI, mean � component estimates ranged from 0.28 (entorhinal cortex) to 0.57 (pericalcarine 
cortex; Supp. Fig. 2). Subject-specific variance � accounted for the largest proportion of variance in cortical 
surface area across several regions that were not clearly circumscribed by atlas parcellations, including parts 
of the posterior cingulate, supramarginal, superior parietal and inferior parietal cortices, reflecting that there is a 
substantial amount of variance in cortical surface area that is unexplained by genetic or common 
environmental factors that nonetheless remains stable within subjects over time. After grouping vertices into 
ROIs, the mean � estimates ranged from 0.19 (rostral anterior cingulate cortex) to 0.51 (inferior parietal cortex; 
Supp. Fig. 2). Inspection of the distribution of random effects estimates within each region showed evidence for 
right-left asymmetry in some regions (e.g., the banks of the superior temporal sulcus, the entorhinal cortex, � 
and � components in the parahippocampal cortex, and � in pars orbitalis and pars triangularis). In addition, 
some parcellated regions exhibited wide distributions of vertex-level effect estimates (e.g., posterior cingulate, 
precentral, superior frontal, superior parietal, and superior temporal cortices), reflecting the heterogeneity 
within these regions, whereas others exhibited narrower distributions (e.g., medial orbitofrontal cortex, pars 
opercularis, pericalcarine cortex, and rostral anterior cingulate cortex). 
 
Figure 2 presents vertex-wise variance component results for cortical thickness; ROI-wise results are 
presented in Supp. Fig. 3. The � component accounted for a large proportion of residual variance, with 
particularly strong effects in subregions of the superior frontal and pericalcarine cortices as well as the cuneus, 
and very small areas in the precentral cortex and insula (Fig. 2). After grouping vertices into ROIs, the mean � 
component estimates across all vertices within an ROI ranged from 0.19 (temporal pole) to 0.44 (cuneus; Supp. 
Fig. 3). The � component also accounted for a substantial proportion of variance in several areas, particularly 
in the isthmus of the left cingulate cortex and a larger portion of the right cingulate cortex, as well as portions of 
the superior parietal cortex and the precuneus (Fig. 2). After grouping vertex-level estimates into ROIs, mean � 
estimates across vertices within ROIs ranged from 0.25 (pericalcarine cortex) to 0.42 (isthmus of cingulate 
cortex; Supp. Fig. 3). Similar to cortical surface area, the � component accounted for relatively smaller 
proportions of residual variance across the cortex, with the highest estimates occurring in areas that also 
exhibited strong � effects (e.g, precuneus and parts of superior parietal cortex; Fig. 2). At the ROI level, mean 
estimates for the � component ranged from 0.09 (pars opercularis) to 0.17 (lingual cortex; Supp. Fig. 3). As 
with cortical surface area, there were regions that exhibited right-left asymmetry (e.g. � estimates in the pars 
opercularis and pericalcarine cortex) as well as wide or irregular distributions of vertex-level estimates (e.g., � 
estimates in the supramarginal and transverse temporal cortices). 
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Figure 2. Additive genetic (A), common environment (C), and subject-specific (S) variance components in cortical thickness, presented 

vertex-wise as a fraction of total residual variance. 

Figure 3 presents vertex-wise variance component estimates for sulcal depth. Similar to cortical surface area 
and thickness, the � component accounted for a very small proportion of variance across the whole brain. 
Unlike the prior phenotypes, however, the � effect estimate was also relatively small across most of the brain, 
with substantial effects limited to portions of the posterior cingulate cortex and isthmus of the cingulate cortex, 
as well as a very anterior subregion of the precuneus. Conversely, � accounted for a large proportion of 
variance across the entire cortex, with variance component estimates ranging from 0.34 (temporal pole) to 0.74 
(caudal middle frontal gyrus; Supp. Fig. 4). Areas with lower S estimates were mainly limited to the insula and 
parts of the entorhinal cortex. Once again, we observed regions with apparent right-left asymmetry (e.g., 
lingual cortex, pars triangularis, posterior cingulate cortex), though this phenomenon was most apparent for the 
estimates of the � random effect. We also observed wide and/or irregular distributions of vertex level effects 
within several regions (e.g., A estimates in the precuneus and rostral middle frontal cortex, and S estimates in 
the supramarginal cortex). Supplementary Figure 5 presents the �, �, and � variance components in a single 
summary figure using a red-green-blue color map for ease of interpretation. 
 

Common Environment (C)

Additive Genetic (A)

Subject (S)

Proportion of Variance (σ2)
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Figure 3. Additive genetic (A), common environment (B), and subject-specific (C) variance components in sulcal depth, presented 

vertex-wise as a fraction of total residual variance. 

Discussion 
 
Our analysis extends previous investigations of heritability based on twin data (Maes et al. 2023) and SNP-
derived genetic relatedness data (Shadrin et al. 2021; van der Meer et al. 2021) in multiple ways. First, 
whereas prior heritability estimates used region-of-interest level data(Maes et al. 2023), this analysis 
represents a mass univariate approach in which separate models were run for each vertex of the cortical 
surface, allowing for the estimation of random effects at a more granular level. This fine-grained analysis led to 
the observation of heterogeneous effects even within individual cortical regions. Second, while twin heritability 
studies typically estimate variance components attributable to additive genetic relatedness and shared family, 
this analysis leverages the ABCD Study® longitudinal data to estimate an additional variance component that is 
attributable to subject-specific variance, i.e., the variance that is stable within a given participant over multiple 
study visits. This � component, which can be considered a measure of test-retest reliability independent of 
genetic heritability, accounted for a large proportion of phenotypic variance in all cortical phenotypes studied, 
representing that this phenotype has a large proportion of variance that is not attributable to genetics, common 
family environment, or the fixed effects, but nevertheless remains stable in a given participant.  
 
Compared to a recent ROI-based study using the ABCD Study® twin sample (Maes et al. 2023), our � 
estimates were smaller, though larger than single nucleotide polymorphism (SNP) heritability estimates derived 
from GWAS (Shadrin et al. 2021; van der Meer et al. 2021). This is consistent with prior comparisons of twin 
versus non-twin analyses in the ABCD Study® (Smith et al. 2023).  Notably, compared to classical twin studies, 
the present analysis incorporated the full ABCD Study® sample including siblings and unrelated participants, 
which may lead to narrower confidence intervals when estimating heritability (Smith et al. 2023). Consistent 
with previous findings that heritability estimates tend to be lower for phenotypes measured at the regional level 
compared to global metrics (Maes et al. 2023), and vertex-wise heritability estimates can differ from ROI-based 
estimates (Eyler et al. 2012), the present study provides evidence that genetic contributions to cortical 
structure can vary continuously even within a region of the cortex. In addition, the vertex-level distribution of 
random effects within ROIs confirms that traditional anatomical parcellations do not necessarily match genetic 
parcellations (Chen et al. 2012, 2013). For example, the supramarginal cortex represented an area with widely 
distributed effects estimates for all three phenotypes studied, indicating that this region of the cortex may 
contain several subregions with different amounts of genetic and environmental influence.  
 
This analysis also extends prior heritability estimation by employing a model that incorporated the random 
effect of subject �. Compared to classical twin models that include additive genetic variance, common 

Common Environment (C)

Additive Genetic (A)

Subject (S)

Proportion of Variance (σ2)
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environment, and one � component encompassing both unique environmental influences and measurement 
error (see Neale and Maes 2004), this analysis allows us to partition unshared variance between siblings into 
portions that are stable within participants (analogous to test-retest reliability) versus an � component that in 
our model reflects the unshared variance that is not stable – potentially representing change within a 
participant over time and/or measurement error. Importantly, because � was included in a model that also 
contains additive genetic contributions (�), the � component represents variance that differs between identical 
twins while remaining stable for a given participant over time, akin to a “cortical fingerprint”. This variance 
component was large in several distinct regions of the brain for each phenotype assessed, indicating that 
similar to genetic heritability (Panizzon et al. 2009), subject-specific variance has differential influences on 
cortical surface area, cortical thickness, and sulcal depth. The � component for cortical surface area was 
particularly strong in a portion of the occipitoparietal cortex that included parts of the supramarginal, superior 
parietal and inferior parietal cortices. On the other hand, the � component for cortical thickness was largest in 
parts of the cingulate cortex, superior parietal cortex, and the precuneus. Notably, sulcal depth exhibited very 
large � estimates globally with few exceptions. This “fingerprint”-like phenomenon is particularly interesting 
given the associations that have previously been found between sulcal depth and aging (Rettmann et al. 2006) 
as well as mental health (Shin et al. 2022). These results imply that all three phenotypes, and particularly 
sulcal depth, are subject to a substantial amount of influence from environmental factors that are not shared 
among twins or siblings, which may include random influences during development or unique experiences that 
influence individual patterns of cortical maturation (Tamnes et al. 2017). 
 
The present study confirms and extends prior literature estimating heritability of cortical phenotypes in 
adolescents (Maes et al. 2023), using a novel statistical package to leverage the full ABCD Study® sample 
across multiple timepoints. The results of this large-scale analysis are intended to provide benchmarks for the 
vertex-wise estimation of variance components including not only the standard ACE model but also the 
subject-specific variance component, which provides and estimate for the component of test-retest reliability 
that is not accounted for by shared genetics and family environment. The ABCD Study® cohort is a diverse 
adolescent sample that was recruited to reflect the adolescent population in the United States; it is possible 
that the results of this analysis may not generalize to populations with different genetic and cultural 
backgrounds (e.g., Fan et al. 2023). In addition, while the mixed-effects models used in this work remain 
agnostic regarding the specific sources of genetic influence, future work should aim to incorporate genomic 
data to better understand the specific longitudinal contributions of genetic variation to adolescent brain 
development.  
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