

Persistent effects of intramammary ceftiofur treatment on the gut microbiome and antibiotic resistance in dairy cattle

Karla A. Vasco¹, Samantha Carbonell¹, Rebekah E. Sloup¹, Bailey Bowcutt¹, Rita R. Colwell^{2,3},
Karlis Graubics³, Ronald Erskine⁴, Bo Norby⁴, Pamela L. Ruegg⁴, Lixin Zhang^{1,5*},
Shannon D. Manning^{1*}

Michigan State University, Departments of ¹Microbiology and Molecular Genetics, ⁴Large Animal Clinical Sciences, and ⁵Epidemiology and Biostatistics, E. Lansing, MI 48824

²University of Maryland, Institute for Advanced Computer Studies, College Park, Maryland 20742

³Cosmos ID, Inc., Germantown, Maryland 20874

E-mail addresses:

vascokar@msu.edu; wengerts@msu.edu; slouprep@msu.edu; bowcuttb@msu.edu;
rcolwell@umd.edu; karlis.graubics@cosmosid.com; erskine@msu.edu; norby@msu.edu;
plruegg@msu.edu; lxzhang@msu.edu; mannin71@msu.edu

*Co-corresponding authors: mannin71@msu.edu; lxzhang@msu.edu

1 ABSTRACT

2 Intramammary (IMM) ceftiofur treatment is commonly used in dairy farms to prevent mastitis,
3 though its impact on the cattle gut microbiome and selection of antibiotic-resistant bacteria has
4 not been elucidated. Herein, we enrolled 40 healthy dairy cows after lactation: 20 were treated
5 with IMM ceftiofur (Spectramast®DC) and a non-antibiotic internal teat sealant (bismuth
6 subnitrate) and 20 (controls) received only bismuth subnitrate. Fecal samples were collected
7 before (day -1) and after treatment (weeks 1, 2, 3, 5, 7, and 9) for bacterial quantification and
8 metagenomic next-generation sequencing. Overall, 90% and 24% of the 278 samples had Gram-
9 negative bacteria with resistance to ampicillin and ceftiofur, respectively. Most of the cows
10 treated with ceftiofur did not have an increase in the number of resistant bacteria; however, a
11 subset (25%) shed higher levels of ceftiofur-resistant bacteria for up to 2 weeks post-treatment.
12 At week 5, the antibiotic-treated cows had lower microbiome abundance and richness, whereas a
13 greater abundance of genes encoding extended-spectrum β -lactamases (ESBLs), CfxA, ACI-1,
14 and CMY, was observed at weeks 1, 5 and 9. Moreover, the contig and network analyses
15 detected associations between β -lactam resistance genes and phages, mobile genetic elements,
16 and specific genera. Commensal bacterial populations belonging to Bacteroidetes most often
17 possessed ESBL genes followed by members of Enterobacteriaceae. This study highlights
18 variable, persistent effects of IMM ceftiofur treatment on the gut microbiome and resistome in
19 dairy cattle. Antibiotic-treated cattle had an increased abundance of specific taxa and genes
20 encoding ESBL production that persisted for 9 weeks, while fecal shedding of ESBL-producing
21 Enterobacteriaceae varied across animals. Together, these findings highlight the need for
22 additional studies that identify factors linked to shedding levels and the dissemination and
23 persistence of resistance determinants on dairy farms in different geographic locations.

24 INTRODUCTION

25 Globally, multi-drug resistant (MDR) bacteria were estimated to cause 4.95 (3.62-6.57)
26 million human deaths a year, with third-generation cephalosporin-resistant *Escherichia coli* and
27 *Klebsiella pneumoniae* among the leading causes of MDR deaths worldwide [1]. These resistant
28 bacterial populations are also considered to be the most concerning and economically impactful
29 antimicrobial-resistant threats in the U.S. [2]. Enterobacteriaceae with resistance to third-
30 generation cephalosporins carry genes encoding extended-spectrum β -lactamase (ESBL)
31 production, which also confer resistance to penicillins and monobactams. Hence, use of third-
32 generation cephalosporins to treat human and for livestock production may contribute to the
33 emergence of ESBL-producing Enterobacteriaceae. In the U.S, less than 1% of all antibiotics
34 used in livestock correspond to cephalosporins, with the majority of use (80%) occurring in
35 cattle [3]. At present, two cephalosporins are approved for use in dairy cattle, namely cephapirin
36 (a first generation cephalosporin) and ceftiofur (a third-generation cephalosporin) [3, 4].
37 Ceftiofur is approved for use only via the parenteral and intramammary route for therapeutic
38 indications including mastitis, metritis, respiratory disease, and foot rot [4].

39 Mastitis, an infection of the mammary gland, is the disease with the highest incidence in
40 dairy cattle [5]; hence, ~90% of dairy farms use intramammary (IMM) β -lactam antibiotics
41 during the dry-off period to treat and prevent mastitis [5-7]. More specifically, a study of 37
42 Wisconsin dairy farms reported ceftiofur to be the most common β -lactam antibiotic used
43 intramammarily to treat clinical mastitis and for prophylactic dry-cow therapy [5]. Ceftiofur has
44 bactericidal activity against both Gram-negative and Gram-positive bacterial populations, low
45 toxicity potential, and efficient penetration of most body fluids. Consequently, β -lactams are also
46 used to treat a variety of pathologies in humans such as septicemia, urinary tract infections,

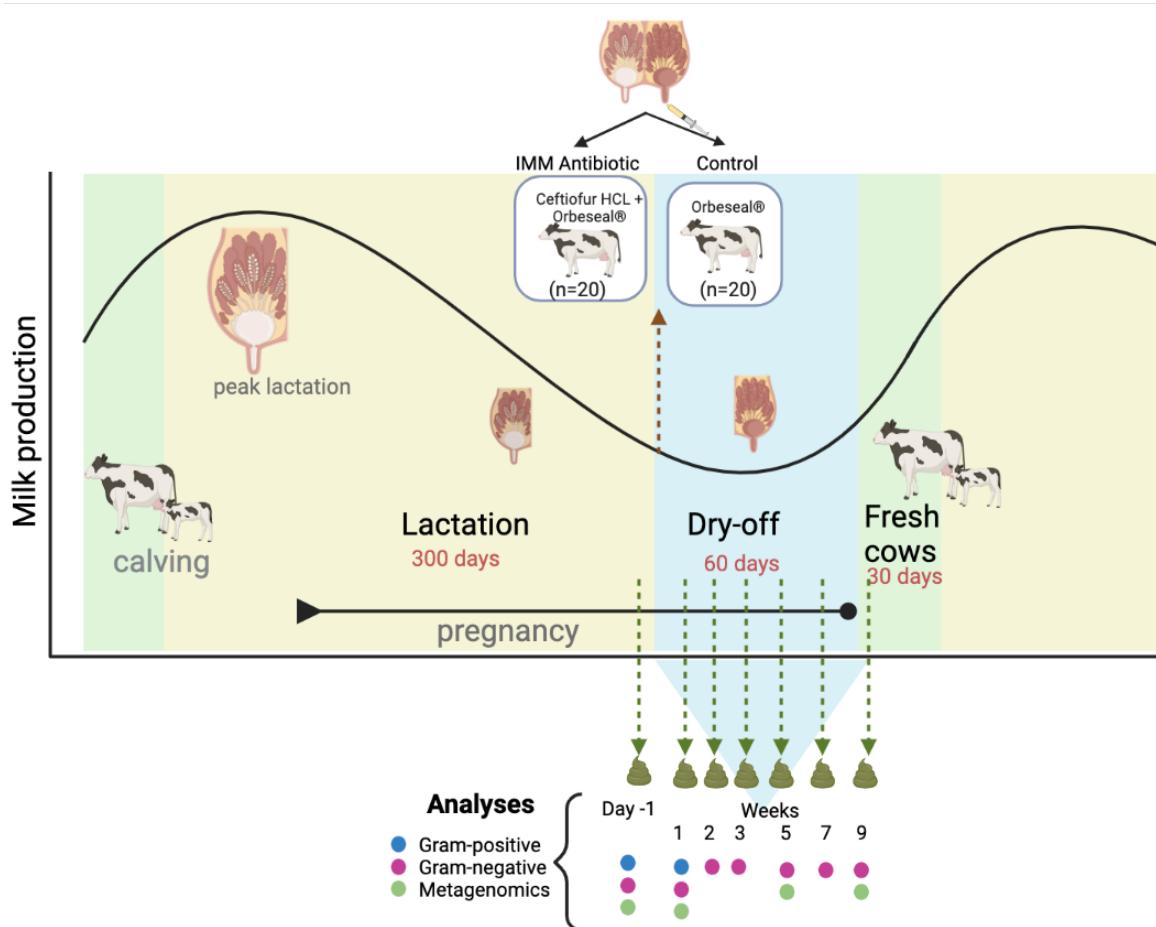
47 respiratory infections, meningitis, and peritonitis. Although cephalosporins like ceftiofur are
48 mainly excreted in the urine (61-77%), they have been detected in the biliary system (~30%) [8],
49 ileum, and colon (20% of plasmatic concentration) [9]. However, the effects of IMM ceftiofur
50 treatment on the fecal microbiome and resistome, or collection of antibiotic-resistance genes,
51 have not yet been determined.

52 A prior study using mathematical modeling predicted that parenteral ceftiofur therapy
53 would reduce the total concentration of *E. coli* in cattle, but would lead to an increase in the
54 fraction of ESBL-resistant *E. coli* [10]. Despite this prediction, several prior studies have not
55 observed a correlation between ceftiofur treatment and an increase in the emergence of ESBL-
56 producing bacterial populations [9, 11, 12]. Although one study of cows receiving systemic
57 ceftiofur treatment in early lactation observed an increase in the abundance of resistant
58 Enterobacteriaceae for 7-8 days, the increase was temporary and was not observed at 29-35 days
59 [13]. Similarly, in feedlot cattle, the combined treatment of chlortetracycline and ceftiofur was
60 linked to an increase in the number of resistant *E. coli* and ESBL genes [14], suggesting co-
61 selection of these antibiotic resistance genes (ARGs). Because of these prior associations, we
62 conducted a longitudinal study of dairy cattle to determine how IMM ceftiofur treatment impacts
63 the gut microbiome and abundance of antibiotic resistant bacterial populations through the dry
64 period and early part of lactation.

65

66 METHODS

67 Study design and sampling scheme


68 The aim of this study was to assess the effects of IMM ceftiofur hydrochloride (CHCL)
69 treatment on the gut microbiome of dairy cows at dry-off, the last milking before the dry period

70 (Figure 1). The study was conducted in 2019 (June-November) at the Dairy Cattle Teaching and
71 Research Center at Michigan State University, which contained ~230 lactating dairy cows. Forty
72 healthy Holstein cows were enrolled at dry-off if they met the following inclusion criteria: no
73 antibiotic treatment during the last 90 days of lactation and a somatic cell count (SCC) of
74 <150,000 cells/mL using the most recent Dairy Herd Improvement Association (DHIA) test. The
75 cows were randomly assigned to one of two treatment groups. The antibiotic-treated group ($n =$
76 20) received 4 IMM infusions (1 per mammary gland) that each contained 500 mg ceftiofur
77 (SpectramastDC®; Zoetis Animal Health) after the last milking and an internal IMM teat sealant
78 containing bismuth subnitrate (Orbeseal®; Zoetis Animal Health). The control group received
79 only the internal IMM teat sealant without the SpectramastDC®. Cows were randomly assigned
80 to treatment group and were matched based on parity and monthly milk production.

81 Fecal grab samples were collected using clean obstetric sleeves on the last day of
82 lactation, which corresponded to the day prior to IMM treatment (Day -1). The matched cows
83 were re-sampled simultaneously at weeks 1, 2, 3, 5, and 7 during the dry-off period and again as
84 fresh cows at week 9 (Figure 1). Each sample was homogenized by hand massage in a whirl-pak
85 bag and immediately aliquoted for bacterial culture and DNA extraction for metagenomic next-
86 generation sequencing (mNGS). For the latter, 0.25 g of feces per sample was preserved at -80°C
87 in 750 ul of 190 Proof ethanol. Data about health status, ambient temperature, and diet were
88 recorded at each time point for future analyses. Animals from both treatment groups were given
89 the same diet formulation at each sampling, which corresponded to their physiological and
90 productive stage at the time. All researchers were blinded to treatment status during sample
91 collection and the subsequent laboratory analyses.

92

93 **Figure 1. Study design showing the production stage and sampling time points for all**
94 **40 Holstein cows.** Twenty dairy cattle received intramammary ceftiofur (IMM Antibiotic)
95 and 20 matched dairy cattle receiving no IMM antibiotic treatment (Control). Cows were
96 matched based on parity and monthly milk production at Day -1, which corresponds to the
97 last day of lactation and the day prior to IMM treatment. Matched cows were sampled
98 simultaneously following treatment at weeks 1, 2, 3, 5, and 7 during the dry-off period and
99 again as fresh cows at week 9 (fresh). All cows remained healthy throughout the study.
100 Figure created with BioRender.

116 **Quantification of antibiotic-resistant bacteria**

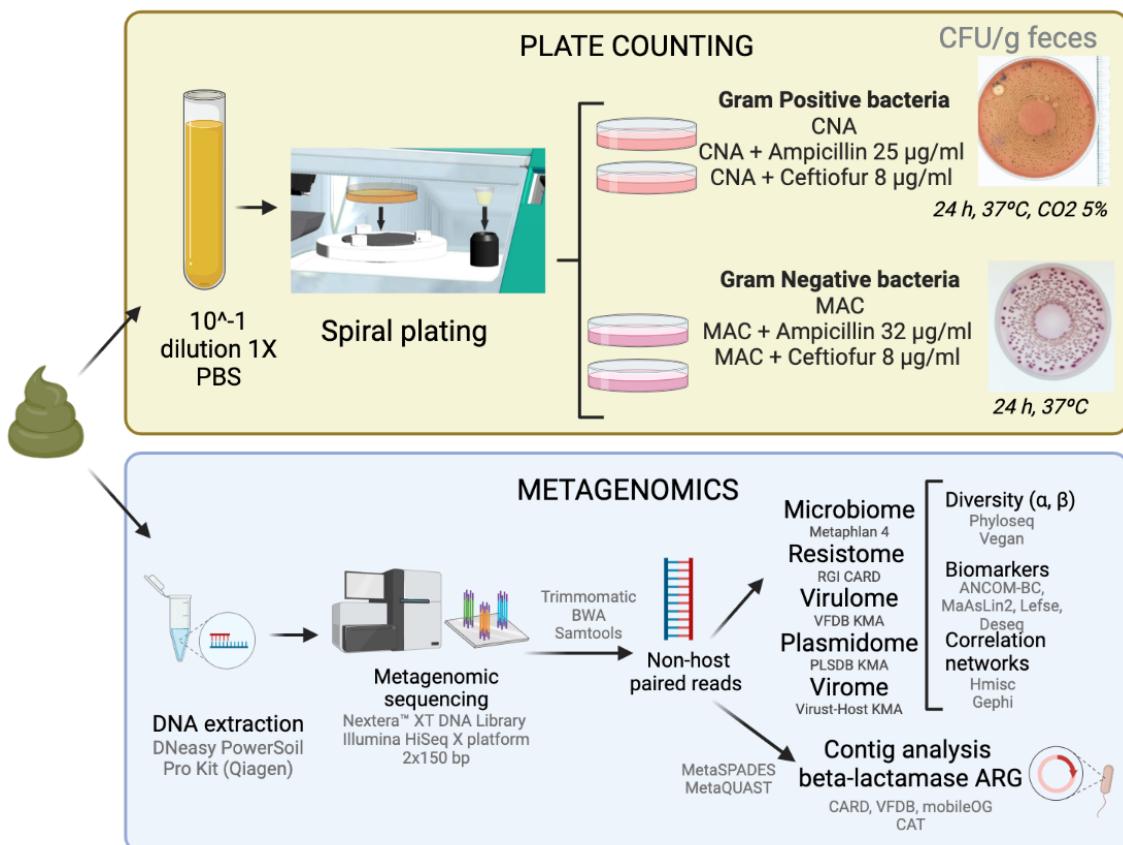
117 Total bacterial counts were quantified and presented as colony-forming units (CFUs) per
118 gram (g) of feces. Moreover, the percentage of ceftiofur- and ampicillin-resistance was
119 quantified for Gram-positive bacteria on day -1 and week 1 as well as Gram-negative bacteria on
120 day-1 through week 9. Fecal samples were diluted at a concentration of 10^{-1} using 1 g of feces
121 and 9 ml of 1X PBS and plated in duplicate on selective media using a spiral autoplate (Neutec
122 Group Inc.). The media for Gram-negative bacteria was MacConkey lactose agar (MAC;
123 Criterion®), whereas Columbia Nalidixic Acid agar (CNA; BD Difco ®) with 5% sheep blood
124 was used for Gram-positive bacteria. Amphotericin B (4 μ g/ml) was also added to inhibit fungal
125 growth along with varying concentrations of antibiotics. For both Gram-negative and -positive
126 bacteria, the ceftiofur (Cef) concentration was 8 μ g/ml [15], while 32 μ g/ml and 25 μ g/ml of
127 ampicillin (Amp) were used for Gram-negative and Gram-positive bacteria, respectively, per the
128 Clinical and Laboratory Standards Institute (CLSI) guidelines [16]. The plates were incubated at
129 37°C for 24 hours under aerobic conditions (MAC) or in the presence of 5% carbon dioxide
130 (CNA) (**Figure 2**). Media controls were plated to test each batch of MAC for the ability to
131 inhibit Gram-positive bacteria with *Staphylococcus aureus* ATCC 29213 and *Enterococcus*
132 *faecalis* ATCC 29212.

133 The antibiotic concentration on MAC that inhibited susceptible (S) bacteria and enabled
134 the growth of resistant (R) strains was tested with the following control strains: *E. coli* ATCC
135 25922 (Amp^S, Cef^S), *E. coli* ATCC 35218 (Amp^R, Cef^S), and three ESBL-producing *E. coli*
136 strains (Amp^R, Cef^R) obtained from clinical samples in a prior study [17]. CNA media controls
137 included ATCC 29212 (Amp^S, Cef^R), ATCC 29213 (Amp^S, Cef^S), *Listeria monocytogenes*
138 ATCC 3382 (Amp^S, Cef^R), *L. monocytogenes* ATCC 19115 (Amp^S, Cef^R), *Streptococcus*

139 *pneumoniae* ATCC 49619 (Amp^S, Cef^S), *Streptococcus equi* subsp. *zooepidemicus* ATCC
140 700400 (Amp^S, Cef^S), and *Streptococcus agalactiae* strain COH1 (Amp^S, Cef^S). Inhibition of
141 Gram-negative bacteria was tested with *E. coli* ATCC 25922 and the ESBL-producing *E. coli*
142 strains. Finally, biochemical identification of Gram-negative ceftiofur resistant strains was done
143 with oxidase tests (OxiStripsTM, Hardy Diagnostics) and Chromocult[®] Coliform agar (Merck
144 KGaA, Darmstadt, Germany) to test β-glucuronidase and β-galactosidase activity.

145 Paired non-parametric tests, Wilcoxon and Friedman, were used to compare the number
146 of CFU/g and proportion of resistant bacteria between treatment groups and time points. These
147 paired tests were necessary to account for repeated measures within each animal. In addition,
148 linear mixed-effects models and subsequent analysis of variance (ANOVA) were applied to
149 determine the impact of diet, days after treatment and ambient temperature (fixed effects) by
150 controlling by individuals (random effect) in the bacterial counts with the R package nlme v.3.1-
151 161 [18].

152


153 **DNA isolation and metagenomic next generation sequencing (mNGS)**

154 Fecal DNA from samples collected on day -1 and weeks 1, 5, and 9, were selected for
155 DNA extraction and sequencing. The samples were centrifuged at 16,000 rpm for 5 minutes at
156 4°C to remove the supernatant and residual ethanol, which was followed by two washes with 1
157 ml of molecular grade 1X PBS that was removed as done in the prior step. The DNeasy
158 PowerSoil Pro Kit (Qiagen, Germantown, MD, USA) was used to extract DNA from each
159 sample according to the manufacturer's instruction followed by a wash step using the C3
160 solution to improve the DNA quality ratio (260/230). Genomic DNA was measured using a
161 Qubit (1277.3 ng ± 310.5 ng of dsDNA) and sent to CosmosID (Rockville, MD, USA) for

162 mNGS. Libraries were prepared with the Nextera™ XT DNA Library Preparation Kit (Illumina,
163 San Diego, CA, USA) and sequenced on the Illumina HiSeq X platform 2x150 bp (**Figure 2**).
164 Paired-raw sequences were processed with Trimomatic v.0.39 [19] to remove low-quality
165 reads and adapters used for Illumina sequencing. BWA v.0.7.15 [20] and Samtools v.1.4.1 [21]
166 removed bovine DNA reads (*Bos taurus*, ARS-UCD1.2). Quality control check of the sequences
167 was done with FastQC [22].

168

169 **Figure 2. Summary of methods used for the quantification of Gram-positive and Gram-
170 negative bacteria and metagenomics.** The goal of these analyses was to identify the effects of
171 intramammary (IMM) ceftiofur treatment on the cattle fecal microbiome using both culture-
172 based methods and sequencing. Figure created with BioRender.com

173 **Microbiome and resistome characterization**

174 Non-host paired reads were analyzed using the Metaphlan 4 software [23] and the
175 mpa_vJan21_CHOCOPhAnSGB_202103 database to identify taxonomic features (**Figure 2**).
176 The minimum read length and mapping quality value was set to 60 bp, and -1, respectively. The
177 robust average quantile value was 0.1, while the Bowtie2 presets were “very-sensitive-local”.
178 The normalized abundance score for each taxonomic feature was calculated by dividing the
179 number of reads by the number of genome equivalents, which were determined by dividing the
180 total number of base pairs by the estimated average genome size with MicrobeCensus [24].

181 The R package Phyloseq v.1.38 [25] was used to analyze alpha and beta diversity of the
182 taxonomic profiling. The alpha diversity was calculated using the number of reads and measured
183 with the Shannon index and Observed index, or richness. Paired Wilcoxon tests were used to
184 compare alpha diversity estimates between treatment groups per time point, which accounts for
185 repeated measures. Linear mixed-effects models were also used as described above for
186 quantifying antibiotic-resistant bacteria. Comparisons were only made between treatment groups
187 within each time point. Normalized abundances were used to calculate the beta diversity based
188 on Bray-Curtis dissimilarities. Permutational multivariate analysis of variance (PERMANOVA)
189 with 999 permutations and principal coordinate analyses (PcoA) were performed to compare the
190 beta diversity between treatments and time points.

191 To characterize the resistome, the Resistance Gene Identifier (RGI) v.6.0.0 software [26]
192 was used to analyze non-host paired metagenomic reads based on homology models. The
193 Comprehensive Antibiotic Resistance Database (CARD) v.3.2.5 was aligned with RGI bwt using
194 KMA with 20 bp k-mers as seeds. The settings specified the use of each query sequence to match
195 only one template; results were reported at the drug class and allele levels. Resistance

196 determinants based on SNP models, such as those identified with the rRNA, protein variant, and
197 protein overexpression models were excluded. The depth of each ARG allele was normalized by
198 dividing by the number of genome equivalents. Alpha and beta diversity were also measured.

199 Finally, to identify plasmids, virulence factors, and virus sequences, the PLSDB (updated
200 on 06-23-2020) [27], VFDB setB (12-08-2022) [28], and Virus-Host (11-29-2022) [29]
201 nucleotide databases were used. The k-mer aligner KMA v.1.4.3 [30] was employed with 20 bp
202 k-mers, requiring each query sequence to match only one template. Normalization and diversity
203 analyses were also performed.

204

205 **Biomarker identification**

206 The analysis of differentially abundant features was carried out with three different
207 approaches: 1) Linear Discriminant Analysis (LDA) Effect Size (LefSe), which identifies the
208 effect relevance of a differential feature based on an algorithm that includes non-parametric tests
209 and LDA [31]; 2) Analysis of compositions of microbiomes with bias correction (ANCOM-BC),
210 which uses linear regression models and corrects for bias induced by sample differences [32];
211 and 3) Microbiome Multivariable Associations with Linear Models (MaAsLin2) [33] that uses
212 generalized linear and mixed models. A consensus approach was used to ensure robust
213 identification of differentially abundant features; only differentially abundant features ($P < 0.05$)
214 identified with two or more of the three pipelines were reported.

215

216 **Characterization of β -lactamase carrying contigs**

217 Metagenomic sequences were assembled using metaSPADES [34] and evaluated with
218 MetaQuast [35]. The proportion of reads mapping a contig was identified with BWA v.0.7.15

219 [20] and Samtools v.1.4.1 [21]. Prodigal (PROkaryotic Dynamic programming Gene-finding
220 Algorithm) [36] was used to translate contigs into amino acid sequences, which were then
221 mapped to the protein databases CARD [26], VFDB [28], and mobileOG [37] using DIAMOND
222 blastp [38] with a minimum sequence identity of 80%. Contigs carrying β -lactamases that confer
223 resistance to cephalosporins were extracted with seqtk and taxonomically classified using the
224 contig annotation tool (CAT) v.5.2.3 [39].

225

226 **Network analysis**

227 Correlations between ARGs, plasmids, viruses, virulence factors, and bacterial genera
228 were identified by calculating Spearman's correlation coefficients; only coefficients (ρ) greater
229 than 0.75 and p -values < 0.01 were included in the networks. Significant correlations were
230 analyzed in R v.4.1.2. with the package Hmisc v.4.7-2 [40] and Gephi v.0.9.2 [41]. Network
231 statistics including the degree and betweenness centrality were calculated in Gephi. The
232 comparisons of centrality measures among β -lactam ARGs were analyzed between treatment
233 groups and time points using non-parametric statistics.

234

235 **RESULTS**

236

237 **Characteristics of the study population and sampling scheme**

238 In this longitudinal study, 40 cows were enrolled at the end of lactation and had an
239 average of 266.24 days in milk (DIM). Animals were matched based on parity and monthly milk
240 production and pairs were randomly selected for the treatment or control group. No difference in
241 the DIM was observed between the antibiotic-treated ($mean = 262.69$) and control ($mean =$

242 269.59) groups. Mastitis was ruled out in these cows as the somatic cell counts (SCC) in milk
243 was an average of 34,8718 +/- 23,602 cells/mL (antibiotic group *mean* = 35,300 cells/mL;
244 control group *mean* = 34,4211 cells/mL). Cows received four diets that corresponded to their
245 lactation phase including maintenance (day -1), dry (weeks 1-5), close-up (week 7), and fresh
246 (week 9). All cows were pregnant and seemingly healthy during the study with most giving birth
247 around the ninth week after dry-cow therapy. Fecal samples were collected from all animals
248 through the 9-week period except for one cow in the antibiotic group. This cow had a C-section
249 in week 9 and hence, a final sample was not obtained. Because sampling began in the summer
250 and ended in the fall, the temperatures gradually decreased over the course of the study.

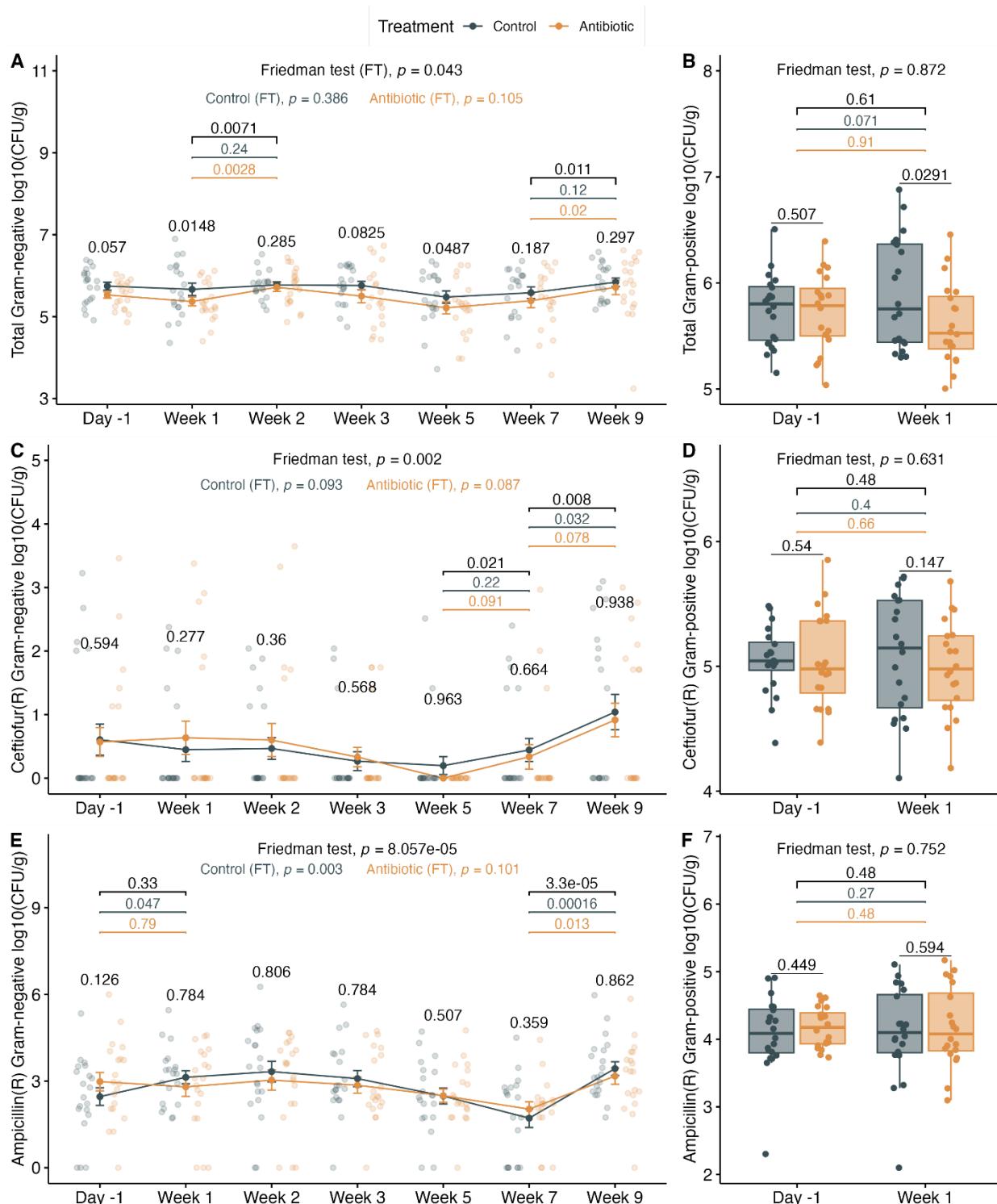
251

252 **Bacterial quantities and phenotypic resistance levels vary across samples and treatments**

253 On average, the total number of Gram-negative bacterial colony forming units (CFUs)
254 per gram of sample was 7.88×10^5 ($\pm 9.72 \times 10^5$), which was significantly lower in the ceftiofur-
255 treated cows than the controls ($P = 0.003$). By contrast, the average total Gram-positive CFUs
256 per gram of sample was 9.11×10^5 ($\pm 1.16 \times 10^5$), which was not significantly different between
257 treatment groups ($P = 0.127$).

258 Variation in total bacterial counts was also observed at different time points throughout
259 the sampling period (**Figure 3A**). For instance, lower total Gram-negative bacterial counts were
260 observed in the antibiotic-treated cows one week ($P = 0.0148$) and five weeks ($P = 0.0487$)
261 following treatment, but not at weeks 2, 3, 7, or 9 ($P > 0.05$). For the Gram-positive bacteria,
262 significantly higher counts were recovered in the control animals relative to the ceftiofur-treated
263 animals one week after IMM treatment ($P = 0.029$; **Figure 3B**). Although a lower abundance of
264 Gram-negative CFUs was observed one day before treatment (Day -1) in the antibiotic-treated

265 (mean = 4.41×10^5 CFUs) versus control cows (mean = 8.25×10^5 CFUs), this difference was not
266 significant ($P = 0.057$). No difference was observed in the Gram-positive bacterial counts
267 between Day -1 and week 1 within treatment groups ($P > 0.05$) as well. Importantly, linear
268 mixed-effects models revealed that the number of Gram-negative bacteria was not influenced by
269 treatment ($P = 0.32$) but by changes in diet ($P = 0.02$), particularly in the amount of
270 metabolizable energy ($P = 0.002$). The interaction between days after treatment and ambient
271 temperature was also significant ($P = 0.002$), which was higher and lower in week 9,
272 respectively. Such findings indicate that factors other than IMM ceftiofur treatment (e.g., diet,
273 lactation phase, and temperature) impact the abundance of Gram-negative bacteria in cattle feces.


274 The number and percent of Gram-negative and Gram-positive bacterial populations with
275 phenotypic resistance to ampicillin and ceftiofur were also determined. Notably, Gram-positive
276 bacteria with resistance to both ampicillin and ceftiofur were present in 100% of the samples
277 from both antibiotic-treated and control animals. In comparison, the percentage of samples with
278 Gram-negative bacteria with resistance to ampicillin and ceftiofur was 90% and 24%,
279 respectively. This difference, however, was not significant between the antibiotic-treated and
280 control cows ($P > 0.69$).

281 Regardless of treatment status, significantly more Gram-negative bacteria were resistant
282 to ampicillin ($2.76\% \pm 10.60\%$) than ceftiofur ($0.02\% \pm 0.09\%$) ($P < 2.2e-16$). Comparatively, a
283 greater proportion of Gram-positive bacteria were resistant to ceftiofur ($28.16\% \pm 21.82\%$)
284 compared to ampicillin ($4.81\% \pm 6.06\%$) ($P < 2.2e-16$). Considerable differences were also
285 observed in the percentage of Gram-negative bacteria with resistance to ampicillin ($P = 0.001$)
286 and ceftiofur ($P = 0.0015$) across animals at the different time points (**Supplemental Figures**
287 **S1A and S1B**). Among the samplings, the number of ampicillin resistant Gram-negative bacteria

288 was significantly higher in the control group at weeks 1 ($P = 0.041$) and 2 ($P = 0.021$) compared
289 to Day -1, but no differences were observed in the antibiotic-treated group ($P > 0.3$) (**Figure 3E**).
290 Intriguingly, the total number of Gram-negative bacteria and the number of ampicillin resistant
291 Gram-negative colonies increased at week 9 during pre-calving ($P < 0.05$) in both the treatment
292 groups (**Figures 3C and 3E**). The number of Gram-negative bacteria with resistance to ceftiofur
293 was also significantly higher in both groups at week 9 compared to weeks 5 and 7 ($P < 0.006$),
294 which was also true for Gram-negatives resistant to ampicillin ($P < 0.01$). For the Gram-positive
295 bacteria, the proportion with ampicillin resistance was also significantly higher in cows treated
296 with ceftiofur ($P = 0.0413$) compared to controls (**Supplemental Figure S1D**). No difference,
297 however, was observed in the quantity of Gram-positive CFUs with resistance to ceftiofur and
298 ampicillin between treatment groups (**Figures 3D and 3F**).
299

300 **Figure 3. Number of bacterial colony-forming units (CFUs) per gram of feces.** Total
301 number (\log_{10} CFUs/g) of **A**) Gram-negative bacteria; **B**) Gram-positive bacteria; ceftiofur
302 resistant **C**) Gram-negative, and **D**) Gram-positive bacteria; and ampicillin-resistant **E**)
303 Gram-negative and **F**) Gram-positive bacteria with (orange) and without (gray)
304 intramammary ceftiofur treatment. Numbers are plotted before (Day -1) and after treatment
305 for Gram-negative bacteria through 9 weeks and Gram-positive bacteria at 1 week. Line
306 plots show means and standard error bars with dots showing sample counts. Boxplots
307 indicate the median, lower, and upper quartiles, and the whiskers are extreme values in the
308 distribution. P-values were calculated with a paired Wilcoxon test to compare treatment
309 groups within a sampling point. The per animal variability over time was calculated with the
310 Friedman test (FT), which is shown per treatment group for Gram-negative bacteria.

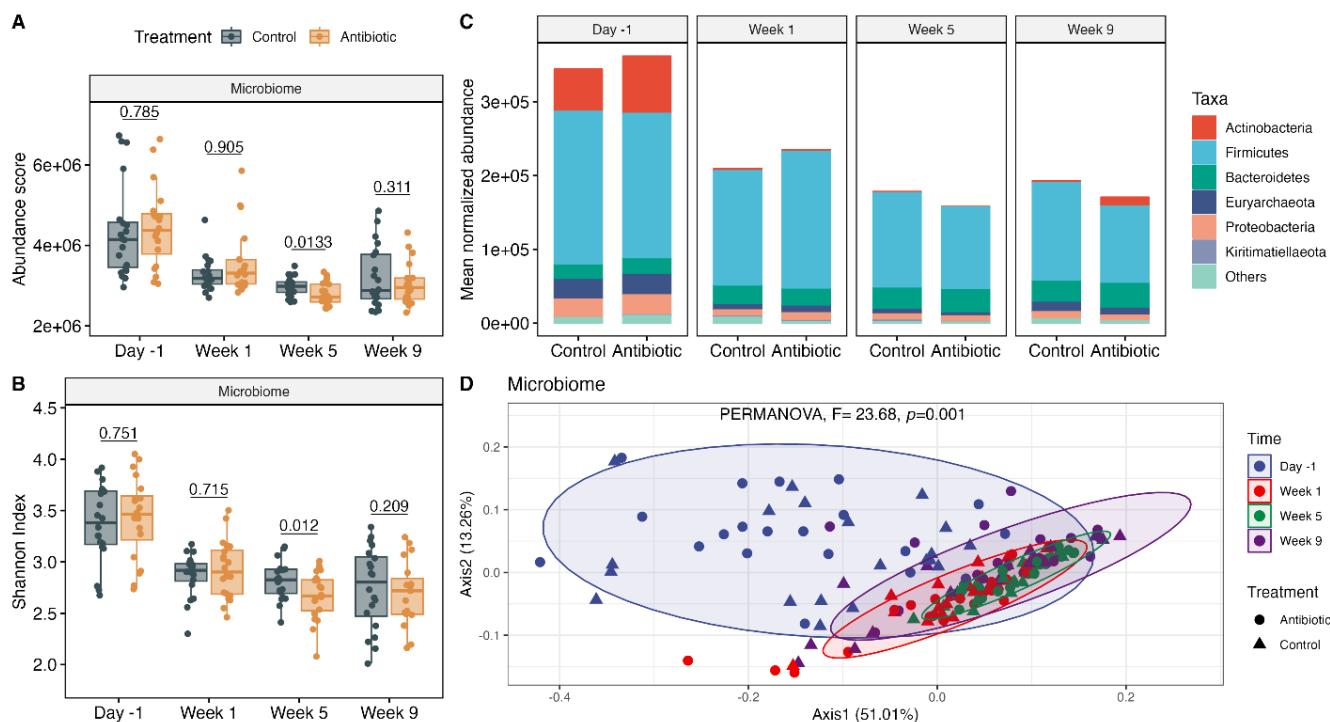
311 Significant p-values between sampling points are shown for all animals (black), control
 312 (grey), and antibiotic-treated (orange) cows.
 313

314 **Metagenomic sequencing metrics**

315 The metagenomic composition of cattle feces was analyzed for a total of 159 samples
316 collected one day prior to treatment (day -1) and at weeks 1, 5, and 9 post-treatment. DNA
317 extractions were performed in 13 batches by one individual using the same protocol. Fecal
318 samples were randomly selected from both the ceftiofur-treated and control animals at the four
319 time points for DNA extractions. The DNA library preparations and sequencing were performed
320 in a single batch, except for one sample that was re-sequenced because of quality issues. The
321 average number of reads (151 bp) per sample was 5.74 (± 1.1) million, and no difference was
322 observed in this number between treatment groups ($P = 0.11$) (**Table 1**). In week 5, however,
323 samples from the antibiotic-treatment group had a lower number of reads ($P = 0.035$)
324 (**Supplemental Figure S2**). The mean proportion of duplicate sequences was 11.36% (± 2.25),
325 while the GC content was 48.00% (± 0.67) and 9.23% (± 1.41) had failed sequences.

326 After quality trimming, approximately 4,211.06 (± 763.37) sequences were dropped per
327 sample, corresponding to 0.07% (± 0.01) of the raw reads. On average, 21.42% of the reads
328 corresponded to bovine DNA. No differences were identified between treatments in the number
329 of non-host paired reads ($P = 0.129$). However, cows treated with ceftiofur had a significantly
330 lower number of non-host reads in week 5 ($P = 0.041$), but not in the number of genome
331 equivalents ($P = 0.062$) (**Supplemental Figure S2**). The proportion of microbial taxa identified
332 with Metaphlan 4 corresponded to 11.95% of the non-host reads, which varied significantly over
333 time showing lower abundance in samples taken during the dry-off (weeks 1 – 5) and fresh
334 (week 9) periods as compared to late lactation (day -1). The assembly's length was also affected
335 by the time (Table 1).

336


337 **Taxonomic profiling reveals differences across lactation phases**

338 The microbiome was dominated by bacteria (92.29%), archaea (6.25%), eukaryotes
339 (1.42%), and viruses (0.03%). The normalized abundance of microorganisms was significantly
340 higher during the late lactation period (Day -1) compared to the dry-off and pre-calving periods
341 ($P < 0.001$) (**Figure 4A**). Linear-mixed effects models were utilized to determine the
342 contributing factors. In this analysis, lactation phase ($P = 2.07\text{e-}07$) and inclusion of a higher
343 amount of grain in the diet prior to dry-off ($P = 0.03$) were associated with the observed
344 differences in microbial abundance. Although environmental temperature did not significantly
345 impact the taxonomic abundance ($P = 0.87$), differences in Shannon diversity were observed
346 over the sampling period ($P = 2.77\text{e-}10$). The most diverse communities were detected before
347 dry-cow therapy (Day -1) (**Figure 4B**). When comparing antibiotic-treated versus control cows,
348 the abundance and alpha diversity of taxa were only significantly lower in week 5 ($P = 0.01$).

349 Significant changes in the bacterial composition were also detected over the sampling
350 period as visualized in a relative abundance plot (**Figure 4C**) and a Bray-Curtis dissimilarity
351 ordination (PERMANOVA, $F = 23.68$, $P = 0.001$) (**Figure 4D**). The day before dry-off (Day -1)
352 was characterized by a higher abundance of Actinobacteria, Firmicutes, Euryarchaeota and
353 Proteobacteria compared to weeks 1, 5, and 9. Stratifying by treatment status detected several
354 differences in taxa abundance. Cows treated with ceftiofur, for instance, had a higher abundance
355 of Ruminococcaceae and a lower abundance of *Romboutsia* and Rickenellaceae one week after
356 treatment compared to the control group ($P < 0.05$) (**Supplemental Figure S3**). At week 5,
357 however, a lower abundance of several taxa including families Ruminococcaceae,
358 Lachnospiraceae, and Methanobacteriaceae, were detected in the antibiotic-treated cows.

359 **Figure 4. Microbiome diversity and composition before (Day -1) and 1, 5, and 9 weeks**
360 **after dry-cow therapy. A)** Normalized abundance and **B)** Shannon Index (alpha diversity)
361 among ceftiofur-treated (orange) and control (grey) cows. Each boxplot shows the median,
362 lower, and upper quartiles with the whiskers representing extreme values in the distribution.
363 **C)** The mean normalized abundance of microbial taxa at the phylum level, and **D)** a PCoA
364 of the Bray-Curtis dissimilarity. Ellipses in the PCoA are clustered by sampling point and
365 contain at least 90% of the samples. P-values were calculated using a paired Wilcoxon test
366 to compare treatment groups within a sampling point.

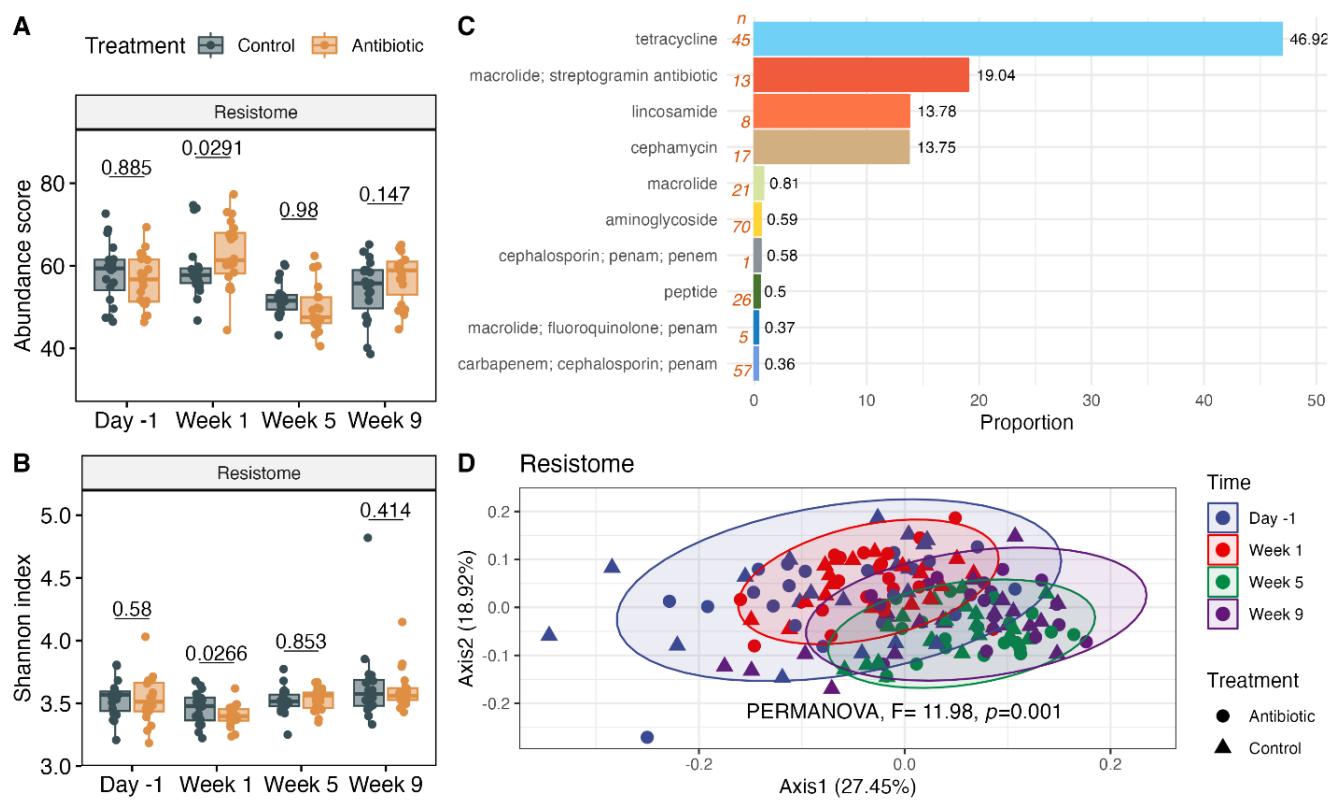
367

368

369 Although a slight rebound in the Actinobacteria population was observed at week 9, this
370 was only observed in the antibiotic-treated group (**Figure 4C, Supplemental Figure S3**).
371 *Campylobacter* were also more abundant in the ceftiofur-treated cows compared to the controls.

372 Overall, the differences in the taxonomic profiles between the treatment groups demonstrated a
373 persistent effect of the antibiotic on certain bacterial groups, but not on the overall microbiome
374 composition. No taxa were consistently affected over the 9-week period, though one taxon was
375 persistently affected in weeks 1 and 9, three taxa in weeks 1 and 5, and five in weeks 5 and 9.
376 Given that differences were observed due to time post-treatment, which included transitions in
377 diet, temperature (high to low), and pregnancy stage, we only compared between treatment
378 groups within each time point for microbiome abundance and diversity metrics.

379


380 **Resistome composition analyses identified persistent antibiotic resistance gene signatures**

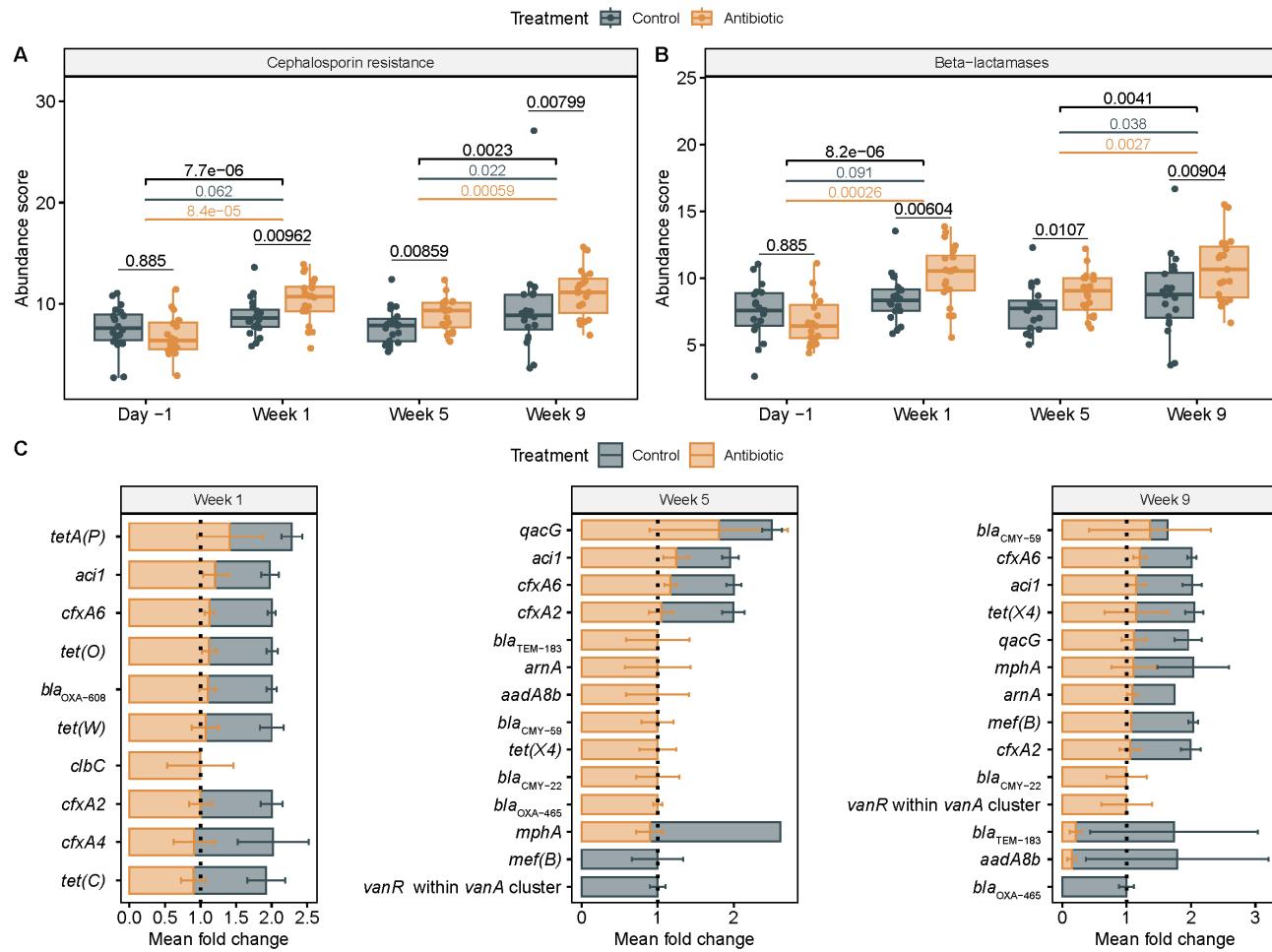
381 After treatment with ceftiofur, a significantly higher abundance of ARGs was observed in
382 animals only in week 1 ($P = 0.03$) (**Figure 5A**), which was characterized by a lower Shannon
383 index ($P = 0.03$) (**Figure 5B**). Similarly, the number of observed ARG alleles was lower in week
384 5 in cows treated with ceftiofur ($P = 0.04$). This finding indicates that IMM ceftiofur application
385 resulted on a selective pressure for a group of antibiotic resistance genes in the intestinal
386 environment in the short term. The main ARG drug classes identified were for resistance to
387 tetracyclines (46.92%), followed by macrolides and streptogramins (19.04%), lincosamides
388 (13.78%), and cephamycins (13.75%) (**Figure 5C**). The mean normalized allelic composition of
389 ARGs varied significantly over time (PERMANOVA, $F = 11.98$, $P = 0.001$), though samples
390 from different time points overlapped in the PCoA (**Figure 5D**). At the gene level, tetracycline
391 resistance genes, *tet(W)*, *tet(Q)* and *tet(O)*, were the most abundant representing 28.49%, 10.28%
392 and 6.12% of the ARGs detected, respectively. Other highly abundant genes were *mel* (9.09%),
393 *cfxA2* (7.17%), *lnuC* (6.11%), and *blaOXA-608* (5.04%) (**Supplemental Figure S4**).

394

395 **Figure 5. Fecal resistome composition of dairy cows during the 9-week study.** A) The
396 normalized abundance score and B) Shannon Index between antibiotic-treated (orange) and
397 control (grey) animals. Each boxplot shows the median, lower, and upper quartiles with the
398 whiskers representing extreme values in the distribution. C) The resistome composition at
399 the drug class level showing the average proportion; “n” indicates the number of genes
400 assigned to a given class. D) PCoA of the Bray-Curtis dissimilarity clustered by sampling
401 point (ellipses contain at least 90% of the samples).

402

403

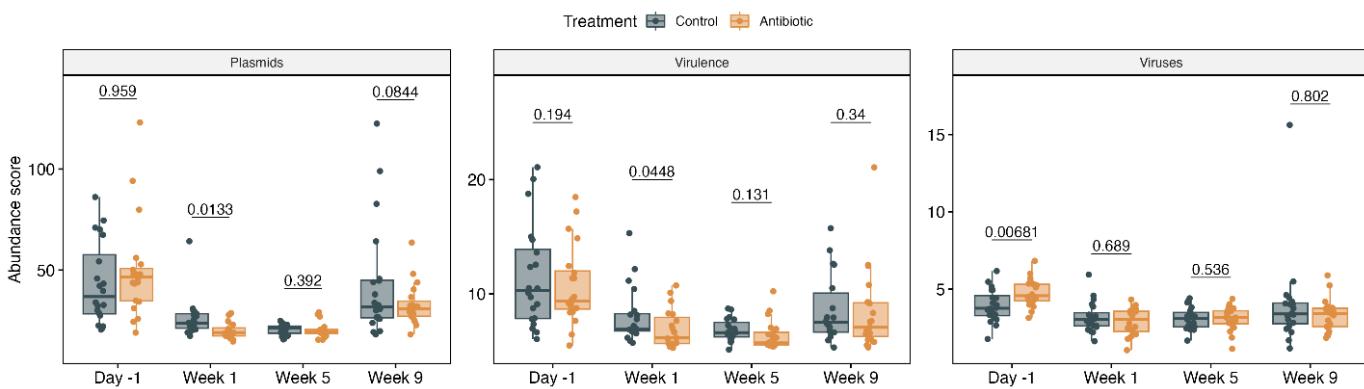

404 Importantly, a persistent increase in the abundance of genes encoding cephalosporin
405 resistance was identified in weeks 1, 5 and 9 ($P < 0.01$) after IMM treatment with ceftiofur
406 (Figure 6A). In comparison to the baseline measurement taken on Day -1, both treatment groups
407 exhibited increased levels of cephalosporin resistance genes one week after IMM treatment ($P =$

408 7.7e-06). However, a significant difference was only observed in cows treated with ceftiofur
409 (control, $P = 0.062$; antibiotic, $P = 8.4\text{e-}05$). Furthermore, the greatest abundance of
410 cephalosporin resistance genes was found in week 9, which was significantly higher than in
411 week 5 (control, $P = 0.022$; antibiotic, $P = 0.0006$). Genes important for cephalosporin resistance
412 encoded antibiotic efflux pumps or were important for inactivation and reduced permeability to
413 the drug. Antibiotic inactivation by β -lactamases was the main mechanism of resistance observed
414 for the cephalosporins, showing a persistent increase in cows treated with IMM ceftiofur (**Figure**
415 **6B**). The β -lactamase (*bla*) genes encoding ESBL production, *aci1*, *cfxA2*, and *cfxA6*, were
416 among those that increased over the sampling period (**Figure 6C**). Although controls also had
417 these ESBL genes, more were identified only in the antibiotic-treated group at week 5, including
418 *blaCMY-22* and *blaCMY-59*. Additionally, co-selection of other ARGs including *qacG*, *tet(X4)*, and
419 *arnA*, was observed in weeks 5 and 9 in the ceftiofur-treated cows (**Figure 6C**). These ARGs
420 confer resistance to disinfectants, tetracycline, and peptides, respectively.

421

422 **Figure 6. Effects of IMM ceftiofur treatment in the fecal resistome of cattle.** Boxplots
423 show the abundance score for genes encoding **A**) resistance to cephalosporins; and **B**) β -
424 lactamases conferring resistance to cephalosporins. **C**) Differentially abundant ARGs
425 identified after ceftiofur treatment; the mean fold change and standard error per treatment
426 group is shown. The median, lower, and upper quartiles are shown in each boxplot with the
427 whiskers representing extreme values in the distribution. P-values were calculated with
428 paired Wilcoxon test to compare treatment groups within a sampling point. Significant p-

429 values between sampling points are represented for all animals (black) as well as for control
 430 (grey) and antibiotic (orange) groups.


431
 432 **The plasmidome, virulome, and virome varied between treatment groups**
 433 The normalized abundance of plasmids and virulence genes was significantly lower in
 434 cows treated with IMM ceftiofur in the first week after treatment compared to the controls ($P <$
 435 0.05), however, the number of observed features was similar between groups ($P > 0.05$). Despite
 436 the higher number of viruses identified prior to treatment in the antibiotic-treated group, no
 437 differences were observed at later time points. Nonetheless, there were significant differences
 438 observed in the mean plasmidome and virulome composition over time, with days -1 and week 9

439 as well as week 1 and week 5 forming two clusters in the PCoA (PERMANOVA, $P = 0.001$)
440 (**Supplemental Figures S5A and S5B**). The virome composition also showed significant
441 differences over time, but clear clusters were not observed in the PCoA (**Supplemental Figure**
442 **S5C**). These analyses suggest that IMM ceftiofur lowered the abundance of plasmids and
443 virulence factors in the short term.

444

445

446 **Figure 7. Effects of intramammary ceftiofur treatment on the abundance of plasmids,**
447 **virulence factors and viruses.** The median, lower, and upper quartiles are shown in each
448 boxplot with the whiskers representing extreme values in the distribution. P-values were
449 calculated with the Wilcoxon test to compare treatment groups within a sampling point.

451 **Multiple bacterial hosts had phenotypic or genotypic resistance to β -lactams**

452 **Culture-based identification.** Among 882 Gram-negative bacterial isolates resistant to
453 ceftiofur, 146 were preserved for further analyses; 72 were recovered from control cows and 74
454 from ceftiofur-treated cows. A maximum of 4 CFUs were selected per sample based on
455 differences in morphology and lactose fermentation variation on MAC media. These colonies
456 were recovered at day -1 ($n = 26$), week 1 ($n = 25$), week 2 ($n = 17$), week 3 ($n = 17$), week 5 (n

457 = 5), week 7 ($n = 10$), week 9 ($n = 44$), and week 11 ($n = 2$). Biochemical assays classified 94
458 isolates as *E. coli*, 25 as other members of Enterobacteriaceae, and 27 as non-Enterobacteriaceae.

459 **β -lactamase-carrying contig (BCC) characterization.** Among all 40 cows, 158 β -
460 lactamase alleles (*bla*) conferring resistance to cephalosporins were identified in the fecal
461 resistome. There were 792 contigs carrying these β -lactamase genes with an average size of
462 374.8 bp (± 858.5 bp). The average coverage estimate was 2.3 (± 8.9), while the number of 77
463 bp k-mers was 1269.54 (± 8612.9). Co-localization of MGEs was identified in 318 (40.2%) of
464 the contigs. β -lactamase genes *cfxA2*, *cfxA4*, and *cfxA6* were commonly found in those contigs
465 containing MGEs for conjugation. These elements include *mobN*, *mobB*, *traC*, and
466 *HMPREF1204_00020*, which encodes a DNA primase (EC2.7.7.-) that was linked to multidrug
467 resistance in *Bacteroides* described in a prior study [42]. The gene encoding the SHV-160 β -
468 lactamase was co-localized with the chaperonin gene, *groEL*, which is associated with plasmids
469 and phages. Despite these findings, the taxonomic classification of the contigs with CAT was
470 only possible for 20 contigs. These included genes encoding ACI-1 in Gammaproteobacteria,
471 CfxA2, CfxA4, and CfxA6 in Bacteroidetes, EC-5 in *Treponema*, OXA-659 in
472 Campylobacterales, SHV-160 in Proteobacteria and Bacteroidetes, and TEM-116 and TEM-
473 183 in Enterobacteriaceae. For 18 of the 20 contigs, taxonomic assignments using CAT were
474 based on a single ORF. Two contigs were exceptions: one classified as Aeromonadales was
475 based on 2 ORFs, and another classified as *Bacteroides xylanisolvans* was based on 14 ORFs.

476 ***RGI host assignations.*** The resistomes and variants database (CARD) also provided
477 taxonomic assignations for various ARG alleles. Among the most abundant β -lactamases, the
478 *cfxA2* sequences were assigned to *Phocaeicola* (45.94% of the allele reads), *Bacteroides*
479 (38.8%), *Prevotella* (1.16%), *Parabacteroides* (9.65%), and *Butyricimonas* (4.44%). The *bla_{CFX}*-

480 A6 sequences were mostly assigned to uncultured organisms (97.55%) and *Bacteroides* (2.45%),
481 whereas *aci1* was only assigned to *Acidaminococcus fermentans*. Genes encoding CMY-22 and
482 CMY-59, which were detected only in the antibiotic-treated cows, were assigned to *E. coli* and
483 *Klebsiella pneumoniae*, respectively. Other highly abundant β -lactamase genes were common in
484 cows from both treatment groups including those encoding OXA-608, which was assigned to
485 *Campylobacter jejuni*, and SHV-160 assigned to *Klebsiella pneumoniae*.

486 *Correlation networks.* Correlations between β -lactamase genes and plasmids, phages,
487 and virulence genes showed their potential ecological associations in the fecal microbiome. *E.*
488 *coli* was the most common host of plasmids, phages and virulence factors correlated with β -
489 lactamase genes, followed by *Klebsiella*, *Salmonella* and other Enterobacteriaceae
490 (**Supplemental Figure S6**). However, the genera correlated with β -lactamase genes were
491 primarily from phyla Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria
492 (**Supplemental Figure S7**). This discrepancy may be due to underrepresentation of non-
493 Enterobacteriaceae sequences in the databases used to analyze accessory genes and associations
494 with commensal bacteria. Moreover, no significant differences were observed in centrality
495 measures between treatment groups at any time point, suggesting that the co-occurrence of β -
496 lactamase genes with other genes and taxa was ecologically similar in both groups.

497

498

499 **DISCUSSION**

500 It was estimated that ~90% of dairy farms use IMM β -lactam antibiotics during the dry-
501 off period to treat mastitis [5–7] despite the possibility of selecting for resistant bacterial
502 populations. Of great concern is the emergence and selection of ESBL-producing

503 Enterobacteriaceae, which are classified as a serious public health threat [1, 2]. Although the
504 effect of IMM ceftiofur treatment has been studied in the milk microbiome, including five days
505 with IMM 125 mg/day [43, 44] and a single application of 2 g of CHCL [45], the impact of this
506 treatment on the gut microbiome had not been elucidated. Through this study, we have
507 demonstrated persistent effects on the fecal microbiome due to a single 2 g dose of IMM
508 ceftiofur via culture-based analyses and metagenomics. Relative to controls, antibiotic-treated
509 cows had reduced microbial richness over time, differentially abundant taxa, and an increased
510 abundance and persistence of β -lactam resistance genes that were associated with
511 Enterobacteriaceae hosts and commensal bacteria. A subset of the ceftiofur-treated cows also had
512 greater concentrations of ceftiofur resistant Gram-negative bacterial populations.

513 Following subcutaneous treatment, a prior study showed that Holstein steers had higher
514 concentrations of CHCL in the gastrointestinal tract compared to ceftiofur crystalline-free acid
515 (CCFA) [9], though only CCFA resulted in decreased fecal *E. coli* concentrations for up to two
516 weeks. Similarly, parenteral ceftiofur treatment resulted in lower fecal *E. coli* concentrations for
517 3 days [12] and up to a month post-treatment [13] in two other studies. In the latter study of 96
518 dairy cows, systemic ceftiofur administration resulted in a significant increase in the level of
519 ceftiofur-resistant Enterobacteriaceae, though the concentrations returned to baseline levels after
520 one week [13]. Consistent with these findings, we observed a reduction in the total number of
521 Gram-negative bacteria one week after IMM ceftiofur treatment. Enhanced recovery of Gram-
522 negative bacteria with resistance to ceftiofur was observed for two weeks after the treatment. Re-
523 emergence of ceftiofur resistance was also observed in the Gram-negative bacterial populations
524 at 9 weeks (pre-calving) in both the antibiotic-treated and control animals, which is consistent
525 with data generated in another study [13]. This increase was linked to sampling period and

526 ambient temperature as well as diet, which increased the level of metabolizable energy given to
527 fresh cows. Other factors that could contribute to the expansion of resistant Enterobacteriaceae
528 populations include environmental acquisition of resistant strains, increased frequency of
529 horizontal gene transfer, peri-parturient immune suppression, or increased contact with
530 personnel. Regardless, it is important to note that *in vitro* bacterial quantifications do not
531 distinguish between acquired and intrinsic antimicrobial resistance. Future studies should
532 therefore focus on isolating the resistant strains for characterization using biochemical tests and
533 whole-genome sequencing, which can define the genetic mechanisms of resistance as well.

534 Following IMM ceftiofur treatment, a lower abundance and diversity of taxa was
535 detected in the fecal microbiome, which was also true for plasmids and virulence genes.
536 Conversely, a higher abundance of ARGs was observed in the antibiotic-treated cows one week
537 following IMM treatment. Because this difference was not observed in the subsequent time
538 points, it suggests the temporary selection of resistant bacterial populations. Intriguingly,
539 *Campylobacter* and *Bifidobacterium* were more abundant in the ceftiofur-treated cows as
540 compared to controls, which is not surprising given that most *Campylobacter*, with the exception
541 of *C. fetus*, have intrinsic resistance to third-generation cephalosporins [46]. In fact, nine β -
542 lactamase genes were associated with *Campylobacter* including *bla_{OXA-608}*, which was one of the
543 most abundant ARGs detected.

544 Despite the temporary increase in ARG abundance and diversity observed one week after
545 ceftiofur treatment, a subset of critically important genes persisted. Importantly, the antibiotic-
546 treated cows had an exclusive and persistent increase in the abundance of ESBL genes (e.g.,
547 *aci1*, *cfxA*, and *bla_{CMY}*) in the fecal resistome at each of the subsequent time points examined.
548 Although increases in the abundance of ESBL genes following parenteral ceftiofur treatment

549 have been reported, no prior studies have examined the effect of IMM treatment. Steers receiving
550 subcutaneous CCFA, for example, had a higher abundance of bacterial isolates harboring *bla_{CMY}-*
551 ₂ up to 4 days post-treatment, which resulted in co-selection of isolates containing *tet(A)* and
552 *bla_{CMY-2}* after a subsequent chlortetracycline treatment for up to 26 days [14]. Similarly, Holstein
553 cows treated with systemic CCFA had a higher abundance of genes encoding CfxA β -lactamases
554 three days after treatment [47], while other studies reported an increase in *bla_{CMY-2}* in cattle
555 feces for up to 10 days post-treatment when pure cultures were analyzed [12, 48].

556 Although the abundance of ESBL genes was higher in the ceftiofur-treated cows across
557 the sampling period, an increase in cephalosporin-resistant bacterial populations (CFUs) was not
558 observed. This discrepancy between the culture-based and sequencing methods could be
559 attributed to the oxygenic environment and/or media used for cultivation. The hindgut
560 microbiome is composed predominantly of anaerobic bacteria; thus, aerobic and microaerophilic
561 conditions used for the quantification of Gram-negative and Gram-positive bacteria could only
562 capture a fraction of the microbiota. Bacteroidetes members like *Prevotella* and *Bacteroides*, for
563 example, are common Gram-negative anaerobes residing in the hindgut. Because these members
564 were commonly found to carry genes encoding CfxA ESBLs [49], the resistant CFUs observed
565 likely underestimate the actual levels of resistance, particularly given the high abundance of *cfxA*
566 alleles detected. Likewise, *aciI* was the second most abundant ESBL gene and was previously
567 reported in the Gram-negative Firmicutes *Acidaminococcus* [50] and Gram-positive genus
568 *Bifidobacterium* [51]. These findings suggest that the increased abundance of ESBLs following
569 IMM ceftiofur treatment were linked to changes in the abundance of anaerobic bacteria, which is
570 consistent with our host analyses.

571 Indeed, identifying bacterial hosts and MGEs associated with β -lactam resistance genes
572 in cattle feces is critical for developing new interventions, understanding the ecology of potential
573 resistant threats that may emerge in farm environments, and defining risks associated with
574 carriage of specific genes. As described herein, one approach to classify bacterial hosts is by
575 identifying contigs or metagenome-assembled genomes containing genes encoding known β -
576 lactamases. While culture identification of the resistant bacteria indicated 64% of the isolates
577 were *E. coli*, metagenomic analyses showed that β -lactamase genes were mainly associated with
578 commensal bacteria. A significant association was also identified between *bla*_{CfxA} and plasmid
579 sequences, suggesting that horizontal gene transfer plays a key role in the acquisition of CfxA β -
580 lactamase genes, particularly for members of phylum Bacteroidetes. Evidence of the relationship
581 between Enterobacteriaceae and genes encoding the CMY, CTX, OXA, and TEM β -lactamase
582 families was supported through the RGI analysis and co-occurrence networks showing
583 correlations between these genes and plasmid sequences. Together, these results demonstrate the
584 importance of horizontal gene transfer in the dissemination of antibiotic resistance within
585 bacterial communities, particularly among members of the Bacteroidetes phylum and within the
586 Enterobacteriaceae family.

587 Intriguingly, the abundance of Actinobacteria was significantly higher on day -1
588 compared to the subsequent time points. The most abundant family belonging to phylum
589 Actinobacteria was Bifidobacteriaceae, which was represented mainly by the genus
590 *Bifidobacterium*. Bifidobacteriaceae are implicated in the utilization of oligosaccharides in the
591 colon resulting in the production of volatile fatty acids (VFAs) [52]. Differences in the
592 composition of the fecal microbiome, primarily caused by the abundance of Actinobacteria
593 observed on day -1 could be associated with differences in the diet. During late lactation, higher

594 levels of dry matter intake and metabolizable energy as well as protein are consumed by cows
595 compared to the dry off (weeks 1 – 7) and fresh (week 9) periods. However, further analyses of
596 microbial metabolic pathways and metabolite composition are necessary to better explain how
597 differentially abundant taxa may impact cow performance.

598 Although this study is the first to describe the impact of IMM ceftiofur treatment on the
599 gut microbiome, it is important to highlight a few limitations. For instance, current resistome
600 databases do not include all known ARGs from cattle samples and hence, novel resistance
601 determinants may remain unclassified. Moreover, the identification of species and ARGs can be
602 limited by a low number of metagenomic reads, as sequencing depth of \geq 50 million reads is
603 needed for complex microbial communities such as those residing in the bovine gut [53]. Since
604 the proportion of microbial phyla and ARG classes was shown to be constant across various
605 sequencing depths [53], we were able to detect the predominant and differential metagenomic
606 features in this analysis. The shallow sequencing depth and short DNA segments (150 bp)
607 examined, however, may have reduced our ability to accurately classify the bacterial hosts within
608 each BCC since flanking regions are often not included. Such issues could have also contributed
609 to the discordance observed between the sequence- and culture-based methodologies.
610 Consequently, future work involving use of third-generation sequencing platforms that sequence
611 ultralong DNA segments such as the PacBio (40-70 kbp) or Oxford Nanopore Technologies
612 (>100 kbp), is needed for confirmation and characterization of these regions [54]. Since the
613 identification of differentially abundant features, including bacterial taxa and genes, tends to vary
614 across bioinformatic pipelines, we applied three different approaches but only reported those
615 features with significant p-values using at least two pipelines, as suggested previously [55].

616 Altogether, our analyses highlight those metagenomic features that are most impacted by IMM
617 ceftiofur treatment.

618

619 CONCLUSIONS

620 One application of IMM ceftiofur (2 g) at dry off contributed to an increase in the
621 abundance of genes encoding resistance to cephalosporins and ESBLs in the fecal samples of
622 antibiotic-treated cattle that persisted for nine weeks. Clinically important ESBL genes were
623 mainly associated with Bacteroidetes and Enterobacteriaceae hosts as well as plasmid sequences,
624 illustrating how ESBL-producing pathogens emerge and are selected for in this niche. While
625 most of the cows given the prophylactic IMM ceftiofur treatment did not have altered
626 microbiome compositions compared to the control cows, 25% had an increased level of
627 ceftiofur-resistant Gram-negative bacteria for up to 2 weeks post-treatment. Indeed, the recovery
628 of resistant CFUs was 14X greater in the antibiotic-treated versus control cows for up to two
629 weeks after treatment. These findings demonstrate significant variation in the fecal shedding
630 levels of cultivable bacterial populations across animals in this herd, which could be linked to
631 selective factors such as diet, temperature, and lactation phase. Future studies should therefore
632 focus on understanding the association between shedding and the dissemination and persistence
633 of antibiotic resistance determinants in dairy farm environments across geographic locations.

634

635

636 DECLARATIONS

637 **Ethics approval and consent to participate:** The study protocol was approved by the
638 Institutional Animal Care and Use Committee at Michigan State University (IACUC number

639 ROTO201800166). The information and sample collections were approved by the Michigan
640 State University (MSU) Dairy Cattle Teaching & Research Center in a written informed
641 consent.

642

643 **Competing interests:** Rita R. Colwell is Founder and Chairman of the Board, CosmosID® and
644 Karlis Graubics is an employee of CosmosID. Dr. Colwell is also a Distinguished University
645 Professor at the University of Maryland, College Park and at Johns Hopkins University
646 Bloomberg School of Public Health. Affiliation with CosmosID does not alter the authors'
647 adherence to policies on sharing data and materials or impact data analysis and interpretation.

648

649 **Funding:** This study was funded by the U.S. Department of Agriculture (USDA), grant number
650 2019-67017-29112. USDA did not participate in the study design or data analyses associated
651 with this project. Additional support was provided by the Michigan Sequencing and Academic
652 Partnerships for Public Health Innovation and Response (MI-SAPPHERE) initiative at the
653 Michigan Department of Health and Human Services via the Centers for Disease Control and
654 Prevention through the Epidemiology and Laboratory Capacity for Prevention and Control of
655 Emerging Infectious Diseases Enhancing Detection Expansion program (6NU50CK000510-02-
656 07) as well as the Michigan State University (MSU) Foundation and AgBioResearch, Student
657 support for KAV was provided by the Department of Microbiology and Molecular Genetics at
658 MSU through the Thomas S. Whittam award, and the MSU College of Natural Sciences.

659

660 **Authors' contributions:** SM, PR, BN, LZ, & RE conceptualized the study and obtained funds
661 for the project. PR organized and supervised the treatment assignments in the dairy farm and

662 extracted epidemiological data. KV, SC, RS, & BB performed sample collection and bacterial
663 culture experiments. KV performed DNA extractions, data analysis, interpretation, manuscript
664 writing, and figure preparation. RC and KG carried out metagenomic sequencing via CosmosID.
665 SM, PR, & LZ managed the project and supervised the study development. All authors read and
666 approved the final manuscript.

667

668 **Acknowledgements:** We present these findings in memory of Lorraine Sordillo-Gandy, MS,
669 Ph.D. for her valuable contributions to the design and development of the project. We also thank
670 the MSU Dairy Cattle Teaching & Research Center and Carmen Garcia, Zoe Hansen, Jose
671 Rodrigues, Jaimie Strickland, Jennifer Brown, Jeffery Gandy, Robert West, and Aspen Robak,
672 who participated in the field and/or laboratory work.

673

674

675 REFERENCES

- 676 1. Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Aguilar GR, Gray A, et al. Global burden of
677 bacterial antimicrobial resistance in 2019: a systematic analysis. *The Lancet*. 2022;399:629–55.
- 678 2. Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States,
679 2019. Available at: <https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf>
- 681 3. U.S. Food and Drug Administration. 2020 Summary Report on Antimicrobials Sold or
682 Distributed for Use in Food-Producing Animals. December 2021. Available at:
683 <https://www.fda.gov/media/154820/download>
- 684 4. U.S. Food and Drug Administration. Antimicrobial Use and Resistance in Animal Agriculture
685 the United States, 2016-2019. Summary Report. Center for Veterinary Medicine. June 2022.
686 Available at: <https://www.fda.gov/media/159544/download>
- 687 5. Gonçalves JL, de Campos JL, Steinberger AJ, Safdar N, Kates A, Sethi A, et al. Incidence and
688 treatments of bovine mastitis and other diseases on 37 dairy farms in Wisconsin. *Pathogens*.
689 2022;11:1282.

690 6. Campos JL de, Kates A, Steinberger A, Sethi A, Suen G, Shutske J, et al. Quantification of
691 antimicrobial usage in adult cows and preweaned calves on 40 large Wisconsin dairy farms using
692 dose-based and mass-based metrics. *J Dairy Sci.* 2021;104:4727–45.

693 7. U.S. Department of Agriculture, Animal and Plant Inspection Service. Milk Quality, Milking
694 Procedures, and Mastitis on U.S. Dairies, 2014. Report 2. September 2016. Available at:
695 https://www.aphis.usda.gov/animal_health/nahms/dairy/downloads/dairy14/Dairy14_dr_Mastitis.pdf

697 8. Brown S, Jaglan P, Banting A. Ceftiofur sodium: disposition, protein-binding, metabolism,
698 and residue depletion profile in various species. *Acta Vet Scand Suppl (Denmark).* 1991; 87:97–
699 99

700 9. Foster DM, Jacob ME, Farmer KA, Callahan BJ, Theriot CM, Kathariou S, et al. Ceftiofur
701 formulation differentially affects the intestinal drug concentration, resistance of fecal
702 *Escherichia coli*, and the microbiome of steers. *PLoS One.* 2019;14:e0223378.

703 10. Volkova V V, Lanzas C, Lu Z, Gröhn YT. Mathematical model of plasmid-mediated
704 resistance to ceftiofur in commensal enteric *Escherichia coli* of cattle. *PloS One.*
705 2012;7:e36738–e36738.

706 11. Boyer TC, Singer RS. Quantitative Measurement of *bla* CMY-2 in a longitudinal
707 observational study of dairy cattle treated with ceftiofur. *Foodborne Pathog Dis.* 2012;9:1022–7.

708 12. Singer RS, Patterson SK, Wallace RL. Effects of therapeutic ceftiofur administration to dairy
709 cattle on *Escherichia coli* dynamics in the intestinal tract. *Appl Environ Microbiol.*
710 2008;74:6956–62.

711 13. Sheedy DB, Okello E, Williams DR, Precht K, Cella E, Lehenbauer TW, et al. Effect of
712 antimicrobial treatment on the dynamics of ceftiofur resistance in Enterobacteriaceae from adult
713 California dairy cows. *Microorganisms.* 2021;9:828.

714 14. Kanwar N, Scott HM, Norby B, Loneragan GH, Vinasco J, McGowan M, et al. Effects of
715 ceftiofur and chlortetracycline treatment strategies on antimicrobial susceptibility and on *tet(A)*,
716 *tet(B)*, and *bla* CMY-2 resistance genes among *E. coli* isolated from the feces of feedlot cattle.
717 *PloS One.* 2013;8:e80575–e80575.

718 15. National Antimicrobial Resistance Monitoring System (NARMS). Breakpoints Used for
719 Susceptibility Testing of *Salmonella* and *E. coli*. Available at:
720 <https://www.ars.usda.gov/ARSUserFiles/60400520/NARMS/ABXSalm.pdf>.

721 16. Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial
722 susceptibility testing; twenty-fourth informational supplement. M100-S24 January. 2014.

723 17. Regasa Dadi B, Abebe T, Zhang L, Mihret A, Abebe W, Amogne W. Drug resistance and
724 plasmid profile of uropathogenic *Escherichia coli* among urinary tract infection patients in Addis
725 Abeba. *J Infect Dev Ctries.* 2018;12:608–15.

726 18. Pinheiro J, Bates D, DebRoy S, Sarkar D, Heisterkamp S, Van Willigen B, et al. Package
727 ‘nlme.’ Linear Nonlinear Mix Eff Models Version. 2017;3.

728 19. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence
729 data. *Bioinformatics*. 2014;30:2114–20.

730 20. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.
731 ArXiv13033997 Q-Bio. 2013.

732 21. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, et al. Twelve years of
733 SAMtools and BCFtools. *GigaScience*. 2021;10:giab008.

734 22. Babraham Bioinformatics - FastQC A Quality Control tool for High Throughput Sequence
735 Data. <https://www.bioinformatics.babraham.ac.uk/projects/fastqc/>. Accessed 9 Jan 2023.

736 23. Blanco-Miguez A, Beghini F, Cumbo F, McIver LJ, Thompson KN, Zolfo M, et al.
737 Extending and improving metagenomic taxonomic profiling with uncharacterized species with
738 MetaPhlAn 4. *bioRxiv*. 2022;:2022.08.22.504593.

739 24. Nayfach S, Pollard KS. Average genome size estimation improves comparative
740 metagenomics and sheds light on the functional ecology of the human microbiome. *Genome*
741 *Biol*. 2015;16:51.

742 25. McMurdie PJ, Holmes S. phyloseq: An R Package for reproducible interactive analysis and
743 graphics of microbiome census data. *PLoS One*. 2013; 8(4): e61217.

744 26. Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M, Edalatmand A, et al. CARD
745 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database.
746 *Nucleic Acids Res*. 2020;48:D517–25.

747 27. Schmartz GP, Hartung A, Hirsch P, Kern F, Fehlmann T, Müller R, et al. PLSDB: advancing
748 a comprehensive database of bacterial plasmids. *Nucleic Acids Res*. 2022;50:D273–8.

749 28. Chen L, Yang J, Yu J, Yao Z, Sun L, Shen Y, et al. VFDB: a reference database for bacterial
750 virulence factors. *Nucleic Acids Res*. 2005;33 (Database Issue):D325–8.

751 29. Mihara T, Nishimura Y, Shimizu Y, Nishiyama H, Yoshikawa G, Uehara H, et al. Linking
752 virus genomes with host taxonomy. *Viruses*. 2016;8:66.

753 30. Clausen PTLC, Aarestrup FM, Lund O. Rapid and precise alignment of raw reads against
754 redundant databases with KMA. *BMC Bioinformatics*. 2018;19:307.

755 31. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic
756 biomarker discovery and explanation. *Genome Biol*. 2011;12:R60.

757 32. Lin H, Peddada SD. Analysis of compositions of microbiomes with bias correction. *Nat*
758 *Commun*. 2020;11:3514.

759 33. Mallick H, Rahnavard A, McIver LJ, Ma S, Zhang Y, Nguyen LH, et al. Multivariable
760 association discovery in population-scale meta-omics studies. PLoS Comput Biol.
761 2021;17:e1009442.

762 34. Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile
763 metagenomic assembler. Genome Res. 2017;27:824–34.

764 35. Mikheenko A, Saveliev V, Gurevich A. MetaQUAST: evaluation of metagenome assemblies.
765 Bioinformatics. 2016;32:1088–90.

766 36. Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic
767 gene recognition and translation initiation site identification. BMC Bioinformatics. 2010;11:119.

768 37. Brown CL, Mullet J, Hindi F, Stoll JE, Gupta S, Choi M, et al. mobileOG-db: a manually
769 curated database of protein families mediating the life cycle of bacterial mobile genetic elements.
770 Appl Environ Microbiol. 2022;88:e00991-22.

771 38. Buchfink B, Reuter K, Drost H-G. Sensitive protein alignments at tree-of-life scale using
772 DIAMOND. Nat Methods. 2021;18:366–8.

773 39. von Meijenfeldt FAB, Arkhipova K, Cambuy DD, Coutinho FH, Dutilh BE. Robust
774 taxonomic classification of uncharted microbial sequences and bins with CAT and BAT.
775 Genome Biol. 2019;20:217.

776 40. Harrell Jr FE, Harrell Jr MFE. Package ‘hmisc.’ CRAN2018. 2019;2019:235–6. A Available
777 at: <https://cran.r-project.org/web/packages/Hmisc/Hmisc.pdf>

778 41. Bastian M, Heymann S, Jacomy M. Gephi: an open source software for exploring and
779 manipulating networks. In: Third international AAAI conference on weblogs and social media.
780 2009; 3:361-2

781 42. Husain F, Veeranagouda Y, Boente R, Tang K, Mulato G, Wexler HM. The Ellis Island
782 effect. Mob Genet Elem. 2014;4:e29801.

783 43. Ganda EK, Bisinotto RS, Lima SF, Kronauer K, Decter DH, Oikonomou G, et al.
784 Longitudinal metagenomic profiling of bovine milk to assess the impact of intramammary
785 treatment using a third-generation cephalosporin. Sci Rep. 2016;6:37565.

786 44. Ganda EK, Gaeta N, Sipka A, Pomeroy B, Oikonomou G, Schukken YH, et al. Normal milk
787 microbiome is reestablished following experimental infection with *Escherichia coli* independent
788 of intramammary antibiotic treatment with a third-generation cephalosporin in bovines.
789 Microbiome. 2017;5:74.

790 45. Bonsaglia ECR, Gomes MS, Canisso IF, Zhou Z, Lima SF, Rall VLM, et al. Milk
791 microbiome and bacterial load following dry cow therapy without antibiotics in dairy cows with
792 healthy mammary gland. Sci Rep. 2017;7:8067.

793 46. Pacanowski J, Lalande V, Lacombe K, Boudraa C, Lesprit P, Legrand P, et al.
794 *Campylobacter* bacteremia: clinical features and factors associated with fatal outcome. Clin
795 Infect Dis. 2008;47:790–6.

796 47. Chambers L, Yang Y, Littier H, Ray P, Zhang T, Pruden A, et al. Metagenomic analysis of
797 antibiotic resistance genes in dairy cow feces following therapeutic administration of third
798 generation cephalosporin. PloS One. 2015;10:e0133764–e0133764.

799 48. Alali WQ., Scott HM., Norby B, Gebreyes W, Loneragan GH. Quantification of the
800 bla(CMY-2) in feces from beef feedlot cattle administered three different doses of ceftiofur in a
801 longitudinal controlled field trial. Foodborne Pathog Dis. 2009;6:917–24.

802 49. Parker AC, Smith CJ. Genetic and biochemical analysis of a novel Ambler class A beta-
803 lactamase responsible for cefoxitin resistance in *Bacteroides* species. Antimicrob Agents
804 Chemother. 1993; 37:1028-36.

805 50. Rands CM, Starikova EV, Brüssow H, Kriventseva EV, Govorun VM, Zdobnov EM. ACI-1
806 beta-lactamase is widespread across human gut microbiomes in Negativicutes due to transposons
807 harboured by tailed prophages. Environ Microbiol. 2018;20:2288–300.

808 51. Taft DH, Liu J, Maldonado-Gomez MX, Akre S, Huda MN, Ahmad SM, et al.
809 Bifidobacterial dominance of the gut in early life and acquisition of antimicrobial resistance.
810 mSphere. 2018;3:e00441-18.

811 52. Sela DA, Chapman J, Adeuya A, Kim JH, Chen F, Whitehead TR, et al. The genome
812 sequence of *Bifidobacterium longum* subsp. *infantis* reveals adaptations for milk utilization
813 within the infant microbiome. Proc Natl Acad Sci. 2008;105:18964–9.

814 53. Zaheer R, Noyes N, Ortega Polo R, Cook SR, Marinier E, Van Domselaar G, et al. Impact of
815 sequencing depth on the characterization of the microbiome and resistome. Sci Rep.
816 2018;8:5890.

817 54. Amarasinghe SL, Su S, Dong X, Zappia L, Ritchie ME, Gouil Q. Opportunities and
818 challenges in long-read sequencing data analysis. Genome Biol. 2020;21:30.

819 55. Nearing JT, Douglas GM, Hayes MG, MacDonald J, Desai DK, Allward N, et al.
820 Microbiome differential abundance methods produce different results across 38 datasets. Nat
821 Commun. 2022;13:342.

822

823

824

825

826 **Table 1. Metagenomic sequencing metrics from cattle fecal DNA.**

Feature	Mean	p-value					
		Days post-treatment	Temperature	Diet	Treatment	Days:Temperature	Days:Diet
Reads							
Raw reads (150 bp)	5735481	0.19	0.69	0.74	0.11	0.88	0.79
Non-host reads (150 bp)	4507080	0.28	0.56	0.08	0.13	0.77	0.83
Proportion of host reads (<i>Bos taurus</i> %)	21.42	0.47	0.98	<.0001	0.46	0.08	0.94
Proportion of non-host reads							
Bacteria (%)	11.027	<.0001	0.71	<.0001	0.78	0.73	0.68
Archaea (%)	0.746	<.0001	0.66	<.0001	0.83	0.24	0.12
Eukaryota (%)	0.170	0.62	--	--	--	--	--
Viruses (%)	0.004	0.62	0.12	--	0.53	0.02	--
Genome equivalents (Nº)	239.93	0.46	0.41	<.0001	0.15	0.68	0.74
Average genome size (bp)	2754869	<.0001	0.69	<.0001	0.99	0.91	0.07
Contig assemblies							
Contigs (Nº)	341430.855	0.18	0.56	0.20	0.18	0.87	0.80
Reads mapping contigs (%)	36.011	<.0001	0.34	<.0001	0.77	0.35	0.46
N50 (Kbp)	0.764	0.27	0.61	0.90	0.95	0.64	0.04
L50 (Kbp)	5.703	<.0001	0.79	0.17	0.46	0.86	0.86
Largest contig (Kbp)	38.065	0.17	0.13	0.01	0.23	0.97	0.21
Length (Mbp)	14.887	0.01	0.73	0.14	0.69	0.42	0.81

827

828 *P-value was calculated using linear-mixed effects models including differences in number of days post-treatment, temperature (°C),
 829 treatment group, and diet and controlling by cow ID. Significant p-values are indicated in bold. Eukaryota and Viruses were not
 830 detected in all samples, hence, the models did not include variables indicated in blanks (--).