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Abstract

A GGGGCC repeat expansion in C9orf72 is the most common genetic cause of ALS and
FTD (C9ALS/FTD). The presence of dipeptide repeat (DPR) proteins, generated by
translation of the expanded repeat, is a major pathogenic feature of C9ALS/FTD pathology,
but their most relevant effects in a physiological context are not known. Here, we generated
C9orf72 DPR knock-in mouse models characterised by physiological expression of 400
codon-optimised polyGR or polyPR repeats, and heterozygous C9orf72 reduction. (GR)400
and (PR)400 knock-in mice exhibit cortical neuronal hyperexcitability, age-dependent spinal
motor neuron loss and progressive motor dysfunction, showing that they recapitulate key
features of C9FTD/ALS. Quantitative proteomics revealed an increase in extracellular matrix
(ECM) proteins in (GR)400 and (PR)400 spinal cord, with the collagen COL6A1 the most
increased protein. This signature of increased ECM proteins was also present in CO9ALS
patient iPSC-motor neurons indicating it is a conserved feature of COALS/FTD. TGF-B1 was
one of the top predicted regulators of this ECM signature and polyGR expression in human
iPSC-neurons was sufficient to induce TGF-B1 followed by COL6A1, indicating TGF-B1 is
one driver of the ECM signature. Knockdown of the TGF-B1 or COL6AL1 orthologue in
Drosophila dramatically and specifically exacerbated neurodegeneration in polyGR flies,
showing that TGF-1 and COL6AL protect against polyGR toxicity. Altogether, our
physiological C9orf72 DPR knock-in mice have revealed a neuroprotective and conserved
ECM signature in C9FTD/ALS.
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Introduction

Amyotrophic lateral sclerosis (ALS), characterised by progressive muscle weakness and
atrophy, and frontotemporal dementia (FTD), characterised by personality and behavioural
change or language dysfunction, are adult-onset neurodegenerative diseases and part of a
disease spectrum with overlapping clinical, pathological, and genetic origins 2. A GGGGCC
(G4C>) repeat expansion in the first intron of the C9orf72 gene 3# is the most common
genetic cause of ALS and FTD 3# accounting for approximately 38% of familial ALS (fALS),
6% of sporadic ALS (SALS), 25% of familial FTD (fFTD) and 6% of sporadic FTD (sFTD) °:
collectively termed COALS/FTD ©. Three mechanisms have been proposed to induce
C9ALS/FTD pathology, either by loss- or gain-of-function: (i) reduced transcription of
C9orf72, (ii) the presence of sense and antisense repeat-containing RNA foci, (iii)
expression of aberrant dipeptide repeat (DPR) proteins encoded in six frames by the
hexanucleotide repeat. These mechanisms are not mutually exclusive and they are all
predicted to contribute to disease to some extent. However, the presence of DPRs is a major
pathogenic feature of C9ALS/FTD.

The DPRs are derived from sense and antisense repeat-containing RNAs, which are
translated by repeat-associated non-ATG initiated (RAN) translation, a non-canonical protein
translation mechanism that does not require an ATG start codon ’. RAN translation occurs in
every reading frame and both RNA directions, encoding five potentially toxic DPRs: polyGA,
polyGR, polyGP, polyPA and polyPR. Several studies have reported that DPR proteins
accumulate in neuronal cytoplasmic inclusions in post-mortem tissues from C9ALS/FTD
patients 813, Moreover, we and others have shown that DPR proteins are toxic in vivo and in
vitro 4. The arginine-rich DPR proteins, polyGR and polyPR, are generally the most toxic
species among the DPRs in several systems, including Drosophila *>*7, mammalian cells 6~
22 and mouse models 22728, Therefore, it is essential to investigate DPRs within the context
of COALS/FTD to develop novel and effective therapeutic strategies.

Thus, several mouse models have been developed to elucidate pathomechanisms
associated with COALS/FTD pathology 2°*°. C9orf72 homozygous knockout mouse models
manifest severe autoimmunity and lymphatic defects, indicating a role for C90rf72 in immune
cell function, but there are no striking alterations in heterozygous knockouts which more
closely resemble the degree of C9orf72 depletion in patients -3, Mouse models of C9orf72
hexanucleotide repeat expansions have also been generated, taking advantage of either
AAV-mediated delivery 34, or bacterial artificial chromosome (BAC) integration 334143,
Although most mouse models recapitulate features of COALS/FTD, there is considerable
phenotypic variation between them, possibly from site of integration, which may cause local
mutation, copy number or other effects #4. Finally, to better elucidate the role of DPRs in
C9ALS/FTD, both viral and transgenic mouse models have been developed over-expressing
codon-optimised constructs to synthesize only one specific DPR. Studies of these mice
show that in vivo expression of polyGR throughout the mouse brain is toxic and results in
several aspects of C9ALS/FTD pathology, including age-dependent neuronal loss, presence
of cytoplasmic aggregates, development of anxiety-like behaviour and social interaction
defects 22-2°, Expression of polyPR is also toxic in mice. Similar to polyGR, polyPR mice
have survival, motor and cognitive defects, hyperactivity and anxiety-like behaviour,
progressive brain atrophy, and neuronal loss %28, Current in vivo and in vitro studies have
identified common downstream molecular pathways that are dysregulated in COALS/ FTD,
including autophagy, nucleocytoplasmic transport, pre-messenger RNA splicing, stress
granule dynamics, DNA damage repair, mitochondrial dysfunction, nuclear pore alterations
and synaptic dysfunction 1445-4". However, the mechanism(s) by which the repeat expansion
causes C9ALS/FTD when DPRs are expressed at physiological levels are less clear.
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The collection of mouse models produced to date have identified several potential
pathomechanisms underlying C9ALS/FTD. However, the most relevant effects of DPRs in
the endogenous context are not known. Thus, there is an urgent need for refined models to
understand the role of individual DPRs in vivo. Here, we generated C9orf72 DPR knock-in
mouse models characterised by physiological DPR expression and heterozygous C9orf72
reduction, to more accurately model DPR-induced dysfunction in C9ALS/FTD and reveal
new insights into molecular mechanisms contributing to disease.

Results

Generation of C9orf72 polyGR and polyPR knock-in mice

As polyGR and polyPR are consistently damaging across model systems, we focused on
generating polyGR and polyPR knock-in mice (Fig. 1A). We first generated patient-length
DPRs by performing recursive directional ligation *>#8 to build stretches of 400 uninterrupted
codon-optimised polyGR or polyPR repeats (Fig. 1B) flanked by epitope tags. We then used
CRISPR-Cas9 to insert these repeats, or a control eGFP sequence, immediately after, and
in frame with, the endogenous mouse C9orf72 ATG start codon, in mouse embryonic stem
(ES) cells (Supplementary Fig. 1A). We performed targeted locus amplification to identify
clones with a single insertion site, and correct targeting, which maintained the integrity of
both the knock-in sequences and the adjacent mouse genome (Supplementary Fig. 1B-
1D). Validated ES cell clones were then taken forward to generate knock-in mice using
standard procedures. We developed a PCR assay to amplify across the 400 codon-
optimised repeats and showed that DPR length is stable across at least five generations
(Supplementary Fig. 1E), allowing the lines to be easily maintained and shared. To further
confirm correct targeting, we measured DPR levels and, as expected, (GR)400 and (PR)400
mice selectively expressed their own DPR in brain and spinal cord at 3 months of age (Fig.
1C and 1D). Importantly, levels of polyGR in (GR)400 mouse cortex were similar to
COFTD/ALS patient cortex (Supplementary Fig. 2A), confirming expression in the
physiological range. (GR)400 and (PR)400 mice exhibited a significant reduction by ~40% of
C9orf72 at mMRNA and protein levels in 3-month-old brain and spinal cord (Fig. 1E and 1F),
as predicted by our knock-in strategy, which inserts the DPR sequence into one copy of
C9orf72, removing expression of C9orf72 from that allele. Finally, we confirmed eGFP
expression by ELISA and C9orf72 reduction by qPCR in brain and spinal cord of 3-month-
old C9orf72 eGFP knock-in mice (Supplementary Fig. 2B and 2C). These results confirm
that our DPR knock-in mouse lines selectively express their specific DPR at physiological
levels, in combination with C9orf72 reduction, as predicted by our targeting strategy.

PolyGR is predominantly expressed in neurons

Having established DPRs are translated in brain and spinal cord, we used the HA-tag to
visualise them by immunostaining. PolyGR showed a clear cytoplasmic localisation.
However, we did not observe polyPR staining in the same conditions, perhaps due to
inaccessibility of the epitope tag and therefore we focussed on characterising polyGR in
more detail. We found that polyGR shows widespread neuronal expression, co-localising
with a neuronal marker (NeuN) in cortex and in the ventral horn of lumbar spinal cord in 6-
month-old mice (Fig. 2A and 2B). Interestingly, at the same time-point, we did not observe
co-localisation of polyGR with astrocytic S1008, GFAP, or microglial markers (Iba1) in cortex
and ventral horn of lumbar spinal (Fig. 2C-F). These results show that in our knock-in mice,
polyGR is neuronally expressed in FTD/ALS relevant regions.

(GR)400 knock-in mice exhibit cortical hyperexcitability without TDP-43
mislocalisation or neuronal loss

Next, we assessed whether polyGR or polyPR expression in the brain is associated with
pathological features of ALS and FTD. We did not observe astrogliosis in the motor cortex of
(GR)400 and (PR)400 mice up to 12 months of age (Supplementary Fig. 3A). As microglia-
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mediated neuroinflammation has been observed in ALS and FTD and is associated with
C9orf72 function, we assessed levels of two microglial markers, Ibal and CD68. While Ibal
stains microglia cells and processes and thus provided an index of microglial density,
lysosomal antigen CD68 served as an indirect measure of microglial phagocytic activity. Our
staining revealed no alterations in microglial density or the percentage of CD68-positive
microglia in the motor cortex of (GR)400 and (PR)400 mice at 12 months of age
(Supplementary Fig. 3C). We then explored TAR DNA binding protein 43 (TDP-43)
pathology, a typical hallmark in the majority of ALS patients. TDP-43 was predominantly
nuclear in the cortex of (GR)400 and (PR)400 mice, without mis-localisation to the cytoplasm
or inclusion formation, suggesting TDP-43 was not altered at 12 months of age
(Supplementary Fig. 3E). We also evaluated whether expression of polyGR or polyPR
caused neuronal loss. First, we measured the density of NeuN-positive neurons in the whole
cortex and specifically in the motor cortex, which revealed that NeuN+ neuron density was
not altered in (GR)400 and (PR)400 mice at 12 months of age (Fig. 3A). Then, we quantified
CTIP2-positive upper motor neuron (MN) density in layer V of the motor cortex, which is
particularly vulnerable to cell death in ALS. Our quantification indicated there was no
significant loss of CTIP2 neurons in 12-month old (GR)400 and (PR)400 mice (Fig. 3B).
These results suggest that, up to 12 months of age, polyGR and polyPR expression in the
brain is not associated with pathological features found in ALS and FTD, including
astrogliosis, microgliosis, TDP-43 pathology, and neuronal loss.

We therefore investigated whether functional deficits were present, which would provide
insight into the early brain changes in FTD and ALS. We conducted in vivo two-photon
calcium imaging of neurons in superficial and deep layers of the motor cortex of (GR)400
and (PR)400 mice as well as WT controls using the red-shifted genetically encoded calcium
indicator jRCaMP1b (Fig. 3C). We found that, in (GR)400 mice, there was an increase in the
fraction of abnormally hyperactive neurons in superficial layers, but not in layer 5 where
spontaneous neuronal activity was comparable to (PR)400 and WT mice (Fig. 3D-F and
Supplementary Fig. 4A-C). To further validate these layer-specific neuronal impairments,
we performed high-density in vivo Neuropixel recordings in a subset of the same mice and in
an additional cohort to assess single-unit and population neuronal activity. These
experiments confirmed that motor cortex neurons in superficial layers in (GR)400 mice were
hyperexcitable relative to those in (PR)400 and WT mice, (Fig. 3G and Supplementary Fig.
4D). Furthermore, evaluation of population local field potential (LFP) across all motor cortex
laminae was suggestive of a concurrent reduction in slow wave activity power, and an
increase in gamma-frequency band power, in (GR)400 mice relative to (PR)400 and WT
mice (Figure 3H). These findings provide evidence for augmented neuronal and network
excitability in motor cortex of (GR)400 mice.

(GR)400 and (PR)400 knock-in mice develop age-dependent lower motor neuron loss
and progressive rotarod impairment

Having identified early functional deficits in the brain, we next assessed motor function in our
DPR knock-in mice. First, we measured body weight of (GR)400 and (PR)400 mice starting
from 3-months of age. Our analysis did not detect differences in body weight over the course
of the first year of life (Fig. 4A and Supplementary Fig. 5A). Similarly, we did not see
alterations in body weight of eGFP knock-in mice from 3- to 12-months of age
(Supplementary Fig. 6A). Next, we evaluated rotarod performance to establish whether
polyGR or polyPR expression influenced motor coordination. Notably, we found a
progressive decrease in accelerated rotarod performance (Fig. 4B and Supplementary Fig.
5B). In particular, (GR)400 mice showed significant rotarod impairment from 5- to 8-months
of age, while in (PR)400 mice we found an impairment from 6- to 8-months of age when
compared to WT littermates, which showed an age-related decline from 8 months of age
onwards. As expected, we did not observe rotarod deficits in eGFP knock-in mice over the
first year of life (Supplementary Fig. 6B), indicating the rotarod defect is a specific effect of
DPR expression. We conducted grip strength analysis and neither (GR)400, (PR)400, nor
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eGFP knock-in mice showed strength deficits up to 12 months of age (Supplementary Fig.
5C-D and Supplementary Fig. 6C). These results show that polyGR and polyPR cause
progressive, but relatively subtle motor dysfunction, consistent with physiological expression
levels of the DPRs.

We next turned our attention to neuropathological analysis of the ventral spinal cord, a key
site of neurodegeneration in ALS. We focused on the ventral horn of the lumbar spinal cord
as this is where the large alpha motor neurons that undergo degeneration in ALS reside.
Similarly to the brain, we did not observe astrogliosis or microgliosis in the ventral horn of
lumbar spinal cord from 12-month old (GR)400 and (PR)400 mice (Supplementary Fig. 3B
and 3D). Moreover, no signs of TDP-43 cytoplasmic mis-localisation or aggregation were
identified (Supplementary Fig. 3F).

Next, we determined whether polyGR or polyPR expression had an effect on lower motor
neuron viability. We assessed neurodegeneration by counting motor neurons in the lumbar
spinal cord (Fig. 4C). We did not observe any difference in the motor neuron number in 6-
month-old (GR)400 and (PR)400 compared with WT mice (Fig. 4D). However, at 12 months
of age, polyGR and polyPR mice showed a nearly 20% reduction in the number of motor
neurons of the lumbar spinal cord (Fig. 4E). This is an important result as it shows that our
knock-in mice replicate a cardinal feature of ALS: age-dependent spinal cord motor neuron
loss. Given the importance of these findings, we next used in vivo electrophysiological
recordings to validate loss of motor neurons. We performed motor unit number estimation
analysis in the hind limbs of 12-month-old (GR)400 and (PR)400 mice. We detected a
significant reduction, by 41% in (GR)400 and 25% in (PR)400, in functional motor unit
number in the extensor digitorum longus (EDL) muscles when compared to wild-type
littermates (Fig. 4F and 4G). Furthermore, we performed the same recordings in the hind
limbs of 12-month old C90rf72 eGFP knock-in mice without finding alterations in functional
motor unit number (Supplementary Fig. 6D). Overall, these results reveal an age-
dependent neurodegeneration in the spinal cord of our polyGR- and polyPR knock-in mouse
models.

(GR)400 and (PR)400 knock-in mouse spinal cord has increased extracellular matrix
protein levels, a signature conserved in C9orf72 patient motor neurons

Given that (GR)400 and (PR)400 mice showed features typical of ALS, we next investigated
dysregulated pathways associated with DPR-induced toxicity using quantitative proteomics.
Analysis of lumbar spinal cord of 12-month old (GR)400 and (PR)400 mice revealed a
striking increase in extracellular matrix (ECM) terms (Fig. 5A), with no other clearly
dysregulated pathways. Moreover, we obtained proteomic data from NeuroLINCS, which
recently developed an integrated multi-omic analysis of C9ALS patient iPSC-derived motor
neurons *°. We analysed their raw mass spectrometry data using our own analysis pipeline
to ensure an appropriate comparison with our knock-in mouse data and observed a
remarkable similarity between datasets, which showed a common upregulation of GO terms
associated with the ECM, consistent with the original NeuroLINCS findings 4%° (Fig. 5A).
Multiple ECM-associated proteins, including collagens, were pinpointed as the most
significantly upregulated proteins in lumbar spinal cord of (GR)400 and (PR)400 mice, and
iPSC-derived MNs (Fig. 5B). We also analysed a published dataset of laser-capture
microdissected motor neurons from C9ALS patient spinal cord %! and again extracellular
matrix terms were among the most significantly upregulated GO terms (Supplementary Fig.
7A), consistent with a previous report *°. Fewer proteins were downregulated and with lower
fold-changes than upregulated proteins, but interestingly, GO term enrichment analyses
revealed synapse proteins were reduced in lumbar spinal cord of (GR)400 and (PR)400
mice (Supplementary Fig. 7B), consistent with the observed motor neuron loss.
Importantly, a significant reduction in C9orf72 protein was observed, which is consistent with
our quantitative PCR and immunoblotting data (Fig. 5B), helping confirm the quality of the
dataset.
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To further verify our results, we evaluated COL6AL expression in (GR)400 and (PR)400
mice as it was one of the most altered ECM proteins in the proteomics analysis. As
expected, immunoblot analysis showed COL6A1 was significantly upregulated in lumbar
spinal cord of 12-month old (GR)400 and (PR)400 mice (Fig. 5C). Similarly, immunostaining
followed by volumetric image analysis showed a ~50% increase of COL6AL volume in the
ventral horn of lumbar spinal cord from (GR)400 and (PR)400 mice at 12-months of age
(Fig. 5D), but not eGFP knock-in mice (Supplementary Fig. 7C). Intriguingly, COL6A1 was
localised to neurons rather than the extracellular space or other cell types, indicating an
increase of neuronal ECM protein expression. This is consistent with the increased ECM
signature in patient iPSC-motor neurons and laser capture microdissected motor neurons.
Overall, these data show that an increase in extracellular matrix proteins, exemplified by
COLG6AL, is a conserved feature of C9orf72 FTD/ALS neurons.

PolyGR induces TGF-B1 followed by its target gene COL6AL1 in i*Neurons

To identify potential upstream regulators controlling the differential expression of ECM-
related proteins, we conducted Ingenuity Pathway Analysis (IPA) on the polyGR, polyPR and
patient iPSC-motor neuron data sets. IPA uncovered several predicted regulators. Several of
the top predicted regulators were common between our DPR knock-in mice and human
C9orf72 iPSC-derived motor neurons, including TGF-B1 and its intracellular mediator
SMADZ2/3, as well as AGT, CCR2 and SORL1 (Fig. 6A). Interestingly, among these
regulators, we found that TGF-B1 was significantly upregulated within the 3 proteomic
datasets (Supplementary Table 1 and Supplementary Table 2). To determine whether
TGF-B1 is also altered in patient brain we utilised a large frontal cortex RNA-seq dataset
comprising 34 C9orf72 FTD/ALS cases in which ECM dysregulation has also been reported
52, We found that TGFB1 was significantly increased, after genome-wide FDR correction, in
C9orf72 FTD/ALS cases when compared to either non-C9orf72 FTD/ALS or neurologically
normal controls (Fig 6B), further confirming the relevance of this pathway in C9orf72
FTD/ALS patient tissue.

Based on these results, we hypothesized that activation of the TGF-1 signalling pathway,
which is known to be a master regulator of ECM genes °3, may contribute to the ECM
alterations in (GR)400 and (PR)400 mice. To test this hypothesis, we studied TGF-31
signalling in vitro. We adopted a transcription factor-mediated differentiation protocol to
differentiate human induced pluripotent stem cells into cortical neurons (i¥Neurons) **. We
transduced i¥Neurons with 50 polyGR repeats [(GR)so] °°, or GFP as a negative control (Fig.
6C). (GR)so caused a progressive increase in neuronal death, with a -20% and ~40%
reduction in confluency at 5 and 7 days in vitro (DIV) respectively compared to GFP-treated
cells (Fig. 6D). Quantitative PCR analysis showed that TGFB1 was significantly upregulated
by polyGR at DIV 5, prior to its target gene COL6AL, which became significantly increased
two days later (Fig 6E and 6F). This shows that polyGR expression in neurons is sufficient
to induce TGF-B1 expression, leading to increased expression of COL6A1, the most
prominently increased ECM protein in polyGR knock-in mouse spinal cord. This suggests
that increased TGF-31 signalling is one factor contributing to the conserved ECM protein
signature in C9 FTD/ALS neurons.

TGF-B1 and COL6AL1 reduction specifically exacerbates polyGR toxicity in vivo

The neuronal increase in ECM proteins could be protective, deleterious or neutral to disease
progression. To investigate this further we focused on TGF-B1, as it emerged as a top
predicted regulator, and COL6A1, as it is the most highly increased ECM protein in polyGR
mice. To determine whether TGF-87 and COL6A1 have a role in polyGR-induced
neurodegeneration in vivo, we utilised our Drosophila line expressing 36 polyGR repeats
1556 which causes a moderate eye degeneration. We investigated the dawdle (daw) and
Multiplexin (Mp) genes, which are the closest fly orthologues of TGFB1 and COL6A1,
respectively. Both daw and Mp levels were increased in GR36 flies (Fig 7A), consistent with
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both the knock-in mouse and patient iPSC-motor neuron data. We crossed GR36 flies with
RNAiI lines targeting daw or Mp. Both daw and Mp reduction caused a dramatic worsening of
eye degeneration in GR36 flies but had no effect in wildtype flies (Fig. 7B-7D). This shows
that daw and Mp are able to specifically protect against polyGR-induced toxicity in vivo,
indicating that increased neuronal collagen expression is neuroprotective in the context of
polyGR insult. In summary, ECM proteins, exemplified by COL6A1 are specifically increased
in the spinal cord of our new DPR knock-in mice, as well as Drosophila and human iPSC-
neurons expressing polyGR, patient iPSC- motor neurons and patient end-stage spinal-
motor neurons. The presence of this conserved signature in surviving neurons across
different models and patient material, combined with our data showing a protective role in
GR36 Drosophila indicates a novel neuroprotective role of neuronally expressed ECM
proteins.

Discussion

We have generated the first DPR knock-in mice, which utilise the endogenous mouse
C9orf72 promoter to drive expression of a single DPR, either (GR)400 or (PR)400. The
insertion of the DPR sequence also removed one normal allele of C9orf72. Thereby we have
recapitulated two features of C9orf72 FTD/ALS — the reduced level of C90rf72 and the
presence of DPRs. The mice do not recapitulate the unconventional RAN translation
mechanism of DPR generation, as they are driven by the mouse C9orf72 ATG start codon.
This was intentional, allowing us to study the effects of specific DPRs, and means that other
mouse models, expressing the expanded G4C; repeat, are needed to study mechanisms of
RAN translation in vivo. We focussed on polyGR and polyPR as they are consistently the
most toxic DPRs in model systems 2°. This does not lessen the relevance of other DPRs,
particularly polyGA, which is also toxic in different model systems, but likely through different
mechanisms 457,

We show that driving expression with the endogenous mouse promoter leads to
physiological expression levels of polyGR, as determined by comparison with human brain,
allowing the examination of patient-relevant polyGR effects. We also built DPR constructs in
the patient range, comprising 400 uninterrupted polyGR or polyPR repeats, to replicate
patient DPRs as closely as possible. Physiological expression of patient-length repeats did
not lead to overt gliosis or TDP-43 mis-localisation over 12 months, nor did it lead to cortical
neuronal loss. This is consistent with the milder effects observed in knock-in mice, in which
genes are expressed at physiological levels, and provides reassurance that over-expression
artefacts are unlikely #*. Over-expression of 200 GR repeats, but not 100 GR repeats was
sufficient to drive aggregation of polyGR and recruitment of TDP-43 into those aggregates,
implicating GR aggregation as a possible cause of TDP-43 aggregation 2*. Our expression of
even longer repeats, but at lower levels did not lead to GR or TDP-43 aggregation,
suggesting a complex relationship between DPRs and TDP-43 aggregation.

Intriguingly, using two complementary methods, namely two-photon calcium imaging and
high-density Neuropixels recordings, we observed hyperexcitability in polyGR mice in
superficial cortical layers, which are affected in FTD, but not deeper layer 5 neurons that are
vulnerable in ALS. Further work is needed to parse out this difference and its relevance, but
it is noteworthy that cortical hyperexcitability is well described in both C9orf72 and non-
C90rf72 ALS/FTD patients °8, indicating that new mechanistic insights into this early patient-
relevant phenotype can be gained by future investigations on our polyGR mice. It is also
interesting that only polyGR but not polyPR mice showed this phenotype. Firstly, this rules
out the effect being due to reduced C9orf72 levels, as both mice have similarly reduced
C9orf72. Secondly, it points to a more pertinent effect of polyGR in the brain. This would be
consistent with several studies that show polyGR is the only DPR to correlate with clinical
symptoms and neurodegeneration in COFTD/ALS patients %51, PR20 peptides were shown
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to cause cortical neuron excitability in acute brain slices 2, so an effect of polyPR cannot be
ruled out, but our use of in vivo recording and patient-length repeats appears closer to the
patient context.

It was also notable that polyGR expression appeared restricted to neurons when driven by
the mouse C9orf72 promoter. This is consistent with two earlier reports that drove LacZ with
the mouse C9orf72 promoter %364 as well as in situ hybridisation and immunostaining of
mouse C9orf72, which showed only neuronal and no glial staining in mouse brain . This is
also consistent with C9orf72 repeat RNA foci and DPRs being expressed at lower levels in
glia than neurons 810606667 ‘However, as C9orf72 knockout microglia exhibit an altered
transcriptome and functional properties 8, further investigation of the circumstances under
which a microglial function for C9orf72 becomes apparent are warranted.

While we did not observe neuronal loss in the cortex, we did observe a significant,
approximately 20% loss of spinal cord motor neurons in both polyGR and polyPR mice. We
therefore focused our mechanistic analyses on the spinal cord. A striking finding was a
remarkably conserved signature of increased ECM gene expression in C9orf72 FTD/ALS
tissues. The increased ECM signature was the dominant change in quantitative proteomics
analyses of both polyGR and polyPR knock-in spinal cord and it was remarkably similar to
an independent quantitative proteomics dataset of C9orf72 patient iPSC-motor neurons. This
increase was also present in laser capture micro-dissected C9orf72 patient spinal cord motor
neurons, human iPSC-neurons treated with polyGR and Drosophila over-expressing
polyGR. This conservation across several models and human tissue indicates a genuine
phenomenon linked to the presence of arginine-rich DPRs. Altered ECM gene expression
has been noted in range of ALS-related transcriptomic datasets both with and without
C9orf72 mutation, but there is no clear consensus on its role and importance in ALS
pathophysiology. It is clear that one driver of increased ECM gene expression in those
datasets is astrogliosis. A meta-analysis of human iPSC-astrocyte transcriptomic datasets
from several genetic subtypes of ALS (C9orf72, FUS, SOD1 and VCP) revealed a common
increase in ECM gene expression that was shared with pro-inflammatory ‘A1’ astrocytes .
This is consistent with recently published bulk spinal cord RNA-seq data from a large series
of 154 ALS cases (including 29 C9orf72 cases ). Weighted gene co-expression network
analysis of this dataset identified 23 co-expressed gene modules, including an astrocyte
module with significantly increased ECM gene expression in ALS cases that was negatively
correlated with age at onset and age at death 7°. This suggests that pro-inflammatory
astrocytes are characterised by increased ECM gene expression and that this correlates
with more severe disease. Interestingly, ALS microglia also appear to show increased ECM
gene expression "0 indicating ECM signals in bulk transcriptomic data could derive from both
activated astrocytes and microglia, as well as neurons. Here we show a neuron-centric
alteration in the absence of overt gliosis; however, these studies warrant future careful
examination of the role of glia in ECM changes in C9orf72 FTD/ALS.

Our data now brings clarity to the complexities of ECM alterations in ALS/FTD by showing
that there is a neuron-derived ECM signature that is neuroprotective. This provides a new
paradigm for understanding ECM changes in which a potentially deleterious ECM increase
in glia occurs alongside a protective ECM upregulation in neurons. These opposing effects
may help explain why it has previously been hard to pinpoint the role and relevance of ECM
alterations in ALS/FTD. The case for neuron-derived aberrant ECM expression is supported
by its presence in neuronal datasets — patient iPSC-motor neurons and laser capture
microdissected motor neurons, as well increased COL6A1 immunostaining in motor neurons
in polyGR and polyPR knock-in mice. This ECM signature appears to be driven, at least in
part, by TGF-B1, as TGF-B1 itself is increased and it was one of the top predicted upstream
regulators of the changes in polyGR, polyPR and patient iPSC-neuron proteomics datasets.
It is possible that the other predicted regulators also contribute to the increased ECM signal
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and this will require further investigation. TGF-B1 is an attractive candidate as it is well
known to cause increases in ECM expression via its intracellular mediator phospho-
SMAD?2/3 %3, and expression of polyGR was sufficient to induce TGFB expression, providing
a plausible explanation for its upregulation. In addition, TGF-B1 is neuroprotective both in
vitro and in vivo against a wide array of neuronal insults including excitotoxicity "*-3, hypoxia
" and ischemia "> and Tgfb knockout mice exhibit neurodegeneration 7’8, We now show
TGF-B1 expression can lead to a neuroprotective increase in the neuronal expression of
ECM proteins and specifically collagen VI.

Expression of polyGR in human iPSC-neurons was sufficient to induce TGFB1 expression
followed by COL6AL, and knockdown of the COL6A1 or TGFB1 homologues in flies
expressing 36 GR repeats showed a specific and striking enhancement of
neurodegeneration, pointing to a neuroprotective effect of collagen induction. In remarkable
concordance with our data, it was previously shown that A4, treatment of primary mouse
neurons causes an increase in neuronal Col6al that is neuroprotective and mediated by
TGF-B1 ™. Neuronal collagen VI expression is also increased upon UV-irradiation of primary
neurons and protects against irradiation-induced apoptosis . In combination, these results
show that COL6AL, which is not normally expressed in neurons, is induced in neurons by
neurodegenerative insults. Collagen VI is comprised of a 1:1:1 polymer of three distinct
collagen VI chains encoded by COL6A1, COL6A2 and COL6A3. This heterotrimer then
tetramerises before being secreted into the extracellular space where it classically forms
beaded microfilaments 8. However, in neuronal cultures collagen VI was identified in
proximity to the neuronal plasma membrane indicating that it may act as a neuroprotective
autocrine signalling molecule when secreted by neurons rather than forming microfilaments
82 This is supported by experiments in which exogenously added collagen VI was sufficient
to ameliorate both UV-irradiation and ABa42-induced neuronal death 7°#. However, further
investigations are now needed to identify the mechanism by which collagen VI provides
neuroprotection. All three collagen VI chains were upregulated in our proteomics datasets so
it will be important to determine whether individual collagen VI chains such as COL6A1 can
perform independent neuroprotective functions or whether the intact final tetramer is the
active species.

It is clear that a range of different insults can induce TGF-1/ECM changes. One such insult
is polyGR/polyPR, but it is likely that other ALS-related insults can also lead to TGF-$1 and
collagen increase. Indeed, dysregulated TGF-B1 signalling has been described in a SOD1
mouse model of ALS 8% and increased ECM and TGF-B1 signalling was identified in a
transcriptomic dataset of sporadic ALS post-mortem spinal motor neurons °°. This indicates
that different insults relevant to genetic or sporadic forms of ALS can cause a TGF-31
response. Some studies report that TGF-B1 concentration is significantly higher in plasma 8¢
and cerebrospinal fluid 8 from ALS patients compared to healthy controls. Although other
studies have not observed these alterations in ALS patients . It is therefore still unknown
whether TGF-B1 biofluid levels may be a suitable biomarker for ALS 8. In summary, these
findings identify a neuroprotective neuronal ECM signature in C9orf72 ALS/FTD, exemplified
by collagen VI, which may have broad relevance for ALS and other neurodegenerative
diseases.
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Methods

Assembly of targeting constructs

eGFP sequence and 100 codon-optimised polyGR or polyPR were synthesized at GeneArt
Synthesis Services (Thermo Fischer Scientific). An Empty Vector (EV) was generated at
GeneArt Synthesis Services (Thermo Fischer Scientific) by engineering a pMC cloning
vector to contain 600 bp of the 5 homology arm, a double HA-tag, a V5 epitope tag, a SV40
polyA tail, and 250 bp of 3’ homology arm. eGFP and 100 codon-optimised DPRs were
cloned into the EV within the Bbsl and BsmBI sites to generate pMC-eGFP, pMC-(GR)100,
and pMC-(PR)100. 400 codon-optimised DPRs were assembled with two consecutive
rounds of recursive directional ligation taking advantage of the restriction enzymes Bbsl and
BsmBI to generate pMC-(GR)400 and pMC-(PR)400

A selection cassette (FRT-PGK-gh2-neo-FRT, Gene Bridges) was inserted in the pMC-
eGFP, pMC-(GR)400, and pMC-(PR)400 in the Nhel site. A BAC subcloning kit by Red/ET
recombination (Gene Bridges) was used to clone full length homology arms (2.7 kb in 5’ and
3.2 kb in 3’) from the BAC clone (RP23-434N2), containing the C57BL/6J sequence of the
mouse C9orf72 gene, into the targeting vector [pBlueScript Il SK (+)]. Knock-in constructs
were obtained by inserting sequences from pMC-eGFP, pMC-(GR)400, and pMC-(PR)400
into targeting vectors within the BstXl and Xcml sites.

Animals

All procedures involving mice were conducted in accordance with the Animal (Scientific
procedures) Act 1986 and performed at University College London under an approved UK
Home Office project licence. Mice were maintained in a 12 h light/dark cycle with food and
water supplied ad libitum.

To generate the KI-DPR mouse strains, we performed CRISPR assisted gene targeting in
JM8F6 embryonic stem (ES) cells (C57BL/6N) using our targeting vector(s) and a
CRISPR/Cas9 designed against the insertion site.

The CRISPR construct (pX330-Puro-C9orf72), expressing Cas9 and a U6 promoter driven
single-guide-RNA (sgRNA) designed against the following sequence
AGTCGACATCCCTGCATCCC. This was generated by annealing the following two oligos
(5’-CACCgAGTCGACATCCCTGCATCCC-3’; 5-AAACGGGATGCAGGGATGTCGACTCc-3)
and cloning this into the unique Bbsl sites of pX330-U6-Chimeric_BB-CBh-hSpCas9
(Addgene # 42230), modified by the addition of a PGK-Puro cassette.

1x10°8 ES cells were electroporated with 2.5 pg of the cloned pX330-Puro-C9orf72 plasmid
and 2.5 ug of targeting vector using the Neon Transfection System (Thermo Fisher
Scientific) (3 x 1400 V, 10 ms) and plated on Puromycin resistant fibroblast feeder layers.
After approximately 24 h, selection in 600 ng/ml puromycin was applied for a further 48 h to
allow transient selection. After further 5 days in culture without selection, individual colonies
were isolated, expanded and screened for the desired targeting at both the 5’ end (5'-
TCGGGGATTATGCCTGCTGC’3’ and 5-GCATCCCAGGTCTCACTGCA-3’) and at the 3’
end (5-TCGAAAGGCCCGGAGATGAGGAAG-3 and 5-GGGTTCAGACAGGTACAGCAT-
3’). ES cells from correctly targeted clones were injected into albino C57BL/6J blastocysts
and the resulting chimeras were mated with albino C57BL/6J females. The presence of the
targeted allele in the F1 generation was confirmed at the DNA level by the above PCR and
Sanger sequencing. Germline-transmitting founders were obtained and backcrossed to wild-
type C57BL/6J mice to maintain hemizygous lines.

Mouse genotype was determined by PCR for knock-in sequence with the following set of
primers (forward 5-TAAGCACAGCAGTCATTGGA-3 and reverse 5'-
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AAGCGTAATCTGGAACATCG-3’). Repeat length was determined by PCR with the
following set of primers (forward 5’-CCCATACGATGTTCCAGATTACGCTTACCC-3 and
reverse 5-GCAATAAACAATTAGGTGCTATCCAGGCCCAG-3)).

Males were used for all experiments in the main text, except in vivo two-photon calcium
imaging and Neuropixels recording where females were used. Phenotyping was also
performed on female mice, with similar results to males, and these data are included in the
supplement data section.

Human tissues
Human C9orf72FTD/ALS samples for polyGR MSD immunoassay were described previously
®1 and protein extracted as described in the biochemical analysis section.

Biochemical analysis

Brains and spinal cords were mechanically pulverized and homogenized in lysis buffer [RIPA
buffer (Pierce), 2% sodium dodecyl! buffer (SDS)] containing protease (Roche) and
phosphatase (Thermo Scientific) inhibitor cocktails. The lysates were sonicated and
microcentrifuged for 20 min at 13000 rpm at room temperature. Soluble fractions were
collected and protein concentration was determined using the bicinchoninic acid (BCA)
assay method (Thermo Scientific). Protein were separated on NUPAGE™ 4 to 12% bis-tris
gels (Invitrogen) andtransferred to nitrocellulose membranes (Bio-Rad Laboratories).
Membranes were blocked in 5% milk in PBS-T (PBS, 0.1% Tween-20) for 1 hour at room
temperature. The membranes were incubated overnight at 4 °C with the following primary
antibodies: C9orf72 (12E7, kindly donated by Prof. Dr. Manuela Neumann; 1:4 dilution),
COLG6 (ab182744, Abcam; 1:1000), B-Actin (A2228, Sigma-Aldrich;1:5000 dilution), Calnexin
(sc-6465, Santa Cruz Biotechnology; 1:1000 dilution). After 3 washes in PBS-T, membranes
were incubated with secondary HRP-conjugated antibodies for 1 h at room temperature.
After 3 washes in PBS-T, signals were visualized by chemiluminescence (Amersham imager
680) and quantifications were performed using ImageJ software.

For Meso Scale Discovery (MSD) immunoassay, 96-well MSD microplates were coated with
a capture antibody in PBS and placed overnight at 4°C. Plates were washed 3 times with
TBS-T (TBS, 0.2% Tween-20) and blocked with 3% milk in TBS-T with shaking for 2 hours at
room temperature. Plates were washed 3 times with TBS-T, then samples and protein
standards were loaded and left shaking overnight at 4°C. After 3 washes in TBS-T, plates
were incubated with a biotinylated detector antibody and left shaking for 2 h at room
temperature. After 3 washes in TBS-T, plates were incubated with streptavidin-sulfotag
(R32AD1, Meso Scale Discovery) and left shaking for 1 h at room temperature. Then plates
were washed 3 times in TBS-T and MSD reading buffer (R92TC-1, Meso Scale Discovery)
was added to samples and protein standards. Plates were read with a MSD Discovery
microplate reader at 620 nm. Capture antibodies were: our previously described custom
rabbit anti-(GR)7 antibody (Eurogentec 2 pg/mL) %%, PR32B3 (Helmholtz Zentrum 2 pg/mL).
Detector antibodies were: the same GR antibdut used for capture (1 pg/mL, biotinylated),
PR32B3 (2 pug/mL, biotinylated in house).

GFP levels were measured by the GFP ELISA Kit (ab171581, Abcam) according to
manufacturer’s instructions.

Quantitative reverse transcription PCR

Tissues were dissected and flash-frozen in isopentane precooled in dry-ice, and stored at -
80°C until further processing. Total RNA was extracted with miRNeasy Micro Kit (Qiagen)
and reverse-transcribed into cDNA using SuperScript IV Reverse Transcriptase (Invitrogen)
with random hexamers and Oligo(dT).o Primer. Gene expression was determined by
quantitative real-time PCR using LightCycler® 96 (Roche). Relative gene expression was
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determined using AACT method. For quantitative PCR, primers specific for mouse C9orf72
are: forward primer 5-TGAGCTTCTACCTCCCACTT-3’ and reverse primer 5'-
CTCTGTGCCTTCCAAGACAAT-3'. Primers for mouse Actin are: forward primer 5’-
CTGGCTCCTAGCACCATGAAGAT-3’ and reverse primer 5'-
GGTGGACAGTGAGGCCAGGAT-3'. These primers were used in reactions with
LightCycler® 480 SYBR Green | Master (Roche).

Cells were collected, pelleted, and frozen at -80°C until further processing. Total RNA was
extracted with ReliaPrep™ RNA Cell Miniprep System (Promega) and reverse-transcribed
into cDNA using SuperScript IV VILO Master Mix (Invitrogen). Gene expression was
determined by quantitative real-time PCR using LightCycler® 96 (Roche). Relative gene
expression was determined using AACT method. For quantitative PCR, primers specific for
human TGFB1 are: forward primer 5-GGCTACCATGCCAACTTCT-3 and reverse primer 5'-
CCGGGTTATGCTGGTTGT-3'. Primers for human COL6AL are: forward primer 5’-
ACTTCGTCGTCAAGGTCATC-3 and reverse primer 5-CATCTGGCTGTGGCTGTA-3'.
Primers for human GAPDH are: forward primer 5-ACTAGGCGCTCACTGTTCT-3’ and
reverse primer 5-CCAATACGACCAAATCCGTTG-3'. These primers were used in reactions
with LightCycler® 480 SYBR Green | Master (Roche).

Drosophila were flash-frozen in liquid nitrogen. Total RNA was isolated using TRIzol reagent
(Thermo Fisher Scientific) following the manufacturer’s protocol. RNA samples were treated
with TURBO DNase (Thermo Fisher Scientific), and converted to cDNA using oligod(T)
primers and Superscript Il reverse transcriptase (Invitrogen). Gene expression was
determined by quantitative real-time PCR using QuantStudio 6 Flex Real-Time PCR System
(Applied Biosystems). Relative gene expression was determined using AACT method. For
guantitative PCR, primers for Drosophila daw are: forward primer 5’-
GGATCAGCAGAAGGACTCCAA-3’ and reverse primer 5-CAGTGTTTGATGGGCCACTC-
3'. Primers for Drosophila Mp are: forward primer 5-CTGGGCACCTTCAAGGCATT-3’ and
reverse primer 5-~ATCGCCACGAGTGTTCACC-3'. Primers for Drosophila Tubulin are:
forward primer 5-TGGGCCCGTCTGGACCACAA-3’ and reverse primer 5’
TCGCCGTCACCGGAGTCCAT-3'. These primers were used in reactions with SYBR Green
Master Mix (Applied Biosystems).

Immunohistochemistry

Mice were anesthetized by isofluorane inhalation and perfused through a transthoracic
cardiac puncture with prechilled phosphate buffered saline (PBS) and then 4%
paraformaldehyde (PFA). Brains and spinal cords were dissected and postfixed in 4% PFA
at 4°C for 2 h. After fixation, brains and spinal cords were washed with PBS, allowed to sink
in 30% sucrose solution at 4°C, then stored in 0.02% sodium azide at 4°C until further
processing. Brains and spinal cords were embedded in optimal cutting temperature (OCT)
compound (Tissue Tek, Sakura, Torrance, CA), and cross sections (10 pm-thick) were cut
with a cryostat (CM1860 UV, Leica Microsystem), then stored at -80°C. For
immunofluorescence analysis, brains and spinal cord cryosections were washed 3 times in
PBS and blocked in blocking solution (5% BSA, 1% normal goat serum, 0.2% Triton-X in
PBS) for 1 h at room temperature. Sections were then incubated with primary antibodies in
blocking solution overnight at 4°C. After 3 washes with PBS, sections were incubated for 1
hour at room temperature in blocking solution with secondary antibodies conjugated with
Alexa 488, 546, 594, and 633 (Invitrogen). After 3 washes in PBS, sections were mounted
with ProLong™ Gold Antifade Mountant with DAPI (Invitrogen).

Alternatively, after fixation, brains were washed with PBS, processed overnight using an
automated tissue processor (Leica ASP300), and embedded in paraffin (Leica EG1150H).
Tissue blocks were then stored at room temperature. For immunofluorescence analysis, 5
pum sections mounted on glass slides were incubated for 2 h at 60 °C. Sections were


https://doi.org/10.1101/2023.07.17.549331
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.17.549331,; this version posted July 17, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

deparaffinised in xylene and rehydrated in decreasing grades of alcohol. Slides were
incubated in methanol/hydrogen peroxide (0.3%) solution for 10 min at room temperature to
block endogenous peroxidase activity. For heat-induced antigen retrieval, slides were then
transferred to a boiling solution of 0.1 M citrate buffer (pH 6.0) and pressure cooked at
maximum pressure for 10 min. For immunofluorescence, slides were then blocked in 10%
milk for 1 hour at room temperature and incubated with primary and secondary antibodies as
described above. For DAB staining, slides were incubated in methanol/hydrogen peroxide
(0.3%) solution for 10 min at room temperature to block endogenous peroxidase activity,
prior to antigen retrieval as described above. Slides were then blocked in 10% milk for 1 h at
room temperature and incubated with primary antibody in PBS overnight at 4°C. After 3
washes with PBS, sections were incubated for 30 min at room temperature in biotinylated
secondary antibody (Vector Laboratories) in PBS. Slides were then washed in PBS and
incubated in VECTASTAIN® Elite® ABC-HRP Kit, Peroxidase (Vector Laboratories) for 30
min at room temperature. Sections were washed 3 times with PBS and incubated in 3,3'-
Diaminobenzidine (DAB) chromogen (Abcam).Slides were then dehydrated in increasing
grades of alcohol (70%, 95% and 100% ethanol), cleared in xylene and mounted with DPX
mounting medium (Sigma-Aldrich).

The primary antibodies used were: HA clone 3F10 (11867423001, Roche; 1:100 dilution),
NEUN (ABN91, Millipore; 1:500 dilution), IBA1 (019-19741, FUJIFILM Wako Pure Chemical
Corporation; 1:500 dilution), GFAP (AB5804, Abcam; 1:500 dilution), S1008 (ab41548,
Abcam; 1:300 dilution), CD68 (MCA1957, Bio-Rad Antibodies; 1:200 dilution), TDP-43
(12892-1-AP, Proteintech; 1:400 dilution), COL6 (ab182744, Abcam; 1:200), CTIP2
(ab18465, Abcam; 1:500).

Images were taken using a Zeiss LSM 880 confocal microscope or ZEISS Axio Scan.Z1
slide scanner. Image analyses were performed using ImageJ, Imaris, or QuPath-0.3.2
software.

Surgical procedures for in-vivo recordings

Surgical and experimental procedures were conducted in accordance with the Animal
(Scientific procedures) Act 1986, approved by the Animal Welfare and Ethical Review Body
(AWERB) at University College London (UCL), and performed under an approved UK Home
Office project licence at UCL. Mice were maintained in a 12 light/dark cycle with food and
water supplied ad libitum. Prior to surgical procedures, WT, PR(400) and GR(400) mice
were anaesthetised with isoflurane (3-4% induction, 1.5-2% for maintenance) and given a
subcutaneous carprofen for pain relief during subsequent surgery. Liquid eye gel
(Viscotears) was applied to protect the eyes during procedures and the animal’'s head was
shaved to remove fur. The animal was placed in a stereotaxic frame (WPI) and over a
heating blanket to maintain normothermia during procedures. Exposed skin was disinfected
using diluted chlorhexidine and cleaned with ethanol, following which lidocaine/prilocaine
cream was gently applied to skin using a sterile applicator. All surgical procedures were
performed under aseptic conditions. Anaesthetic depth was confirmed by monitoring the
pedal reflex and breathing rate. Subcutaneous saline (0.2 ml) was provided every hour of
surgery to maintain hydration. Following a small incision, the skin overlying the skull was
carefully retracted and connective tissue over the skull carefully cleared. A small craniotomy
overlying motor cortex was then performed using a hand-held microdrill (WPI) under
constant cooling with sterile phosphate buffered saline and visualisation through a surgical
microscope (Leica). In a subset of animals, a silver chloride wire was then attached to a
small indentation in the skull overlying the cerebellum using cyanoacrylate glue (to act as a
ground/reference electrode) and dental cement (Jet) used to secure the wire and build a well
encircling the craniotomy. These animals were then transferred directly to the
electrophysiology station while remaining in the stereotactic frame for subsequent acute
recordings with no interruption of anaesthesia. In remaining animals, A glass coverslip (5
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mm diameter) was placed over the craniotomy, and dental cement (Jet) applied to secure
the cranial window and cover remaining exposed skull. On completion of these procedures,
a subcutaneous injection of buprenorphine (0.1 mg/kg) was administered for immediate
post-surgical pain relief, and the animal allowed to recover from surgical anaesthesia on a
heated plate (37°C) and monitored continuously. On recovery, animals were returned to the
holding room in single-housed conditions and carprofen provided in drinking water overnight
and continued for three days, during which the animal’s health and welfare was closely
monitored. Recordings were performed at least two weeks following recovery.

In vivo two-photon Ca?* imaging and analysis

Animals were initially anaesthetised with isoflurane (3-4% induction) and placed in a
stereotaxic frame and over a heating blanket to maintain core temperature at 37°C
throughout experimental procedures. In vivo two-photon Ca?* imaging of motor cortex was
performed under light isoflurane anesthesia (~1%) using a custom-built resonant-scanning
two-photon microscope (Independent NeuroScience Services) controlled by Scanimage
(MBF Bioscience), and equipped with a Coherent Chameleon Discovery NX tunable laser
and a 16x, 0.8 NA, Nikon water immersion objective. Imaging of neuronal calcium activity
was performed at a wavelength of 1070 nm and fluorescence detected with a GaAsP
photomultiplier tube (Hamamatsu). Images (512x512 pixels) were acquired at 30 Hz frame
rate, and each field-of-view (FOV) was recorded for at least 5 minutes. Image analysis was
performed with Suite2p %2 and custom MATLAB scripts. The recorded image stacks were
first loaded into Suite2p for motion correction, region of interest (ROI) detection, and calcium
signal extraction. For each detected ROI (putative cell somata), the neuropil corrected signal
was extracted by subtracting the neuropil fluorescence signal surrounding the ROI (F,) from
the raw fluorescence signal within the ROI (F): Feor(t)=F(t)-0.7*Fn(t). The baseline
fluorescence (Fo) was estimated by using robust mean estimation and relative fluorescence
change (AF/F=(Fcon(t)-Fo)/Fo) over time was generated for each ROI. Ca?* transients were
identified as relative changes in AF/F that were two times larger than the standard deviation
of the noise band. Following automatic peak detection, the peaks were inspected using
custom-written MATLAB scripts and manually curated to exclude false positives and include
false negatives. Silent and hyperactive neurons were defined as those with individual activity
rates of 0 and >3 transients per min, respectively.

In vivo Neuropixels recordings and analysis

For recordings following surgical recovery, animals were anaesthetised with isoflurane (3-4%
induction) and placed in a stereotaxic frame and over a heating blanket to maintain core
temperature at 37°C throughout experimental procedures. A small aperture overlying the
motor cortex was made in the glass cover slip using a diamond-tipped drill bit and micro-drill,
and a silver chloride ground/reference electrode affixed to the edge of the cranial window
using dental cement (Jet). In all animals, a Neuropixels probe * (IMEC), was connected to
the ground/reference electrode and slowly implanted into motor cortex using stereotactic
procedures at a rate ~5-10 um/s under remote micromanipulator control (QUAD, Sutter
Instruments) and visualised through a microscope (GT Vision). Following successful
implantation, the cranial well was filled with warm sterile saline and the brain allowed to rest
for at least 45 min before recordings, during which isoflurane anaesthesia was gradually
lowered to maintain adequate anaesthetic depth and promote physiological cortical activity
levels. A 10 minute recording of spontaneous brain activity was then performed in each
animal. Following recordings, all animals were immediately sacrificed without recovery using
a Schedule 1 method. Neuropixels recordings (30kHz sampling rate) of spontaneous brain
activity were processed and automatically spike sorted using Kilosort3 using default
parameters %. Processed data were then imported into PHY software
(https://github.com/cortex-lab/phy) for interactive visualisation of putative cortical clusters,
and data manually inspected and curated to exclude false positives and include false
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negatives, and improve clustering through merging where appropriate. Following curation,
spike-sorted data were analysed using custom-written MATLAB scripts and subjected to an
additional quality control where only units in which less than 1% of associated spikes
violated the physiological refractory period of 2 ms were included for further analysis. Mean
firing rates of all units (as logioHz) across the entire 10 minute recording session were
calculated over 1 second time-bins for superficial cortex (0-400um below surface) and deep
layer 5 (550-800 um below surface). Local field potential (LFP) data for the entire 10 minute
recording session was low pass filtered and decimated from 2.5kHz to 500Hz using an 8th
order Chebyshev Type 1 IR filter and common average referenced. LFP data was averaged
across cortical channels and mean power in the slow (0.1-1Hz), mid-gamma (40-90Hz) and
high-gamma (90-120Hz) frequency bands estimated using Welch’s technique (40s windows
with 50% overlap, MATLAB function ‘pwelch’). Data were tested for normal distributions
using Kolmogorov-Smirnov or Anderson-Darling tests.

Locomotor, grip strength and body weight assessment

Behavioural tests were performed monthly from 3- to 9-months of age, and in 12-month old
mice. Motor coordination was measured by rotarod analysis (Ugo Basile). Mice were trained
the week before starting the test. Then, mice received a session which included three trials
of accelerated rotarod for a maximum of 300 seconds. Trials started at 4 rpm speed and
accelerated up to 40 rpm in 4 min, the final min of the test was performed at 40 rpm. The
average of recordings for each mouse was used to analyse rotarod performance. For grip
strength analysis of muscle force, a grip strength meter (Bioseb) was used to measure
forelimb and hindlimb grip strength. The grip strength meter was positioned, and the mice
were held by the tail and lowered toward the apparatus. Mice were allowed to grasp the
smooth metal grid with their forelimbs and hindlimbs and then were pulled backward. The
force applied to the grid, measured at the moment in which the grasp was released, was
recorded as the peak tension. The highest muscle force score of three independent trials
was used. Body weight was measured weekly from 3-months of age. Mice were randomized
into different experimental groups and the operator was blind to genotype.

Motor neuron counts

10 um-thick OCT-embedded spinal cord sections were stained with Cresyl Violet and motor
neurons located within the sciatic motor pool were counted in each ventral horn on 35
sections, collected every 60 pm of tissue, covering L3 to L5 levels of the spinal cord.

In vivo isometric muscle tension physiology

Isometric muscle tension physiology was performed as previously described °>. Briefly,
under deep anaesthesia (isoflurane inhalation via nose cone), hindlimbs were immobilized
and the distal tendons of the TA and EDL muscles of both hindlimbs were exposed and
consecutively attached to force transducers in parallel. Sciatic nerves were exposed
bilaterally, at mid-thigh level, severed and the distal stumps placed in contact with
stimulating electrodes. EDL muscle motor unit number estimates (MUNE) were determined
by gradually increasing the amplitude of repeated square wave stimuli, thereby inducing
stochastic changes in contractile force. The total number of motor units recruited over the full
range of amplitudes was counted for individual muscles and averaged for each genotype.

Proteomic analysis

Mouse lumbar spinal cords were solubilized in SDS-Lysis buffer (2% (wt/vol) SDS in 100 mM
TEABC supplemented with Roche protease mini and Phos-STOP cocktail tablets).
Automated homogenization was performed using the Precellys evolution homogenizer
(Bertin Technologies # P0O00062-PEVOO0-A) . The lysates were then subjected to sonication
using an automated Diagenode Bioruptor sonicator. Lysates were then centrifuged at 20800
g for 20 min and the supernatantused for. protein estimation by BCA assay and protein
quality confirmed by SDS-PAGE.
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200 pg of lysate was aliquoted and processed using S-Trap assisted On-column tryptic
digestion as described previously (dx.doi.org/10.17504/protocols.io.bs3tngnn).. Peptides
were eluted off the column by adding 80 pl of 50mM TEABC, 80 ul of 0.15% (vol/vol) formic
acid in H20 and 3 X 80 pl of elution buffer containing 80% (vol/vol) in 0.15% (vol/vol) formic
acid. The eluates were then subjected to vacuum drying using a Speedvac concentrator and
stored at -80°C until further analysis. Following, TMT labelling and High-pH fractionation for
LC-MS/MS analysis was carried out. A total of 96 fractions were collected and pooled to 48
fractions, vacuum dried and stored at -80°C until LC-MS/MS analysis.

LC-MS/MS analysis: A total of 48 bRPLC fractions were prepared for mass spectrometry
analysis. 5% of the peptide digest was transferred into the autosampler vials and analysed
using an Orbitrap Tribrid Lumos mass spectrometer with an Ultimate 3000 RSLC nano-liquid
chromatography system. Samples were loaded on pre-column (C18, 5 um, 100 A°, 100 y, 2
cm Nano-viper column # 164564, Thermo Scientific) at 5 pl/min flow rate for about 10
minutes and then peptides were separated on a 50 cm column (C18, 5 um, 50 cm, 100 A°
Easy nano spray column # ES903, Thermo Scientific) by applying a non-linear gradient. LC
was operated at 300 nl/min flow rate with a total run time of 100 min for each fraction. The
mass spectrometer was operated in a data-dependent SPS-MS3 mode in a top speed for 2
seconds. Full Scan was acquired at 120K resolution at 200 m/z measured using Orbitrap
mass analyser in the scan range of 350-1500 m/z. The data dependent MS2 scans were
isolated using quadrupole mass filter with 0.7 Th isolation width and fragmented using
normalised 32% HCD and detected using an lon trap mass analyser which was operated in
a rapid mode. Synchronous precursor selection of top 10 fragment ions further isolated and
fragmented using normalised 55% HCD energy and measured using Orbitrap mass analyser
at 55K resolution at 200 m/z in the scan range of 100-500. The AGC target and lon injection
times were set as 2e5, 50ms for MS1 and 10e4, 50ms for MS2 and 1e5, 120ms for MS3.
Mono isotopic precursor selection (MIPS) was enabled, and charge state was set between 2
to 7 and dynamic exclusion duration was set at 45 sec.

Data analysis for mouse tissue: Spinal cord raw MS data was searched with MaxQuant
software suite (version: 2.0.1.0) % against the Uniprot Mouse database appended with
(GR)400 and (PR)400 sequences for C9orf72 and a common contaminant list exists within
MaxQuant. The following parameters were used: Carbamidomethylation of Cys as fixed
modification; Oxidation of Met, deamidation of Asn and GlIn; Acetylation of Protein-N-ter and
Phosphorylation of Ser/Thr/Tyr were set as variable modifications. Trypsin was set as a
protease with a maximum of two missed cleavages allowed and a minimum peptide length of
7 amino acids. FDR was set at 1% for both protein and PSM level. The protein group output
files were further processed using Perseus software suite (version: 1.6.15.0) °8 for
downstream statistical analysis. Welch’s t-Test was carried out between the groups to
identify differentially regulated proteins. Gene-Ontology analysis was performed on
differentially regulated proteins using enrichR software .

Reanalysis of C9orf72 iPSC-derived motor neurons: we downloaded the SWATH MS raw
data from the CHORUS repository containing 10 control and 7 ALS samples. The .wiff and
.wiff.scan files were then converted to mzML using MS MSconvert with the peak picking filter
added ®.Converted files were then searched using Spectronaut software suite Version
Rubin: 15.7.220308.50606 °! using a direct-DIA strategy. A FASTA file from the Human
UniProt database was used to generate a predicted library within Spectronaut and search
was performed using Pulsar search algorithm with a default search parameters. The output
protein group file was then processed using Perseus software suite as described above to
perform Welch’s t-Test to identify differentially regulated proteins between ALS and control
samples. GO analysis was performed using the enrichR software suite. The search was
performed using the default settings within DIA-NN.
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Microarray analysis

We analysed the transcriptional signature in laser-captured spinal motor neurons from
postmortem C9-ALS patients °1. Raw microarray data is available in Gene Expression
Omnibus (GEO) with accession number GSE56504. We performed Gene Set Enrichment
Analysis (GSEA) using the gseGO function from the clusterProfiler R package 1°.
Differentially expressed genes were ranked and then subjected to GSEA. The top enriched
gene sets included all had normalized enrichment score (NES) > 0).

Ingenuity Pathway Analysis

Data were analysed with the use of QIAGEN IPA (QIAGEN Inc.,
https://digitalinsights.giagen.com/IPA). We used userdata set as the reference data set and
p=0.05 and LFC -1.5- 1.5.

Human frontal cortex RNAseq data analysis

We used previously published RNAseq data from the frontal cortex of pathologically
diagnosed FTLD patients (with and without MND) and control samples. We extracted the
summary statistics and residual expression values for our gene(s) or pathways of interest
from the differential gene expression and Weighted Gene Co-expression Network Analysis
(WGCNA) with adjustment for cell-type markers 2.

iPSC differentiation and lentiviral transduction

The WTC11 iPSC line were differentiated into cortical neurons (i¥Neurons) using a method
previously described 4. Briefly, iPSCs were grown to 70-80% confluency. On DIV 0 of
neuronal induction, cells were washed with PBS and singularized with Accutase (Gibco).
Cells were plated at a desired ratio (typically 3.75x10° cells/well of a 6-well plate) onto
Geltrex-coated plates. Cells were maintained in DMEM-F12 (Gibco) containing 1x N2
(Thermo Fisher Scientific), 1x Glutamine (Gibco), 1x HEPES (Gibco), 1x NEAA (Gibco),
doxycycline (2ug/mL) and 10 uM Y-27632 (day 0 only; Tocris). Media was changed every
day for 3 days. On DIV 3, neural progenitor cells were dissociated with accutase and
replated onto poly-L-ornithine (Merck) and laminin-coated plates in neuronal maintenance
media: Neurobasal (Gibco), supplemented with 1x B27 (Gibco), 10 ng/mL BDNF
(PeproTech), 10 ng/mL NT-3 (PreproTech) and 1 pg/mL laminin. Neurons were plated at a
desired ratio (typically 6x10° cells/well of a 6-well plate).On DIV 3, lentivirus was added to
i*Neurons to overexpress C9orf72(GR)so or GFP constructs under the control of the neuron-
specific human synapsin 1 promoter (hSYN) as previously described *°. From DIV 3 to DIV
7, cells were maintained in neuronal maintenance media and imaged on the Incucyte® S3
Live-Cell Analysis System using a confluency mask to quantify and track cell survival.

Drosophila stocks and maintenance

Drosophila stocks were maintained on SYA food (15 g/L agar, 50 g/L sugar, 100 g/L
brewer’s yeast, 30 ml/L nipagin [10% in ethanol], and 3 ml/L propionic acid) at 25°Cina 12 h
light/dark cycle with 60% humidity. The UAS-(GR)36 flies have been previously described .
The fly lines GMR-Gal4 (Bloomington #9146), UAS-daw™MA' (Bloomington #50911), and
UAS-MpRNA (Bloomington #52981) were obtained from the Bloomington Drosophila Stock
Centre.

Drosophila ortholog prediction: The Drosophila RNAi Screening Center Integrative Ortholog
Prediction Tool (DIOPT,; http://www.flyrnai.org/diopt) was used to search for orthologues of
TGF-B1, COL6A1, COL6A2, and COL6A3. DIOPT predicted daw as the Drosophila
orthologue of TGF-B1, and Mp as the Drosophila orthologue of human COL6A1, COL6A2
and COL6A3.

Assessment of eye phenotypes: Flies carrying the UAS-daw"™A' or UAS-MpRNA' construct
were crossed to the GMR-GAL4; GMR-GR36 driver line at 25°C. Two-day old adult progeny
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were imaged using a stereomicroscope, with female eyes used for analyses. All eye images
were obtained under the same magnification; eye area was calculated from each image
using ImageJ 1%,

Statistical analysis

All data are presented as mean * standard error of the mean (SEM). Statistical differences
of continuous data from two experimental groups were calculated using unpaired two-
sample Student’s t-test. Comparisons of data from more than two groups were performed
using a one-way-ANOVA followed by Bonferroni correction for multiple comparisons. When
two independent variables were available, comparisons of data from more than two groups
were performed using a two-way-ANOVA followed by Bonferroni correction for multiple
comparisons. Statistical significance threshold was set at P < 0.05, unless otherwise
indicated. Statistical methods were used to predetermine sample sizes.

Data collection
Data collection and analysis were performed blind to the conditions of the experiments. Data
available upon request.
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Figure 1. Generation of C9orf72 polyGR and polyPR knock-in mice

(A) Targeting strategy to generate (GR)400 and (PR)400 mice with the knock-in sequence
inserted in exon 2 of mouse C9orf72 immediately after, and in frame with, the endogenous
ATG. Schematic shows the genomic region and the knock-in targeting construct. Exons are
shown boxed, untranslated regions of exons are coloured yellow with translated regions in
purple. The targeting construct (in red) contains the knock-in sequence composed of a
double HA-tag, 400 codon-optimised DPRs, a V5-tag, a stop codon, and a 120 bp polyA tail.

(B) Agarose gel shows generation of patient-length polyGR, using recursive directional
ligation to sequentially double the repeat length up to 400 repeats.

(C) Quantification of polyGR proteins in brain (left panel) and spinal cord (right panel) of WT,
(GR)400, and (PR)400 mice at 3 months of age by Meso Scale Discovery (MSD)
immunoassay. Graph, mean + SEM, n = 3 mice per genotype, one-way ANOVA,
Bonferroni’s multiple comparison, ***p < 0.001, ****p < 0.0001.

(D) Quantification of polyPR proteins in brain (left panel) and spinal cord (right panel) of WT,
(GR)400, and (PR)400 mice at 3 months of age by MSD immunoassay. Graph, mean +
SEM, n = 3 mice per genotype, one-way ANOVA, Bonferroni’s multiple comparison, **p <
0.01, ****p < 0.0001.

(E) Quantitative PCR analysis of C9orf72 transcript levels normalised to S-actin in brain (left
panel) and spinal cord (right panel) of WT, (GR)400, and (PR)400 mice at 3 months of age.
Graph, mean + SEM, n = 3 mice per genotype, one-way ANOVA, Bonferroni’s multiple
comparison, *p < 0.05, **p < 0.01, ***p < 0.001.

(F) Western blotting analysis of C9orf72 protein levels in brain (left panel) and spinal cord
(right panel) of WT, (GR)400, and (PR)400 mice at 3 months of age. B-actin is shown as
loading control. Graph, mean £ SEM, n = 3 mice per genotype, one-way ANOVA,
Bonferroni’s multiple comparison, *p < 0.05, **p < 0.01.
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Figure 2. PolyGR is predominantly expressed in neurons

(A-B) Representative confocal images of immunofluorescence staining showing
colocalization between neuronal marker NeuN (green) and HA-tag (red) in (GR)400 (A)
mouse brain cortex and (B) lumbar spinal cord ventral horn at 6 months of age.

(C-D) Representative confocal images of immunofluorescence staining showing absence of
colocalization between the astrocytic markers S1008 (C) or GFAP (D) (green) and HA-tag
(red) in (GR)400 mouse (C) brain cortex and (D) lumbar spinal cord ventral horn at 6 months
of age.

(E-F) Representative confocal images of immunofluorescence staining showing absence of
colocalization between the microglial marker Ibal (green) and HA-tag (red) in (GR)400
mouse (E) brain cortex and (F) lumbar spinal cord ventral horn at 6 months of age. DAPI
(blue) stains nuclei.

23


https://doi.org/10.1101/2023.07.17.549331
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.17.549331; this version posted July 17, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY-NC-ND 4.0 International license.

D Neuronal Ca?*-transient rates
Motor cortex superficial layers
1— .
2 77
3 0.8 /
g J.
5 /
S o6
s ¥ r
e /
g 0.4— JJ
g
s o.z—!f
v 1
5

Calcium transients/min

G Mean Firing Rate (log, Hz)
Motor cortex superficial layers
* % *

1L

WT (GR)400 (PR)400

2.0

Hz)

e 1.5=
1.0 =
0.5=

0.0

Mean Firing Rate (log
S
o
1

'
-
o

H

Power (AU)

ol
o
|

n
o
|

-
o
|

-
o
|

o
o
|

Whole cortex

Motor cortex

Hyperactive cells

Motor cortex superficial layers

30—

%k % %k %

104

Hyperactive cells (%)

WT (GR)400 (PR)400

Slow Oscillations
(0.1-1Hz)
*
4.5

4.0
o 3.5
=3.0—

< 2.5

3 2.0
5 1.5
1.0—
0.5
0.0

A

WT (GR)400 (PR)400

24

16004 R 1600—
. 1400~ . 1400 . .
£ 1200+ £ 12004 T3
@ 1000~ @ 1000 "
8 800 8 800
2 600— 2 600—
2 400 2 400
200 200
0 0 T T
WT (GR)400 (PR)400
Motor cortex
1000—
E
E
2
3
o
+
N
)
=
o

WT (GR)400 (PR)400

Silent cells

Motor cortex superficial layers

4FP

F
40—
g 30—
2
3 20
€
2
n 10—
0
Mid-Gamma
(40-90Hz)
%
"
° A

1
WT (GR)400 (PR)400

High-Gamma
(90-120Hz)
*
2.5
A
2.0

N
o
1

Power (AU)
=)
|

o
o
1

o
o

1
WT (GR)400 (PR)400

il

I
WT (GR)400 (PR)400


https://doi.org/10.1101/2023.07.17.549331
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.17.549331,; this version posted July 17, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

Figure 3. (GR)400 knock-in mice exhibit cortical hyperexcitability without neuronal
loss

(A) Representative image of the cortex (area delineated in yellow) and enhanced
magnification of the motor cortex (area delineated in green), and quantification of NeuN-
positive (red) cell density in the whole cortex and in motor cortex in WT, (GR)400, and
(PR)400 mice at 12 months of age. Graph, mean £ SEM, n =5 mice per genotype, one-way
ANOVA, Bonferroni’'s multiple comparison.

(B) Representative image of the cortex, enhanced magnification of the motor cortex (area
delineated in yellow), and quantification of CTIP2-positive upper motor neuron density in
layer V of the motor cortex in WT, (GR)400, and (PR)400 mice at 12 months of age. Graph,
mean + SEM, n =5 mice per genotype, one-way ANOVA, Bonferroni’s multiple comparison.

(C) Example of in vivo two-photon fluorescence images of JRCamP1b-expressing superficial
layer neurons in motor cortex and spontaneous Ca?* activity from five example neurons in
WT (left panel), GR(400) (centre panel), and PR(400) (right panel) mice at 15-19 months of
age.

(D) Cumulative distribution plot displaying neuronal Ca?*-transient rates across animals in
motor cortex superficial layers of WT (732 cells, 4 mice), (GR)400 (1405 cells, 3 mice), and
(PR)400 (946 cells, 4 mice) mice at 15-19 months of age.

(E) Percentage of hyperactive (>3 Ca?*-transients per minute) neurons in motor cortex
superficial layers of WT (n = 4 mice), (GR)400 (n = 3 mice), and (PR)400 (n = 4 mice) mice
at 15-19 months of age. Graph, mean £+ SEM, one-way ANOVA, Tukey’s multiple
comparisons, **p < 0.01.

(F) Percentage of silent (0 Ca?*-transients per min) neurons in motor cortex superficial layers
of WT (n = 4 mice), (GR)400 (n = 3 mice), and (PR)400 (n = 4 mice) mice at 15-19 months
of age. Graph, mean + SEM, one-way ANOVA, Tukey’s multiple comparisons.

(G) Mean firing rate (logioHz) of neurons in motor cortex superficial layers of WT, (GR)400,
and (PR)400 mice at 15-19 months of age; black lines indicate medians, dashed lines
indicate quartiles. Graph, n = 3 mice per genotype, one-way ANOVA, Tukey’s multiple
comparison, *p < 0.05, **p < 0.01.

(H) Local-field potential (LFP) power in the slow-wave frequency band (left panel), mid
gamma frequency band (centre panel), and high gamma frequency band (left panel) in WT,
(GR)400, and (PR)400 mice at 15-19 months of age. Graph, mean = SEM, n = 3 mice per
genotype, one-way ANOVA, Fisher's least significant difference procedure, *p < 0.05.
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Figure 4. (GR)400 and (PR)400 knock-in mice develop age-dependent lower motor
neuron loss and progressive rotarod impairment

(A) Body weights of WT, (GR)400, and (PR)400 mice up to 12 months of age. Graph, mean
+ SEM, n = 14 mice per genotype, two-way ANOVA, Bonferroni’s multiple comparison.

(B) Accelerated rotarod analysis of motor coordination in WT, (GR)400, and (PR)400 mice
up to 12 months of age. Graph, mean + SEM, n = 14 mice per genotype, two-way ANOVA,
Bonferroni’s multiple comparison, *p < 0.05, **p < 0.01.

(C) Panel shows representative image of Nissl staining of lumbar spinal cord in WT mice; the
dashed red line delineates the sciatic motor pool in which motor neurons were counted.

(D) Quantification of Nissl-stained motor neurons in lumbar spinal cord region L3-L5 in WT,
(GR)400, and (PR)400 mice at 6 months of age. Graph, mean = SEM, n = 5 mice per
genotype, one-way ANOVA, Bonferroni’s multiple comparison.

(E) Quantification of Nissl-stained motor neurons in lumbar spinal cord region L3-L5 in WT,
(GR)400, and (PR)400 mice at 12 months of age. Graph, mean = SEM, n =5 mice per
genotype, one-way ANOVA, Bonferroni’s multiple comparison, *p < 0.05.

(F) Representative EDL motor unit number estimation (MUNE) traces from 12-month old WT
(left panel), (GR)400 (centre panel), and (PR)400 (right panel) mice. Peaks correspond to
physiological recruitment of motor units following electrical stimulation.

(G) Quantification of MUNE determined in EDL muscle in WT, (GR)400, and (PR)400 mice
at 12 months of age. Graph, mean = SEM, n mice =5 WT, 6 (GR)400, and 6 (PR)400, n
muscles = 8 WT, 12 (GR)400, and 9 (PR)400, one-way ANOVA, Bonferroni’s multiple
comparison, *p < 0.05, ***p < 0.001.
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Figure 5. (GR)400 and (PR)400 knock-in mouse spinal cord has increased extracellular
matrix protein levels

(A) Gene Ontology (GO) term enrichment analysis from significantly upregulated (blue)
proteins in the lumbar spinal cord of (GR)400 (left panel), or (PR)400 (centre panel), and
C9orf72 patient iPSC-derived motor neurons (right panel). Proteomics performed onn =5
mice per genotype.

(B) Protein expression volcano plots from the lumbar spinal cord of (GR)400 (left panel),
(PR)400 (centre panel), and C9orf72 patient iPSC-derived motor neurons (right panel).

(C) Western blot of COL6AL in lumbar spinal cord of WT, (GR)400, and (PR)400 mice at 12
months of age. Calnexin (CNX) is shown as loading control. Graph, mean = SEM, n = 4 mice
per genotype, one-way ANOVA, Bonferroni’s multiple comparison, *p < 0.05.

(D) Representative confocal images and quantification of immunofluorescence staining of
COLG6AL (red) in lumbar spinal cord in WT, (GR)400, and (PR)400 mice at 12 months of age.
DAPI (blue) stains nuclei. Graph, mean + SEM, n = 5 mice per genotype, one-way ANOVA,
Bonferroni’s multiple comparison, *p < 0.05.
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Figure 6. PolyGR induces TGF-B1 followed by its target gene COL6A1 in i*Neurons

(A) The top 10 IPA-predicted upstream regulators in (GR)400 (left panel), (PR)400 (centre
panel) and C9orf72 iPSC-derived motor neurons (right panel).

B) Boxplot of residual gene expression for TGFB1. The solid black line represents the
median and the box represents the interquartile range (IQR; 25th percentile to 75th
percentile). Significance was determined by differential gene expression analysis using a
linear regression model. P-values are FDR corrected, accounting for all genes included in
the differential expression analysis. * FDR < 0.05; ns FDR > 0.05. C9orf72 FTLD/MND n =
34, non-C9orf72 FTLD/MND n = 44, controls n = 24.

(C) Schematic workflow of i¥Neuron doxycycline-induced differentiation at DIV 0 and
transduction with lentiviruses expressing (GR)so, or GFP at DIV 3.

(D) Live-cell Incucyte confluency quantification in (GR)so, or GFP-treated i¥Neurons. Graph,
mean £ SEM, n = 3 independent biological replicates, two-way ANOVA, Bonferroni’'s multiple
comparison, ***p < 0.001, ****p < 0.0001.

(E) Quantitative PCR analysis of TGFB1 transcript levels normalised to GAPDH at DIV 5 (left
panel) and DIV 7 (right panel) in (GR)so, or GFP-treated i*Neurons. Graph, mean = SEM, n =
3 independent biological replicates, one-way ANOVA, Bonferroni’s multiple comparison, **p
<0.01, **p < 0.001.

(F) Quantitative PCR analysis of COL6AL transcript levels normalised to GAPDH at DIV 5
(left panel) and DIV 7(right panel) in (GR)so, or GFP-treated i*Neurons. Graph, mean + SEM,
n = 3 independent biological replicates, one-way ANOVA, Bonferroni’s multiple comparison,
*%*

p <0.01.
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Figure 7. TGF-B1 and COLG6A1 reduction specifically exacerbates polyGR toxicity in
Vivo

(A) gPCR analysis of daw (left panel) and Mp (right panel) transcript levels normalised to
Tubulin in WT and GR36 flies. Graph, mean £ SEM, n = 8 independent biological replicates,
unpaired two-sample Student’s t-test. Genotypes: w; GMR-Gal4/+, w; GMR-Gal4, UAS-
GR36/+.

(B) Stereomicroscopy images of representative 2-day old adult WT (top panel) or GR36
(bottom panel) Drosophila eyes in absence or co-expressing daw or Mp RNAI constructs.
Genotypes: w; GMR-Gal4/+, w; GMR-GAL4/UAS-daw RNAI, w; GMR-GAL4/UAS-Mp RNAI,
w; GMR-Gal4, UAS-GR36/+, w; GMR-Gal4, UAS-GR36/UAS-daw RNAI, w; GMR-Gal4,
UAS-GR36/UAS-Mp RNAI.

(C) Eye size of flies normalized to the mean of the control eye size. Graph, mean = SEM, n
(independent biological replicates, one eye counted per fly) = 20 WT/+, 19 WT/daw RNAI, 23
GR36/+, 11 GR36/daw RNAI, two-way ANOVA, Bonferroni’s multiple comparison, ****p <
0.0001. Genotypes: w; GMR-Gal4/+, w; GMR-GAL4/UAS-daw RNAI, w; GMR-Gal4, UAS-
GR36/+, w; GMR-Gal4, UAS-GR36/UAS-daw RNA..

(D) Eye size of flies normalized to the mean of the control eye size. Graph, mean = SEM, n
(independent biological replicates, one eye counted per fly) = 15 WT/+, 15 WT/Mp RNAI, 12
GR36/+, 10 GR36/Mp RNAI, two-way ANOVA, Bonferroni’s multiple comparison, ****p <
0.0001. Genotypes: w; GMR-Gal4/+, w; GMR-GAL4/UAS-Mp RNAI, w; GMR-Gal4, UAS-
GR36/+, w; GMR-Gal4, UAS-GR36/UAS-Mp RNAI.
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