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Abstract

Childhood appetitive traits are consistently associated with obesity risk, and yet their etiology is
poorly understood. Appetitive traits are complex phenotypes which are hypothesized to be
influenced by both genetic and environmental factors, as well as their interactions. Early-life
epigenetic processes, such as DNA methylation (DNAm), may be involved in the developmental
programming of appetite regulation in childhood. In the current study, we meta-analyzed
epigenome-wide association studies (EWASs) of cord blood DNAm and early-childhood
appetitive traits. Data were from two independent cohorts: the Generation R Study (n=1,086,
Rotterdam, the Netherlands) and the Healthy Start study (n=236, Colorado, USA). DNAm at
autosomal methylation sites in cord blood was measured using the Illumina Infinium
HumanMethylation450 BeadChip. Parents reported on their child’s food responsiveness,
emotional undereating, satiety responsiveness and food fussiness using the Children’s Eating
Behaviour Questionnaire at age 4-5 years. Multiple regression models were used to examine the
association of DNAm (predictor) at the individual site- and regional-level (using DMRff) with
each appetitive trait (outcome), adjusting for covariates. Bonferroni-correction was applied to
adjust for multiple testing. There were no associations of DNAm and any appetitive trait at the
individual site-level. However, at the regional level, we identified 45 associations of DNAm with
food responsiveness, 7 associations of DNAm with emotional undereating, 13 associations of
DNAm with satiety responsiveness, and 9 associations of DNAm with food fussiness. This study
shows that DNAm in the newborn may partially explain variation in appetitive traits expressed in
early childhood and provides preliminary support for early programming of child appetitive traits

through DNAm. Investigating differential DNAm associated with appetitive traits could be an
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important first step in identifying biological pathways underlying the development of these

behaviors.
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1. Introduction

Appetitive traits (or ‘eating behaviors’) are associated with the development of obesity
(Llewellyn & Fildes, 2017). Meta-analytic evidence from infant and child studies show robust
associations between ‘food approach’ traits and higher obesity risk, while ‘food avoidant’ traits
confer a lower obesity risk (Kininmonth et al., 2021). This may, in part, be explained through
dietary behaviors. Food approach traits, for example food responsiveness, indicate a child’s
appetitive avidity, and sensitivity to respond to environmental food cues. Food responsiveness is
associated with a greater preference for energy-dense and nutrient-poor foods (Fildes et al.,
2015), increased eating frequency and higher energy intake (Carnell & Wardle, 2007; Syrad et
al., 2016). In contrast, food avoidant behaviors, such as food fussiness, emotional undereating
and satiety responsiveness, may reflect a lower appetite and disinterest in eating. Children high
in satiety responsiveness are sensitive to feelings of fullness, tend to eat slower and eat smaller
portions (Carnell & Wardle, 2007; Syrad et al., 2016). Children with elevated food fussiness tend
to consume a limited variety of foods (Taylor et al., 2015) and tend to dislike core food groups
such as fruits and vegetables (Fildes et al., 2015). Finally, children high in emotional undereating
eat less when negative moods are evoked (Blissett et al., 2019). While appetitive traits appear to
bridge associations between nutrition, the food environment and weight, relatively little is known
about the early developmental processes underlying appetitive traits.

Appetitive traits themselves are complex phenotypes that are influenced by genetic and
environmental factors, as well as their interactions. Individual differences in appetitive traits
emerge early in postnatal life (Llewellyn et al., 2011) and remain moderately stable into the early

childhood years (Costa et al., 2022; Farrow & Blissett, 2012). Twin heritability studies suggest
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that genetic variants play a considerable role in explaining variation in some appetitive traits
(Llewellyn & Wardle, 2015).

The prenatal environment has also been hypothesized to contribute to obesity-risk, partly
through modulating appetite regulation systems linked to appetite trait expression (Boswell et al.,
2018; Desai & Ross, 2020). Obesity risk factors during pregnancy (such as high fasting plasma
glucose and pre-pregnancy overweight) have been shown to predict eating behaviors such as
self-serving larger portions, faster eating rate and higher energy intake, as well as increased child
body mass index (BMI), at 6 years (Fogel et al., 2020). Observational evidence from a
longitudinal birth cohort showed that excessive gestational weight gain was associated with
increased food responsiveness in children aged 1 year old (Costa et al., 2022). Another study
showed that mothers who gained less weight than recommended during pregnancy rated their
male (but not female) offspring lower in satiety responsiveness at approximately 4 years of age
(Boone-Heinonen et al., 2019). Furthermore, ultra-processed food consumption during
pregnancy has been also linked to lower satiety responsiveness in infants at 6-months of age
(Cummings et al., 2022). The prenatal environment may be linked to children’s appetitive traits
through biological processes that could modify the regulation or expression of genes during fetal
development, such as epigenetic processes.

DNA methylation (DNAm) is an epigenetic mechanism whereby methyl groups are added to
cytosines at cytosine-guanine dinucleotides (CpG sites) in the DNA, which may affect gene
expression (Ruiz-Arenas et al., 2022). Exposures during fetal development, such as maternal
smoking (Joubert et al., 2016), maternal BMI at the start of pregnancy (Sharp et al., 2017) and
maternal diet (Kiipers et al., 2022) have been associated with newborn DNAm. A limited number

of candidate studies have linked DNAm to appetitive traits in childhood. For example, one study
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(n=317) showed that DNAm at the insulin-like growth factor-2 (/GF2) gene in cord blood was
associated with satiety responsiveness in children aged 1-6 years old (Do et al., 2019). In a small
study of 32 girls aged 5-6 years, lower levels of DNAm in the promoter of the BDNF (brain-
derived neurotrophic factor) gene were found to be associated with lower satiety responsiveness
(Gardner et al., 2015). While such studies implicate differential DNAm as a potentially relevant
pathway underlying appetitive traits, so far interest has been in one or a few candidate genes,
thereby precluding the possibility to uncover novel epigenetic pathways.

Epigenome-wide association studies (EWAS) of DNAm markers at birth that predict
childhood appetitive traits have not yet been performed. Hypothesis-free testing of epigenome-
wide DNAm signals may present new leads to piece together the puzzle of appetitive trait
etiology. Thus, in the current study, we aimed to investigate associations of genome-wide
DNAm in newborn cord blood with appetitive traits in early childhood. To maximize statistical
power, we meta-analyzed EWASSs for appetitive traits from two independent cohorts (total

n=1,322).

2. Methods
2.1. Study design and participants
Two cohorts participating in the worldwide Pregnancy And Childhood Epigenetics
Consortium (PACE) (Felix et al., 2018) with newborn umbilical cord blood DNAm and child
appetitive traits measured before age 6 years were included in the current analysis: the
Generation R Study (Generation R) and Healthy Start.

2.1.1. Generation R
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Generation R is a population-based cohort focused on health and development from fetal life
onwards (Jaddoe et al., 2006). All pregnant women living in Rotterdam, the Netherlands, with an
expected delivery date between April 2002 and January 2006 were invited to participate
(N=9,778; participation rate: 61%). Cord blood DNAm data were available for 1,396 children,
who were selected from the full population to be a homogeneous subgroup of European ancestry,
with high completeness of follow-up. Of these children, 1,098 had information available on
appetitive traits. Twelve sibling pairs were present in this set; one sibling of each pair was
removed based on data availability or otherwise randomly, leaving a final sample size of n=1,086
children. The Generation R Study has been approved by the Medical Ethical Committee of
Erasmus MC, University Medical Center Rotterdam. Written informed consent was obtained
from parents of all children.
2.1.2. Healthy Start
The Healthy Start study (Healthy Start) is an ongoing, pre-birth cohort study based in
Colorado, USA (Starling et al., 2015). Pregnant women were recruited between 2009-2014 at the
University of Colorado obstetrics clinics. Women were eligible for the Healthy Start study if
they were >16 years, expecting a singleton birth, had a gestational age <24 weeks at enrolment,
and had no serious chronic medical conditions or history of stillbirth. A total of 1,410
pregnancies were enrolled, and umbilical cord blood DNAm was analyzed in a subset of these
(n=600), based on availability of cord blood, maternal blood, and urine samples during
pregnancy. For this analysis of cord blood DNAm and child appetitive traits, further exclusions
were as follows: 6 participants had discordance between predicted and reported sex, 180 had
missing child appetitive traits data, 7 were siblings of other participants in the cohort, and 171

had a race/ethnicity other than non-Hispanic white, resulting in a final sample size of #=236. The
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Healthy Start study protocol was approved by the Colorado Multiple Institutional Review Board,
and all women provided written informed consent before the first study visit.

2.2. DNA methylation measurement

Each cohort performed sample processing, quality control and normalization based on their
own protocols. In Generation R, DNA was extracted from cord blood samples taken at birth.
Five-hundred nanograms of DNA per sample underwent bisulfite conversion using the EZ-96
DNA Methylation kit (Shallow) (Zymo Research Corporation, Irvine, USA) and further
processed with the Illumina Infintum HumanMethylation450 BeadChip (Illumina Inc., San
Diego, USA). Preparation and normalization of the HumanMethylation450 BeadChip array data
was performed following the CPACOR workflow using the software package R (Lehne et al.,
2015; R Core Team, 2013). In detail, the .idat files were read using the minfi package (Aryee et
al., 2014). Probes with a detection p-value>1e-16 were set to missing per array. Intensity values
were stratified by autosomal and non-autosomal probes and quantile normalized for each of the
six probe type categories separately: type Il red or green, type I methylated red or green and type
I unmethylated red or green. Beta values were computed as the ratio of the methylated to the
methylated+unmethylated signal. Arrays with observed technical problems such as failed
bisulfite conversion, hybridization or extension, as well as arrays with a mismatch between sex
of the proband and sex determined by the chromosome X and Y probe intensities were removed
from subsequent analyses. Lastly, only arrays with a call rate >95% per sample were processed
further. Outlying values on the probes were excluded using the Tukey method, i.e. values<(25™
percentile—3*interquartile range) and values>(75" percentile+3*interquartile range) were

excluded (Tukey, 1977).
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In Healthy Start, DNA was extracted from umbilical cord blood collected at birth using the
QIAamp DNA Blood Mini Kit (Qiagen) and stored in buffy coats. [llumina Infinium
HumanMethylation450 BeadChip (Illumina Inc., San Diego, USA) was used to measure
epigenome-wide DNAm (Yang et al., 2017). Additional details of DNA extraction and bisulfite
conversion have been described in detail previously (Starling et al., 2020). Quality control
checks included assessment of DNA purity, integrity, and quantity. Samples were eligible for
inclusion if they met the following criteria: 260/280 ratio >1.8 indicating DNA purity, DNA
integrity score >7, and at least 500 ng of DNA available. Probes with high detection p-value
(>0.05) (n=587) and low beadcount <4 (n=664) were removed. Additionally, samples with
inconsistencies between reported and predicted sex were removed (n=6). Stratified quantile
normalization was performed using the preprocessQuantile function in minfi (Touleimat & Tost,
2012). ComBat was used for batch correction (Johnson et al., 2007). Extreme methylation
outliers were removed, as defined by a value more than three times the interquartile range below
the 25th percentile or above the 75" percentile (Hoaglin et al., 1986; Merid et al., 2020).

For both cohorts, only autosomal probes were analyzed and cross-reactive probes were
excluded (Chen et al., 2013; Naeem et al., 2014), resulting in 415,786 probes in Generation R
and 429,136 probes in Healthy Start. We included the 415,267 probes in the meta-analyses that
were present in both cohorts. The R package FDb.InfintumMethylation.hg19 (Triche, 2014) was

used for probe annotation.

2.3. Measures

2.3.1. Child appetitive traits
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In each cohort, child appetitive traits were assessed by parent-report using the widely-
implemented Children’s Eating Behaviour Questionnaire (CEBQ) (Wardle et al., 2001) at age 4
years in Generation R, and age 5 years in Healthy Start. The CEBQ has good psychometric
properties (Wardle et al., 2001), and has demonstrated ecological validity in behavioural tests
(Blissett et al., 2019; Carnell & Wardle, 2007). Four subscales that were available in both
Generation R and Healthy Start were included in the EWAS meta-analyses: food responsiveness
(5 items, e.g. “My child is always asking for food”), emotional undereating (4 items, e.g. “My
child eats less when (s)he is upset”), satiety responsiveness (5 items, e.g. “My child gets full
before his/her meal is finished ) and food fussiness (6 items, e.g. “My child is difficult to please
with meals”’). Items were assessed on a 5-point Likert scale from “1” (never) to “5” (always) and
summed to produce a subscale sum score. The subscales showed acceptable to good internal
reliability in Generation R (0=0.74-0.91) and Healthy Start (a=0.70-0.93). Where normally
distributed, sum scores were standardized (z-scores) for comparison between the models. The
food responsiveness subscale was skewed in both cohorts and, therefore, square-root transformed
to approach normality, and all scales were z-score transformed.

2.3.2. Covariates

In Generation R, maternal age at delivery was calculated based on maternal age assessed
upon enrolment, gestational age at enrolment and gestational age at birth. Maternal smoking
during pregnancy was assessed with three questionnaires in early (<18 weeks), mid- (18-25
weeks), and late (>25 weeks) pregnancy and categorized into O=never smoked during
pregnancy/1=quit when pregnancy was known/2=sustained smoking during pregnancy. Maternal
education was used as an indicator of socio-economic status (SES) and was obtained via

questionnaire at enrolment. The information was dichotomized (0=did not complete university
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studies/1=completed university studies). Maternal pre-pregnancy body mass index (BMI; kg/m?)
was computed based on pre-pregnancy weight, which was collected at enrolment using a
questionnaire, and height. Self-reported pre-pregnancy weight correlated highly (»=0.96) with
measured weight at enrolment around 13 weeks of pregnancy (Tielemans et al., 2015). Child sex
and birth weight were obtained from midwife and hospital registries. Sample plate was included
in the models to correct for batch effects. White blood cell proportions (CD4+ T-lymphocytes,
CD8+ T-lymphocytes, natural killer cells, B-lymphocytes, monocytes, granulocytes, and
nucleated red blood cells) were estimated with a cord blood-specific reference panel (Gervin et
al., 2019). Gestational age at birth was determined using fetal ultrasound examinations or last
menstrual period (LMP) in case of a regular menstrual cycle and a certain first day of LMP
(Jaddoe et al., 2006).

In the Healthy Start study, child sex, birthweight, and gestational age at birth were obtained
from medical records. Maternal age, ethnicity, and education were self-reported at time of
enrolment. Education was dichotomized (0= high school education or less/ 1= more than high
school education. Maternal smoking status was self-reported at three study visits: twice during
pregnancy and once at delivery, and was operationalized as a 3-level categorical variable
(O=never smoked/quit early in pregnancy, 1=quit smoking early in pregnancy, 2=sustained
smoking throughout pregnancy). Maternal pre-pregnancy BMI was calculated using height
measured at enrolment and pre-pregnancy weight obtained from the medical record. Cell
deconvolution to estimate the relative proportions of the 7 cell types (B cells, CD4 T cells, CDS8
T cells, granulocytes, monocytes, NK cells, and nucleated red blood cells) was performed using
the R package FlowSorted.CordBloodCombined.450k (R Core Team, 2013) with a combined

reference dataset for cord blood (Gervin et al., 2019).
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2.4. Statistical Analyses

2.4.1. Site- and regional-level epigenome-wide meta-analyses

Each cohort first ran a cohort-specific EWAS according to a predefined analysis plan.
Missing data points on covariates were imputed (% missing on variables ranged from 0-9.8% in
Generation R and 0-16.9% in Healthy Start) using the mice package (Buuren & Groothuis-
Oudshoorn, 2010) in R. To enhance imputation, additional variables were used for the
imputation only, including household income, maternal and paternal BMI at enrolment, maternal
daily caloric intake during pregnancy and maternal alcohol intake during pregnancy in
Generation R, and gestational weight gain and maternal daily caloric intake in Healthy Start. We
performed a maximum of 10 iterations to create 10 imputed datasets. Regression analyses were
performed using pooled statistics. To study the associations of DNAm with appetitive traits, we
planned three regression models per appetitive trait: a basic model (Model 1), a fully adjusted
model (Model 2), and an exploratory model including potential mediators (Model 3). In each
model, DNAm was modelled as the predictor and appetitive trait as the outcome. Model 1
adjusted for child sex and age at appetitive trait assessment, batch and estimated white blood cell
proportions. Significant hits (Bonferroni corrected, see below) were followed up by running
Model 2, which additionally adjusted for potential confounders maternal age at delivery,
smoking during pregnancy, education, and pre-pregnancy BMI. If Model 2 produced an
association, Model 3 was run, which additionally adjusted for the potential mediators gestational
age at birth and birth weight. With these models, site-level epigenome-wide analyses (EWASs)
were performed separately in each cohort. Associations between DNAm at each individual site

and standardized child appetitive trait score were estimated in R using robust linear regressions.
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Within each model, a Bonferroni-correction was applied to account for the number of probes
(p<1.20x107). Quality control procedures on the EWAS results were run using the QCEWAS R
package (Van der Most et al., 2017). Fixed effects inverse variance weighted meta-analyses of
the cohort-specific results were performed using METAL (Willer et al., 2010). Shadow meta-
analyses were independently performed a different investigator on the team and results were
confirmed. For the regional-level EWASs, summary statistics from each cohort site-level
EWASs were re-analyzed while taking the cohort specific-intercorrelational DNAm structure
across sites into account, using the meta-analysis extension of the DMRff package in R
(Suderman et al., 2018). This package identifies differentially methylated regions by taking into
account dependencies between sites as well as site-level uncertainty in EWAS estimates. We
searched within a standard 500bp site-window, applying a Bonferroni corrected p<0.05 based on
the number of regions.

2.4.2. Genetic enrichment
Significant findings stemming from site- or regional-level analyses were further examined

in two ways. Genetic influences on DNAm were examined by 1) a look-up of known associations
of DNAm with genetic variants elsewhere on the genome, e.g. methylation quantitative trait loci
(mQTLs) in cis (within a =1 Mb window) or in trans (outside of this window, potentially on a
different chromosome) as identified in cord blood of a pediatric population (Gaunt et al., 2016)
and in cord or whole blood in a larger study on 36 populations of all ages (Min et al., 2020); and
i1) a look-up of estimated additive genetic influences, and shared and unique environmental
influences on DNAm, as based on twin heritability analyses (Hannon et al., 2018). To understand

if there was enrichment of genetic patterns in associated versus non-associated CpGs, two-sided
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T-tests were performed between these two groups for each look-up and differences of p<0.05 are
reported.

2.4.3. Enrichment for eQTMs

We examined associated expression patterns by checking if significant findings have been
identified as expression quantitative trait methylation (eQTMs) in cis in peripheral blood of 832
children aged between 6 and 11 years (Ruiz-Arenas et al., 2022). To understand if there was
enrichment of gene expression patterns in associated versus non-associated CpGs, two-sided T-
tests were performed between these two groups and differences of p<0.05 are reported.

2.4.4. Enrichment for regulatory elements

We explored enrichment of tissue- or cell-type specific regulatory elements. This analysis
was performed with eFORGe v2.0, using data from Consolidated Roadmap Epigenomics,
ENCODE, and Blueprint to test for DNAse I hypersensitive regions, chromatin states, and
histone marks, using default settings (1 kb window, 1000 background repetitions) (Breeze et al.,
2019). Findings of FDR adjusted ¢<0.05 are reported.

2.4.5. Functional enrichment

To examine functional enrichment of genes associated with sites significant in the site- or
regional-level meta-analyses, we performed appetitive trait-specific Gene Ontology pathways
analyses using the GOfuncR package in R (Grote & Grote, 2018). Pathways with a family-wise
error rate (FWER) corrected p<0.05 based on random permutations of the gene-associated

variables were considered to be enriched.

3. Results
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The sample characteristics of Generation R and Healthy Start are described in Table 1. Both
cohorts were comparable in their characteristics and appetitive traits. However, relative to
Generation R, the Healthy Start children were slightly older (4.0 years vs. 4.9 years,
respectively). In Generation R, mothers were slightly older (32.5 years vs. 30.4 years,
respectively) and had a lower pre-pregnancy BMI (23.2 kg/m? vs. 24.8 kg/m?, respectively)
compared to Healthy Start mothers.
3.1. Site-level and regional-level epigenome-wide meta-analyses
We did not find associations of DNAm at individual CpG-sites and any of the appetitive
traits in Model 1. Therefore, no further analyses were conducted relating to DNAm of individual
CpG-sites. However, we found widespread associations of differentially methylated regions
across the genome with each of the appetitive traits in Model 1. Most regions in Model 1 were
also detected as a region in Model 2 (91% detected; differences may occur if inter-CpG
similarity in effect size changes between models) and the majority remained significant (94% of
detected regions). The results for each model are detailed in Supplemental Tables 1-4; here we
present the results of fully adjusted Model 2. DNAm at 45 regions was associated with food
responsiveness (Table 2), at 7 regions with emotional undereating (Table 3), at 13 regions with
satiety responsiveness (Table 4), and at 9 regions with food fussiness (Table 5). DNAm at
several regions was associated, in a consistent direction, with multiple appetitive traits: DNAm at
a region on chromosome 4, near HS6ST'1, was associated with both emotional undereating and
satiety responsiveness; DNAm at a region on chromosome 12 in GLIPRIL2, and on chromosome
4 in SH3BP2 was associated both with satiety responsiveness and food fussiness. The additional
adjustment for maternal age, smoking, education, and pre-pregnancy BMI in Model 2 resulted in

small effect size changes between Model 1 and Model 2 across all appetitive traits (median
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change=1.0%; IQR=0.4-2.2%). In Model 3, which included additional adjustment for the
potential mediators gestational age at birth and birth weight, 86% of regions significant in Model
2 were detected. Of these, 88% remained significant (31 regions for food responsiveness; 5
regions for emotional undereating; 12 regions for satiety responsiveness; 8 regions for food
fussiness). Effect size changes from Model 2 to Model 3 were small (median change=2.4%;
IQR=1.4-3.8%), suggesting limited or no mediation of effects via changes in birth weight and
gestational age at birth.

3.2. Enrichment analyses

DNAm associations for emotional undereating, satiety responsiveness, and food fussiness
showed some shared regions in the regional-level EWAS, thus confirming the conceptual links
between these food avoidant traits. As such, these three food avoidant traits were grouped
together for the following enrichment analyses. Hence the following enrichment analyses
describe results for ‘food avoidant traits’ and ‘food responsiveness’, the only food approach trait
we examined.

3.2.1. Genetic enrichment

Results from the genetic enrichment analyses, which show the extent to which DNAm at
regions of associated CpGs might be influenced by genomic variation, are provided in
Supplemental Table S. First, we examined whether DNAm at CpGs in each region was related
to genetic variation at SNPs (mQTLs, methylation quantitative trait loci). Based on the study by
Gaunt et al. (2016), CpGs in regions associated with food avoidant traits were more often related
to mQTLs than CpGs in other regions (37.7% vs. 7.4%, p<0.001), but no difference was found
for food responsiveness (14.6% vs. 6.9%, p=0.08). Based on the study by Min et al. (2020),

CpGs in regions associated with both food responsiveness and food avoidant traits were more
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often related to mQTLs (food responsiveness: 58.7% vs. 40.8%, p=0.002; food avoidant traits:
81.7% vs. 41.6%, p<0.001). Second, we examined twin heritability estimates for DNAm of
CpGs in each region. The proportions of additive genetic effects estimated were higher for CpGs
in associated regions versus those in non-associated regions for both food responsiveness and
food avoidant traits (food responsiveness: 0.28 vs. 0.14, p<0.001; food avoidant traits: 0.52 vs.
0.16, p<0.001). The proportion of shared environmental effects was smaller for CpGs in
associated regions than in other regions for food avoidant traits (0.10 vs. 0.16, p<0.001), but for
food responsiveness no difference was found (0.19 vs. 0.19, p=0.961). The proportion of unique
environmental effects was smaller for CpGs in associated regions than in other regions for both
food responsiveness and food avoidant traits (food responsiveness: 0.53 vs. 0.67, p<0.001; food
avoidant traits: 0.38 vs. 0.68, p<0.001). This means that DNAm at these regions showed
evidence of greater influence from genetic rather than environmental variation.

3.2.2. Enrichment for eQTMs

Results from the eQTM look-up, which shows the extent to which CpGs at associated
regions have been associated with expression levels of nearby genes in peripheral blood of
children (eQTMSs), are provided in Supplemental Table 6. CpGs at regions associated with food
avoidant traits were more often marked as eQTMs than CpGs at other regions (46.8% vs. 4.5%,
p<0.001). No difference was detected for food responsiveness (10.4% vs. 4.7%, p=0.08).

3.2.3. Enrichment for regulatory elements

For CpGs in regions associated with food responsiveness, evidence for enrichment of
DNAse I hypersensitive regions was found in blood tissue, fetal muscle tissue, fetal stomach
tissue, fetal thymus tissue and in induced pluripotent stem cells (¢<0.05, Supplemental Figure

1). No evidence of tissue- or cell-type specific enrichment was found for chromatin states or
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histone marks for food responsiveness. For food avoidant traits, evidence for enrichment of
histone marks was found in the small and large fetal intestine, fetal stomach, fetal trunk muscle,
fetal thymus, and fetal adrenal gland (¢<0.05, Supplemental Figure 2). No tissue- or cell-type
specific enrichment was found for DNAse I hypersensitive regions or chromatin states with food
avoidance traits.

3.2.4. Functional enrichment
Genes associated with differentially methylated regions were tested for functional
enrichment against genes associated with all other regions. No enrichment of Gene Ontology

pathways was found for any of the appetitive traits (FWER p>0.05).

4. Discussion

This is the first epigenome-wide association study (EWAS) examining associations of
DNA methylation (DNAm) in cord blood with child appetitive traits (age 4 to 5 years),
leveraging data from two prospective birth cohorts. The meta-analyses showed that DNAm at
individual CpG sites was not associated with any of the four appetitive traits examined in the
current study: food responsiveness, emotional undereating, satiety responsiveness and food
fussiness. However, multiple differentially methylated regions — genomic regions comprised of
several, related methylated sites — were associated with appetitive traits in childhood. Many of
the CpG sites in the associated regions have been shown be under greater influence of genetic
rather than environmental variation. We also found some evidence that sites associated with
appetitive traits were enriched for regulatory elements in tissues such as fetal stomach and
intestine. This may indicate a potential regulatory role for the identified differentially methylated
regions, but this requires further functional studies. Altogether, these findings provide initial

evidence for potential biological pathways underlying the expression of early appetitive traits.
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The meta-analyses showed that food responsiveness was associated with the largest
number of differentially methylated regions, relative to the other three appetitive traits
investigated. This suggests that the prenatal period is a particularly sensitive period for the
epigenetic influence of food responsiveness, which may, in part, be due to this construct broadly
capturing rudimentary energy balance behaviors which are salient to survival. In children,
heightened sensitivity to external food cues observed in food responsiveness serves to promote a
surplus in energy intake (Carnell & Wardle, 2007) which favors weight gain (Kininmonth et al.,
2021). While adaptive in environments with unreliable energy and nutritional sources, this
function may be no longer beneficial in the ubiquitous Western food-environment, where
palatable and energy-dense foods are readily available. In our analyses, genes associated with
regions differentially methylated for food responsiveness appear to be linked to a broad range of
functions, including immune function, neural development, and cardiovascular functioning. In
the look-up of genes associated with differentially methylated regions, several notable genes
appear to be involved in metabolically-related functions which may be relevant to the early
expression of food responsiveness. One example is ALGY9 (ALG9 Alpha-1,2-
Mannosyltransferase) on chromosome 11, a gene encoding the glycosylation protein alpha-1,2-
mannosyltransferase, which has been shown to be differentially expressed in the placentae of
women with diabetes mellitus during pregnancy (Alexander et al., 2018). Another example is a
region of chromosome 20, located in the transcription start site of NPBWR2 (Neuropeptides B/W
Receptor 2), which encodes a neuropeptide receptor, that has also been related to leptin and
insulin levels in rats (Rucinski et al., 2007) as well as feeding behavior under stress in mice

(Aikawa et al., 2008). As food responsiveness was the only food approach trait examined in the
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current analyses, further research is required to examine associations between DNA methylation
and other food approach behaviors, such as enjoyment of food and emotional overeating.

Differentially methylated regions associated with the food avoidance behaviors examined
(emotional undereating, satiety responsiveness and food fussiness) were linked to genes also
serving broad functions, with a prominence for cardiovascular and gastrointestinal function.
Interestingly, several genes were annotated to differentially methylated regions associated with
multiple food avoidance behaviors. For example, satiety responsiveness and food fussiness were
related to DNAm in or near SH3BP2 (SH3 Domain Binding Protein 2; chromosome 4) and
GLIPRIL?2 (GLIPR1-Like Protein 2; chromosome 12). SH3BP?2 is associated with cherubism, a
disorder characterized by dysplasia of the jaw (Reichenberger et al., 2012). GLIPRIL2 encodes a
cysteine-rich secretory protein and is highly expressed in the testes in vitro(Ren et al., 2006).
Cord blood methylation in GLIPR1L?2 has previously been associated with maternal pre-
pregnancy obesity (Martin et al., 2019). In our current analyses, it is worth noting that DNAm in
GLIPRIL2 remained associated with both satiety responsiveness and food fussiness after
adjustment for maternal pre-pregnancy BMI (Model 2). This indicates that, where maternal pre-
pregnancy BMI may be a potential precursor to cord blood GLIPR1L2 DNAm, the association
between GLIPRIL2 DNAm and these appetitive traits (satiety responsiveness and food
fussiness) is at least partially independent of pre-pregnancy BMI.

Several appetitive traits were associated with DNAm at regions near or at genes linked to
pubertal development. Both emotional undereating and food fussiness were associated with
DNAm on chromosome 2 at regions near HS6ST1 (Heparan Sulfate 6-O-Sulfotransferase 1), a
gene related to hypogonadism and delayed puberty (Howard et al., 2018). Another differentially

methylated region found for emotional undereating was near /GSF10 (Immunoglobulin
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Superfamily Member 10) on chromosome 3, which has also been related to delayed puberty
(Budny et al., 2020). Additionally, food responsiveness was associated with a differentially
methylated region on chromosome 3 in PLXNBI (Plexin B1), which has been related to
hypogonadism (Welch et al., 2022). Taken together, this could indicate that these gene regions
that relate to appetite in early childhood may be signals for growth and development during
puberty.

Enrichment analyses showed that differentially methylated regions associated with food
avoidance traits were enriched for cis-eQTMs in peripheral blood in children, indicating that
differential DNAm at these regions may have functional relevance. Among regions in which
DNAm was related to expression of the gene closest to the region itself are those at
aforementioned SH3BP2 and IGSF10, as well as a region in OR2L13 (Olfactory Receptor Family
2 Subfamily L Member 13), at which DNAm associated with emotional undereating. This gene
encodes an olfactory receptor, and has been shown to be expressed in non-chemosensory tissues
as well, including blood and the brain (Ferrer et al., 2016), and DNAm at this gene has been
associated with gestational diabetes mellitus previously (Howe et al., 2020; Quilter et al., 2014).
DNAm at a few differentially methylated regions was related to expression levels of a gene close
to, but not nearest to the region, for example DNAm at SLC4A42 (Solute Carrier Family 4
Member 2) was associated with food fussiness, yet DNAm at this region is related to the
expression of AGAP3 (ArfGAP With GTPase Domain, Ankyrin Repeat And PH Domain 3), a
gene related to synaptic plasticity (Oku & Huganir, 2013).

Further, enrichment analyses of CpGs at differentially methylated regions associated
with appetitive traits indicated that, overall, DNAm at the associated regions appeared to be

mainly explained by genetic (as opposed to environmental) variation as compared to DNAm at


https://doi.org/10.1101/2023.07.17.549289
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.17.549289; this version posted July 18, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

24
other regions. This corroborates our finding that associations of DNAm with appetitive traits are
independent of prenatal factors. Causal pathways could be tested through Mendelian
randomization and mediation analyses (at the site-level) to interpret to what extent DNAm might
mediate genetic or environmental effects on appetitive traits. Mediation analyses would also be
required to formally test appetitive traits as behaviorally-mediated mechanisms linking genetic
risk and environmental exposure to weight gain. We did not examine child BMI as an outcome
or correlate of appetitive traits, as such analyses are outside the scope of the current analyses as it
would require much larger sample sizes. However, this is an important direction for future
research, owing to the link between appetitive traits and child BMI and adiposity.

This study adds to the knowledge on biological processes underlying children’s
appetitive traits. However, interpretation of these results must be considered in light of some
limitations. Firstly, because associations between DNAm at CpG sites and child behavior are
typically small (Mulder et al., 2020), we may have been underpowered to detect small effect
sizes. However, previous studies examining DNAm in relation to child appetitive traits were
small candidate studies (Do et al., 2019; Gardner et al., 2015), and therefore this is the first (and
relatively large) EWAS meta-analysis. We encourage researchers to add to these data and to
further explore other appetitive traits, as only appetitive traits that were common across both
cohorts were examined in the current study. Secondly, appetitive traits were assessed using
parent-report, which may introduce subjectivity or social desirability bias. However, the CEBQ
was used to assess child appetitive traits, and subscales from the CEBQ have been validated with
observations and experimental eating behavior tasks in preschool-aged children (Blissett et al.,
2019; Carnell & Wardle, 2007). Parents are likely to be reliable reporters of their child’s

behavior as they observe their child’s eating across contexts and over a period of time. Thirdly,
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there was a 4- to 5- year period between the measurement of the exposure (cord blood DNAm)
and the outcome (appetitive traits) in the two cohorts. Other early environmental exposures may
influence the expression of children’s eating phenotypes, such as parent feeding practices (Harris
et al., 2020). Finally, we only examined one time point of DNAm and appetitive traits. As both
appetitive traits and DNA methylation are known to change over time (Derks et al., 2019;
Mulder et al., 2021), future research could build on the current findings by examining DNAm
and appetitive traits at multiple time points across child development to determine the
directionality of associations. There were also many study strengths in addition to those already
mentioned. For example, in addition to the analysis of CpGs, we completed a robust analysis of
differentially methylated regions. We also controlled for a number of maternal and child
covariates in different models, and hypothesized mediators, to examine effect size changes
between models.

Findings from this study support the hypothesis that DNAm at numerous genetic
regions in cord blood is associated with appetitive traits at preschool-age, implicating widespread
DNAm patterns in the newborn as a potential mechanism underlying early childhood eating
behavior. We have linked our results to evidence indicating that DNAm at these regions is
related to both genetic factors and the prenatal environment, although more so to the former. We
hope these findings incite other researchers to study associations between DNAm and appetitive
traits, to unravel potential causal pathways through which DNAm may play its role in appetitive

traits.
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Table 1. Sample characteristics

Generation R Healthy Start
(n=1086) (n=236)
Child n (%) or mean + SD
Sex (% boys) 531 (49) 125 (53)
Birthweight (g) 3568 =490 3333 +442
Gestational age, weeks 402+14 39.6+1.2
Age at appetitive traits assessment, months 485+ 1.0 589+99
Appetitive traits?
Food responsiveness (scale 5 to 25) 8.9+3.1 11.1+3.1
Emotional undereating (scale 5 to 20) 11.1+34 10.7+3.4
Satiety responsiveness (scale 5 to 25) 152+3.2 159+2.8
Food fussiness (scale 5 to 30) 17.8+4.9 17.7+5.1
Mother n (%) or mean + SD
Age (years)° 32.5+4.0 30.4 £ 4.8
Pre-pregnancy BMI, (kg/m?) 232 +3.8 24.8+5.3
Smoking
Never 874 (80.5) 171 (72.5)
Quit when pregnancy was known 92 (8.5) 10 (4.2)
Continued during pregnancy 118 (10.9) 15 (6.4)
Educational level®
High 451 (41.5) 208 (88.1)

BMI: Body Mass Index; *Sum scores from the Children’s Eating Behaviour Questionnaire
(Wardle et al., 2001); °In Generation R, maternal age is assessed at delivery. In Healthy Start,
maternal age is measured at enrolment; ‘In Generation R, mothers were coded as having a ‘high’
education if they completed university; in Healthy Start, mothers were coded as ‘high’ education
if they completed more than a high school education; % missing on variables ranged from 0-
9.8% in Generation R and 0-16.9% in Healthy Start
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Table 2. Associated regions for epigenome-wide association study of DNA methylation (of cord blood at birth) and food
responsiveness at 4-5 years

Chromosome  Start (hgl9) End (hgl9) Nearest gene n CpGs Estimate SE p Bonferrorllji adjusted
chrl3 31506376 31507139  TEX26/TEX26-AS1 9 18.81 2.00 6.16E-21 3.16E-15
chrl7 14206774 14207968  HS3ST3BI 13 26.92 336  1.09E-15 5.58E-10
chr20 44440824 44441164 UBE2C 6 37.24 475  4.68E-15 2.40E-09
chr19 49223814 49224454  RASIPI 6 24.60 3.21 1.92E-14 9.83E-09
chrll 3819041 3819306  PGAP2 6 215.24 30.55 1.85E-12 9.50E-07
chrl3 113622633 113622750 MCF2L-AS1 6 26.74 349  1.74E-14 8.91E-09
chrll 44332385 44332940 ALX4 20 58.52 891  5.21E-11 2.67E-05
chrll 36422377 36422615  PRRSL 5 13.33 2.01  3.60E-11 1.84E-05
chrll 843915 844536 TSPAN4 8 24.67 3.80  8.70E-11 4.45E-05
chr7 94023822 94023869 COL142 3 187.16 28.88  9.13E-11 4.67E-05
chr8 145651369 145651799  VPS28 3 -62.99 9.68  7.63E-11 3.91E-05
chr9 90589146 90589806  CDK20 5 106.99 16.97 2.86E-10 1.47E-04
chrl 156307962 156308296 CCT3/TSACC 9 161.86 26.48  9.81E-10 5.02E-04
chr7 32111062 32111068  PDEIC 3 77.98 12.62  6.47E-10 3.31E-04
chr4 5021084 5021311 CYTLI 7 -23.84 4.04  3.59E-09 1.84E-03
chr6 149805995 149806339 ZC3HI2D 7 22.41 3.65 7.99E-10 4.09E-04
chrll 2919798 2920209  SLC224184S 8 35.84 6.13  4.95E-09 2.54E-03
chrl2 45270312 45270573  NELL? 6 136.55 22.87 2.37E-09 1.22E-03
chrl5 90208810 90209326  PLINI 5 104.26 17.56  2.91E-09 1.49E-03
chr3 48471300 48471771  PLXNBI 5 52.86 8.98  3.90E-09 2.00E-03
chrl 151118299 151119525 SEMA6C 13 93.74 16.17  6.73E-09 3.45E-03
chrl3 111039873 111040579 COL4A42 4 13.97 2.38  4.19E-09 2.15E-03
chr22 18985500 18985691  DGCR5 3 12.75 220  6.50E-09 3.33E-03
chr8 1765074 1766126  MIR596 13 27.14 4.67  6.23E-09 3.19E-03
chrl 201476362 201476619 CSRPI 6 51.06 893  1.09E-08 5.59E-03
chrll 567966 568206 MIR210HG 4 65.83 11.42  8.17E-09 4.19E-03
chrll 111741914 111742291  ALGY 7 232.34 41.26  1.80E-08 9.20E-03
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chrl7 76976010 76976357  LGALS3BP 7 41.90 7.27  8.31E-09 4.25E-03
chrl7 39890756 39891009 JUP 4 255.27 44.57 1.02E-08 5.23E-03
chr7 79083054 79084166  MAGI2-AS3 17 36.17 6.41 1.67E-08 8.57E-03
chr5 140018644 140018709 TMCO6 3 27.53 4.87  1.59E-08 8.12E-03
chr5 140621375 140621754 PCDHBI19P 3 26.72 4.81  2.75E-08 1.41E-02
chr18 9708890 9709061  RAB3I 3 376.43 67.81 2.83E-08 1.45E-02
chr2 239140032 239140340 TARDBPP3/LINC02610 7 63.12 11.08 1.21E-08 6.18E-03
chr7 35293080 35293892  TBX20 11 75.25 14.03  8.24E-08 4.22E-02
chr20 62327968 62328427  RTELI-TNFRSF6B 4 -4.67 0.86  6.83E-08 3.50E-02
chr4 142053146 142054660 RNF150 9 114.87 2095 4.18E-08 2.14E-02
chr20 62738880 62739073  NPBWR2 3 46.91 836  1.99E-08 1.02E-02
chr19 55677716 55678066  DNAAF3 7 222.67 40.89  5.15E-08 2.64E-02
chrl6 3493423 3493681  ZNF597/NAA60 6 -22.95 420 4.71E-08 2.41E-02
chr4 1161597 1161653  SPON2 2 44.62 817  4.75E-08 2.43E-02
chrl 202113592 202114058 ARLSA 4 167.70 30.75  4.92E-08 2.52E-02
chr5 140071110 140071347 HARS2/HARS1 5 285.97 5345 8.81E-08 4.51E-02
chr5 140529627 140530467 PCDHB6 7 15.52 2.88  6.99E-08 3.58E-02
chr14 74416980 74417249  FAMI161B/COQ6 6 266.93 49.81 8.36E-08 4.28E-02

Each model adjusted for child sex and age at appetitive trait assessment, batch and estimated white blood cell proportions, maternal
age at delivery, smoking during pregnancy, education and pre-pregnancy BMI.
n CpGs: number of CpGs included in region; Estimate: effect estimate from meta-analysis of linear regression models.
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Table 3. Associated regions for epigenome-wide association study of DNA methylation (of cord blood at birth) and emotional
undereating at 4-5 years

Chromosome Start (hgl9) End (hgl9) Nearest gene n CpGs Estimate SE p Bonferronizdjusted
chr4 74847646 74847829  PF4 7 -9.31 141  4.02E-11 1.92E-05
chrll 368440 368638 B4GALNTH4 7 -29.71 432 592E-12 2.83E-06
chr13 36871878 36872346  CCDC169-SOHLH?2 12 61.38 8.94  6.76E-12 3.23E-06
chrl4 100141423 100142298  HHIPLI 5 -35.00 5.60 3.94E-10 1.89E-04
chr7 94286304 94286834  PEGI0 19 30.63 5.18  3.42E-09 1.64E-03
chrl 234367145 234367586 SLC35F3 5 -11.97 2.18  3.75E-08 1.79E-02
chr2 129659420 129659834  HS6STI 4 -22.18 4.16 9.45E-08 4.52E-02

Each model adjusted for child sex and age at appetitive trait assessment, batch and estimated white blood cell proportions, maternal
age at delivery, smoking during pregnancy, education and pre-pregnancy BMI.
n CpGs: number of CpGs included in region; Estimate: effect estimate from meta-analysis of linear regression models.
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Table 4. Associated regions for epigenome-wide association study of DNA methylation (of cord blood at birth) and satiety

responsiveness at 4-5 years

Chromosome Start (hgl9) End (hgl9)  Nearest gene n CpGs Estimate SE p Bonferronip adjusted
chr2 54087008 54087343 GPR75/ASB3 10 -35.12 435  6.99E-16 3.39E-10
chr4 2819614 2819770 SH3BP2 3 -29.00 425  8.85E-12 4.29E-06

chr10 131265059 131265137  MGMT 5 -38.28 6.45  2.97E-09 1.44E-03
chrll 118781408 118781778  BCLIL 8 -28.39 457  5.16E-10 2.50E-04
chrl5 67417651 67417899 SMAD3 4 -128.04  21.02  1.12E-09 5.41E-04
chr6 25882328 25882590 SLC1743 4 3.73 0.62  2.44E-09 1.18E-03
chr12 75784855 75785232 GLIPRIL2 8 -16.56 2.93 1.50E-08 7.25E-03
chrll 2293117 2293593 ASCL2 12 15.40 2.62  4.36E-09 2.11E-03
chr17 6899207 6899577 ALOX12-4S1 9 -6.15 1.08 1.18E-08 5.73E-03
chr8 143859709 143859990  LYNXI 6 15.37 2.65  6.34E-09 3.07E-03
chrl5 22833149 22833681 TUBGCPS 9 18.09 3.14  8.07E-09 3.91E-03
chr2 27531236 27531360 UCN 5 42.76 7.91 6.51E-08 3.15E-02
chr8 2130120 2130263 MYOM?2 2 -41.91 7.75  6.46E-08 3.13E-02

Each model adjusted for child sex and age at appetitive trait assessment, batch and estimated white blood cell proportions, maternal
age at delivery, smoking during pregnancy, education and pre-pregnancy BMI.
n CpGs: number of CpGs included in region; Estimate: effect estimate from meta-analysis of linear regression models.
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Table 5. Associated regions for epigenome-wide association study of DNA methylation (of cord blood at birth) and food fussiness at
4-5 years

Chromosome Start (hgl9)  End (hgl9) Nearest gene n CpGs Estimate SE p Bonferronip adjusted
chrl 75198582 75199117  CRYZ/TYW3 9 -18.20 2.78  5.86E-11 2.82E-05
chr6 28058724 28059208  ZSCANI16-AS1 9 -9.14 1.33  6.88E-12 3.31E-06
chr12 75784617 75785295 CAPS2/GLIPRIL2 10 -15.55 241 1.07E-10 5.14E-05
chr19 57352014 57352185  ZIM2/MIMT1I 8 72.76 10.88  2.31E-11 1.11E-05
chr4 2819614 2819770 SH3BP2 3 -25.79 420  7.89E-10 3.80E-04
chr12 2943902 2944493 NRIP2 8 14.58 2.57 1.47E-08 7.05E-03
chr2 129659018 129659946  HS6STI 7 -19.46 3.27  2.70E-09 1.30E-03
chr7 150755629 150756491  SLC4A42 10 -45.95 8.49  6.16E-08 2.96E-02
chrl5 62516282 62516670  C2CD4B 5 -15.01 2.78  6.95E-08 3.35E-02

Each model adjusted for child sex and age at appetitive trait assessment, batch and estimated white blood cell proportions, maternal
age at delivery, smoking during pregnancy, education and pre-pregnancy BMI.
n CpGs: number of CpGs included in region; Estimate: effect estimate from meta-analysis of linear regression models.
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