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Abstract  

Childhood appetitive traits are consistently associated with obesity risk, and yet their etiology is 

poorly understood. Appetitive traits are complex phenotypes which are hypothesized to be 

influenced by both genetic and environmental factors, as well as their interactions. Early-life 

epigenetic processes, such as DNA methylation (DNAm), may be involved in the developmental 

programming of appetite regulation in childhood. In the current study, we meta-analyzed 

epigenome-wide association studies (EWASs) of cord blood DNAm and early-childhood 

appetitive traits. Data were from two independent cohorts: the Generation R Study (n=1,086, 

Rotterdam, the Netherlands) and the Healthy Start study (n=236, Colorado, USA). DNAm at 

autosomal methylation sites in cord blood was measured using the Illumina Infinium 

HumanMethylation450 BeadChip. Parents reported on their child’s food responsiveness, 

emotional undereating, satiety responsiveness and food fussiness using the Children’s Eating 

Behaviour Questionnaire at age 4-5 years. Multiple regression models were used to examine the 

association of DNAm (predictor) at the individual site- and regional-level (using DMRff) with 

each appetitive trait (outcome), adjusting for covariates. Bonferroni-correction was applied to 

adjust for multiple testing. There were no associations of DNAm and any appetitive trait at the 

individual site-level. However, at the regional level, we identified 45 associations of DNAm with 

food responsiveness, 7 associations of DNAm with emotional undereating, 13 associations of 

DNAm with satiety responsiveness, and 9 associations of DNAm with food fussiness. This study 

shows that DNAm in the newborn may partially explain variation in appetitive traits expressed in 

early childhood and provides preliminary support for early programming of child appetitive traits 

through DNAm. Investigating differential DNAm associated with appetitive traits could be an 
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important first step in identifying biological pathways underlying the development of these 

behaviors.  
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1. Introduction 

Appetitive traits (or ‘eating behaviors’) are associated with the development of obesity 

(Llewellyn & Fildes, 2017). Meta-analytic evidence from infant and child studies show robust 

associations between ‘food approach’ traits and higher obesity risk, while ‘food avoidant’ traits 

confer a lower obesity risk (Kininmonth et al., 2021). This may, in part, be explained through 

dietary behaviors. Food approach traits, for example food responsiveness, indicate a child’s 

appetitive avidity, and sensitivity to respond to environmental food cues. Food responsiveness is 

associated with a greater preference for energy-dense and nutrient-poor foods (Fildes et al., 

2015), increased eating  frequency and higher energy intake (Carnell & Wardle, 2007; Syrad et 

al., 2016). In contrast, food avoidant behaviors, such as food fussiness, emotional undereating 

and satiety responsiveness, may reflect a lower appetite and disinterest in eating. Children high 

in satiety responsiveness are sensitive to feelings of fullness, tend to eat slower and eat smaller 

portions (Carnell & Wardle, 2007; Syrad et al., 2016). Children with elevated food fussiness tend 

to consume a limited variety of foods (Taylor et al., 2015) and tend to dislike core food groups 

such as fruits and vegetables (Fildes et al., 2015). Finally, children high in emotional undereating 

eat less when negative moods are evoked (Blissett et al., 2019). While appetitive traits appear to 

bridge associations between nutrition, the food environment and weight, relatively little is known 

about the early developmental processes underlying appetitive traits.  

Appetitive traits themselves are complex phenotypes that are influenced by genetic and 

environmental factors, as well as their interactions. Individual differences in appetitive traits 

emerge early in postnatal life (Llewellyn et al., 2011) and remain moderately stable into the early 

childhood years (Costa et al., 2022; Farrow & Blissett, 2012). Twin heritability studies suggest 
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that genetic variants play a considerable role in explaining variation in some appetitive traits 

(Llewellyn & Wardle, 2015).  

The prenatal environment has also been hypothesized to contribute to obesity-risk, partly 

through modulating appetite regulation systems linked to appetite trait expression (Boswell et al., 

2018; Desai & Ross, 2020). Obesity risk factors during pregnancy (such as high fasting plasma 

glucose and pre-pregnancy overweight) have been shown to predict eating behaviors such as 

self-serving larger portions, faster eating rate and higher energy intake, as well as increased child 

body mass index (BMI), at 6 years (Fogel et al., 2020). Observational evidence from a 

longitudinal birth cohort showed that excessive gestational weight gain was associated with 

increased food responsiveness in children aged 1 year old (Costa et al., 2022). Another study 

showed that mothers who gained less weight than recommended during pregnancy rated their 

male (but not female) offspring lower in satiety responsiveness at approximately 4 years of age 

(Boone-Heinonen et al., 2019). Furthermore, ultra-processed food consumption during 

pregnancy has been also linked to lower satiety responsiveness in infants at 6-months of age 

(Cummings et al., 2022). The prenatal environment may be linked to children’s appetitive traits 

through biological processes that could modify the regulation or expression of genes during fetal 

development, such as epigenetic processes.   

DNA methylation (DNAm) is an epigenetic mechanism whereby methyl groups are added to 

cytosines at cytosine-guanine dinucleotides (CpG sites) in the DNA, which may affect gene 

expression (Ruiz-Arenas et al., 2022). Exposures during fetal development, such as maternal 

smoking (Joubert et al., 2016), maternal BMI at the start of pregnancy (Sharp et al., 2017) and 

maternal diet (Küpers et al., 2022) have been associated with newborn DNAm. A limited number 

of candidate studies have linked DNAm to appetitive traits in childhood. For example, one study 
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(n=317) showed that DNAm at the insulin-like growth factor-2 (IGF2) gene in cord blood was 

associated with satiety responsiveness in children aged 1-6 years old (Do et al., 2019). In a small 

study of 32 girls aged 5-6 years, lower levels of DNAm in the promoter of the BDNF (brain-

derived neurotrophic factor) gene were found to be associated with lower satiety responsiveness 

(Gardner et al., 2015). While such studies implicate differential DNAm as a potentially relevant 

pathway underlying appetitive traits, so far interest has been in one or a few candidate genes, 

thereby precluding the possibility to uncover novel epigenetic pathways. 

Epigenome-wide association studies (EWAS) of DNAm markers at birth that predict 

childhood appetitive traits have not yet been performed. Hypothesis-free testing of epigenome-

wide DNAm signals may present new leads to piece together the puzzle of appetitive trait 

etiology. Thus, in the current study, we aimed to investigate associations of genome-wide 

DNAm in newborn cord blood with appetitive traits in early childhood. To maximize statistical 

power, we meta-analyzed EWASs for appetitive traits from two independent cohorts (total 

n=1,322).    

  

2. Methods 

2.1. Study design and participants 

Two cohorts participating in the worldwide Pregnancy And Childhood Epigenetics 

Consortium (PACE) (Felix et al., 2018) with newborn umbilical cord blood DNAm and child 

appetitive traits measured before age 6 years were included in the current analysis: the 

Generation R Study (Generation R) and Healthy Start. 

2.1.1. Generation R  
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Generation R is a population-based cohort focused on health and development from fetal life 

onwards (Jaddoe et al., 2006). All pregnant women living in Rotterdam, the Netherlands, with an 

expected delivery date between April 2002 and January 2006 were invited to participate 

(N=9,778; participation rate: 61%). Cord blood DNAm data were available for 1,396 children, 

who were selected from the full population to be a homogeneous subgroup of European ancestry, 

with high completeness of follow-up. Of these children, 1,098 had information available on 

appetitive traits. Twelve sibling pairs were present in this set; one sibling of each pair was 

removed based on data availability or otherwise randomly, leaving a final sample size of n=1,086 

children. The Generation R Study has been approved by the Medical Ethical Committee of 

Erasmus MC, University Medical Center Rotterdam. Written informed consent was obtained 

from parents of all children. 

2.1.2. Healthy Start 

The Healthy Start study (Healthy Start) is an ongoing, pre-birth cohort study based in 

Colorado, USA (Starling et al., 2015). Pregnant women were recruited between 2009-2014 at the 

University of Colorado obstetrics clinics. Women were eligible for the Healthy Start study if 

they were ≥16 years, expecting a singleton birth, had a gestational age <24 weeks at enrolment, 

and had no serious chronic medical conditions or history of stillbirth. A total of 1,410 

pregnancies were enrolled, and umbilical cord blood DNAm was analyzed in a subset of these 

(n=600), based on availability of cord blood, maternal blood, and urine samples during 

pregnancy. For this analysis of cord blood DNAm and child appetitive traits, further exclusions 

were as follows: 6 participants had discordance between predicted and reported sex, 180 had 

missing child appetitive traits data, 7 were siblings of other participants in the cohort, and 171 

had a race/ethnicity other than non-Hispanic white, resulting in a final sample size of n=236. The 
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Healthy Start study protocol was approved by the Colorado Multiple Institutional Review Board, 

and all women provided written informed consent before the first study visit. 

2.2. DNA methylation measurement 

Each cohort performed sample processing, quality control and normalization based on their 

own protocols. In Generation R, DNA was extracted from cord blood samples taken at birth. 

Five-hundred nanograms of DNA per sample underwent bisulfite conversion using the EZ-96 

DNA Methylation kit (Shallow) (Zymo Research Corporation, Irvine, USA) and further 

processed with the Illumina Infinium HumanMethylation450 BeadChip (Illumina Inc., San 

Diego, USA). Preparation and normalization of the HumanMethylation450 BeadChip array data 

was performed following the CPACOR workflow using the software package R (Lehne et al., 

2015; R Core Team, 2013). In detail, the .idat files were read using the minfi package (Aryee et 

al., 2014). Probes with a detection p-value>1e-16 were set to missing per array. Intensity values 

were stratified by autosomal and non-autosomal probes and quantile normalized for each of the 

six probe type categories separately: type II red or green, type I methylated red or green and type 

I unmethylated red or green. Beta values were computed as the ratio of the methylated to the 

methylated+unmethylated signal. Arrays with observed technical problems such as failed 

bisulfite conversion, hybridization or extension, as well as arrays with a mismatch between sex 

of the proband and sex determined by the chromosome X and Y probe intensities were removed 

from subsequent analyses. Lastly, only arrays with a call rate >95% per sample were processed 

further. Outlying values on the probes were excluded using the Tukey method, i.e. values<(25th 

percentile–3*interquartile range) and values>(75th percentile+3*interquartile range) were 

excluded (Tukey, 1977).   
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In Healthy Start, DNA was extracted from umbilical cord blood collected at birth using the 

QIAamp DNA Blood Mini Kit (Qiagen) and stored in buffy coats. Illumina Infinium 

HumanMethylation450 BeadChip (Illumina Inc., San Diego, USA) was used to measure 

epigenome-wide DNAm (Yang et al., 2017). Additional details of DNA extraction and bisulfite 

conversion have been described in detail previously (Starling et al., 2020). Quality control 

checks included assessment of DNA purity, integrity, and quantity. Samples were eligible for 

inclusion if they met the following criteria: 260/280 ratio >1.8 indicating DNA purity, DNA 

integrity score >7, and at least 500 ng of DNA available. Probes with high detection p-value 

(>0.05) (n=587) and low beadcount <4 (n=664) were removed. Additionally, samples with 

inconsistencies between reported and predicted sex were removed (n=6). Stratified quantile 

normalization was performed using the preprocessQuantile function in minfi (Touleimat & Tost, 

2012). ComBat was used for batch correction (Johnson et al., 2007). Extreme methylation 

outliers were removed, as defined by a value more than three times the interquartile range below 

the 25th percentile or above the 75th percentile (Hoaglin et al., 1986; Merid et al., 2020).  

For both cohorts, only autosomal probes were analyzed and cross-reactive probes were 

excluded (Chen et al., 2013; Naeem et al., 2014), resulting in 415,786 probes in Generation R 

and 429,136 probes in Healthy Start. We included the 415,267 probes in the meta-analyses that 

were present in both cohorts. The R package FDb.InfiniumMethylation.hg19 (Triche, 2014) was 

used for probe annotation. 

 

2.3. Measures 

2.3.1. Child appetitive traits 
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In each cohort, child appetitive traits were assessed by parent-report using the widely-

implemented Children’s Eating Behaviour Questionnaire (CEBQ) (Wardle et al., 2001) at age 4 

years in Generation R, and age 5 years in Healthy Start. The CEBQ has good psychometric 

properties (Wardle et al., 2001), and has demonstrated ecological validity in behavioural tests 

(Blissett et al., 2019; Carnell & Wardle, 2007). Four subscales that were available in both 

Generation R and Healthy Start were included in the EWAS meta-analyses: food responsiveness 

(5 items, e.g. “My child is always asking for food”), emotional undereating (4 items, e.g. “My 

child eats less when (s)he is upset”), satiety responsiveness (5 items, e.g. “My child gets full 

before his/her meal is finished”) and food fussiness (6 items, e.g. “My child is difficult to please 

with meals”). Items were assessed on a 5-point Likert scale from “1” (never) to “5” (always) and 

summed to produce a subscale sum score. The subscales showed acceptable to good internal 

reliability in Generation R (α=0.74-0.91) and Healthy Start (α=0.70-0.93). Where normally 

distributed, sum scores were standardized (z-scores) for comparison between the models. The 

food responsiveness subscale was skewed in both cohorts and, therefore, square-root transformed 

to approach normality, and all scales were z-score transformed. 

2.3.2. Covariates 

In Generation R, maternal age at delivery was calculated based on maternal age assessed 

upon enrolment, gestational age at enrolment and gestational age at birth. Maternal smoking 

during pregnancy was assessed with three questionnaires in early (<18 weeks), mid- (18-25 

weeks), and late (>25 weeks) pregnancy and categorized into 0=never smoked during 

pregnancy/1=quit when pregnancy was known/2=sustained smoking during pregnancy. Maternal 

education was used as an indicator of socio-economic status (SES) and was obtained via 

questionnaire at enrolment. The information was dichotomized (0=did not complete university 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 18, 2023. ; https://doi.org/10.1101/2023.07.17.549289doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.17.549289
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

studies/1=completed university studies). Maternal pre-pregnancy body mass index (BMI; kg/m2) 

was computed based on pre-pregnancy weight, which was collected at enrolment using a 

questionnaire, and height. Self-reported pre-pregnancy weight correlated highly (r=0.96) with 

measured weight at enrolment around 13 weeks of pregnancy (Tielemans et al., 2015). Child sex 

and birth weight were obtained from midwife and hospital registries. Sample plate was included 

in the models to correct for batch effects. White blood cell proportions (CD4+ T-lymphocytes, 

CD8+ T-lymphocytes, natural killer cells, B-lymphocytes, monocytes, granulocytes, and 

nucleated red blood cells) were estimated with a cord blood-specific reference panel (Gervin et 

al., 2019). Gestational age at birth was determined using fetal ultrasound examinations or last 

menstrual period (LMP) in case of a regular menstrual cycle and a certain first day of LMP 

(Jaddoe et al., 2006). 

In the Healthy Start study, child sex, birthweight, and gestational age at birth were obtained 

from medical records. Maternal age, ethnicity, and education were self-reported at time of 

enrolment. Education was dichotomized (0= high school education or less/ 1= more than high 

school education. Maternal smoking status was self-reported at three study visits: twice during 

pregnancy and once at delivery, and was operationalized as a 3-level categorical variable 

(0=never smoked/quit early in pregnancy, 1=quit smoking early in pregnancy, 2=sustained 

smoking throughout pregnancy). Maternal pre-pregnancy BMI was calculated using height 

measured at enrolment and pre-pregnancy weight obtained from the medical record. Cell 

deconvolution to estimate the relative proportions of the 7 cell types (B cells, CD4 T cells, CD8 

T cells, granulocytes, monocytes, NK cells, and nucleated red blood cells) was performed using 

the R package FlowSorted.CordBloodCombined.450k (R Core Team, 2013) with a combined 

reference dataset for cord blood (Gervin et al., 2019). 
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2.4. Statistical Analyses 

2.4.1. Site- and regional-level epigenome-wide meta-analyses 

Each cohort first ran a cohort-specific EWAS according to a predefined analysis plan. 

Missing data points on covariates were imputed (% missing on variables ranged from 0-9.8% in 

Generation R and 0-16.9% in Healthy Start) using the mice package (Buuren & Groothuis-

Oudshoorn, 2010) in R. To enhance imputation, additional variables were used for the 

imputation only, including household income, maternal and paternal BMI at enrolment, maternal 

daily caloric intake during pregnancy and maternal alcohol intake during pregnancy in 

Generation R, and gestational weight gain and maternal daily caloric intake in Healthy Start. We 

performed a maximum of 10 iterations to create 10 imputed datasets. Regression analyses were 

performed using pooled statistics. To study the associations of DNAm with appetitive traits, we 

planned three regression models per appetitive trait: a basic model (Model 1), a fully adjusted 

model (Model 2), and an exploratory model including potential mediators (Model 3). In each 

model, DNAm was modelled as the predictor and appetitive trait as the outcome. Model 1 

adjusted for child sex and age at appetitive trait assessment, batch and estimated white blood cell 

proportions. Significant hits (Bonferroni corrected, see below) were followed up by running 

Model 2, which additionally adjusted for potential confounders maternal age at delivery, 

smoking during pregnancy, education, and pre-pregnancy BMI. If Model 2 produced an 

association, Model 3 was run, which additionally adjusted for the potential mediators gestational 

age at birth and birth weight. With these models, site-level epigenome-wide analyses (EWASs) 

were performed separately in each cohort. Associations between DNAm at each individual site 

and standardized child appetitive trait score were estimated in R using robust linear regressions. 
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Within each model, a Bonferroni-correction was applied to account for the number of probes 

(p<1.20×10-7). Quality control procedures on the EWAS results were run using the QCEWAS R 

package (Van der Most et al., 2017). Fixed effects inverse variance weighted meta-analyses of 

the cohort-specific results were performed using METAL (Willer et al., 2010). Shadow meta-

analyses were independently performed a different investigator on the team and results were 

confirmed. For the regional-level EWASs, summary statistics from each cohort site-level 

EWASs were re-analyzed while taking the cohort specific-intercorrelational DNAm structure 

across sites into account, using the meta-analysis extension of the DMRff package in R 

(Suderman et al., 2018). This package identifies differentially methylated regions by taking into 

account dependencies between sites as well as site-level uncertainty in EWAS estimates. We 

searched within a standard 500bp site-window, applying a Bonferroni corrected p<0.05 based on 

the number of regions. 

2.4.2. Genetic enrichment  

Significant findings stemming from site- or regional-level analyses were further examined 

in two ways. Genetic influences on DNAm were examined by i) a look-up of known associations 

of DNAm with genetic variants elsewhere on the genome, e.g. methylation quantitative trait loci 

(mQTLs) in cis (within a ±1 Mb window) or in trans (outside of this window, potentially on a 

different chromosome) as identified in cord blood of a pediatric population (Gaunt et al., 2016) 

and in cord or whole blood in a larger study on 36 populations of all ages (Min et al., 2020); and 

ii) a look-up of estimated additive genetic influences, and shared and unique environmental 

influences on DNAm, as based on twin heritability analyses (Hannon et al., 2018). To understand 

if there was enrichment of genetic patterns in associated versus non-associated CpGs, two-sided 
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T-tests were performed between these two groups for each look-up and differences of p<0.05 are 

reported.  

2.4.3. Enrichment for eQTMs 

We examined associated expression patterns by checking if significant findings have been 

identified as expression quantitative trait methylation (eQTMs) in cis in peripheral blood of 832 

children aged between 6 and 11 years (Ruiz-Arenas et al., 2022). To understand if there was 

enrichment of gene expression patterns in associated versus non-associated CpGs, two-sided T-

tests were performed between these two groups and differences of p<0.05 are reported.  

2.4.4. Enrichment for regulatory elements 

We explored enrichment of tissue- or cell-type specific regulatory elements. This analysis 

was performed with eFORGe v2.0, using data from Consolidated Roadmap Epigenomics, 

ENCODE, and Blueprint to test for DNAse I hypersensitive regions, chromatin states, and 

histone marks, using default settings (1 kb window, 1000 background repetitions) (Breeze et al., 

2019). Findings of FDR adjusted q<0.05 are reported.  

2.4.5. Functional enrichment 

To examine functional enrichment of genes associated with sites significant in the site- or 

regional-level meta-analyses, we performed appetitive trait-specific Gene Ontology pathways 

analyses using the GOfuncR package in R (Grote & Grote, 2018). Pathways with a family-wise 

error rate (FWER) corrected p<0.05 based on random permutations of the gene-associated 

variables were considered to be enriched.  

  

3. Results 
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The sample characteristics of Generation R and Healthy Start are described in Table 1. Both 

cohorts were comparable in their characteristics and appetitive traits. However, relative to 

Generation R, the Healthy Start children were slightly older (4.0 years vs. 4.9 years, 

respectively). In Generation R, mothers were slightly older (32.5 years vs. 30.4 years, 

respectively) and had a lower pre-pregnancy BMI (23.2 kg/m2 vs. 24.8 kg/m2, respectively) 

compared to Healthy Start mothers. 

3.1. Site-level and regional-level epigenome-wide meta-analyses 

We did not find associations of DNAm at individual CpG-sites and any of the appetitive 

traits in Model 1. Therefore, no further analyses were conducted relating to DNAm of individual 

CpG-sites. However, we found widespread associations of differentially methylated regions 

across the genome with each of the appetitive traits in Model 1. Most regions in Model 1 were 

also detected as a region in Model 2 (91% detected; differences may occur if inter-CpG 

similarity in effect size changes between models) and the majority remained significant (94% of 

detected regions). The results for each model are detailed in Supplemental Tables 1-4; here we 

present the results of fully adjusted Model 2. DNAm at 45 regions was associated with food 

responsiveness (Table 2), at 7 regions with emotional undereating (Table 3), at 13 regions with 

satiety responsiveness (Table 4), and at 9 regions with food fussiness (Table 5). DNAm at 

several regions was associated, in a consistent direction, with multiple appetitive traits: DNAm at 

a region on chromosome 4, near HS6ST1, was associated with both emotional undereating and 

satiety responsiveness; DNAm at a region on chromosome 12 in GLIPR1L2, and on chromosome 

4 in SH3BP2 was associated both with satiety responsiveness and food fussiness. The additional 

adjustment for maternal age, smoking, education, and pre-pregnancy BMI in Model 2 resulted in 

small effect size changes between Model 1 and Model 2 across all appetitive traits (median 
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change=1.0%; IQR=0.4-2.2%). In Model 3, which included additional adjustment for the 

potential mediators gestational age at birth and birth weight, 86% of regions significant in Model 

2 were detected. Of these, 88% remained significant (31 regions for food responsiveness; 5 

regions for emotional undereating; 12 regions for satiety responsiveness; 8 regions for food 

fussiness). Effect size changes from Model 2 to Model 3 were small (median change=2.4%; 

IQR=1.4-3.8%), suggesting limited or no mediation of effects via changes in birth weight and 

gestational age at birth. 

3.2. Enrichment analyses  

DNAm associations for emotional undereating, satiety responsiveness, and food fussiness 

showed some shared regions in the regional-level EWAS, thus confirming the conceptual links 

between these food avoidant traits. As such, these three food avoidant traits were grouped 

together for the following enrichment analyses. Hence the following enrichment analyses 

describe results for ‘food avoidant traits’ and ‘food responsiveness’, the only food approach trait 

we examined. 

3.2.1. Genetic enrichment 

Results from the genetic enrichment analyses, which show the extent to which DNAm at 

regions of associated CpGs might be influenced by genomic variation, are provided in      

Supplemental Table 5. First, we examined whether DNAm at CpGs in each region was related 

to genetic variation at SNPs (mQTLs, methylation quantitative trait loci). Based on the study by 

Gaunt et al. (2016), CpGs in regions associated with food avoidant traits were more often related 

to mQTLs than CpGs in other regions (37.7% vs. 7.4%, p<0.001), but no difference was found 

for food responsiveness (14.6% vs. 6.9%, p=0.08). Based on the study by Min et al. (2020), 

CpGs in regions associated with both food responsiveness and food avoidant traits were more 
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often related to mQTLs (food responsiveness: 58.7% vs. 40.8%, p=0.002; food avoidant traits: 

81.7% vs. 41.6%, p<0.001). Second, we examined twin heritability estimates for DNAm of 

CpGs in each region. The proportions of additive genetic effects estimated were higher for CpGs 

in associated regions versus those in non-associated regions for both food responsiveness and 

food avoidant traits (food responsiveness: 0.28 vs. 0.14, p<0.001; food avoidant traits: 0.52 vs. 

0.16, p<0.001). The proportion of shared environmental effects was smaller for CpGs in 

associated regions than in other regions for food avoidant traits (0.10 vs. 0.16, p<0.001), but for 

food responsiveness no difference was found (0.19 vs. 0.19, p=0.961). The proportion of unique 

environmental effects was smaller for CpGs in associated regions than in other regions for both 

food responsiveness and food avoidant traits (food responsiveness: 0.53 vs. 0.67, p<0.001; food 

avoidant traits: 0.38 vs. 0.68, p<0.001). This means that DNAm at these regions showed 

evidence of greater influence from genetic rather than environmental variation.    

3.2.2. Enrichment for eQTMs 

Results from the eQTM look-up, which shows the extent to which CpGs at associated 

regions have been associated with expression levels of nearby genes in peripheral blood of 

children (eQTMs), are provided in Supplemental Table 6. CpGs at regions associated with food 

avoidant traits were more often marked as eQTMs than CpGs at other regions (46.8% vs. 4.5%, 

p<0.001). No difference was detected for food responsiveness (10.4% vs. 4.7%, p=0.08).  

3.2.3. Enrichment for regulatory elements   

For CpGs in regions associated with food responsiveness, evidence for enrichment of 

DNAse I hypersensitive regions was found in blood tissue, fetal muscle tissue, fetal stomach 

tissue, fetal thymus tissue and in induced pluripotent stem cells (q<0.05, Supplemental Figure 

1). No evidence of tissue- or cell-type specific enrichment was found for chromatin states or 
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histone marks for food responsiveness. For food avoidant traits, evidence for enrichment of 

histone marks was found in the small and large fetal intestine, fetal stomach, fetal trunk muscle, 

fetal thymus, and fetal adrenal gland (q<0.05, Supplemental Figure 2). No tissue- or cell-type 

specific enrichment was found for DNAse I hypersensitive regions or chromatin states with food 

avoidance traits.  

3.2.4. Functional enrichment 

Genes associated with differentially methylated regions were tested for functional 

enrichment against genes associated with all other regions. No enrichment of Gene Ontology 

pathways was found for any of the appetitive traits (FWER p>0.05).  

 
4. Discussion  

This is the first epigenome-wide association study (EWAS) examining associations of 

DNA methylation (DNAm) in cord blood with child appetitive traits (age 4 to 5 years), 

leveraging data from two prospective birth cohorts. The meta-analyses showed that DNAm at 

individual CpG sites was not associated with any of the four appetitive traits examined in the 

current study: food responsiveness, emotional undereating, satiety responsiveness and food 

fussiness. However, multiple differentially methylated regions – genomic regions comprised of 

several, related methylated sites – were associated with appetitive traits in childhood. Many of 

the CpG sites in the associated regions have been shown be under greater influence of genetic 

rather than environmental variation. We also found some evidence that sites associated with 

appetitive traits were enriched for regulatory elements in tissues such as fetal stomach and 

intestine. This may indicate a potential regulatory role for the identified differentially methylated 

regions, but this requires further functional studies. Altogether, these findings provide initial 

evidence for potential biological pathways underlying the expression of early appetitive traits. 
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The meta-analyses showed that food responsiveness was associated with the largest 

number of differentially methylated regions, relative to the other three appetitive traits 

investigated. This suggests that the prenatal period is a particularly sensitive period for the 

epigenetic influence of food responsiveness, which may, in part, be due to this construct broadly 

capturing rudimentary energy balance behaviors which are salient to survival. In children, 

heightened sensitivity to external food cues observed in food responsiveness serves to promote a 

surplus in energy intake (Carnell & Wardle, 2007) which favors weight gain (Kininmonth et al., 

2021). While adaptive in environments with unreliable energy and nutritional sources, this 

function may be no longer beneficial in the ubiquitous Western food-environment, where 

palatable and energy-dense foods are readily available. In our analyses, genes associated with 

regions differentially methylated for food responsiveness appear to be linked to a broad range of 

functions, including immune function, neural development, and cardiovascular functioning. In 

the look-up of genes associated with differentially methylated regions, several notable genes 

appear to be involved in metabolically-related functions which may be relevant to the early 

expression of food responsiveness. One example is ALG9 (ALG9 Alpha-1,2-

Mannosyltransferase) on chromosome 11, a gene encoding the glycosylation protein alpha-1,2-

mannosyltransferase, which has been shown to be differentially expressed in the placentae of 

women with diabetes mellitus during pregnancy (Alexander et al., 2018). Another example is a 

region of chromosome 20, located in the transcription start site of NPBWR2 (Neuropeptides B/W 

Receptor 2), which encodes a neuropeptide receptor, that has also been related to leptin and 

insulin levels in rats (Rucinski et al., 2007) as well as feeding behavior under stress in mice 

(Aikawa et al., 2008). As food responsiveness was the only food approach trait examined in the 
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current analyses, further research is required to examine associations between DNA methylation 

and other food approach behaviors, such as enjoyment of food and emotional overeating. 

Differentially methylated regions associated with the food avoidance behaviors examined 

(emotional undereating, satiety responsiveness and food fussiness) were linked to genes also 

serving broad functions, with a prominence for cardiovascular and gastrointestinal function. 

Interestingly, several genes were annotated to differentially methylated regions associated with 

multiple food avoidance behaviors. For example, satiety responsiveness and food fussiness were 

related to DNAm in or near SH3BP2 (SH3 Domain Binding Protein 2; chromosome 4) and 

GLIPR1L2 (GLIPR1-Like Protein 2; chromosome 12). SH3BP2 is associated with cherubism, a 

disorder characterized by dysplasia of the jaw (Reichenberger et al., 2012). GLIPR1L2 encodes a 

cysteine-rich secretory protein and is highly expressed in the testes in vitro(Ren et al., 2006). 

Cord blood methylation in GLIPR1L2 has previously been associated with maternal pre-

pregnancy obesity (Martin et al., 2019). In our current analyses, it is worth noting that DNAm in 

GLIPR1L2 remained associated with both satiety responsiveness and food fussiness after 

adjustment for maternal pre-pregnancy BMI (Model 2). This indicates that, where maternal pre-

pregnancy BMI may be a potential precursor to cord blood GLIPR1L2 DNAm, the association 

between GLIPR1L2 DNAm and these appetitive traits (satiety responsiveness and food 

fussiness) is at least partially independent of pre-pregnancy BMI.  

Several appetitive traits were associated with DNAm at regions near or at genes linked to 

pubertal development. Both emotional undereating and food fussiness were associated with 

DNAm on chromosome 2 at regions near HS6ST1 (Heparan Sulfate 6-O-Sulfotransferase 1), a 

gene related to hypogonadism and delayed puberty (Howard et al., 2018). Another differentially 

methylated region found for emotional undereating was near IGSF10 (Immunoglobulin 
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Superfamily Member 10) on chromosome 3, which has also been related to delayed puberty 

(Budny et al., 2020). Additionally, food responsiveness was associated with a differentially 

methylated region on chromosome 3 in PLXNB1 (Plexin B1), which has been related to 

hypogonadism (Welch et al., 2022). Taken together, this could indicate that these gene regions 

that relate to appetite in early childhood may be signals for growth and development during 

puberty.  

Enrichment analyses showed that differentially methylated regions associated with food 

avoidance traits were enriched for cis-eQTMs in peripheral blood in children, indicating that 

differential DNAm at these regions may have functional relevance. Among regions in which 

DNAm was related to expression of the gene closest to the region itself are those at 

aforementioned SH3BP2 and IGSF10, as well as a region in OR2L13 (Olfactory Receptor Family 

2 Subfamily L Member 13), at which DNAm associated with emotional undereating. This gene 

encodes an olfactory receptor, and has been shown to be expressed in non-chemosensory tissues 

as well, including blood and the brain (Ferrer et al., 2016), and DNAm at this gene has been 

associated with gestational diabetes mellitus previously (Howe et al., 2020; Quilter et al., 2014). 

DNAm at a few differentially methylated regions was related to expression levels of a gene close 

to, but not nearest to the region, for example DNAm at SLC4A2 (Solute Carrier Family 4 

Member 2) was associated with food fussiness, yet DNAm at this region is related to the 

expression of AGAP3 (ArfGAP With GTPase Domain, Ankyrin Repeat And PH Domain 3), a 

gene related to synaptic plasticity (Oku & Huganir, 2013).   

Further, enrichment analyses of CpGs at differentially methylated regions associated 

with appetitive traits indicated that, overall, DNAm at the associated regions appeared to be 

mainly explained by genetic (as opposed to environmental) variation as compared to DNAm at 
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other regions. This corroborates our finding that associations of DNAm with appetitive traits are 

independent of prenatal factors. Causal pathways could be tested through Mendelian 

randomization and mediation analyses (at the site-level) to interpret to what extent DNAm might 

mediate genetic or environmental effects on appetitive traits. Mediation analyses would also be 

required to formally test appetitive traits as behaviorally-mediated mechanisms linking genetic 

risk and environmental exposure to weight gain. We did not examine child BMI as an outcome 

or correlate of appetitive traits, as such analyses are outside the scope of the current analyses as it 

would require much larger sample sizes. However, this is an important direction for future 

research, owing to the link between appetitive traits and child BMI and adiposity.   

This study adds to the knowledge on biological processes underlying children’s 

appetitive traits. However, interpretation of these results must be considered in light of some 

limitations. Firstly, because associations between DNAm at CpG sites and child behavior are 

typically small (Mulder et al., 2020), we may have been underpowered to detect small effect 

sizes. However, previous studies examining DNAm in relation to child appetitive traits were 

small candidate studies (Do et al., 2019; Gardner et al., 2015), and therefore this is the first (and 

relatively large) EWAS meta-analysis. We encourage researchers to add to these data and to 

further explore other appetitive traits, as only appetitive traits that were common across both 

cohorts were examined in the current study. Secondly, appetitive traits were assessed using 

parent-report, which may introduce subjectivity or social desirability bias. However, the CEBQ 

was used to assess child appetitive traits, and subscales from the CEBQ have been validated with 

observations and experimental eating behavior tasks in preschool-aged children (Blissett et al., 

2019; Carnell & Wardle, 2007). Parents are likely to be reliable reporters of their child’s 

behavior as they observe their child’s eating across contexts and over a period of time. Thirdly, 
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there was a 4- to 5- year period between the measurement of the exposure (cord blood DNAm) 

and the outcome (appetitive traits) in the two cohorts. Other early environmental exposures may 

influence the expression of children’s eating phenotypes, such as parent feeding practices (Harris 

et al., 2020). Finally, we only examined one time point of DNAm and appetitive traits. As both 

appetitive traits and DNA methylation are known to change over time (Derks et al., 2019; 

Mulder et al., 2021), future research could build on the current findings by examining DNAm 

and appetitive traits at multiple time points across child development to determine the 

directionality of associations. There were also many study strengths in addition to those already 

mentioned. For example, in addition to the analysis of CpGs, we completed a robust analysis of 

differentially methylated regions. We also controlled for a number of maternal and child 

covariates in different models, and hypothesized mediators, to examine effect size changes 

between models.  

Findings from this study support the hypothesis that DNAm at numerous genetic 

regions in cord blood is associated with appetitive traits at preschool-age, implicating widespread 

DNAm patterns in the newborn as a potential mechanism underlying early childhood eating 

behavior. We have linked our results to evidence indicating that DNAm at these regions is 

related to both genetic factors and the prenatal environment, although more so to the former. We 

hope these findings incite other researchers to study associations between DNAm and appetitive 

traits, to unravel potential causal pathways through which DNAm may play its role in appetitive 

traits.  
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Table 1. Sample characteristics  

 
Generation R  

(n=1086) 
Healthy Start 

(n=236) 

Child  n (%) or mean ± SD 

Sex (% boys) 531 (49) 125 (53) 

Birthweight (g) 3568 ± 490 3333 ± 442 

Gestational age, weeks  40.2 ± 1.4 39.6 ± 1.2 

Age at appetitive traits assessment, months 48.5 ± 1.0 58.9 ± 9.9 

Appetitive traitsa  

Food responsiveness (scale 5 to 25) 8.9 ± 3.1 11.1 ± 3.1 

Emotional undereating (scale 5 to 20) 11.1 ± 3.4 10.7 ± 3.4 

Satiety responsiveness (scale 5 to 25) 15.2 ± 3.2 15.9 ± 2.8 

Food fussiness (scale 5 to 30) 17.8 ± 4.9 17.7 ± 5.1 

Mother n (%) or mean ± SD 
Age (years)b  32.5 ± 4.0 30.4 ± 4.8 
Pre-pregnancy BMI, (kg/m2) 23.2 ± 3.8 24.8 ± 5.3 
Smoking   

Never 874 (80.5) 171 (72.5) 
Quit when pregnancy was known 92 (8.5) 10 (4.2) 
Continued during pregnancy  118 (10.9) 15 (6.4) 

Educational levelc   
        High  451 (41.5) 208 (88.1) 

BMI: Body Mass Index; aSum scores from the Children’s Eating Behaviour Questionnaire 
(Wardle et al., 2001); bIn Generation R, maternal age is assessed at delivery. In Healthy Start, 
maternal age is measured at enrolment; cIn Generation R, mothers were coded as having a ‘high’ 
education if they completed university; in Healthy Start, mothers were coded as ‘high’ education 
if they completed more than a high school education; % missing on variables ranged from 0-
9.8% in Generation R and 0-16.9% in Healthy Start 
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Table 2. Associated regions for epigenome-wide association study of DNA methylation (of cord blood at birth) and food 
responsiveness at 4-5 years  

Chromosome Start (hg19) End (hg19) Nearest gene n CpGs Estimate SE p 
p 

Bonferroni adjusted 
chr13 31506376 31507139 TEX26/TEX26-AS1 9 18.81 2.00 6.16E-21 3.16E-15 
chr17 14206774 14207968 HS3ST3B1 13 26.92 3.36 1.09E-15 5.58E-10 
chr20 44440824 44441164 UBE2C 6 37.24 4.75 4.68E-15 2.40E-09 
chr19 49223814 49224454 RASIP1 6 24.60 3.21 1.92E-14 9.83E-09 
chr11 3819041 3819306 PGAP2 6 215.24 30.55 1.85E-12 9.50E-07 
chr13 113622633 113622750 MCF2L-AS1 6 26.74 3.49 1.74E-14 8.91E-09 
chr11 44332385 44332940 ALX4 20 58.52 8.91 5.21E-11 2.67E-05 
chr11 36422377 36422615 PRR5L 5 13.33 2.01 3.60E-11 1.84E-05 
chr11 843915 844536 TSPAN4 8 24.67 3.80 8.70E-11 4.45E-05 
chr7 94023822 94023869 COL1A2 3 187.16 28.88 9.13E-11 4.67E-05 
chr8 145651369 145651799 VPS28 3 -62.99 9.68 7.63E-11 3.91E-05 
chr9 90589146 90589806 CDK20 5 106.99 16.97 2.86E-10 1.47E-04 
chr1 156307962 156308296 CCT3/TSACC 9 161.86 26.48 9.81E-10 5.02E-04 
chr7 32111062 32111068 PDE1C 3 77.98 12.62 6.47E-10 3.31E-04 
chr4 5021084 5021311 CYTL1 7 -23.84 4.04 3.59E-09 1.84E-03 
chr6 149805995 149806339 ZC3H12D 7 22.41 3.65 7.99E-10 4.09E-04 

chr11 2919798 2920209 SLC22A18AS 8 35.84 6.13 4.95E-09 2.54E-03 
chr12 45270312 45270573 NELL2 6 136.55 22.87 2.37E-09 1.22E-03 
chr15 90208810 90209326 PLIN1 5 104.26 17.56 2.91E-09 1.49E-03 
chr3 48471300 48471771 PLXNB1 5 52.86 8.98 3.90E-09 2.00E-03 
chr1 151118299 151119525 SEMA6C 13 93.74 16.17 6.73E-09 3.45E-03 

chr13 111039873 111040579 COL4A2 4 13.97 2.38 4.19E-09 2.15E-03 
chr22 18985500 18985691 DGCR5 3 12.75 2.20 6.50E-09 3.33E-03 
chr8 1765074 1766126 MIR596 13 27.14 4.67 6.23E-09 3.19E-03 
chr1 201476362 201476619 CSRP1 6 51.06 8.93 1.09E-08 5.59E-03 

chr11 567966 568206 MIR210HG 4 65.83 11.42 8.17E-09 4.19E-03 
chr11 111741914 111742291 ALG9 7 232.34 41.26 1.80E-08 9.20E-03 
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chr17 76976010 76976357 LGALS3BP 7 41.90 7.27 8.31E-09 4.25E-03 
chr17 39890756 39891009 JUP 4 255.27 44.57 1.02E-08 5.23E-03 
chr7 79083054 79084166 MAGI2-AS3 17 36.17 6.41 1.67E-08 8.57E-03 
chr5 140018644 140018709 TMCO6 3 27.53 4.87 1.59E-08 8.12E-03 
chr5 140621375 140621754 PCDHB19P 3 26.72 4.81 2.75E-08 1.41E-02 

chr18 9708890 9709061 RAB31 3 376.43 67.81 2.83E-08 1.45E-02 
chr2 239140032 239140340 TARDBPP3/LINC02610 7 63.12 11.08 1.21E-08 6.18E-03 
chr7 35293080 35293892 TBX20 11 75.25 14.03 8.24E-08 4.22E-02 

chr20 62327968 62328427 RTEL1-TNFRSF6B 4 -4.67 0.86 6.83E-08 3.50E-02 
chr4 142053146 142054660 RNF150 9 114.87 20.95 4.18E-08 2.14E-02 

chr20 62738880 62739073 NPBWR2 3 46.91 8.36 1.99E-08 1.02E-02 
chr19 55677716 55678066 DNAAF3 7 222.67 40.89 5.15E-08 2.64E-02 
chr16 3493423 3493681 ZNF597/NAA60 6 -22.95 4.20 4.71E-08 2.41E-02 
chr4 1161597 1161653 SPON2 2 44.62 8.17 4.75E-08 2.43E-02 
chr1 202113592 202114058 ARL8A 4 167.70 30.75 4.92E-08 2.52E-02 
chr5 140071110 140071347 HARS2/HARS1 5 285.97 53.45 8.81E-08 4.51E-02 
chr5 140529627 140530467 PCDHB6 7 15.52 2.88 6.99E-08 3.58E-02 

chr14 74416980 74417249 FAM161B/COQ6 6 266.93 49.81 8.36E-08 4.28E-02 
Each model adjusted for child sex and age at appetitive trait assessment, batch and estimated white blood cell proportions, maternal 
age at delivery, smoking during pregnancy, education and pre-pregnancy BMI.  
n CpGs: number of CpGs included in region; Estimate: effect estimate from meta-analysis of linear regression models.  
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Table 3. Associated regions for epigenome-wide association study of DNA methylation (of cord blood at birth) and emotional 
undereating at 4-5 years 

Chromosome Start (hg19) End (hg19) Nearest gene n CpGs Estimate SE p 
p 

Bonferroni adjusted 
chr4 74847646 74847829 PF4 7 -9.31 1.41 4.02E-11 1.92E-05 

chr11 368440 368638 B4GALNT4 7 -29.71 4.32 5.92E-12 2.83E-06 
chr13 36871878 36872346 CCDC169-SOHLH2 12 61.38 8.94 6.76E-12 3.23E-06 
chr14 100141423 100142298 HHIPL1 5 -35.00 5.60 3.94E-10 1.89E-04 
chr7 94286304 94286834 PEG10 19 30.63 5.18 3.42E-09 1.64E-03 
chr1 234367145 234367586 SLC35F3 5 -11.97 2.18 3.75E-08 1.79E-02 
chr2 129659420 129659834 HS6ST1 4 -22.18 4.16 9.45E-08 4.52E-02 

Each model adjusted for child sex and age at appetitive trait assessment, batch and estimated white blood cell proportions, maternal 
age at delivery, smoking during pregnancy, education and pre-pregnancy BMI.  
n CpGs: number of CpGs included in region; Estimate: effect estimate from meta-analysis of linear regression models.  
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Table 4. Associated regions for epigenome-wide association study of DNA methylation (of cord blood at birth) and satiety 
responsiveness at 4-5 years 

Chromosome Start (hg19) End (hg19) Nearest gene n CpGs Estimate SE p 
p 

Bonferroni adjusted 
chr2 54087008 54087343 GPR75/ASB3 10 -35.12 4.35 6.99E-16 3.39E-10 
chr4 2819614 2819770 SH3BP2 3 -29.00 4.25 8.85E-12 4.29E-06 

chr10 131265059 131265137 MGMT 5 -38.28 6.45 2.97E-09 1.44E-03 
chr11 118781408 118781778 BCL9L 8 -28.39 4.57 5.16E-10 2.50E-04 
chr15 67417651 67417899 SMAD3 4 -128.04 21.02 1.12E-09 5.41E-04 
chr6 25882328 25882590 SLC17A3 4 3.73 0.62 2.44E-09 1.18E-03 

chr12 75784855 75785232 GLIPR1L2 8 -16.56 2.93 1.50E-08 7.25E-03 
chr11 2293117 2293593 ASCL2 12 15.40 2.62 4.36E-09 2.11E-03 
chr17 6899207 6899577 ALOX12-AS1 9 -6.15 1.08 1.18E-08 5.73E-03 
chr8 143859709 143859990 LYNX1 6 15.37 2.65 6.34E-09 3.07E-03 

chr15 22833149 22833681 TUBGCP5 9 18.09 3.14 8.07E-09 3.91E-03 
chr2 27531236 27531360 UCN 5 42.76 7.91 6.51E-08 3.15E-02 
chr8 2130120 2130263 MYOM2 2 -41.91 7.75 6.46E-08 3.13E-02 

Each model adjusted for child sex and age at appetitive trait assessment, batch and estimated white blood cell proportions, maternal 
age at delivery, smoking during pregnancy, education and pre-pregnancy BMI.  
n CpGs: number of CpGs included in region; Estimate: effect estimate from meta-analysis of linear regression models.  
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Table 5. Associated regions for epigenome-wide association study of DNA methylation (of cord blood at birth) and food fussiness at 
4-5 years 

Chromosome Start (hg19) End (hg19) Nearest gene n CpGs Estimate SE p 
p 

Bonferroni adjusted 
chr1 75198582 75199117 CRYZ/TYW3 9 -18.20 2.78 5.86E-11 2.82E-05 
chr6 28058724 28059208 ZSCAN16-AS1 9 -9.14 1.33 6.88E-12 3.31E-06 

chr12 75784617 75785295 CAPS2/GLIPR1L2 10 -15.55 2.41 1.07E-10 5.14E-05 
chr19 57352014 57352185 ZIM2/MIMT1 8 72.76 10.88 2.31E-11 1.11E-05 
chr4 2819614 2819770 SH3BP2 3 -25.79 4.20 7.89E-10 3.80E-04 

chr12 2943902 2944493 NRIP2 8 14.58 2.57 1.47E-08 7.05E-03 
chr2 129659018 129659946 HS6ST1 7 -19.46 3.27 2.70E-09 1.30E-03 
chr7 150755629 150756491 SLC4A2 10 -45.95 8.49 6.16E-08 2.96E-02 

chr15 62516282 62516670 C2CD4B 5 -15.01 2.78 6.95E-08 3.35E-02 
Each model adjusted for child sex and age at appetitive trait assessment, batch and estimated white blood cell proportions, maternal 
age at delivery, smoking during pregnancy, education and pre-pregnancy BMI.  
n CpGs: number of CpGs included in region; Estimate: effect estimate from meta-analysis of linear regression models.  
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