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23 Abstract

2 A fundamental challenge in neuroscience is accurately defining brain states and predicting how
25 and where to perturb the brain to force a transition. The ability to promote a transition from
26 one brain state to another by externally driven stimulation could significantly impact rehabili-
27 tation and treatments for patients suffering from complex brain injury cases. Thus, it is crucial
28 to find therapeutic interventions able to re-balance the dynamics of brain disorders towards
29 more healthy regimes. Here, we investigated resting-state fMRI data of patients suffering from
30 disorders of consciousness (DoC) after coma (minimally conscious and unresponsive wakeful-
31 ness states) and healthy controls. We applied model-free and model-based approaches to help
2 elucidate the underlying brain mechanisms of patients with DoC. The model-free approach al-
33 lowed us to characterize brain states in DoC and healthy controls as a probabilistic metastable
3 substate (PMS) space. The PMS of each group was characterized by a repertoire of unique
35 patterns (i.e., metastable substates) with different probabilities of occurrence. In the model-
36 based approach, we adjusted the PMS of each DoC group to a causal whole-brain model. This
37 allowed us to explore optimal strategies for promoting a transition to the PMS of the control
38 group by applying off-line in silico probing. Furthermore, this approach enabled us to evaluate
39 the impact of all possible local perturbations in terms of their global effects and sensitivity to
0 stimulation, which is a biomarker providing a deeper understanding of the mechanisms under-
4 lying DoC. Our results show that transitions from DoC to more healthy regimes were obtained
2 in a synchronous protocol, in which areas from the motor and subcortical networks were the
43 most sensitive to perturbation. This motivates further work to continue understanding brain
a4 function and treatments of disorders of consciousness by external stimulation.

as Keywords: brain states, resting-state fMRI, whole-brain modelling, brain dynamics, disorders

% of consciousness, off-line in silico probing

+« Author summary

s We studied disorders of consciousness by defining a brain state as a repertoire of metastable sub-
2 states with different probabilities of occurrence. We created whole-brain computational models
so of DoC to uncover the causal mechanisms underlying recovery. These models allowed us to tran-
s sition from DoC to a control healthy state by studying the effects of artificial individual local
s perturbations under different protocol regimes. We demonstrated successful transitions in the syn-
53 chronization protocol and showed that the most sensitive areas were located in the motor network
s« and subcortical regions. We believe this could be very valuable for developing clinical treatments

ss and has a great deal for future therapies.
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» Introduction

57 The brain is a dynamical, complex, and self-organized system with spontaneous activity emerg-
s ing from non-linear interactions of billions of neurons (Sporns, [2011)). This gives rise to an ample

so discrete repertoire of metastable patterns (i.e., substates) around critical points between order and

o chaos (Cabral et al) 2017b; Deco et al) 2017c). The lifetimes and stabilities of specific substates

s govern the dynamics of a particular brain state (Deco and Kringelbachl [2016; |Tognoli and Kelso,

6 . Current research is increasing our understanding of the causal dynamics underlying many
s3 different brain states, such as wakefulness, sleep, anesthesia, and disorders of consciousness (DoC).
e Nevertheless, such mechanisms still remain elusive and a deeper comprehension would facilitate
s the design of novel interventions for brain disorders and possibly for the loss of consciousness like
e coma. Recently, directly perturbing the brain in silico has been proposed and investigated as a

o7 possible intervention that could contribute to a deep understanding of the dynamical mechanisms

s of brain states in health and disease (Escrichs et all 2022} |Vohryzek et al., [2022a; Deco et al.

60 |2019). Furthermore, such perturbations could be used to force transitions between different brain
70 states in a translational clinical context, for example, to promote transitions from brain disorders

7 to health (Fox et al., 2014; Thibaut et al. [2014; [Schiff et al |2007).

72 A healthy brain relies on the brain’s flexibility and capacity to integrate information and main-

7 tain rich dynamics in an evolving environment across time and space (Deco et all [2015). By

7+ contrast, brain disorders present disruptions in the normal range of brain activity (Du et al.

s 2018)). In the specific clinical domain of DoC, it has been found that their characteristic brain
% patterns present disruptions of long-range cortical correlations typical in a healthy state (Demertzi
7 . Such post-coma states are distinguished into the minimally conscious state (MCS)
72 and unresponsive wakefulness syndrome (UWS). The former MCS is identified when patients are

7 awake and respond with limited awareness, and the latter UWS corresponds to patients who do not

0o respond to stimulation in a conscious manner (Giacino et al., 2018| [2002)). DoC patients present

a1 lower flexibility and efficiency of information processing and a limited broadcast of information,
&2 which coexists with a reduced neural propagation and responsiveness to events (Panda et al.
8 . Furthermore, UWS shows reduced metastability and repertoire of functional networks in
s comparison to MCS (Panda et al.|, 2022).

8 In recent years, different definitions of brain states have been proposed using empirical neu-
s roimaging and electrophysiological data. Approaches based on functional magnetic resonance imag-

& ing (fMRI) have implemented static analysis such as long-range temporal dependence via Hurst

s exponent (Tagliazzucchi et al), 2013) and attractors between brain regions (Gu et al., 2018; Deco|
89 . Considering brain activity is multi-dimensional and ever-changing, these ap-
o proaches have been further examined from a more realistic and richer viewpoint considering brain
o dynamics, which reveals the different brain patterns evolving during a scanning period
o« let all [2021D} [Sanz Perl et all 2022} [Deco and Kringelbachl, 2020} [Preti et al, 2017; [Hansen et all,
o3 [2014; |Allen et all [2014; [Hutchison et all [2013). Nevertheless, a universal, formal, robust, and

o quantitative definition of brain states, and a deep comprehension of the effects of perturbations

s to force recovery, remains unknown (Deco et al., 2019, 2017c)). Stemming from recent progress in
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o these areas, and given the difficulty of predicting the final collective emergent activity even if the

o building blocks are known (Deco et al., [2019), we could still benefit from a better understanding

s of brain dynamics and optimal strategies for a recovery towards healthy brain states (Vohryzek

o et all 20224} [Escrichs et all, 2022} [Kringelbach and Decol [2020; [Edlow et al. 2020} [Deco et all
wo 20178 Keilholz et all [2017).

101 There is a long tradition of perturbative approaches for brain research. Clinical techniques

02 for stimulation exist, such as the non-invasive transcranial direct current stimulation (tDCS)

ws  (Knotkova et al., 2019; Ruffini et al., 2018; |Siebner et all) 2009) and transcranial magnetic stim-

s ulation (TMS) (Litvak et al., |2007; [Pascual-Leone, [1999), and the minimally invasive technique
s deep brain stimulation (DBS) (Mohseni et all 2012} [Kringelbach et al 2007). Still, research in

106 lesioned humans is rare, only undertaken when the disease is severe, and accompanied by ethical

wr  constraints (Deco and Kringelbach| 2017, (Clausen, 2010). Massimini and colleagues developed

s the perturbational complexity index (PCI), which has been used to distinguish brain states by
w0 calculating the lempel-ziv complexity from the electroencephalography response to TMS pertur-

uo  bation (Casarotto et al., [2016; |Casali et al., |2013} [Massimini et al. [2009)). The PCI measures the

m  perturbation-elicited variations in intrinsic global brain activity and has shown to be successful
u2 jin distinguishing between awake vs. sleep, awake vs. anesthesia, and MCS vs. UWS
us et al 2016; (Casali et al., |2013} [Ferrarelli et al., |2010; [Massimini et al.| 2009). However, given

s the ethical restrictions of empirical neurostimulation approaches, causal whole-brain models based

us on in silico perturbation protocols are fundamental to understanding the underlying mechanisms

us  of brain dynamics (Escrichs et all 2022). This promising tool allows experimenting in unprece-

ur  dented unlimited scenarios (e.g., perturbing one brain area at a time) without exposing real brains

us  (Kringelbach and Decol, [2020} Breakspear, 2017; Deco et al., 2015; Deco and Kringelbach) 2014)).

119 Recently, Deco et al.| (2019) proposed the awakening framework that consists of model-free

20 and model-based approaches to force transitions from deep sleep to awake. In particular, the
m model-free approach based on Leading Eigenvector Dynamics Analysis (LEiDA) (Cabral et al.
122 [2017b)) uses the concept of metastability, defined as the characteristic of a system to maintain an

13 equilibrium in a temporal window although being slightly perturbed (Freyer et al) 2012} Kelsol,

s 2012; [Freyer et all) 2011). The nature, duration, and arrangement of existent metastable substates

s (i.e., patterns) give rise to a probabilistic metastable substate (PMS) space typifying each brain

s state (Deco et all[2017¢). LEiDA has been shown to be robust and successful in identifying brain

17 states in healthy aging (Escrichs et all [2021a} |Cabral et all 2017b]), depression (Figueroa et al.
128 and different states of consciousness (Kringelbach and Deco, [2020; Lord et al., [2019; Deco|
120 . The model-based approach consists in building whole-brain models composed of a
1w network of coupled local nodes (Botvinik-Nezer et al., [2020; Deco et al. [2019) to simulate the

wm  empirical PMS and perturb the resulting PMS model to force the transition to a desired control
12 state. This elegant framework has been extended to promote transitions from aging (Escrichs

133 2022)), patients with depression (Vohryzek et all [2022b) and schizophrenia (Mana et al.
3¢ [2023) towards more healthy regimes.

135 Here, we aimed to study the dynamical complexity and causal mechanisms of brain activity in

s DoC by using the aforementioned framework. Firstly, we applied LEiDA to define the PMS of DoC
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1 patients and healthy controls. Secondly, we built Hopf whole-brain models fitted and optimized to
s the empirical PMS of DoC at the bifurcation point, representing a state of criticality in which the
1o two regimes (oscillatory and noisy) cannot be differentiated. This generative whole-brain model
1o linked structural anatomy with functional dynamics on the basis of effective connectivity (Deco
w et al.| [2019). Finally, we applied off-line in silico external unilateral and localized probing to force
12 the transition from the PMS obtained in MCS and UWS, separately, to the PMS of healthy controls.
w3 In this way, employing offline in silico probing, we could evaluate candidate regions for stimulation
e aiming to recover DoC patients. Nevertheless, this innovative approach not only allowed us to
us  assess the effects of all potential local perturbations but also provided valuable insights into their

us mechanistic global effects and sensitivity to stimulation.

« Materials and Methods

1w Kthics statement

149 The study was approved by the Ethics Committee of the Faculty of Medicine of the University
150 of Liege according to the Helsinki Declaration on ethical research. Written informed consent was

151 obtained from controls and the patients’ legal surrogates.

2 Participants

153 A total of 23 controls and 46 non-sedated patients with DoC were selected from a dataset
15« previously described in|Escrichs et al.[(2021b); Lopez-Gonzalez et al.[(2021); Demertzi et al.| (2019).
155 Trained clinicians carried out the clinical assessment and Coma Recovery Scale-Revised (CRS-R)
156 scoring to determine the patients’ state of consciousness. The CRS-R diagnosis was made after
157 at least 5 CRS-R, and the highest level of consciousness was taken as the final diagnosis, which
158 was also confirmed using positron emission tomography (PET) (i.e., patients in MCS presented
10 a relatively preserved metabolism in the frontoparietal network, whilst patients with UWS had
o a bilateral hypometabolism in this network). Thus, 30 patients in MCS and 16 in UWS were

11 included.

» IMRI Data Acquisition

163 MRI data were acquired on a 3T Siemens TIM Trio scanner (Siemens Inc, Munich, Germany).
e Resting-state fMRI data were obtained using a gradient echo-planar imaging (EPI) sequence (300
s volumes, 32 transversal slices, TR= 2000 ms, TE=30 ms, flip angle = 78°, voxel size = 3x3x3 mm,
s FOV = 192 mm). After fMRI acquisition, a structural T1 magnetization-prepared rapid gradient-
167 echo (MPRAGE) sequence was acquired (120 slices, TR = 2300 ms, voxel size = 1.0x1.0x1.2 mm,
s flip angle = 9°, FOV = 256 mm). Finally, diffusion-weighted MRI (DWI) was acquired with 64
o directions (b-value =1,000 s/mm?, voxel size = 1.8 x 1.8 x 3.3 mm?, FOV = 230 x 230 mm?,

w  TR/TE= 5,700/87 ms, 45 transverse slices, 128 x 128 voxel matrix) preceded by a single b0 image.
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n  Resting state fMRI preprocessing

172 The pre-processing of resting-state fMRI data was performed using MELODIC (Multivariate
w3 Exploratory Linear Optimized Decomposition into Independent Components) version 3.14 (Beck-
we mann and Smith) 2004)) from FMRIB’s Software Library (FSL, http://fsl.fmrib.ox.ac.uk/fsl)
s as described in our previous studies (Escrichs et all 2021b; [Lopez-Gonzalez et al., |2021). The
e following steps were performed: discarding the first 5 volumes, motion correction motion using
w7 MCFLIRT (Jenkinson et al., 2002), non-brain removal using BET (Brain Extraction Tool) (Smith,
ws  [2002)), spatial smoothing with a 5 mm Gaussian Kernel, rigid-body registration, high pass filter
o (with a cutoff of 100 s) and single-session Independent Component Analysis (ICA) with automatic
10 dimensionality estimation. Then, noise components and lesions-driven artifacts (for patients) were
w1 manually classified and removed for each subject by looking at the spatial map, time series, and
12 power spectrum (Griffanti et all, [2017; [Salimi-Khorshidi et al.l 2014) using FIX (FMRIB’s ICA-
183 based X-noiseifier) (Griffanti et all 2014). Finally, FSL tools were used to co-register the images
11« and extract the time series between 214 cortical and subcortical brain areas for each subject in

s MNI space from the Shen resting-state atlas (without the cerebellum) (Shen et al.l |2013]).

1w Probabilistic Tractography preprocessing

187 A whole-brain structural connectivity (SC) matrix was computed for each subject of the control
s group and then averaged in a two-step process as described in previous studies (Muthuraman
o let al., 2016; [Cao et al), 2013; |Gong et al., |2009)). We used the resting-state atlas mentioned above
wo to create a structural connectome in each individual’s diffusion native space. In brief, DICOM
1 images were converted to Neuroimaging Informatics Technology Initiative (NIfTI) using dem2nii
12 (www.nitrc.org/projects/dcm2nii). The b0 image in DTI native space was co-registered to
3 the T1 structural image by using FLIRT (Jenkinson and Smith| 20001)). Then, the T1 structural
e image was co-registered to the standard space by using FLIRT and FNIRT (Andersson et al.,
s [2007; |Jenkinson and Smith} [20001)). The transformations were inverted and applied to warp the
106 resting-state atlas from MNI space to the native diffusion space by applying a nearest-neighbor
17 interpolation method. Analysis of diffusion images was performed using the processing pipeline of
s the FMRIB’s Diffusion Toolbox (FDT) in FMRIB’s Software Library www.fmrib.ox.ac.uk/fsl.
1o Non-brain tissues were extracted using Brain Extraction Tool (BET) (Smith,|2002)), eddy current-
20 induced distortions and head movements were corrected using eddy correct tool (Andersson and
a1 |Sotiropoulos, |2016)), and the gradient matrix was reoriented to correct for subject motion (Leemans
22 jand Jones| [2009). Then, Crossing Fibres were modeled using the default BEDPOSTX parameters,
23 and the probability of multi-fibre orientations was computed to improve the sensitivity of non-
24 dominant fibre populations (Behrens et al.,|2007,|2003). Probabilistic Tractography was performed
205 in native diffusion space using the default parameters of PROBTRACKX (Behrens et al., [2007,
26 2003]). The connectivity probability to each of the other 214 brain areas was estimated for each
27 brain area as the total proportion of sampled fibres in all voxels in the brain area n that reached
208 any voxel in the brain area p. Given that Human Difussion Tensor Imaging (DTI) does not capture

200 directionality, the SC,,;, matrix was symmetrized by computing its transpose SC,, and averaging
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20 both matrices. Finally, to obtain the structural probability matrix, the value of each brain area

an - was divided by its corresponding number of generated tracts.

2 Leading Eigenvector Dynamics Analysis (LEiDA)

213 This first step aims to define the empirical brain states from a quantitative point of view, defined
2. as a conjunction of substates, applying LEiDA method (Cabral et all [2017b)) as schematized in
25 Figure . For all subjects in all states, the blood oxygenation level-dependent (BOLD) time
26 series of each brain area of the parcellation were filtered in the range 0.04-0.07 Hz and Hilbert-
27 transformed to obtain the evolution of phase of the time series. A BOLD phase coherence matrix
zs  dFC(¢) was then calculated at any given repetition time (TR) between each brain area pair n and

219 p by calculating the cosine of the phase difference as:

dFC(n,p,t) = cos (0(n,t) — 0(p,t)). (1)

220 In this way, the interregional BOLD signal synchrony for all subjects was obtained at all time
21 points. If nodes are temporarily aligned, the difference between their Hilbert transformed signal
22 angle is 0° and the phase coherence is close to one [cos(0°)=1]. When a pair of nodes develop
23 orthogonal BOLD signals, then the phase coherence is close to zero [cos(90°)=0]. The resulting
20 dFC(¢) of each subject at each timepoint was a 3D matrix of size of NxNxXT, being N the number
»s of brain areas (214) and T the total time points (295). A total of 69 3D matrices were calculated,
26 corresponding to all of the groups together (controls, MCS and UWS).

207 In order to facilitate the future classification process, the dominant connectivity pattern was
»s obtained by reducing the dimensionality of the matrices into their leading eigenvectors V;(t). This
29 can be applied since FC matrices are undirected and symmetric across the diagonal (Deco et al.
20 [2019). The leading eigenvectors (of dimension Nx1) capture the dominant connectivity pattern
2 at each time point ¢ whilst explaining most of the variance, representing the contribution of each
22 brain area to the whole structure and improving the signal-to-noise ratio (Cabral et al. [2017b)).
23 The dimensionality of the data was reduced from NxN to Nx1, and the dominant functional
2 connectivity pattern dFC(¢) could be observed by calculating the outer product of Vi (t) with its
s transpose (V1.V1.T) (Lohmann et al., |[2010).

236 The following step consisted of identifying recurrent FC patterns representing the substates.
27 The leading eigenvectors dFC(t) for each TR and all subjects from all states (20355 = 69 par-
28 ticipants * 295 timepoints) were clustered with K-means clustering, varying &k from 3 to 8. This
29 algorithm is an unsupervised method consisting of assigning the data to the closest cluster cen-
20 troid iteratively and re-calculating the k centroids in each iteration until convergence. The resulting
a1 cloud centroids V. (t) represent the dominant connectivity pattern in each cluster. The & discrete
22 number of patterns of size Nx1 correspond to the substates obtained from all subjects in all col-
23 lapsed groups of subjects. These cluster centroids V.(t) represent the contribution of each brain
aa - area to the community structure and were rendered onto brain maps.

215 Upon computing the discrete number of FC patterns for each k, we calculated the resulting

a6 probability of occurrence in each group. This was computed as the ratio between the total number
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27 of epochs assigned to a specific cluster (i.e., for each subject in each group divided by the total
2s amount of epochs in the given group). This gave rise to the Probabilistic Metastable Substate
20 Space (PMS), which typifies each brain state from the probability of occurrence of being in each

0 particular substate from the substate repertoire.

»  Whole-Brain Computational Model

252 After characterizing the empirical PMS for the different profiles, a whole-brain Hopf compu-
253 tational model was obtained for each DoC state (Figure ) The dynamics from functional
»4  interactions between each brain area were emulated based on the anatomical SC. In other words,
5 the emergence of activity can be explained in a mechanistic way by merging anatomical connec-
»6  tivity, which determines structure, and functional connectivity that represents activity dynamics,
257 with the inclusion of effective connectivity (EC) (Deco et all [2015). The working point of each
s model was fitted to the empirical data and optimized by determining the specific parameters of
250 the model (Deco et al., [2019).

260 The normal form of supercritical Hopf bifurcation (Landau-Stuart oscillator) was used to sim-
s ulate the BOLD activity for each of the 214 cortical and subcortical brain areas based in Shen
x2  parcellation. The Landau-Stuart oscillator has been used to study transitions from noisy to oscilla-
%3 tory regimes and, when coupled based on the brain’s architecture, to replicate complex interactions
26¢ in brain dynamics (Deco et al., 2015).

265 An uncoupled node n can be represented in Cartesian coordinates with the following pair of

s coupled equations:

dz,,
W = [an - l‘i - yi}xn — WnYn + Bnn(t)a ( )
2

dy
d7tn — [an — xi - yi}yn + WnTn + Bn”(t)7

27 where z, emulates the BOLD signal of the node and n,(t) is the additive Gaussian noise with
xs standard deviation S8 = 0.01. This normal form describes the noisy and synchrony scenarios and
20 has a supercritical bifurcation in a=0. For a< 0, the node is stable in a fixed point and represented
20 by noise from asynchronous firing of neurons. For a>0, metastable oscillations are obtained due
o1 to the synchronized firing of neurons at a frequency of w/2r (Deco et al.| |2017b]). The transition
a2 from a noisy to a fully oscillatory scenario is called Hopf, and since it is the simplest way to model
;3 it mathematically, it is called normal form. Here, we chose a value of a,=-0.02 for each brain
o node n following previous findings (Deco et al., 2017c), near the brink of Hopf bifurcation, in the
s critical border between synchrony and desynchrony. The frequency of the system f,, = w, /27 was
e estimated from the empirical data as the averaged peak frequency of the filtered BOLD signal in
o7 the 0.04- to 0.07-Hz band for each brain node n=1,..., 214 (Deco et al., 2019).

218 The whole-brain dynamics were modelled by including an additive coupling term C,,, which
a9 adjusts the input to node n from each of the rest of the nodes p based on the SC. This weighted
20 matrix assumes different myelination densities across long-rage connectivities. A global coupling

2 weight G was also added to represent the strength between all nodes, corresponding to the control
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2  parameter adjusted to fit the dynamical working region of the simulations to the empirical data.
23 It scales all of the connections allowing maximal fitting between simulations and empirical data,
24 assuming all axonal conductivity to be equal across the brain. The whole-brain dynamics at each

255 node n was thus defined by the following set of coupled equations (Deco et al., [2017c]):

N
dzx,,
E = [an - 33721 - yg]xn — WpYn + Gzcnp(xp - xn) + Bnn(t)a
P=1
. N (3)
% = [an - xi - yi]yn + wpTy + GZCnp(yp - yn) + 677n(t)'
p=1

x5 Model Fitting: Comparing empirical and simulated probability metastable space

267 states

288 For optimal spatiotemporal fit of whole-brain models to their empirical PMS space, the value
20 of G was ranged from 0 to 0.5 in steps of 0.01, and the model was iterated 200 times. LEiDA
20  was computed to the Hilbert-transformed simulated signal using the centroids already defined by
21 the empirical substates in order to compute the simulated PMS space. Each model was fitted to
22 the empirical data by deciding which value of G approximated it better (Deco et al.l|2019). This
203 corresponded to the lowest Kullback-Leibler (KL) distance between the empirical and simulated

204 probabilities of each substate (Deco et all 2019), given by:

KL (Popp, Psim) = 0.5 (z; Py (i) In (];”Z’EZ))) + zzj Paim (i) In (%)) . @

205 where Pey,p(7) and Py, (7) are the empirical and simulated probabilities respectively of metastable

206 substate 1.

27 Model Optimization: Method for updating Effective Connectivity

208 After defining the value of G of each model, the models were optimized separately and the
29 SC was updated in order to access potential missing connections. The initial value of C for each
s0 of the models was provided by a primer empirical DTI structural connectivity corresponding to
s the average of control subjects (Deco et all 2015). Specifically, C' was initially normalized to
32 A maximum value of 0.2 in order to have the same range of values as in previous works (Deco
23 et al) 2019] 2017¢). The SC was then transformed to effective connectivity (EC) in an iterative
s« manner by calculating the distance between the grand average phase coherence matrices of the
35 model F CZhuses’mOd and the empirical matrices F Cghases’emp . Each structural connection between

ws  different nodes ¢ and j was adjusted with a gradient descent approach given by:

Cij _ Cij +e (chhases,emp _ Fcip;hases,mod> 7 (5)

sr where € = 0.01, and the grand average phase coherence matrices are defined:

FCyy = (cos () = pi(1))). (6)
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28 where (t) denotes the Hilbert transform BOLD signal phase of the nodes j and ¢ at time ¢, and
w0 the brackets indicate the average across time. This was repeated until the difference between the

s empirical and simulated values was smaller than 0.001 (Deco et al., [2019)

su Unilateral Perturbation of the Whole-Brain Model

312 After obtaining the models, the transitions from the DoC states towards a control state were
a3 studied (Figure ) The models for DoCs were stimulated in silico by moving locally in a
s unilateral way the local bifurcation parameter a of each of the 214 brain areas. Different levels
ais  of intensity were applied area by area under the protocols of synchronization and noise. The
a6 protocols were represented by the sign of the local bifurcation parameter (positive and negative,
a7 respectively), and the stimulation intensities by the absolute value of each step (Deco et al.,|2017c]).
ais In the synchronization protocol, the bifurcation parameter was shifted positively from 0 to 0.2 in
a9 steps of 0.01, whereas for the noise modality, it was shifted from 0 to -0.2 in steps of -0.02. Each
»0  simulation was repeated 3 times the results were averaged to minimize random effects from the
s Gaussian noise of the model (Deco et al., |2019). The fitting to the target states was measured by
w2 calculating the KL distance (described in the previous section) between the probabilities of each
223 substate of the simulated DoC models separately, which are the source, and the empirical control
24 PMS, which is the target. The areas more prone to promote a desired transition after simulation

2s  were detected from the ones presenting the lowest KL distance.

2 Statistical Analysis

327 Statistical analysis were performed using MATLAB R2022a software from MathWorks (Natick,
2s  MA, USA). Permutation-based Wilcoxon tests with 1000 iterations were used to test the results of
29 the LEiDA method, specifically the probability of occurrence of the whole range of explored clus-
10 tering conditions (k from 3 to 8). The Wilcoxon test was used to compare each permutation with a
s significance threshold of 0.05. We applied the False Discovery Rate (FDR) method (Hochberg and
sz Benjamini, [1990) to correct for multiple comparisons when testing the differences between groups
s (controls, MCS, and UWS) and the number of cluster centers (i.e., substates). All p-values shown

a4 correspond to the differences that remain significant after FDR correction.

» Results

s LEIDA

337 We selected the minimum number of clusters (k) that statistically differed between the three
;s groups. The configuration that best described the empirical data across all participants and distin-
19 guished between groups was detected at k=4. The probability of occurrence for the PMS of each
s group is visualized in Figure and the cluster centroid eigenvectors are rendered onto brain
s maps in Figure 2pb. The leading eigenvectors had positive and negative signs partitioning the
w2 network into communities as red and blue colors, respectively. The strength of the color describes

a3 the strength with which each area belonged to the placed community (Cabral et al., [2017b).

10 / 30


https://doi.org/10.1101/2023.07.17.549269
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.17.549269; this version posted July 18, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

344 The first substate presented the same sign for all eigenvector elements. The probability of
us occurrence was higher in controls [0.493 + 0.030 (mean =+ standard error)] compared to MCS
us  [0.351 £ 0.037, P=0.012] and UWS [0.232 + 0.069, P=0.003]. Furthermore, the probability was
a7 lower in UWS than in MCS [P=0.035]. The rest of the substates (i.e., substates 2, 3, and 4) were
us characterized by subsets of brain areas that disengaged from the whole-brain network aligning with
10 each other. In substate 2, central areas (motor network) represented a pattern of activation. In this
30 substate controls had the lowest probability of occurrence [0.155 + 0.020] compared to MCS [0.242
s+ 0.029, P=0.022] and UWS [0.362 £ 0.050, P=0.001]. Moreover, the probability was higher in
32 UWS than in MCS [P=0.033]. Substate 3 exhibited a functional network led by the occipital lobe
33 (visual network). In controls, the probability of substate 3 was lowest [0.129 £ 0.013] compared
s to MCS [0.242 £+ 0.022, P<0.001] and UWS [0.234 £+ 0.024, P=0.001]. This substate did not
35 discriminate significantly between DoC groups. Substate 4 had a coordination between areas of
36 the medial-frontal network, fronto-parietal network, DMN (i.e., precuneus) and subcortical areas
s7 (L.e., thalamus). This metastable substate only discriminated between controls [0.224 + 0.018] and

s MCS [0.165 £ 0.018, P=0.018].

s Fit whole-brain computational model to the brain states of DoC groups

360 For the MCS and UWS groups, we fitted the PMS to a causal mechanistic whole-brain model.
1 We optimized and adjusted the models in order to select the parameters that displayed the most
32 approximate regime to empirical PMS (see Materials and Methods). The best fit between the
33 empirical and simulated PMS was found at G=0.08 and G=0.05 for MCS and UWS models,
s¢  respectively (Figure [3]).

w In silico stimulations to force transitions from DoC to a control target

w6 state

367 Following model fitting and optimization, we systematically perturbed the PMS model of each
s DoC group and compared it with the empirical PMS of the control group. Each brain node was
30 shifted by increasing the absolute value of the bifurcation parameter a, representing the intensity
s of stimulation. A synchronization protocol was addressed with positive values, and a noise protocol
sn with negative values. Optimal perturbation was the one that resulted in the smallest KL distance
sz between the PMS after perturbing each node individually, and the empirical PMS of the target
s (control group).

374 The results of the in silico stimulation with different protocols and intensities for MCS and UWS
w5 are shown in Figures [da and [db, respectively. The color scale represents the KL distance between
s the perturbed PMS and the target PMS after stimulating each individual brain area separately.
sz The best fit is indicated by a lower KL distance, note that the color scales are different for each
s DoC condition, adjusted accordingly for better resolution. For the synchronization protocol, a
s successful transition was forced from the source states of MCS and UWS to the control state. We
;0 can observe that for MCS most regions promoted a transition with lower stimulation intensity

s compared to UWS. In contrast, in the noise protocol, the KL distance did not decrease for both
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sz MCS and UWS (i.e., colors are red and yellow rather than green and blue). This means that as
3 a result of applying a noise protocol, the transition from DoC to a control target state was not
s possible, evidenced by poorer fit.

385 In the synchronization protocol, a transition was likely to occur in many areas if they were
s sufficiently stimulated. Figure illustrates the rendering of the KL distance between the per-
7 turbed PMS and the target PMS after stimulating each individual brain area separately, at their
;s particular optimal stimulation intensity. Areas in the motor network were the most sensitive ones,
s including subcortical areas (i.e., thalamus), provoking transitions in both cases (MCS and UWS).
s0  Specifically, the best fit to the control PMS space was obtained when stimulating the left post-
s central gyrus with an intensity of 0.2 for MCS and the right postcentral gyrus with an intensity
32 of 0.16 for UWS. As a result, the perturbed and target probabilities were very similar in all four
» Ietastable substates of the PMS (Figure [5).

w 1Discussion

305 We successfully applied model-free and model-based approaches to find causal evidence for the
w6 brain dynamics in DoC and transitions to a control state, following the methodology of |Deco et al.
sor (2019)). Firstly, we significantly distinguished between brain states by characterizing the PMS of
s DoC and controls using LEiDA. For each group, we identified metastable substates (i.e., patterns)
30 with an associated probability of occurrences and alternation profiles (Cabral et al., 2017b). We
w0 then fitted a Hopf model to each empirical PMS for each DoC state. In this way, we were able
w1 to force a transition from the PMS DoC models (MCS and UWS separately) to the target control
w2 state using exhaustive off-line in silico unilateral perturbations. Finally, by varying stimulation
w03 intensities, we revealed how changes in local brain areas using a synchronous modality can reshape
w4 whole-brain dynamics in DoC. In this way, we could determine the mechanistic global effects of all
w5 possible local perturbations and the most sensitive areas in terms of their perturbability.

406 In the model-free approach, using LEiDA, we identified substates with network-specific changes
w7 whose probabilities varied in each brain state (Figure E[) In particular, we found controls were
w8 more able to access substates 1 and 4. Substate 1, in which all BOLD signals followed the leading
wo  elgenvector, has been shown to exist in previous LEiDA studies (Lord et al.| [2019; [Figueroa et al.
a0 [2019; |Cabral et al., [2017a)). This substate has been associated with a global state (Zhang and
s Northofl, [2022), synchronized stability (Farinha et al.,[2022)), or noise artifacts (Olsen et al., [2022)).
a2 Furthermore, we found substate 4 had a coordination of areas overlapping the medial-frontal
a3 network, fronto-parietal network, DMN (i.e., precuneus) and subcortical areas (i.e., thalamus).
asa The DMN is important for internal self-related and external perceptual awareness, cognition, mind-
a5 wandering, and autobiographical memory, and some studies have shown this network disrupted
a6 in patients with DoC (Panda et al., 2022; [Edlow et all [2020; |Bodien et al., 2017; |Qin et al.,
a7 2015 [Demertzi et al., [2015; [Fernandez-Espejo et all [2012; [Vanhaudenhuyse et al.| 2011}, |2009;
as  |Demertzi et al.l 2013). On the other hand, our results show DoC patients were more likely to be
a0 in substates 2 and 3, which exhibited a functional network led mainly by areas from the motor

w20 and visual networks, respectively. Notably, Demertzi et al.| (2015) found a correlation between rs-
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w2 IMRI connectivity of the aforementioned networks (DMN, fronto-parietal, sensorimotor, and visual

2 networks) and CRS-R assessment results, indicating these networks are critical to brain function

«s in DoC. This is also supported by [Cao et al| (2019), which reported changes in brain activity in

w2 the DMN, somatomotor, and visual networks, and by [Crone et al.|(2014)), which measured altered

w5 network properties in the fronto-parietal cortex, both studies in DoC patients.
26 In the model-based approach, we modelled brain activity as a system of non-linear Stuart-

w7 Landau oscillators (also known as Hopf bifurcation) to link the underlying anatomy with local

a2 dynamics (Deco et al., 2017c|). Hopf models have allowed simulating several brain states in health

2o and disease with high fitting accuracy (Escrichs et al., |2021b} [2022; [Sanz Perl et al., 2023} Soler-|
w0 [Toscano et all 2022; [Lépez-Gonzdlez et all 2021 [Deco et all 2019 [Jobst et al. [2017; [Deco and

a1 |[Kringelbach| [2014)). These models have been able to capture both local and global brain dynamics

s (Deco et al.,[2017¢|b)), while having lower computational costs (Deco et al., |2017a; Deco and Jirsal,
a3 [2012) and risks of overfitting (Deco and Kringelbachl [2014)) than more detailed models such as

s spiking neurons (Deco and Jirsa, 2012 |Cabral et all [2014). Here, during fitting and optimization,

s we observed that the MCS group had a higher value of global coupling weight G than the UWS
w6  (Figure . This parameter represents the relationship between local and global brain dynamics
a7 and the effects of structural connectivity on brain dynamics. The greater the value of G, the less
s restricted the brain network interaction is to areas with high structural connections. In line with
a0 previous studies, we found that MCS showed more propagation of brain activity and connectivity

w0 between distant brain areas than UWS (Escrichs et all [2021b} [Lépez-Gonzélez et all |2021)).

a1 By combining the model-based approach with in silico stimulations, we explored brain tran-
w2 sitions between different states. This strategy allowed us to find the optimal areas to stimulate

w3 and re-balance the underlying brain dynamics in patients with DoC towards more healthy states

s (Escrichs et al., 2021b; [Sanz Perl et al., 2021)). Thus, in silico stimulation provided us a way

ws  to test exhaustive trials without the ethical constraints of real-world experiments (Deco et all

as [2017¢; |Clausen,, |2010). We shifted the brain dynamics’ landscape rather than the working point

w7 per se. This ensures propagation and facilitates plasticity, targeting a system reorganization with

ws long-term effects (Deco et all [2019] [2017al). We evidenced transition from DoC states to control

wo using the synchronization and not the noise protocol, in line with Deco et al.| (2019), since the KL

w0 distance between the perturbed PMS and the control target PMS decreased in the synchronous
1 modality (Figure E[) Bifurcation parameters below the bifurcation edge were, therefore, indicative
2 of DoC states and could not force systems to a control target. Both MCS and UWS progressively
i3 came closer to the target state with increasing positive intensities for the desired transitions (i.e.,
54 the synchronization protocol). In this regard, our results are consistent with the notion that syn-
sss  chronous oscillations have a role in neuronal communication and long-range functional connectivity

s between brain areas (Cabral et al., [2022; [Fries, [2005)). A further finding was that overall, MCS

»s7  exhibited higher sensitivity to external perturbations than UWS. Metastable substates with the
sss  highest probability of PMS spaces in both DoC groups shifted from substates with subsets of brain
o areas aligned within each other in the motor network (substate 2) and visual network (substate
wo 3) to a substate dominated by regions from the medial-frontal network, fronto-parietal network,

w1 DMN and subcortical areas (substate 4), and to a substate with global brain activity (substate
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w2 1) (Figure [5). In terms of brain areas promoting a transition, most were found in the motor

=)

w3 network, relevant to DoC (Panda et al., [2023; [Lépez-Gonzalez et al., 2021} Demertzi et al., 2015}

s |[Piccione et all [2011)). Particularly, the most sensitive area was the postcentral gyrus, which has
w5 been associated with impaired somatosensory functions and found to distinguish
ws  DoC patients by its weighted global connectivity (Kotchoubey et all |2013). Lastly, a specific
w7 subcortical area prone to transition and important in DoC studies was the thalamus
as  [2023], 2022; [Sanz Perl et al., 2021; [Lutkenhoff et al., [2015}; [Monti et al.l 2015} [Schiff et al. 2007),

w0 given its key role in information processing and as a sensory relay station (Alnagger et al.l [2023;

w |Zheng et al.l [2021)).

an The classification of patients with DoC is an existing debate in neuroscience. Identifying MCS

a2 and UWS can depend on the CRS-R metric’s effectiveness, inter-rater variability, and consistency

as of caregivers’ reports (Opara et all 2014). It is challenging to distinguish between MCS and

aa - UWS since some patients who are classified as UWS may remain aware even though they do not

a5 demonstrate behavioral signs. They may be classified incorrectly as being awake and unaware

ws  when they are actually conscious (Owen, [2020; Bodien et al.l 2015; Tagliazzucchi and Laufs, [2014;

w7 [Fingelkurts et al., [2014). The circular nature of brain state definition and assessment could have

s compromised the efficacy and validity of our model definitions since they are subjected to the

a0 correct classification and typification of the empirical primary data source (Arsiwalla and Verschure,

w0 [2018)). It would be helpful to investigate the generalizability of our results with a broader range of
w1 DoC patients (Vohryzek et al. 2022a} |Lopez-Gonzélez et all, 2021)).

82 Overall, we were able to characterize and differentiate brain dynamics of DoC and healthy con-

w3 trols. We used a robust quantitative definition of brain states based on spontaneous spatiotemporal

s fluctuations (Deco et al., |2015; |Constable), 2006). Furthermore, we provide a causal mechanistic

a5 explanation for the differences between brain states in DoC. Crucially, our perturbation approach
s could be used as a specific model biomarker relating local activity with global brain dynamics. In

w7 light of the exciting results, future applications could benefit from developing personalized pro-

s tocols by constructing individualized patient brain models (Vohryzek et al [2022alb} [Kringelbach]|
w0 Jand Decol 2020} [Luppi et all [2019; [Muldoon et all [2016} [Constable] [2006). In addition, causal

w0 whole-brain modelling can help understand other brain states (e.g., meditation, anesthesia) (Seth

w1 |and Bayne, [2022)) and elucidate propagation properties (Rossini et all 2015), network level im-
w2 pact (Kringelbach and Decol 2020; [Muldoon et al., [2016) and sensitive areas (Ipina et al., 2020;

w03 |[Kringelbach et all [2011). Overall, our results may eventually contribute to the field of external

w0 perturbation as a principled way of re-balancing the dynamics of post-coma patients towards more

a5 healthy regimes.

« Data availability statement
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Figure 1: Overview of model-free and model-based frameworks. a Model-free framework: Leading Eigen-
vector Dynamic Analysis (LEiDA). The BOLD time signal for each of the 214 brain areas was band-passed filtered
and Hilbert transformed. The complex plane shows the positive and negative real and imaginary components at a
specific timepoint t. The phase coherence matrix dFC(¢) between brain areas for each time window was calculated.
Then, the leading eigenvector Vi (t) capturing the principal orientation of the BOLD phase for each of the matrices
was calculated for each time ¢ - positive values in red, negative values in blue. The leading eigenvectors for all
time points of all participants were clustered using K-means (k=4), and the probability of occurrence of each of the
cluster centers is shown in the Probabilistic Metastable Substate (PMS) Space. b Model-based framework: whole-
brain model. A whole-brain model based on the frequency w of the empirical fMRI data and DTI was fitted to the
empirical PMS space by calculating the value of the global coupling G that minimized the KL distance between
the empirical and the simulated PMS. The model was optimized using the effective connectivity (EC) by adjusting
each connection with a gradient descent approach until convergence. ¢ Model-based framework: stimulation in
silico. A transition was forced systematically from a source state to a target state by stimulating each brain area
separately. The bifurcation parameter was shifted positively and negatively for synchronization and noise protocols,
respectively. The optimal unilateral perturbation was obtained at the minimal KL distance between the stimulated

modelled PMS and the target empirical PMS.
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Figure 2: Model-free results: Empirical Probabilistic Metastable Substate (PMS) Space. a Probability

of Occurrence. The mean probability of occurrence for each group in each substate was calculated with a 95%

confidence interval. The substates 1 and 4 had a higher probability of occurrence for the control group compared

to DoC. The substates 2 and 4 had a lower probability of occurrence for the control group compared to DoC.

Statistically significant differences are represented with asterisks (* p < 0.05, ** p < 0.01 and *** p < 0.001).

b Rendered brains represent the leading eigenvectors of each substate plotted onto the cortex. Substate 1 was

characterized by all elements of the eigenvector with the same sign. Substate 2 had a functional community formed

by areas in the motor network. Substate 3 presented a local coordination in the occipital lobe (visual network).

Substate 4 showed coordination in brain areas from the medial-frontal network, fronto-parietal network, DMN and

subcortical areas.
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Figure 3: Model-based results: Whole-brain model fitting and optimization. Comparison between empir-

ical and simulated PMS of each group. Optimal fit was given by the minimal KL distance value corresponding to a

global coupling weight of a G=0.08 for MCS and b G=0.05 for UWS.
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Figure 4: Model-based results: In silico probing to force transition from DoC to control target state.

We used synchronization and noise stimulation protocols to shift the local bifurcation parameter. The strength
of the unilateral perturbation corresponds to the absolute value of the bifurcation parameter and the sign to the
modality (synchronous with positive values, noise with negative values). The x-axis shows the stimulation intensity
(from softer to stronger), and the color scale represents the KL distance. The best effectiveness was found where
KL distance was minimal. For both DoC (a and b), the synchronization protocol forced a transition to the control
state. This can be observed with the lower KL distance when increasing values of the local bifurcation parameter
in a positive manner. The left sides of the x-axis show that the noise protocol presented poor effectiveness given
that KL distances were longer than in the synchronization protocol. ¢ contains the KL distance rendered onto brain
maps with the optimal stimulation for each brain area in the synchronous protocols. The color scale represents the
KL distance given by the best stimulation, with the lowest values corresponding to the motor and some subcortical

areas (the best targets).
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Figure 5: Comparison between perturbed PMS of MCS and UWS groups to target control PMS. We
show the simulated and perturbed PMS for DoC groups and the empirical target control PMS. For both groups, the
synchronization protocol increased the probability of the first and last substates and decreased the probability of the
other substates, consistent with the empirical PMS of the control group. a Simulated MCS had a best approximation
to the PMS of controls by perturbing unilaterally the postcentral gyrus (left) with an intensity of 0.2. b Simulated
UWS had the best approximation to the PMS of controls by perturbing unilaterally the postcentral gyrus (right)
with an intensity of 0.16.
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« Supporting information

so  S1 Table. Top 20 most sensitive regions for perturbing MCS model. The first column
so corresponds to the KL distance between the PMS of the perturbed model, and the PMS of the
ss1 target control state, after stimulating a given brain area. The second column shows the brain area
g2 in the Shen parcellation (Shen et al., [2013). The third column indicates the overlap between the

3 brain area and the AAL structural parcellation (Tzourio-Mazoyer et al., 2002).

ssa 52 Table. Top 20 most sensitive regions for perturbing UWS model. The first column
s corresponds to the KL distance between the PMS of the perturbed model, and the PMS of the
se  target control state, after stimulating a given brain area. The second column shows the brain area
v in the Shen parcellation (Shen et al., [2013). The third column indicates the overlap between the

s brain area and the AAL structural parcellation (Tzourio-Mazoyer et al., 2002).
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