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Abstract23

A fundamental challenge in neuroscience is accurately defining brain states and predicting how24

and where to perturb the brain to force a transition. The ability to promote a transition from25

one brain state to another by externally driven stimulation could significantly impact rehabili-26

tation and treatments for patients suffering from complex brain injury cases. Thus, it is crucial27

to find therapeutic interventions able to re-balance the dynamics of brain disorders towards28

more healthy regimes. Here, we investigated resting-state fMRI data of patients suffering from29

disorders of consciousness (DoC) after coma (minimally conscious and unresponsive wakeful-30

ness states) and healthy controls. We applied model-free and model-based approaches to help31

elucidate the underlying brain mechanisms of patients with DoC. The model-free approach al-32

lowed us to characterize brain states in DoC and healthy controls as a probabilistic metastable33

substate (PMS) space. The PMS of each group was characterized by a repertoire of unique34

patterns (i.e., metastable substates) with different probabilities of occurrence. In the model-35

based approach, we adjusted the PMS of each DoC group to a causal whole-brain model. This36

allowed us to explore optimal strategies for promoting a transition to the PMS of the control37

group by applying off-line in silico probing. Furthermore, this approach enabled us to evaluate38

the impact of all possible local perturbations in terms of their global effects and sensitivity to39

stimulation, which is a biomarker providing a deeper understanding of the mechanisms under-40

lying DoC. Our results show that transitions from DoC to more healthy regimes were obtained41

in a synchronous protocol, in which areas from the motor and subcortical networks were the42

most sensitive to perturbation. This motivates further work to continue understanding brain43

function and treatments of disorders of consciousness by external stimulation.44

Keywords: brain states, resting-state fMRI, whole-brain modelling, brain dynamics, disorders45

of consciousness, off-line in silico probing46

Author summary47

We studied disorders of consciousness by defining a brain state as a repertoire of metastable sub-48

states with different probabilities of occurrence. We created whole-brain computational models49

of DoC to uncover the causal mechanisms underlying recovery. These models allowed us to tran-50

sition from DoC to a control healthy state by studying the effects of artificial individual local51

perturbations under different protocol regimes. We demonstrated successful transitions in the syn-52

chronization protocol and showed that the most sensitive areas were located in the motor network53

and subcortical regions. We believe this could be very valuable for developing clinical treatments54

and has a great deal for future therapies.55
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Introduction56

The brain is a dynamical, complex, and self-organized system with spontaneous activity emerg-57

ing from non-linear interactions of billions of neurons (Sporns, 2011). This gives rise to an ample58

discrete repertoire of metastable patterns (i.e., substates) around critical points between order and59

chaos (Cabral et al., 2017b; Deco et al., 2017c). The lifetimes and stabilities of specific substates60

govern the dynamics of a particular brain state (Deco and Kringelbach, 2016; Tognoli and Kelso,61

2014). Current research is increasing our understanding of the causal dynamics underlying many62

different brain states, such as wakefulness, sleep, anesthesia, and disorders of consciousness (DoC).63

Nevertheless, such mechanisms still remain elusive and a deeper comprehension would facilitate64

the design of novel interventions for brain disorders and possibly for the loss of consciousness like65

coma. Recently, directly perturbing the brain in silico has been proposed and investigated as a66

possible intervention that could contribute to a deep understanding of the dynamical mechanisms67

of brain states in health and disease (Escrichs et al., 2022; Vohryzek et al., 2022a; Deco et al.,68

2019). Furthermore, such perturbations could be used to force transitions between different brain69

states in a translational clinical context, for example, to promote transitions from brain disorders70

to health (Fox et al., 2014; Thibaut et al., 2014; Schiff et al., 2007).71

A healthy brain relies on the brain’s flexibility and capacity to integrate information and main-72

tain rich dynamics in an evolving environment across time and space (Deco et al., 2015). By73

contrast, brain disorders present disruptions in the normal range of brain activity (Du et al.,74

2018). In the specific clinical domain of DoC, it has been found that their characteristic brain75

patterns present disruptions of long-range cortical correlations typical in a healthy state (Demertzi76

et al., 2019). Such post-coma states are distinguished into the minimally conscious state (MCS)77

and unresponsive wakefulness syndrome (UWS). The former MCS is identified when patients are78

awake and respond with limited awareness, and the latter UWS corresponds to patients who do not79

respond to stimulation in a conscious manner (Giacino et al., 2018, 2002). DoC patients present80

lower flexibility and efficiency of information processing and a limited broadcast of information,81

which coexists with a reduced neural propagation and responsiveness to events (Panda et al.,82

2023). Furthermore, UWS shows reduced metastability and repertoire of functional networks in83

comparison to MCS (Panda et al., 2022).84

In recent years, different definitions of brain states have been proposed using empirical neu-85

roimaging and electrophysiological data. Approaches based on functional magnetic resonance imag-86

ing (fMRI) have implemented static analysis such as long-range temporal dependence via Hurst87

exponent (Tagliazzucchi et al., 2013) and attractors between brain regions (Gu et al., 2018; Deco88

and Jirsa, 2012). Considering brain activity is multi-dimensional and ever-changing, these ap-89

proaches have been further examined from a more realistic and richer viewpoint considering brain90

dynamics, which reveals the different brain patterns evolving during a scanning period (Escrichs91

et al., 2021b; Sanz Perl et al., 2022; Deco and Kringelbach, 2020; Preti et al., 2017; Hansen et al.,92

2014; Allen et al., 2014; Hutchison et al., 2013). Nevertheless, a universal, formal, robust, and93

quantitative definition of brain states, and a deep comprehension of the effects of perturbations94

to force recovery, remains unknown (Deco et al., 2019, 2017c). Stemming from recent progress in95
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these areas, and given the difficulty of predicting the final collective emergent activity even if the96

building blocks are known (Deco et al., 2019), we could still benefit from a better understanding97

of brain dynamics and optimal strategies for a recovery towards healthy brain states (Vohryzek98

et al., 2022a; Escrichs et al., 2022; Kringelbach and Deco, 2020; Edlow et al., 2020; Deco et al.,99

2017a; Keilholz et al., 2017).100

There is a long tradition of perturbative approaches for brain research. Clinical techniques101

for stimulation exist, such as the non-invasive transcranial direct current stimulation (tDCS)102

(Knotkova et al., 2019; Ruffini et al., 2018; Siebner et al., 2009) and transcranial magnetic stim-103

ulation (TMS) (Litvak et al., 2007; Pascual-Leone, 1999), and the minimally invasive technique104

deep brain stimulation (DBS) (Mohseni et al., 2012; Kringelbach et al., 2007). Still, research in105

lesioned humans is rare, only undertaken when the disease is severe, and accompanied by ethical106

constraints (Deco and Kringelbach, 2017; Clausen, 2010). Massimini and colleagues developed107

the perturbational complexity index (PCI), which has been used to distinguish brain states by108

calculating the lempel-ziv complexity from the electroencephalography response to TMS pertur-109

bation (Casarotto et al., 2016; Casali et al., 2013; Massimini et al., 2009). The PCI measures the110

perturbation-elicited variations in intrinsic global brain activity and has shown to be successful111

in distinguishing between awake vs. sleep, awake vs. anesthesia, and MCS vs. UWS (Casarotto112

et al., 2016; Casali et al., 2013; Ferrarelli et al., 2010; Massimini et al., 2009). However, given113

the ethical restrictions of empirical neurostimulation approaches, causal whole-brain models based114

on in silico perturbation protocols are fundamental to understanding the underlying mechanisms115

of brain dynamics (Escrichs et al., 2022). This promising tool allows experimenting in unprece-116

dented unlimited scenarios (e.g., perturbing one brain area at a time) without exposing real brains117

(Kringelbach and Deco, 2020; Breakspear, 2017; Deco et al., 2015; Deco and Kringelbach, 2014).118

Recently, Deco et al. (2019) proposed the awakening framework that consists of model-free119

and model-based approaches to force transitions from deep sleep to awake. In particular, the120

model-free approach based on Leading Eigenvector Dynamics Analysis (LEiDA) (Cabral et al.,121

2017b) uses the concept of metastability, defined as the characteristic of a system to maintain an122

equilibrium in a temporal window although being slightly perturbed (Freyer et al., 2012; Kelso,123

2012; Freyer et al., 2011). The nature, duration, and arrangement of existent metastable substates124

(i.e., patterns) give rise to a probabilistic metastable substate (PMS) space typifying each brain125

state (Deco et al., 2017c). LEiDA has been shown to be robust and successful in identifying brain126

states in healthy aging (Escrichs et al., 2021a; Cabral et al., 2017b), depression (Figueroa et al.,127

2019) and different states of consciousness (Kringelbach and Deco, 2020; Lord et al., 2019; Deco128

et al., 2019). The model-based approach consists in building whole-brain models composed of a129

network of coupled local nodes (Botvinik-Nezer et al., 2020; Deco et al., 2019) to simulate the130

empirical PMS and perturb the resulting PMS model to force the transition to a desired control131

state. This elegant framework has been extended to promote transitions from aging (Escrichs132

et al., 2022), patients with depression (Vohryzek et al., 2022b) and schizophrenia (Mana et al.,133

2023) towards more healthy regimes.134

Here, we aimed to study the dynamical complexity and causal mechanisms of brain activity in135

DoC by using the aforementioned framework. Firstly, we applied LEiDA to define the PMS of DoC136
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patients and healthy controls. Secondly, we built Hopf whole-brain models fitted and optimized to137

the empirical PMS of DoC at the bifurcation point, representing a state of criticality in which the138

two regimes (oscillatory and noisy) cannot be differentiated. This generative whole-brain model139

linked structural anatomy with functional dynamics on the basis of effective connectivity (Deco140

et al., 2019). Finally, we applied off-line in silico external unilateral and localized probing to force141

the transition from the PMS obtained in MCS and UWS, separately, to the PMS of healthy controls.142

In this way, employing offline in silico probing, we could evaluate candidate regions for stimulation143

aiming to recover DoC patients. Nevertheless, this innovative approach not only allowed us to144

assess the effects of all potential local perturbations but also provided valuable insights into their145

mechanistic global effects and sensitivity to stimulation.146

Materials and Methods147

Ethics statement148

The study was approved by the Ethics Committee of the Faculty of Medicine of the University149

of Liège according to the Helsinki Declaration on ethical research. Written informed consent was150

obtained from controls and the patients’ legal surrogates.151

Participants152

A total of 23 controls and 46 non-sedated patients with DoC were selected from a dataset153

previously described in Escrichs et al. (2021b); López-González et al. (2021); Demertzi et al. (2019).154

Trained clinicians carried out the clinical assessment and Coma Recovery Scale-Revised (CRS-R)155

scoring to determine the patients’ state of consciousness. The CRS-R diagnosis was made after156

at least 5 CRS-R, and the highest level of consciousness was taken as the final diagnosis, which157

was also confirmed using positron emission tomography (PET) (i.e., patients in MCS presented158

a relatively preserved metabolism in the frontoparietal network, whilst patients with UWS had159

a bilateral hypometabolism in this network). Thus, 30 patients in MCS and 16 in UWS were160

included.161

MRI Data Acquisition162

MRI data were acquired on a 3T Siemens TIM Trio scanner (Siemens Inc, Munich, Germany).163

Resting-state fMRI data were obtained using a gradient echo-planar imaging (EPI) sequence (300164

volumes, 32 transversal slices, TR= 2000 ms, TE=30 ms, flip angle = 78◦, voxel size = 3x3x3 mm,165

FOV = 192 mm). After fMRI acquisition, a structural T1 magnetization-prepared rapid gradient-166

echo (MPRAGE) sequence was acquired (120 slices, TR = 2300 ms, voxel size = 1.0x1.0x1.2 mm,167

flip angle = 9◦, FOV = 256 mm). Finally, diffusion-weighted MRI (DWI) was acquired with 64168

directions (b-value =1,000 s/mm2, voxel size = 1.8 × 1.8 × 3.3 mm3, FOV = 230 × 230 mm2,169

TR/TE= 5,700/87 ms, 45 transverse slices, 128 × 128 voxel matrix) preceded by a single b0 image.170
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Resting state fMRI preprocessing171

The pre-processing of resting-state fMRI data was performed using MELODIC (Multivariate172

Exploratory Linear Optimized Decomposition into Independent Components) version 3.14 (Beck-173

mann and Smith, 2004) from FMRIB’s Software Library (FSL, http://fsl.fmrib.ox.ac.uk/fsl)174

as described in our previous studies (Escrichs et al., 2021b; López-González et al., 2021). The175

following steps were performed: discarding the first 5 volumes, motion correction motion using176

MCFLIRT (Jenkinson et al., 2002), non-brain removal using BET (Brain Extraction Tool) (Smith,177

2002), spatial smoothing with a 5 mm Gaussian Kernel, rigid-body registration, high pass filter178

(with a cutoff of 100 s) and single-session Independent Component Analysis (ICA) with automatic179

dimensionality estimation. Then, noise components and lesions-driven artifacts (for patients) were180

manually classified and removed for each subject by looking at the spatial map, time series, and181

power spectrum (Griffanti et al., 2017; Salimi-Khorshidi et al., 2014) using FIX (FMRIB’s ICA-182

based X-noiseifier) (Griffanti et al., 2014). Finally, FSL tools were used to co-register the images183

and extract the time series between 214 cortical and subcortical brain areas for each subject in184

MNI space from the Shen resting-state atlas (without the cerebellum) (Shen et al., 2013).185

Probabilistic Tractography preprocessing186

A whole-brain structural connectivity (SC) matrix was computed for each subject of the control187

group and then averaged in a two-step process as described in previous studies (Muthuraman188

et al., 2016; Cao et al., 2013; Gong et al., 2009). We used the resting-state atlas mentioned above189

to create a structural connectome in each individual’s diffusion native space. In brief, DICOM190

images were converted to Neuroimaging Informatics Technology Initiative (NIfTI) using dcm2nii191

(www.nitrc.org/projects/dcm2nii). The b0 image in DTI native space was co-registered to192

the T1 structural image by using FLIRT (Jenkinson and Smith, 20001). Then, the T1 structural193

image was co-registered to the standard space by using FLIRT and FNIRT (Andersson et al.,194

2007; Jenkinson and Smith, 20001). The transformations were inverted and applied to warp the195

resting-state atlas from MNI space to the native diffusion space by applying a nearest-neighbor196

interpolation method. Analysis of diffusion images was performed using the processing pipeline of197

the FMRIB’s Diffusion Toolbox (FDT) in FMRIB’s Software Library www.fmrib.ox.ac.uk/fsl.198

Non-brain tissues were extracted using Brain Extraction Tool (BET) (Smith, 2002), eddy current-199

induced distortions and head movements were corrected using eddy correct tool (Andersson and200

Sotiropoulos, 2016), and the gradient matrix was reoriented to correct for subject motion (Leemans201

and Jones, 2009). Then, Crossing Fibres were modeled using the default BEDPOSTX parameters,202

and the probability of multi-fibre orientations was computed to improve the sensitivity of non-203

dominant fibre populations (Behrens et al., 2007, 2003). Probabilistic Tractography was performed204

in native diffusion space using the default parameters of PROBTRACKX (Behrens et al., 2007,205

2003). The connectivity probability to each of the other 214 brain areas was estimated for each206

brain area as the total proportion of sampled fibres in all voxels in the brain area n that reached207

any voxel in the brain area p. Given that Human Difussion Tensor Imaging (DTI) does not capture208

directionality, the SCnp matrix was symmetrized by computing its transpose SCpn and averaging209
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both matrices. Finally, to obtain the structural probability matrix, the value of each brain area210

was divided by its corresponding number of generated tracts.211

Leading Eigenvector Dynamics Analysis (LEiDA)212

This first step aims to define the empirical brain states from a quantitative point of view, defined213

as a conjunction of substates, applying LEiDA method (Cabral et al., 2017b) as schematized in214

Figure 1a. For all subjects in all states, the blood oxygenation level-dependent (BOLD) time215

series of each brain area of the parcellation were filtered in the range 0.04-0.07 Hz and Hilbert-216

transformed to obtain the evolution of phase of the time series. A BOLD phase coherence matrix217

dFC(t) was then calculated at any given repetition time (TR) between each brain area pair n and218

p by calculating the cosine of the phase difference as:219

dFC(n, p, t) = cos (θ(n, t)− θ(p, t)). (1)

In this way, the interregional BOLD signal synchrony for all subjects was obtained at all time220

points. If nodes are temporarily aligned, the difference between their Hilbert transformed signal221

angle is 0◦ and the phase coherence is close to one [cos(0◦)=1]. When a pair of nodes develop222

orthogonal BOLD signals, then the phase coherence is close to zero [cos(90◦)=0]. The resulting223

dFC(t) of each subject at each timepoint was a 3D matrix of size of N×N×T, being N the number224

of brain areas (214) and T the total time points (295). A total of 69 3D matrices were calculated,225

corresponding to all of the groups together (controls, MCS and UWS).226

In order to facilitate the future classification process, the dominant connectivity pattern was227

obtained by reducing the dimensionality of the matrices into their leading eigenvectors V1(t). This228

can be applied since FC matrices are undirected and symmetric across the diagonal (Deco et al.,229

2019). The leading eigenvectors (of dimension N×1) capture the dominant connectivity pattern230

at each time point t whilst explaining most of the variance, representing the contribution of each231

brain area to the whole structure and improving the signal-to-noise ratio (Cabral et al., 2017b).232

The dimensionality of the data was reduced from N×N to N×1, and the dominant functional233

connectivity pattern dFC(t) could be observed by calculating the outer product of V1(t) with its234

transpose (V1.V1.T ) (Lohmann et al., 2010).235

The following step consisted of identifying recurrent FC patterns representing the substates.236

The leading eigenvectors dFC(t) for each TR and all subjects from all states (20355 = 69 par-237

ticipants * 295 timepoints) were clustered with K-means clustering, varying k from 3 to 8. This238

algorithm is an unsupervised method consisting of assigning the data to the closest cluster cen-239

troid iteratively and re-calculating the k centroids in each iteration until convergence. The resulting240

cloud centroids Vc(t) represent the dominant connectivity pattern in each cluster. The k discrete241

number of patterns of size N×1 correspond to the substates obtained from all subjects in all col-242

lapsed groups of subjects. These cluster centroids Vc(t) represent the contribution of each brain243

area to the community structure and were rendered onto brain maps.244

Upon computing the discrete number of FC patterns for each k, we calculated the resulting245

probability of occurrence in each group. This was computed as the ratio between the total number246
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of epochs assigned to a specific cluster (i.e., for each subject in each group divided by the total247

amount of epochs in the given group). This gave rise to the Probabilistic Metastable Substate248

Space (PMS), which typifies each brain state from the probability of occurrence of being in each249

particular substate from the substate repertoire.250

Whole-Brain Computational Model251

After characterizing the empirical PMS for the different profiles, a whole-brain Hopf compu-252

tational model was obtained for each DoC state (Figure 1b). The dynamics from functional253

interactions between each brain area were emulated based on the anatomical SC. In other words,254

the emergence of activity can be explained in a mechanistic way by merging anatomical connec-255

tivity, which determines structure, and functional connectivity that represents activity dynamics,256

with the inclusion of effective connectivity (EC) (Deco et al., 2015). The working point of each257

model was fitted to the empirical data and optimized by determining the specific parameters of258

the model (Deco et al., 2019).259

The normal form of supercritical Hopf bifurcation (Landau-Stuart oscillator) was used to sim-260

ulate the BOLD activity for each of the 214 cortical and subcortical brain areas based in Shen261

parcellation. The Landau-Stuart oscillator has been used to study transitions from noisy to oscilla-262

tory regimes and, when coupled based on the brain’s architecture, to replicate complex interactions263

in brain dynamics (Deco et al., 2015).264

An uncoupled node n can be represented in Cartesian coordinates with the following pair of265

coupled equations:266

dxn

dt
= [an − x2

n − y2n]xn − ωnyn + βηn(t),

dyn
dt

= [an − x2
n − y2n]yn + ωnxn + βηn(t),

(2)

where xn emulates the BOLD signal of the node and ηn(t) is the additive Gaussian noise with267

standard deviation β = 0.01. This normal form describes the noisy and synchrony scenarios and268

has a supercritical bifurcation in a=0. For a<0, the node is stable in a fixed point and represented269

by noise from asynchronous firing of neurons. For a>0, metastable oscillations are obtained due270

to the synchronized firing of neurons at a frequency of w/2π (Deco et al., 2017b). The transition271

from a noisy to a fully oscillatory scenario is called Hopf, and since it is the simplest way to model272

it mathematically, it is called normal form. Here, we chose a value of an=-0.02 for each brain273

node n following previous findings (Deco et al., 2017c), near the brink of Hopf bifurcation, in the274

critical border between synchrony and desynchrony. The frequency of the system fn = ωn/2π was275

estimated from the empirical data as the averaged peak frequency of the filtered BOLD signal in276

the 0.04- to 0.07-Hz band for each brain node n=1,..., 214 (Deco et al., 2019).277

The whole-brain dynamics were modelled by including an additive coupling term Cnp which278

adjusts the input to node n from each of the rest of the nodes p based on the SC. This weighted279

matrix assumes different myelination densities across long-rage connectivities. A global coupling280

weight G was also added to represent the strength between all nodes, corresponding to the control281
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parameter adjusted to fit the dynamical working region of the simulations to the empirical data.282

It scales all of the connections allowing maximal fitting between simulations and empirical data,283

assuming all axonal conductivity to be equal across the brain. The whole-brain dynamics at each284

node n was thus defined by the following set of coupled equations (Deco et al., 2017c):285

dxn

dt
= [an − x2

n − y2n]xn − ωnyn +G
N∑
p=1

Cnp(xp − xn) + βηn(t),

dyn
dt

= [an − x2
n − y2n]yn + ωnxn +G

N∑
p=1

Cnp(yp − yn) + βηn(t).

(3)

Model Fitting: Comparing empirical and simulated probability metastable space286

states287

For optimal spatiotemporal fit of whole-brain models to their empirical PMS space, the value288

of G was ranged from 0 to 0.5 in steps of 0.01, and the model was iterated 200 times. LEiDA289

was computed to the Hilbert-transformed simulated signal using the centroids already defined by290

the empirical substates in order to compute the simulated PMS space. Each model was fitted to291

the empirical data by deciding which value of G approximated it better (Deco et al., 2019). This292

corresponded to the lowest Kullback-Leibler (KL) distance between the empirical and simulated293

probabilities of each substate (Deco et al., 2019), given by:294

KL (Pemp, Psim) = 0.5

(∑
i

Pemp (i) ln

(
Pemp (i)

Psim (i)

)
+
∑
i

Psim (i) ln

(
Psim (i)

Pemp (i)

))
, (4)

where Pemp(i) and Psim(i) are the empirical and simulated probabilities respectively of metastable295

substate i.296

Model Optimization: Method for updating Effective Connectivity297

After defining the value of G of each model, the models were optimized separately and the298

SC was updated in order to access potential missing connections. The initial value of C for each299

of the models was provided by a primer empirical DTI structural connectivity corresponding to300

the average of control subjects (Deco et al., 2015). Specifically, C was initially normalized to301

a maximum value of 0.2 in order to have the same range of values as in previous works (Deco302

et al., 2019, 2017c). The SC was then transformed to effective connectivity (EC) in an iterative303

manner by calculating the distance between the grand average phase coherence matrices of the304

model FCphases mod
ij and the empirical matrices FCphases emp

ij . Each structural connection between305

different nodes i and j was adjusted with a gradient descent approach given by:306

Cij = Cij + ϵ
(
FCphases emp

ij − FCphases mod
ij

)
, (5)

where ϵ = 0.01, and the grand average phase coherence matrices are defined:307

FCij =
〈
cos
(
φj(t)− φi(t)

)〉
, (6)
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where φ(t) denotes the Hilbert transform BOLD signal phase of the nodes j and i at time t, and308

the brackets indicate the average across time. This was repeated until the difference between the309

empirical and simulated values was smaller than 0.001 (Deco et al., 2019)310

Unilateral Perturbation of the Whole-Brain Model311

After obtaining the models, the transitions from the DoC states towards a control state were312

studied (Figure 1c). The models for DoCs were stimulated in silico by moving locally in a313

unilateral way the local bifurcation parameter a of each of the 214 brain areas. Different levels314

of intensity were applied area by area under the protocols of synchronization and noise. The315

protocols were represented by the sign of the local bifurcation parameter (positive and negative,316

respectively), and the stimulation intensities by the absolute value of each step (Deco et al., 2017c).317

In the synchronization protocol, the bifurcation parameter was shifted positively from 0 to 0.2 in318

steps of 0.01, whereas for the noise modality, it was shifted from 0 to -0.2 in steps of -0.02. Each319

simulation was repeated 3 times the results were averaged to minimize random effects from the320

Gaussian noise of the model (Deco et al., 2019). The fitting to the target states was measured by321

calculating the KL distance (described in the previous section) between the probabilities of each322

substate of the simulated DoC models separately, which are the source, and the empirical control323

PMS, which is the target. The areas more prone to promote a desired transition after simulation324

were detected from the ones presenting the lowest KL distance.325

Statistical Analysis326

Statistical analysis were performed using MATLAB R2022a software from MathWorks (Natick,327

MA, USA). Permutation-based Wilcoxon tests with 1000 iterations were used to test the results of328

the LEiDA method, specifically the probability of occurrence of the whole range of explored clus-329

tering conditions (k from 3 to 8). The Wilcoxon test was used to compare each permutation with a330

significance threshold of 0.05. We applied the False Discovery Rate (FDR) method (Hochberg and331

Benjamini, 1990) to correct for multiple comparisons when testing the differences between groups332

(controls, MCS, and UWS) and the number of cluster centers (i.e., substates). All p-values shown333

correspond to the differences that remain significant after FDR correction.334

Results335

LEiDA336

We selected the minimum number of clusters (k) that statistically differed between the three337

groups. The configuration that best described the empirical data across all participants and distin-338

guished between groups was detected at k=4. The probability of occurrence for the PMS of each339

group is visualized in Figure 2a and the cluster centroid eigenvectors are rendered onto brain340

maps in Figure 2b. The leading eigenvectors had positive and negative signs partitioning the341

network into communities as red and blue colors, respectively. The strength of the color describes342

the strength with which each area belonged to the placed community (Cabral et al., 2017b).343
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The first substate presented the same sign for all eigenvector elements. The probability of344

occurrence was higher in controls [0.493 ± 0.030 (mean ± standard error)] compared to MCS345

[0.351 ± 0.037, P=0.012] and UWS [0.232 ± 0.069, P=0.003]. Furthermore, the probability was346

lower in UWS than in MCS [P=0.035]. The rest of the substates (i.e., substates 2, 3, and 4) were347

characterized by subsets of brain areas that disengaged from the whole-brain network aligning with348

each other. In substate 2, central areas (motor network) represented a pattern of activation. In this349

substate controls had the lowest probability of occurrence [0.155 ± 0.020] compared to MCS [0.242350

± 0.029, P=0.022] and UWS [0.362 ± 0.050, P=0.001]. Moreover, the probability was higher in351

UWS than in MCS [P=0.033]. Substate 3 exhibited a functional network led by the occipital lobe352

(visual network). In controls, the probability of substate 3 was lowest [0.129 ± 0.013] compared353

to MCS [0.242 ± 0.022, P<0.001] and UWS [0.234 ± 0.024, P=0.001]. This substate did not354

discriminate significantly between DoC groups. Substate 4 had a coordination between areas of355

the medial-frontal network, fronto-parietal network, DMN (i.e., precuneus) and subcortical areas356

(i.e., thalamus). This metastable substate only discriminated between controls [0.224 ± 0.018] and357

MCS [0.165 ± 0.018, P=0.018].358

Fit whole-brain computational model to the brain states of DoC groups359

For the MCS and UWS groups, we fitted the PMS to a causal mechanistic whole-brain model.360

We optimized and adjusted the models in order to select the parameters that displayed the most361

approximate regime to empirical PMS (see Materials and Methods). The best fit between the362

empirical and simulated PMS was found at G=0.08 and G=0.05 for MCS and UWS models,363

respectively (Figure 3).364

In silico stimulations to force transitions from DoC to a control target365

state366

Following model fitting and optimization, we systematically perturbed the PMS model of each367

DoC group and compared it with the empirical PMS of the control group. Each brain node was368

shifted by increasing the absolute value of the bifurcation parameter a, representing the intensity369

of stimulation. A synchronization protocol was addressed with positive values, and a noise protocol370

with negative values. Optimal perturbation was the one that resulted in the smallest KL distance371

between the PMS after perturbing each node individually, and the empirical PMS of the target372

(control group).373

The results of the in silico stimulation with different protocols and intensities for MCS and UWS374

are shown in Figures 4a and 4b, respectively. The color scale represents the KL distance between375

the perturbed PMS and the target PMS after stimulating each individual brain area separately.376

The best fit is indicated by a lower KL distance, note that the color scales are different for each377

DoC condition, adjusted accordingly for better resolution. For the synchronization protocol, a378

successful transition was forced from the source states of MCS and UWS to the control state. We379

can observe that for MCS most regions promoted a transition with lower stimulation intensity380

compared to UWS. In contrast, in the noise protocol, the KL distance did not decrease for both381
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MCS and UWS (i.e., colors are red and yellow rather than green and blue). This means that as382

a result of applying a noise protocol, the transition from DoC to a control target state was not383

possible, evidenced by poorer fit.384

In the synchronization protocol, a transition was likely to occur in many areas if they were385

sufficiently stimulated. Figure 4c illustrates the rendering of the KL distance between the per-386

turbed PMS and the target PMS after stimulating each individual brain area separately, at their387

particular optimal stimulation intensity. Areas in the motor network were the most sensitive ones,388

including subcortical areas (i.e., thalamus), provoking transitions in both cases (MCS and UWS).389

Specifically, the best fit to the control PMS space was obtained when stimulating the left post-390

central gyrus with an intensity of 0.2 for MCS and the right postcentral gyrus with an intensity391

of 0.16 for UWS. As a result, the perturbed and target probabilities were very similar in all four392

metastable substates of the PMS (Figure 5).393

Discussion394

We successfully applied model-free and model-based approaches to find causal evidence for the395

brain dynamics in DoC and transitions to a control state, following the methodology of Deco et al.396

(2019). Firstly, we significantly distinguished between brain states by characterizing the PMS of397

DoC and controls using LEiDA. For each group, we identified metastable substates (i.e., patterns)398

with an associated probability of occurrences and alternation profiles (Cabral et al., 2017b). We399

then fitted a Hopf model to each empirical PMS for each DoC state. In this way, we were able400

to force a transition from the PMS DoC models (MCS and UWS separately) to the target control401

state using exhaustive off-line in silico unilateral perturbations. Finally, by varying stimulation402

intensities, we revealed how changes in local brain areas using a synchronous modality can reshape403

whole-brain dynamics in DoC. In this way, we could determine the mechanistic global effects of all404

possible local perturbations and the most sensitive areas in terms of their perturbability.405

In the model-free approach, using LEiDA, we identified substates with network-specific changes406

whose probabilities varied in each brain state (Figure 2). In particular, we found controls were407

more able to access substates 1 and 4. Substate 1, in which all BOLD signals followed the leading408

eigenvector, has been shown to exist in previous LEiDA studies (Lord et al., 2019; Figueroa et al.,409

2019; Cabral et al., 2017a). This substate has been associated with a global state (Zhang and410

Northoff, 2022), synchronized stability (Farinha et al., 2022), or noise artifacts (Olsen et al., 2022).411

Furthermore, we found substate 4 had a coordination of areas overlapping the medial-frontal412

network, fronto-parietal network, DMN (i.e., precuneus) and subcortical areas (i.e., thalamus).413

The DMN is important for internal self-related and external perceptual awareness, cognition, mind-414

wandering, and autobiographical memory, and some studies have shown this network disrupted415

in patients with DoC (Panda et al., 2022; Edlow et al., 2020; Bodien et al., 2017; Qin et al.,416

2015; Demertzi et al., 2015; Fernández-Espejo et al., 2012; Vanhaudenhuyse et al., 2011, 2009;417

Demertzi et al., 2013). On the other hand, our results show DoC patients were more likely to be418

in substates 2 and 3, which exhibited a functional network led mainly by areas from the motor419

and visual networks, respectively. Notably, Demertzi et al. (2015) found a correlation between rs-420
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fMRI connectivity of the aforementioned networks (DMN, fronto-parietal, sensorimotor, and visual421

networks) and CRS-R assessment results, indicating these networks are critical to brain function422

in DoC. This is also supported by Cao et al. (2019), which reported changes in brain activity in423

the DMN, somatomotor, and visual networks, and by Crone et al. (2014), which measured altered424

network properties in the fronto-parietal cortex, both studies in DoC patients.425

In the model-based approach, we modelled brain activity as a system of non-linear Stuart-426

Landau oscillators (also known as Hopf bifurcation) to link the underlying anatomy with local427

dynamics (Deco et al., 2017c). Hopf models have allowed simulating several brain states in health428

and disease with high fitting accuracy (Escrichs et al., 2021b, 2022; Sanz Perl et al., 2023; Soler-429

Toscano et al., 2022; López-González et al., 2021; Deco et al., 2019; Jobst et al., 2017; Deco and430

Kringelbach, 2014). These models have been able to capture both local and global brain dynamics431

(Deco et al., 2017c,b), while having lower computational costs (Deco et al., 2017a; Deco and Jirsa,432

2012) and risks of overfitting (Deco and Kringelbach, 2014) than more detailed models such as433

spiking neurons (Deco and Jirsa, 2012; Cabral et al., 2014). Here, during fitting and optimization,434

we observed that the MCS group had a higher value of global coupling weight G than the UWS435

(Figure 3). This parameter represents the relationship between local and global brain dynamics436

and the effects of structural connectivity on brain dynamics. The greater the value of G, the less437

restricted the brain network interaction is to areas with high structural connections. In line with438

previous studies, we found that MCS showed more propagation of brain activity and connectivity439

between distant brain areas than UWS (Escrichs et al., 2021b; López-González et al., 2021).440

By combining the model-based approach with in silico stimulations, we explored brain tran-441

sitions between different states. This strategy allowed us to find the optimal areas to stimulate442

and re-balance the underlying brain dynamics in patients with DoC towards more healthy states443

(Escrichs et al., 2021b; Sanz Perl et al., 2021). Thus, in silico stimulation provided us a way444

to test exhaustive trials without the ethical constraints of real-world experiments (Deco et al.,445

2017c; Clausen, 2010). We shifted the brain dynamics’ landscape rather than the working point446

per se. This ensures propagation and facilitates plasticity, targeting a system reorganization with447

long-term effects (Deco et al., 2019, 2017a). We evidenced transition from DoC states to control448

using the synchronization and not the noise protocol, in line with Deco et al. (2019), since the KL449

distance between the perturbed PMS and the control target PMS decreased in the synchronous450

modality (Figure 4). Bifurcation parameters below the bifurcation edge were, therefore, indicative451

of DoC states and could not force systems to a control target. Both MCS and UWS progressively452

came closer to the target state with increasing positive intensities for the desired transitions (i.e.,453

the synchronization protocol). In this regard, our results are consistent with the notion that syn-454

chronous oscillations have a role in neuronal communication and long-range functional connectivity455

between brain areas (Cabral et al., 2022; Fries, 2005). A further finding was that overall, MCS456

exhibited higher sensitivity to external perturbations than UWS. Metastable substates with the457

highest probability of PMS spaces in both DoC groups shifted from substates with subsets of brain458

areas aligned within each other in the motor network (substate 2) and visual network (substate459

3) to a substate dominated by regions from the medial-frontal network, fronto-parietal network,460

DMN and subcortical areas (substate 4), and to a substate with global brain activity (substate461
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1) (Figure 5). In terms of brain areas promoting a transition, most were found in the motor462

network, relevant to DoC (Panda et al., 2023; López-González et al., 2021; Demertzi et al., 2015;463

Piccione et al., 2011). Particularly, the most sensitive area was the postcentral gyrus, which has464

been associated with impaired somatosensory functions (Cao et al., 2019) and found to distinguish465

DoC patients by its weighted global connectivity (Kotchoubey et al., 2013). Lastly, a specific466

subcortical area prone to transition and important in DoC studies was the thalamus (Panda et al.,467

2023, 2022; Sanz Perl et al., 2021; Lutkenhoff et al., 2015; Monti et al., 2015; Schiff et al., 2007),468

given its key role in information processing and as a sensory relay station (Alnagger et al., 2023;469

Zheng et al., 2021).470

The classification of patients with DoC is an existing debate in neuroscience. Identifying MCS471

and UWS can depend on the CRS-R metric’s effectiveness, inter-rater variability, and consistency472

of caregivers’ reports (Opara et al., 2014). It is challenging to distinguish between MCS and473

UWS since some patients who are classified as UWS may remain aware even though they do not474

demonstrate behavioral signs. They may be classified incorrectly as being awake and unaware475

when they are actually conscious (Owen, 2020; Bodien et al., 2015; Tagliazzucchi and Laufs, 2014;476

Fingelkurts et al., 2014). The circular nature of brain state definition and assessment could have477

compromised the efficacy and validity of our model definitions since they are subjected to the478

correct classification and typification of the empirical primary data source (Arsiwalla and Verschure,479

2018). It would be helpful to investigate the generalizability of our results with a broader range of480

DoC patients (Vohryzek et al., 2022a; López-González et al., 2021).481

Overall, we were able to characterize and differentiate brain dynamics of DoC and healthy con-482

trols. We used a robust quantitative definition of brain states based on spontaneous spatiotemporal483

fluctuations (Deco et al., 2015; Constable, 2006). Furthermore, we provide a causal mechanistic484

explanation for the differences between brain states in DoC. Crucially, our perturbation approach485

could be used as a specific model biomarker relating local activity with global brain dynamics. In486

light of the exciting results, future applications could benefit from developing personalized pro-487

tocols by constructing individualized patient brain models (Vohryzek et al., 2022a,b; Kringelbach488

and Deco, 2020; Luppi et al., 2019; Muldoon et al., 2016; Constable, 2006). In addition, causal489

whole-brain modelling can help understand other brain states (e.g., meditation, anesthesia) (Seth490

and Bayne, 2022) and elucidate propagation properties (Rossini et al., 2015), network level im-491

pact (Kringelbach and Deco, 2020; Muldoon et al., 2016) and sensitive areas (Ipiña et al., 2020;492

Kringelbach et al., 2011). Overall, our results may eventually contribute to the field of external493

perturbation as a principled way of re-balancing the dynamics of post-coma patients towards more494

healthy regimes.495
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Figure 1: Overview of model-free and model-based frameworks. a Model-free framework: Leading Eigen-

vector Dynamic Analysis (LEiDA). The BOLD time signal for each of the 214 brain areas was band-passed filtered

and Hilbert transformed. The complex plane shows the positive and negative real and imaginary components at a

specific timepoint t. The phase coherence matrix dFC(t) between brain areas for each time window was calculated.

Then, the leading eigenvector V1(t) capturing the principal orientation of the BOLD phase for each of the matrices

was calculated for each time t - positive values in red, negative values in blue. The leading eigenvectors for all

time points of all participants were clustered using K-means (k=4), and the probability of occurrence of each of the

cluster centers is shown in the Probabilistic Metastable Substate (PMS) Space. b Model-based framework: whole-

brain model. A whole-brain model based on the frequency w of the empirical fMRI data and DTI was fitted to the

empirical PMS space by calculating the value of the global coupling G that minimized the KL distance between

the empirical and the simulated PMS. The model was optimized using the effective connectivity (EC) by adjusting

each connection with a gradient descent approach until convergence. c Model-based framework: stimulation in

silico. A transition was forced systematically from a source state to a target state by stimulating each brain area

separately. The bifurcation parameter was shifted positively and negatively for synchronization and noise protocols,

respectively. The optimal unilateral perturbation was obtained at the minimal KL distance between the stimulated

modelled PMS and the target empirical PMS.
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Figure 2: Model-free results: Empirical Probabilistic Metastable Substate (PMS) Space. a Probability

of Occurrence. The mean probability of occurrence for each group in each substate was calculated with a 95%

confidence interval. The substates 1 and 4 had a higher probability of occurrence for the control group compared

to DoC. The substates 2 and 4 had a lower probability of occurrence for the control group compared to DoC.

Statistically significant differences are represented with asterisks (* p < 0.05, ** p < 0.01 and *** p < 0.001).

b Rendered brains represent the leading eigenvectors of each substate plotted onto the cortex. Substate 1 was

characterized by all elements of the eigenvector with the same sign. Substate 2 had a functional community formed

by areas in the motor network. Substate 3 presented a local coordination in the occipital lobe (visual network).

Substate 4 showed coordination in brain areas from the medial-frontal network, fronto-parietal network, DMN and

subcortical areas.

Figure 3: Model-based results: Whole-brain model fitting and optimization. Comparison between empir-

ical and simulated PMS of each group. Optimal fit was given by the minimal KL distance value corresponding to a

global coupling weight of a G=0.08 for MCS and b G=0.05 for UWS.
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Figure 4: Model-based results: In silico probing to force transition from DoC to control target state.

We used synchronization and noise stimulation protocols to shift the local bifurcation parameter. The strength

of the unilateral perturbation corresponds to the absolute value of the bifurcation parameter and the sign to the

modality (synchronous with positive values, noise with negative values). The x-axis shows the stimulation intensity

(from softer to stronger), and the color scale represents the KL distance. The best effectiveness was found where

KL distance was minimal. For both DoC (a and b), the synchronization protocol forced a transition to the control

state. This can be observed with the lower KL distance when increasing values of the local bifurcation parameter

in a positive manner. The left sides of the x-axis show that the noise protocol presented poor effectiveness given

that KL distances were longer than in the synchronization protocol. c contains the KL distance rendered onto brain

maps with the optimal stimulation for each brain area in the synchronous protocols. The color scale represents the

KL distance given by the best stimulation, with the lowest values corresponding to the motor and some subcortical

areas (the best targets).
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Figure 5: Comparison between perturbed PMS of MCS and UWS groups to target control PMS. We

show the simulated and perturbed PMS for DoC groups and the empirical target control PMS. For both groups, the

synchronization protocol increased the probability of the first and last substates and decreased the probability of the

other substates, consistent with the empirical PMS of the control group. a Simulated MCS had a best approximation

to the PMS of controls by perturbing unilaterally the postcentral gyrus (left) with an intensity of 0.2. b Simulated

UWS had the best approximation to the PMS of controls by perturbing unilaterally the postcentral gyrus (right)

with an intensity of 0.16.
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Supporting information848

S1 Table. Top 20 most sensitive regions for perturbing MCS model. The first column849

corresponds to the KL distance between the PMS of the perturbed model, and the PMS of the850

target control state, after stimulating a given brain area. The second column shows the brain area851

in the Shen parcellation (Shen et al., 2013). The third column indicates the overlap between the852

brain area and the AAL structural parcellation (Tzourio-Mazoyer et al., 2002).853

S2 Table. Top 20 most sensitive regions for perturbing UWS model. The first column854

corresponds to the KL distance between the PMS of the perturbed model, and the PMS of the855

target control state, after stimulating a given brain area. The second column shows the brain area856

in the Shen parcellation (Shen et al., 2013). The third column indicates the overlap between the857

brain area and the AAL structural parcellation (Tzourio-Mazoyer et al., 2002).858
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