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Abstract15

We use open source human gut microbiome data to learn a microbial “language” model16

by adapting techniques from Natural Language Processing (NLP). Our microbial17

“language” model is trained in a self-supervised fashion (i.e., without additional external18

labels) to capture the interactions among different microbial taxa and the common19

compositional patterns in microbial communities. The learned model produces20

contextualized taxa representations that allow a single microbial taxon to be21

represented differently according to the specific microbial environment it appears in.22

The model further provides a sample representation by collectively interpreting different23

microbial taxa in the sample and their interactions as a whole. We show that, compared24

to baseline representations, our sample representation consistently leads to improved25

performance for multiple prediction tasks including predicting Irritable Bowel Disease26

(IBD) and diet patterns. Coupled with a simple ensemble strategy, it produces a highly27
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robust IBD prediction model that generalizes well to microbiome data independently28

collected from different populations with substantial distribution shift.29

We visualize the contextualized taxa representations and find that they exhibit30

meaningful phylum-level structure, despite never exposing the model to such a signal.31

Finally, we apply an interpretation method to highlight microbial taxa that are32

particularly influential in driving our model’s predictions for IBD.33

Author summary34

Human microbiomes and their interactions with various body systems have been linked35

to a wide range of diseases and lifestyle variables. To understand these links, citizen36

science projects such as the American Gut Project (AGP) have provided large37

open-source datasets for microbiome investigation. In this work we leverage such38

open-source data and learn a “language” model for human gut microbiomes using39

techniques derived from natural language processing. We train the “language” model to40

capture the interactions among different microbial taxa and the common compositional41

patterns that shape gut microbiome communities. By considering the entirety of taxa42

within a sample and their interactions, our model produces a representation that43

enables contextualized interpretation of individual microbial taxa within their microbial44

environment. We demonstrate that our sample representation enhances prediction45

performance compared to baseline methods across multiple microbiome tasks including46

prediction of Irritable Bowel Disease (IBD) and diet patterns. Furthermore, our learned47

representation yields a robust IBD prediction model that generalizes well to48

independent data collected from different populations. To gain insight into our model’s49

workings, we present interpretation results that showcase its ability to learn biologically50

meaningful representations.51

1 Introduction52

Identifiable features of the human microbiome and its interactions with various body53

systems have been associated with a wide range of diseases, including cancer [1],54

depression [2, 3] and inflammatory bowel disease [4–6]. As our knowledge of such55
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connections has advanced, research on the human microbiome has undergone a shift in56

focus, moving from establishing links to unraveling the underlying mechanisms and57

utilizing them to develop clinical interventions [7]. This transition has sparked interest58

in applying statistical methods to microbiome data, leading to the launch of open59

source projects such as the American Gut Project (AGP) and Human Food Project60

(HFP), which provide open source datasets for microbiome investigation [8]. These61

repositories offer data in the form of raw genetic reads, which, even after being62

processed into taxa counts, still present thousands of features per sample. Consequently,63

researchers often employ dimension reduction techniques to transform this data into a64

more manageable feature space.65

Significantly, the relevance of microbes to any particular analysis is often intertwined66

with the presence and potential interactions of other microbes in the environment.67

However, common techniques for reducing microbiome data dimensions — such as68

binning based on phylogenetic relationships [9, 10], clustering by gene similarity [11], or69

using PCA and other techniques [12] — don’t account for the interactions between taxa70

when producing lower dimensional representations of samples. Consequently, a71

significant challenge in microbiome data analysis is to produce lower dimension72

representations (embeddings) of samples that not only take into account the presence of73

specific taxa but also their interactions and overall functioning as a whole.74

Fortunately, a similar challenge has been investigated in the natural language75

processing (NLP) domain, which shares many similarities with the microbiome domain.76

Just as a sample comprises numerous microbes, a sentence consists of multiple words.77

Similarly, certain microbes hold greater relevance for specific analyses, while certain78

words are more important for different NLP tasks. Furthermore, just as a microbe can79

assume different functional roles under varying conditions, a word can possess different80

meanings in different contexts.81

Given the strong similarities between the two domains and the shared goal of82

producing quality lower-dimensional sample / sentence representations, there is a83

growing interest in applying NLP techniques to microbiome analysis. Notably, previous84

work has successfully applied NLP word embedding algorithms to microbiome data,85

generating taxa embeddings that have shown promising results surpassing the86

performance of traditional dimension reduction techniques like PCA for various87

November 7, 2024 3/37

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 8, 2024. ; https://doi.org/10.1101/2023.07.17.549267doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.17.549267
http://creativecommons.org/licenses/by/4.0/


microbiome prediction tasks [13].88

Specifically, [13] apply the GloVe (Global Vectors for Word Representation)89

embedding algorithm [14] to co-occurrence data derived from the AGP dataset. GloVe90

maps each taxon in the vocabulary to a vector representation, and optimizes those91

vectors such that the inner product of any two vectors will match the log of the92

co-occurrence rate of the associated pair of taxa.93

However, this prior work [13] has several limitations. First, the embeddings are94

learned based on aggregated global microbe-to-microbe co-occurrence statistics — in95

reality, microbe interactions can be dynamic and context-dependent. Second, given a96

sample containing many taxa, the embedding for the sample is computed by taking an97

abundance-weighted-average of the taxa embeddings without considering the98

context-specific roles of individual microbes in the sample. Similar to how the word ”fly”99

changes from an insect in ”I caught a fly” to an action in ”I like to fly” based on100

context, the role of a bacteria can also shift based on its context and interactions. For101

example, susceptibility to infection with Campylobacter jejuni was shown to depend on102

the species composition of the microbiota [15].103

Transformers, a powerful and flexible machine learning architecture originally104

developed for NLP [16], provides a potential solution to above issues. Past work [17–21]105

has applied transformers to biological data. However, such work has focused on learning106

a sequence encoder for representing DNA [21] or, more commonly, protein amino acid107

sequences [17–20] (e.g., each token might represent a k-mer in such a sequence). In108

contrast, we focus on representing entire microbial communities and their interactions,109

using each token to represent a single microbe in such a community.110

We present the first use of transformers to learn representations of microbiome at111

the taxa level by adapting “self-supervised” pre-training techniques from NLP, allowing112

the model to learn from vast amounts of unlabeled 16S microbiome data and mitigating113

the required amount of expensive labeled data. The pre-trained models can be viewed114

as a form of “language model” for microbiome data, capturing the inherent composition115

rules of microbial communities, which we can easily adapt to downstream prediction116

tasks with a smaller amount of labeled “finetuning” data.117

We show that using a transformer model pre-trained on data from the American Gut118

Project (AGP) as the starting point, we can achieve state of the art performance for119
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multiple downstream host phenotype prediction tasks including IBD disease state120

prediction. These results showcase the remarkable capability of the pre-trained121

microbial “language” model in generating enhanced representation of the microbiome.122

Focusing on the IBD prediction task, we demonstrate that our IBD prediction model,123

trained on the IBD data from the American Gut Project, with a simple ensemble124

strategy, exhibits robust generalization across several IBD studies with notable125

distributional shifts. We further visualize the contextualized taxa embeddings produced126

by our pre-trained language model and show that they capture biologically meaningful127

information. Finally, we analyze the learned IBD prediction model to identify taxa that128

strongly influence the model’s prediction.129

2 Materials and Methods130

We begin by introducing the general workflow of applying a transformer model for131

generating a sample embedding (Fig. 1) and explaining each step of the work flow,132

including a detailed look into the transformer architecture. We then explain how we133

perform the pretraining, followed by finetuning for specific down stream tasks (Fig. 2).134

This section will also explain how we identify those taxa that most affect the model’s135

classification decisions (Eq. 1) and conclude with a description of the datasets used in136

this paper.137

2.1 Transformers for microbiome data: workflow overview138

Since their introduction in 2017, [16] transformers have emerged as one of the most139

powerful classes of neural models invented to date, demonstrating state-of-the-art140

performance in many domains, though different tasks and data types require specific141

adaptations. Figure 1 summarizes the basic workflow of applying transformer to142

microbiome data for generating sample representations and context-sensitive taxa143

embeddings.144

Preprocessing steps.145

We assume that microbiome samples are represented as vectors of relative taxa146

abundances (Fig. 1A). To prepare our input for the transformer model, we perform a147
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Fig 1. Workflow of using a transformer model for generating sample
embedding/classification and context sensitive taxa embeddings. The inputs (A), which
are samples represented as relative abundance vectors, first go through the
preprocessing step (B) to generate text-like inputs (C) for the transformer model (D).
The transformer model generates a sample embedding (hcls) that goes through a sample
classification layer (E) to produce task specific sample level predictions (F). The
transformer model also generates context sensitive embedding (G) for each taxa in the
sample. The same taxa appearing in different samples can have different embedding
because of contextual differences.
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148

pre-process step (Fig. 1B) to transform the microbiome sample into ’text-like’ inputs149

(Fig. 1C). Specifically, we rank all the taxa present in the sample in decreasing order of150

abundance to create an ordered list of taxa (truncated to contain no more than the 512151

most abundant taxa). This step creates inputs that are analogous to texts, which are152

ordered lists of tokens of variable length capped at 512. Transformer computational153

costs increase with the square of their input lengths, so truncating inputs to at most 512154

helps ensure our method remains computationally efficient to run, while affecting less155

than 6% of the training data points.156

Similar to what is done in processing textual inputs, we prepend a special157

’classification (CLS)’ token to our input list. We use the ’CLS’ token’s representation as158

the final sample representation, which we treat as a summary of the full sample for159

classification purposes.160

The transformer model161

Fig. 1D provides a sketch of our transformer architecture for performing a sample162

classification task. The input to the transformer model is an ordered list of taxa. The163

list first goes through an embedding layer and a projection layer. The output of the164

projection layer then feeds into a sequence of multiple encoder blocks (we use 5 encoder165

blocks in this work), where each encoder block produces a new representation based on166

outputs of the previous block. Below we explain the individual components.167

Embedding layer. The embedding layer maps from discrete tokens/taxa to their168

corresponding vector representations. We use absolute positional embeddings [16] to169

encode the abundance-based taxa order into the taxa embeddings. We experimented170

with a variety of methods to incorporate abundance information, including different171

positional embedding methods such as relative key [22] and relative key query [23]172

methods, as well as using additional embedding dimensions to directly store abundance173

values. We found little difference between these methods, and hence opted for the174

absolute positional embeddings based on rank ordering for its relative simplicity.175

We preset the embedding layer using the 100-dimensional GloVe taxa embedding176

from [13], learned using the co-occurrence data from the AGP dataset, and keep it frozen177
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during training, except for the ’CLS’ token embedding, which is initialized randomly178

and trained during pre-training and fine-tuning. We do this to enable a more direct179

comparison of the contextualized embeddings with the original vocabulary embedding180

learned through GloVe, thus emphasizing the benefits of contextualized representations.181

Projection layer. The projection layer is a linear transformation from the182

vocabulary embedding space to the model’s hidden representation space. The projection183

layer allows the model to process inputs of different dimensionality than the model’s184

hidden space. In this work, the projection layer projects from the 100 dimensional185

vocabulary embedding into a richer 200 dimensional hidden space used by the model.186

Encoder blocks. This is where the transformer begins incorporating “context” into187

the representation of each ASV in the sample. Here we provide an intuitive explanation188

of the encoder block. Please see [16] for concrete mathematical definitions.189

An encoder block consists of a multi-headed self-attention layer [16] and a fully190

connected layer. The multi-headed attention layer computes a set of self-attention191

scores (one per head). Each attention head can read and write to different subspaces in192

the embeddings, and can track its own set of all-pairs interactions between every taxon193

in the sample. This could allow different heads to track different collections of194

statistical factors that influence community composition and metabolic functions.195

The network modulates how much ’attention’ is paid to each context taxon when196

updating the representation for a particular taxon in the sample. For example, in the197

context of language and given a sentence such as “I waved at the band, but they didn’t198

see me”, a properly trained encoder block could update the embedding of word “they”199

to reflect that it is referencing “the band”. Analogously, in microbiome data, if bacteria200

A performs a functional role conditioned on the presence of bacteria B, a properly201

trained encoder block could update the embedding for bacteria A to reflect the presence202

or absence of bacteria B.203

Classification head. We rely on a special ’CLS’ token to summarize information204

from all the other taxa / tokens. The CLS token then feeds into a classification head,205

which is a standard two-layer feed forward neural network with 200 hidden nodes, to206

produce a prediction for a specific classification task.207
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Fig 2. Training of the transformer model. Unlabeled microbiome data (A) is fed into a
randomly initialized transformer (B) as inputs to the self-supervised pre-training
process (C), which produces a pre-trained transformer that generates token-level
classifications (D). We replace the token-level classification head with a randomly
initialized CLS classification head (E), and use labeled microbiome data (F) to fine-tune
the CLS classification head (G), which produces the fine-tuned transformer (H).

2.2 Transformer training208

A critical challenge in applying complex deep learning models like transformers is the209

lack of large amounts of labeled training data. This can be addressed, however, using a210

technique referred to as self-supervised pre-training [24], which leverages readily211

available unlabeled data. In this work, we follow this approach and our training process212

is described in Fig. 2.213

Pre-training214

We begin with a randomly initialized transformer and first train a task-agnostic215

transformer using unlabeled data via self-supervised pre-training. Specifically, We use216

ELECTRA (Efficiently Learning an Encoder that Classifies Token Replacements217

Accurately) [25] to pre-train the encoder layers of the transformer model. We chose218

ELECTRA because it reaches comparable performance to other popular pre-training219

approaches (BERT [26] and its various flavors) while being computationally efficient.220

The ELECTRA pre-training approach has two steps. The first step trains a221

generator model by randomly masking out 15% of taxa in microbiome samples and222

training the generator model to predict the missing taxa based on the remainder of the223

sample. For the second step, we use the trained generator to produce perturbed224
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Fig 3. Electra pre-training diagram. A generator is trained to predict the masked taxa
from a sample. A discriminator is trained to differentiate taxa filled in by the generator
from the original taxa in the sample. Both use the same transformer architecture, and
have token level classification heads. The generator token level classification head
predicts the taxa ID whereas the discriminator token level classification head predicts
the input taxa as “Real” or “Modified”

microbiome samples by replacing all the masked taxa with generator predictions and225

train a discriminator model to differentiate the original taxa of the sample from those226

replaced by the generator. Essentially, the generator attempts to fill in the masks with227

taxa predictions and the discriminator takes in the predicted sequence and attempts to228

identify which taxa are modified by the generator.229

Both the generator and discriminator models have the same general architecture as230

shown in Fig. 3. To train the generator, the inputs are randomly corrupted by replacing231

15% of taxa IDs with a special ’mask’ ID, and the embedding of each masked taxa after232

the final encoder layer is fed into a classification head to predict the ID of the masked233

taxa.234

To train the discriminator model, we take the masked sample completed by the235

generator as input to the discriminator, and feed the embedding of each taxon after the236

final encoder layer into a classification head that differentiates ‘real’ (original taxa) from237

‘modified’ (generated taxa).238

At the end of pre-training, we have two transformer models, the generator and239

discriminator. Following the practice of the original work, we use the encoder of the240

pre-trained discriminator as the initial model to be fine tuned for downstream tasks.241
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Pre-training details. We perform pre-training on 18,480 gut microbiome samples242

from the American Gut Project Database using the ELECTRA scheme as described243

above. Specifically, the generator was trained for 240 epochs to predict masked microbe244

embeddings, and checkpoints of the model were saved every 30 epochs. The245

discriminator was then trained on the replacement prediction task for 120 epochs with246

replacements generated by the increasingly trained generator. Specifically, for every 15247

epochs of discriminator training, we replace the generator used to produce inputs for248

the discriminator with a stronger generator using the previously mentioned checkpoints.249

For example, the generator trained for 30 epochs provided inputs for the first 15 epochs250

of discriminator training. Then, for epochs 16-30, discriminator inputs were provided by251

the generator trained for 60 epochs. This was done to gradually ramp up the difficulty252

of the replacement prediction task.253

Architecture and pre-training choices254

We performed model architecture selection on the basis of pretraining results. We used255

16,000 AGP samples to perform the training for both the generator and discriminator256

models, and used the remaining 2,480 samples as a hold-out validation set to decide the257

model architecture as well as the stopping point for the pretraining. Specifically, we258

observed that fewer than 5 layers of encoders leads to reduced capacity for the259

discriminator to differentiate between real and imputed taxa, whereas a larger number260

of layers does not produce noticeable benefit. We additionally chose to stop the261

discriminator’s pretraining at 120 epochs because we observed its prediction accuracy262

on the holdout set stabilizing at that point, even when substituting in better-trained263

generators.264

Task specific fine-tuning265

Given a specific prediction task and the pre-trained discriminator, we remove the token266

classification head and add a new (randomly initialized) sequence classification head to267

the ’CLS’ token. In addition to the embedding layer, we also freeze the parameters of268

the encoder blocks such that only the classification head and the projection layer were269

trained during fine-tuning. In other words, the pre-trained discriminator encoders are270

used as a universal encoder for representing microbiome samples for different prediction271
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tasks. Empirically we have found this practice reduces overfitting and produces more272

robust generalization performance across different tasks.273

Fine-tuning details. We perform fine-tuning using Stochastic Gradient Descent274

(SGD) optimization with a learning rate of 0.01, momentum of 0.9, and the mean275

squared error loss, which we found gave better results than the more traditional276

negative cross-entropy loss, potentially because mean squared error is more robust to277

noise and outliers. Furthermore, during training, we perform data augmentation by278

randomly deleting 10% of the input taxa (meaning we randomly select one in ten of the279

taxa in the data point and remove them from the input sequence, similar to the method280

introduced by [27]) in each training sample to increase the robustness of the trained281

model and reduce overfitting. The SGD optimization is performed for a total of 50282

epochs on the training subsets of the labeled AGP data. As the labeled AGP datasets283

have highly unbalanced labels (Table 1), we oversample the minority class to ensure the284

model sees equal numbers of samples from each class. We use cross-validation on a285

subset of the IBD data to tune the hyperparameters (random deletion percentage for286

data augmentation and the choice of MSE vs the Cross Entropy loss) for fine-tuning.287

2.3 Feature ablation attribution: finding the important taxa288

We are interested in finding which microbial taxa the model relies on most for making a289

positive or negative classification of the samples. To this end, we use feature ablation290

attribution [28].291

Consider a sample X containing n microbial taxa, which the model predicts as being292

positive (for some property, e.g, IBD) with probability M(X). Feature ablation293

individually deletes each microbe taxon from the original X, then records how much294

each taxon’s removal reduces the model’s predicted probability of being positive. We295

average these changes across every sample in which a taxon appears, giving the296

expected change in classification probability caused by deleting the taxon in question297

from a random sample containing the taxon.298

Given a dataset D, let Dm denote the set of samples that contains a specific299

microbe m, we can calculate m’s attribution a(m) as:300

November 7, 2024 12/37

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 8, 2024. ; https://doi.org/10.1101/2023.07.17.549267doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.17.549267
http://creativecommons.org/licenses/by/4.0/


a(m) =
1

|Dm|
∑

X∈Dm

M(X)−M(X \m) (1)

where M(·) denotes the model’s probabilistic output for the given input and X \m301

denotes sample X with microbe m removed.302

2.4 Datasets303

We use three different datasets over the course of this study. We now describe them and304

summarize where they are used.305

American Gut Project (AGP). The American Gut Project (AGP) [8] is a306

crowdsourced microbiome data gathering effort. From it, we used 18,480 microbiome307

samples sequenced from the v4 hypervariable region of the 16S gene that were curated308

by the authors of [13]. The sample sequences come with metadata information on the309

subject the sample originates from, providing information about their diet, medical310

status on inflammatory bowel disease and more. We used all 18480 samples for our311

pre-training and relevant portions in our evaluation of downstream tasks. We now312

describe the three downstream tasks we ran experiments on.313

• Inflammatory Bowel Disease (IBD). This task aims to predict whether a given314

microbiome sample belongs to an individual diagnosed with IBD or not. Samples315

originating from individuals with IBD are the positive class. Label information316

was drawn from AGP metadata producing 435 samples from IBD positive317

individuals and 8,136 healthy controls.318

• Frequency of fruit in diet. This task aims to determine the frequency with which319

an individual consumes fruits based on their microbiome sample. The label is320

derived from AGP metadata, which ranks fruit consumption frequency on a one to321

five scale. For this experiment, samples ranked 3-5 are grouped to form the322

positive (frequent) class. Samples ranked 0-2 are considered negative (infrequent).323

Out of 6,540 AGP examples with fruit metadata, 4,026 were labeled positive.324

• Frequency of vegetable in diet. This task aims to determine the frequency with325

which an individual consumes vegetables based on their microbiome sample. In326
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the same manner as the fruit task, label information was drawn from the AGP327

metadata and frequency ranks from 0-5 were grouped to form the “frequent” (3-5)328

and “infrequent” (0-2) classes. Out of 6,549 AGP examples containing vegetable329

frequency metadata, 5654 were labeled positive.330

Table 1 provides the summary statistics for the three classification tasks. Table 2331

provides the run times and costs required to perform the pretraining and 5332

training runs on the relevant portions of AGP.333

Table 1. Three classification tasks derived from the AGP data and meta data.

Datasets AGP AGP-IBD AGP-Fruit AGP-Vegetable
# of samples 18480 8571 6540 6549

# of positive samples N/A 435 4026 5654
# of negative samples N/A 8136 1514 895

Halfvarson (HV). This dataset comes from an IBD study performed in [29]. We334

used the curated dataset produced in [13], which contains 564 microbiome samples, with335

510 of them IBD positive.336

HMP2. This dataset comes from an IBD study performed as part of phase 2 of the337

Human Microbiome Project [30]. Again, we used the curated dataset produced in [13],338

which contains 197 microbiome samples with 155 IBD positive examples.339

Experiment name Time (hr) Cost ($)
Pretraining 23.43 9.44
Fine-tuning IBD (5 runs) 12.20 4.92
Fine-tuning Fruit (5 runs) 13.98 5.63
Fine-tuning Vegetable (5 runs) 10.74 4.33

Table 2. Runtimes and estimate costs of different experiments performed in this paper.
All runtimes were measured on a single Nvidia A40 GPU, and costs are estimated based
on the hourly price of $0.403 required to rent an Nvidia A40 from vast.ai as of
03/11/2024.

Because AGP-IBD, AGP-Fruit and AGP-Vegetable all derive from the larger AGP340

dataset, there is overlap between the data used for model development and the341

evaluation data that provide the results in Table 3. Specifically, both the GLoVE342

embeddings from [13] and our own pretrained model are trained on the full 18,480343

sample AGP dataset. However, neither process has access to any of the labels for344

AGP-IBD, AGP-Fruit or AGP-Vegetable, only the unlabeled taxa sequences associated345

November 7, 2024 14/37

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 8, 2024. ; https://doi.org/10.1101/2023.07.17.549267doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.17.549267
http://creativecommons.org/licenses/by/4.0/


with the samples. Additionally, each dataset includes at least some patients from which346

multiple samples were taken. When both training and testing on AGP (as in Table 3),347

we employ patient–level blocking of data between training, validation, and testing sets.348

We ensure a fair comparison between our approach and the baselines by providing all349

baselines with equivalent access to both unsupervised and labeled data across every350

evaluation. Thus, any baseline with a representation learning phase will use the same351

18,480 AGP samples as our method.352

Data and code availability. All data and code used in this study are available at353

the following Dryad repository [31]: https://doi.org/10.5061/dryad.tb2rbp08p. File354

descriptions and usage instructions are available in the repository’s README.355

3 Results and Discussions356

3.1 Transformer representations outperform baselines on357

multiple microbiome tasks358

In this section, we empirically compare transformer-produced sample representations359

against a variety of baseline methods. Our baselines include Weighted, a simple360

non-contextualized abundance-weighted-averaging of the GloVe embeddings from [13],361

two classic dimension reduction based methods, and two deep learning based methods362

introduced by [32], each of which performs dimension reduction using the sample363

taxonomic abundance profiles as input features:364

• PCA: Principle Component Analysis, configured to retain at least 99% of the365

variance.366

• RandP: Random Gaussian Projection, relying on the Johnson-Lindenstrauss367

lemma [33] and implemented with scikit-learn [34] using eps 0.5.368

• AE: An MLP-based autoencoder architecture [35], with two sizes: AEBest (28.4M369

parameters) and AEMatch (7.2M parameters).370

• CAE: An convolutional neural network-based autoencoder architecture [36], with371

two sizes: CAEBest (12.3K parameters) and CAEMatch (102.6K parameters).372

We used a reduced training set to quickly sweep the full range of model373
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hyperparameters described in [32] for their effectiveness in our setting. We found that374

the variational autoencoder failed to produce useful results, regardless of375

hyperparameters, and thus omitted this architecture in the comparisons. For the two376

remaining architecture (AE and CAE), we selected two sizes: one that achieved the best377

validation performance using the reduced training set (CAEBest), and another that aims378

to match the parameter count of our own model (7.07M) as closely as possible.379

For the baselines from [32], we adapt that work’s random forest classification layer380

(and the range of hyperparameters to consider), because random forest most381

consistently achieved the best performance across the settings [32] explored.382

As mentioned previously, our method applies a standard multi-layered perceptron383

(MLP) classifier to the transformer-produced sample representations for classification.384

To allow Weighted to act as a more consistent comparison with our model, we replaced385

the random forest classifier used in prior work with the same MLP classifier. We386

evaluate our method and the baseline methods using the AGP dataset on three387

microbiome classification tasks.388

For each method and task, we perform 5 training runs. Our methods (meaning the389

Transformer and Weighted baseline) adopt the evaluation framework described in [32] to390

decide the stopping epoch: each run first blocks out 20% of the data to be used only for391

testing, then splits the remaining 80% into train and validation subsets to decide the392

best stopping epoch. Then, the 80% of non-test data is recombined into a single393

training set, and the model is re-finetuned from scratch on the non-test data using the394

discovered stopping epoch. Note that PCA, RandP, AE, and CAE baselines also use the395

train / validation split of non-test data from [32] to tune the random forest396

hyperparameters in addition to stopping epoch.397

We consider two different evaluation criteria: the Area Under the ROC Curve398

(AUROC) and the Area Under the Precision-Recall curve (AUPR). We select these two399

metrics because they allow us to rigorously compare the discriminative capabilities of400

our models and baselines on unbalanced classes, without having to specify a particular401

threshold for what we consider a “positive” or “negative” classification.402

Table 3 shows the performance of all methods on three tasks. We see that for the403

IBD and Fruit tasks, the transformer produced representation achieved substantially404

improved performance for both AUROC and AUPR. Performances on the Vegetable405
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task are much closer together across methods, especially between Weighted, PCA and406

Transformer, with PCA even marginally edging out Transformer’s AUPR score. This407

confirms that our approach learns a transformer model that produces robust sample408

representation that performs well across multiple prediction tasks.409

Table 3. Average performance (standard deviation) on Three Tasks

IBD Task Fruit Diet Task Vegetable Diet Task
AUROC AUPR AUROC AUPR AUROC AUPR

Weighted 0.646(.02) 0.089(.02) 0.585(.02) 0.674(.04) 0.695(.02) 0.930(.01)
PCA 0.571(.04) 0.082(.02) 0.576(.03) 0.689(.04) 0.700(.01) 0.932(.01)
RandP 0.621(.03) 0.095(.02) 0.540(.03) 0.653(.04) 0.669(.02) 0.926(.01)
AEBest 0.576(.05) 0.090(.02) 0.532(.03) 0.647(.05) 0.654(.02) 0.922(.01)
AEMatch 0.604(.06) 0.097(.03) 0.542(.01) 0.660(.04) 0.669(.02) 0.926(.01)
CAEBest 0.625(.03) 0.093(.03) 0.571(.03) 0.677(.05) 0.662(.06) 0.920(.03)
CAEMatch 0.607(.03) 0.086(.02) 0.563(.02) 0.675(.04)) 0.684(.02) 0.927(.01)
Transformer 0.687(.04) 0.121(.02) 0.619(.02) 0.707(.02) 0.700(.02) 0.928(.01)

3.2 Generalization to independent datasets410

One of the largest challenges in working with microbiome data is that there is large411

variance in the distributions and characteristics of data used from study to study.412

Therefore it is important to test how well our transformer based prediction models413

generalize on independent datasets that come from different population/sample414

distributions. To test this, we applied our transformer model trained for the IBD415

prediction task using the AGP data on the Halfvarson and HMP2 datasets from416

independent studies, without finetuning our model on any data from those independent417

studies.418

An issue that arises when performing such cross-study tests is the need to decide a419

stopping point during finetuning to pick the best model to use on the test data. In the420

previous single study experiments, using a held-out validation set for this purpose421

proved to be an effective strategy. However, due to the substantial distributional shift422

between the AGP data used for training/validation and the independent test set of423

Halfvarson and HMP2, using a held-out AGP validation set for stopping is observed to424

lead to poor and highly unstable results (shown by “Transformer (original)” in Table 4).425

We address this problem by introducing a simple ensemble strategy. During fine tuning,426

we train an ensemble of k classifiers using different random initializations of the427

classification head. Similar to the standard practice when applying transformer to428
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language [26], we found that each individual classifier only needs to be fine-tuned for a429

single epoch, i.e., going over all of the training once, and that training more epochs430

often leads to overfitting. In our experiments, we used ensemble size k = 10.431

We compare our ensemble performance with the baselines described above, and432

additionally strengthen the Weighted baseline of [13] by using an ensembled MLP433

classifier and reporting the best testing performance achieved by the Weighted baseline434

method during training. The baselines from [32] use random forest as the classifier and435

do not have a similar free parameter regarding their stopping condition.436

We report the performance of all methods averaged across five random runs with437

different initialization in Table 4. The results show that our method consistently438

achieves better performance on the Halfvarson dataset compared to all baselines, and439

comparable performance on the HMP2 dataset compared to the best performing of the440

Weighted baseline model selected using testing data. Although CAEBest and CAEMatch441

achieve slightly higher HMP2 performance, this comes at the cost of an enormous deficit442

on Halfvarson. These results illustrate our approach’s ability to consistently generalize443

well to out of distribution settings.444

Table 4. Average performance (standard deviation) on independent IBD datastes.
Weighted’s standard deviation is close to zero, thus omitted.

HMP2 Halfvarson
AUC AUPR AUC AUPR

Weighted (ensemble) 0.668 0.863 0.752 0.962
PCA 0.570 (.02) 0.795 (.01) 0.578 (.06) 0.931 (.01)
RandP 0.583 (.03) 0.813 (.02) 0.509 (.03) 0.909 (.01)
AEBest 0.618 (.02) 0.839 (.01) 0.519 (.02) 0.912 (.01)
AEMatch 0.644 (.02) 0.850 (.01) 0.499 (.05) 0.903 (.02)
CAEBest 0.697 (.01) 0.879 (.01) 0.426 (.04) 0.890 (.01)
CAEMatch 0.706 (.04) 0.883 (.04) 0.488 (.04) 0.906 (.01)
Transformer (original) 0.460 (.03) 0.773 (.02) 0.719 (.09) 0.957 (.02)
Transformer (ensemble) 0.682 (.02) 0.855 (.01) 0.805 (.01) 0.973 (.001)

In this section we take a closer look at the pre-trained language model to interpret445

the learned context-sensitive representations of microbial taxa.446
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Fig 4. t-SNE visualization of (a) original taxa vocabulary embeddings and (b)
contextualize taxa embeddings. Both are colored by phylum. See Figure 9 for
embedding spaces colored by phylum, class, order, and family.

3.3 Context sensitive taxa embedding captures biologically447

meaningful information448

We hypothesize that the superior predictive performance of our model is because our449

pre-trained language model transforms the input taxa embedding into a more450

meaningful latent space capturing context sensitive information (Fig. 1G), making451

biologically relevant features of the taxa more readily extracted and applied to452

downstream tasks.453

Phylogenetic information. We focus on the top 5,000 (out of 26,726) most frequent454

taxa from the IBD dataset and compute their averaged contextualized embeddings455

across every entry in the IBD dataset. Fig. 4 shows the t-SNE [37] visualization of the456

taxa using the original vocabulary embedding from [13] (a) and the averaged457

contextualized embeddings produced by our model (b), colored by the phylum of the458

taxa assigned by the DADA2 tool [38]. t-SNE is better suited to capturing the local459

neighborhood than the global structure, with points close together in the t-SNE460

visualization also generally being close together in the original embedding space.461

However, t-SNE gives a much worse impression of the overall (global) shape of the462

data [39].463

From Fig. 4, we see that the original embedding space in panel (a) displays a degree464

of clustering by phylum. In particular, Proteobacteria (red) tend to cluster in distinct465

manifolds from the rest of the taxa. However, most of the taxa lie in a single large but466

stratified manifold of mixed phyla. In contrast, the contextualized representations in467
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panel (b) appear to have more consistent clustering by phylum in this reduced 2-D468

space. We further verify that the contextualized embedding does cluster more strongly469

in the full-dimensional embedding spaces with Fig. 5 d), which shows that clusters in470

the contextualized embedding space consistently have less cross-phylum contamination471

(as shown by higher phylum purity) as compared to clusters in the GloVe embedding472

space, showing that the appearance of improved clustering in the contextualized473

embedding space is not simply a t-SNE projection artifact.474

To highlight the differences between the two representations, Figure 5 explores the475

mapping between them by highlighting the same group of taxa in both figures, where476

the left column shows the t-SNE visualization of the original taxa embeddings, and the477

right column shows the t-SNE of the contextualized taxa embeddings. From the478

comparison, we can see that the phyla that are well separated in the original embedding479

space as distinct manifolds are well preserved and further compacted into tighter480

clusters (see Fig. 5 a).481

The data in the original vocabulary embedding space appear to lie on long “strands”,482

rather than clump together in clusters. In particular, we see a large strand in the483

middle that contains most of the data, and seems to be made up of smaller “threads”484

very close together. The contextual representations appear to “unwind” the large strand485

so that the smaller threads can be extracted and grouped together in their own isolated486

clusters, which more cleanly separate by phylum (see Fig. 5 a). This highlights the487

capability of self-supervised representation learning to flexibly extract important488

features from unlabeled data.489

Our model’s ability to cluster taxa by phylum seems to degrade for taxa whose490

vocabulary embeddings are too close together. Figure 5 b) highlights taxa in a less491

compact region of the original embedding space, and highlights the same taxa in the492

contextualized embedding space, where the taxa show reasonable separation by phylum.493

In comparison, Figure 5 c) highlights a more compact region of the vocabulary space, as494

well as the corresponding taxa in the contextualized embedding space, which appear to495

show worse separation than we see in Figure 5 b).496

Metabolic pathways. Similar to [13], we investigate whether our contextualized497

embedding dimensions correlate with known metabolic pathways. We map the498
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Fig 5. Mapping between the original vocabulary and contextualized embedding spaces.
Figure a) shows how the contextualized embeddings can extract “threads” of a single
phylum from the vocabulary embedding space, and map those taxa to tight clusters in
the contextualized embeddings. Figure b) shows that the mapping to the contextual
embedding space is able to more cleanly separate taxa by phylum. Figure c) contrasts
Figure b) and shows that taxa which are very tightly clustered in the vocabulary
embeddings may not map to meaningful clusters or phylum-level separation in the
contextualized embedding space. Figure d) shows cluster purity versus K for K-means
clustering in the vocabulary and contextualized embedding spaces, showing the tighter
clustering of the embedding space isn’t simply an artifact of the t-SNE dimension
reduction.
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vocabulary taxa ASVs to their nearest neighbors in the KEGG database [40] using499

Piphillin [41], following the method used by [13]. Metabolic pathways for each mapped500

ASV are then extracted using the KEGGREST API [42], leading to a total of 141501

pathways. Each ASV is represented using a one-hot encoding of the 141 metabolic502

pathways, assigning a 0 if the ASV is not involved in the pathway, and a 1 if it is503

involved. We limit the following analysis to ASVs involved in at least one of the 141504

pathways, resulting in 11,893 ASVs, each represented by a 141-dimension binary vector505

indicating their involvement in the extracted pathways. We have seven fewer pathways506

than were present in the metabolic pathways analysis of [13], due to changes in the507

KEGG [40] database.508

We compute the Spearman’s correlation between each of our contextualized509

embedding dimensions and the 141 extracted metabolic pathways, producing a 200 by510

141 correlation matrix. The same process is repeated for the 100-dimensional GloVe511

embedding, producing a 100 by 141 correlation matrix. Figure6 shows both sets of512

correlations using heatmaps. We can see that, although both embeddings show clear513

correlations with some metabolic pathways, the contextualized embedding dimensions514

capture stronger correlation, signified by the darker blue and red colors in the heatmap.515

To assess the statistical significance of the observed correlations, we applied a516

permutation test with 1,000 permutations. This test generates a distribution of517

correlations under the null hypothesis that the embeddings and the pathways are518

independent. By comparing the observed correlations to this null distribution, we519

filtered out correlations that were not statistically significant. We then compare the520

strengths of the remaining statistically significant correlations found for our521

contextualized embeddings to those found for the GloVe embeddings, by contrasting the522

distribution of the filtered correlation magnitudes from both embeddings in Figure 7,523

which visually shows that the normalized histograms of the contextualized embedding524

dimensions are shifted to the right compared to that of the GloVe embedding525

dimensions.526

To verify that the two distributions of correlation magnitude are indeed different, we527

perform two different non-parametric statistical tests: the Kolmogorov–Smirnov528

two-sample test [43,44] and the Epps–Singleton two-sample test [45] using SciPy’s [46]529

implementation. Both tests reject the null hypothesis that the two distributions are530
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Contextualized GloVe

Fig 6. Heatmaps showing how strongly each embedding dimension (y-axis) correlates
with each metabolic pathway (x-axis), for both our contextualized embeddings and the
prior GloVe embeddings.

equivalent with p-values of 4.19× 10−26 and 9.71× 10−50, respectively.531

3.4 Understanding taxa importance for IBD prediction532

In this part, we focus on the fine-tuned IBD ensemble prediction model to understand533

what taxa play critical roles in our model’s IBD prediction by studying their attribution.534

We first consider the 5,000 most frequent taxa shown in Figure 4 and compute for each535

taxon its average attribution toward the model’s IBD prediction using the AGP IBD536

data, as described in Sec. 2.3.537

Figure 8 (a) presents the t-SNE visualizations of the contextualized embeddings538

colored by taxa attribution strength. The visualization shows multiple clusters of high539

and low attribution taxa, indicating that local neighborhood distances in the original540

embedding space reflect taxa attributions. It is important to note that the541

contextualized embeddings generated by our pre-trained language model have never542

been trained on any IBD labels, yet their local structure appears to reflect taxa543

attributions, suggesting that our pre-trained language model indeed captures544

meaningful biological information.545

Next, we wish to find the most important taxa for our model’s correct IBD546

November 7, 2024 23/37

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 8, 2024. ; https://doi.org/10.1101/2023.07.17.549267doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.17.549267
http://creativecommons.org/licenses/by/4.0/


Fig 7. Distribution of the magnitude of statistically significant correlations between
embedding dimensions and metabolic pathways, for both contextualized embeddings
and the prior GloVe embeddings.

Fig 8. t-SNE visualization of the contextualized embeddings colored by attribution to
IBD. The taxa associated with IBD are visualized in lighter color (yellow) and the taxa
associated with no-disease state are in dark purple.
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classifications across different study populations. We therefore filter the data to focus547

on samples for which our model makes confident and correct predictions. Specifically,548

we filter each of the three IBD datasets (American Gut Project (AGP) [8], the549

curated [13] versions of the Human Microbiome Project phase 2, (HMP2) [30], and550

Halfvarson (HV) [29]) and include only correctly classified samples with a predicted551

probability ranking within the top 50%, regardless of being positive or negative. To552

focus on reasonably common microbial taxa, we also filter out taxa that appear in less553

than 5% of all samples across all three IBD datasets (AGP, HMP2 and HV).554

To allow for independent validation of our attribution estimation, we combine HV555

and HMP2, into a single dataset (HV+HMP2), filter for correct confidence again, and556

compute the average attribution on APG and HV+HMP2 separately, and reduce noise557

by filtering out any taxa that appear in less than five samples in each dataset. The558

attribution for a taxon is considered validated if it has two estimates from AGP and559

HV+HMP2 respectively, and they have the same sign. Of the 5,716 taxa that appear in560

HV+HMP2, 695 appear in at least 5% of the combined IBD-labeled data points, 530 of561

those appear in at least five confident and correct samples in HV+HMP2 (and have562

been assigned attributions), and 399 of those taxa have matching signs in their563

attributions between the AGP data and the HV+HMP2 data. This ensures that we564

only identify these microbial taxa that have consistent impact on the model in two565

different populations. We then compute the average attribution of all validated taxa566

across the combined (filtered) datasets. We show the 10 taxa most attributed to567

negative IBD classification (Table 6) and the 10 taxa most attributed to positive IBD568

classification (Table 5).569

Table 5. Top 10 Taxa associated with negative (non-disease) IBD classification
ordered by attribution strength.
Phylum Class Order Family Genus

Firmicutes Clostridia Clostridiales Lachnospiraceae NA
Proteobacteria Gammaproteobacteria Betaproteobacteriales Burkholderiaceae Sutterella
Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotella
Proteobacteria Gammaproteobacteria Pasteurellales Pasteurellaceae NA
Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotella 9
Fusobacteria Fusobacteriia Fusobacteriales Fusobacteriaceae Fusobacterium
Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus
Bacteroidetes Bacteroidia Bacteroidales Muribaculaceae NA
Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides
Firmicutes Clostridia Clostridiales Lachnospiraceae NA
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Table 6. Top ten Taxa associated with positive IBD classification ordered by
attribution strength.
Phylum Class Order Family Genus

Proteobacteria Gammaproteobacteria Betaproteobacteriales Burkholderiaceae Sutterella
Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminiclostridium 5
Bacteroidetes Bacteroidia Bacteroidales Tannerellaceae Parabacteroides
Firmicutes Clostridia Clostridiales Lachnospiraceae NA
Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcaceae UCG-9

Firmicutes Clostridia Clostridiales NA NA
Firmicutes Clostridia Clostridiales Ruminococcaceae Candidatus Soleaferrea
Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnoclostridium
Firmicutes NA NA NA NA
Firmicutes Clostridia Clostridiales Lachnospiraceae Anaerostipes

Comparing identified taxa to existing data repository570

We compared the top 10 ASV attributions to IBD and the healthy cohort (20 ASVs571

total) found with our model to 284 markers taxa identified in the data repository for572

the human gut microbiota [47] across three projects (NCBI PRJEB7949 (95 entries),573

NCBI PRJNA368966 (32 entries), NCBI PRJNA3x85949 (157 entries)) comparing IBD574

and healthy controls (query request:575

gmrepo.humangut.info/phenotypes/comparisons/D006262/D015212).576

Due to the difference in technologies between all the datasets, we compare the577

markers across the studies at the genus level. In our study, seven ASVs were not578

resolved beyond the family level, and are therefore excluded from this analysis. Further,579

two of our ASVs belonged to sub-clade of a genus, we considered them belonging to the580

genus of the clade: specifically Prevotella 9 (which was considered Prevotella in this581

analysis) and Ruminoccocus 1 (which was considered Ruminoccocus in this analysis).582

Out of our 13 ASVs, four ASVs belong to genera Prevotella, Paraprevotella, and583

Lachnoclostridium, which were also found to be consistently associated with the healthy584

cohort in the data repository for the human gut microbiota (DRHM). Therefore they585

constitute consistent markers with the previous literature. One ASV, belonging to the586

genus Atopobium, was only associated with IBD in both our study and the DRHM, also587

constituting a markers of IBD consistent across our study and the database. Out of the588

remaining eight, we found two new ASVs markers that were not previously identified:589

the genera Allisonella (Associated with health) and Methanosphaera (associated with590

IBD).591

Finally, the six remaining ASVs showed mixed patterns in the DRHM, where some592
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taxa of the genus seem to be a marker for the IBD and other taxa are enriched in593

healthy individuals. Out of these six genera, three markers mostly agree with our594

results: Bacteroides, which was associated with healthy individuals in 17/20 taxa,595

Ruminococcus showing the same pattern in 5/9 taxa, and Rosebduria also with the596

same pattern for 2/3 taxa. The other three genera show the opposite trend when597

comparing the DRHM markers with our work. Most notably, Lactobacillus is associated598

with the healthy cohort in our analysis, while 8/9 markers from this genus are enriched599

in the IBD cohort in the DRHM. We see more nuanced results for the genera600

Parabacteroides where 3/7 markers are associated with the control cohort in the DRHM601

(and a marker of IBD for us), as well as Oscillibacter, associated with the healthy602

individuals in 2/3 taxa in the database, which contradict our finding.603

In summary, out of the 13 ASVs resolved at the genus level from our study, our604

analysis revealed two new markers not included in the DRHM. For five of these ASVs,605

our result is consistent with the DRHM markers. For the remaining three, we see mixed606

results. Here, the taxonomic resolution of our 16S becomes a limiting factor as these607

genera show different behavior at the species level.608

4 Conclusion and Future Work609

We apply recent natural language processing techniques to learn a language model for610

microbiomes from public domain human gut microbiome data. The pre-trained611

language model provides powerful contextualized representations of microbial612

communities and can be broadly applied as a starting point for any downstream613

prediction tasks involving human gut microbiome. In this work, we show the power of614

the pre-trained model by fine-tuning the representations for IBD disease state and diet615

classification tasks, achieving strong performance in all tasks. For IBD, our ensemble616

model demonstrates competitive performance that is robust across study populations617

even with strong distributional shifts.618

We visualize the contextualized taxa embedding learned by our pre-trained language619

model and show that it captures biologically meaningful information including620

phylogenetic structure and IBD association without any prior training on such signals.621

We employ an interpretability technique to investigate the basis for our models’ IBD622
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classification decisions and identify sets of taxa that negatively and positively attribute623

to the model’s predictions. We find known biomarkers of both IBD and gut homeostasis,624

as well as evidence that our embeddings learn to separate ASVs by their pathogenicity,625

even among ASVs sharing the same family and genus level phylogenetic classifications.626

Our investigation suggests that NLP techniques like deep language models represent627

a promising direction to better understand the microbiome. However, our effort is628

limited in both volume and breath of the data that is used for training the microbial629

language model. Currently, our pre-trained model is primarily optimized for tasks630

involving human gut microbiomes based on 16S data. Despite this, the utility of our631

model extends beyond its initial configuration. With adjustments, our methodology can632

be highly versatile, offering numerous paths for generalization.633

Specifically, it is possible to adapt our pre-trained language model directly to other634

sources and types of microbiome data, such as taxonomic profiles of Metagenome635

Assembled Genomes (MAGs), by replacing the initial embedding layer with one that is636

fine-tuned using the new source of data. Strong precedents in natural language637

processing support the feasibility of this approach, where pretrained models from one638

domain have been shown to lead to predictable transfer when adapted to another639

domain (e.g., from Python code to natural text [48], or from natural text to image640

classification [49]). Finally, we are enthusiastic about the potential to develop a unified641

model by training on a broad spectrum of microbiome data, encompassing various642

sources and modalities, to create a generalized, versatile microbiome model capable of643

instantaneous adaptation to the varied data distributions encountered in different644

studies and methodologies across the microbiome research landscape.645
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Fig 9. Vocabulary and contextualized embedding spaces colored by different levels of
the phylogenetic hierarchy: phylum, class, order, and family.
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Table 7. Top 10 non-disease associated ASVs. Entries match those in Table 5.

TACGTATGGTGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACG
GATGGGCAAGTCTGATGTGAAAACCCGGGGCTCAACCCCGGGACTGCATTGGAA
ACTGTTCATCTAGAGTGCTGGAGAGGTAAGTG
TACGGAGGATCCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGAGCGTAGATG
GGTTGTTAAGTCAGTTGTGAAAGTTTGCGGCTCAACCGTAAAATTGCAATTGAT
ACTGGCAGTCTTGAGTACAGTTGAGGTAGGCG
TACGGAGGATGCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGAGCGCAGGCT
GCGAGGCAAGTCAGCGGTCAAATGTCGGGGCTCAACCCCGGCCTGCCGTTGAAA
CTGTCCTGCTAGAGTTCGAGTGAGGTATGCGG
TACGTATGTCACGAGCGTTATCCGGATTTATTGGGCGTAAAGCGCGTCTAGGTG
GTTATGTAAGTCTGATGTGAAAATGCAGGGCTCAACTCTGTATTGCGTTGGAAA
CTGTATAACTAGAGTACTGGAGAGGTAAGCGG
TACGTAGGTGGCGAGCGTTGTCCGGATTTATTGGGCGTAAAGGGAACGCAGGCG
GTCTTTTAAGTCTGATGTGAAAGCCTTCGGCTTAACCGAAGTAGTGCATTGGAA
ACTGGAAGACTTGAGTGCAGAAGAGGAGAGTG
TACGGAAGGTCCGGGCGTTATCCGGATTTATTGGGTTTAAAGGGAGCGTAGGCC
GGAGATTAAGCGTGTTGTGAAATGTAGACGCTCAACGTCTGCACTGCAGCGCGA
ACTGGTTTTCTTGAGTACGCACAAAGTGGGCG
TACGGAGGGTGCGAGCGTTAATCGGAATAACTGGGCGTAAAGGGCACGCAGGCG
GACTTTTAAGTGAGGTGTGAAAGCCCCGGGCTTAACCTGGGAATTGCATTTCAG
ACTGGGAGTCTAGAGTACTTTAGGGAGGGGTA
TACGGAAGGTTCGGGCGTTATCCGGATTTATTGGGTTTAAAGGGAGCGTAGGCC
GTTTGGTAAGCGTGTTGTGAAATGTAGGAGCTCAACTTCTAGATTGCAGCGCGA
ACTGTCAGACTTGAGTGCGCACAACGTAGGCG
TACGTAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGTGCGCAGGCG
GTTCTGTAAGACAGATGTGAAATCCCCGGGCTCAACCTGGGAATTGCATTTGTG
ACTGCAGGACTAGAGTTCATCAGAGGGGGGTG
TACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACG
GCATGGCAAGCCAGATGTGAAAGCCCGGGGCTCAACCCCGGGACTGCATTTGGA
ACTGTCAGGCTAGAGTGTCGGAGAGGAAAGCG
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Table 8. Top 10 disease associated ASVs. Entries match those in Table 6.

TACGTAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGTGCGCAGGCG
GTTCTGTAAGATAGATGTGAAATCCCCGGGCTCAACCTGGGAATTGCATATATG
ACTGCAGAACTTGAGTTTGTCAGAGGAGGGTG
TACGTAGGGAGCGAGCGTTGTCCGGATTTACTGGGTGTAAAGGGTGCGTAGGCG
GATTGGCAAGTCAGAAGTGAAATCCATGGGCTTAACCCATGAACTGCTTTTGAA
ACTGTTAGTCTTGAGTGAAGTAGAGGTAGGCG
TACGGAGGATCCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGTGCGTAGGCG
GCCCCTTAAGTCAGCGGTGAAAGTCTGTGGCTCAACCATAGAATTGCCGTTGAA
ACTGGGAGGCTTGAGTATGTTTGAGGCAGGTG
TACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGTGCGTAGGTG
GCAAGGCAAGTCAGATGTGAAAGCCCGGGGCTCAACCCCGGTACTGCATTTGAA
ACTGTCTGGCTAGAGTGCAGGAGAGGTAAGCG
TACGTAGGTGGCAAGCGTTGTCCGGATTTACTGGGTGTAAAGGGCGAGTAGGCG
GGCATGCAAGTCAGATGTGAAATCTGGGGGCTTAACCCCCAAACTGCATTTGAA
ACTGTGTGTCTTGAGTGATGGAGAGGCAGGCG
TACGTAGGGGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGTGCGTAGGCG
GCCTTACAAGTTGGATGTGAAATCCCCGTGCTTAACATGGGAACTGCATCCAAA
ACTGTAGGGCTTGAGTGTGGAAGAGGTAAGTG
TACGTAGATGGCGAGCGTTGTCCGGAATTACTGGGTGTAAAGGGAGTGTAGGCG
GGCTGGTAAGTTGAATGTGAAACCTTCGGGCTCAACCCGGAGCGTGCGTTCAAA
ACTGCTGGTCTTGAGTGAAGTAGAGGCAGGCG
TACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACG
GCGATGCAAGCCAGATGTGAAAGCCCGGGGCTCAACCCCGGGACTGCATTTGGA
ACTGCGTGGCTGGAGTGTCGGAGAGGCAGGCG
TACGTAGGGGGCAAGCGTTGTCCGGAATTACTGGGCGTAAAGGGCGCGTAGGCG
GCCTGCCAAGTCTTGTGTGAAAACCCTGGTTTCAAGCCAGGAGGTGCACGGGAAA
CTGGCGGGCTTGAGTGCAGGAGAGGGAAGTG
TACGTAGGGGGCAAGCGTTATCCGGAATTACTGGGTGTAAAGGGTGCGTAGGTG
GTATGGCAAGTCAGAAGTGAAAACCCAGAGCTTAACTCTGGGACTGCTTTTGAA
ACTGTCAGACTGGAGTGCAGGAGAGGTAAGCG
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