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Abstract

We use open source human gut microbiome data to learn a microbial “language” model
by adapting techniques from Natural Language Processing (NLP). Our microbial
“language” model is trained in a self-supervised fashion (i.e., without additional external
labels) to capture the interactions among different microbial taxa and the common
compositional patterns in microbial communities. The learned model produces
contextualized taxa representations that allow a single microbial taxon to be
represented differently according to the specific microbial environment it appears in.
The model further provides a sample representation by collectively interpreting different
microbial taxa in the sample and their interactions as a whole. We show that, compared
to baseline representations, our sample representation consistently leads to improved
performance for multiple prediction tasks including predicting Irritable Bowel Disease

(IBD) and diet patterns. Coupled with a simple ensemble strategy, it produces a highly
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robust IBD prediction model that generalizes well to microbiome data independently
collected from different populations with substantial distribution shift.

We visualize the contextualized taxa representations and find that they exhibit
meaningful phylum-level structure, despite never exposing the model to such a signal.
Finally, we apply an interpretation method to highlight microbial taxa that are

particularly influential in driving our model’s predictions for IBD.

Author summary

Human microbiomes and their interactions with various body systems have been linked
to a wide range of diseases and lifestyle variables. To understand these links, citizen
science projects such as the American Gut Project (AGP) have provided large
open-source datasets for microbiome investigation. In this work we leverage such
open-source data and learn a “language” model for human gut microbiomes using
techniques derived from natural language processing. We train the “language” model to
capture the interactions among different microbial taxa and the common compositional
patterns that shape gut microbiome communities. By considering the entirety of taxa
within a sample and their interactions, our model produces a representation that
enables contextualized interpretation of individual microbial taxa within their microbial
environment. We demonstrate that our sample representation enhances prediction
performance compared to baseline methods across multiple microbiome tasks including
prediction of Irritable Bowel Disease (IBD) and diet patterns. Furthermore, our learned
representation yields a robust IBD prediction model that generalizes well to
independent data collected from different populations. To gain insight into our model’s
workings, we present interpretation results that showcase its ability to learn biologically

meaningful representations.

1 Introduction

Identifiable features of the human microbiome and its interactions with various body
systems have been associated with a wide range of diseases, including cancer [1],

depression [23] and inflammatory bowel disease [4H6]. As our knowledge of such
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connections has advanced, research on the human microbiome has undergone a shift in
focus, moving from establishing links to unraveling the underlying mechanisms and
utilizing them to develop clinical interventions |7]. This transition has sparked interest
in applying statistical methods to microbiome data, leading to the launch of open
source projects such as the American Gut Project (AGP) and Human Food Project
(HFP), which provide open source datasets for microbiome investigation [8]. These
repositories offer data in the form of raw genetic reads, which, even after being
processed into taxa counts, still present thousands of features per sample. Consequently,
researchers often employ dimension reduction techniques to transform this data into a
more manageable feature space.

Significantly, the relevance of microbes to any particular analysis is often intertwined
with the presence and potential interactions of other microbes in the environment.
However, common techniques for reducing microbiome data dimensions — such as
binning based on phylogenetic relationships [9,/10], clustering by gene similarity [11], or
using PCA and other techniques [12] — don’t account for the interactions between taxa
when producing lower dimensional representations of samples. Consequently, a
significant challenge in microbiome data analysis is to produce lower dimension
representations (embeddings) of samples that not only take into account the presence of
specific taxa but also their interactions and overall functioning as a whole.

Fortunately, a similar challenge has been investigated in the natural language
processing (NLP) domain, which shares many similarities with the microbiome domain.
Just as a sample comprises numerous microbes, a sentence consists of multiple words.
Similarly, certain microbes hold greater relevance for specific analyses, while certain
words are more important for different NLP tasks. Furthermore, just as a microbe can
assume different functional roles under varying conditions, a word can possess different
meanings in different contexts.

Given the strong similarities between the two domains and the shared goal of
producing quality lower-dimensional sample / sentence representations, there is a
growing interest in applying NLP techniques to microbiome analysis. Notably, previous
work has successfully applied NLP word embedding algorithms to microbiome data,
generating taxa embeddings that have shown promising results surpassing the

performance of traditional dimension reduction techniques like PCA for various

November 7, 2024


https://doi.org/10.1101/2023.07.17.549267
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.17.549267; this version posted November 8, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

88

89

90

91

92

93

9

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

available under aCC-BY 4.0 International license.

microbiome prediction tasks [13].

Specifically, [13] apply the GloVe (Global Vectors for Word Representation)
embedding algorithm [14] to co-occurrence data derived from the AGP dataset. GloVe
maps each taxon in the vocabulary to a vector representation, and optimizes those
vectors such that the inner product of any two vectors will match the log of the
co-occurrence rate of the associated pair of taxa.

However, this prior work [13]| has several limitations. First, the embeddings are
learned based on aggregated global microbe-to-microbe co-occurrence statistics — in
reality, microbe interactions can be dynamic and context-dependent. Second, given a
sample containing many taxa, the embedding for the sample is computed by taking an
abundance-weighted-average of the taxa embeddings without considering the
context-specific roles of individual microbes in the sample. Similar to how the word ”fly”
changes from an insect in ”I caught a fly” to an action in "I like to fly” based on
context, the role of a bacteria can also shift based on its context and interactions. For
example, susceptibility to infection with Campylobacter jejuni was shown to depend on
the species composition of the microbiota [15].

Transformers, a powerful and flexible machine learning architecture originally
developed for NLP [16], provides a potential solution to above issues. Past work [17H21]
has applied transformers to biological data. However, such work has focused on learning
a sequence encoder for representing DNA [21] or, more commonly, protein amino acid
sequences [17H20] (e.g., each token might represent a k-mer in such a sequence). In
contrast, we focus on representing entire microbial communities and their interactions,
using each token to represent a single microbe in such a community.

We present the first use of transformers to learn representations of microbiome at
the taxa level by adapting “self-supervised” pre-training techniques from NLP, allowing
the model to learn from vast amounts of unlabeled 16S microbiome data and mitigating
the required amount of expensive labeled data. The pre-trained models can be viewed
as a form of “language model” for microbiome data, capturing the inherent composition
rules of microbial communities, which we can easily adapt to downstream prediction
tasks with a smaller amount of labeled “finetuning” data.

We show that using a transformer model pre-trained on data from the American Gut

Project (AGP) as the starting point, we can achieve state of the art performance for
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multiple downstream host phenotype prediction tasks including IBD disease state
prediction. These results showcase the remarkable capability of the pre-trained
microbial “language” model in generating enhanced representation of the microbiome.
Focusing on the IBD prediction task, we demonstrate that our IBD prediction model,
trained on the IBD data from the American Gut Project, with a simple ensemble
strategy, exhibits robust generalization across several IBD studies with notable
distributional shifts. We further visualize the contextualized taxa embeddings produced
by our pre-trained language model and show that they capture biologically meaningful
information. Finally, we analyze the learned IBD prediction model to identify taxa that

strongly influence the model’s prediction.

2 Materials and Methods

We begin by introducing the general workflow of applying a transformer model for
generating a sample embedding (Fig. [1)) and explaining each step of the work flow,
including a detailed look into the transformer architecture. We then explain how we
perform the pretraining, followed by finetuning for specific down stream tasks (Fig. .
This section will also explain how we identify those taxa that most affect the model’s
classification decisions (Eq. [I) and conclude with a description of the datasets used in

this paper.

2.1 Transformers for microbiome data: workflow overview

Since their introduction in 2017, |16] transformers have emerged as one of the most
powerful classes of neural models invented to date, demonstrating state-of-the-art
performance in many domains, though different tasks and data types require specific
adaptations. Figure [1| summarizes the basic workflow of applying transformer to
microbiome data for generating sample representations and context-sensitive taxa

embeddings.

Preprocessing steps.

We assume that microbiome samples are represented as vectors of relative taxa

abundances (Fig. ) To prepare our input for the transformer model, we perform a
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Fig 1. Workflow of using a transformer model for generating sample
embedding/classification and context sensitive taxa embeddings. The inputs (A), which
are samples represented as relative abundance vectors, first go through the
preprocessing step (B) to generate text-like inputs (C) for the transformer model (D).
The transformer model generates a sample embedding (h.s) that goes through a sample
classification layer (E) to produce task specific sample level predictions (F). The
transformer model also generates context sensitive embedding (G) for each taxa in the
sample. The same taxa appearing in different samples can have different embedding
because of contextual differences.
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pre-process step (Fig. ) to transform the microbiome sample into 'text-like’ inputs
(Fig. ) Specifically, we rank all the taxa present in the sample in decreasing order of
abundance to create an ordered list of taxa (truncated to contain no more than the 512
most abundant taxa). This step creates inputs that are analogous to texts, which are
ordered lists of tokens of variable length capped at 512. Transformer computational
costs increase with the square of their input lengths, so truncating inputs to at most 512
helps ensure our method remains computationally efficient to run, while affecting less
than 6% of the training data points.

Similar to what is done in processing textual inputs, we prepend a special
"classification (CLS)’ token to our input list. We use the ’CLS’ token’s representation as
the final sample representation, which we treat as a summary of the full sample for

classification purposes.

The transformer model

Fig. provides a sketch of our transformer architecture for performing a sample
classification task. The input to the transformer model is an ordered list of taxa. The
list first goes through an embedding layer and a projection layer. The output of the
projection layer then feeds into a sequence of multiple encoder blocks (we use 5 encoder
blocks in this work), where each encoder block produces a new representation based on

outputs of the previous block. Below we explain the individual components.

Embedding layer. The embedding layer maps from discrete tokens/taxa to their
corresponding vector representations. We use absolute positional embeddings [16] to
encode the abundance-based taxa order into the taxa embeddings. We experimented
with a variety of methods to incorporate abundance information, including different
positional embedding methods such as relative key |22] and relative key query [23]
methods, as well as using additional embedding dimensions to directly store abundance
values. We found little difference between these methods, and hence opted for the
absolute positional embeddings based on rank ordering for its relative simplicity.

We preset the embedding layer using the 100-dimensional GloVe taxa embedding

from [13], learned using the co-occurrence data from the AGP dataset, and keep it frozen
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during training, except for the "CLS’ token embedding, which is initialized randomly
and trained during pre-training and fine-tuning. We do this to enable a more direct
comparison of the contextualized embeddings with the original vocabulary embedding

learned through GloVe, thus emphasizing the benefits of contextualized representations.

Projection layer. The projection layer is a linear transformation from the
vocabulary embedding space to the model’s hidden representation space. The projection
layer allows the model to process inputs of different dimensionality than the model’s
hidden space. In this work, the projection layer projects from the 100 dimensional

vocabulary embedding into a richer 200 dimensional hidden space used by the model.

Encoder blocks. This is where the transformer begins incorporating “context” into
the representation of each ASV in the sample. Here we provide an intuitive explanation
of the encoder block. Please see |16] for concrete mathematical definitions.

An encoder block consists of a multi-headed self-attention layer [16] and a fully
connected layer. The multi-headed attention layer computes a set of self-attention
scores (one per head). Each attention head can read and write to different subspaces in
the embeddings, and can track its own set of all-pairs interactions between every taxon
in the sample. This could allow different heads to track different collections of
statistical factors that influence community composition and metabolic functions.

The network modulates how much ’attention’ is paid to each context taxon when
updating the representation for a particular taxon in the sample. For example, in the
context of language and given a sentence such as “I waved at the band, but they didn’t
see me”, a properly trained encoder block could update the embedding of word “they”
to reflect that it is referencing “the band”. Analogously, in microbiome data, if bacteria
A performs a functional role conditioned on the presence of bacteria B, a properly
trained encoder block could update the embedding for bacteria A to reflect the presence

or absence of bacteria B.

Classification head. We rely on a special "CLS’ token to summarize information
from all the other taxa / tokens. The CLS token then feeds into a classification head,
which is a standard two-layer feed forward neural network with 200 hidden nodes, to

produce a prediction for a specific classification task.
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Transformer Training Process
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Transformer with token Fine-tuned
classification layer transformer
2
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D Pre-trained E Pre-trained
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token classification | classification | randomly initialized
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Fig 2. Training of the transformer model. Unlabeled microbiome data (A) is fed into a
randomly initialized transformer (B) as inputs to the self-supervised pre-training
process (C), which produces a pre-trained transformer that generates token-level
classifications (D). We replace the token-level classification head with a randomly
initialized CLS classification head (E), and use labeled microbiome data (F) to fine-tune
the CLS classification head (G), which produces the fine-tuned transformer (H).

2.2 Transformer training

A critical challenge in applying complex deep learning models like transformers is the
lack of large amounts of labeled training data. This can be addressed, however, using a
technique referred to as self-supervised pre-training , which leverages readily
available unlabeled data. In this work, we follow this approach and our training process

is described in Fig.

Pre-training

We begin with a randomly initialized transformer and first train a task-agnostic
transformer using unlabeled data via self-supervised pre-training. Specifically, We use
ELECTRA (Efficiently Learning an Encoder that Classifies Token Replacements
Accurately) to pre-train the encoder layers of the transformer model. We chose
ELECTRA because it reaches comparable performance to other popular pre-training
approaches (BERT and its various flavors) while being computationally efficient.
The ELECTRA pre-training approach has two steps. The first step trains a
generator model by randomly masking out 15% of taxa in microbiome samples and
training the generator model to predict the missing taxa based on the remainder of the

sample. For the second step, we use the trained generator to produce perturbed
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Fig 3. Electra pre-training diagram. A generator is trained to predict the masked taxa
from a sample. A discriminator is trained to differentiate taxa filled in by the generator
from the original taxa in the sample. Both use the same transformer architecture, and
have token level classification heads. The generator token level classification head
predicts the taxa ID whereas the discriminator token level classification head predicts
the input taxa as “Real” or “Modified”

microbiome samples by replacing all the masked taxa with generator predictions and
train a discriminator model to differentiate the original taxa of the sample from those
replaced by the generator. Essentially, the generator attempts to fill in the masks with
taxa predictions and the discriminator takes in the predicted sequence and attempts to
identify which taxa are modified by the generator.

Both the generator and discriminator models have the same general architecture as
shown in Fig. [3| To train the generator, the inputs are randomly corrupted by replacing
15% of taxa IDs with a special 'mask’ ID, and the embedding of each masked taxa after
the final encoder layer is fed into a classification head to predict the ID of the masked
taxa.

To train the discriminator model, we take the masked sample completed by the
generator as input to the discriminator, and feed the embedding of each taxon after the
final encoder layer into a classification head that differentiates ‘real’ (original taxa) from
‘modified’ (generated taxa).

At the end of pre-training, we have two transformer models, the generator and
discriminator. Following the practice of the original work, we use the encoder of the

pre-trained discriminator as the initial model to be fine tuned for downstream tasks.
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Pre-training details. We perform pre-training on 18,480 gut microbiome samples
from the American Gut Project Database using the ELECTRA scheme as described
above. Specifically, the generator was trained for 240 epochs to predict masked microbe
embeddings, and checkpoints of the model were saved every 30 epochs. The
discriminator was then trained on the replacement prediction task for 120 epochs with
replacements generated by the increasingly trained generator. Specifically, for every 15
epochs of discriminator training, we replace the generator used to produce inputs for
the discriminator with a stronger generator using the previously mentioned checkpoints.
For example, the generator trained for 30 epochs provided inputs for the first 15 epochs
of discriminator training. Then, for epochs 16-30, discriminator inputs were provided by
the generator trained for 60 epochs. This was done to gradually ramp up the difficulty

of the replacement prediction task.

Architecture and pre-training choices

We performed model architecture selection on the basis of pretraining results. We used
16,000 AGP samples to perform the training for both the generator and discriminator
models, and used the remaining 2,480 samples as a hold-out validation set to decide the
model architecture as well as the stopping point for the pretraining. Specifically, we
observed that fewer than 5 layers of encoders leads to reduced capacity for the
discriminator to differentiate between real and imputed taxa, whereas a larger number
of layers does not produce noticeable benefit. We additionally chose to stop the
discriminator’s pretraining at 120 epochs because we observed its prediction accuracy
on the holdout set stabilizing at that point, even when substituting in better-trained

generators.

Task specific fine-tuning

Given a specific prediction task and the pre-trained discriminator, we remove the token
classification head and add a new (randomly initialized) sequence classification head to
the "CLS’ token. In addition to the embedding layer, we also freeze the parameters of
the encoder blocks such that only the classification head and the projection layer were
trained during fine-tuning. In other words, the pre-trained discriminator encoders are

used as a universal encoder for representing microbiome samples for different prediction
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tasks. Empirically we have found this practice reduces overfitting and produces more

robust generalization performance across different tasks.

Fine-tuning details. We perform fine-tuning using Stochastic Gradient Descent
(SGD) optimization with a learning rate of 0.01, momentum of 0.9, and the mean
squared error loss, which we found gave better results than the more traditional
negative cross-entropy loss, potentially because mean squared error is more robust to
noise and outliers. Furthermore, during training, we perform data augmentation by
randomly deleting 10% of the input taxa (meaning we randomly select one in ten of the
taxa in the data point and remove them from the input sequence, similar to the method
introduced by [27]) in each training sample to increase the robustness of the trained
model and reduce overfitting. The SGD optimization is performed for a total of 50
epochs on the training subsets of the labeled AGP data. As the labeled AGP datasets
have highly unbalanced labels (Table , we oversample the minority class to ensure the
model sees equal numbers of samples from each class. We use cross-validation on a
subset of the IBD data to tune the hyperparameters (random deletion percentage for

data augmentation and the choice of MSE vs the Cross Entropy loss) for fine-tuning.

2.3 Feature ablation attribution: finding the important taxa

We are interested in finding which microbial taxa the model relies on most for making a
positive or negative classification of the samples. To this end, we use feature ablation
attribution [28].

Consider a sample X containing n microbial taxa, which the model predicts as being
positive (for some property, e.g, IBD) with probability M (X). Feature ablation
individually deletes each microbe taxon from the original X, then records how much
each taxon’s removal reduces the model’s predicted probability of being positive. We
average these changes across every sample in which a taxon appears, giving the
expected change in classification probability caused by deleting the taxon in question
from a random sample containing the taxon.

Given a dataset D, let D,,, denote the set of samples that contains a specific

microbe m, we can calculate m’s attribution a(m) as:
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a(m) = =— > M(X) - M(X \m) (1)

where M(+) denotes the model’s probabilistic output for the given input and X \ m

denotes sample X with microbe m removed.

2.4 Datasets

We use three different datasets over the course of this study. We now describe them and

summarize where they are used.

American Gut Project (AGP). The American Gut Project (AGP) [8] is a
crowdsourced microbiome data gathering effort. From it, we used 18,480 microbiome
samples sequenced from the v4 hypervariable region of the 16S gene that were curated
by the authors of |[13]. The sample sequences come with metadata information on the
subject the sample originates from, providing information about their diet, medical
status on inflammatory bowel disease and more. We used all 18480 samples for our
pre-training and relevant portions in our evaluation of downstream tasks. We now

describe the three downstream tasks we ran experiments on.

e Inflammatory Bowel Disease (IBD). This task aims to predict whether a given
microbiome sample belongs to an individual diagnosed with IBD or not. Samples
originating from individuals with IBD are the positive class. Label information
was drawn from AGP metadata producing 435 samples from IBD positive

individuals and 8,136 healthy controls.

e Frequency of fruit in diet. This task aims to determine the frequency with which
an individual consumes fruits based on their microbiome sample. The label is
derived from AGP metadata, which ranks fruit consumption frequency on a one to
five scale. For this experiment, samples ranked 3-5 are grouped to form the
positive (frequent) class. Samples ranked 0-2 are considered negative (infrequent).

Out of 6,540 AGP examples with fruit metadata, 4,026 were labeled positive.

e Frequency of vegetable in diet. This task aims to determine the frequency with

which an individual consumes vegetables based on their microbiome sample. In

November 7, 2024

13/37


https://doi.org/10.1101/2023.07.17.549267
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.17.549267; this version posted November 8, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

available under aCC-BY 4.0 International license.

the same manner as the fruit task, label information was drawn from the AGP
metadata and frequency ranks from 0-5 were grouped to form the “frequent” (3-5)
and “infrequent” (0-2) classes. Out of 6,549 AGP examples containing vegetable

frequency metadata, 5654 were labeled positive.

Table [1 provides the summary statistics for the three classification tasks. Table
provides the run times and costs required to perform the pretraining and 5

training runs on the relevant portions of AGP.

Table 1. Three classification tasks derived from the AGP data and meta data.

Datasets AGP | AGP-IBD | AGP-Fruit | AGP-Vegetable
# of samples 18480 8571 6540 6549
# of positive samples | N/A 435 4026 5654
# of negative samples | N/A 8136 1514 895

Halfvarson (HV). This dataset comes from an IBD study performed in [29]. We
used the curated dataset produced in [13], which contains 564 microbiome samples, with

510 of them IBD positive.

HMP2. This dataset comes from an IBD study performed as part of phase 2 of the
Human Microbiome Project [30]. Again, we used the curated dataset produced in [13],

which contains 197 microbiome samples with 155 IBD positive examples.

Experiment name Time (hr) | Cost ($)
Pretraining 23.43 9.44
Fine-tuning IBD (5 runs) 12.20 4.92
Fine-tuning Fruit (5 runs) 13.98 5.63
Fine-tuning Vegetable (5 runs) | 10.74 4.33

Table 2. Runtimes and estimate costs of different experiments performed in this paper.
All runtimes were measured on a single Nvidia A40 GPU, and costs are estimated based
on the hourly price of $0.403 required to rent an Nvidia A40 from as of
03/11/2024.

Because AGP-IBD, AGP-Fruit and AGP-Vegetable all derive from the larger AGP
dataset, there is overlap between the data used for model development and the
evaluation data that provide the results in Table [3| Specifically, both the GLoVE
embeddings from [13] and our own pretrained model are trained on the full 18,480
sample AGP dataset. However, neither process has access to any of the labels for

AGP-IBD, AGP-Fruit or AGP-Vegetable, only the unlabeled taxa sequences associated
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with the samples. Additionally, each dataset includes at least some patients from which
multiple samples were taken. When both training and testing on AGP (as in Table [3]),
we employ patient—level blocking of data between training, validation, and testing sets.
We ensure a fair comparison between our approach and the baselines by providing all
baselines with equivalent access to both unsupervised and labeled data across every
evaluation. Thus, any baseline with a representation learning phase will use the same

18,480 AGP samples as our method.

Data and code availability. All data and code used in this study are available at

the following Dryad repository [31]: [https://doi.org/10.5061/dryad.tb2rbp08p| File

descriptions and usage instructions are available in the repository’s README.

3 Results and Discussions

3.1 Transformer representations outperform baselines on

multiple microbiome tasks

In this section, we empirically compare transformer-produced sample representations
against a variety of baseline methods. Our baselines include Weighted, a simple
non-contextualized abundance-weighted-averaging of the GloVe embeddings from [13],
two classic dimension reduction based methods, and two deep learning based methods
introduced by [32], each of which performs dimension reduction using the sample

taxonomic abundance profiles as input features:

e PCA.: Principle Component Analysis, configured to retain at least 99% of the
variance.

e RandP: Random Gaussian Projection, relying on the Johnson-Lindenstrauss
lemma [33] and implemented with scikit-learn [34] using eps 0.5.

e AE: An MLP-based autoencoder architecture [35], with two sizes: AEpes; (28.4M
parameters) and AEpaten (7.2M parameters).

e CAE: An convolutional neural network-based autoencoder architecture [36], with

two sizes: CAEpes (12.3K parameters) and CAEyaten (102.6K parameters).

We used a reduced training set to quickly sweep the full range of model
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hyperparameters described in [32] for their effectiveness in our setting. We found that
the variational autoencoder failed to produce useful results, regardless of
hyperparameters, and thus omitted this architecture in the comparisons. For the two
remaining architecture (AE and CAE), we selected two sizes: one that achieved the best
validation performance using the reduced training set (CAEpest), and another that aims
to match the parameter count of our own model (7.07M) as closely as possible.

For the baselines from [32], we adapt that work’s random forest classification layer
(and the range of hyperparameters to consider), because random forest most
consistently achieved the best performance across the settings [32] explored.

As mentioned previously, our method applies a standard multi-layered perceptron
(MLP) classifier to the transformer-produced sample representations for classification.
To allow Weighted to act as a more consistent comparison with our model, we replaced
the random forest classifier used in prior work with the same MLP classifier. We
evaluate our method and the baseline methods using the AGP dataset on three
microbiome classification tasks.

For each method and task, we perform 5 training runs. Our methods (meaning the
Transformer and Weighted baseline) adopt the evaluation framework described in [32] to
decide the stopping epoch: each run first blocks out 20% of the data to be used only for
testing, then splits the remaining 80% into train and validation subsets to decide the
best stopping epoch. Then, the 80% of non-test data is recombined into a single
training set, and the model is re-finetuned from scratch on the non-test data using the
discovered stopping epoch. Note that PCA, RandP, AE, and CAE baselines also use the
train / validation split of non-test data from [32] to tune the random forest
hyperparameters in addition to stopping epoch.

We consider two different evaluation criteria: the Area Under the ROC Curve
(AUROC) and the Area Under the Precision-Recall curve (AUPR). We select these two
metrics because they allow us to rigorously compare the discriminative capabilities of
our models and baselines on unbalanced classes, without having to specify a particular
threshold for what we consider a “positive” or “negative” classification.

Table [3[ shows the performance of all methods on three tasks. We see that for the
IBD and Fruit tasks, the transformer produced representation achieved substantially

improved performance for both AUROC and AUPR. Performances on the Vegetable
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task are much closer together across methods, especially between Weighted, PCA and

Transformer, with PCA even marginally edging out Transformer’s AUPR, score. This

confirms that our approach learns a transformer model that produces robust sample

representation that performs well across multiple prediction tasks.

Table 3. Average performance (standard deviation) on Three Tasks

IBD Task Fruit Diet Task Vegetable Diet Task
AUROC AUPR AUROC AUPR AUROC AUPR
Weighted 0.646(.02) | 0.089(.02) | 0.585(.02) | 0.674(.04) | 0.695(.02) | 0.930(.01)
PCA 0.571(.04) | 0.082(.02) | 0.576(.03) | 0.689(.04) |0.700(.01)|0.932(.01)
RandP 0.621(.03) | 0.095(.02) | 0.540(.03) | 0.653(.04) | 0.669(.02) | 0.926(.01)
ABpost 0.576(.05) | 0.090(.02) | 0.532(.03) | 0.647(.05) | 0.654(.02) | 0.922(.01
ABEMateh 0.604(.06) | 0.097(.03) | 0.542(.01) | 0.660(.04) | 0.669(.02) | 0.926(.01
CAERest 0.625(.03) | 0.093(.03) | 0.571(.03) | 0.677(.05) | 0.662(.06) | 0.920(.03
CAEnateh 0.607(.03) | 0.086(.02) | 0.563(.02) | 0.675(.04)) | 0.684(.02) | 0.927(.01
Transformer | 0.687(.04) | 0.121(.02) | 0.619(.02) | 0.707(.02) | 0.700(.02) | 0.928(.01

3.2 Generalization to independent datasets

One of the largest challenges in working with microbiome data is that there is large
variance in the distributions and characteristics of data used from study to study.
Therefore it is important to test how well our transformer based prediction models
generalize on independent datasets that come from different population/sample
distributions. To test this, we applied our transformer model trained for the IBD
prediction task using the AGP data on the Halfvarson and HMP2 datasets from
independent studies, without finetuning our model on any data from those independent
studies.

An issue that arises when performing such cross-study tests is the need to decide a
stopping point during finetuning to pick the best model to use on the test data. In the
previous single study experiments, using a held-out validation set for this purpose
proved to be an effective strategy. However, due to the substantial distributional shift
between the AGP data used for training/validation and the independent test set of
Halfvarson and HMP2, using a held-out AGP validation set for stopping is observed to
lead to poor and highly unstable results (shown by “Transformer (original)” in Table .
We address this problem by introducing a simple ensemble strategy. During fine tuning,
we train an ensemble of k classifiers using different random initializations of the

classification head. Similar to the standard practice when applying transformer to
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language [26], we found that each individual classifier only needs to be fine-tuned for a
single epoch, i.e., going over all of the training once, and that training more epochs
often leads to overfitting. In our experiments, we used ensemble size k = 10.

We compare our ensemble performance with the baselines described above, and
additionally strengthen the Weighted baseline of [13] by using an ensembled MLP
classifier and reporting the best testing performance achieved by the Weighted baseline
method during training. The baselines from [32] use random forest as the classifier and
do not have a similar free parameter regarding their stopping condition.

We report the performance of all methods averaged across five random runs with
different initialization in Table |4l The results show that our method consistently
achieves better performance on the Halfvarson dataset compared to all baselines, and
comparable performance on the HMP2 dataset compared to the best performing of the
Weighted baseline model selected using testing data. Although CAEges; and CAEpaten
achieve slightly higher HMP2 performance, this comes at the cost of an enormous deficit
on Halfvarson. These results illustrate our approach’s ability to consistently generalize

well to out of distribution settings.

Table 4. Average performance (standard deviation) on independent IBD datastes.
Weighted’s standard deviation is close to zero, thus omitted.

HMP2 Halfvarson
AUC AUPR AUC AUPR

Weighted (ensemble) 0.668 0.863 0.752 0.962
PCA 0.570 (.02) | 0.795 (.01) | 0.578 (.06) | 0.931 (.01)
RandP 0.583 (.03) | 0.813 (.02) | 0.509 (.03) | 0.909 (.01)
AFbost 0.618 (.02) | 0.839 (.01) | 0.519 (.02) | 0.912 (.01)
AEMatch 0.644 (.02) | 0.850 (.01) | 0.499 (.05) | 0.903 (.02)
CAEpest 0.697 (.01) | 0.879 (.01) | 0.426 (.04) | 0.890 (.01)
CAEnaten 0.706 (.04) | 0.883 (.04) | 0.488 (.04) | 0.906 (.01)
Transformer (original) 0.460 (.03) | 0.773 (.02) | 0.719 (.09) | 0.957 (.02)
Transformer (ensemble) | 0.682 (.02) | 0.855 (.01) | 0.805 (.01) | 0.973 (.001)

In this section we take a closer look at the pre-trained language model to interpret

the learned context-sensitive representations of microbial taxa.
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(b)

Fig 4. t-SNE visualization of (a) original taxa vocabulary embeddings and (b)
contextualize taxa embeddings. Both are colored by phylum. See Figure [J] for
embedding spaces colored by phylum, class, order, and family.

3.3 Context sensitive taxa embedding captures biologically

meaningful information

We hypothesize that the superior predictive performance of our model is because our
pre-trained language model transforms the input taxa embedding into a more
meaningful latent space capturing context sensitive information (Fig. ), making
biologically relevant features of the taxa more readily extracted and applied to

downstream tasks.

Phylogenetic information. We focus on the top 5,000 (out of 26,726) most frequent
taxa from the IBD dataset and compute their averaged contextualized embeddings
across every entry in the IBD dataset. Fig. 4| shows the t-SNE [37] visualization of the
taxa using the original vocabulary embedding from [13] (a) and the averaged
contextualized embeddings produced by our model (b), colored by the phylum of the
taxa assigned by the DADA2 tool [38]. t-SNE is better suited to capturing the local
neighborhood than the global structure, with points close together in the t-SNE
visualization also generally being close together in the original embedding space.
However, t-SNE gives a much worse impression of the overall (global) shape of the
data [39).

From Fig. |4l we see that the original embedding space in panel (a) displays a degree
of clustering by phylum. In particular, Proteobacteria (red) tend to cluster in distinct
manifolds from the rest of the taxa. However, most of the taxa lie in a single large but

stratified manifold of mixed phyla. In contrast, the contextualized representations in
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panel (b) appear to have more consistent clustering by phylum in this reduced 2-D
space. We further verify that the contextualized embedding does cluster more strongly
in the full-dimensional embedding spaces with Fig. |5 d), which shows that clusters in
the contextualized embedding space consistently have less cross-phylum contamination
(as shown by higher phylum purity) as compared to clusters in the GloVe embedding
space, showing that the appearance of improved clustering in the contextualized
embedding space is not simply a t-SNE projection artifact.

To highlight the differences between the two representations, Figure [5] explores the
mapping between them by highlighting the same group of taxa in both figures, where
the left column shows the t-SNE visualization of the original taxa embeddings, and the
right column shows the t-SNE of the contextualized taxa embeddings. From the
comparison, we can see that the phyla that are well separated in the original embedding
space as distinct manifolds are well preserved and further compacted into tighter
clusters (see Fig. [5a).

The data in the original vocabulary embedding space appear to lie on long “strands”,
rather than clump together in clusters. In particular, we see a large strand in the
middle that contains most of the data, and seems to be made up of smaller “threads”
very close together. The contextual representations appear to “unwind” the large strand
so that the smaller threads can be extracted and grouped together in their own isolated
clusters, which more cleanly separate by phylum (see Fig.[5|a). This highlights the
capability of self-supervised representation learning to flexibly extract important
features from unlabeled data.

Our model’s ability to cluster taxa by phylum seems to degrade for taxa whose
vocabulary embeddings are too close together. Figure [5|b) highlights taxa in a less
compact region of the original embedding space, and highlights the same taxa in the
contextualized embedding space, where the taxa show reasonable separation by phylum.
In comparison, Figure [5| ¢) highlights a more compact region of the vocabulary space, as
well as the corresponding taxa in the contextualized embedding space, which appear to

show worse separation than we see in Figure|5| b).

Metabolic pathways. Similar to [13], we investigate whether our contextualized

embedding dimensions correlate with known metabolic pathways. We map the
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Fig 5. Mapping between the original vocabulary and contextualized embedding spaces.
Figure a) shows how the contextualized embeddings can extract “threads” of a single
phylum from the vocabulary embedding space, and map those taxa to tight clusters in
the contextualized embeddings. Figure b) shows that the mapping to the contextual
embedding space is able to more cleanly separate taxa by phylum. Figure c¢) contrasts
Figure b) and shows that taxa which are very tightly clustered in the vocabulary
embeddings may not map to meaningful clusters or phylum-level separation in the
contextualized embedding space. Figure d) shows cluster purity versus K for K-means
clustering in the vocabulary and contextualized embedding spaces, showing the tighter

clustering of the embedding space isn’t simply an artifact of the t-SNE dimension

reduction.
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vocabulary taxa ASVs to their nearest neighbors in the KEGG database [40] using
Piphillin [41], following the method used by [13]. Metabolic pathways for each mapped
ASV are then extracted using the KEGGREST API [42], leading to a total of 141
pathways. Each ASV is represented using a one-hot encoding of the 141 metabolic
pathways, assigning a 0 if the ASV is not involved in the pathway, and a 1 if it is
involved. We limit the following analysis to ASVs involved in at least one of the 141
pathways, resulting in 11,893 ASVs, each represented by a 141-dimension binary vector
indicating their involvement in the extracted pathways. We have seven fewer pathways
than were present in the metabolic pathways analysis of [13], due to changes in the
KEGG [40] database.

We compute the Spearman’s correlation between each of our contextualized
embedding dimensions and the 141 extracted metabolic pathways, producing a 200 by
141 correlation matrix. The same process is repeated for the 100-dimensional GloVe
embedding, producing a 100 by 141 correlation matrix. Figurd6| shows both sets of
correlations using heatmaps. We can see that, although both embeddings show clear
correlations with some metabolic pathways, the contextualized embedding dimensions
capture stronger correlation, signified by the darker blue and red colors in the heatmap.
To assess the statistical significance of the observed correlations, we applied a
permutation test with 1,000 permutations. This test generates a distribution of
correlations under the null hypothesis that the embeddings and the pathways are
independent. By comparing the observed correlations to this null distribution, we
filtered out correlations that were not statistically significant. We then compare the
strengths of the remaining statistically significant correlations found for our
contextualized embeddings to those found for the GloVe embeddings, by contrasting the
distribution of the filtered correlation magnitudes from both embeddings in Figure [7}
which visually shows that the normalized histograms of the contextualized embedding
dimensions are shifted to the right compared to that of the GloVe embedding
dimensions.

To verify that the two distributions of correlation magnitude are indeed different, we
perform two different non-parametric statistical tests: the Kolmogorov—Smirnov
two-sample test [43][44] and the Epps—Singleton two-sample test [45] using SciPy’s [46]

implementation. Both tests reject the null hypothesis that the two distributions are
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vinm— T

Contextualized GloVe
Fig 6. Heatmaps showing how strongly each embedding dimension (y-axis) correlates
with each metabolic pathway (x-axis), for both our contextualized embeddings and the
prior GloVe embeddings.

equivalent with p-values of 4.19 x 10726 and 9.71 x 107°%, respectively.

3.4 Understanding taxa importance for IBD prediction

In this part, we focus on the fine-tuned IBD ensemble prediction model to understand
what taxa play critical roles in our model’s IBD prediction by studying their attribution.
We first consider the 5,000 most frequent taxa shown in Figure 4] and compute for each
taxon its average attribution toward the model’s IBD prediction using the AGP IBD
data, as described in Sec.

Figure || (a) presents the t-SNE visualizations of the contextualized embeddings
colored by taxa attribution strength. The visualization shows multiple clusters of high
and low attribution taxa, indicating that local neighborhood distances in the original
embedding space reflect taxa attributions. It is important to note that the
contextualized embeddings generated by our pre-trained language model have never
been trained on any IBD labels, yet their local structure appears to reflect taxa
attributions, suggesting that our pre-trained language model indeed captures
meaningful biological information.

Next, we wish to find the most important taxa for our model’s correct IBD
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Fig 7. Distribution of the magnitude of statistically significant correlations between
embedding dimensions and metabolic pathways, for both contextualized embeddings
and the prior GloVe embeddings.
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Fig 8. t-SNE visualization of the contextualized embeddings colored by attribution to
IBD. The taxa associated with IBD are visualized in lighter color (yellow) and the taxa
associated with no-disease state are in dark purple.
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classifications across different study populations. We therefore filter the data to focus

on samples for which our model makes confident and correct predictions. Specifically,

we filter each of the three IBD datasets (American Gut Project (AGP) [8], the

curated [13] versions of the Human Microbiome Project phase 2, (HMP2) [30], and

Halfvarson (HV) [29]) and include only correctly classified samples with a predicted

probability ranking within the top 50%, regardless of being positive or negative. To

focus on reasonably common microbial taxa, we also filter out taxa that appear in less

than 5% of all samples across all three IBD datasets (AGP, HMP2 and HV).

To allow for independent validation of our attribution estimation, we combine HV

and HMP2, into a single dataset (HV+HMP2), filter for correct confidence again, and

compute the average attribution on APG and HV+HMP2 separately, and reduce noise

by filtering out any taxa that appear in less than five samples in each dataset. The

attribution for a taxon is considered validated if it has two estimates from AGP and

HV+HMP2 respectively, and they have the same sign. Of the 5,716 taxa that appear in

HV+HMP2, 695 appear in at least 5% of the combined IBD-labeled data points, 530 of

those appear in at least five confident and correct samples in HV+HMP2 (and have

been assigned attributions), and 399 of those taxa have matching signs in their

attributions between the AGP data and the HV+HMP2 data. This ensures that we

only identify these microbial taxa that have consistent impact on the model in two

different populations. We then compute the average attribution of all validated taxa

across the combined (filtered) datasets. We show the 10 taxa most attributed to

negative IBD classification (Table @ and the 10 taxa most attributed to positive IBD

classification (Table [5)).

Table 5. Top 10 Taxa associated with negative (non-disease) IBD classification

ordered by attribution strength.

Phylum Class Order Family Genus
Firmicutes Clostridia Clostridiales Lachnospiraceae |NA
Proteobacteria|Gammaproteobacteria|Betaproteobacteriales| Burkholderiaceae|Sutterella
Bacteroidetes |Bacteroidia Bacteroidales Prevotellaceae  |Prevotella
Proteobacteria| Gammaproteobacteria|Pasteurellales Pasteurellaceae |NA
Bacteroidetes |Bacteroidia Bacteroidales Prevotellaceae  |Prevotella_9
Fusobacteria |Fusobacteriia Fusobacteriales Fusobacteriaceae |Fusobacterium
Firmicutes Bacilli Lactobacillales Lactobacillaceae |Lactobacillus
Bacteroidetes |Bacteroidia Bacteroidales Muribaculaceae |NA
Bacteroidetes |Bacteroidia Bacteroidales Bacteroidaceae |Bacteroides
Firmicutes Clostridia Clostridiales Lachnospiraceae |NA
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Table 6. Top ten Taxa associated with positive IBD classification ordered by

attribution strength.

Phylum Class Order Family Genus

Proteobacteria| Gammaproteobacteria|Betaproteobacteriales| Burkholderiaceae [Sutterella

Firmicutes |Clostridia Clostridiales Ruminococcaceae | Ruminiclostridium_5
Bacteroidetes|Bacteroidia Bacteroidales Tannerellaceae |Parabacteroides
Firmicutes |Clostridia Clostridiales Lachnospiraceae|NA

Firmicutes |Clostridia Clostridiales Ruminococcaceae |Ruminococcaceae.UCG-9
Firmicutes |Clostridia Clostridiales NA NA

Firmicutes |Clostridia Clostridiales Ruminococcaceae|Candidatus_Soleaferrea
Firmicutes |Clostridia Clostridiales Lachnospiraceae|Lachnoclostridium
Firmicutes |[NA NA NA NA

Firmicutes |Clostridia Clostridiales Lachnospiraceae|Anaerostipes
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Comparing identified taxa to existing data repository

We compared the top 10 ASV attributions to IBD and the healthy cohort (20 ASVs
total) found with our model to 284 markers taxa identified in the data repository for
the human gut microbiota [47] across three projects (NCBI PRJEB7949 (95 entries),
NCBI PRINA368966 (32 entries), NCBI PRJNA3x85949 (157 entries)) comparing IBD

and healthy controls (query request:

[gmrepo.humangut.info/phenotypes/comparisons/D006262/D015212)).

Due to the difference in technologies between all the datasets, we compare the
markers across the studies at the genus level. In our study, seven ASVs were not
resolved beyond the family level, and are therefore excluded from this analysis. Further,
two of our ASVs belonged to sub-clade of a genus, we considered them belonging to the
genus of the clade: specifically Prevotella_9 (which was considered Prevotella in this
analysis) and Ruminoccocus_1 (which was considered Ruminoccocus in this analysis).

Out of our 13 ASVs, four ASVs belong to genera Prevotella, Paraprevotella, and
Lachnoclostridium, which were also found to be consistently associated with the healthy
cohort in the data repository for the human gut microbiota (DRHM). Therefore they
constitute consistent markers with the previous literature. One ASV, belonging to the
genus Atopobium, was only associated with IBD in both our study and the DRHM, also
constituting a markers of IBD consistent across our study and the database. Out of the
remaining eight, we found two new ASVs markers that were not previously identified:
the genera Allisonella (Associated with health) and Methanosphaera (associated with
IBD).

Finally, the six remaining ASVs showed mixed patterns in the DRHM, where some
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taxa of the genus seem to be a marker for the IBD and other taxa are enriched in
healthy individuals. Out of these six genera, three markers mostly agree with our
results: Bacteroides, which was associated with healthy individuals in 17/20 taxa,
Ruminococcus showing the same pattern in 5/9 taxa, and Rosebduria also with the
same pattern for 2/3 taxa. The other three genera show the opposite trend when
comparing the DRHM markers with our work. Most notably, Lactobacillus is associated
with the healthy cohort in our analysis, while 8/9 markers from this genus are enriched
in the IBD cohort in the DRHM. We see more nuanced results for the genera
Parabacteroides where 3/7 markers are associated with the control cohort in the DRHM
(and a marker of IBD for us), as well as Oscillibacter, associated with the healthy
individuals in 2/3 taxa in the database, which contradict our finding.

In summary, out of the 13 ASVs resolved at the genus level from our study, our
analysis revealed two new markers not included in the DRHM. For five of these ASVs,
our result is consistent with the DRHM markers. For the remaining three, we see mixed
results. Here, the taxonomic resolution of our 16S becomes a limiting factor as these

genera show different behavior at the species level.

4 Conclusion and Future Work

We apply recent natural language processing techniques to learn a language model for
microbiomes from public domain human gut microbiome data. The pre-trained
language model provides powerful contextualized representations of microbial
communities and can be broadly applied as a starting point for any downstream
prediction tasks involving human gut microbiome. In this work, we show the power of
the pre-trained model by fine-tuning the representations for IBD disease state and diet
classification tasks, achieving strong performance in all tasks. For IBD, our ensemble
model demonstrates competitive performance that is robust across study populations
even with strong distributional shifts.

We visualize the contextualized taxa embedding learned by our pre-trained language
model and show that it captures biologically meaningful information including
phylogenetic structure and IBD association without any prior training on such signals.

We employ an interpretability technique to investigate the basis for our models’ IBD
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classification decisions and identify sets of taxa that negatively and positively attribute
to the model’s predictions. We find known biomarkers of both IBD and gut homeostasis,
as well as evidence that our embeddings learn to separate ASVs by their pathogenicity,
even among ASVs sharing the same family and genus level phylogenetic classifications.

Our investigation suggests that NLP techniques like deep language models represent
a promising direction to better understand the microbiome. However, our effort is
limited in both volume and breath of the data that is used for training the microbial
language model. Currently, our pre-trained model is primarily optimized for tasks
involving human gut microbiomes based on 16S data. Despite this, the utility of our
model extends beyond its initial configuration. With adjustments, our methodology can
be highly versatile, offering numerous paths for generalization.

Specifically, it is possible to adapt our pre-trained language model directly to other
sources and types of microbiome data, such as taxonomic profiles of Metagenome
Assembled Genomes (MAGs), by replacing the initial embedding layer with one that is
fine-tuned using the new source of data. Strong precedents in natural language
processing support the feasibility of this approach, where pretrained models from one
domain have been shown to lead to predictable transfer when adapted to another
domain (e.g., from Python code to natural text [48], or from natural text to image
classification [49]). Finally, we are enthusiastic about the potential to develop a unified
model by training on a broad spectrum of microbiome data, encompassing various
sources and modalities, to create a generalized, versatile microbiome model capable of
instantaneous adaptation to the varied data distributions encountered in different

studies and methodologies across the microbiome research landscape.
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Fig 9. Vocabulary and contextualized embedding spaces colored by different levels of
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Table 7. Top 10 non-disease associated ASVs. Entries match those in Table
TACGTATGGTGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACG
GATGGGCAAGTCTGATGTGAAAACCCGGGGCTCAACCCCGGGACTGCATTGGAA
ACTGTTCATCTAGAGTGCTGGAGAGGTAAGTG
TACGGAGGATCCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGAGCGTAGATG
GGTTGTTAAGTCAGTTGTGAAAGTTTGCGGCTCAACCGTAAAATTGCAATTGAT
ACTGGCAGTCTTGAGTACAGTTGAGGTAGGCG
TACGGAGGATGCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGAGCGCAGGCT
GCGAGGCAAGTCAGCGGTCAAATGTCGGGGCTCAACCCCGGCCTGCCGTTGAAA
CTGTCCTGCTAGAGTTCGAGTGAGGTATGCGG
TACGTATGTCACGAGCGTTATCCGGATTTATTGGGCGTAAAGCGCGTCTAGGTG
GTTATGTAAGTCTGATGTGAAAATGCAGGGCTCAACTCTGTATTGCGTTGGAAA
CTGTATAACTAGAGTACTGGAGAGGTAAGCGG
TACGTAGGTGGCGAGCGTTGTCCGGATTTATTGGGCGTAAAGGGAACGCAGGCG
GTCTTTTAAGTCTGATGTGAAAGCCTTCGGCTTAACCGAAGTAGTGCATTGGAA
ACTGGAAGACTTGAGTGCAGAAGAGGAGAGTG
TACGGAAGGTCCGGGCGTTATCCGGATTTATTGGGTTTAAAGGGAGCGTAGGCC
GGAGATTAAGCGTGTTGTGAAATGTAGACGCTCAACGTCTGCACTGCAGCGCGA
ACTGGTTTTCTTGAGTACGCACAAAGTGGGCG
TACGGAGGGTGCGAGCGTTAATCGGAATAACTGGGCGTAAAGGGCACGCAGGCG
GACTTTTAAGTGAGGTGTGAAAGCCCCGGGCTTAACCTGGGAATTGCATTTCAG
ACTGGGAGTCTAGAGTACTTTAGGGAGGGGTA
TACGGAAGGTTCGGGCGTTATCCGGATTTATTGGGTTTAAAGGGAGCGTAGGCC
GTTTGGTAAGCGTGTTGTGAAATGTAGGAGCTCAACTTCTAGATTGCAGCGCGA
ACTGTCAGACTTGAGTGCGCACAACGTAGGCG
TACGTAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGTGCGCAGGCG
GTTCTGTAAGACAGATGTGAAATCCCCGGGCTCAACCTGGGAATTGCATTTGTG
ACTGCAGGACTAGAGTTCATCAGAGGGGGGTG
TACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACG
GCATGGCAAGCCAGATGTGAAAGCCCGGGGCTCAACCCCGGGACTGCATTTGGA
ACTGTCAGGCTAGAGTGTCGGAGAGGAAAGCG
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Table 8. Top 10 disease associated ASVs. Entries match those in Table @

TACGTAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGTGCGCAGGCG
GTTCTGTAAGATAGATGTGAAATCCCCGGGCTCAACCTGGGAATTGCATATATG
ACTGCAGAACTTGAGTTTGTCAGAGGAGGGTG

TACGTAGGGAGCGAGCGTTGTCCGGATTTACTGGGTGTAAAGGGTGCGTAGGCG
GATTGGCAAGTCAGAAGTGAAATCCATGGGCTTAACCCATGAACTGCTTTTGAA
ACTGTTAGTCTTGAGTGAAGTAGAGGTAGGCG

TACGGAGGATCCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGTGCGTAGGCG
GCCCCTTAAGTCAGCGGTGAAAGTCTGTGGCTCAACCATAGAATTGCCGTTGAA
ACTGGGAGGCTTGAGTATGTTTGAGGCAGGTG

TACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGTGCGTAGGTG
GCAAGGCAAGTCAGATGTGAAAGCCCGGGGCTCAACCCCGGTACTGCATTTGAA
ACTGTCTGGCTAGAGTGCAGGAGAGGTAAGCG

TACGTAGGTGGCAAGCGTTGTCCGGATTTACTGGGTGTAAAGGGCGAGTAGGCG
GGCATGCAAGTCAGATGTGAAATCTGGGGGCTTAACCCCCAAACTGCATTTGAA
ACTGTGTGTCTTGAGTGATGGAGAGGCAGGCG

TACGTAGGGGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGTGCGTAGGCG
GCCTTACAAGTTGGATGTGAAATCCCCGTGCTTAACATGGGAACTGCATCCAAA
ACTGTAGGGCTTGAGTGTGGAAGAGGTAAGTG

TACGTAGATGGCGAGCGTTGTCCGGAATTACTGGGTGTAAAGGGAGTGTAGGCG
GGCTGGTAAGTTGAATGTGAAACCTTCGGGCTCAACCCGGAGCGTGCGTTCAAA
ACTGCTGGTCTTGAGTGAAGTAGAGGCAGGCG

TACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACG
GCGATGCAAGCCAGATGTGAAAGCCCGGGGCTCAACCCCGGGACTGCATTTGGA
ACTGCGTGGCTGGAGTGTCGGAGAGGCAGGCG

TACGTAGGGGGCAAGCGTTGTCCGGAATTACTGGGCGTAAAGGGCGCGTAGGCG
GCCTGCCAAGTCTTGTGTGAAAACCCTGGTTTCAAGCCAGGAGGTGCACGGGAAA
CTGGCGGGCTTGAGTGCAGGAGAGGGAAGTG

TACGTAGGGGGCAAGCGTTATCCGGAATTACTGGGTGTAAAGGGTGCGTAGGTG
GTATGGCAAGTCAGAAGTGAAAACCCAGAGCTTAACTCTGGGACTGCTTTTGAA
ACTGTCAGACTGGAGTGCAGGAGAGGTAAGCG
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