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One Sentence Summary: Tumor microenvironment balance of metastasis and associated genes 
are key predictors of immunotherapy patient response in kidney cancer.

Abstract: Immune checkpoint blockade (ICB) therapies have improved the overall survival (OS)
of many patients with advanced cancers. However, the response rate to ICB varies widely among
patients, exposing non-responders to potentially severe immune-related adverse events. The 
discovery of new biomarkers to identify patients responding to ICB is now a critical need in the 
clinic. We therefore investigated the tumor microenvironment (TME) of advanced clear cell 
renal cell carcinoma (ccRCC) samples from primary and metastatic sites to identify molecular 
and cellular markers of response to ICB. We revealed a significant discrepancy in treatment 
response between subgroups based on cell fractions inferred from metastatic sites. One of the 
subgroups was enriched in non-responders and harbored a lower fraction of CD8+ T cells and 
plasma cells, as well as a decreased expression of immunoglobulin genes. In addition, we 
developed the Tumor-Immunity Differential (TID) score which combines features from tumor 
cells and the TME to accurately predict response to anti-PD-1 immunotherapy (AUC-ROC=0.88,
log-rank tests for PFS P < 0.0001, OS P = 0.01). Finally, we also defined TID-related genes 
(YWHAE, CXCR6 and BTF3), among which YWHAE was validated as a robust predictive marker
of ICB response in independent cohorts of pre- or on-treatment biopsies of melanoma and lung 
cancers. Overall, these results provide a rationale to further explore variations in the cell 
composition of metastatic sites, and underlying gene signatures, to predict patient response to 
ICB treatments. 

Main Text:

INTRODUCTION

Immune checkpoint blockage (ICB) therapies have shown remarkable success in 
decreasing the recurrence rate and improving the overall survival of patients with metastatic 
clear cell Renal Cell Carcinoma (ccRCC) (1–7). However, only a subset of patients experiences 
long-term clinical response with these therapies. This diversity in response to ICB not only 
underscores the need for novel predictive markers to identify patients who will benefit from 
these treatments, but also the need to reveal molecular and cellular mechanisms involved in the 
acquisition of therapeutic resistance.

Tumor mutation burden (TMB), an established marker of response to immunotherapy in 
various cancers (8), was shown not to correlate with patient prognostics in ccRCC (9–11). 
Expression of immune checkpoint genes, such as PD-1 and PD-L1, in cancer cells and in tumor-
infiltrating cells is another feature associated with favorable response to ICB in several cancer 
types (12). However, in ccRCC a low percentage of samples express PD-1 and PD-L1 (13) an 
association between their expression level and ccRCC aggressiveness and prognosis remains 
controversial (5, 14–17). For PD-L1, sources of variability in its expression were found to be 
related to intratumoral heterogeneity, differences between primary and metastatic sites and the 
lack of standardization of experimental techniques for measuring abundances (18).
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Beyond single gene markers, predictive scores based on gene expression signatures have 
shown promising results in predicting ICB response for various cancer types. Among them, the 
15 immune gene score IMPRES (19), the 18 IFN-γ-responsive gene score GEP (20), 
MHC-I/MHC-II (21) and MIAS (22) scores demonstrated a strong predictive power of response 
to ICB therapies in metastatic melanoma but were not evaluated in ccRCC. The JAVELIN score 
was specifically developed and tested on kidney cancer (1). Nevertheless, although they carry 
some predictive capacities, to our knowledge none of these scores have yet been used in clinical 
practice (23, 24).

The immune components and composition of the tumor microenvironment (TME) have 
been extensively described to be part of the major determinants of the response to ICB (25–27). 
For example, the level of CD8+ infiltrating T cells has been associated with a good prognosis in 
many cancer types (25) whereas the role of tumor infiltrating CD8+ T cells in survival of patients
with ccRCC remains controversial. The response to ICB may also depend on the spatial 
localization of immune cells. For instance, tertiary lymphoid structures (TLS) composed of 
mature dendritic cells, B-cells and CD8+ T-cell have been reported to be important in predicting 
ICB response in ccRCC (28–31). Regarding B cells, their location in mature TLS has been 
suggested to mediate antibody release, T cells activation and has been described to be enriched in
good ICB responders in ccRCC patients (32). Tumor-associated macrophages (TAM) were 
found to contribute to ccRCC progression and metastasis and to mediate immunosuppression 
(33). Thus, the factors driving ICB resistance remain largely to be deciphered and effective 
markers to predict ICB response for ccRCC in clinical practice are seriously lacking.

In this work, we perform an extensive relabeling of single-cell RNA-seq data from 
ccRCC into more than 20 cell types and assess their robustness and accuracy in predicting TME 
composition by cell deconvolution of bulk RNA-seq data derived from patients in ICB clinical 
trials (anti-PD-1). The proportions of these reference cell types predicted from advanced ccRCC 
transcriptomes of primary and metastatic sites separately reveal new key cellular and molecular 
markers of ICB response. We highlight the biological value provided by the metastatic sites by 
identifying three TME profiles with significantly different clinical outcomes. In particular, the 
CD8+ T cells and plasma cells interplay is a major factor influencing the PD1 blockade response 
of patients with ccRCC. Furthermore, the search for genes associated with these variations in 
cellular composition allows us to identify immunoglobulin genes linked to ICB response. We 
also develop the Tumor-Immunity Differential (TID) score, based on the tumor mutational 
burden together with the cell fractions in metastatic ccRCC samples, which is highly predictive 
of ICB response. Finally, among the TID-related genes, we identify YWHAE as an accurate and 
robust predictor of ICB response in ccRCC, melanoma and non-small cell lung cancer (NSCLC).
Overall, we demonstrate that variations in TME composition estimated by cell deconvolution 
from ccRCC metastatic sites and the gene signatures derived therefrom are highly predictive of 
patient response to ICB therapies.

RESULTS 

Comprehensive identification of cell types in ccRCC tumor micro-environment 
from single-cell RNA seq data

A comprehensive literature review was performed to identify markers, mainly cell 
surface proteins, known to be specific to certain cell types present in the tumor micro-
environment. This led us to construct a hierarchical decision tree summarizing the state of the art
associations between cell surface markers and the identity of different cell types present in 
ccRCC and its tumor micro-environment (fig. S2). Single-cell RNA-seq data generated from 11 
treatment-naive resected ccRCC tumors were then collected from a previously published study 
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(34). In this study, immune- and non-immune cells had been separated by CD45-based 
fluorescence-activated cell sorting (FACS), which we used to separately analyze CD45+ and 
CD45- cells. We completely reprocessed this dataset through pre-processing, quality control, 
normalization and cell clustering steps. We then relied on our hierarchical decision tree of cell 
surface markers to identify the different cell types present in this data set. Based on our 
reanalysis of the cells retrieved from all patients, we could define 21 distinct cell types, including
3 tumor cell types (Tumor cells, CA9 High Tumor cells, Cycling Tumor cells) (Figs. 1A, B). We 
assessed these identifications by controlling gene expression of all the specific gene markers of 
immune and non-immune cells (figs. S3, S4). In addition, the tumor cell populations were 
examined by the prediction of copy number variants (CNV) (fig. S5). We observed that 
annotated tumor cell types harbored a deletion of chromosome 3p region (VHL, PBRM1, BAP1, 
SET2D) and an amplification of the 5q region, which is common for ccRCC (35, 36).

When pooling the cells from all patients, we showed that 34.4% were tumor cell types, 
8.9% were stromal cells, 5.3% were endothelial cells, and 51.4% were immune cell populations 
(Fig. 1C). The latter was mainly composed of monocytes (15.6 %), NK cells (10.6%), CD4-T 
(9.8%) and CD8+ T (8.5%). These results are consistent with other single-cell analyses of 
immune cell proportions from ccRCC tissues (37).

Cell deconvolution provides a robust prediction of the cell type composition of 
ccRCC TME

Transcriptome-based cell deconvolution approaches make it possible to predict the 
respective proportions of cell types present in a tissue from its bulk transcriptome (38). Building 
on our extensive identification of ccRCC tumor cells and other cell populations defining the 
TME, we assessed the relevance of using these single-cell RNA-seq data as reference profiles for
cell deconvolution of bulk RNA-seq data. We selected the CIBERSORTx and MuSiC methods 
(39, 40), considered by recent benchmarks to be among the most accurate (38), and evaluated 
their ability to predict the respective proportions of the 21 cell types referenced in our single-cell 
data. To perform this evaluation, we generated test datasets corresponding to 100 pseudo-bulk 
mixtures by sampling and mixing in controlled and known proportions of the reference single-
cell RNA-seq profiles (data file S1). In this way we avoided technical or biological biases 
between our test datasets and the reference single-cell data. We predicted the proportions of cell 
types for each pseudo-bulk mixture (data file S2) and assessed the robustness of the estimated 
fractions obtained by cell deconvolution by comparing them to the expected cell type fractions. 
We found high correlation values (Rho ranging from 0.57 to 0.99, two-sided Spearman 
correlation test p-value < 0.0001) between predicted and expected cell type proportions 
associated with low RMSE (Root Mean Squared Error) dispersion values (Fig. 2A). These 
predictions were also associated with a very low level of cross-correlation between different cell 
types, illustrating the specificity of the marker genes used to label single-cell RNA-seq data and 
the ability of these cell types to be interrogated by cell deconvolution (fig. S6A). In addition, the 
analysis of the slope of the regression line by cell type between predicted and expected 
proportions showed good linearity often close to 1, illustrating the quantitative accuracy of the 
predicted cell type fractions (Fig. 2A, fig. S6B). A comparison of the quality of the predictions 
generated by CIBERTSORTx with those of the MuSIC method, also widely used in cell 
deconvolution, was performed. Evaluation of cell proportions produced by MuSIC using 
pseudobulk mixtures showed that they were of good quality but with lower correlation values 
and regression coefficients compared to those obtained with CIBERTSORTx (figs. S7A, S7B). 
In order to complete the quality assessment of the cell fractions predicted by deconvolution by 
cell type across the patients, an evaluation was carried out this time by patient across the cell 
types (fig. S7C). We found that MuSIC predictions were strongly correlated with pseudobulk 
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mixtures, but still at a lower level than those produced by CIBERSORTx. This led us to continue
further assessment of cell deconvolution using CIBERSORTx only.

Tumor purity of ccRCC is reliably estimated by cell deconvolution

Prediction of tumor purity of tissues from genomic or transcriptomic data is often 
performed using the ABSOLUTE (41) and ESTIMATE (42) algorithms, respectively. Here we 
wanted to explore and assess the ability to predict the tumor purity using a cell deconvolution 
method based on our reference single-cell RNA-seq profiles. To our knowledge, this possibility 
has not yet been explored on ccRCC data. We compared tumor purity levels predicted by these 
different approaches using RNA-seq data from a previously published cohort of 311 ccRCCs (2).
First, we predicted by cell deconvolution with CIBERSORTx the proportions of the 21 cell types
for each of the 311 transcriptomes. For the calculation of tumor purity, we summed the 
proportions of the 3 tumor cell types. Besides, we used the ESTIMATE tool on these same 311 
transcriptomes to predict a second tumor purity value. Finally, we collected from the 
supplementary data associated with the cohort a third tumor purity value generated by the 
ABSOLUTE tool. We observed that the deconvolution-based estimated fractions of tumor cells 
were highly correlated to values predicted by ESTIMATE (two-sided Spearman correlation test 
p-value < 2.2e-16) (Fig. 2B) and ABSOLUTE (two-sided Spearman correlation test p-
value=1.7e-11) (Fig. 2C). We next extended this assessment of tumor cell fractions predicted by 
cell deconvolution for two other datasets. We generated predictions of tumor cell fractions on a 
pseudobulk mixture generated from single-cell RNA-seq data from 7 ccRCC samples (43) and 
obtained results very close to those directly quantified from single-cell RNA-seq (fig. S8A). We 
also predicted the fractions of tumor cells from RNA-seq data of the TCGA ccRCC cohort (44) 
and found that the tumor proportions were significantly correlated and proportional to those 
generated with the ESTIMATE method (fig. S8B). To conclude, the tumor purity proportions 
predicted by ESTIMATE and by the cell deconvolution method were consistent, illustrating the 
relevance of our new approach.

Cell fractions predicted by deconvolution are consistent with immunofluorescence 
quantification

We next extended our validation study of cell type fractions estimated by cell 
deconvolution using cell counts measured by immunofluorescence (IF) for a cohort of 19 ccRCC
primary tissues. The ccRCC tissue cohort was profiled by Bulk RNA Barcoding (BRB)-seq to 
quantify gene expression and imaged by IF to directly enumerate populations of CD8-positive 
(CD8+), endothelial cells expressing CD34 (CD34+) and CD45-positive (CD45+) leukocytes in 
red (left panel), yellow (center panel) and green (right panel), respectively (Fig. 3A, data file S3).
The bulk transcriptomic data of each sample was analyzed by cell deconvolution with 
CIBERTSORTx using the support of our single-cell reference data defining 21 cell types. To 
allow comparison between the cell counts obtained by IHC or IF using the surface markers CD8,
CD34 and CD45, we grouped the cell types predicted by cell deconvolution according to the 
expected presence of these markers in the single-cell data set. Thus, the CD8+ T cells, cycling 
T+NK cells and NK cells CD16+/FGFBP2+ were considered as CD8+ cells, the endothelial and 
Tip cells were selected as CD34+ cells and the DC, pDC, classical monocytes, intermediate 
monocytes, non-classical monocytes, B cells, plasma B cells, cycling T+NK, NK cells 
CD16-/FGFBP2-, NK cells CD16+/FGFBP2+, CD45-pos, T regulatory (T reg), CD4-T, CD8+ T
and mast cells were grouped as CD45+ cells. For each of the 19 samples we summed the 
predicted cell fractions as described above, to estimate the proportions of CD8+, CD34+ and 
CD45+ cells and compare these estimations to the IHC or IF measurements. We also extracted 
the respective contributions, predicted by cell deconvolution, of the cell types composing the 3 
populations. As expected, the CD8+ population was predicted to be predominantly composed of 
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the CD8+ T cell type (Fig. 3B left panel). The CD34+ population seemed to be constituted in a 
balanced manner by endothelial and Tip cells (Fig. 3B center panel). As for the CD45+ 
population, cell deconvolution predictions seemed to reveal a composition in favor of DC, 
intermediate monocytes, B and NK cells (Fig. 3B right panel). We observed significant 
correlations between IHC-based quantification and CIBERSORTx-based estimation for the 
CD8+ and CD34+ cells (two-sided Spearman correlation test P < 0.05) (Fig. 3C left and center 
panels) and a positive trend for the CD45+ cells (two-sided Spearman correlation test P = 0.075) 
(Fig. 3C right panel). To conclude, these analyses demonstrated the reliability of our cell 
deconvolution approach to predict cell type composition of ccRCC samples. 

The micro-environment of ccRCC metastases predicts patient response to 
Nivolumab 

The tumor microenvironment is considered to be a key factor to understand and predict 
the response of patients to anti-tumor treatments, in particular to immunotherapies (25, 26, 29, 
30). The cell deconvolution approach offers the possibility of analyzing the transcriptomic data 
of large tumor tissue cohorts, of patients included in clinical drug trials, in order to reveal the 
composition of their TME. In the previous section, we validated our cell deconvolution approach
based on the CIBERTSORTx algorithm and single-cell reference transcriptomes of 21 cell types 
of the ccRCC microenvironment. In a next step we used this approach to predict by 
deconvolution the cell fractions for each transcriptome of the 311 tumor samples from patients 
included in the clinical trials CheckMate of the anti-PD-1 antibody Nivolumab (anti-PD-1) or the
mTOR inhibitor Everolimus in advanced ccRCCs (CM-009 (NCT01358721), CM-010 
(NCT01354431) and CM-025 (NCT01668784)) (2). This cohort was selected because it was one 
of the few to be composed of samples obtained from both the primary tumors and from 
metastases, associated with clinical metadata describing their responses to therapy (Clinical 
Benefit (CB), Progression Free Survival (PFS), Overall Survival (OS)).

First, to control a putative sex-related effect, we estimated cell fractions for primary and 
metastatic tissues and did not find a significant difference in TME composition between men and
women after correction for multiple testing (figs. S9, S10). Next, regardless the gender, we 
subdivided the cohort into 4 subgroups based on sample collection site (primary/metastasis) and 
therapy (Everolimus/Nivolumab). The cell type proportions were then predicted by cell 
deconvolution for each subgroup. We observed no statistical association between variations in 
TME and patient response to Everolimus from the subgroup of 92 primary tissues or of 37 
metastases (figs. S11-14, data files S4, S5). We similarly studied the subgroup of 133 primary 
tumor samples from patients treated with Nivolumab and again did not observe a significant 
association between the TME composition and clinical variables of response to treatment or 
survival (figs. S15, S16, data file S6).

We finally selected, among the 311 ccRCC samples of the overallcohort, the 84 samples 
derived from metastases, and further reduced our selection to the 47 samples taken before the 
treatment of patients with Nivolumab (Fig. 4A). We performed statistical association analyses 
between the cell fractions of each of the 19 cell types, and the three categories of patient clinical 
benefit (Clinical Benefit (CB), Intermediate Clinical Benefit (ICB), Non-Clinical Benefit (NCB) 
defined by Braun et al. (2). Predicted cell fractions of Tumor, T regulatory, CD8+ T and Plasma 
cells were significantly associated with CB or NCB responders before multiple testing procedure
(two-sided Wilcoxon rank-sum test: p-value < 0.05, Fig. 4B). These 4 cell types identified as key
populations of the ccRCC TME were kept for further analysis.

C1-C3 subtypes are associated with tertiary lymphoid structures and ccRCC 
recurrence to Nivolumab
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In order to reveal cell fraction profiles associated with patient clinical outcome to 
Nivolumab, we performed a consensus clustering of k-means of the 47 metastatic ccRCC 
samples, based on Tumor, T regulatory, CD8+ T and Plasma cell fractions, and classified them 
into three subtypes (C1-C3) (Fig. 4C, fig. S17). Among these subtypes, tumors in C1 showed 
better treatment response outcomes than tumors in C3 (two-sided chi-squared test p-value < 
0.05), the latter being characterized by a high proportion of poor response cases (NCB). The C2 
subtype groups together a population of patients with varying clinical benefit. We found that the 
tumor shrinkage values, which reflects the change in size of the tumor targets after treatment, 
were significantly different between C1, C2 and C3 subtypes with mean values of -34, -6.4 and 
+16, respectively (Kruskal-Wallis test, p-value < 0.05) (data file S7). We finally performed 
survival analyses and found that ccRCC tumors from C1 subtype harbored greater PFS (two-
sided log-rank test p-value = 0.0066) indicating less post-treatment progression and greater OS 
(two-sided log-rank test p-value < 0.05) than C2-C3 subtypes (Fig. 4D). As for metastatic sites, 
TMB counts, gene mutation profiles, tumor purity, sex and age were not different between these 
3 subtypes (Kruskal-Wallis or two-sided chi-squared tests, p-value > 0.05, data file S8)

Regarding the TME content, the C1 subtype was associated with a higher fraction of 
CD8+ T cells and of plasma cells compared to C2-C3 and C3, respectively (Fig. 4E). Plasma cell
fractions were able to distinguish the mixed C2 subtype from the C3 subtype of poor responders, 
the latter being associated with significantly lower fractions (Fig. 4C, E). Tertiary Lymphoid 
Structures (TLS) have been highlighted as key actors for sustaining an immune-responsive 
micro-environment (29, 32, 45), hence, we analyzed the TLS status in our subtypes. Two TLS 
scores were calculated using Dieu-Nosjean et al. and Cabrita et al. gene signatures (29, 45). The 
median of each TLS score was used to assign TLS-High and TLS-Low status to the 47 metastatic
ccRCC samples. We observed that the C1 subtype was enriched in TLS-High status compared to 
the C3 subtype (TLS2014: two-sided chi-squared test, p-value < 0.01) (Fig. 4C, data file S8).

To further characterize the mechanisms contributing to the differences of patient response
outcomes between C1, C2 and C3 subtypes, we used the following gene signatures calculated in 
Braun et al.: angiogenesis (Angio) (46), myeloid cell infiltration (Myeloid) (46), T effector cell 
infiltration (Teff) (46), Tumor Inflammation Score (TIS) (47), and immune infiltration 
(JAVELIN) (1, 2). We observed that C1 subtype tumors were associated with greater Teff, 
JAVELIN and TIS scores, compared to C3, C2-C3 and C3, respectively (two-sided Wilcoxon 
rank-sum test, Benjamini-Hochberg-corrected p-value < 0.05, p-value < 0.01 and p-value < 0.01)
(Fig. 4F). These results confirmed the high immune infiltration, in particular of T cells, and the 
inflammation of C1 subtype samples. These biological features are known to promote the 
beneficial response of patients to immunotherapies (1, 46, 47), which is coherent with cluster C1 
being enriched in patients with a clinical benefit.

Immunoglobulin-related gene expression values are associated with the C1-C3 
clusters and patient response to Nivolumab

We next aimed at investigating gene expression values associated with the three subtypes
(C1-C3). We leveraged the reprocessed and relabeled single-cell RNA-seq data of the ccRCC 
and performed pair-wise comparisons between cell-type transcriptomes to identify sets of 
differentially expressed genes specific to each cell type (Fig. 5A, data files S9, S10). To do so, 
only the gene sets of the 4 cell types previously identified in metastases to be associated with the 
response of patients to Nivolumab (Tumor, T regulatory, CD8+ T and Plasma B cells, Figs. 4B 
and C) were considered. Finally, we reduced the list of genes to those being significantly 
differentially expressed between the C1, C2 or C3 cell-based subtypes (two-sided Wilcoxon 
rank-sum test, Benjamini-Hochberg-corrected p-value < 0.05) (Fig. 5B). This gene selection 
process revealed 6 genes: TMEM139, whose reduced expression is associated with a poor 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 11, 2024. ; https://doi.org/10.1101/2023.07.17.548676doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.17.548676
http://creativecommons.org/licenses/by-nc-nd/4.0/


prognosis in Non-Small Cell Lung Cancer (NSCLC) (48) and 5 immunoglobulin genes coding 
for the constant region of immunoglobulin light chains (IGKC) and heavy chains (IGHG1, 
IGHG2, IGHG3, IGHA1). As expected, the analysis of these 6 genes by functional enrichment of
biological processes (GO) indicated its involvement in the tumor immune response mediated by 
B cells (fig. S18, data file S11).

We observed that the immunoglobulin gene expression values were higher for the C1 
cluster compared to C3 (Fig. 5B). This was consistent with the fact that tumors from C1 were 
characterized by a higher proportion of plasma B cells, which are immunoglobulin-secreting 
cells, compared to C3 (Figs. 4E, Fig. 5C). The C2 subtype also had stronger immunoglobulin 
gene expression values compared to C3. However, the heterogeneity of treatment responses in 
this C2 group could be due to the lower fraction of CD8+ T cells compared to the C1 subtype of 
good responders. To conclude, the expression of immunoglobulin genes combined with the 
proportion of plasma and CD8+ T cells in ccRCC metastases would be key determinants in 
predicting patient response to Nivolumab.

 

Tumor-Immunity Differential score predicts patient response to Nivolumab from 
ccRCC metastases

Leveraging on our results, we found that a wide variety of molecular and cellular 
properties of ccRCC metastases help subdivide patients into profiles associated with response to 
Nivolumab. In order to integrate these components, we developed a Tumor-Immunity 
Differential (TID) score. The TID score consists of the difference between a tumor part of high 
predictive value for patients with NCB (Tumor cell fraction and TMB) and an immunity part of 
high predictive value for CB patients (Plasma B, CD8+ T and Treg cell fractions and the PDCD1
gene expression) (Figs. 6A and 6B).Therefore, the higher the TID score the worse the patient's 
prognosis should be. To assess this hypothesis, the cohort of 47 ccRCC metastases was divided 
using the TID score median value (0.78) resulting in 24 tumors with TID-Low status and 23 
tumors with TID-High status. 

To characterize these groups, we performed a ssGSEA analysis of biological hallmarks 
from the MSigDB database. Three gene sets yielded significant differences between TID-
subtypes. The TID-High profile was characterized by a lower enrichment of the immunity-
related hallmarks, INFLAMMATORY_RESPONSE and IL2_STAT5_SIGNALING, and by a 
higher enrichment of the DNA_REPAIR process (Fig. 6C) (data file S12).

Furthermore, we showed that the TID-High subtype had significantly worse clinical 
prognostic values and was enriched in patients with NCB responses for 15 out of 23 tumors (the 
8 left consisting of 1 CB and 7 ICB) whereas the TID-Low subtype was enriched in patients with
CB responses for 12 out of 24 tumors (the 12 others being 5 NCB and 7 ICB) (two-sided chi-
squared test, p-value < 0.001) (Fig. 6C). Furthermore, the TID subtypes were significantly 
associated with patient PFS and OS (two-sided log-rank test, PFS: p-value < 1e−04 and OS: p-
value = 0.01) (Figs. 6E and 6F). The TID-Low subtype of good prognostic also harbored lower 
tumor purity (ABSOLUTE value 0.28 vs. 0.39, data file S13) and higher JAVELIN and TIS 
scores compared to TID-High subtype (two-sided Wilcoxon rank-sum test, Benjamini-Hochberg-
corrected p-value < 0.05), highlighting for the latter a higher tumor content associated with a 
reduced tumor immune infiltrate (Fig. 6D).

We continued our investigation of TID subtypes by identifying genes whose expression 
significantly differed between these two groups. Only three genes were found to be significantly 
differentially expressed between the two TID subtypes (two-sided Wilcoxon rank-sum test, 
Benjamini-Hochberg-corrected p-value < 0.05) (Fig. 6G). The CXCR6 gene was under-expressed
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in TID-Low cluster, while the YWHAE and BTF3 genes were over-expressed in TID-High 
subtype.

Since the TID score integrates several molecular and cellular components that can be 
challenging to obtain in clinical routine, we studied the ability of this 3-gene signature to classify
the cohort of 47 ccRCC metastases, using consensus clustering based on k-means, into TID-
associated clusters TID-G1 and TID-G2 (Fig. 6H). These clusters were significantly associated 
with PFS, OS values and RECIST treatment outcomes with the TID-G1 showing a better 
treatment outcome and OS than TID-G2 (two-sided log-rank test, PFS: p-value = 1e−04, OS: p-
value < 0.05) (Figs. 6I and 6J, data file S14). Interestingly, CXCR6 showed a higher expression 
in TID-G1, compared to TID-G2, and associated with higher proportion of CD8+ T and plasma 
B cells, higher expression of immunoglobulin genes, and higher TLS scores (Fig. 6H). These 
results demonstrated that the 3-gene signature was able to capture the treatment response 
discrepancy reflected by the TID score from ccRCC metastases.

 

TID-associated YWHAE gene predicts patient response to Immune Checkpoint 
Blockade in melanoma and lung cancers

To explore the predictive power of the TID score and TID-associated genes (CXCR6, 
YWHAE and BTF3), we performed a comprehensive comparison to previously published 
Immune Checkpoint Blockade (ICB) response predictive scores. We used independent gene 
expression datasets based on primary and metastatic tissues from various cancers from patients 
treated by anti-PD-1 or anti-CTLA-4 therapies. The ICB-related scores considered were 
transcriptome-based predictive signatures, including JAVELIN (1), MIAS (22), GEP (20), 
MHC-I (21), MHC-II (21), IMPRES (19) two TLS scores (TLS2014 (29) and TLS2020 (45)), 
and the PD-1 gene (PDCD1) expression level.

We initiated our comparison using three cohorts of ccRCC tissue obtained from patients 
before treatment with anti-PD-1: a first of 33 metastases (2), a second of 90 primary tumors (2) 
and a third of 9 primary tumors (49) (Fig. 7A). We found that the TID score was the best 
performing predictor of anti-PD-1 response in ccRCC metastases (AUC-ROC of 0.88), followed 
by MHCI and MHCII scores (AUC-ROC of 0.8 and 0.78) (Fig. 7A). We also observed good 
performances for the three TID-associated genes (AUC-ROCs ranging from 0.73 to 0.76). 
Surprisingly, all the ICB response scores calculated with primary ccRCC samples from the 
Braun et al. dataset obtained poor performances close to chance (AUC-ROCs ranging from 0.5 to
0.61) while the mixed dataset of primary and metastatic samples from Ascierto et al. harbored 
slightly better performances, especially for the YWHAE gene with an AUC-ROC of 0.75 (Fig. 
7A, data files S15-17). To explain the discrepancy between the score performances for the 
ccRCC datasets, we assessed the correlations between both types of samples, primary and 
metastatic. We used an independent cohort of 15 matched primary and metastatic ccRCC 
samples (50) and calculated the same scores based on RNA gene expression data (data file S18, 
S19). We observed correlations between primary-based and metastatic-based scores only for IG, 
IMPRES and TLS2020 scores (two-sided Spearman correlation test p-value < 0.05) (Fig. 7B) 
suggesting that treatment response prediction based on gene expression in ccRCC is not 
correlated between primary and metastasis samples from the same patient.

To further investigate the value of TID-associated genes beyond ccRCC, we investigated 
their ability to predict the response to immunotherapies of patients with metastatic melanoma or 
metastatic non-small cell lung cancer (NSCLC), compared to published ICB response scores. 
More specifically, we used two cohorts of patients with metastatic melanoma treated with 
Nivolumab: a first one of 64 primary samples from Riaz et al. (51) and a second one of 20 
primary samples from Du et al. (52) We also used a cohort from Trefny et al. (53) of 19 blood 
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samples with peripheral blood mononuclear cells (PBMCs) collected from patients with 
metastatic NSCLC treated with Nivolumab. In these three studies, samples were collected before
and during treatment of which we took advantage by dividing each cohort according to the time 
of the biopsy, into pre- and on-treatment samples (Figs. 7C and 7D). Furthermore, to assess how 
prior therapy could affect patient response to ICB, we divided the Riaz et al. cohort into groups 
of patients who had previously been treated with Ipilimumab (anti-CTLA-4) (31 samples) and 
those naive for this treatment (33 samples). Of note, as less than 2 out of 5 IG genes have been 
detected in melanoma and NSCLC transcriptomic datasets, they could not be used to assess the 
prediction of the immunoglobulin genes.

Interestingly, for pre-treatment melanoma samples, the TID-associated YWHAE gene 
expression greatly outperformed the existing ICB response scoresfor the Ipilimumab-naive 
patients (AUC-ROC of 0.78) (Fig. 7C first plot, data file S20). In addition, it was the best 
performer, together with the MIAS score, for the patients who progressed after Ipilimumab 
treatment(AUC-ROC of 0.89) (Fig. 7C second plot, data file S21), and was among the top 
predictors in the Du et al. cohort (AUC-ROC of 0.94) (Fig. 7C third plot, data file S22). 
Regarding PBMCs samples from the Trefny et al. dataset, the expression levels of YWHAE and 
PDCD1 genes were the best performers (AUC-ROC of 0.84) (Fig. 7C fourth plot, data file S23). 
The average AUC-ROC values highlighted the YWHAE gene as the best marker of ICB treatment
response based on pre-treatment biopsies (AUC-ROC of 0.85) (Fig. 7C fifth plot).

We continued our investigation of patients with melanoma or NSCLC using samples 
obtained during their treatment with Nivolumab. For the Riaz et al. melanoma cohort, we 
observed an overall improvement in the performance of the ICB response scores for the 
Ipilimumab-naive samples compared to those obtained from the biopsies taken before 
Nivolumab treatment (Figs. 7C and 7D first plots). The best predictive power was obtained by 
far with the YWHAE gene for Ipilimumab-naive samples from the Riaz et al. dataset (AUC-ROC 
of 0.98) (Fig. 7D first plot, data file S24) and for that of Du et al. (AUC-ROC of 1) (Fig. 7D third
plot, data file S25). Regarding the melanoma samples from Riaz et al. taken from patients who 
progressed after treatment with Ipilimumab, we observed, unlike the Ipilimumab-naive patients, 
rather an overall reduction in the quality of the predictions with a performance for YWHAE 
(AUC-ROC of 0.73) below that of the MIAS score (AUC-ROC of 0.8) (Fig. 7D second plot, data
file S26). Finally, the performances obtained for on-treatment samples in the Trefny et al. dataset
were close to those obtained from the samples taken from the patients before treatment (Fig. 7D 
fourth plot, data file S27). The YWHAE gene obtained the second-best prediction (AUC-ROC of 
0.75), just after that of the GEP score (AUC-ROC of 0.8), with a strong decrease in the 
performance of PDCD1. Overall, the average AUC-ROCs highlighted the YWHAE gene as the 
best marker of ICB response based on on-treatment biopsies (AUC-ROC of 0.86) (Fig. 7D fifth 
plot).

DISCUSSION 

Immune checkpoint blockade (ICB) therapies are now an important tool for the treatment
of many types of advanced cancers, leading to prolonged progression-free and overall survival(3,
54, 55). However, as only a subset of patients responds to ICB therapies, there is an urgent need 
for novel approaches to better select patients who may benefit from these treatments (55, 56). 
Previous studies have shown the influence of the cellular composition of the tumor 
microenvironment (TME) on the response of patients to immunotherapies (31, 32, 45). Although 
substantial effort has been devoted to the investigation of T cell populations toward 
understanding ICB treatment response, other cell types in the TME are also involved in patient 
clinical outcome (25, 26).
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As of yet, only limited number of patients have been analyzed by single cell sequencing, 
hampering identification of response-related aspects of TME composition. In contrast, many 
clinical trials comprise large series of patients analyzed by bulk RNA-seq. Predicting the 
composition of the TME from bulk RNA-seq data by cell deconvolution may bridge this 
challenge and has proven to be a robust and sensitive approach, especially when using a tumor-
specific single-cell RNA-seq data as a reference of cell types present in TME (38). Also, the 
quality of single-cell transcriptome labeling used as a reference of these methods has a major 
impact on the predictive performance in the deconvolution procedure. We therefore performed a 
detailed characterization of the used single-cell RNA-seq data set to obtain a robust classification
of cells, resulting in the annotation of 21 distinct cell types (34). We then performed a thorough 
assessment of the robustness of cell fractions predicted by cell deconvolution using this 
annotated single-cell dataset. By carrying out simulations of pseudobulk RNA-seq mixtures from
single-cell RNA-seq data, we ensured our ability to correctly predict the proportions of the 
different cell types present in the ccRCC tumor samples. Importantly, we also validated that our 
cell deconvolution predictions fairly reflected the relative proportions of CD8+, CD34+, CD45+ 
cell populations directly measured by IHC on tissue sections. The annotated single-cell dataset 
was thus considered as a robust reference to perform cell deconvolution by CIBERTSORTx on 
bulk transcriptomic data of advanced ccRCC samples from primary and metastatic sites collected
from patients before ICB treatment (2).

When exploring the predicted cell type proportions of ccRCC samples from Braun et al., 
2020, we found that the tumor, Plasma, CD8+ T and T-regulatory cell fractions in metastatic 
samples displayed significant differences in relation to anti-PD-1 treatment response, cancer 
progression and overall survival. Based on this observation, we identified three distinct subtypes 
(C1-C3). Interestingly, we observed no association between tumor composition and treatment 
response for samples from primary sites or for primary and metastatic samples treated with an 
mTOR inhibitor (Everolimus). Moreover, differentially expressed genes between C1-C3 
subtypes revealed 5 immunoglobulin genes (IGKC, IGHG1, IGHG2, IGHG3, IGHA1) as 
markers of the C3 cluster showing the worst ICB clinical response. This cluster is characterized 
by low expression of immunoglobulin genes and poor fractions of Plasma cells indicating the 
key role of Plasma cells in the anti-tumor immune response. This need of both B-cell and T-cell 
fractions for efficient immunotherapy treatment is consistent with previous works in colorectal 
(57), breast (58), NSCLC (59), head and neck (60), and ovarian (61) cancers where higher 
proportions of T-cells or B-cells in TME were associated with improved patient survival.

Besides, previous studies found that B cells associated with tertiary lymphoid structures 
(TLS) were involved in adaptive immune responses in inflamed and tumor tissues (29, 30, 45). 
These ectopic lymphoid formations lead to the differentiation of key immune cells: tumor-
specific B-cells acting either as antigen-presenting cells or tumor antigen-specific antibody-
secreting cells and T-cells (62, 63). In recent works, TLS were also associated with ICB 
treatment responses in ccRCC and melanoma with a focus on TLS-associated B cells and gene 
signatures (29, 32, 45). This is consistent with our results obtained using ccRCC metastases from
the CheckMate cohorts (2), where high levels of CD8+ T cell and Plasma B-cell fractions were 
correlated with the two TLS signatures. Furthermore, the subtype C1, enriched in both CD8+ T 
and Plasma B-cells fractions, was related to a high proportion of ICB good responders. This 
observation may reflect the important interplay between these cell types in TLS, especially in 
metastasis sites of patients with ccRCC.

In addition, we developed a single-sample Tumor-Immunity Differential (TID) score to 
leverage gene expression data and estimated TME cell fractions to cluster metastatic ccRCC 
samples. We based our score on both favorable (PDCD1 (PD-1) gene expression, T regulatory, 
CD8+ T and Plasma cell fractions) and unfavorable (Tumor and TMB) features for ICB 
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response. The TID score was then calculated as the difference between the ICB response 
unfavorable "tumor" and the favorable "immunity" parts. We observed that the TID-High 
subtype was strongly correlated with bad responders, recurrence and with a poorer overall 
survival. Also, high TMB values appeared to be associated with bad ICB response in metastatic 
ccRCC samples. This observation is directly linked with recent works in ccRCC which have 
shown that high TMB values were associated with poor survival and immune infiltration (64) but
with a limited predictive clinical value of ICB response (10, 11). Moreover, a high tumor purity 
was found in the High-TID subtype of bad ICB responders, suggesting that tumor fraction or 
purity were a key component driving ICB treatment response in metastatic ccRCC samples. 
Three genes were highlighted as markers of the TID subtypes: YWHAE, CXCR6 and BTF3. The 
YWHAE gene belongs to the 14-3-3 protein family and was previously found to be associated 
with advanced ovarian cancers, and poor patient prognosis mediated by the PI3K/AKT and 
MAPK pathways (65). Interestingly, phenethyl isothiocyanate (PEITC) and fusicoccin molecules
are found in the DrugBank database to target 14-3-3 proteins. Previous studies revealed various 
anti-cancer effects of PEITC molecules (66), leading to an inhibition of carcinogen metabolism 
in smokers with lung cancer (67) while Fusicoccin-A induces apoptosis in human cancer cell 
lines in combination with or after IFN-α treatment (68, 69). CXCR6 is a chemokine receptor 
overexpressed in tumor-infiltrating lymphocytes involved in the recruitment of T cells into RCC 
tissue (70). The Basic Transcription Factor 3 (BTF3) is required for the transcriptional initiation 
and known to be an oncogene in colorectal cancer (71). Furthermore, it is overexpressed in 
pancreatic ductal carcinoma cells (72) and in prostate cancer where it sustains a cancer stem-like 
phenotype (73, 74). To further assess the clinical relevance of the TID score and the associated 
genes, we compared them to existing transcriptomic scores previously published to predict 
patient clinical response to ICB therapy. We observed that the TID score was the best predictor 
of patient clinical benefit on the cohort of metastatic ccRCC samples from the CheckMate 
cohorts (2).

In order to assess the predictive power of marker genes associated with the TID score, we
extended the comparisons of scores and markers predicting ICB clinical response to melanoma 
and NSCLC. The classification performances of the TID-associated YWHAE gene outperformed 
other existing scores in anti-PD-1 treated metastatic melanoma and NSCLC cancers in pre-
treatment and on-treatment samples. Notably, the best performances in the NSCLC Trefny et al. 
subgroups were obtained using gene expressions of YWHAE and PDCD1 although the analyzed 
samples were peripheral blood circulating CD8+ T cells. These results reinforced the clinical 
relevance of peripheral CD8+ T cells in the prediction of ICB response in NSCLC and may 
implicate a key role of YWHAE in these cells. Interestingly, the investigation of a variety of 
tumor sample types with different biopsy time-points (pre- or post-treatment by anti-PD-1 
antibody) from several cohorts revealed the discrepancy in the prediction performance of 
treatment outcome by predictive scores based on gene expression data. We observed poorer 
performances for samples from the primary site of ccRCC compared to the samples from a 
metastatic site (CheckMate cohorts). In fact, to assess the impact of the sample type, we 
compared the score values between matched primary and metastatic samples in an independent 
cohort (Ho et al. dataset). This analysis revealed no significant correlations between the two 
samples types for good predictors. These results highlighted the critical effect of tumor sample 
type in the discovery of ICB response predictors. 

Also, the prediction performances were not equivalent between pre- and post-treatment 
samples or samples recruited after the failure of one previous anti-CTLA-4 immunotherapy and 
without prior treatment in melanoma samples. This is consistent with a previous study on 
patients with melanoma, treated with Nivolumab or Pembrolizumab, showing that previous anti-
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CTLA-4 exposure was associated with performance differences for treatment outcome prediction
(21). 

To conclude, we highlighted in this work the importance of the interplay of both CD8+ T 
and Plasma B cells in immunotherapy response in ccRCC and we revealed the 5 immunoglobulin
genes (IGKC, IGHG1, IGHG2, IGHG3, IGHA1), the Tumor-Immunity Differential score and the
TID-associated gene YWHAE as powerful markers of ICB treatment response based on pre-
treatment or on-treatment biopsies of primary sites, metastatic or peripheral CD8+ T cell samples
in several cancer types. Further validation studies in larger cohorts will be needed to assess the 
ICB predictive performance of the TID score and of the key TID-associated gene markers 
reported here, both in ccRCC and in other tumor types. Nevertheless, our results open novel 
avenues to better predict the clinical outcome of patients with cancers treated with 
immunotherapies.

MATERIALS AND METHODS

Public transcriptomics and clinical data

Processed bulk RNA-Seq and clinical data were collected for 5 different cohorts. A 
cohort of 331 primary and metastatic advanced clear cell Renal Cell Carcinoma (ccRCC) 
samples from patients that progressed on 1, 2 or 3 previous therapies (at least one systemic anti-
angiogenic therapy) included in clinical trials CM-009 (NCT01358721), CM-010 
(NCT01354431) and CM-025 (NCT01668784) treated by anti-PD-1 antibody Nivolumab and 
mTOR inhibitor Everolimus (EGAC00001001519; EGAC00001001520; EGAC00001001521) 
(2). A cohort of 11 primary or metastatic ccRCC samples on one of four clinical trials 
(NCT00441337, NCT00730639, NCT01354431, NCT01358721) (49) processed in (22). A 
cohort of 64 advanced melanoma samples from patients included in clinical trial CA209-038 
(NCT01621490) treated with Nivolumab (GSE91061) (51). A cohort of 20 metastatic melanoma 
samples from patients treated by anti-PD-1 (GSE168204) (52). A cohort of 19 peripheral CD8+ 
T cells (PBMCs) samples collected from blood of metastatic NSCLC patients (GSE111414) 
(53). Samples for each cohort were divided according to prior therapies and analyzed 
independently (fig. S1). Patients with treatment outcomes of “Complete Response” (CR) or 
Partial Response (PR) were considered as responders, whereas patients with treatment outcome 
of “Progressive Disease” (PD) as non-responders.

Single-cell RNA-seq data analysis

Single-cell RNA-seq data from 11 ccRCC patients was obtained from Obradovic et al. 
(34). Raw data was downloaded from https://data.mendeley.com/datasets/nc9bc8dn4m/1. The 
data set consisted of adjacent normal and tumor tissue. Both were analyzed separately. 
Furthermore, in the original study, the tissue was prior to sequencing FACS sorted into CD45+ 
and CD45- subsets. These subset annotations were kept, and the data were separately re-
processed in R using Seurat (v.4.1.1) (75) and harmony (v.0.1.0) (76). Initially, only features 
expressed in at least 50 cells were included in the analysis. Further QC included removal of cells 
with fewer than 200 and more than 5000 features detected. As kidney cells have in general a high
mitochondrial content, its threshold was set to >25%, everything above was removed. To 
normalize the data, Seurat’s function NormalizeData was used followed by a feature selection to 
find the 2000 most variable genes. Afterward, the data was scaled by using the function 
ScaleData. Prior to data integration, a principal component analysis was carried out. To adjust 
for patient-to-patient variation, data integration was achieved by the function RunHarmony from 
the harmony package. For dimensional reduction, uniform manifold approximation (UMAP) was
performed on the first 20 dimensions of the harmony reductions. Finally, the Louvain algorithm 
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implemented in Seurat was used for cluster analysis with a resolution of 0.5. To assign cell types 
to the clusters, differential gene expression (DGE) was used by applying Seurat’s function 
FindAllMarkers. In addition to DGE, previously known cell type markers were used to facilitate 
cell type annotation. 

To confirm the tumor origin of the annotated tumor cells, copy number variation (CNV) 
was inferred using the R package infercnv (v.1.12.0) (77). As a normal reference the adjacent 
normal CD45- subset was used. The gene order file (hg38_gencode_v28.txt) was downloaded 
from https://data.broadinstitute.org/Trinity/CTAT/cnv/. For the analysis a gene cutoff of 0.1 was 
set. Furthermore, cluster_by_groups was set to TRUE and a noise filter was applied by setting 
sd_amplifier to 1.5. The hidden Markov model (HMM) i6 was used for CNV prediction.

Bulk RNA Barcoding (BRB) library preparation and sequencing 

Total RNA was extracted from MCTS using the MirVana PARIS kit (Thermofisher). 
BRB-seq experiments were performed at the Research Institute for Environmental and 
Occupational Health (Irset, Rennes, France) according to the published protocol (Alpern et al, 
2019). Briefly, the reverse transcription and the template switching reactions were performed 
using 4 µL total RNA at 2.5 ng/µL. RNA were first mixed with 1 µL barcoded oligo-dT (10 µM 
BU3 primers, Microsynth), 1 μL dNTP (desoxyribonucleoside triphosphate) (0.2 mM) in a PCR 
(Polymerase Chain Reaction) plate, incubated at 65 °C for 5 min and then put on ice. The first-
strand synthesis reactions were performed in 10 µL total volume with 5 µL of RT (Reverse 
transcription) Buffer and 0.125 µL of Maxima H minus Reverse Transcriptase (Thermofisher 
Scientific) and 1 µL of 10 μM template switch oligo (TSO, IDT). The plates were then incubated
at 42 °C for 90 min and then put on ice.

After reverse transcription (RT), decorated cDNA from multiple samples were pooled 
together and purified using the DNA Clean and concentrator-5 Kit (Zymo research). After 
elution with 20 µL of nuclease-free water, the samples were incubated with 1 µL Exonuclease I 
(NEB) and 2 µL of 10× reaction buffer at 37 °C for 30 min, followed by enzyme inactivation at 
80 °C for 20 min.

Double-strand (ds) cDNAs were generated by PCR amplification in 50 µL total reaction 
volume using the Advantage 2 PCR Enzyme System (Clontech). PCR reaction was performed 
using 20 µL cDNA from the previous step, 5 µL of 10× Advantage 2 PCR buffer, 1 µL of dNTPs
50×, 1 µL of 10 µM LA-oligo (Microsynt), 1 µL of Advantage 2 Polymerase and 22 µL of 
nuclease-free water following the program (95 °C—1 min, 11 cycles: 95 °C—15 s, 65 °C—30 s, 
68 °C—6 min, 72 °C—10 min). Full-length double-stranded cDNA was purified with 30 µL of 
AMPure XP magnetic beads (Beckman Coulter), eluted in 12 µL of nuclease-free water and 
quantified using the dsDNA QuantiFluor Dye System (Promega).

The sequencing libraries were built by tagmentation using 50 ng of ds cDNA with the 
Illumina Nextera XT Kit (Illumina) following the manufacturer’s recommendations. The 
reaction was incubated for 5 min at 55 °C, immediately purified with DNA Clean and 
concentrator-5 Kit (Zymo research) and eluted with 21 µL of nuclease-free water. The tagmented
library was PCR-amplified using 20 µL eluted cDNA, 2.5 µL of i7 Illumina Index, 2.5 µL of 5 
µM P5-BRB primer (IDT) using the following program (72 °C—3 min, 98 °C—30 s, 13 cycles: 
98 °C—10 s, 63 °C—30 s, 72 °C—5 min). The fragments ranging 300–800 base pairs (bp) were 
size-selected using SPRIselect (Beckman Coulter) (first round 0.65× beads, second 0.56×), with 
a final elution of 12 µL nuclease-free water. The resulting library was sequenced on an Illumina 
Hiseq 4000 sequencer as Paired-End 100 base reads following Illumina’s instructions. Image 
analysis and base calling were performed using RTA 2.7.7 and bcl2fastq 2.17.1.14. Adapter 
dimer reads were removed using DimerRemover 
(https://sourceforge.net/projects/dimerremover/).
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BRB-seq data processing

Pair-end reads with quality score higher than 10 were kept. The first read of the pair is 16
bases long. A first part of 6 bases corresponds to a unique sample-specific barcode and a second 
part of 10 bp is a unique molecular identifier (UMI). The second read of the pair, containing 
genomic data, was aligned to the human reference transcriptome from the UCSC website (release
hg38) using BWA (78) (version 0.7.4.4) with the non-default parameter “−l 24”. Reads mapping 
to several positions in the genome were filtered out from the analysis. The pipeline is described 
in (79). After quality control and data pre-processing, a gene count matrix was generated by 
counting the number of unique UMIs associated with each gene for each sample.

Immuno-histochemistry

Sections (5µm thick) of formalin-fixed, paraffin embedded tumor tissue samples were 
dewaxed, rehydrated through graded ethanol and subjected to heat-mediated antigen retrieval in 
citrate buffer (Antigen Unmasking Solution, Vector Laboratories). Slides were incubated for 10 
min in hydrogen peroxide H2O2 to block endogenous peroxidases and then 30 min in saturation 
solution (Histostain, Invitrogen) to block nonspecific antibody binding. This was followed by 
overnight incubation with indicated primary antibodies at 4°C. After washing, sections were 
incubated with a suitable biotinylated secondary antibody (Histostain, Invitrogen) for 10 min. 
Antigen-antibody complexes were visualized by applying a streptavidin-biotin complex 
(Histostain, Invitrogen) for 10 min followed by NovaRED substrate (Vector Laboratories). 
Sections were counterstained with hematoxylin to visualize nucleus. Control sections were 
incubated with pool secondary antibodies without primary antibody. The antibody against the 
following target was used: CD34 (Abcam, ab81289).

Immunofluorescence and histology image analysis

Formalin fixed paraffin embedded tissue blocks were sectioned at 5µm thickness. The 
tissue sections were dewaxed and rehydrated in xylene, gradual percentages of alcohols and 
finally in tap water. Protein epitopes of interest (CD8, particularly for CD8 positive lymphocytes 
and CD45 for all leukocytes) were retrieved in pH6 sodium citrate buffer using heat-induced 
epitope retrieval (HIER) method for 5 min, followed by quenching endogenous peroxidase 
activity and possible non-specific staining using 3% hydrogen peroxide (Sigma, H1009) and 
serum-free protein block (Agilent, X090930-2), respectively. Primary antibody - CD8 (Agilent, 
M710301-2, 1:800) and CD45 (Abcam, ab40763, 1:500) - was incubated for 1 hour at room 
temperature, followed by HRP (horseradish peroxidase) conjugated secondary antibody (Leica 
biosystems, DS9800) for 30 min. Fluorophore conjugated TSA (tyramide signal amplification) 
(Akoya bioscience, NEL744001KT, NEL741001KT) was used to visualize the primary antibody 
for 20 min. Then the sections were counterstained in Hoechst (Thermo fisher, H3570, 1:100) for 
10 min and mounted in prolong gold anti-fade mounting buffer (Thermo fisher, P36930). Zeiss 
axio scan z1 was utilized to acquire digitized images using fluorescence channels such as 
Hoechst, FITC and Cy3. Images were then analyzed using HighPlex FL module in Halo AI 
(Indica Labs®version 3.6.4134) according to published protocol (80).

Cell deconvolution algorithms

Prediction of tumor micro-environment (TME) cell type proportions from bulk gene 
expression data was performed using CIBERSORTx (version 1.0, 12/21/2019) and MuSiC 
(version 1.0.0) algorithms (39, 40). The CIBERSORTx cell fractions module was executed using
the docker image after registration and access token received 
(https://cibersortx.stanford.edu/download.php). For both methods, reprocessed and relabeled 
single-cell RNA-seq data were used as reference (34). The 3 tumor predicted fractions ("Tumor 
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cells", "Cycling Tumor cells", "Tumor cells CA9-high") were summed into one "Tumor" fraction
for clustering of samples based on estimated cell fractions.

Pseudo-bulk RNA-seq mixtures

The generation of pseudo-bulk mixtures was performed from a single-cell RNA-seq data 
matrix made of several labeled cell types with gene expression in read counts. Step (1) consisted 
of sampling the single-cell RNA-seq data matrix. The number of cells of each cell type  used to 
construct the pseudo-bulk sample was defined using a random number  generated from 
Dirichlet's law multiplied by the number of cells  of that type  present in the single-cell RNA-
seq data matrix.

A matrix , corresponding to the cells belonging to a pseudo-bulk mixture, is therefore 
made up of  columns for each cell type . Step (2) consisted in obtaining a pseudo-bulk sample 
by summing per gene the count values of reads across the cells of the different cell types. Steps 
(1) and (2) were repeated as many times as the number of pseudo-bulk samples to be generated.

The proportions of the different cell types composing each pseudo-bulk sample being 
known, the pseudo-bulk samples were used to evaluate the performance of the cell deconvolution
algorithms. Comparisons between expected and predicted cell proportions were made using 
Spearman's correlation coefficient, Root Mean Square Error (RMSE) coefficient and linear 
regression slope.

Tumor purity analysis

A tumor purity score corresponds to the proportion of tumor cells in a sample. A tumor 
purity score was calculated for each sample from the gene expression values of its bulk 
transcriptome using the ESTIMATE method (Estimation of STromal and immune cells in 
MAlignant Tumor tissues using Expression data) (42). When available, the tumor purity score 
calculated from genomic profiling data of each tumor sample using the ABSOLUTE method 
(41) was also collected.

Tumor-Immunity Differential score

The Tumor-Immunity Differential (TID) score reflects the difference between tumor and 
immunity activities in samples. It was built from four predicted cell fractions (Tumor, CD8.T, 
Plasma and Treg cells) and genomic features (Tumor Mutation Burden (TMB) score, PDCD1 
(PD-1) gene expression) frequently associated with patient response to ICB treatment. All 
features were standardized using Z-score transformation to make them comparable. The TID 
score was then defined as the difference between features considered unfavorable to the patient’s
response to treatment, tumor cell fraction and TMB score (For the Braun et al. 2020 cohort of 
metastatic samples, 11 missing TMB scores were inferred by the median value), and those 
considered favorable, PD-1 expression and for regulatory T cell, CD8+ T cell and Plasma cell 
fractions (Eq. 1). The status of each feature was inferred from their independent association with 
patient clinical benefit.

TID score=(Tumor fraction+TMBscore)− (PDCD1expression+CD8T fraction+Plasmafraction+Treg fraction)

Equation 1: calculation of the Tumor-Immunity Differential score

Therefore, the higher the TID score, the less favorable the patient's prognosis. High-TID 
and Low-TID sample categories were defined according to the median value of the TID score 
distribution. 

Clustering analysis 
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Unsupervised consensus clustering methods were implemented by the R/Bioconductor 
package ConsensusClusterPlus (version 1.62.0). Clustering of cell fractions and gene expression 
values were performed by k-means (parameters: reps = 1000, pItem = 0.8, pFeature = 1, 
clusterAlg = "km", distance = "euclidean"). The best number of clusters was assessed by the 
delta area plot of consensus Cumulative Density Function (CDF). To construct relevant groups 
of ccRCC samples in terms of treatment response we retained only cell fractions predicted by the
CIBERTSORTx algorithm associated with clinical benefit (two-sided Wilcoxon rank-sum test, 
corrected p-value < 0.05 or corrected p-value < 0.20, for, respectively, metastatic tumor and 
others if no one fraction was selected by the first threshold). The subtypes (C1-C3) of the 311 
ccRCC samples with treatment response were found based on the consensus clustering of the 
selected cell fractions. 

Statistical tests

Statistical differences of cell fraction or gene expression values for comparisons were 
assessed using two-sided Wilcoxon rank-sum test with the Benjamini-Hochberg correction for 
multiple hypothesis testing. For sample comparisons across three or more groups, Kruskal-
Wallis and two-sided chi-squared tests were used for numerical or categorical values, 
respectively.

Survival analyses were performed using the R package survival (version 3.4-0) . The Kaplan-
Meier curves of Progression-Free Survival (PFS) and Overall Survival (OS) were used to 
compare prognosis. The statistical comparison of the survival outcomes between subtypes was 
done using the log-rank test from the R package survminer (version 0.4.9).

The R package clusterProfiler (version 4.6.0) was used to perform over-representation 
enrichment analysis of the 6 differentially expressed genes (DEG) between C1-C3 clusters based
on the Gene Ontology (GO) Biological Process database.

Single-sample Gene Set Enrichment Analysis (ssGSEA) of the hallmark (H) gene set from the 
MSigDB database (Human MSigDB v2023.1.Hs) was performed using the R/Bioconductor 
package GSVA (v. 1.42.0).

Single-sample Gene Set Enrichment Analysis (ssGSEA) was used to compute the MHCI 
and MHCII prognostic scores based on previously published gene signatures (21). Gene Set 
Variation Analysis (GSVA) was used to compute the MIAS and GEP prognostic scores based on
gene signatures previously reported (20, 22). The JAVELIN score was calculated as the average 
of the standardized values of the 26 genes within the 26-gene JAVELIN Renal 101 Immuno 
signature (1). The IMPRES score was calculated from the method previously published (19). The
two Tertiary Lymphoid Structure (TLS) scores were computed based on the mean of a 9-gene 
signature (CD79B, EIF1AY, PTGDS, RBP5, SKAP1, LAT, CETP, CD1D, CCR6) (45) or a 7-
gene signature (CCL19, CCL21, CXCL13, CCR7, CXCR5, SELL, LAMP3) (29).
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Fig. 1. Extended annotation of ccRCC microenvironment cell types from single-cell RNA-
Seq from Obradovic et al. (A) UMAP of the CD45-positive cells. (B) UMAP of the 
CD45-negative cells. (C) Distribution of the cell type proportions. The cell fraction 
values in the pie chart can be read counterclockwise from a cell type compared to the 
legend cell list (e.g, Stromal cells are following the Tumor  cells counterclockwise in the 
pie chart).
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Fig. 2. Computational assessment of cell fractions estimated by cell deconvolution. (A) 
Correlation levels between simulated pseudo bulk single-cell RNA-seq mixtures with 
known proportions and fractions predicted by cell deconvolution using CIBERSORTx. 
Correlation values are assessed using Spearman correlation coefficients, slopes of the 
best linear regression line and inverse of the RMSE values. (B) Correlation between 
tumor purity values calculated by ESTIMATE method and tumor fractions estimated by 
CIBERSORTx. (C) Correlation between tumor purity values calculated by ABSOLUTE 
method and tumor fractions estimated by CIBERSORTx.
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Fig. 3. Experimental evaluation of cell fractions estimated by cell deconvolution. (A) 
Examples of single plex immunofluorescence (IF) or immuno-histochemistry (IHC) for 
CD8+, CD34+, and CD45+ cells (left panel: red for CD8, center panel: red for CD34, 
right panel: green for CD45), Hoechst counterstaining was used to color nuclei. (B) 
Distribution of estimated cell fractions of CD8+, CD34+ and CD45+ cells for ccRCC 
tissue samples by cell deconvolution. (C) Correlation between IHC/IF-based and 
CIBERSORTx-based quantification of CD8+, CD34+ and CD45+ cells from 19, 13 and 
19 matched tumors, respectively.
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Fig. 4. TME subtypes of ccRCC metastases related to ICB treatment response. (A) Selection
of pre-treatment metastatic site samples from patients treated with nivolumab in the 
CheckMate cohort. (B) Measures of cell fractions estimated by CIBERSORTx according 
to ICB clinical benefit. (C) Heatmap of the unsupervised consensus clustering of the 
metastatic site samples into 3 TME subtypes based on estimated cell fractions (black 
rectangles represent missing values). Cell fraction status was determined for a given cell 
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fraction by its median value to divide samples into High or Low clusters). (D) PFS and 
OS analyses based on TME subtypes. (E) Measures of cell fractions of CD8 T cells and 
plasma cells according to TME subtypes (F) Published gene signature values according to
TME subtypes.

 

Fig. 5. Gene expression values associated with TME subtypes. (A) Selection of genes 
according to single-cell RNA-Seq DEG analysis and the TME-subtypes. (B) Measures of 
the gene expressions significantly associated with TME subtypes. (C) Heatmap of gene 
expression values and cell fraction status (a given cell fraction was divided by its median 
values to give High or Low clusters) according to the TME-subtypes (black rectangles 
represent missing values).
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Fig. 6. Tumor-Immunity Differential (TID) score associated with ICB treatment response. 
(A) ROC curves and AUC-ROC values for estimated cell fractions and gene expressions 
related to ICB treatment response. (B) TID score formula (*The tumor part is the sum of 
the tumor fraction and the TMB values, **The immunity part is the sum of the T-CD8, 
Plasma B and T regulatory fractions and the PDCD1 gene values). (C) Clustering of 
metastatic site samples based on the TID score divided into TID-High and TID-Low by 
its median value (black rectangles represent missing values). Cell fraction status was 
determined for a given cell fraction by its median value to divide samples into High or 
Low clusters). (D) Published gene signature values according to TID subtypes (E) PFS 
and (F) OS values of the TID subtypes. (G) Expression values of differentially expressed 
genes between TID subtypes. (H) Unsupervised consensus clustering of the metastatic 
site samples into 2 clusters, TID-G1 and TID-G2 subtypes, based on the 3 genes related 
to TID subtypes (CXCR6, YWHAE, BTF3) (black rectangles represent missing values). (I)
PFS and (J) OS values of the TID-G1 and TID-G2 clusters.
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Fig. 7. TID score and TID-related genes as key markers of ICB treatment response in 
several cancer types. (A) Classification performances of responders (R) over non-
responders (NR) samples for a collection of predictive scores and genes calculated from 
cohorts of pre-treated (before Nivolumab treatment) ccRCC samples. (B) Correlation 
between scores calculated for 15 patients with matched ccRCC primary and metastatic 
site samples.  Classification performances of R over NR for (C) pre-treated melanoma 
and NSCLC (PBMCs) samples and (D) on-treatment melanoma and NSCLC (PBMCs) 
samples. (‘Primary’  and “Metastasis’ labels mean that gene expression were obtained 
from primary or metastatic samples, respectively. ‘Primary/Metastasis’ refers to a mixed 
dataset of primary and metastatic samples. ‘PRE’ and ‘ON’ labels refer to dataset with 
pre-treated or on-treatment samples, respectively. ‘PROG-CTLA-4’ label refers to 
samples who have progressed after an anti-CTLA-4 therapy).
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