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One Sentence Summary: Tumor microenvironment balance of metastasis and associated genes
are key predictors of immunotherapy patient response in kidney cancer.

Abstract: Immune checkpoint blockade (ICB) therapies have improved the overall survival (OS)
of many patients with advanced cancers. However, the response rate to ICB varies widely among
patients, exposing non-responders to potentially severe immune-related adverse events. The
discovery of new biomarkers to identify patients responding to ICB is now a critical need in the
clinic. We therefore investigated the tumor microenvironment (TME) of advanced clear cell
renal cell carcinoma (ccRCC) samples from primary and metastatic sites to identify molecular
and cellular markers of response to ICB. We revealed a significant discrepancy in treatment
response between subgroups based on cell fractions inferred from metastatic sites. One of the
subgroups was enriched in non-responders and harbored a lower fraction of CD8+ T cells and
plasma cells, as well as a decreased expression of immunoglobulin genes. In addition, we
developed the Tumor-Immunity Differential (TID) score which combines features from tumor
cells and the TME to accurately predict response to anti-PD-1 immunotherapy (AUC-ROC=0.88,
log-rank tests for PFS P <0.0001, OS P = 0.01). Finally, we also defined TID-related genes
(YWHAE, CXCR6 and BTF3), among which YWHAFE was validated as a robust predictive marker
of ICB response in independent cohorts of pre- or on-treatment biopsies of melanoma and lung
cancers. Overall, these results provide a rationale to further explore variations in the cell
composition of metastatic sites, and underlying gene signatures, to predict patient response to
ICB treatments.

Main Text:
INTRODUCTION

Immune checkpoint blockage (ICB) therapies have shown remarkable success in
decreasing the recurrence rate and improving the overall survival of patients with metastatic
clear cell Renal Cell Carcinoma (ccRCC) (7-7). However, only a subset of patients experiences
long-term clinical response with these therapies. This diversity in response to ICB not only
underscores the need for novel predictive markers to identify patients who will benefit from
these treatments, but also the need to reveal molecular and cellular mechanisms involved in the
acquisition of therapeutic resistance.

Tumor mutation burden (TMB), an established marker of response to immunotherapy in
various cancers (8), was shown not to correlate with patient prognostics in ccRCC (9-11).
Expression of immune checkpoint genes, such as PD-1 and PD-L1, in cancer cells and in tumor-
infiltrating cells is another feature associated with favorable response to ICB in several cancer
types (12). However, in ccRCC a low percentage of samples express PD-1 and PD-L1 (73) an
association between their expression level and ccRCC aggressiveness and prognosis remains
controversial (5, 14-17). For PD-L1, sources of variability in its expression were found to be
related to intratumoral heterogeneity, differences between primary and metastatic sites and the
lack of standardization of experimental techniques for measuring abundances (18).
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Beyond single geneAfi4IReSIP ARG B AR BANEE°8T 587 expression signatures have
shown promising results in predicting ICB response for various cancer types. Among them, the
15 immune gene score IMPRES (79), the 18 IFN-y-responsive gene score GEP (20),
MHC-I/MHC-II (21) and MIAS (22) scores demonstrated a strong predictive power of response
to ICB therapies in metastatic melanoma but were not evaluated in ccRCC. The JAVELIN score
was specifically developed and tested on kidney cancer (/). Nevertheless, although they carry
some predictive capacities, to our knowledge none of these scores have yet been used in clinical
practice (23, 24).

The immune components and composition of the tumor microenvironment (TME) have
been extensively described to be part of the major determinants of the response to ICB (25-27).
For example, the level of CD8+ infiltrating T cells has been associated with a good prognosis in
many cancer types (25) whereas the role of tumor infiltrating CD8+ T cells in survival of patients
with ccRCC remains controversial. The response to ICB may also depend on the spatial
localization of immune cells. For instance, tertiary lymphoid structures (TLS) composed of
mature dendritic cells, B-cells and CD8+ T-cell have been reported to be important in predicting
ICB response in ccRCC (28-31). Regarding B cells, their location in mature TLS has been
suggested to mediate antibody release, T cells activation and has been described to be enriched in
good ICB responders in ccRCC patients (32). Tumor-associated macrophages (TAM) were
found to contribute to ccRCC progression and metastasis and to mediate immunosuppression
(33). Thus, the factors driving ICB resistance remain largely to be deciphered and effective
markers to predict ICB response for ccRCC in clinical practice are seriously lacking.

In this work, we perform an extensive relabeling of single-cell RNA-seq data from
ccRCC into more than 20 cell types and assess their robustness and accuracy in predicting TME
composition by cell deconvolution of bulk RNA-seq data derived from patients in ICB clinical
trials (anti-PD-1). The proportions of these reference cell types predicted from advanced ccRCC
transcriptomes of primary and metastatic sites separately reveal new key cellular and molecular
markers of ICB response. We highlight the biological value provided by the metastatic sites by
identifying three TME profiles with significantly different clinical outcomes. In particular, the
CD8+ T cells and plasma cells interplay is a major factor influencing the PD1 blockade response
of patients with ccRCC. Furthermore, the search for genes associated with these variations in
cellular composition allows us to identify immunoglobulin genes linked to ICB response. We
also develop the Tumor-Immunity Differential (TID) score, based on the tumor mutational
burden together with the cell fractions in metastatic ccRCC samples, which is highly predictive
of ICB response. Finally, among the TID-related genes, we identify YWHAE as an accurate and
robust predictor of ICB response in ccRCC, melanoma and non-small cell lung cancer (NSCLC).
Overall, we demonstrate that variations in TME composition estimated by cell deconvolution
from ccRCC metastatic sites and the gene signatures derived therefrom are highly predictive of
patient response to ICB therapies.

RESULTS

Comprehensive identification of cell types in ccRCC tumor micro-environment
from single-cell RNA seq data

A comprehensive literature review was performed to identify markers, mainly cell
surface proteins, known to be specific to certain cell types present in the tumor micro-
environment. This led us to construct a hierarchical decision tree summarizing the state of the art
associations between cell surface markers and the identity of different cell types present in
ccRCC and its tumor micro-environment (fig. S2). Single-cell RNA-seq data generated from 11
treatment-naive resected ccRCC tumors were then collected from a previously published study
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(34). In this study, immune® AT ATHE NS HAd B8R4 d by CD45-based
fluorescence-activated cell sorting (FACS), which we used to separately analyze CD45+ and
CDA45- cells. We completely reprocessed this dataset through pre-processing, quality control,
normalization and cell clustering steps. We then relied on our hierarchical decision tree of cell
surface markers to identify the different cell types present in this data set. Based on our
reanalysis of the cells retrieved from all patients, we could define 21 distinct cell types, including
3 tumor cell types (Tumor cells, CA9 High Tumor cells, Cycling Tumor cells) (Figs. 1A, B). We
assessed these identifications by controlling gene expression of all the specific gene markers of
immune and non-immune cells (figs. S3, S4). In addition, the tumor cell populations were
examined by the prediction of copy number variants (CNV) (fig. S5). We observed that
annotated tumor cell types harbored a deletion of chromosome 3p region (VHL, PBRM1, BAP1,
SET2D) and an amplification of the 5q region, which is common for ccRCC (35, 36).

When pooling the cells from all patients, we showed that 34.4% were tumor cell types,
8.9% were stromal cells, 5.3% were endothelial cells, and 51.4% were immune cell populations
(Fig. 1C). The latter was mainly composed of monocytes (15.6 %), NK cells (10.6%), CD4-T
(9.8%) and CD8+ T (8.5%). These results are consistent with other single-cell analyses of
immune cell proportions from ccRCC tissues (37).

Cell deconvolution provides a robust prediction of the cell type composition of
ccRCC TME

Transcriptome-based cell deconvolution approaches make it possible to predict the
respective proportions of cell types present in a tissue from its bulk transcriptome (38). Building
on our extensive identification of ccRCC tumor cells and other cell populations defining the
TME, we assessed the relevance of using these single-cell RNA-seq data as reference profiles for
cell deconvolution of bulk RNA-seq data. We selected the CIBERSORTx and MuSiC methods
(39, 40), considered by recent benchmarks to be among the most accurate (38), and evaluated
their ability to predict the respective proportions of the 21 cell types referenced in our single-cell
data. To perform this evaluation, we generated test datasets corresponding to 100 pseudo-bulk
mixtures by sampling and mixing in controlled and known proportions of the reference single-
cell RNA-seq profiles (data file S1). In this way we avoided technical or biological biases
between our test datasets and the reference single-cell data. We predicted the proportions of cell
types for each pseudo-bulk mixture (data file S2) and assessed the robustness of the estimated
fractions obtained by cell deconvolution by comparing them to the expected cell type fractions.
We found high correlation values (Rho ranging from 0.57 to 0.99, two-sided Spearman
correlation test p-value < 0.0001) between predicted and expected cell type proportions
associated with low RMSE (Root Mean Squared Error) dispersion values (Fig. 2A). These
predictions were also associated with a very low level of cross-correlation between different cell
types, illustrating the specificity of the marker genes used to label single-cell RNA-seq data and
the ability of these cell types to be interrogated by cell deconvolution (fig. S6A). In addition, the
analysis of the slope of the regression line by cell type between predicted and expected
proportions showed good linearity often close to 1, illustrating the quantitative accuracy of the
predicted cell type fractions (Fig. 2A, fig. S6B). A comparison of the quality of the predictions
generated by CIBERTSORTx with those of the MuSIC method, also widely used in cell
deconvolution, was performed. Evaluation of cell proportions produced by MuSIC using
pseudobulk mixtures showed that they were of good quality but with lower correlation values
and regression coefficients compared to those obtained with CIBERTSORTX (figs. S7A, S7B).
In order to complete the quality assessment of the cell fractions predicted by deconvolution by
cell type across the patients, an evaluation was carried out this time by patient across the cell
types (fig. S7C). We found that MuSIC predictions were strongly correlated with pseudobulk


https://doi.org/10.1101/2023.07.17.548676
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.17.548676; this version posted January 11, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

mixtures, but still at a lowefR¥RE thAH THER ProAREU BT CIBERIGR Tx. This led us to continue
further assessment of cell deconvolution using CIBERSORTx only.

Tumor purity of ccRCC is reliably estimated by cell deconvolution

Prediction of tumor purity of tissues from genomic or transcriptomic data is often
performed using the ABSOLUTE (4/) and ESTIMATE (42) algorithms, respectively. Here we
wanted to explore and assess the ability to predict the tumor purity using a cell deconvolution
method based on our reference single-cell RNA-seq profiles. To our knowledge, this possibility
has not yet been explored on ccRCC data. We compared tumor purity levels predicted by these
different approaches using RNA-seq data from a previously published cohort of 311 ccRCCs (2).
First, we predicted by cell deconvolution with CIBERSORTX the proportions of the 21 cell types
for each of the 311 transcriptomes. For the calculation of tumor purity, we summed the
proportions of the 3 tumor cell types. Besides, we used the ESTIMATE tool on these same 311
transcriptomes to predict a second tumor purity value. Finally, we collected from the
supplementary data associated with the cohort a third tumor purity value generated by the
ABSOLUTE tool. We observed that the deconvolution-based estimated fractions of tumor cells
were highly correlated to values predicted by ESTIMATE (two-sided Spearman correlation test
p-value < 2.2e-16) (Fig. 2B) and ABSOLUTE (two-sided Spearman correlation test p-
value=1.7e-11) (Fig. 2C). We next extended this assessment of tumor cell fractions predicted by
cell deconvolution for two other datasets. We generated predictions of tumor cell fractions on a
pseudobulk mixture generated from single-cell RNA-seq data from 7 ccRCC samples (43) and
obtained results very close to those directly quantified from single-cell RNA-seq (fig. S8A). We
also predicted the fractions of tumor cells from RNA-seq data of the TCGA ccRCC cohort (44)
and found that the tumor proportions were significantly correlated and proportional to those
generated with the ESTIMATE method (fig. S8B). To conclude, the tumor purity proportions
predicted by ESTIMATE and by the cell deconvolution method were consistent, illustrating the
relevance of our new approach.

Cell fractions predicted by deconvolution are consistent with immunofluorescence
quantification

We next extended our validation study of cell type fractions estimated by cell
deconvolution using cell counts measured by immunofluorescence (IF) for a cohort of 19 ccRCC
primary tissues. The ccRCC tissue cohort was profiled by Bulk RNA Barcoding (BRB)-seq to
quantify gene expression and imaged by IF to directly enumerate populations of CD8-positive
(CD8&+), endothelial cells expressing CD34 (CD34+) and CD45-positive (CD45+) leukocytes in
red (left panel), yellow (center panel) and green (right panel), respectively (Fig. 3A, data file S3).
The bulk transcriptomic data of each sample was analyzed by cell deconvolution with
CIBERTSORTX using the support of our single-cell reference data defining 21 cell types. To
allow comparison between the cell counts obtained by IHC or IF using the surface markers CDS,
CD34 and CD45, we grouped the cell types predicted by cell deconvolution according to the
expected presence of these markers in the single-cell data set. Thus, the CD8+ T cells, cycling
T+NK cells and NK cells CD16+/FGFBP2+ were considered as CD8+ cells, the endothelial and
Tip cells were selected as CD34+ cells and the DC, pDC, classical monocytes, intermediate
monocytes, non-classical monocytes, B cells, plasma B cells, cycling T+NK, NK cells
CD16-/FGFBP2-, NK cells CD16+/FGFBP2+, CD45-pos, T regulatory (T reg), CD4-T, CD8+ T
and mast cells were grouped as CD45+ cells. For each of the 19 samples we summed the
predicted cell fractions as described above, to estimate the proportions of CD8+, CD34+ and
CD45+ cells and compare these estimations to the IHC or IF measurements. We also extracted
the respective contributions, predicted by cell deconvolution, of the cell types composing the 3
populations. As expected, the CD8+ population was predicted to be predominantly composed of
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the CD8+ T cell type (Fig. 3B'18f PAHAT EANEDR 44 ' Popalatibli€semed to be constituted in a
balanced manner by endothelial and Tip cells (Fig. 3B center panel). As for the CD45+
population, cell deconvolution predictions seemed to reveal a composition in favor of DC,
intermediate monocytes, B and NK cells (Fig. 3B right panel). We observed significant
correlations between IHC-based quantification and CIBERSORTx-based estimation for the
CD8+ and CD34+ cells (two-sided Spearman correlation test P < 0.05) (Fig. 3C left and center
panels) and a positive trend for the CD45+ cells (two-sided Spearman correlation test P = 0.075)
(Fig. 3C right panel). To conclude, these analyses demonstrated the reliability of our cell
deconvolution approach to predict cell type composition of ccRCC samples.

The micro-environment of ccCRCC metastases predicts patient response to
Nivolumab

The tumor microenvironment is considered to be a key factor to understand and predict
the response of patients to anti-tumor treatments, in particular to immunotherapies (25, 26, 29,
30). The cell deconvolution approach offers the possibility of analyzing the transcriptomic data
of large tumor tissue cohorts, of patients included in clinical drug trials, in order to reveal the
composition of their TME. In the previous section, we validated our cell deconvolution approach
based on the CIBERTSORTX algorithm and single-cell reference transcriptomes of 21 cell types
of the ccRCC microenvironment. In a next step we used this approach to predict by
deconvolution the cell fractions for each transcriptome of the 311 tumor samples from patients
included in the clinical trials CheckMate of the anti-PD-1 antibody Nivolumab (anti-PD-1) or the
mTOR inhibitor Everolimus in advanced ccRCCs (CM-009 (NCT01358721), CM-010
(NCTO01354431) and CM-025 (NCT01668784)) (2). This cohort was selected because it was one
of the few to be composed of samples obtained from both the primary tumors and from
metastases, associated with clinical metadata describing their responses to therapy (Clinical
Benefit (CB), Progression Free Survival (PFS), Overall Survival (OS)).

First, to control a putative sex-related effect, we estimated cell fractions for primary and
metastatic tissues and did not find a significant difference in TME composition between men and
women after correction for multiple testing (figs. S9, S10). Next, regardless the gender, we
subdivided the cohort into 4 subgroups based on sample collection site (primary/metastasis) and
therapy (Everolimus/Nivolumab). The cell type proportions were then predicted by cell
deconvolution for each subgroup. We observed no statistical association between variations in
TME and patient response to Everolimus from the subgroup of 92 primary tissues or of 37
metastases (figs. S11-14, data files S4, S5). We similarly studied the subgroup of 133 primary
tumor samples from patients treated with Nivolumab and again did not observe a significant
association between the TME composition and clinical variables of response to treatment or

survival (figs. S15, S16, data file S6).

We finally selected, among the 311 ccRCC samples of the overallcohort, the 84 samples
derived from metastases, and further reduced our selection to the 47 samples taken before the
treatment of patients with Nivolumab (Fig. 4A). We performed statistical association analyses
between the cell fractions of each of the 19 cell types, and the three categories of patient clinical
benefit (Clinical Benefit (CB), Intermediate Clinical Benefit (ICB), Non-Clinical Benefit (NCB)
defined by Braun et al. (2). Predicted cell fractions of Tumor, T regulatory, CD8+ T and Plasma
cells were significantly associated with CB or NCB responders before multiple testing procedure
(two-sided Wilcoxon rank-sum test: p-value < 0.05, Fig. 4B). These 4 cell types identified as key
populations of the ccRCC TME were kept for further analysis.

C1-C3 subtypes are associated with tertiary lymphoid structures and ccRCC
recurrence to Nivolumab
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In order to reveal c@PREBIFHHOTIRIS MsSGAEE RA PR clinical outcome to
Nivolumab, we performed a consensus clustering of k-means of the 47 metastatic ccRCC
samples, based on Tumor, T regulatory, CD8+ T and Plasma cell fractions, and classified them
into three subtypes (C1-C3) (Fig. 4C, fig. S17). Among these subtypes, tumors in C1 showed
better treatment response outcomes than tumors in C3 (two-sided chi-squared test p-value <
0.05), the latter being characterized by a high proportion of poor response cases (NCB). The C2
subtype groups together a population of patients with varying clinical benefit. We found that the
tumor shrinkage values, which reflects the change in size of the tumor targets after treatment,
were significantly different between C1, C2 and C3 subtypes with mean values of -34, -6.4 and
+16, respectively (Kruskal-Wallis test, p-value < 0.05) (data file S7). We finally performed
survival analyses and found that ccRCC tumors from C1 subtype harbored greater PFS (two-
sided log-rank test p-value = 0.0066) indicating less post-treatment progression and greater OS
(two-sided log-rank test p-value < 0.05) than C2-C3 subtypes (Fig. 4D). As for metastatic sites,
TMB counts, gene mutation profiles, tumor purity, sex and age were not different between these
3 subtypes (Kruskal-Wallis or two-sided chi-squared tests, p-value > 0.05, data file S8)

Regarding the TME content, the C1 subtype was associated with a higher fraction of
CD8+ T cells and of plasma cells compared to C2-C3 and C3, respectively (Fig. 4E). Plasma cell
fractions were able to distinguish the mixed C2 subtype from the C3 subtype of poor responders,
the latter being associated with significantly lower fractions (Fig. 4C, E). Tertiary Lymphoid
Structures (TLS) have been highlighted as key actors for sustaining an immune-responsive
micro-environment (29, 32, 45), hence, we analyzed the TLS status in our subtypes. Two TLS
scores were calculated using Dieu-Nosjean et al. and Cabrita et al. gene signatures (29, 45). The
median of each TLS score was used to assign TLS-High and TLS-Low status to the 47 metastatic
ccRCC samples. We observed that the C1 subtype was enriched in TLS-High status compared to
the C3 subtype (TLS2014: two-sided chi-squared test, p-value < 0.01) (Fig. 4C, data file S8).

To further characterize the mechanisms contributing to the differences of patient response
outcomes between C1, C2 and C3 subtypes, we used the following gene signatures calculated in
Braun et al.: angiogenesis (Angio) (46), myeloid cell infiltration (Myeloid) (46), T effector cell
infiltration (Teff) (46), Tumor Inflammation Score (TIS) (47), and immune infiltration
(JAVELIN) (1, 2). We observed that C1 subtype tumors were associated with greater Teff,
JAVELIN and TIS scores, compared to C3, C2-C3 and C3, respectively (two-sided Wilcoxon
rank-sum test, Benjamini-Hochberg-corrected p-value < 0.05, p-value < 0.01 and p-value < 0.01)
(Fig. 4F). These results confirmed the high immune infiltration, in particular of T cells, and the
inflammation of C1 subtype samples. These biological features are known to promote the
beneficial response of patients to immunotherapies (7, 46, 47), which is coherent with cluster C1
being enriched in patients with a clinical benefit.

Immunoglobulin-related gene expression values are associated with the C1-C3
clusters and patient response to Nivolumab

We next aimed at investigating gene expression values associated with the three subtypes
(C1-C3). We leveraged the reprocessed and relabeled single-cell RNA-seq data of the ccRCC
and performed pair-wise comparisons between cell-type transcriptomes to identify sets of
differentially expressed genes specific to each cell type (Fig. 5A, data files S9, S10). To do so,
only the gene sets of the 4 cell types previously identified in metastases to be associated with the
response of patients to Nivolumab (Tumor, T regulatory, CD8+ T and Plasma B cells, Figs. 4B
and C) were considered. Finally, we reduced the list of genes to those being significantly
differentially expressed between the C1, C2 or C3 cell-based subtypes (two-sided Wilcoxon
rank-sum test, Benjamini-Hochberg-corrected p-value < 0.05) (Fig. 5B). This gene selection
process revealed 6 genes: TMEM 139, whose reduced expression is associated with a poor
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prognosis in Non-Small Celt '3t SeNC) Y48 e ifiifunoglobulin genes coding
for the constant region of immunoglobulin light chains (/GKC) and heavy chains (IGHGI,
IGHG2, IGHG3, IGHAI). As expected, the analysis of these 6 genes by functional enrichment of
biological processes (GO) indicated its involvement in the tumor immune response mediated by
B cells (fig. S18, data file S11).

We observed that the immunoglobulin gene expression values were higher for the C1
cluster compared to C3 (Fig. 5B). This was consistent with the fact that tumors from C1 were
characterized by a higher proportion of plasma B cells, which are immunoglobulin-secreting
cells, compared to C3 (Figs. 4E, Fig. 5C). The C2 subtype also had stronger immunoglobulin
gene expression values compared to C3. However, the heterogeneity of treatment responses in
this C2 group could be due to the lower fraction of CD8+ T cells compared to the C1 subtype of
good responders. To conclude, the expression of immunoglobulin genes combined with the
proportion of plasma and CD8+ T cells in ccRCC metastases would be key determinants in
predicting patient response to Nivolumab.

Tumor-Immunity Differential score predicts patient response to Nivolumab from
ccRCC metastases

Leveraging on our results, we found that a wide variety of molecular and cellular
properties of ccRCC metastases help subdivide patients into profiles associated with response to
Nivolumab. In order to integrate these components, we developed a Tumor-Immunity
Differential (TID) score. The TID score consists of the difference between a tumor part of high
predictive value for patients with NCB (Tumor cell fraction and TMB) and an immunity part of
high predictive value for CB patients (Plasma B, CD8+ T and Treg cell fractions and the PDCD1
gene expression) (Figs. 6A and 6B).Therefore, the higher the TID score the worse the patient's
prognosis should be. To assess this hypothesis, the cohort of 47 ccRCC metastases was divided
using the TID score median value (0.78) resulting in 24 tumors with TID-Low status and 23
tumors with TID-High status.

To characterize these groups, we performed a ssGSEA analysis of biological hallmarks
from the MSigDB database. Three gene sets yielded significant differences between TID-
subtypes. The TID-High profile was characterized by a lower enrichment of the immunity-
related hallmarks, INFLAMMATORY RESPONSE and IL2 STATS5_SIGNALING, and by a
higher enrichment of the DNA_ REPAIR process (Fig. 6C) (data file S12).

Furthermore, we showed that the TID-High subtype had significantly worse clinical
prognostic values and was enriched in patients with NCB responses for 15 out of 23 tumors (the
8 left consisting of 1 CB and 7 ICB) whereas the TID-Low subtype was enriched in patients with
CB responses for 12 out of 24 tumors (the 12 others being 5 NCB and 7 ICB) (two-sided chi-
squared test, p-value < 0.001) (Fig. 6C). Furthermore, the TID subtypes were significantly
associated with patient PFS and OS (two-sided log-rank test, PFS: p-value < 1e—04 and OS: p-
value = 0.01) (Figs. 6E and 6F). The TID-Low subtype of good prognostic also harbored lower
tumor purity (ABSOLUTE value 0.28 vs. 0.39, data file S13) and higher JAVELIN and TIS
scores compared to TID-High subtype (two-sided Wilcoxon rank-sum test, Benjamini-Hochberg-
corrected p-value < 0.05), highlighting for the latter a higher tumor content associated with a
reduced tumor immune infiltrate (Fig. 6D).

We continued our investigation of TID subtypes by identifying genes whose expression
significantly differed between these two groups. Only three genes were found to be significantly
differentially expressed between the two TID subtypes (two-sided Wilcoxon rank-sum test,
Benjamini-Hochberg-corrected p-value < 0.05) (Fig. 6G). The CXCR6 gene was under-expressed
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in TID-Low cluster, while fY8"39% A9 3G E FE- N E0uswatR8\ et &k pressed in TID-High
subtype.

Since the TID score integrates several molecular and cellular components that can be
challenging to obtain in clinical routine, we studied the ability of this 3-gene signature to classify
the cohort of 47 ccRCC metastases, using consensus clustering based on k-means, into TID-
associated clusters TID-G1 and TID-G2 (Fig. 6H). These clusters were significantly associated
with PFS, OS values and RECIST treatment outcomes with the TID-G1 showing a better
treatment outcome and OS than TID-G2 (two-sided log-rank test, PFS: p-value = 1e—04, OS: p-
value < 0.05) (Figs. 61 and 6J, data file S14). Interestingly, CXCR6 showed a higher expression
in TID-G1, compared to TID-G2, and associated with higher proportion of CD8+ T and plasma
B cells, higher expression of immunoglobulin genes, and higher TLS scores (Fig. 6H). These
results demonstrated that the 3-gene signature was able to capture the treatment response
discrepancy reflected by the TID score from ccRCC metastases.

TID-associated YWHAE gene predicts patient response to Immune Checkpoint
Blockade in melanoma and lung cancers

To explore the predictive power of the TID score and TID-associated genes (CXCR6,
YWHAE and BTF3), we performed a comprehensive comparison to previously published
Immune Checkpoint Blockade (ICB) response predictive scores. We used independent gene
expression datasets based on primary and metastatic tissues from various cancers from patients
treated by anti-PD-1 or anti-CTLA-4 therapies. The ICB-related scores considered were
transcriptome-based predictive signatures, including JAVELIN (1), MIAS (22), GEP (20),
MHC-I (21), MHC-II (21), IMPRES (19) two TLS scores (TLS2014 (29) and TLS2020 (45)),
and the PD-1 gene (PDCD1) expression level.

We initiated our comparison using three cohorts of ccRCC tissue obtained from patients
before treatment with anti-PD-1: a first of 33 metastases (2), a second of 90 primary tumors (2)
and a third of 9 primary tumors (49) (Fig. 7A). We found that the TID score was the best
performing predictor of anti-PD-1 response in ccRCC metastases (AUC-ROC of 0.88), followed
by MHCI and MHCII scores (AUC-ROC of 0.8 and 0.78) (Fig. 7A). We also observed good
performances for the three TID-associated genes (AUC-ROCs ranging from 0.73 to 0.76).
Surprisingly, all the ICB response scores calculated with primary ccRCC samples from the
Braun et al. dataset obtained poor performances close to chance (AUC-ROCs ranging from 0.5 to
0.61) while the mixed dataset of primary and metastatic samples from Ascierto et al. harbored
slightly better performances, especially for the YWHAE gene with an AUC-ROC of 0.75 (Fig.
7A, data files S15-17). To explain the discrepancy between the score performances for the
ccRCC datasets, we assessed the correlations between both types of samples, primary and
metastatic. We used an independent cohort of 15 matched primary and metastatic ccRCC
samples (50) and calculated the same scores based on RNA gene expression data (data file S18,
S19). We observed correlations between primary-based and metastatic-based scores only for IG,
IMPRES and TLS2020 scores (two-sided Spearman correlation test p-value < 0.05) (Fig. 7B)
suggesting that treatment response prediction based on gene expression in ccRCC is not
correlated between primary and metastasis samples from the same patient.

To further investigate the value of TID-associated genes beyond ccRCC, we investigated
their ability to predict the response to immunotherapies of patients with metastatic melanoma or
metastatic non-small cell lung cancer (NSCLC), compared to published ICB response scores.
More specifically, we used two cohorts of patients with metastatic melanoma treated with
Nivolumab: a first one of 64 primary samples from Riaz et al. (5/) and a second one of 20
primary samples from Du et al. (52) We also used a cohort from Trefny et al. (53) of 19 blood
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samples with peripheral blGSHHOHSATHRE AT CHAS PPENIEE0B14&REE from patients with
metastatic NSCLC treated with Nivolumab. In these three studies, samples were collected before
and during treatment of which we took advantage by dividing each cohort according to the time
of the biopsy, into pre- and on-treatment samples (Figs. 7C and 7D). Furthermore, to assess how
prior therapy could affect patient response to ICB, we divided the Riaz et al. cohort into groups
of patients who had previously been treated with Ipilimumab (anti-CTLA-4) (31 samples) and
those naive for this treatment (33 samples). Of note, as less than 2 out of 5 IG genes have been
detected in melanoma and NSCLC transcriptomic datasets, they could not be used to assess the
prediction of the immunoglobulin genes.

Interestingly, for pre-treatment melanoma samples, the TID-associated YWHAE gene
expression greatly outperformed the existing ICB response scoresfor the Ipilimumab-naive
patients (AUC-ROC of 0.78) (Fig. 7C first plot, data file S20). In addition, it was the best
performer, together with the MIAS score, for the patients who progressed after Ipilimumab
treatment(AUC-ROC of 0.89) (Fig. 7C second plot, data file S21), and was among the top
predictors in the Du et al. cohort (AUC-ROC of 0.94) (Fig. 7C third plot, data file S22).
Regarding PBMCs samples from the Trefny et al. dataset, the expression levels of YWHAE and
PDCD1 genes were the best performers (AUC-ROC of 0.84) (Fig. 7C fourth plot, data file S23).
The average AUC-ROC values highlighted the YWHAE gene as the best marker of ICB treatment
response based on pre-treatment biopsies (AUC-ROC of 0.85) (Fig. 7C fifth plot).

We continued our investigation of patients with melanoma or NSCLC using samples
obtained during their treatment with Nivolumab. For the Riaz et al. melanoma cohort, we
observed an overall improvement in the performance of the ICB response scores for the
Ipilimumab-naive samples compared to those obtained from the biopsies taken before
Nivolumab treatment (Figs. 7C and 7D first plots). The best predictive power was obtained by
far with the YWHAE gene for Ipilimumab-naive samples from the Riaz et al. dataset (AUC-ROC
of 0.98) (Fig. 7D first plot, data file S24) and for that of Du et al. (AUC-ROC of 1) (Fig. 7D third
plot, data file S25). Regarding the melanoma samples from Riaz et al. taken from patients who
progressed after treatment with Ipilimumab, we observed, unlike the Ipilimumab-naive patients,
rather an overall reduction in the quality of the predictions with a performance for YWHAE
(AUC-ROC of 0.73) below that of the MIAS score (AUC-ROC of 0.8) (Fig. 7D second plot, data
file S26). Finally, the performances obtained for on-treatment samples in the Trefny et al. dataset
were close to those obtained from the samples taken from the patients before treatment (Fig. 7D
fourth plot, data file S27). The YWHAE gene obtained the second-best prediction (AUC-ROC of
0.75), just after that of the GEP score (AUC-ROC of 0.8), with a strong decrease in the
performance of PDCD]1. Overall, the average AUC-ROCs highlighted the YWHAE gene as the
best marker of ICB response based on on-treatment biopsies (AUC-ROC of 0.86) (Fig. 7D fifth

plot).

DISCUSSION

Immune checkpoint blockade (ICB) therapies are now an important tool for the treatment
of many types of advanced cancers, leading to prolonged progression-free and overall survival(3,
54, 55). However, as only a subset of patients responds to ICB therapies, there is an urgent need
for novel approaches to better select patients who may benefit from these treatments (55, 56).
Previous studies have shown the influence of the cellular composition of the tumor
microenvironment (TME) on the response of patients to immunotherapies (317, 32, 45). Although
substantial effort has been devoted to the investigation of T cell populations toward
understanding ICB treatment response, other cell types in the TME are also involved in patient
clinical outcome (25, 26).
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As of yet, only limif¢@"#fi1B& 3 patidlres PAI RN YRR by single cell sequencing,
hampering identification of response-related aspects of TME composition. In contrast, many
clinical trials comprise large series of patients analyzed by bulk RNA-seq. Predicting the
composition of the TME from bulk RNA-seq data by cell deconvolution may bridge this
challenge and has proven to be a robust and sensitive approach, especially when using a tumor-
specific single-cell RNA-seq data as a reference of cell types present in TME (38). Also, the
quality of single-cell transcriptome labeling used as a reference of these methods has a major
impact on the predictive performance in the deconvolution procedure. We therefore performed a
detailed characterization of the used single-cell RNA-seq data set to obtain a robust classification
of cells, resulting in the annotation of 21 distinct cell types (34). We then performed a thorough
assessment of the robustness of cell fractions predicted by cell deconvolution using this
annotated single-cell dataset. By carrying out simulations of pseudobulk RNA-seq mixtures from
single-cell RNA-seq data, we ensured our ability to correctly predict the proportions of the
different cell types present in the ccRCC tumor samples. Importantly, we also validated that our
cell deconvolution predictions fairly reflected the relative proportions of CD8+, CD34+, CD45+
cell populations directly measured by IHC on tissue sections. The annotated single-cell dataset
was thus considered as a robust reference to perform cell deconvolution by CIBERTSORTx on
bulk transcriptomic data of advanced ccRCC samples from primary and metastatic sites collected
from patients before ICB treatment (2).

When exploring the predicted cell type proportions of ccRCC samples from Braun et al.,
2020, we found that the tumor, Plasma, CD8+ T and T-regulatory cell fractions in metastatic
samples displayed significant differences in relation to anti-PD-1 treatment response, cancer
progression and overall survival. Based on this observation, we identified three distinct subtypes
(C1-C3). Interestingly, we observed no association between tumor composition and treatment
response for samples from primary sites or for primary and metastatic samples treated with an
mTOR inhibitor (Everolimus). Moreover, differentially expressed genes between C1-C3
subtypes revealed 5 immunoglobulin genes (IGKC, IGHGI1, IGHG2, IGHG3, IGHAI) as
markers of the C3 cluster showing the worst ICB clinical response. This cluster is characterized
by low expression of immunoglobulin genes and poor fractions of Plasma cells indicating the
key role of Plasma cells in the anti-tumor immune response. This need of both B-cell and T-cell
fractions for efficient immunotherapy treatment is consistent with previous works in colorectal
(57), breast (58), NSCLC (59), head and neck (60), and ovarian (6/) cancers where higher
proportions of T-cells or B-cells in TME were associated with improved patient survival.

Besides, previous studies found that B cells associated with tertiary lymphoid structures
(TLS) were involved in adaptive immune responses in inflamed and tumor tissues (29, 30, 45).
These ectopic lymphoid formations lead to the differentiation of key immune cells: tumor-
specific B-cells acting either as antigen-presenting cells or tumor antigen-specific antibody-
secreting cells and T-cells (62, 63). In recent works, TLS were also associated with ICB
treatment responses in ccRCC and melanoma with a focus on TLS-associated B cells and gene
signatures (29, 32, 45). This is consistent with our results obtained using ccRCC metastases from
the CheckMate cohorts (2), where high levels of CD8+ T cell and Plasma B-cell fractions were
correlated with the two TLS signatures. Furthermore, the subtype C1, enriched in both CD8+ T
and Plasma B-cells fractions, was related to a high proportion of ICB good responders. This
observation may reflect the important interplay between these cell types in TLS, especially in
metastasis sites of patients with ccRCC.

In addition, we developed a single-sample Tumor-Immunity Differential (TID) score to
leverage gene expression data and estimated TME cell fractions to cluster metastatic ccRCC
samples. We based our score on both favorable (PDCD1 (PD-1) gene expression, T regulatory,
CD8+ T and Plasma cell fractions) and unfavorable (Tumor and TMB) features for ICB
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response. The TID score watARA Wt dt4tEd AC R PG ER8 B Een the ICB response
unfavorable "tumor" and the favorable "immunity" parts. We observed that the TID-High
subtype was strongly correlated with bad responders, recurrence and with a poorer overall
survival. Also, high TMB values appeared to be associated with bad ICB response in metastatic
ccRCC samples. This observation is directly linked with recent works in ccRCC which have
shown that high TMB values were associated with poor survival and immune infiltration (64) but
with a limited predictive clinical value of ICB response (10, 11). Moreover, a high tumor purity
was found in the High-TID subtype of bad ICB responders, suggesting that tumor fraction or
purity were a key component driving ICB treatment response in metastatic ccRCC samples.
Three genes were highlighted as markers of the TID subtypes: YWHAE, CXCR6 and BTF3. The
YWHAE gene belongs to the 14-3-3 protein family and was previously found to be associated
with advanced ovarian cancers, and poor patient prognosis mediated by the PI3K/AKT and
MAPK pathways (65). Interestingly, phenethyl isothiocyanate (PEITC) and fusicoccin molecules
are found in the DrugBank database to target 14-3-3 proteins. Previous studies revealed various
anti-cancer effects of PEITC molecules (66), leading to an inhibition of carcinogen metabolism
in smokers with lung cancer (67) while Fusicoccin-A induces apoptosis in human cancer cell
lines in combination with or after IFN-a treatment (68, 69). CXCR6 is a chemokine receptor
overexpressed in tumor-infiltrating lymphocytes involved in the recruitment of T cells into RCC
tissue (70). The Basic Transcription Factor 3 (BTF3) is required for the transcriptional initiation
and known to be an oncogene in colorectal cancer (7/). Furthermore, it is overexpressed in
pancreatic ductal carcinoma cells (72) and in prostate cancer where it sustains a cancer stem-like
phenotype (73, 74). To further assess the clinical relevance of the TID score and the associated
genes, we compared them to existing transcriptomic scores previously published to predict
patient clinical response to ICB therapy. We observed that the TID score was the best predictor
of patient clinical benefit on the cohort of metastatic ccRCC samples from the CheckMate
cohorts (2).

In order to assess the predictive power of marker genes associated with the TID score, we
extended the comparisons of scores and markers predicting ICB clinical response to melanoma
and NSCLC. The classification performances of the TID-associated YWHAE gene outperformed
other existing scores in anti-PD-1 treated metastatic melanoma and NSCLC cancers in pre-
treatment and on-treatment samples. Notably, the best performances in the NSCLC Trefny et al.
subgroups were obtained using gene expressions of YWHAE and PDCD1 although the analyzed
samples were peripheral blood circulating CD8+ T cells. These results reinforced the clinical
relevance of peripheral CD8+ T cells in the prediction of ICB response in NSCLC and may
implicate a key role of YWHAE in these cells. Interestingly, the investigation of a variety of
tumor sample types with different biopsy time-points (pre- or post-treatment by anti-PD-1
antibody) from several cohorts revealed the discrepancy in the prediction performance of
treatment outcome by predictive scores based on gene expression data. We observed poorer
performances for samples from the primary site of ccRCC compared to the samples from a
metastatic site (CheckMate cohorts). In fact, to assess the impact of the sample type, we
compared the score values between matched primary and metastatic samples in an independent
cohort (Ho et al. dataset). This analysis revealed no significant correlations between the two
samples types for good predictors. These results highlighted the critical effect of tumor sample
type in the discovery of ICB response predictors.

Also, the prediction performances were not equivalent between pre- and post-treatment
samples or samples recruited after the failure of one previous anti-CTLA-4 immunotherapy and
without prior treatment in melanoma samples. This is consistent with a previous study on
patients with melanoma, treated with Nivolumab or Pembrolizumab, showing that previous anti-
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CTLA-4 exposure was assdVPIte Wifh Frforiitahee 8iprRrais f6freatment outcome prediction
(21).

To conclude, we highlighted in this work the importance of the interplay of both CD8+ T
and Plasma B cells in immunotherapy response in ccRCC and we revealed the 5 immunoglobulin
genes (IGKC, IGHGI, IGHG2, IGHG3, IGHAI), the Tumor-Immunity Differential score and the
TID-associated gene YWHAE as powerful markers of ICB treatment response based on pre-
treatment or on-treatment biopsies of primary sites, metastatic or peripheral CD8+ T cell samples
in several cancer types. Further validation studies in larger cohorts will be needed to assess the
ICB predictive performance of the TID score and of the key TID-associated gene markers
reported here, both in ccRCC and in other tumor types. Nevertheless, our results open novel
avenues to better predict the clinical outcome of patients with cancers treated with
immunotherapies.

MATERIALS AND METHODS
Public transcriptomics and clinical data

Processed bulk RNA-Seq and clinical data were collected for 5 different cohorts. A
cohort of 331 primary and metastatic advanced clear cell Renal Cell Carcinoma (ccRCC)
samples from patients that progressed on 1, 2 or 3 previous therapies (at least one systemic anti-
angiogenic therapy) included in clinical trials CM-009 (NCT01358721), CM-010
(NCTO01354431) and CM-025 (NCT01668784) treated by anti-PD-1 antibody Nivolumab and
mTOR inhibitor Everolimus (EGAC00001001519; EGAC00001001520; EGAC00001001521)
(2). A cohort of 11 primary or metastatic ccRCC samples on one of four clinical trials
(NCT00441337, NCT00730639, NCT01354431, NCT01358721) (49) processed in (22). A
cohort of 64 advanced melanoma samples from patients included in clinical trial CA209-038
(NCT01621490) treated with Nivolumab (GSE91061) (57). A cohort of 20 metastatic melanoma
samples from patients treated by anti-PD-1 (GSE168204) (52). A cohort of 19 peripheral CD8+
T cells (PBMCs) samples collected from blood of metastatic NSCLC patients (GSE111414)
(53). Samples for each cohort were divided according to prior therapies and analyzed
independently (fig. S1). Patients with treatment outcomes of “Complete Response” (CR) or
Partial Response (PR) were considered as responders, whereas patients with treatment outcome
of “Progressive Disease” (PD) as non-responders.

Single-cell RNA-seq data analysis

Single-cell RNA-seq data from 11 ccRCC patients was obtained from Obradovic et al.
(34). Raw data was downloaded from https://data.mendeley.com/datasets/nc9bc8dn4m/1. The
data set consisted of adjacent normal and tumor tissue. Both were analyzed separately.
Furthermore, in the original study, the tissue was prior to sequencing FACS sorted into CD45+
and CD45- subsets. These subset annotations were kept, and the data were separately re-
processed in R using Seurat (v.4.1.1) (75) and harmony (v.0.1.0) (76). Initially, only features
expressed in at least 50 cells were included in the analysis. Further QC included removal of cells
with fewer than 200 and more than 5000 features detected. As kidney cells have in general a high
mitochondrial content, its threshold was set to >25%, everything above was removed. To
normalize the data, Seurat’s function NormalizeData was used followed by a feature selection to
find the 2000 most variable genes. Afterward, the data was scaled by using the function
ScaleData. Prior to data integration, a principal component analysis was carried out. To adjust
for patient-to-patient variation, data integration was achieved by the function RunHarmony from
the harmony package. For dimensional reduction, uniform manifold approximation (UMAP) was
performed on the first 20 dimensions of the harmony reductions. Finally, the Louvain algorithm
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implemented in Seurat wasV3EY FIPERATELIMTNT SV RITAPRYIEEBH of 0.5. To assign cell types
to the clusters, differential gene expression (DGE) was used by applying Seurat’s function
FindAllMarkers. In addition to DGE, previously known cell type markers were used to facilitate
cell type annotation.

To confirm the tumor origin of the annotated tumor cells, copy number variation (CNV)
was inferred using the R package infercnv (v.1.12.0) (77). As a normal reference the adjacent
normal CD45- subset was used. The gene order file (hg38 gencode v28.txt) was downloaded
from https://data.broadinstitute.org/Trinity/CTAT/cnv/. For the analysis a gene cutoff of 0.1 was
set. Furthermore, cluster by groups was set to TRUE and a noise filter was applied by setting
sd_amplifier to 1.5. The hidden Markov model (HMM) i6 was used for CNV prediction.

Bulk RNA Barcoding (BRB) library preparation and sequencing

Total RNA was extracted from MCTS using the MirVana PARIS kit (Thermofisher).
BRB-seq experiments were performed at the Research Institute for Environmental and
Occupational Health (Irset, Rennes, France) according to the published protocol (Alpern et al,
2019). Briefly, the reverse transcription and the template switching reactions were performed
using 4 pL total RNA at 2.5 ng/puL. RNA were first mixed with 1 uL barcoded oligo-dT (10 uM
BU3 primers, Microsynth), 1 pL dNTP (desoxyribonucleoside triphosphate) (0.2 mM) in a PCR
(Polymerase Chain Reaction) plate, incubated at 65 °C for 5 min and then put on ice. The first-
strand synthesis reactions were performed in 10 uL total volume with 5 uLL of RT (Reverse
transcription) Buffer and 0.125 pL of Maxima H minus Reverse Transcriptase (Thermofisher
Scientific) and 1 pL of 10 uM template switch oligo (TSO, IDT). The plates were then incubated
at 42 °C for 90 min and then put on ice.

After reverse transcription (RT), decorated cDNA from multiple samples were pooled
together and purified using the DNA Clean and concentrator-5 Kit (Zymo research). After
elution with 20 pL of nuclease-free water, the samples were incubated with 1 uL Exonuclease I
(NEB) and 2 pL of 10x reaction buffer at 37 °C for 30 min, followed by enzyme inactivation at
80 °C for 20 min.

Double-strand (ds) cDNAs were generated by PCR amplification in 50 pL total reaction
volume using the Advantage 2 PCR Enzyme System (Clontech). PCR reaction was performed
using 20 uL cDNA from the previous step, 5 uL of 10x Advantage 2 PCR buffer, 1 pL. of dNTPs
50%, 1 pL of 10 uM LA-oligo (Microsynt), 1 pL of Advantage 2 Polymerase and 22 pL of
nuclease-free water following the program (95 °C—1 min, 11 cycles: 95 °C—15s, 65 °C—30's,
68 °C—o6 min, 72 °C—10 min). Full-length double-stranded cDNA was purified with 30 uLL of
AMPure XP magnetic beads (Beckman Coulter), eluted in 12 uL of nuclease-free water and
quantified using the dsDNA QuantiFluor Dye System (Promega).

The sequencing libraries were built by tagmentation using 50 ng of ds cDNA with the
[Nlumina Nextera XT Kit (Illumina) following the manufacturer’s recommendations. The
reaction was incubated for 5 min at 55 °C, immediately purified with DNA Clean and
concentrator-5 Kit (Zymo research) and eluted with 21 pL of nuclease-free water. The tagmented
library was PCR-amplified using 20 pL eluted cDNA, 2.5 pL of i7 [llumina Index, 2.5 puL of 5
uM P5-BRB primer (IDT) using the following program (72 °C—3 min, 98 °C—30 s, 13 cycles:
98 °C—10s, 63 °C—30 s, 72 °C—>5 min). The fragments ranging 300—-800 base pairs (bp) were
size-selected using SPRIselect (Beckman Coulter) (first round 0.65% beads, second 0.56x), with
a final elution of 12 pL nuclease-free water. The resulting library was sequenced on an Illumina
Hiseq 4000 sequencer as Paired-End 100 base reads following Illumina’s instructions. Image
analysis and base calling were performed using RTA 2.7.7 and bel2fastq 2.17.1.14. Adapter
dimer reads were removed using DimerRemover
(https://sourceforge.net/projects/dimerremover/).
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Pair-end reads with quality score higher than 10 were kept. The first read of the pair is 16
bases long. A first part of 6 bases corresponds to a unique sample-specific barcode and a second
part of 10 bp is a unique molecular identifier (UMI). The second read of the pair, containing
genomic data, was aligned to the human reference transcriptome from the UCSC website (release
hg38) using BWA (78) (version 0.7.4.4) with the non-default parameter “—1 24”. Reads mapping
to several positions in the genome were filtered out from the analysis. The pipeline is described
in (79). After quality control and data pre-processing, a gene count matrix was generated by
counting the number of unique UMIs associated with each gene for each sample.

Immuno-histochemistry

Sections (Sum thick) of formalin-fixed, paraffin embedded tumor tissue samples were
dewaxed, rehydrated through graded ethanol and subjected to heat-mediated antigen retrieval in
citrate buffer (Antigen Unmasking Solution, Vector Laboratories). Slides were incubated for 10
min in hydrogen peroxide H202 to block endogenous peroxidases and then 30 min in saturation
solution (Histostain, Invitrogen) to block nonspecific antibody binding. This was followed by
overnight incubation with indicated primary antibodies at 4°C. After washing, sections were
incubated with a suitable biotinylated secondary antibody (Histostain, Invitrogen) for 10 min.
Antigen-antibody complexes were visualized by applying a streptavidin-biotin complex
(Histostain, Invitrogen) for 10 min followed by NovaRED substrate (Vector Laboratories).
Sections were counterstained with hematoxylin to visualize nucleus. Control sections were
incubated with pool secondary antibodies without primary antibody. The antibody against the
following target was used: CD34 (Abcam, ab81289).

Immunofluorescence and histology image analysis

Formalin fixed paraffin embedded tissue blocks were sectioned at Sum thickness. The
tissue sections were dewaxed and rehydrated in xylene, gradual percentages of alcohols and
finally in tap water. Protein epitopes of interest (CDS, particularly for CDS positive lymphocytes
and CD45 for all leukocytes) were retrieved in pH6 sodium citrate buffer using heat-induced
epitope retrieval (HIER) method for 5 min, followed by quenching endogenous peroxidase
activity and possible non-specific staining using 3% hydrogen peroxide (Sigma, H1009) and
serum-free protein block (Agilent, X090930-2), respectively. Primary antibody - CDS8 (Agilent,
M710301-2, 1:800) and CD45 (Abcam, ab40763, 1:500) - was incubated for 1 hour at room
temperature, followed by HRP (horseradish peroxidase) conjugated secondary antibody (Leica
biosystems, DS9800) for 30 min. Fluorophore conjugated TSA (tyramide signal amplification)
(Akoya bioscience, NEL744001KT, NEL741001KT) was used to visualize the primary antibody
for 20 min. Then the sections were counterstained in Hoechst (Thermo fisher, H3570, 1:100) for
10 min and mounted in prolong gold anti-fade mounting buffer (Thermo fisher, P36930). Zeiss
axio scan z1 was utilized to acquire digitized images using fluorescence channels such as
Hoechst, FITC and Cy3. Images were then analyzed using HighPlex FL module in Halo Al
(Indica Labs®version 3.6.4134) according to published protocol (80).

Cell deconvolution algorithms

Prediction of tumor micro-environment (TME) cell type proportions from bulk gene
expression data was performed using CIBERSORTX (version 1.0, 12/21/2019) and MuSiC
(version 1.0.0) algorithms (39, 40). The CIBERSORTX cell fractions module was executed using
the docker image after registration and access token received
(https://cibersortx.stanford.edu/download.php). For both methods, reprocessed and relabeled
single-cell RNA-seq data were used as reference (34). The 3 tumor predicted fractions ("Tumor
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for clustering of samples based on estimated cell fractions.
Pseudo-bulk RNA-seq mixtures

The generation of pseudo-bulk mixtures was performed from a single-cell RNA-seq data
matrix made of several labeled cell types with gene expression in read counts. Step (1) consisted
of sampling the single-cell RNA-seq data matrix. The number of cells of each cell type { used to
construct the pseudo-bulk sample was defined using a random number ® generated from
Dirichlet's law multiplied by the number of cells © of that type  present in the single-cell RNA-
seq data matrix.

N; =R;+§;

A matrix M, corresponding to the cells belonging to a pseudo-bulk mixture, is therefore
made up of Ni columns for each cell type L. Step (2) consisted in obtaining a pseudo-bulk sample
by summing per gene the count values of reads across the cells of the different cell types. Steps
(1) and (2) were repeated as many times as the number of pseudo-bulk samples to be generated.

The proportions of the different cell types composing each pseudo-bulk sample being
known, the pseudo-bulk samples were used to evaluate the performance of the cell deconvolution
algorithms. Comparisons between expected and predicted cell proportions were made using
Spearman's correlation coefficient, Root Mean Square Error (RMSE) coefficient and linear
regression slope.

Tumor purity analysis

A tumor purity score corresponds to the proportion of tumor cells in a sample. A tumor
purity score was calculated for each sample from the gene expression values of its bulk
transcriptome using the ESTIMATE method (Estimation of STromal and immune cells in
MAlignant Tumor tissues using Expression data) (42). When available, the tumor purity score
calculated from genomic profiling data of each tumor sample using the ABSOLUTE method
(41) was also collected.

Tumor-Immunity Differential score

The Tumor-Immunity Differential (TID) score reflects the difference between tumor and
immunity activities in samples. It was built from four predicted cell fractions (Tumor, CDS.T,
Plasma and Treg cells) and genomic features (Tumor Mutation Burden (TMB) score, PDCD1
(PD-1) gene expression) frequently associated with patient response to ICB treatment. All
features were standardized using Z-score transformation to make them comparable. The TID
score was then defined as the difference between features considered unfavorable to the patient’s
response to treatment, tumor cell fraction and TMB score (For the Braun et al. 2020 cohort of
metastatic samples, 11 missing TMB scores were inferred by the median value), and those
considered favorable, PD-1 expression and for regulatory T cell, CD8+ T cell and Plasma cell
fractions (Eq. 1). The status of each feature was inferred from their independent association with
patient clinical benefit.

TIDSCOMZ( Tumor

+TMB PDCD1 +CD8T fraction+Plasmay, ., * Treq 4 ion

seore) ™ |

fraction expression

Equation 1: calculation of the Tumor-Immunity Differential score

Therefore, the higher the TID score, the less favorable the patient's prognosis. High-TID
and Low-TID sample categories were defined according to the median value of the TID score
distribution.

Clustering analysis
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Unsupervised consé8{PEISREARNS dthos W e alipiEHied by the R/Bioconductor
package ConsensusClusterPlus (version 1.62.0). Clustering of cell fractions and gene expression
values were performed by k-means (parameters: reps = 1000, pltem = 0.8, pFeature = 1,
clusterAlg = "km", distance = "euclidean"). The best number of clusters was assessed by the
delta area plot of consensus Cumulative Density Function (CDF). To construct relevant groups
of ccRCC samples in terms of treatment response we retained only cell fractions predicted by the
CIBERTSORTX algorithm associated with clinical benefit (two-sided Wilcoxon rank-sum test,
corrected p-value < 0.05 or corrected p-value < 0.20, for, respectively, metastatic tumor and
others if no one fraction was selected by the first threshold). The subtypes (C1-C3) of the 311
ccRCC samples with treatment response were found based on the consensus clustering of the
selected cell fractions.

Statistical tests

Statistical differences of cell fraction or gene expression values for comparisons were
assessed using two-sided Wilcoxon rank-sum test with the Benjamini-Hochberg correction for
multiple hypothesis testing. For sample comparisons across three or more groups, Kruskal-
Wallis and two-sided chi-squared tests were used for numerical or categorical values,
respectively.

Survival analyses were performed using the R package survival (version 3.4-0) . The Kaplan-
Meier curves of Progression-Free Survival (PFS) and Overall Survival (OS) were used to
compare prognosis. The statistical comparison of the survival outcomes between subtypes was
done using the log-rank test from the R package survminer (version 0.4.9).

The R package clusterProfiler (version 4.6.0) was used to perform over-representation
enrichment analysis of the 6 differentially expressed genes (DEG) between C1-C3 clusters based
on the Gene Ontology (GO) Biological Process database.

Single-sample Gene Set Enrichment Analysis (ssGSEA) of the hallmark (H) gene set from the
MSigDB database (Human MSigDB v2023.1.Hs) was performed using the R/Bioconductor
package GSVA (v. 1.42.0).

Single-sample Gene Set Enrichment Analysis (ssGSEA) was used to compute the MHCI
and MHCII prognostic scores based on previously published gene signatures (27). Gene Set
Variation Analysis (GSVA) was used to compute the MIAS and GEP prognostic scores based on
gene signatures previously reported (20, 22). The JAVELIN score was calculated as the average
of the standardized values of the 26 genes within the 26-gene JAVELIN Renal 101 Immuno
signature (7). The IMPRES score was calculated from the method previously published (79). The
two Tertiary Lymphoid Structure (TLS) scores were computed based on the mean of a 9-gene
signature (CD79B, EIF1AY, PTGDS, RBPS5, SKAP1, LAT, CETP, CD1D, CCR6) (45) or a 7-
gene signature (CCL19, CCL21, CXCL13, CCR7, CXCRS, SELL, LAMP3) (29).
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Fig. 1. Extended annotation of ccRCC microenvironment cell types from single-cell RNA-
Seq from Obradovic et al. (A) UMAP of the CD45-positive cells. (B) UMAP of the
CD45-negative cells. (C) Distribution of the cell type proportions. The cell fraction
values in the pie chart can be read counterclockwise from a cell type compared to the
legend cell list (e.g, Stromal cells are following the Tumor cells counterclockwise in the
pie chart).
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Fig. 2. Computational assessment of cell fractions estimated by cell deconvolution. (A)
Correlation levels between simulated pseudo bulk single-cell RNA-seq mixtures with
known proportions and fractions predicted by cell deconvolution using CIBERSORTx.
Correlation values are assessed using Spearman correlation coefficients, slopes of the
best linear regression line and inverse of the RMSE values. (B) Correlation between
tumor purity values calculated by ESTIMATE method and tumor fractions estimated by
CIBERSORTX. (C) Correlation between tumor purity values calculated by ABSOLUTE
method and tumor fractions estimated by CIBERSORTX.
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Fig. 3. Experimental evaluation of cell fractions estimated by cell deconvolution. (A)
Examples of single plex immunofluorescence (IF) or immuno-histochemistry (IHC) for
CD8+, CD34+, and CD45+ cells (left panel: red for CD8, center panel: red for CD34,
right panel: green for CD45), Hoechst counterstaining was used to color nuclei. (B)
Distribution of estimated cell fractions of CD8+, CD34+ and CD45+ cells for ccRCC
tissue samples by cell deconvolution. (C) Correlation between IHC/IF-based and
CIBERSORTZx-based quantification of CD8+, CD34+ and CD45+ cells from 19, 13 and
19 matched tumors, respectively.
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Fig. 4. TME subtypes of ccRCC metastases related to ICB treatment response. (A) Selection

of pre-treatment metastatic site samples from patients treated with nivolumab in the
CheckMate cohort. (B) Measures of cell fractions estimated by CIBERSORTx according
to ICB clinical benefit. (C) Heatmap of the unsupervised consensus clustering of the
metastatic site samples into 3 TME subtypes based on estimated cell fractions (black
rectangles represent missing values). Cell fraction status was determined for a given cell
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Fig. 5. Gene expression values associated with TME subtypes. (A) Selection of genes
according to single-cell RNA-Seq DEG analysis and the TME-subtypes. (B) Measures of
the gene expressions significantly associated with TME subtypes. (C) Heatmap of gene
expression values and cell fraction status (a given cell fraction was divided by its median
values to give High or Low clusters) according to the TME-subtypes (black rectangles
represent missing values).
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Fig. 6. Tumor-Immunity Differential (TID) score associated with ICB treatment response.
(A) ROC curves and AUC-ROC values for estimated cell fractions and gene expressions
related to ICB treatment response. (B) TID score formula (*The tumor part is the sum of
the tumor fraction and the TMB values, **The immunity part is the sum of the T-CDS,
Plasma B and T regulatory fractions and the PDCD1 gene values). (C) Clustering of
metastatic site samples based on the TID score divided into TID-High and TID-Low by
its median value (black rectangles represent missing values). Cell fraction status was
determined for a given cell fraction by its median value to divide samples into High or
Low clusters). (D) Published gene signature values according to TID subtypes (E) PFS
and (F) OS values of the TID subtypes. (G) Expression values of differentially expressed
genes between TID subtypes. (H) Unsupervised consensus clustering of the metastatic
site samples into 2 clusters, TID-G1 and TID-G2 subtypes, based on the 3 genes related
to TID subtypes (CXCR6, YWHAE, BTF3) (black rectangles represent missing values). (I)
PFS and (J) OS values of the TID-G1 and TID-G2 clusters.
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Fig. 7. TID score and TID-related genes as key markers of ICB treatment response in
several cancer types. (A) Classification performances of responders (R) over non-
responders (NR) samples for a collection of predictive scores and genes calculated from
cohorts of pre-treated (before Nivolumab treatment) ccRCC samples. (B) Correlation
between scores calculated for 15 patients with matched ccRCC primary and metastatic
site samples. Classification performances of R over NR for (C) pre-treated melanoma
and NSCLC (PBMCs) samples and (D) on-treatment melanoma and NSCLC (PBMCs)
samples. (‘Primary’ and “Metastasis’ labels mean that gene expression were obtained
from primary or metastatic samples, respectively. ‘Primary/Metastasis’ refers to a mixed
dataset of primary and metastatic samples. ‘PRE’ and ‘ON’ labels refer to dataset with
pre-treated or on-treatment samples, respectively. ‘PROG-CTLA-4’ label refers to
samples who have progressed after an anti-CTLA-4 therapy).
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