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ABSTRACT

Pooling data across diverse sources acquired by multisite consortia requires compliance with a
predefined reference protocol i.e., ensuring different sites and scanners for a given project have
used identical or compatible MR physics parameter values. Traditionally, this has been an arduous
and manual process due to difficulties in working with the complicated DICOM standard and lack
of resources allocated towards protocol compliance. Moreover, issues of protocol compliance is
often overlooked for lack of realization that parameter values are routinely improvised/modified
locally at various sites. The inconsistencies in acquisition protocols can reduce SNR, statistical
power, and in the worst case, may invalidate the results altogether. An open-source tool, mrQA
was developed to automatically assess protocol compliance on standard dataset formats such as
DICOM and BIDS, and to study the patterns of non-compliance in over 20 open neuroimaging
datasets, including the large ABCD study. The results demonstrate that the lack of compliance is
rather pervasive. The frequent sources of non-compliance include but are not limited to deviations in
Repetition Time, Echo Time, Flip Angle, and Phase Encoding Direction. It was also observed that
GE and Philips scanners exhibited higher rates of non-compliance relative to the Siemens scanners
in the ABCD dataset. Continuous monitoring for protocol compliance is strongly recommended
before any pre/post-processing, ideally right after the acquisition, to avoid the silent propagation of
severe/subtle issues. Although, this study focuses on neuroimaging datasets, the proposed tool mrQA
can work with any DICOM-based datasets.
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1 Introduction

Large-scale neuroimaging datasets play an essential role in characterizing brain-behavior relationships. The average
sample size of neuroimaging studies has grown tremendously over the past two decades [, 2]. Open datasets like the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) consists of 800 subjects from 50 sites collected over 2-3 years [3],
the Human Connectome Project (HCP) [4] contains 1200 subjects, the Adolescent Brain Cognitive Development
(ABCD) study [5] includes over 12000 subjects at 21 sites, the Autism Brain Imaging Data Exchange (ABIDE) provides
a dataset of 1000 individuals at 16 international sites, and the UK Biobank is following about 500,000 subjects in the

Under Review


https://doi.org/10.1101/2023.07.17.548591
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.17.548591; this version posted February 14, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

arXiv Template SINHA AND RAAMANA
§DICOM
(:BIDS 1
Compliance
_|_> MRdataset |—— —_ REbos
#®1DA
Generic
Format

Figure 1: MRdataset offers a unified interface to parse & traverse different dataset formats and access acquisition
information and metadata e.g. various modalities, subjects, and sessions. This interface is used for generating protocol
compliance reports via mrQA.

UK. These large-scale datasets are acquired over several years, involving multiple sites, with several vendor-specific
scanner models.

A typical MR imaging session consists of multiple modalities (including but not limited to anatomical, functional, and
diffusion MRI) along with their corresponding field maps, localizers, and the like for each subject. Imaging data from
these modalities provides complementary information about the structural and functional organization. The electronic
protocol files generated by scanners (i.e., Exam Card - Philips, Protocol Exchange - GE, or .exar/.edx file - Siemens)
include thousands of parameter values for a single session. To use these distinct modalities effectively, it is important
to validate the combinations of acquisition protocols i.e., evaluating the reliability of chosen imaging sequences and
ensuring that the imaging data is acquired accurately for each subject across all sites and scanners. Neither is it a
recommended scientific practice nor is it practical to “hope” for data integrity by manual compliance checks across
numerous parameters, given the ever-increasing size of neuroimaging studies, cross-site evaluations, multiple scanners,
and varied environments.

As maintenance of imaging protocols in MRI centers is typically an ad-hoc and error-prone process, it often leads to
variations in acquisition parameters across different subjects and sessions. For instance, manually uploading protocol
configurations on each scanner impacts consistency. Inconsistencies also arise from software updates and hardware
upgrades which alter the default behavior of the scanning interface.

Even subtle deviations in acquisition parameters can potentially affect the reproducibility of MRI-based brain-behavior
studies [6]. Prior works have focused on developing post-processing techniques to reduce the impact of deviations
on neuroanatomical estimates [7, 8, 9, 10, 11, 12]. Such post-processing techniques often rely on a large sample
size per site to estimate site-specific effects. Recent work by George et al. [13] used power analysis to demonstrate
that using standardized protocols yields over a two-fold decrease in variability for cortical thickness estimates when
compared against non-standardized acquisitions. Therefore, adherence to standardized image acquisition protocols
at the scanner is essential for ensuring the quality of MRI-based neuroimaging studies [14, 15, 16]. Otherwise, some
subject-specific scans might have to be discarded due to a flawed data collection process, thus reducing the sample size
and, consequently, the power of statistical analyses [17]. Yet not much effort has been devoted to eliminating these
inconsistencies in image acquisition protocol.

Insufficient monitoring can lead to non-compliance in imaging acquisition parameters, including but not limited to flip
angle (FA), repetition time (TR), phase encoding direction (PED), pixel bandwidth (PB), and echo time (TE). When
the acquisition parameters are not compliant across scans, it can significantly affect the tissue contrast in T1w/T2w
images [ 18, 19]. In EPI, co-registration with its structural counterpart becomes difficult if EPI is non-compliant with
the field map [20, 21]. In DTI, the images acquired with different polarities of PED cannot be used synonymously as
they differ in fractional anisotropy estimates [22]. Inconsistencies in image acquisition parameters may implicitly bias
the texture in brain images, confounding brain-behavior prediction or phenotypes from brain images [|8]. Thus, any
analysis conducted without eliminating sources of error in acquisition parameters may reduce statistical power and, in
the worst case, may invalidate results altogether, hindering widespread clinical adoption of the experimental results.

Therefore, we present mrQA (and MRdataset), a software platform to ensure data integrity in MRI datasets. mrQA is
designed to aggregate and summarize compliance checks on DICOM images at the MRI scanner itself. Automating
the compliance check process, mrQA can help reduce the risk of errors and omissions in handling and use of DICOM
images. DICOM images have an inherent complex structurze, and relying on manual interpretation of DICOM fields is
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Figure 2: MRdataset parses the acquisition parameters for all modalities, subjects, sessions, and runs directly from
DICOM headers. Neither does it depend on filename hierarchy nor it expects a particular file organization on disk to
accommodate varied configurations in MRI datasets. Then, the parameter values are aggregated to assess protocol
compliance for a neuroimaging dataset. We define a horizontal audit to be across all subjects in a given modality
(compliant w.r.t a predefined protocol), whereas vertical audit checks if a single subject is compliant across all the
acquired modalities.

prone to error. For instance, left-right flips are not easy to spot visually. However, the ambiguity can be resolved through
an automated software that systematically confirms that the DICOM horizontal flip attribute is same as provided in
the reference protocol. The software should seamlessly conduct the verification for each scan, removing the necessity
for repetitive manual validation [23]. Such subtle errors can have serious consequences, especially for brain surgery.
Prior works [24] have proposed validation of acquisition parameters for BIDS datasets. Their work is focused on the
execution of BIDS-apps by identifying variations in acquisition parameters. In contrast, mrQA focuses on enunciating
variation in acquisition parameters for DICOM images. Even though the DICOM format suffers from storage overhead,
with complex specifications, DICOM contains complete acquisition metadata with standardized tags. Therefore, it
has been the established output format for medical images. In contrast, NIfTI has limited scope for adding important
acquisition parameters in the header. The NIfTI format relies on JSON sidecars for storing important acquisition
parameters. mrQA can discover variations in acquisition parameters in the rawest data format available, i.e., DICOM
format.

mrQA has been developed primarily for DICOM-based datasets, but it also expands its functionality to NIfTI-based
BIDS datasets. It is important to note that reformatting/validation of BIDS datasets typically occurs years after the
data acquisition process has been completed. When non-compliant scans are discovered at a later stage, researchers
may have to exclude such subjects/sessions to maintain the reliability of their findings. Therefore, it is important to
embrace a mindset of proactive quality assurance i.e., validating the acquired data as soon as possible to prevent any
inconsistencies in acquisition.

An ideal approach is to perform a real-time assessment of protocol compliance, which refers to pre-scanning verification
of acquisition parameters for compliance during the imaging session, so that scans are not acquired with non-compliant
parameters to start with. It might be possible that the default acquisition parameters in the scanning interface are
inconsistent with the recommended protocol and real-time checks can help avoid any non-compliance before completing
the scan. Although, achieving real-time compliance evaluation is our long-term goal, it is a complex endeavor due
to the challenges posed by its logistics and the scanner interfaces. Hence, we focus on evaluating compliance after
data-acquisition as a first crucial step to provide a critical perspective on the wide diversity of acquisition parameters
in open neuroimaging datasets. It is important to note that this exploration is not about finger-pointing for mistakes.
Rather, the motivation is to identify common issues of non-compliance and working collaboratively to address them.
Towards this end, we assess protocol compliance, or lack thereof, in the The Adolescent Brain Cognitive Development
(ABCD) Study dataset [25], over 20 datasets on OpenNeuro [26] and public DICOM datasets on The Cancer Imaging
Archive (TCIA) [27].

2 Methods

2.1 Overview of mrQA

The evaluation of protocol compliance is depicted in two stages as shown in Figure 1. First, we parse the input dataset
to create a data structure that stores the acquisition parameters of all the modalities, subjects, and sessions as shown
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in Figure 2 using MRdataset (see Appendix A). Then, the acquisition parameters are aggregated and summarized for
generating a protocol compliance report (via mrQA). An example script for generating compliance reports is provided
in Listing 1. Table 3 provides an example of a compliance report generated for a toy dataset.

There can be two types of compliance evaluations - a horizontal audit and a vertical audit. A horizontal audit is focused
on assessing parameters for each modality w.r.t. a reference protocol across all subjects in a dataset. A reference
protocol is a pre-defined value for each of the acquisition parameters. In a horizontal audit, a run is said to be compliant
if the acquisition parameters for the run are same as the reference protocol. As shown in Figure 2, a subject may have
one or more sessions for each modality (e.g. TIw) and each session has multiple runs. A subject is said to be compliant
for a given modality if all the sessions for the subject are compliant with the reference protocol. Therefore, a subject
can be compliant for one modality (say T1w), but it might be non-compliant for another modality (say T2w). A subject
is tagged as non-compliant even if a single run is found to be non-compliant. A modality is said to be compliant if all
the subjects in this modality are compliant for all sessions. This means there might be some datasets where none of the
subjects are compliant.

A horizontal audit is essential to ensure the acquisitions across sessions were performed correctly. However, a horizontal
audit does not address the interaction between multiple modalities within a given session. In contrast, a vertical audit
checks for compliance issues across all the modalities for each subject within an imaging session. For example, given a
subject, all field maps must be set up with the same field-of-view, number of slices, slice thickness, and angulation
as the EPI [20]. Similarly, shimming method is specific to a subject [28]. We encourage use of high-order shimming
that is consistent across all the subjects in the dataset, especially for spectroscopic experiments [29]. However, minor
deviations in shimming across subjects may not warrant the exclusion of a scan. In addition, vertical audits are helpful
in revealing specific scans which are found to be non-compliant across multiple modalities. For instance, a vertical audit
can spot navigator slices that might have been erroneously uploaded along with a scan for a subject. We recommend
that both horizontal audit and vertical audit must be enforced to eliminate subtle errors in acquisition protocols.

Further, we advocate a two-pronged approach for checking compliance against a reference protocol. The first is
pre-acquisition compliance, where the parameters will be checked for compliance against a reference protocol before
a scan is performed. And the second step is post-acquisition compliance, where the parameters are checked after
complete data acquisition, validating the acquired dataset for compliance. Ideally, both of these two prongs should be
performed to maximize data integrity and to minimize loss i.e., carrying out pre-acquisition compliance checks at initial
setup to prevent bad acquisitions in the first place and validating the acquired images with post-acquisition compliance
checks to remove any accidental or unknown sources of non-compliance.

In addition, mrQA is also being used for continuous monitoring of DICOM datasets in MR labs. mrQA can be set up
as a cron job to generate reports at regular (daily/weekly) intervals. Meanwhile, if new sessions are acquired, mrQA
reads the new DICOM files added since the previous run and generates updated compliance reports for the study. The
automatic reporting feature is especially useful to notify researchers about any non-compliance in a timely manner so
that corrective action can be taken promptly. An example script is provided in Listing 2.

from MRdataset import import_dataset
from mrQA import check_compliance

dicom_ds = import_dataset(data_source='/path/data', ds_format='dicom', name='abc')
check_compliance(dicom_dataset)

# In [1]: In abc dataset, modalities "GRE, DTI, rsfMRI" are nmon-compliant. See

< abc_DATE_09_07_2022_17_07.html for report

bids_ds = import_dataset(data_source='/path/to/data', ds_format='bids', name='xyz')
check_compliance(bids_dataset)

# In [2]: In zyz dataset, modalities "func" are mon-compliant. See

— xyz_DATE_09_07_2022_17_07.html for report

$ mrqa --data-source /path/to/dataset --format bids --name my_bids_dataset

Listing 1: An example using mrQA (above: Python API, below: CLI) for generating a compliance report.
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2.2 Experimental Setup

In this work, we focus on the horizontal audit via post-acquisition compliance to assess neuroimaging datasets for
compliance. Assuming that acquisition for most subjects in a given study follows a predefined recommended protocol,
mrQA infers the most frequent values for each parameter within a modality to construct the reference protocol. Then for
each subject in the modality, mrQA compares the parameter values of each run with the reference protocol to determine
whether the subject is non-compliant. Finally, each modality is indicated with scores of non-compliance and compliance
percentage as shown in Equation 1.

Number of non-compliant % 100
subjects in modality
Total number of subjects in e))
modality

non-compliant % =

compliant % = 100 — non-compliant %

By default, mrQA checks for absolute equivalence of parameter values. Although, absolute equivalence is preferred to
minimize incongruities, minor differences in decimal values may not necessarily be a part of inclusion/exclusion criteria
for a subject. Therefore, we analyze the non-compliance percentage by increasing the tolerance level i.e., increasing the
acceptable range of variation in parameter values against the reference value as shown in Equation 2.

Acceptable Range = R & (t X R) 2)

where I denotes the parameter value in the reference protocol, and ¢ denotes the tolerance level. In this work, we adjust
the tolerance level ¢ between 0.01 to 0.05. Note that changing the tolerance level will not necessarily decrease the
non-compliance rate if the deviations are significant, or if parameters are categorical (e.g., PED).

We focused on evaluating public datasets as they often serve as a benchmark for neuroimaging analyses. Using mrQA,
we evaluated three distinct collections of neuroimaging datasets for protocol compliance. First, we evaluated DICOM
images from the ABCD Dataset [25] as it provides a unique opportunity to test on a large and diverse sample of over
11,000 subjects (Table 1). Secondly, we utilized 20 large BIDS datasets publicly available on OpenNeuro (Table 2). The
datasets were chosen based on their size and availability of JSON sidecar files. Finally, we analyzed DICOM datasets
available on The Cancer Imaging Archive (TCIA) (see Appendix C).

We analyzed ABCD-baseline scans for 4 modalities, namely T1w, T2w, DTI, resting-state fMRI, and associated field
maps (referred to as fmap), as shown in Table 1. We analyze DICOM images from the ABCD FastTrack Active Series
as it closely represents the unprocessed dataset with the most-complete information (closest to the scanners). We
assume that all the data collected so far has been acquired with a single protocol as published in Table 2 in Casey et
al. [5] but we are aware that this protocol might have changed slightly over the years for various reasons. As these
details are currently not accessible to us during our analysis of the dataset as a whole, we analyzed it as it was shared. If
we redo the analyses accounting for such approved intentional changes in the reference protocol, our results are likely
to change and we may see different levels of non-compliance. To accommodate such intentional changes, it is best to
run mrQA on subsets with a single fixed reference protocol for an accurate estimation of non-compliance in the dataset.

OpenNeuro [20] is a data archive dedicated to open neuroscience data sharing based on FAIR principles [30]. Table 2
presents some of the datasets which exhibit non-compliance in acquisition parameters. Due to the absence of standard
acquisition metadata in NIfTI files, we rely on associated JSON sidecar files for evaluating protocol compliance on
NIfTI-based datasets.

from mrQA import monitor
monitor(name='xyz', data_source='/path/data', output_dir='/reports/xyz')

$ mrqa_monitor --data-source /path/data --name xyz --output-dir /reports/xyz

Listing 2: An example of mrQA being used for monitoring xyz dataset. (above: Python API, below: CLI).
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Table 1: The table summarizes the compliance report for DICOM images from ABCD-baseline FastTrack Active series.
For each of the modality (i.e. T1w, T2w, DTI, rsfMRI and field maps), the table shows the vendor, the percentage
of non-compliant & compliant subjects, and the parameters which were found to be non-compliant i.e. Repetition
Time (TR), Echo Time (TE), Flip Angle (FA) and Pixel Bandwidth (PB). Some minor cases were observed in Phase
Encoding Direction (PED), Phase Encoding Steps (PES), Echo Train Length (ETL), and Shim. In contrast to scans
acquired with Philips and GE, images scanned with Siemens exhibit minimal non-compliance across all the modalities.
Ensuring compliance in acquisition parameters manually is non-trivial for large-scale multi-site datasets such as ABCD.
Automated tools like mrQA can help researchers achieve protocol compliance in a practical manner.

Modality Vendor #Non-compliant Total Parameters #Compliant
Subjects Subjects Subjects
GE 59 2.00 % 2941 TE, TR, PB 2882 97.99 %
Philips 980 64.43 % 1521 TE, ETL, 541 35.56 %
PED, PES,
Tiw PB, TR
Siemens 2883 39.96 % ¢ 7214 Shim, TE 4331 60.03 %
GE 907 32.19 % 2817 TE, TR, PB 1910 67.80 %
T2w Philips 916 62.82 % 1458 TE, PB 542 3717 %
Siemens 6 0.08 % 7030 PED, Shim 7024 99.91 %
Diffusion Fmap GE 620 22.26 % 2785 FA, PB 2165 7773 %
Diffusion Fmap Philips 3 0.20 % 1441 PB 1438 99.79 %
A>P Siemens 128 1.81 % 7057 PED, TR, 6929 98.18 %
Shim
Diffusion Fmap Philips 4 0.27 % 1439 PB 1435 99.72 %
P>A Siemens 233 3.30 % 7053 PED, TR, 6820 96.69 %
Shim

fMRI Fmap GE 0 0.00 % 2862 2862 100.00 %
fMRI Fmap Philips 873 5870 % 1487 FA, PB 614  41.29%
A>P Siemens 1 0.01 % 7200 Shim 7199 99.98%
fMRI Fmap Philips 875  58.76 % 1489 FA, PB 614  41.23%
P>A Siemens 0 0.00 % 7202 7202 100.00 %
GE 581 21.32 % 2725 FA, PB 2144 78.67 %
DTI Philips 11 0.81 % 1343 PB 1332 99.18 %
Siemens 14 0.23 % 5873 PED 5859 99.76 %
GE 674 27.16 % 24381 PB 1807 72.83 %
resg\'/‘lgliita‘e Philips 787  63.98% 1230 PB 443 36.01%
Siemens 2372 40.34 % 5880 iPAT 3508 59.65 %

* There are minor deviations in TE (ms) within the range (2.88, 2.9)
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Table 2: The table summarizes compliance report for some OpenNeuro datasets that exhibit deviations in acquisition
protocol. For each of these datasets, the table shows the modality, the associated suffix for various tasks/acquisition,
the percentage of non-compliant & compliant subjects for each modality, and the parameters which were found to be
non-compliant i.e. Repetition Time (TR), Echo Time (TE), and Flip Angle (FA). Some minor cases were observed in
Phase Encoding Direction (PED), Phase Encoding Steps (PES), Sequence Variant and Pixel Bandwidth (PB). Thus,
mrQA provides the ability to automatically discover scanner-related variance in MR datasets. Automatic compliance
checks are especially important for large datasets which exhibit non-compliance rate below 1% because manual/ad-hoc
checks are ineffective at detecting these subtle issues.

Dataset  Modality Differentiating Vendor  #Non-Compliant Total Parameters #Compliant
Entities™ Subjects Subjects Subjects
as000201 dwi GE 21 27.63% 76 PB 55 72.36%
fmap 24 28.23% 85 PED, PB, TR 61 71.76%
ds003826 anat tlw Siemens 2 1.47% 136 PES, SV 134 98.52%
anat acq-cube_t2w 39 25.49% 153 TE, TR 114 74.50%
dwi dir-unflipped 2 1.39% 143 PB 141 98.60%
fmap acq-bold 1 1.69% 59 PED 58  98.30%
fmap acq-dwi 2 3.03% 66 PED, PB 64 96.96%
ds004215 func task-rest_dir- GE 6 4.61% 130 FA, PED 124 95.38%
forward
func task-rest_dir- 40 31.00% 129 FA, PED 89 68.99%
reverse
perf asl 1 0.70% 142 TR 141 99.29%
anat tlw 92 34.71%* 265 PES, PB 173 65.28%
dwi 112 42.74% 262 PB, TR 150  57.25%
func task-bart 7 2.66% 263 PED 256 97.33%
func task-bht 8 3.10% 258 PED 250 96.89%
ds000030 func task-pamnec Siemens 5 2.41% 207 PED 202 97.58%
func task-pamret 6 2.88% 208 PED 202 97.11%
func task-rest 9 3.35% 268 PED 259  96.64%
func task-scap 9 3.35% 268 PED 259 96.64%
func task-stopsignal 9 3.38% 266 PED 257  96.61%
func task-taskswitch 9 3.38% 266 PED 257  96.61%
fmap acq-GE 1 0.31% 317 PED 316 99.68%
ds000221 fmap acq-SE Siemens 1 0.44% 227 PED 226 99.55%
func task-rest_acq- 14 7.07% 198 TE 184 92.92
PA %
ds002345 func task-milkway  Siemens 17 32.07%1 53 TR 36 672/2
o
ds000228 func task-pixar Siemens 3 1.93% 155 FA 152 98.(2;3
o
ds000258 func task-rest Siemens 4 4.49%7 85 TR 85 95.50%
ds002785 dwi Philips 33 15.63%" 211 TR 178  84.36%
ds004169 anat tlw 27 2.24% 1202 FA, PES, PB, 1175 97.75%
TR
func task-nback Siemens 3 0.25% 1189 FA, PED 1186 99.74%
func task-rest 2 0.19% 1029 FA, PED 1027  99.80%

T There are minor differences in parameter values. See dicussion.
* For BIDS datasets, entities correspond to an altered acquisition parameter
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Variations in acquisition parameters for T1w in ABCD dataset
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Figure 3: The violin plot shows the variance in Repetition Time (TR), Echo Time (TE), and Pixel Bandwidth (PB) for
T1w images (above) and T2w images (below) in the ABCD Dataset. Observe that various vendors have a distinct range
of acquisition parameters e.g. Repetition Time (T1w) and Echo Time (T2w). This is because different vendors provide
distinct imaging sequences even though the modality might be the same (T1w). Therefore, checking cross-vendor
compliance is non-trivial. We observe that scans from Siemens have consistent acquisition parameters in contrast to
scans from Philips and GE scanners for both T1w and T2w images.

3 Results

3.1 Evaluation of ABCD dataset

We observed that T1w MRI scans from Philips scanners exhibit non-compliance of 64.43%. As shown in Figure 3,
the echo-time (TE) varies in the range (1.4 ms, 3.56 ms) for Philips scanners, even though structural scans are not
multi-echo in general. Similarly, T1w images from the GE scanner have minor issues of non-compliance in TE, TR,
and PB. T1w scans from Siemens scanners exhibit some minor issues in TE and shim. Although echo time varies for
39.96% of the subjects, there are only minor deviations within the range (2.88 ms, 2.9 ms).

Similar to T1w images, we observe that 62.82% of subjects are non-compliant for T2w scans from Philips scanners.
Figure 3 shows that TE varies in the range (251.49 ms, 285.23 ms) while PB (Hz/pixel) varies between (740, 775). We
observe considerable non-compliance (32.19%) in TE, and TR values from GE scanners for T2w images. TE varies in
the range (59.1 ms, 68.2 ms) while TR varies in the range (3200 ms, 5297 ms). In contrast, Siemens scanners exhibit
minor issues in PED and shim for only 0.08% of subjects.

Table 1 shows the assessment of field maps (fmap) in the ABCD dataset. The subjects are stratified into vendor and
PED-specific groups as per information in the DICOM header. Often neuroimaging experiments consist of both A>>P
and P> A scans to reduce susceptibility artifacts[31]. Therefore, the scans will not have a unique PED across all
scans. To avoid misinterpretation, compliance checks should be performed within these sub-groups of A>>P and P>>A
scans. Note that in the ABCD dataset, Siemens and Philips scanners had distinct field maps each annotated with a PED
(AP/PA). However, such annotation was absent in field maps from GE scanners. The field maps intended for Diffusion
Images should not be compared to the field maps intended for fMRI images. This information is not automatically
captured in DICOM images and should be annotated manually after acquisition.

We observe that both the field maps and Diffusion images from GE scanners have two distinct values of flip angles
i.e. 77° and 90°. Even though fMRI field maps from Philips are acquired with flip angle values of 52° and 90°, the
resting-state fMRI scans were acquired only with a flip angle of 52°. The report indicates that these subjects don’t
comply with a single predefined value for flip angle. We choose to flag this issue, however, whether it is an issue or a
study requirement would be best judged by the investigators of the study[32, 33]. In contrast, field maps acquired with
Siemens scanner have a flip angle of 90°, and some minor issues in Shim, PED, and TR. We also observed that the
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(a) Effect of changing tolerance level for non-compliance in the ABCD-Baseline FastTrack Active Series across
scanner vendors. In contrast to Philips and GE, Siemens scanners show minimal non-compliance across all the

modalities at a 1% tolerance level.

Effect of tolerance on non-compliance % for OpenNeuro datasets

0%

s 2%

= moX 5%
® = -
] - -
o - -
c - -
= H H
5 = =
£ = =
S H =
u B =
c - - e
o - - -
z = = =
= = =
- - -
= = =
- - -
- - -
= = =
H H E E
- - .= = BN
. s " )
R I A Y AP S T
P N R L N s
o < & $ & < A o o & K L & e F A% o
F ¢ oF & F & F & T TS ¢ I oF
¥ 5 S & o o b Py & & & & &@ &
& o & & o g < & o
P &8 & H & & e &
& g&" 659 T D“@ 0@0 o o P v ®
¥ ® 059 @d P 35 7 & & S &
§ ¥ o

Dataset

(b) The non-compliance% is not affected by changing the tolerance level for most of Open-
Neuro datasets except ds004215_acq-cube_t2w, ds000030_anat_tlw, ds002345_task-milkiway,
ds000228_fmap_task-pixar, ds000258_func_task-rest and ds002785_dwi (highlighted in color)

Figure 4: By default, mrQA checks for absolute equivalence of parameter values. Given the context of the neuroimaging
study, it might be possible to include tolerance in the variation of these acquisition parameters, however, the tolerance
level should be best judged by investigators. Note that changing the tolerance level will not affect the non-compliance%
if the deviation is too large, or if acquisition parameters are categorical.
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Table 2 from Casey et al. suggests that parallel imaging was turned off for fMRI sequences acquired with Siemens
scanners. But our results show that 60% of subjects were acquired using SENSE.

Figure 4 shows how increasing the relative tolerance level affects the level of non-compliance for T1w, T2w images,
and field maps in the ABCD dataset. For T1w and T2w images, the percentage of non-compliance drops close to zero
(except for T1w Philips), indicating that the variations lie within 5% tolerance. For T1w from Philips scanners, TE and
TR varies beyond the 5% tolerance range of (2.85, 3.15) w.r.t. reference value of 3 ms and (6.33, 6.99) w.r.t. reference
value of 6.66 ms, respectively. This results in the non-compliance rate of 22.68% at 5% tolerance level. As the tolerance
level is raised from 1% to 5%, the non-compliance rates for diffusion field maps (GE) and fMRI field maps (Philips)
show no further decline beyond 22.26% and 35.91%, respectively. This observation can be attributed to large deviations
in parameters (such as flip angle and pixel bandwidth) from their reference value, exceeding the 5% tolerance limit.

3.2 Evaluation of OpenNeuro datasets

Table 2 shows evaluation of protocol compliance for OpenNeuro datasets after stratifying modalities by entities such as
task and acquisition. Note that compliance checks should be performed after stratification into coherent clusters as
same sequences are often acquired multiple times with varying acquisition parameters for each subject e.g. DTI scans
with different PED (A>>P, P>>A) or separate cognitive/behavioral tasks captured with different acquisition protocols in
an fMRI study.

We observed that a lot of subjects in datasets such as ds002843, ds000117, ds000228, ds001242, ds004116,
ds003647, and ds002345 were missing crucial parameters (such as PED, magnetic field strength, echo train length)
from their respective JSON sidecar. We observe that each of the OpenNeuro datasets export a varying set of acquisition
parameters because, unlike DICOM tags, JSON sidecar is not standardized. If there is a considerable level of non-
compliance, the dataset can be explicitly standardized before it is used for analyses. However, the standardization would
have limited validity due to missing acquisition parameters which might impact the reliability of results. Therefore, we
recommend that compliance should be checked using DICOM images, which contain complete acquisition metadata
with standardized tags.

We also observed that often the same subjects are tagged as non-compliant across several parameters. This can help
in identifying consistent patterns in sources of non-compliance. For example, if the same subject is found to be
non-compliant for TR and flip angle in T2w FLAIR sequences, this may indicate that the subject was not comfortable
inside the scanner, and therefore SAR was adjusted by reducing flip angle and increasing TR value [34]. Therefore,
adequate support may be provided to the particular subject during any further scans to ensure compliance. We found this
pattern in several datasets such as ds003826, ds004169, ds000221, ds000030, ds000201, ds004215, and
ds000258. Such patterns might also be helpful in identifying particular sites, or scanners that might be the cause of
non-compliance.

Figure 6 provides a visual representation of variance in some of the important acquisition parameters such as TE, TR,
PB, and PED across a few OpenNeuro datasets. Further, we evaluate the non-compliance of each of these datasets after
increasing the tolerance level as shown in Figure 4. We observe that the percentage of non-compliance decreases for 6
datasets only (shown in color), while the percentage of non-compliance for all other datasets is not affected (shown in
gray) due to large deviations from the reference beyond the 5% tolerance level or if the non-compliant parameters are
categorical (e.g. PED).

4 Discussion

We briefly discuss how deviations in acquisition parameters affect images (see Appendix ?? for details). For instance,

the flip angle affects the RF signal of the cycle, thereby affecting the signal intensity [35, 36, 37, 38]. Figure 5 shows
variation in flip angle in field maps for the ABCD dataset. Similarly, timing parameters (such as TE, and TR) influence
tissue specific response in anatomical images and BOLD response in functional images [39, 40, 41].Figure 3 and

Figure 6 show the variance of TE and TR for the ABCD dataset and OpenNeuro datasets, respectively. We also
observed that datasets (such as ds004116 and ds004114), aggregated images from various field strengths, (4.7 T -
17.15T) and (3 T - 14.1 T), respectively. In context to texture features, images with varying field strength cannot
be used interchangeably [42]. A study may require multiple scans with varying PED to eliminate susceptibility
artifacts [43, 44, 31], however it also leads to significant differences in fractional anisotropy estimates [22, 45]. Figure
6 shows a histogram to visualize the apportionment of PED for ds004215 and ds000201 datasets.

Further, we explore the issue of non-conformance in parameters w.r.t. vendors. As compared to Philips and GE scanners,
MRI scans acquired with Siemens scanners in the ABCD dataset are observed to be consistent achieving more than
99% compliance over 7000 subjects both in T2w and field maps. We observed that MR scans from Siemens scanners
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Variations in acquisition parameters for Diffusion Field Map in ABCD dataset
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Figure 5: The violin plot shows the variance in Flip Angle(FA) and Pixel Bandwidth (PB) for Diffusion (above) and
fMRI (below) field maps in the ABCD Dataset. Siemens and Philips scanners had distinct fieldmaps each annotated with
a PED (AP/PA). However, sequences from GE scanners (denoted by cyan) were not annotated in the ABCD dataset. In
contrast to scans from Philips and GE scanners, MR scans from Siemens have consistent acquisition parameters across
both diffusion and fMRI field maps

Variations in acquisition parameters for OpenNeuro datasets
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Figure 6: The violin plot shows the variance in Echo Time, Repetition Time, and Pixel Bandwidth for some OpenNeuro
Datasets. For violin plots, the width represents the frequency at different levels of each parameter. A histogram chart
shows the number of scans for each PED. Note that, even though the entity label specifies PED as reverse for ds004215,
PED is not consistent. This indicates that ensuring compliance is an arduous process, and issues of non-compliance can
be overlooked even after careful effort in data acquisition.
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were performed only on Prisma scanners with the same software version (syngo MR E11). In contrast, scans for Philips
were performed on Achieva dStream and Ingenia models, and the GE scans were executed on MR750 and DV25-26 [5].
Furthermore, both GE and Philips scans had differences in software versions. The difference in hardware and software
versions might have been a potential cause of non-compliance in acquisition parameters for Philips and GE scanners.
Our findings are consistent with those reported by the ABCD-BIDS Community Collection (ABCC) [46]. They
observed a relatively high post-processing quality control failure rate, particularly for images derived from GE and
Philips scanners.

Although MRI scanners from different vendors function on the same underlying principles, image sequences can have
significant differences in gradient strengths, RF pulse sequences, and timing parameters [47]. In addition, each vendor
uses different software and methods to reconstruct the images from k-space. Therefore, these sequences are denoted
with specific names and abbreviations. For example, Siemens scanners provide an SPACE imaging sequence, while
Philips scanners provides VISTA imaging sequence [48]. Both these are 3D TSE sequences and can create T1w images,
however significant differences in hardware and software make it non-trivial to compare scans across vendors due to
vendor-specific differences. It is better to stratify scans w.r.t. a vendor to avoid any misinterpretations. This problem
becomes particularly relevant for multi-site studies where scans are acquired using multiple scanners with potentially
differing acquisition protocols. Therefore, the subjects are stratified into different vendor-specific sub-groups in Table 1
as per the information in the DICOM header.

We observed that scanners from various vendors (e.g., Siemens, GE, Philips) differ in terms of units of measurement and
numerical range even for the same parameter. Furthermore, the definition of certain parameters may also vary across
vendors based on the particular imaging sequence used. For instance, Field-of-View (FoV) is typically measured in
millimeters in Siemens/Philips scanners however GE use centimeters. While analyzing the ABCD dataset, we observed
that the TR for Siemens scans was in the range of 2000-4000 ms, but for Philips scans the range was 6-7.5 ms as
shown in Figure 3. The precise details of these differences are stored in Exam Card (Philips), Protocol Exchange
(GE), or .exar/.edx file (Siemens) generated by corresponding software. Even though much of the information is
available in DICOM metadata, inclusion of these electronic protocol files would allow all scanners to have a uniform
acquisition protocol loaded into their system without manual intervention, thus eliminating any potential sources of
error across various sites and scanners. mrQA is equipped with native support for parsing acquisition protocols in XML
files exported from EXAR sources. However, automatic cross-vendor compliance is very difficult due to the lack of
standardized open-source tools that can effectively read/write and convert proprietary formats from different vendors.

Finally, we discuss current limitations and future directions for the development of mrQA. mrQA extracts certain
acquisition parameters such as the shimming method, PAT, and multi-slice mode from Siemens private headers. mrQA
skips the private header while reading DICOM images from GE and Philips scanners. Therefore, mrQA at its current
stage cannot discover non-compliance in parameters present in private headers for GE/Philips scanners.

Note that the DICOM header doesn’t contain any information beyond the specifications of the MR scanner e.g.,
variations in duration/intensity of visual stimuli used for measurement of neural responses or reactivity measurements
such as CO2 inhalation, acetazolamide infusion [49]. Therefore, checking compliance in the DICOM header may not
be sufficient to achieve consistent acquisition.

As of now mrQA checks for compliance in a subset of acquisition parameters (in DICOM header) as shown in Table
3. However, there can be other potential sources of non-compliance [50, 41]. Although, this is not necessarily a
limitation in itself, as the primary objective of this exploration is to demonstrate the capabilities of automated protocol
compliance using mrQA(and MRdataset). mrQA is fully extensible. This means that additional parameters can be
readily incorporated into the analysis. As more parameters are integrated, it is indeed likely that the percentage of
non-compliance may increase. Nonetheless, the current analysis represents a crucial first step in raising awareness of
the prevalence of non-compliance in MR research. By highlighting existing issues and demonstrating the utility of
automated compliance assessment tools, we aim to emphasize the imperative need for improved standardization and
reporting practices in the field of MR research.

5 Conclusions

A critical aspect of MR imaging is adherence to the recommended protocol which would enhance the validity and
consistency of acquired images. However, we demonstrate the pervasive problem of protocol non-compliance based on
analyses of many open datasets from OpenNeuro and the ABCD dataset. Secondly, inconsistencies should be checked
promptly so that corrective measures can be taken to minimize differences in acquisition parameters over the entire
project timeline. It is non-trivial to maintain protocol compliance in imaging acquisition parameters, especially for
large-scale multi-site studies. Monitoring compliance would make us much more familiar with our own data, enabling
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us to draw meaningful conclusions while considering potential biases, confounds, or anomalies that impact the quality
of statistical analysis.

Therefore, we propose an open-source tool, mrQA (and MRdataset) which can summarize and aggregate acquisition
parameters to discover any issues of protocol non-compliance. Apart from generating compliance reports, mrQA can be
set up for continuous monitoring of acquired DICOM images on a daily/weekly basis. We believe that it is important to
embrace a mindset of proactive quality assurance to weed out any source of inconsistencies at the scanning interface
itself rather than waiting for the end-of-analyses to catch confounding. Adopting such an approach before organizing
files in a suitable directory structure (e.g. BIDS) will save time and effort.

The long-term goal is to analyze DICOM images in near real-time to identify and fix any issues of non-compliance
at the scanner itself. As we move towards even larger datasets, automated imaging QA would be critical for dataset
integrity and valid statistical analyses. mrQA can help automate this process, as we move towards practical, efficient,
and potentially real-time monitoring of protocol compliance.
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A Creating a unified interface (MRdataset)

Experimental neuroimaging data is hugely diverse and may be structured differently according to study design or
clinical protocol, especially the stimulus, behavioral response, and interventions. Thus, any tool must address the
fundamental capability of representing and manipulating common dataset formats. MRdataset provides a unified
interface to simplify the traversal of neuroimaging datasets by adopting modular classes for each dataset format as
well as different levels in the hierarchy, such as modalities, subjects, sessions, and runs [51] as shown in Figure 1.
MRdataset infers information about the hierarchical structure directly from the DICOM headers. MRdataset doesn’t
rely on filenames or expect a particular idiosyncratic organization of files to process various configurations. It provides
a simple modular interface to improve the use and accessibility of neuroimaging datasets.

MRdataset provides a consistent set of methods for data access irrespective of the dataset format (such as BIDS, and
DICOM). In the future, we expect to extend the MRdataset dataset class to support other data formats, such as LONI
IDA, but these were not included in the initial design. In addition to the desired unified interface, MRdataset performs
basic validation to reject localizers, head scouts, and phantoms. Keeping these considerations in mind, the package is
written in Python, and it uses pydicom [52] for reading DICOM images. Python is becoming the de facto standard for
scientific applications as it provides community support and easy extensibility for the future [53].

B Example of a compliance report

An HTML report is generated for a toy dataset that presents complete information in a concise manner (as shown in
Table 3). The report has two parts - a summary view which gives a brief assessment of protocol compliance for all the
modalities. Following the summary, each modality is accompanied by a detailed view. There are two non-compliant
subjects, sub-566 and sub-879, for the modalities GRE and DTI, respectively. Subject sub-566 has non-compliant pixel
bandwidth, while subject sub-879 has an non-compliant PED. For instance, pixel bandwidth in the reference protocol
is 350, but subject sub-566 has a pixel bandwidth of 485 in sessions 6, 7, 8, 9, and 10. The complete compliance
report contains reference protocols for each modality and corresponding details about sources of error in acquisition
parameters.

C Evaluation of DICOM datasets on TCIA

Although we focus primarily on neuroimaging datasets, mrQA can analyze DICOM-based datasets for other organs
also. We also analyze three public DICOM datasets available on The Cancer Imaging Archive (TCIA) [27], namely
Rembrandt [54], TCGA-GBM [55] and TCGA-LGG [56]. For Rembrandt, we observe issues of non-compliance in TR.
Many scans had missing values for crucial parameters like magnetic field strength, pixel bandwidth, PED for FLAIR,
and diffusion images. We observe issues in repetition time, pixel bandwidth, and magnetic field strength for TCGA-LGG
and TCGA-GBM datasets. Missing acquisition parameters can not only limit reproducibility, it also limits the ability to
perform comparative analysis across studies, which consequently affects the validity and reliability of the research.
The compliance reports for TCIA are available at https://github.com/Open-Minds-Lab/mrQA-reports

D Effect of non-compliance in acquisition parameters

In this section, we discuss the impact on image quality due to variation in specific acquisition parameters.

D.1 Flip Angle

The flip angle affects the net magnetization relative to the primary magnetic field as it controls the amount of longitudinal
magnetization converted to transverse magnetization. Thus, the flip angle affects the RF signal of the cycle, thereby
affecting the signal intensity. For instance, large flip angles produce T1 contrast, low flip angles produce PD (proton-
density) contrast, and the T1 and PD contrast can cancel each other for intermediate flip angles [35, 36, 37]. Apart
from anatomical MRI, the flip angle also affects functional MRI. Large flip angles deteriorate the spatial contrast
between cerebrospinal fluid (CSF), gray matter (GM), and white matter (WM), which makes it difficult to align EPI to
its structural counterpart [38]. The impact on signal intensity and its significance for pattern discrimination would be
governed by specific tissue in context. It is crucial to recognize that flip angles directly influence image contrast.
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(a) Example of a reference protocol.

Scanning Se- Echo Train Phase Encod- Magnetic Phase Encod- Multi Slice Pixel Band- Flip Angle MR Acquisi-

quence Length ing Direction  Field Strength  ing Direction = Mode width tion Type

GR 1 j 3 ROW interleaved 350 40 2D

is3D Phase Encod- Shim Repetition iPAT Manufacturer ~ Sequence Body Part Ex- Echo Time
ing Steps Time Variant amined

False 448 Standard 465 Grappa SIEMENS MTC_SS BRAIN 3.73

(b) Summary of non-compliance for a toy dataset.

Modality Non-compliant Non-compliant Reasons Compliant Total

subjects subjects
rsfMRI 0 0.00 % 5 100.00 % 5
GRE 1 20.00 % sub-566 Pixel Bandwidth 4 80.00 % 5
T2-FLAIR 0 0.00 % 5 100.00 % 5
DTI 1 20.00 % sub-879 Phase Encoding Direction 4 80.00 % 5
T1-weighted 0 0.00 % 5 100.00 % 5
SWI 0 0.00 % 5 100.00 % 5

(c) Detailed report for non-compliance in GRE modality

Parameter Ref. Value Found Subject_Session

PixelBandwidth 350 485 sub-566_6, sub-566_7, sub-566_8, sub-566_9, sub-566_10

Table 3: (a) An example reference protocol, and (b,c) compliance report for a toy neuroimaging dataset. Note that the
reference protocol can either be pre-defined or inferred by searching for most frequent values for each parameter. The
toy dataset has 7 modalities across 5 subjects. Subjects sub-566 and sub-879 are non-compliant w.r.t Pixel Bandwidth
and Phase Encoding Direction respectively. For gradient-echo (GRE) modality, subject sub-566 has a non-compliant
pixel bandwidth for sessions 6-10.

D.2 Echo Time & Repetition Time

A correct choice for echo time (TE) and repetition time (TR) is important for structural images. The tissue-specific
response can be influenced by acquisition parameters such as TR and TE as different tissues have varying T1 and T2
times. For instance, to generate a valid T1-weighted image, it is important that TR & TE is less than tissue-specific
T1 & T2 times, respectively. In contrast, TR & TE should be much greater than tissue-specific T1 time & T2 time,
respectively, to generate T2-weighted images. However, if TR is much greater than tissue-specific T1 time but TE is
less than tissue-specific T2 time, the result is a proton density-weighted image. Thus, variations in TR and TE can
dictate image contrast characteristics [19].

Apart from structural images, choice of TR and TE also affects fMRI images. Longer TE values lead to increased
susceptibility artifacts and signal dropout. Shorter TRs provide enhanced BOLD senstivity but may also lead to
saturation effects [39, 40, 41].

D.3 Magnetic Field Strength

Variation in magnetic field strength has a strong influence on texture features (e.g., co-occurence matrix and gray-level
run length matrix). These texture features capture patterns and provide valuable information about visual appearance
and structural characteristics of an image. These texture features can significantly impact the performance of predictive
models.

Ammari et. al [42] show a comprehensive analysis studying the impact of magnetic field strength on various texture
features. The study evaluates 38 texture features of which 15 features in healthy volunteers were sensitive to variations in
magnetic field strength. Visually, images from various field strengths may have the same visual diagnostic accuracy [57],
but in context to texture features, images with varying magnetic field strength cannot be used interchangeably [42].
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D.4 Phase Encoding Direction

PED plays a crucial role in EPI sequences. A common issue in EPI sequences is their vulnerability to susceptibility
artifacts. These artifacts are apparent, especially when the bandwidth is low [43, 44]. To diminish the effect of these
distortions, the collection of additional scans with varying PED is very helpful [31]. Although it is important to eliminate
these artifacts to improve image quality in DTI sequences, varying the PED is known to affect fractional anisotropy
estimates. Kennis et. al [22] show that magnitude of fractional anisotropy magnitude between P>>A and A>>P scans
can range from 0.4% to 30% even after correction for subject motion, eddy currents effects, and susceptibility artifacts.
It is possible that these differences are arising due to signal intensities from P>>A and A>>P scans that can confound
DTI neuroanatomical studies. Similarly, Tudela et. al [45] show that misalignment in PED from the main magnetic
field can lead to much more artifacts reflected by lower fractional anisotropy values.

D.5 Discussion

Prior works have measured the effect of various acquisition protocols on texture analysis [58, 59, 60], to evaluate which
features are stable against changes in acquisition protocols. Some parameters such as TR and TE do not affect the
shape and size of the image, but they affect uniformity in grayscale intensity [1&]. It is evident that different acquisition
protocols can affect data distribution, reducing the reliability of the extracted features and consequently increasing the
bias of downstream statistical analyses [01]. Thus, special attention must be attributed to image pre-processing before
any feature extraction [62].

Harmonization is possible only if we know that the data exhibits variation in imaging acquisition protocol. In cases
when sources of non-compliance are not known, data cannot be categorized into clusters, and it would be difficult to
perform data harmonization. Thus, mrQA can play a pivotal role in establishing data integrity by discovering sources of
non-compliance allowing the investigators to perform harmonization, if required.

As we progress towards algorithms that are able to learn features automatically (e.g. deep learning), it is even more
important to ensure that the derived image features are stable with respect to variations in acquisition parameters [ | 8].
Without acknowledging these sources of variation in acquisition parameters, the statistical results might be subject to
confounding which can obscure or exaggerate the effects of interest [03], leading to misinterpretation of statistical
results.
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