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Abstract

Spatial high-throughput omics data allow scientists to study gene activity in a tissue sample

and map where it occurs at the same time. This enables the possibility to investigate impor-

tant early cancer-initiating events occur in normal-appearing tissue and gene activities that

progress and carry through tumor tissue, as defined by “field effect.” The “field effect” genes

are differentially expressed or methylated genes in the spatially resolved high-dimensional

datasets with respect to the pathology subtype in each geographical sample across the tissue

region. Current statistical methods for spatially resolved genomics data focus on the associa-

tion of omics data with spatial coordinates without being able to incorporate and test for the

association with the sample subtypes. In addition, analytical methods are underdeveloped

for spatially resolved multi-omics data integration. We propose a novel statistical frame-

work ‘spatial IMIX’ to integratively analyze spatially resolved high-dimensional multi-omics

data associated with a specific trait, such as sample subtypes while modeling the spatial

correlations between samples and the inter-data-type correlations between omics data si-

multaneously. Through extensive simulations, spatial IMIX demonstrated well-controlled
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type I error, great power by relaxing the independence assumptions between data types,

model selection features, and the ability to control FDR across data types. Data applica-

tions to a geographically annotated tissue area of bladder cancer discovered cancer-initiating

gene activities and revealed interesting fundamental biological mechanisms through path-

way analysis. We have implemented our method in R package ’spatialimix’ available at

https://github.com/ziqiaow/spatialimix.
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Figure 1: Spatial IMIX model framework.

1 Introduction

High-throughput technologies have grown and evolved to accomodate new discoveries and in-

sights in cancer research. Since studies often use multiple types of omics data, a wide variety

of statistical methods have been developed over the past several years for integrative genomic

analyses. Spatially resolved omics data add another layer, spatial information, into current

multi-omics data-integration frameworks. In biology, spatial information allows scientists to

investigate the complex interactions within and between biological networks (Wei and Pan,

2012; Zhu et al., 2007) in which each unit influences and is influenced by its neighboring

environment. This is especially important for studies of cancer because tumors often contain

complex mixtures of cell types in a single tissue area. Thus, incorporating structural and

spatial information will help us better comprehend the dynamics of tumorigenesis, tumor

development, and the tumor microenvironment.
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Spatial high-throughput omics data allow scientists to investigate gene activity in a tissue

sample and map where it occurs at the same time. For example, it is known that epithelial

origin bladder cancers evolve from microscopically recognizable dysplasia. However, previous

work (Czerniak et al., 2016; Majewski et al., 2019) showed important early cancer-initiating

events occur in normal-appearing tissue, as defined by “field effect.” The genes involved in

the development of early field effect control diverse cell functions and are expected to pro-

mote cell survival and proliferation, leading to the progression of neoplasia. Our motivating

data example was based on geographically annotated mucosal samples from a surgically re-

moved bladder specimen from one bladder cancer patient. Each spatial sample was evaluated

microscopically and classified by a pathologist into one of three categories: normal urothe-

lium (NU), in situ precursor lesions, or urothelial carcinoma (UC). The in situ precursor

lesions were further dichotomized into low-grade intraurothelial neoplasia (LGIN) and high-

grade intraurothelial neoplasia (HGIN). Furthermore, each spatial sample was measured for

two whole genome-wide omics data platforms, gene expression and methylation. This study

aimed to explore the cancer-initiating events that occur in normal-appearing tissue samples

that carries on to carcinoma samples in a single tissue section, i.e., discover differentially

expressed and methylated genes in the spatially resolved high-dimensional datasets with re-

spect to the sample subtypes across the tissue, and furthermore the fundamental biological

mechanisms. Another example is the spatial transcriptomics, which profiles gene expression

in its spatial context in tissues, allowing scientists to investigate the complex mix of cell

types and structures in tissues, including tumors and their micro-environments (Berglund

et al., 2018).

Current statistical methods for analyzing high-dimensional spatially correlated data mostly

aim to identify and characterize spatially variable genes, such as SpatialDE (Svensson et al.,

2018) and SPARK (Sun et al., 2020). Both methods build upon a generalized linear spatial

model with different link functions targeting at respectively normalized expression data and

count data. To test the hypothesis whether a gene shows spatial expression variance across
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the tissue area, both methods test the random effect term in the spatial mixed model. Dif-

ferent groups of spatial variance pattern of the identified genes are then determined by an

unsupervised clustering method, such as hierarchical clustering, which is incapable of incor-

porating a specific sample location’s subtype into the analysis. Thus, these methods cannot

address the bladder cancer whole-organ mapping data problem as described above, which

involves spatial sample subtypes (NU, LGIN, HGIN, and UC) across the whole bladder tis-

sue and identification of genes that are differentially expressed or methylated in the same

direction across all spatial locations with nonspatial variability. Furthermore, given that

spatially resolved proteomics, epigenomics, and metabolomics technologies are still under

development, there is as yet no statistical method for multi-omic spatial data integration, to

our knowledge.

Therefore, we developed spatial IMIX, a method for identifying genes in association with

covariates, such as sample subtypes, through multiple spatially correlated omic data types

(Fig. 1). This method focuses on the fixed effect of sample subtypes in a spatial linear mixed

model that incorporates the spatial correlations on a two-dimensional surface. For data

integration, it models the summary statistics z-scores, which are transformed from the P -

values of the fixed effect estimates, with a multivariate Gaussian mixture distribution. This

step additionally characterizes the correlations between various data sources. This method

extends the previous work by Wang and Wei (2020), to incorporate spatial correlations

between samples. Our method is computationally efficient because it uses the expectation-

maximization (EM) algorithm for parameter estimation. It also controls the false discovery

rate (FDR) and features statistically principled model selection. We have implemented our

method in R package ’spatialimix’ available at https://github.com/ziqiaow/spatialimix, as

well as CRAN soon.
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2 Methods

2.1 Spatial Mixed Model and IMIX for One Data Type

Spatial Mixed Model. We first consider modeling one type of spatially resolved omics

data, such as gene expression or methylation data. Each data type is measured for p genes

and n spatial locations/samples on a tissue of interest. Our motivating example uses ge-

ographically annotated mucosal samples from a surgically removed bladder specimen from

one bladder cancer patient. Here, the omics data in our motivating example are measured

on the whole genome, with the number of genes p approximately equal to 20 000. Each

sample i (i = 1, · · · , n) is spatially correlated over a two-dimensional space. The spatial

coordinate of each sample is si = (si1, si2) ∈ R2. Note that si could be extended to more

than two dimensions, for instance for tissues with three-dimensional coordinates such as

height, width, and length or even a fourth-dimension such as the distance between different

time points (Sun et al., 2020). Consider a categorical variable that contains three classes:

NU/LGIN (LG), HGIN (HG), and UC. Each sample i belongs to one of the three classes.

Here, we want to identify the genes that show field effect (i.e., genes that are differentially

expressed/methylated in all three classes, LG, HG, and UC, compared with the controls);

genes that are differentially expressed/methylated in HG and UC samples; and genes that

are only differentially expressed/methylated in UC samples. The biological rationale for this

was introduced in Section 1. We model the data using a spatial linear mixed model:

y ∼ N(xTβ,V (σ2
1, κ, τ ) + σ2

2Ip), (1)

the matrix form can be expanded as:

yij ∼ N(βj0 + βj1xi1 + βj2xi2, V (σ2
j1, κj, τ) + σ2

j2), (2)
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where yij is the log2 ratio of the expression value or methylation value of gene j in sample

i (i = 1, · · · , n; j = 1, · · · , p) compared with the controls. xi1 is the indicator (dummy

variable) of whether sample i is in the class HG, and xi2 is the indicator of whether sample

i in the class UC. The indicators remain the same for any gene j. The fixed effect βj0 gives

the overall mean for gene j, βj1 is the fixed effect of HG relative to LG, and βj2 is the fixed

effect of UC relative to LG. V (σ2
1, κ, τ ) is the spatial covariance matrix defined on the

distance between each pair of samples/locations and σ2
1 is a vector of variance components

(Li et al., 2009). Here, for gene j, the (i, i′)th component of V (σ2
j1, κj, τ ) is Vii′(σ

2
j1, κj, τ) =

σ2
j1R(τ, κj) = σ2

j1exp(−τii′/κj), τii′ = ||si − si′ || is the Euclidean distance between any two

samples i and i′ for any gene j, and κj is a parameter that controls how fast the correlation

decays with distance, note that κj > 0. A larger κ indicates a stronger correlation between

two samples, and therefore smaller semi-variance, which is defined as 1 − exp(−τ/κ). The

exponential spatial structure is a special case of the Matérn correlation structure R(τ) =

(2τ
√
ν/κ)νKν(2τ

√
ν/κ)/(Γ(ν)2ν−1) when ν = 0.5. σ2

j2 is the independent non-spatial error.

Statistical Inference. To identify differentially expressed/methylated genes in a certain

combination of groups (for example, the field effect, LG+,HG+,UC+), we perform hypothesis

testing for each group g, g = 0, 1, 2. The null hypothesis of each fixed effect estimate βjg

can be formulated as H
(g)
0,j : βjg = 0, i.e., gene j is not differentially methylated/expressed

in group g. For statistical inference, we use likelihood ratio tests (LRTs) based on the

maximum likelihood estimation of the spatial mixed model. We compare the model likelihood

of the fitted spatial mixed model to the likelihood of the null model. For example, to test

H
(1)
0,j : βj1 = 0, i.e., gene j is not differentially methylated/expressed in HG, we compare

the full model with the null model yij ∼ N(βj0 + βj2xi2, V (σ2
j1, κj, τ) + σ2

j2). Genes that are

significantly differentially expressed/methylated between groups are commonly identified by

applying the Benjamini-Hochberg FDR method to adjust for multiple testing in each group

and then simply determining the overlap of significant genes between groups. However, this

strategy may reduce statistical power because it assumes that the fixed effect estimates are
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independent of each other and omits other unknown dependence structures apart from the

spatial correlations of each group. In addition, the FDR control is performed for each group

separately without considering the across-group FDR.

Extension of IMIX. Therefore, we propose a new method to address the above prob-

lems. We take the summary statistics P -value pjg from the LRT results fitted by the spatial

mixed model, and use the multivariate mixture model approach IMIX developed by Wang

and Wei (2020) to test for differentially expressed/methylated genes in a certain combination

of groups. The P -values are transformed to z-scores zjg by zjg = Φ−1(1 − pjg), where Φ is

the cumulative distribution function of the standard normal distribution N(0, 1) (McLach-

lan et al., 2006; Wei and Pan, 2008). To simplify the method, we only applied IMIX-Ind

and IMIX-Cor-Twostep on the z-scores. Here, we assume that each group combination

corresponds to a latent state. Table 1 shows the group combinations of interest and their

corresponding latent state components in IMIX. Possible IMIX components by order are

(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1).

Group Combinations of Interest IMIX Components Patterns

No effect (LG-,HG-,UC-) 1 (0,0,0) βj0 = βj1 = βj2 = 0

Field effect (LG+,HG+,UC+)

2 (1,0,0)
5 (1,1,0) βj0,βj1 same direction
6 (1,0,1) βj0,βj2 same direction

8 (1,1,1) βj0,βj1,βj2 same direction

βj0 6= 0, βj1 = βj2 = 0
βj0 > 0, βj1 > 0, βj2 = 0 (or <)
βj0 > 0, βj1 = 0, βj2 > 0 (or <)
βj0 > 0, βj1 > 0, βj2 > 0 (or <)

LG-,HG+,UC + 7 (0,1,1) βj1,βj2 same direction βj0 = 0, βj1 > 0, βj2 > 0 (or <)
LG-,HG-,UC+ 4 (0,0,1) βj0 = βj1 = 0, βj2 6= 0

Table 1: Patterns of fixed effects corresponding to field effects in NU/LGIN (LG), HGIN
(HG), and UC groups and IMIX components for fixed gene j. + represents a gene that
is differentially expressed/methylated, - represents a gene that is not differentially ex-
pressed/methylated compared with the controls.

Other possible ways to perform the hypothesis testings are using the spatial mixed model

with the F test (Pinheiro et al., 2021) for inference and using linear regression without

considering the spatial correlations. We will further explore these alternatives in the Results

section where we conducted simulation studies to evaluate the type I error and power.
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2.2 Integrative Spatial IMIX for More Than One Data Type

In our motivating data example (section 3.2), there were two data types: gene expression

and methylation data. The goal was to identify genes that showed field effect in both data

types. A straightforward way to accomplish this is to test each data type separately using

the methods described in section 2.1 and find the overlap of the significant genes in both data

types. We propose two integrative models to directly analyze both data types simultane-

ously by accounting for the underlying dependence structures between multiple data types.

We call these two methods univariate spatial IMIX and multivariate spatial IMIX. A special

feature of these methods is that samples of multiple data types can be overlapping, different,

or the same because the models use the summary statistics for each data type. Without loss

of generality, this section focuses on H = 2 data types. The main idea is that we assume

the summary statistics z-scores of the genes, which are retrieved and transformed from the

spatial mixed model fitting P -values, follow a multivariate Gaussian mixture model. Each

component corresponds to a group combination, for example, component 1 corresponds to

(LG-1,HG-1,UC-1,LG-2,HG-2,UC-2). Here 1, 2 are data types 1, 2, respectively, i.e., the

genes in component 1 in the mixture model are not differentially expressed/methylated in

any of the disease classes for either data type. In total, there are C = 26 = 64 compo-

nents in the mixture model, corresponding to all possible group combinations. We estimate

the probability density function Dc, c = 1, · · · , 64 of each component and the proportion

πc of each component in the mixture model. In the statistical formula, we assume that

Zj = (zj11, zj12, zj13, zj21, zj22, zj23)
T comes from a mixture distribution with C = 64 mixture

components:

f(Zj) =
C∑
c=1

πcDc(Zj),

where each component c follows a six-dimensional multivariate distribution Dc, and the

mixing proportions are πc, c = 1, · · · , 64, subject to
∑64

c=1 πc = 1. Depending on the latent
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state of gene j, i.e., whether it belongs to latent state c or not, we have Tjc = 1 or Tjc = 0,

respectively. To assess how likely gene j belongs to the latent state/component c, we estimate

the posterior probability of the latent label Tjc:

Pr(Tjc = 1|Zj) =
πcDc(Zj)∑C
c=1 πcDc(Zj)

.

We further assume the c-th component distribution Dc to follow a multivariate Gaussian

distribution (Wang and Wei, 2020). The marginal mixture density f(Zj) can then be written

as f(Zj; Ψ) =
∑C

c=1 πcDc(Zj;θc), where Dc(Zj;θc) = φ(Zj;µc,Σc). In the following sections

we will describe how we estimate the unknown parameters of the marginal density functions.

Then we use the EM algorithm (Dempster et al., 1977) to estimate the mixing proportions

π of the latent states/components C.

2.2.1 Estimation of the Multivariate Joint Density

Univariate Spatial IMIX. For H = 2 data types and G = 3 groups of interest (LGIN,

HGIN, UC) within each data type, we estimate the marginal empirical null and the al-

ternative densities first. The null hypothesis is H
(g,h)
0,j : gene j is not differentially methy-

lated/expressed in group g of data type h. Since the groups in each data type are independent

of each other, and that the data types are independent of each other, we assume

Dc(Zj) =
H∏
h=1

G∏
g=1

f 0
hg(zjhg)

1−ljhgf 1
hg(zjhg)

ljhg ,

The complete data vector is

Zc = (ZT ,LT )T ,
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where

L = (lT1 , · · · , lTp )T .

The label vectors lj = (lj11, · · · , ljHG), j = 1, · · · , p are binary variables used to denote each

latent state c of gene j. If ljhg = 1, gene j is differentially expressed/methylated in group g

of data type h; and vice versa. For example, if lj = (1, 1, 1, 0, 0, 0), the joint density Dc of

gene j is modeled as the product of the alternative marginal density functions from all three

groups in data type 1 and the null marginal density functions from all three groups in data

type 2: Dc = f 1
11 · f 1

12 · f 1
13 · f 0

21 · f 0
22 · f 0

23.

Intuitively, we assume that the z-scores of genes in group g of data type h, as described

previously in Section 2.1, follow a univariate Gaussian mixture model (Wei and Pan, 2008):

f(zjhg) = π0f
0
hg(zjhg) + (1− π0)f 1

hg(zjhg),

here zjhg is the z-score of gene j in group g of data type h, f 0
hg(zjhg) = φ(zjhg;µ0hg, σ

2
0hg)

and f 1
hg(zjhg) = φ(zjhg;µ1hg, σ

2
1hg) are the probability density functions following a normal

distribution. In particular, µ0hg and σ2
0hg correspond to the null hypothesis, and µ1hg and

σ2
1hg are the alternatives in group g of data type h. Note that the z-score transformation

ensures that smaller P -values are transformed to larger z-scores, which correspond to the

alternative hypothesis, i.e., that the distribution of the z-scores under the alternative hypoth-

esis (alternative distribution) has a larger mean than does the null distribution (McLachlan

et al., 2006). Therefore, the mixture components for the null and the alternative hypothe-

ses can be easily distinguished. We use the EM algorithm to estimate the parameters and

construct multivariate joint density functions with the estimated mean (µ̂0hg, µ̂1hg) and vari-

ances ( ˆvar0hg, ˆvar1hg), h = 1, 2, 3; g = 1, 2. Therefore, the constructed density function Dc is

a six-dimensional Gaussian distribution here. Based on Gleason et al. (2020), we approxi-

mate the density function of each component c to be Dc ∼ N(µc,Σc) with the mean vector
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as µc = (µ̂∗111, µ̂∗212, µ̂∗313, µ̂∗421, µ̂∗522, µ̂∗623) and the diagonal variance-covariance matrix as

Σc = diag( ˆvar∗111, ˆvar∗212, ˆvar∗212, ˆvar∗313, ˆvar∗421, ˆvar∗522, ˆvar∗623). Here, ∗1, ∗2, · · · , ∗6 can

be either 0 or 1 and they are coherent between the mean vectors and the variance matrices.

The univariate spatial IMIX method is flexible and can be easily extended to more groups

and more than two data types.

Multivariate Spatial IMIX. To estimate the unknown parameters µc,Σc of the multi-

variate density functions Dc, we first fit the spatial mixed model for each data type separately

and use the IMIX extension as described in Section 2.1. Similarly to the univariate spatial

IMIX, the estimated parameters in the first step are used to approximate the parameters

in the joint model with new mean vectors and new variance-covariance matrices as block

diagonal matrices using the estimated variance-covariance matrices for each data type. This

model is less parsimonious than the univariate spatial IMIX method, although the simulation

study will prove that both methods are effective.

2.2.2 Adaptive Procedure for FDR Control

For each component c (c 6= 1), we construct the following hypotheses:

• Hc
0,j: Gene j does not belong to component c;

• Hc
1,j: Gene j belongs to component c.

Note that component 1 (the global null) is not considered as a “discovery” for which

FDR is applicable. The estimated posterior probability that gene j belongs to component c is

defined as p̂j,c = P̂ r(Tjc = 1|Zj) and the estimated local FDR for gene j is defined as q̂j,c = 1−

p̂j,c = P̂ r(Tjc = 0|Zj), c = 2, · · · , C. We adapt the across-data-type FDR control procedure

in the IMIX framework (Sun and Cai, 2007; Wang and Wei, 2020) for the integrative spatial

IMIX models: let mc = max{j : 1/j
∑j

i=1 q̂(i),c ≤ α}, we reject all H0,(j), j = 1, · · · ,mc,

where q̂(1),c, q̂(2),c, · · · , q̂(p),c are ranked in component c. This adaptive procedure controls

the FDR for each component at level α asymptotically under weak conditions (Genovese
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and Wasserman, 2002). We can extend this procedure to control the FDR under more than

one component. For instance, if we want to identify the genes that show field effect in one

data type, the procedure can be applied to the combination of components 2, 5, 6 and 8 as

illustrated in Table 1.

3 Results

3.1 Simulation Study

We performed three sets of simulation studies. The first set was to evaluate the type I error

and power of the spatial mixed model, the second set of simulations was to investigate our

method for one data type and compared them with linear regression, spatial mixed models

using the F test and LRT for fixed effect inference, and the second set was for integrative

data analysis of two data types. In addition, we evaluated the AIC and BIC model selection

of the spatial integrative models using the third set of simulated data.

3.1.1 Type I Error and Power Investigation

We assessed the type I error and power for fixed effect testings using spatial mixed model.

We simulated 10 000 datasets using 45 samples (j = 1) mimicking the spatial locations

in the bladder cancer whole-organ mapping data. There were 27 LG, 9 HG, and 9 UC

samples in the simulated data. Here, the dataset followed a spatial linear mixed model with

exponential correlation structure. We tested the type I error and power at α = 0.05. For

power simulations, we simulated the three fixed effects respectively follow normal distribution

with standard deviation equals to 0.1 and mean as shown in Table S2 & S4. In each scenario,

all three fixed effects followed the same distribution. We compared the joint testing of three

fixed effects using linear regression based on F test and Wald test, the spatial mixed model

based on Wald test and the spatial mixed model with LRT (smm+LRT). For the hypothesis

testing for each fixed effect, we compared linear regression, the spatial mixed model with

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 17, 2023. ; https://doi.org/10.1101/2023.07.15.549148doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.15.549148
http://creativecommons.org/licenses/by-nc-nd/4.0/


the default F test for fixed effect statistical significance (smm+Ftest), and smm+LRT. More

details are in the supplementary materials Section 1.1. The results of joint testing (Table S1)

showed that only smm+LRT could control type I error close to 0.05, while linear regression

and mixed model using the Wald test failed to control the type I error under various spatial

variance settings. The separate testing (Table S2) showed that smm+Ftest and smm+LRT

could control type I error for HG and UC when sample sizes were small, however, smm+Ftest

failed to control the type I error for LG group. The power of smm+LRT, which controlled

type I error well under all scenarios, was close to the power of those methods that failed to

control the type I error (Table S1 & S2). Therefore, we adopted the P values of smm+LRT

for further IMIX input in this study.

3.1.2 Simulation for One Type of Data

We simulated data yij, i = 1, · · · , 45, j = 1, · · · , 1 000 based on equation 2. Here, the spatial

coordinates and the groups of interest were based on the bladder cancer whole-organ mapping

data described in Section 3.2. We replaced the missing samples from the real data set with

HG and UC groups. In total, the simulated data contained 45 spatial locations, with 27

spatial samples in the LG group, 9 samples in the HG group, and 9 samples in the UC

group, and 1 000 genes. We simulated four scenarios of 1 000 datasets each to evaluate the

methods for the spatial random effect variances σ2
1, they are (0.1, 0.5, 1, 2), respectively. The

spatial correlation followed an exponential structure. The independent non-spatial residual

σ2
2 was set as 1. We considered four groups of fixed effects βj0, βj1, βj2 following a multivariate

Gaussian distribution with standard deviation 0.1 and correlation matrix as identity matrix

across all groups and mean vectors (0,0,0), (2,0,0), (0,2,2), (0,0,2) for 250 genes respectively.

Here each group corresponds to genes in the no effect, field effect, HG & UC+, and UC+

only groups.

We applied our proposed spatial IMIX method, the spatial mixed model with IMIX

extension (smm+IMIX), smm+Ftest, smm+LRT, and linear regression. We set α = 0.2
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as the nominal error control level across all methods for comparisons. Here, smm+IMIX

controlled FDR across all groups. smm+Ftest, smm+LRT, and linear regression used the

Benjamini-Hochberg FDR at 0.2 for βj0, j = 1, · · · , 1 000, βj1, j = 1, · · · , 1 000, βj2, j =

1, · · · , 1 000 respectively, to infer the statistical significance. The groups were assigned based

on the patterns shown in Table 1. Note that for smm+IMIX, we first fitted the spatial mixed

model and used LRT to extract the summary statistics P -values as the input for IMIX testing.

LRT was able to control the type I error well in the spatial correlation settings as described

in Section 3.1.1.

Figure 2 presents the simulation results for the average of 1 000 simulations of the mis-

classification rate, with five class labels: no effect, field effect, HG & UC+, UC+ only, and

others. As the spatial random effect variance increased, misclassification rates increased for

all models. In particular, linear regression had the highest misclassification rate and stan-

dard deviation among all methods because it did not model the spatial correlations within

the data. smm+LRT performed slightly better than smm+Ftest when the spatial random

effect variance was relatively small. Note that in the last scenario, when σ2
1 = 2, smm+LRT

had a high average misclassification rate, resulting in a slightly increased standard devia-

tion for the misclassification rates of smm+IMIX. However, overall smm+IMIX consistently

achieved a lower misclassification rate in all scenarios than did the other methods.

3.1.3 Simulation for Integrative Data Analysis

The second set of data yijh was simulated based on

yijh = βjh0 + βjh1xi1 + βjh2xi2 + uijh + εijh,

where yijh is the log2 ratio of gene j at location i of data type h (i = 1, · · · , n; j =

1, · · · , p;h = 1, 2) compared with the control. We fixed the samples to be the same across

both data types. We fixed βj10 = βj20, βj11 = βj21 and βj12 = βj22 across the data types for
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field effect and monotonic changes. uijh is the spatial random effect for gene j in sample i

of data type h. We set the spatial correlation following an exponential structure; note that

cor(uij1, uij2) = 0, i.e., for a fixed gene j of sample i, the two data types are not spatially

correlated. Here, (u1jh, · · · , unjh) is N(0n,V (σ2
1, κ, τ )), accounting for the variation within

each data type. (εij1, εij2)
iid∼ N(02,Σ2) is a multivariate Gaussian error vector and indepen-

dent of uijh. Here, εijh only influences the variation between two data types and does not

account for the variation within each data type.

We simulated four scenarios of 1 000 datasets to compare the two integrative models and

the separate IMIX models. We simulated varied effect sizes and residual covariance matrices

Σ2 in the following scenarios. Scenario 1 assumed no correlation between two data types. In

scenario 2, the independent error term of the two data types followed a multivariate normal

distribution with Σ2 =
(

1 0.2
0.2 1

)
across the no effect, field effect, HG & UC+, and UC+ only

groups. Scenario 3 followed the same settings as scenario 2 except we set a high correlation of

0.8. Scenario 4 was based on the real data in section 3.2 with correlations of 0.08763, 0.04206,

0.3, and 0.6814 between two data types in the four groups, respectively, and the standard

deviation fixed at 1. In all scenarios, the dataset for each data type contained 1 000 genes

with fixed spatial random effect variance 0.1 and an exponential correlation spatial structure

based on the distance of 45 spatial locations; fixed effects βj0, βj1, βj2 followed multivariate

Gaussian distribution with standard deviation 0.1 and correlation matrix as identity matrix

across all groups. We set the mean vectors as (0,0,0), (µ∗,0,0), (0,µ∗,µ∗), (0,0,µ∗) for 250

genes respectively. Here, each group corresponds to genes with no effect, field effect, HG &

UC+, and UC+ only. We set µ∗ as 1 (small effect), 2 (medium effect), and 3 (large effect)

respectively.

Again, we applied our proposed method, multivariate spatial IMIX, univariate spatial

IMIX, and the methods we used for one data type, smm+IMIX, smm+Ftest, smm+LRT,

and linear regression. We analyzed each data type separately and combined the results of

two data types in an ad hoc manner. We set α = 0.2 as the nominal error control level
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across all methods for comparisons. Here, smm+IMIX, smm+Ftest, smm+LRT, and linear

regression controlled the FDR for each data type separately; whereas multivariate spatial

IMIX and univariate spatial IMIX controlled the FDR for both data types simultaneously.

In particular, the multivariate spatial IMIX model used the estimates from the IMIX-Cor-

Twostep model described in Wang and Wei (2020) for both data types.

Figure 3 and Figure S1 shows the simulation results for the average of 1 000 simulations

of the misclassification rate, again with five class labels: no effect, field effect, HG & UC+,

UC+ only, and others. As the effect sizes increased, all models achieved lower misclassi-

fication rates. Among all methods, smm+IMIX, multivariate IMIX, and univariate IMIX

had the lowest misclassification rates. We did not observe substantial changes in the mis-

classification rates within each method when the data correlation increased, owing to the

noise imposed by the spatial correlation variations; however, we still observed significantly

lower misclassification rates with IMIX methods compared with the other three methods. In

particular, the two proposed integrative methods, univariate IMIX and multivariate IMIX,

performed better compared with separate smm+IMIX under different correlation and effect

size settings. In particular, univariate IMIX performed better than multivariate IMIX when

the effect size was relatively large. Univariate IMIX is more parsimonious than multivari-

ate IMIX, and in turn holds the advantage of better classification due to the bias-variance

tradeoff. When the effect size was small, multivariate IMIX was slightly more robust than

the other two methods.

3.1.4 Model Selection

We evaluated the performance of AIC and BIC for selecting the correct number of compo-

nents in the integrative spatial IMIX framework. Here, we used the 1 000 simulated datasets

described in section 3.1.3 with different effect size settings ranging from low to medium to

high of scenario 4. The true underlying number of components was four across all three sce-

narios: no effect, field effect, HG&UC+, and UC+ only for both data types with balanced
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mixing proportions. There were in total 64 possible components in the mixture model, and

our previous model fitting for simulation (see Section 3.1.3) was directly based on all com-

ponents without considering the model selection. In this section, we investigate the model

selection criteria and see whether they could further improve our model fitting and thus the

misclassification rate.

Figure 4 shows the proportion of selected components in each simulation study based

on AIC or BIC. Both model selection criteria were able to identify the true number of

components in the simulated data. However, AIC performed worse than BIC when the

effect size was small, especially for the univariate IMIX model. In addition, AIC tended

to overestimate the number of components in both the multivariate and univariate IMIX

models. BIC was more robust under different scenarios and models. Figure S2 shows the

AIC and BIC values of all possible components after averaging 1 000 simulation replications

for different effect sizes. Both AIC and BIC performed well in identifying the true number

of components. We consider BIC to be more stable as it additionally considers the number

of genes in the penalty term, which can be as large as tens of thousands under the whole-

genome setting. We compared the misclassification rate between the four-component spatial

IMIX models after model selection based on BIC values and the spatial IMIX models before

model selection as described in section 3.1.3. Table S5 shows that the 4-component spatial

IMIX models after model selection based on BIC performed better than the 64-component

spatial IMIX model, especially when the fixed effect size was small. We conclude that model

selection improves model fitting for spatial IMIX and results in more accurate classifications.
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Figure 2: Simulation study results for one data type comparing spatial mixed model (smm)
with IMIX extension, smm with F test, smm with likelihood ratio test (LRT), and linear
regression using different spatial correlation variance settings.
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Figure 3: Simulation study results for two omics data types comparing spatial mixed model
(smm) with IMIX extension, multivariate spatial IMIX, univariate spatial IMIX, smm with
F test, smm with likelihood ratio test (LRT), and linear regression using different effect
size settings with between-data-type correlations mimicking the bladder cancer whole-organ
mapping data example (Scenario 4).
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Figure 4: Proportions of selected components based on AIC and BIC of 1 000 simulation
studies with different effect size settings.
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3.2 Multi-Platform Whole-Organ-Based Molecular Profiling of Blad-

der Cancer

As described in Section 1, here we investigated cancer-initiating events in normal-appearing

tissue that carry through to carcinoma, i.e., field effect, in epithelial basal-subtype bladder

cancer. The data were obtained from geographically annotated mucosal samples collected

from a surgically removed bladder specimen and further details can be found in Bondaruk

et al., 2022. Each spatial sample was classified into three subtypes: NU/LGIN, HGIN, and

UC. Each sample contained a two-dimensional spatial coordinate measured on two whole-

genome-wide omics data platforms, gene expression and methylation. We aimed to identify

genes associated with field effect in both data types across all disease subtypes and explore

whether these genes reveal any interesting biological mechanisms.

The disease grades in individual samples of the cystectomy specimen classified as NU/LGIN,

HGIN, and UC are shown in Figure 5(a). Together there were 35 spatial locations for both

RNAseq and methylation data in the tumor specimen. Here, RNAseq and methylation data

both were measured for 34 samples out of the spatial locations. For both data types, three

HGIN and four UC samples were measured in the same locations. Each data types measured

27 NU/LGIN samples with 26 same locations and only one location that is different. There

were eight control samples of methylation data and five control samples of gene expression

data. The controls samples were measured from sex-matched normal urothelial suspensions,

which were prepared from the ureters of nephrectomy specimens that were free of urothelial

neoplasia (Majewski et al., 2019). The data preprocessing and normalization procedures

are described in the supplementary materials Section 2.1. In total we had 18 604 genes in

the gene expression data and 14 682 genes in the methylation data for downstream analysis

with the integrative spatial IMIX models. We used the log2ratio between each sample in the

disease group compared with the average of controls in the downstream analysis.

We applied our proposed spatial integrative data methods—univariate IMIX, multivari-

ate IMIX, and smm+IMIX—on the spatially correlated high-dimensional data as described
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above. The results are summarized in Figure 5(b); the FDR was controlled at α = 0.1. Here,

smm+IMIX controlled the FDR for each data type individually, and the univariate and mul-

tivariate IMIX models controlled an across-data-type FDR at 0.1. Multivariate IMIX and

univariate IMIX discovered more genes than smm+IMIX. In particular, 1 533 genes that

were not identified by the smm+IMIX method were discovered by both integrative spatial

methods. All three proposed methods discovered 715 genes of interest. Multivariate IMIX

identified 443 field-effect genes that were not found using the other two methods, while

univariate IMIX discovered 349 such genes. On the basis of the simulation study results,

next we concentrated on the univariate IMIX results. We visualized the field-effect genes

and filtered the genes for which negative correlations between the gene expression data and

methylation data were preserved. There were 1 512 genes that met these filtering criteria.

The unsupervised clustering of the log2ratio values of genes based on methylation value and

the visualizations of both methylation and gene expression levels are shown in Figure 6. The

identified genes showed field effect across all NU/LGIN, HGIN, and UC groups. The hy-

permethylated and hypomethylated genes showed constant log2ratio changes across groups

compared with the controls. The gene expression values were negatively correlated with

methylation values, with the same patterns across all groups. Figure 7 highlights an ex-

tracted part of the genes mapped to chromosome 18. This visualization corresponds to the

spatial locations of bladder mucosa in the 3D maps. We observed similar patterns to those

described for the 2D heatmaps (Figure 6).

The identified genes control important cell functions in the development of bladder cancer.

We performed pathway analysis using IPA on the field-effect genes discovered by the three

methods with FDR controlled at α = 0.01 of gene expression and methylation data. The

78 significant pathways with Benjamini-Yekutieli (BY) FDR control at 0.05 detected by

univariate spatial IMIX are visualized together with the pathways detected by the other

two methods (Figure S4). There was no significant pathway after BY FDR control using

the separate analysis smm+IMIX. The discovered pathways can be categorized into three
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Figure 5: Whole-organ mapping data application visualizations. (a) The spatial locations
of the disease grades of the whole organ mapping samples of map19 bladder cancer. (b)
Comparisons of genes identified by smm+IMIX, univariate IMIX, and multivariate IMIX,
FDR=0.1.

groups: immunity and inflammation, signal transduction-differentiation, and carcinogenesis.

Among which, we found p53 signaling, PPAR, regulation of the Epithelial-Mesenchymal

Transition (EMT), and tumor microenvironment pathways. These are closely related with

tumor initiation, growth, and invasion.

Our integrative method has been shown to have more power in detecting field-effect

genes in both data types by simultaneously taking into account the complicated dependence

structures between two data types and their spatial correlation structures. Furthermore,

other methods such as SPARK and SpatialDE are not suitable for this type of application,

in which the genes do not show any variations related to the spatial locations, but rather an

overall same-direction differential expression/methylation pattern across all spatial locations.

Our analysis using SPARK is described in the supplementary materials Section 2.2. It was

able to discover genes showing variations based on spatial locations but was not able to

discover specific disease-group-label-related genes, such as NU/LGIN, HGIN, or UC disease

grades.

22

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 17, 2023. ; https://doi.org/10.1101/2023.07.15.549148doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.15.549148
http://creativecommons.org/licenses/by-nc-nd/4.0/


Methylation Gene Expression

Group

Group
NU/LGIN
HGIN
UC

Methylation

−1

−0.5

0

0.5

1
Expression

−1

−0.5

0

0.5

1

Figure 6: Visualization of the log2ratio of the methylation and gene expression values com-
pared with the controls of the filtered field effect genes (N = 1 512) identified by univariate
IMIX at FDR=0.1.
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Figure 7: 3D pattern of the log2ratio of (a) gene expression and (b) methylation values
compared with the controls of the field effect genes on chromosome 18 (N = 26) identified
by univariate IMIX at FDR=0.1.
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4 Discussion

Spatial IMIX is a multivariate mixture model framework for spatially correlated multi-omics

data integration. It can identify differentially expressed/methylated genes associated with

prespecified patterns of sample subtypes. It is a model-based method that incorporates the

spatial correlation structures between samples in a geographically resolved area by applying

a spatial mixed model, which improves the power to detect genes in certain sample subtypes

within each genomic dataset. Spatial IMIX additionally considers the dependence structures

between different genomic datasets by assuming a multivariate Gaussian mixture distribution

of the z-scores (transformed from P -values) from the spatial mixed model of individual-level

data. We showed that spatial IMIX had a lower misclassification rate and better controlled

FDR than did existing methods such as linear regression and spatial linear mixed models in

the simulation study.

Our method, which considers spatially correlated data of multiple omics data types and

sample subtypes, is an extension of our previously developed IMIX method (Wang and

Wei, 2020) for multi-omics data integration for association analysis. Spatial IMIX retains

the advantages of IMIX, including great computational efficiency from its use of the EM

algorithm for whole-genome wide analysis, its improved model fitting of mixture models

by using model selection based on BIC values, and the error-control properties of multiple

hypothesis testing by using an adaptive procedure to control the FDR among different sample

subtypes across the omics data types. Additionally, the fact that the data integration step

only considers the summary statistics enables us to use independent or partially overlapping

sample locations, as illustrated in the whole-organ mapping of bladder cancer application

(section 3.2), where the measured samples with gene expression data and methylation data

were not completely spatially aligned. The two proposed models, univariate IMIX and

multivariate IMIX, both showed good power in the simulation study. Specifically, univariate

IMIX, a parsimonious and flexible version of spatial IMIX, can be easily extended to multiple

types of data and sample subtypes. This is an improvement of IMIX, which only considered
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two or three types of data.

Spatial IMIX could be further applied to spatial transcriptomics data with more com-

plicated sample subtypes and larger sample sizes. Spatial transcriptomics is a cutting-edge

technology that measures spatially resolved gene expression at high throughput. Several

novel methods have been proposed to identify genes with spatial patterns of expression vari-

ation, such as spatialDE (Svensson et al., 2018) and SPARK (Sun et al., 2020). These

methods could be used for unsupervised clustering to identify unknown or non-prespecified

patterns in a geographical area for each gene. Spatial IMIX is different from previously

proposed methods, which mainly aimed to find spatially variable genes without considering

the location sample subtypes. Our method, in contrast, focuses on fixed effect estimations

given spatially resolved data with stringent FDR control for the identified genes associated

with certain prespecified patterns of sample subtypes. In particular, spatialDE and SPARK

are not suitable for the type of applications described in section 3.2 where the genes did not

vary on the basis of their spatial locations, but instead in terms of differential expression

or methylation in the same overall direction across all spatial locations. With the ongoing

development of spatial transcriptomics and other large-scale multi-omics data technologies,

our work has a wide range of potential applications that could provide novel biological in-

sights into different problems involving spatially resolved data, such as the incorporation of

information about tissue makeup and sample subtypes.

We implemented the data integration in the mixture model framework in a way that ac-

counts for the correlation structures of two omics data types through the mixing proportions.

Further investigations of the complicated correlation structures of the variance-covariance

matrix estimations could be explored and compared with our current parsimonious univariate

and multivariate spatial IMIX models. We leave this potential extension for future research.

Our method relaxed the conditional independence assumptions for multiple data types in the

presence of spatial correlation through a two-step procedure using univariate mixed models

as the first step to consider the spatial correlation and multivariate mixture model as the

25

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 17, 2023. ; https://doi.org/10.1101/2023.07.15.549148doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.15.549148
http://creativecommons.org/licenses/by-nc-nd/4.0/


second step to consider the multi-omics data correlations. Nonetheless, the development of

multivariate spatial mixed models for the data application presented in this paper could be

an interesting future direction.
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