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Abstract

Spatial high-throughput omics data allow scientists to study gene activity in a tissue sample
and map where it occurs at the same time. This enables the possibility to investigate impor-
tant early cancer-initiating events occur in normal-appearing tissue and gene activities that
progress and carry through tumor tissue, as defined by “field effect.” The “field effect” genes
are differentially expressed or methylated genes in the spatially resolved high-dimensional
datasets with respect to the pathology subtype in each geographical sample across the tissue
region. Current statistical methods for spatially resolved genomics data focus on the associa-
tion of omics data with spatial coordinates without being able to incorporate and test for the
association with the sample subtypes. In addition, analytical methods are underdeveloped
for spatially resolved multi-omics data integration. We propose a novel statistical frame-
work ‘spatial IMIX’ to integratively analyze spatially resolved high-dimensional multi-omics
data associated with a specific trait, such as sample subtypes while modeling the spatial
correlations between samples and the inter-data-type correlations between omics data si-

multaneously. Through extensive simulations, spatial IMIX demonstrated well-controlled

*Co-corresponding authors. Emails: bezernia@mdanderson.org; pwei2@mdanderson.org.


https://doi.org/10.1101/2023.07.15.549148
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.15.549148; this version posted July 17, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

type I error, great power by relaxing the independence assumptions between data types,
model selection features, and the ability to control FDR across data types. Data applica-
tions to a geographically annotated tissue area of bladder cancer discovered cancer-initiating
gene activities and revealed interesting fundamental biological mechanisms through path-
way analysis. We have implemented our method in R package ’spatialimix’ available at
https://github.com/zigiaow /spatialimix.
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Figure 1: Spatial IMIX model framework.

1 Introduction

High-throughput technologies have grown and evolved to accomodate new discoveries and in-
sights in cancer research. Since studies often use multiple types of omics data, a wide variety
of statistical methods have been developed over the past several years for integrative genomic
analyses. Spatially resolved omics data add another layer, spatial information, into current
multi-omics data-integration frameworks. In biology, spatial information allows scientists to
investigate the complex interactions within and between biological networks (Wei and Pan,
2012; Zhu et al., 2007) in which each unit influences and is influenced by its neighboring
environment. This is especially important for studies of cancer because tumors often contain
complex mixtures of cell types in a single tissue area. Thus, incorporating structural and
spatial information will help us better comprehend the dynamics of tumorigenesis, tumor

development, and the tumor microenvironment.
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Spatial high-throughput omics data allow scientists to investigate gene activity in a tissue
sample and map where it occurs at the same time. For example, it is known that epithelial
origin bladder cancers evolve from microscopically recognizable dysplasia. However, previous
work (Czerniak et al., 2016; Majewski et al., 2019) showed important early cancer-initiating
events occur in normal-appearing tissue, as defined by “field effect.” The genes involved in
the development of early field effect control diverse cell functions and are expected to pro-
mote cell survival and proliferation, leading to the progression of neoplasia. Our motivating
data example was based on geographically annotated mucosal samples from a surgically re-
moved bladder specimen from one bladder cancer patient. Each spatial sample was evaluated
microscopically and classified by a pathologist into one of three categories: normal urothe-
lium (NU), in situ precursor lesions, or urothelial carcinoma (UC). The in situ precursor
lesions were further dichotomized into low-grade intraurothelial neoplasia (LGIN) and high-
grade intraurothelial neoplasia (HGIN). Furthermore, each spatial sample was measured for
two whole genome-wide omics data platforms, gene expression and methylation. This study
aimed to explore the cancer-initiating events that occur in normal-appearing tissue samples
that carries on to carcinoma samples in a single tissue section, i.e., discover differentially
expressed and methylated genes in the spatially resolved high-dimensional datasets with re-
spect to the sample subtypes across the tissue, and furthermore the fundamental biological
mechanisms. Another example is the spatial transcriptomics, which profiles gene expression
in its spatial context in tissues, allowing scientists to investigate the complex mix of cell
types and structures in tissues, including tumors and their micro-environments (Berglund
et al., 2018).

Current statistical methods for analyzing high-dimensional spatially correlated data mostly
aim to identify and characterize spatially variable genes, such as SpatialDE (Svensson et al.,
2018) and SPARK (Sun et al., 2020). Both methods build upon a generalized linear spatial
model with different link functions targeting at respectively normalized expression data and

count data. To test the hypothesis whether a gene shows spatial expression variance across
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the tissue area, both methods test the random effect term in the spatial mixed model. Dif-
ferent groups of spatial variance pattern of the identified genes are then determined by an
unsupervised clustering method, such as hierarchical clustering, which is incapable of incor-
porating a specific sample location’s subtype into the analysis. Thus, these methods cannot
address the bladder cancer whole-organ mapping data problem as described above, which
involves spatial sample subtypes (NU, LGIN, HGIN, and UC) across the whole bladder tis-
sue and identification of genes that are differentially expressed or methylated in the same
direction across all spatial locations with nonspatial variability. Furthermore, given that
spatially resolved proteomics, epigenomics, and metabolomics technologies are still under
development, there is as yet no statistical method for multi-omic spatial data integration, to
our knowledge.

Therefore, we developed spatial IMIX, a method for identifying genes in association with
covariates, such as sample subtypes, through multiple spatially correlated omic data types
(Fig. 1). This method focuses on the fixed effect of sample subtypes in a spatial linear mixed
model that incorporates the spatial correlations on a two-dimensional surface. For data
integration, it models the summary statistics z-scores, which are transformed from the P-
values of the fixed effect estimates, with a multivariate Gaussian mixture distribution. This
step additionally characterizes the correlations between various data sources. This method
extends the previous work by Wang and Wei (2020), to incorporate spatial correlations
between samples. Our method is computationally efficient because it uses the expectation-
maximization (EM) algorithm for parameter estimation. It also controls the false discovery
rate (FDR) and features statistically principled model selection. We have implemented our
method in R package ’spatialimix’ available at https://github.com/ziqiaow /spatialimix, as

well as CRAN soon.
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2 Methods

2.1 Spatial Mixed Model and IMIX for One Data Type

Spatial Mixed Model. We first consider modeling one type of spatially resolved omics
data, such as gene expression or methylation data. Each data type is measured for p genes
and n spatial locations/samples on a tissue of interest. Our motivating example uses ge-
ographically annotated mucosal samples from a surgically removed bladder specimen from
one bladder cancer patient. Here, the omics data in our motivating example are measured
on the whole genome, with the number of genes p approximately equal to 20000. Each
sample ¢ (i = 1,--+,n) is spatially correlated over a two-dimensional space. The spatial
coordinate of each sample is s; = (s;1,5:2) € R% Note that s; could be extended to more
than two dimensions, for instance for tissues with three-dimensional coordinates such as
height, width, and length or even a fourth-dimension such as the distance between different
time points (Sun et al., 2020). Consider a categorical variable that contains three classes:
NU/LGIN (LG), HGIN (HG), and UC. Each sample i belongs to one of the three classes.
Here, we want to identify the genes that show field effect (i.e., genes that are differentially
expressed /methylated in all three classes, LG, HG, and UC, compared with the controls);
genes that are differentially expressed/methylated in HG and UC samples; and genes that
are only differentially expressed /methylated in UC samples. The biological rationale for this

was introduced in Section 1. We model the data using a spatial linear mixed model:
the matrix form can be expanded as:

Yij ~ N(Bjo + Bz + Bjatia, V(UJQ-D Kj, T) + 0]2'2), (2)
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where y;; is the log2 ratio of the expression value or methylation value of gene j in sample
i(i=1,---,n;5 = 1,---,p) compared with the controls. z;; is the indicator (dummy
variable) of whether sample 7 is in the class HG, and x;, is the indicator of whether sample
¢ in the class UC. The indicators remain the same for any gene j. The fixed effect 3;o gives
the overall mean for gene j, 3; is the fixed effect of HG relative to LG, and (3, is the fixed
effect of UC relative to LG. V(63,k,7) is the spatial covariance matrix defined on the
distance between each pair of samples/locations and % is a vector of variance components
(Li et al., 2009). Here, for gene j, the (i,i')th component of V (63, K, T) is Viz (0, kj,7) =
05 R(7, k;) = 0% exp(—Tu [K;), Tiw = ||s; — s¢]| is the Buclidean distance between any two
samples ¢ and ¢’ for any gene j, and r; is a parameter that controls how fast the correlation
decays with distance, note that x; > 0. A larger x indicates a stronger correlation between
two samples, and therefore smaller semi-variance, which is defined as 1 — exp(—7/k). The
exponential spatial structure is a special case of the Matérn correlation structure R(7) =
(27Vv/R)" K, (21/v/K)/(T(v)2"~") when v = 0.5. 0%, is the independent non-spatial error.

Statistical Inference. To identify differentially expressed /methylated genes in a certain
combination of groups (for example, the field effect, LG+,HG+,UC+), we perform hypothesis
testing for each group ¢, g = 0,1,2. The null hypothesis of each fixed effect estimate 3;,
can be formulated as Hé’gj): Big = 0, i.e., gene j is not differentially methylated/expressed
in group g. For statistical inference, we use likelihood ratio tests (LRTs) based on the
maximum likelihood estimation of the spatial mixed model. We compare the model likelihood
of the fitted spatial mixed model to the likelihood of the null model. For example, to test
Hélj) : Bj1 = 0, ie., gene j is not differentially methylated/expressed in HG, we compare
the full model with the null model y;; ~ N(Bjo + Bjai2, V(07,, K5, 7) + 03,). Genes that are
significantly differentially expressed/methylated between groups are commonly identified by
applying the Benjamini-Hochberg FDR method to adjust for multiple testing in each group

and then simply determining the overlap of significant genes between groups. However, this

strategy may reduce statistical power because it assumes that the fixed effect estimates are
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independent of each other and omits other unknown dependence structures apart from the
spatial correlations of each group. In addition, the FDR control is performed for each group
separately without considering the across-group FDR.

Extension of IMIX. Therefore, we propose a new method to address the above prob-
lems. We take the summary statistics P-value p;, from the LRT results fitted by the spatial
mixed model, and use the multivariate mixture model approach IMIX developed by Wang
and Wei (2020) to test for differentially expressed/methylated genes in a certain combination
of groups. The P-values are transformed to z-scores zj, by z;, = ®*(1 — pj,), where ® is
the cumulative distribution function of the standard normal distribution N(0,1) (McLach-
lan et al., 2006; Wei and Pan, 2008). To simplify the method, we only applied IMIX-Ind
and IMIX-Cor-Twostep on the z-scores. Here, we assume that each group combination
corresponds to a latent state. Table 1 shows the group combinations of interest and their
corresponding latent state components in IMIX. Possible IMIX components by order are

(0,0,0),(1,0,0),(0,1,0),(0,0,1),(1,1,0),(1,0,1),(0,1,1),(1,1,1).

Group Combinations of Interest IMIX Components Patterns
No effect (LG-,HG-,UC-) 1 (0,0,0) Bjo = Bin = Bjn=0
2 (17070) /BjO 7é Oaﬁjl = /6]'2 =0
) 5 (1,1,0) Bjo,5;1 same direction Bjo > 0,851 > 0,852 =0 (or <)
Field effect (LG+HG+,UC+) 6 (1,0,1) Bjo,B;2 same direction Bjo > 0,81 =0,8;2 >0 (or <)
8 (1,171> 6j07/8j176j2 same direction /BjO > 076]'1 > 0,6]’2 >0 (OI‘ <>
LG-,HG+,UC + 7 (0,1,1) B;1,8;2 same direction Bjo = 0,851 > 0,852 >0 (or <)
LG_aHG'7UC+ 4 (07071) 53‘0 = le = 07 6j2 # 0

Table 1: Patterns of fixed effects corresponding to field effects in NU/LGIN (LG), HGIN
(HG), and UC groups and IMIX components for fixed gene j. + represents a gene that
is differentially expressed/methylated, - represents a gene that is not differentially ex-
pressed /methylated compared with the controls.

Other possible ways to perform the hypothesis testings are using the spatial mixed model
with the F test (Pinheiro et al., 2021) for inference and using linear regression without
considering the spatial correlations. We will further explore these alternatives in the Results

section where we conducted simulation studies to evaluate the type I error and power.
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2.2 Integrative Spatial IMIX for More Than One Data Type

In our motivating data example (section 3.2), there were two data types: gene expression
and methylation data. The goal was to identify genes that showed field effect in both data
types. A straightforward way to accomplish this is to test each data type separately using
the methods described in section 2.1 and find the overlap of the significant genes in both data
types. We propose two integrative models to directly analyze both data types simultane-
ously by accounting for the underlying dependence structures between multiple data types.
We call these two methods univariate spatial IMIX and multivariate spatial IMIX. A special
feature of these methods is that samples of multiple data types can be overlapping, different,
or the same because the models use the summary statistics for each data type. Without loss
of generality, this section focuses on H = 2 data types. The main idea is that we assume
the summary statistics z-scores of the genes, which are retrieved and transformed from the
spatial mixed model fitting P-values, follow a multivariate Gaussian mixture model. Each
component corresponds to a group combination, for example, component 1 corresponds to
(LG-1,HG-1,UC-1,LG-9,HG-5,UC-3). Here 1, 2 are data types 1, 2, respectively, i.e., the
genes in component 1 in the mixture model are not differentially expressed/methylated in
any of the disease classes for either data type. In total, there are C' = 2° = 64 compo-
nents in the mixture model, corresponding to all possible group combinations. We estimate
the probability density function D.,c = 1,---,64 of each component and the proportion
7. of each component in the mixture model. In the statistical formula, we assume that
Z; = (zj11, 212, Zj13, Zj21, Zj22, Zj23) 1 comes from a mixture distribution with C' = 64 mixture

components:

C
f(Z;) = Z TeDe(Z;),

where each component ¢ follows a six-dimensional multivariate distribution D., and the

mixing proportions are m.,c = 1,--- ,64, subject to Zgil m. = 1. Depending on the latent
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state of gene j, i.e., whether it belongs to latent state c¢ or not, we have Tj. =1 or T}, = 0,
respectively. To assess how likely gene j belongs to the latent state/component ¢, we estimate

the posterior probability of the latent label Tj,:

m.D.(Z;)
25:1 WCDC(ZJ)

Pr(Ty.=1/2)) =

We further assume the c-th component distribution D, to follow a multivariate Gaussian
distribution (Wang and Wei, 2020). The marginal mixture density f(Z;) can then be written
as f(Z;;¥) = chzl 7.Dc(Z;;0.), where D.(Z;;0.) = ¢(Zj; pey ). In the following sections
we will describe how we estimate the unknown parameters of the marginal density functions.
Then we use the EM algorithm (Dempster et al., 1977) to estimate the mixing proportions

7 of the latent states/components C.

2.2.1 Estimation of the Multivariate Joint Density

Univariate Spatial IMIX. For H = 2 data types and G = 3 groups of interest (LGIN,
HGIN, UC) within each data type, we estimate the marginal empirical null and the al-
ternative densities first. The null hypothesis is Héf’jh): gene j is not differentially methy-
lated /expressed in group g of data type h. Since the groups in each data type are independent

of each other, and that the data types are independent of each other, we assume

H G
Do(Z) = [T T £ zina) =" Fitg (zing) .

The complete data vector is

Z.=(Z", L"),
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where
L = (l{7 o 7lz;)T'

The label vectors l; = (l11,- -+ ,ljnc),j = 1,-- -, p are binary variables used to denote each
latent state c of gene j. If [;5, = 1, gene j is differentially expressed/methylated in group g
of data type h; and vice versa. For example, if I; = (1,1,1,0,0,0), the joint density D, of
gene j is modeled as the product of the alternative marginal density functions from all three
groups in data type 1 and the null marginal density functions from all three groups in data
type 2: D, = fi, - fiy - f113 o S f§3-

Intuitively, we assume that the z-scores of genes in group ¢ of data type h, as described

previously in Section 2.1, follow a univariate Gaussian mixture model (Wei and Pan, 2008):

f(zjng) = 7T(Lfi(z)g(zjhg) + (1 - Wo)fég(zjhg)a

here zjp, is the z-score of gene j in group g of data type h, fp), (zjng) = O(2jng; tong: Tong)
and fég(zjhg) = O(Zjng; MMngs afhg) are the probability density functions following a normal
distribution. In particular, fin, and aghg correspond to the null hypothesis, and j15, and
afhg are the alternatives in group ¢ of data type h. Note that the z-score transformation
ensures that smaller P-values are transformed to larger z-scores, which correspond to the
alternative hypothesis, i.e., that the distribution of the z-scores under the alternative hypoth-
esis (alternative distribution) has a larger mean than does the null distribution (McLachlan
et al., 2006). Therefore, the mixture components for the null and the alternative hypothe-
ses can be easily distinguished. We use the EM algorithm to estimate the parameters and
construct multivariate joint density functions with the estimated mean (figng, fl1ry) and vari-
ances (vVaropg,varipg), h =1,2,3;9 = 1,2. Therefore, the constructed density function D, is
a six-dimensional Gaussian distribution here. Based on Gleason et al. (2020), we approxi-

mate the density function of each component ¢ to be D, ~ N (¢, X.) with the mean vector

10
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aS e = (flag11y flrg12s flrg13s lsy21, flxs22, flsg23) and the diagonal variance-covariance matrix as
Y. = diag(var, 11, VT 12, VAT xy12, VAT 413, VAT 4,21, VAT 4522, VAT 4523). Here, ki, %q, « -+ % can
be either 0 or 1 and they are coherent between the mean vectors and the variance matrices.
The univariate spatial IMIX method is flexible and can be easily extended to more groups
and more than two data types.

Multivariate Spatial IMIX. To estimate the unknown parameters p., 2. of the multi-
variate density functions D, we first fit the spatial mixed model for each data type separately
and use the IMIX extension as described in Section 2.1. Similarly to the univariate spatial
IMIX, the estimated parameters in the first step are used to approximate the parameters
in the joint model with new mean vectors and new variance-covariance matrices as block
diagonal matrices using the estimated variance-covariance matrices for each data type. This
model is less parsimonious than the univariate spatial IMIX method, although the simulation

study will prove that both methods are effective.

2.2.2 Adaptive Procedure for FDR Control

For each component ¢ (¢ # 1), we construct the following hypotheses:

e [, Gene j does not belong to component c;

e [ ,: Gene j belongs to component c.

Note that component 1 (the global null) is not considered as a “discovery” for which
FDR is applicable. The estimated posterior probability that gene 7 belongs to component c is
defined as p; . = pr(?}c = 1|Z;) and the estimated local FDR for gene j is defined as ¢; . = 1—
Dje = Pr(ch =0|Z;),c=2,---,C. We adapt the across-data-type FDR control procedure
in the IMIX framework (Sun and Cai, 2007; Wang and Wei, 2020) for the integrative spatial
IMIX models: let m. = max{j : 1/j Zgzl diye < a}, wereject all Hyjy,7 = 1,---,my,
where Gy, G2),c:* "+ »4(p),c are ranked in component c. This adaptive procedure controls

the FDR for each component at level o asymptotically under weak conditions (Genovese

11
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and Wasserman, 2002). We can extend this procedure to control the FDR under more than
one component. For instance, if we want to identify the genes that show field effect in one
data type, the procedure can be applied to the combination of components 2, 5, 6 and 8 as

illustrated in Table 1.

3 Results

3.1 Simulation Study

We performed three sets of simulation studies. The first set was to evaluate the type I error
and power of the spatial mixed model, the second set of simulations was to investigate our
method for one data type and compared them with linear regression, spatial mixed models
using the F test and LRT for fixed effect inference, and the second set was for integrative
data analysis of two data types. In addition, we evaluated the AIC and BIC model selection

of the spatial integrative models using the third set of simulated data.

3.1.1 Type I Error and Power Investigation

We assessed the type I error and power for fixed effect testings using spatial mixed model.
We simulated 10000 datasets using 45 samples (j = 1) mimicking the spatial locations
in the bladder cancer whole-organ mapping data. There were 27 LG, 9 HG, and 9 UC
samples in the simulated data. Here, the dataset followed a spatial linear mixed model with
exponential correlation structure. We tested the type I error and power at a = 0.05. For
power simulations, we simulated the three fixed effects respectively follow normal distribution
with standard deviation equals to 0.1 and mean as shown in Table S2 & S4. In each scenario,
all three fixed effects followed the same distribution. We compared the joint testing of three
fixed effects using linear regression based on F test and Wald test, the spatial mixed model
based on Wald test and the spatial mixed model with LRT (smm+LRT). For the hypothesis

testing for each fixed effect, we compared linear regression, the spatial mixed model with

12
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the default F test for fixed effect statistical significance (smm+Ftest), and smm+LRT. More
details are in the supplementary materials Section 1.1. The results of joint testing (Table S1)
showed that only smm-+LRT could control type I error close to 0.05, while linear regression
and mixed model using the Wald test failed to control the type I error under various spatial
variance settings. The separate testing (Table S2) showed that smm-+Ftest and smm+LRT
could control type I error for HG and UC when sample sizes were small, however, smm+Ftest
failed to control the type I error for LG group. The power of smm-+LRT, which controlled
type I error well under all scenarios, was close to the power of those methods that failed to
control the type I error (Table S1 & S2). Therefore, we adopted the P values of smm+LRT

for further IMIX input in this study.

3.1.2 Simulation for One Type of Data

We simulated data y;;,¢ =1,---,45,5 = 1,--- ;1000 based on equation 2. Here, the spatial
coordinates and the groups of interest were based on the bladder cancer whole-organ mapping
data described in Section 3.2. We replaced the missing samples from the real data set with
HG and UC groups. In total, the simulated data contained 45 spatial locations, with 27
spatial samples in the LG group, 9 samples in the HG group, and 9 samples in the UC
group, and 1000 genes. We simulated four scenarios of 1000 datasets each to evaluate the
methods for the spatial random effect variances 0%, they are (0.1,0.5, 1,2), respectively. The
spatial correlation followed an exponential structure. The independent non-spatial residual
o3 was set as 1. We considered four groups of fixed effects 0, 8,1, 3;2 following a multivariate
Gaussian distribution with standard deviation 0.1 and correlation matrix as identity matrix
across all groups and mean vectors (0,0,0), (2,0,0), (0,2,2), (0,0,2) for 250 genes respectively.
Here each group corresponds to genes in the no effect, field effect, HG & UC+, and UC+
only groups.

We applied our proposed spatial IMIX method, the spatial mixed model with IMIX

extension (smm-+IMIX), smm+Ftest, smm+LRT, and linear regression. We set o = 0.2
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as the nominal error control level across all methods for comparisons. Here, smm-+IMIX
controlled FDR across all groups. smm+Ftest, smm+LRT, and linear regression used the
Benjamini-Hochberg FDR at 0.2 for Bjo,7 = 1,---,1000, 81,7 = 1,---,1000, Bj2,j =
1,---,1000 respectively, to infer the statistical significance. The groups were assigned based
on the patterns shown in Table 1. Note that for smm+IMIX, we first fitted the spatial mixed
model and used LRT to extract the summary statistics P-values as the input for IMIX testing.
LRT was able to control the type I error well in the spatial correlation settings as described
in Section 3.1.1.

Figure 2 presents the simulation results for the average of 1000 simulations of the mis-
classification rate, with five class labels: no effect, field effect, HG & UC+, UC+ only, and
others. As the spatial random effect variance increased, misclassification rates increased for
all models. In particular, linear regression had the highest misclassification rate and stan-
dard deviation among all methods because it did not model the spatial correlations within
the data. smm-+LRT performed slightly better than smm+Ftest when the spatial random
effect variance was relatively small. Note that in the last scenario, when % = 2, smm+LRT
had a high average misclassification rate, resulting in a slightly increased standard devia-
tion for the misclassification rates of smm-+IMIX. However, overall smm+IMIX consistently

achieved a lower misclassification rate in all scenarios than did the other methods.

3.1.3 Simulation for Integrative Data Analysis

The second set of data y;;, was simulated based on

Yijh = Bino + BiniTin + BjnaTiz + Uijn + €ijn,

where y;;, is the log2 ratio of gene j at location i of data type h (i = 1,--- ,n;j =
L,---,p;h = 1,2) compared with the control. We fixed the samples to be the same across

both data types. We fixed ;10 = Bj20, Bj11 = Bjo1 and Sj12 = Bj22 across the data types for
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field effect and monotonic changes. w;;;, is the spatial random effect for gene j in sample ¢
of data type h. We set the spatial correlation following an exponential structure; note that
cor(uj1, ui2) = 0, ie., for a fixed gene j of sample i, the two data types are not spatially
correlated. Here, (uijn, - ,Unjn) 18 N(0p, V(63, K, T)), accounting for the variation within
each data type. (€1, €;52) Y (02, X5) is a multivariate Gaussian error vector and indepen-
dent of u;;,. Here, €, only influences the variation between two data types and does not
account for the variation within each data type.

We simulated four scenarios of 1000 datasets to compare the two integrative models and
the separate IMIX models. We simulated varied effect sizes and residual covariance matrices
32 in the following scenarios. Scenario 1 assumed no correlation between two data types. In
scenario 2, the independent error term of the two data types followed a multivariate normal
distribution with X5 = (!, %?) across the no effect, field effect, HG & UC+, and UC+ only
groups. Scenario 3 followed the same settings as scenario 2 except we set a high correlation of
0.8. Scenario 4 was based on the real data in section 3.2 with correlations of 0.08763, 0.04206,
0.3, and 0.6814 between two data types in the four groups, respectively, and the standard
deviation fixed at 1. In all scenarios, the dataset for each data type contained 1000 genes
with fixed spatial random effect variance 0.1 and an exponential correlation spatial structure
based on the distance of 45 spatial locations; fixed effects B, 5;1, Bj2 followed multivariate
Gaussian distribution with standard deviation 0.1 and correlation matrix as identity matrix
across all groups. We set the mean vectors as (0,0,0), (u*,0,0), (0,ux,ux), (0,0,u%) for 250
genes respectively. Here, each group corresponds to genes with no effect, field effect, HG &
UC+, and UC+ only. We set ux as 1 (small effect), 2 (medium effect), and 3 (large effect)
respectively.

Again, we applied our proposed method, multivariate spatial IMIX, univariate spatial
IMIX, and the methods we used for one data type, smm+IMIX, smm+Ftest, smm+LRT,
and linear regression. We analyzed each data type separately and combined the results of

two data types in an ad hoc manner. We set &« = 0.2 as the nominal error control level
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across all methods for comparisons. Here, smm+IMIX, smm+Ftest, smm-+LRT, and linear
regression controlled the FDR for each data type separately; whereas multivariate spatial
IMIX and univariate spatial IMIX controlled the FDR for both data types simultaneously.
In particular, the multivariate spatial IMIX model used the estimates from the IMIX-Cor-
Twostep model described in Wang and Wei (2020) for both data types.

Figure 3 and Figure S1 shows the simulation results for the average of 1000 simulations
of the misclassification rate, again with five class labels: no effect, field effect, HG & UC+,
UC+ only, and others. As the effect sizes increased, all models achieved lower misclassi-
fication rates. Among all methods, smm+IMIX, multivariate IMIX, and univariate IMIX
had the lowest misclassification rates. We did not observe substantial changes in the mis-
classification rates within each method when the data correlation increased, owing to the
noise imposed by the spatial correlation variations; however, we still observed significantly
lower misclassification rates with IMIX methods compared with the other three methods. In
particular, the two proposed integrative methods, univariate IMIX and multivariate IMIX,
performed better compared with separate smm-+IMIX under different correlation and effect
size settings. In particular, univariate IMIX performed better than multivariate IMIX when
the effect size was relatively large. Univariate IMIX is more parsimonious than multivari-
ate IMIX, and in turn holds the advantage of better classification due to the bias-variance
tradeoff. When the effect size was small, multivariate IMIX was slightly more robust than

the other two methods.

3.1.4 Model Selection

We evaluated the performance of AIC and BIC for selecting the correct number of compo-
nents in the integrative spatial IMIX framework. Here, we used the 1000 simulated datasets
described in section 3.1.3 with different effect size settings ranging from low to medium to
high of scenario 4. The true underlying number of components was four across all three sce-

narios: no effect, field effect, HG&UC+, and UC+ only for both data types with balanced
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mixing proportions. There were in total 64 possible components in the mixture model, and
our previous model fitting for simulation (see Section 3.1.3) was directly based on all com-
ponents without considering the model selection. In this section, we investigate the model
selection criteria and see whether they could further improve our model fitting and thus the
misclassification rate.

Figure 4 shows the proportion of selected components in each simulation study based
on AIC or BIC. Both model selection criteria were able to identify the true number of
components in the simulated data. However, AIC performed worse than BIC when the
effect size was small, especially for the univariate IMIX model. In addition, AIC tended
to overestimate the number of components in both the multivariate and univariate IMIX
models. BIC was more robust under different scenarios and models. Figure S2 shows the
AIC and BIC values of all possible components after averaging 1000 simulation replications
for different effect sizes. Both AIC and BIC performed well in identifying the true number
of components. We consider BIC to be more stable as it additionally considers the number
of genes in the penalty term, which can be as large as tens of thousands under the whole-
genome setting. We compared the misclassification rate between the four-component spatial
IMIX models after model selection based on BIC values and the spatial IMIX models before
model selection as described in section 3.1.3. Table S5 shows that the 4-component spatial
IMIX models after model selection based on BIC performed better than the 64-component
spatial IMIX model, especially when the fixed effect size was small. We conclude that model

selection improves model fitting for spatial IMIX and results in more accurate classifications.
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Figure 2: Simulation study results for one data type comparing spatial mixed model (smm)
with IMIX extension, smm with F test, smm with likelihood ratio test (LRT), and linear
regression using different spatial correlation variance settings.
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Figure 3: Simulation study results for two omics data types comparing spatial mixed model
(smm) with IMIX extension, multivariate spatial IMIX, univariate spatial IMIX, smm with
F test, smm with likelihood ratio test (LRT), and linear regression using different effect
size settings with between-data-type correlations mimicking the bladder cancer whole-organ
mapping data example (Scenario 4).
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3.2 Multi-Platform Whole-Organ-Based Molecular Profiling of Blad-

der Cancer

As described in Section 1, here we investigated cancer-initiating events in normal-appearing
tissue that carry through to carcinoma, i.e., field effect, in epithelial basal-subtype bladder
cancer. The data were obtained from geographically annotated mucosal samples collected
from a surgically removed bladder specimen and further details can be found in Bondaruk
et al., 2022. Each spatial sample was classified into three subtypes: NU/LGIN, HGIN, and
UC. Each sample contained a two-dimensional spatial coordinate measured on two whole-
genome-wide omics data platforms, gene expression and methylation. We aimed to identify
genes associated with field effect in both data types across all disease subtypes and explore
whether these genes reveal any interesting biological mechanisms.

The disease grades in individual samples of the cystectomy specimen classified as NU/LGIN,
HGIN, and UC are shown in Figure 5(a). Together there were 35 spatial locations for both
RNAseq and methylation data in the tumor specimen. Here, RNAseq and methylation data
both were measured for 34 samples out of the spatial locations. For both data types, three
HGIN and four UC samples were measured in the same locations. Each data types measured
27 NU/LGIN samples with 26 same locations and only one location that is different. There
were eight control samples of methylation data and five control samples of gene expression
data. The controls samples were measured from sex-matched normal urothelial suspensions,
which were prepared from the ureters of nephrectomy specimens that were free of urothelial
neoplasia (Majewski et al., 2019). The data preprocessing and normalization procedures
are described in the supplementary materials Section 2.1. In total we had 18604 genes in
the gene expression data and 14 682 genes in the methylation data for downstream analysis
with the integrative spatial IMIX models. We used the log2ratio between each sample in the
disease group compared with the average of controls in the downstream analysis.

We applied our proposed spatial integrative data methods—univariate IMIX, multivari-

ate IMIX, and smm+IMIX—on the spatially correlated high-dimensional data as described
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above. The results are summarized in Figure 5(b); the FDR was controlled at a = 0.1. Here,
smm+IMIX controlled the FDR for each data type individually, and the univariate and mul-
tivariate IMIX models controlled an across-data-type FDR at 0.1. Multivariate IMIX and
univariate IMIX discovered more genes than smm-+IMIX. In particular, 1533 genes that
were not identified by the smm+IMIX method were discovered by both integrative spatial
methods. All three proposed methods discovered 715 genes of interest. Multivariate IMIX
identified 443 field-effect genes that were not found using the other two methods, while
univariate IMIX discovered 349 such genes. On the basis of the simulation study results,
next we concentrated on the univariate IMIX results. We visualized the field-effect genes
and filtered the genes for which negative correlations between the gene expression data and
methylation data were preserved. There were 1512 genes that met these filtering criteria.
The unsupervised clustering of the log2ratio values of genes based on methylation value and
the visualizations of both methylation and gene expression levels are shown in Figure 6. The
identified genes showed field effect across all NU/LGIN, HGIN, and UC groups. The hy-
permethylated and hypomethylated genes showed constant log2ratio changes across groups
compared with the controls. The gene expression values were negatively correlated with
methylation values, with the same patterns across all groups. Figure 7 highlights an ex-
tracted part of the genes mapped to chromosome 18. This visualization corresponds to the
spatial locations of bladder mucosa in the 3D maps. We observed similar patterns to those
described for the 2D heatmaps (Figure 6).

The identified genes control important cell functions in the development of bladder cancer.
We performed pathway analysis using IPA on the field-effect genes discovered by the three
methods with FDR controlled at o = 0.01 of gene expression and methylation data. The
78 significant pathways with Benjamini-Yekutieli (BY) FDR control at 0.05 detected by
univariate spatial IMIX are visualized together with the pathways detected by the other
two methods (Figure S4). There was no significant pathway after BY FDR control using

the separate analysis smm+IMIX. The discovered pathways can be categorized into three
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Figure 5: Whole-organ mapping data application visualizations. (a) The spatial locations
of the disease grades of the whole organ mapping samples of mapl9 bladder cancer. (b)
Comparisons of genes identified by smm-+IMIX, univariate IMIX, and multivariate IMIX,
FDR=0.1.

groups: immunity and inflammation, signal transduction-differentiation, and carcinogenesis.
Among which, we found p53 signaling, PPAR, regulation of the Epithelial-Mesenchymal
Transition (EMT), and tumor microenvironment pathways. These are closely related with
tumor initiation, growth, and invasion.

Our integrative method has been shown to have more power in detecting field-effect
genes in both data types by simultaneously taking into account the complicated dependence
structures between two data types and their spatial correlation structures. Furthermore,
other methods such as SPARK and SpatialDE are not suitable for this type of application,
in which the genes do not show any variations related to the spatial locations, but rather an
overall same-direction differential expression /methylation pattern across all spatial locations.
Our analysis using SPARK is described in the supplementary materials Section 2.2. It was
able to discover genes showing variations based on spatial locations but was not able to
discover specific disease-group-label-related genes, such as NU/LGIN, HGIN, or UC disease

grades.
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Figure 6: Visualization of the log2ratio of the methylation and gene expression values com-

pared with the controls of the filtered field effect genes (N = 1512) identified by univariate
IMIX at FDR=0.1.
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Figure 7: 3D pattern of the log2ratio of (a) gene expression and (b) methylation values
compared with the controls of the field effect genes on chromosome 18 (N = 26) identified
by univariate IMIX at FDR=0.1.
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4 Discussion

Spatial IMIX is a multivariate mixture model framework for spatially correlated multi-omics
data integration. It can identify differentially expressed/methylated genes associated with
prespecified patterns of sample subtypes. It is a model-based method that incorporates the
spatial correlation structures between samples in a geographically resolved area by applying
a spatial mixed model, which improves the power to detect genes in certain sample subtypes
within each genomic dataset. Spatial IMIX additionally considers the dependence structures
between different genomic datasets by assuming a multivariate Gaussian mixture distribution
of the z-scores (transformed from P-values) from the spatial mixed model of individual-level
data. We showed that spatial IMIX had a lower misclassification rate and better controlled
FDR than did existing methods such as linear regression and spatial linear mixed models in
the simulation study.

Our method, which considers spatially correlated data of multiple omics data types and
sample subtypes, is an extension of our previously developed IMIX method (Wang and
Wei, 2020) for multi-omics data integration for association analysis. Spatial IMIX retains
the advantages of IMIX, including great computational efficiency from its use of the EM
algorithm for whole-genome wide analysis, its improved model fitting of mixture models
by using model selection based on BIC values, and the error-control properties of multiple
hypothesis testing by using an adaptive procedure to control the FDR among different sample
subtypes across the omics data types. Additionally, the fact that the data integration step
only considers the summary statistics enables us to use independent or partially overlapping
sample locations, as illustrated in the whole-organ mapping of bladder cancer application
(section 3.2), where the measured samples with gene expression data and methylation data
were not completely spatially aligned. The two proposed models, univariate IMIX and
multivariate IMIX, both showed good power in the simulation study. Specifically, univariate
IMIX, a parsimonious and flexible version of spatial IMIX, can be easily extended to multiple

types of data and sample subtypes. This is an improvement of IMIX, which only considered
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two or three types of data.

Spatial IMIX could be further applied to spatial transcriptomics data with more com-
plicated sample subtypes and larger sample sizes. Spatial transcriptomics is a cutting-edge
technology that measures spatially resolved gene expression at high throughput. Several
novel methods have been proposed to identify genes with spatial patterns of expression vari-
ation, such as spatialDE (Svensson et al., 2018) and SPARK (Sun et al., 2020). These
methods could be used for unsupervised clustering to identify unknown or non-prespecified
patterns in a geographical area for each gene. Spatial IMIX is different from previously
proposed methods, which mainly aimed to find spatially variable genes without considering
the location sample subtypes. Our method, in contrast, focuses on fixed effect estimations
given spatially resolved data with stringent FDR control for the identified genes associated
with certain prespecified patterns of sample subtypes. In particular, spatial DE and SPARK
are not suitable for the type of applications described in section 3.2 where the genes did not
vary on the basis of their spatial locations, but instead in terms of differential expression
or methylation in the same overall direction across all spatial locations. With the ongoing
development of spatial transcriptomics and other large-scale multi-omics data technologies,
our work has a wide range of potential applications that could provide novel biological in-
sights into different problems involving spatially resolved data, such as the incorporation of
information about tissue makeup and sample subtypes.

We implemented the data integration in the mixture model framework in a way that ac-
counts for the correlation structures of two omics data types through the mixing proportions.
Further investigations of the complicated correlation structures of the variance-covariance
matrix estimations could be explored and compared with our current parsimonious univariate
and multivariate spatial IMIX models. We leave this potential extension for future research.
Our method relaxed the conditional independence assumptions for multiple data types in the
presence of spatial correlation through a two-step procedure using univariate mixed models

as the first step to consider the spatial correlation and multivariate mixture model as the
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second step to consider the multi-omics data correlations. Nonetheless, the development of
multivariate spatial mixed models for the data application presented in this paper could be

an interesting future direction.
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