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0. Abstract

The ability to prioritize among input features according to relevance enables adaptive behaviors across the human
lifespan. However, relevance often remains ambiguous, and such uncertainty increases demands for dynamic control.
While both cognitive stability and flexibility decline during healthy ageing, it is unknown whether aging alters how
uncertainty impacts perception and decision-making, and if so, via which neural mechanisms. Here, we assess
uncertainty adjustment across the adult lifespan (N = 100; cross-sectional) via behavioral modelling and a theoretically
informed set of EEG-, fMRI-, and pupil-based signatures. On the group level, older adults show a broad dampening
of uncertainty adjustment relative to younger adults. At the individual level, older individuals with more young-like
neural responses also showed better maintained cognitive control. Our results highlight neural mechanisms whose
maintenance plausibly enables flexible task-set, perception, and decision computations across the adult lifespan.
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1. Introduction

Prioritizing goal-relevant input features is central to cognitive control and adaptive behaviors. But how do we discern
relevant signals from distractions? While some contexts explicitly highlight specific features (e.g., a single road sign

|

emphasizing school children) !, most contexts provide only sparse (e.g., a “I” sign) or contrasting cues (e.g., multiple
signs: school children, bicycles, construction, ...). Whereas selective cues enable us to priotitize individual features
with high acuity, ambiguity about which input features are goal-relevant (i.c., zask uncertainty) demands broader levels
of sensitivity, even at the expense of precision >3. An adaptive system should track the moment-to-moment variations
in uncertainty, and tune perception, guide decisions, and select actions accordingly 4°. Here, we examine whether a

failure to adapt computations to varying task uncertainty is a key characteristic of healthy human cognitive aging.

Behavioral observations support aging-related deficits in uncertainty adjustment. In contexts that cue specific task-
relevant features of compound stimuli, older adults remain sensitive also to irrelevant features &7, indicating challenges
in stable feature selection %1. Conversely, older adults show inflexibility when contexts require dynamic feature
switches 1214, and incur substantial “fade-out” costs when transitioning from dynamic to stable contexts . Such
observations suggest that older adults may be stuck in a suboptimal ‘middle ground’ that neither affords stable task
selectivity when uncertainty is low, nor task flexibility in dynamic or uncertain contexts. Although age-related deficits
have been reported for aligning computations (e.g., learning rate) to uncertainty ', it remains unclear whether such
underutilization arises from challenges in estimating uncertainty, or from an inability to leverage adequate estimates.
For uncertainty to provide a principled and comprehensive lens on aging-related adaptivity constraints, first evidence
is required to establish whether and/or how neural responses to uncertainty differ in the older adult brain.

How brain function adjusts to variable uncertainty remains debated 17, but emerging models implicate interacting
systems that define task sets, tune perception, and inform decision formation 82, Task-set management has been
localized to fronto-parietal cortex 2921, with recent evidence suggesting additional thalamic contributions in uncertain
contexts 2223, When task sets specify target features, perceptual networks can constrain relevant information by
combining distractor inhibition ?* with target enhancement 2. In contrast, high uncertainty about goal-relevant targets
may facilitate sensitivity to multiple features via broad increases in excitability 2°. Such regime switches can be
orchestrated by diffuse neurotransmitter systems that adjust computational precision to changing demands % for
example, pupil dilation (as a proxy) ¥’ transiently increases alongside uncertainty 23%°. In young adults, we observed
such an integrated response to rising uncertainty 30, encompassing increased fronto-thalamic BOLD activation,
increased pupil diameter, and increased EEG-based cortical excitability. These results indicate that interacting systems
enable adaptive responses to variable task uncertainty. But does the responsiveness of these systems differ across the
adult lifespan?

Initial behavioral evidence from reward-learning paradigms suggests that older adults are less able to represent and
use uncertainty 6. Moreover, the general observation that older adults’ brain activity is less responsive to varying
demands 31-33 is suggestive of less adaptive responses per se. Senescence is marked by changes across multiple systems,
including diminished prefrontal cortex function 34, metabolic decreases in cognitive control networks 3537, progtressive
deterioration of subcortical neurotransmitter systems 3840 alongside reduced pupil size modulation 41, reduced cortical
inhibition 4243, and structural declines of coordinating nodes such as the thalamus #+*. Many of these systems can be
linked to the representation of, and adaptive response to, uncertainty . Yet, there is also a long-standing challenge in
the cognitive neuroscience of aging to identify, and distinguish between, competing functional explanations for
changes in adaptivity. Reductions in working-memory capacity 4, inhibition #7, or processing speed #® have all been
proposed as general changes underlying a wide range of deficits. The fact that age differences usually occur even in
minimal-demand baseline conditions 3> can additionally complicate inferences from observed age differences in
adaptivity. Here, we use convergent evidence from a broad spectrum of behavioral and neural signatures (decision
modeling, EEG, fMRI, pupillometry) alongside a host of controls to establish altered uncertainty processing as a core
feature of human brain aging.

In our approach, we tested whether we could explain individual differences in adaptivity among older adults.
Specifically, a “maintenance account of aging” #° suggests that cognitive deficits with senescence emerge when neural
resources become insufficient to meet demands, which implies that older adults with more “young-like” resource
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79 engagement should better maintain function. We test this account by examining the degree to which older adults
80 express a young-adult pattern of specific neuro-behavioral signatures when adapting to uncertainty.

81

82 2. Results

83

84  We examined multimodal signatures (decision modeling, EEG, fMRI, pupillometry) in 47 younger (avg. 26 years) and
85 53 older (avg. 69 years) adults to comprehensively test uncertainty adjustment across the adult lifespan. Participants

86  petformed a petrceptual decision task that manipulated uncettainty about which feature(s) of a compound stimulus
87  would become decision relevant. By assessing signatures that change under task uncertainty in younger adults’ 3, we
88  highlicht dampened uncertainty modulation in oldet adults along with more constrained changes to perceptual
89 evidence integration. Older adults with more “young-like” brain responses showed benefits in feature selection,
90 providing initial evidence that maintained uncertainty adjustment supports adaptive control in healthy ageing.

91

92 2.1 Older adults express constrained uncertainty modulation of evidence integration.

93

94 During EEG and fMRI acquisition, participants performed a Multi-Attribute Attention Task ("MAAT"; 3; Figure 1a,
95 §1-0). Patticipants had to sample dynamic visual stimuli that varied along four features: color (green/red), movement

96 direction (left/right), size (small/large), and color saturation (low/high). Stimuli were presented for three seconds,
97 after which participants had to indicate the more prevalent of two options for a single probed feature. Valid pre-

98 stimulus cues indicated which features could be probed on the current trial. Uncertainty was parametrically
99 manipulated by increasing the number of cued features 3. When participants received a single cue, they could attend
100 to only a single target featute duting stimulus presentation (low uncertainty); whereas multi-feature cues reduced
101 information about which feature would be probed, thus necessitating (extra-dimensional) attention switches >3

102 between up to four target features (“target load”; high uncertainty) to optimally inform probe-related decisions.
103 Younger and older adults petformed above chance level for all visual features (Figure S1-1).
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Figure 1. Older adults show constrained decision-related adjustments to rising uncertainty. (a) A Multi-Attribute
Attention Task ("MAAT") requires participants to sample up to four visual features of a compound stimulus for a subsequent
perceptual decision. On each trial, participants were first cued to the set of possible probe features (here: motion direction
and colour). The compound stimulus (which always included all four features) was then presented for 3 s, followed by a single-
feature probe (here: prevalence of red vs. green colour in the preceding stimulus). Uncertainty was manipulated as the
number of target features (one to four) in the pre-stimulus cue (see also Figure S1-0). Behavioral data were modelled with a
drift diffusion model, in which evidence for options is accumulated with a ‘drift rate’ . (b) Drift rate estimates from behavioural
modelling. Older adults exhibited reduced accumulation rates for single targets (top) and were marked by more limited drift
reductions under elevated uncertainty (bottom). Data points represent individual averages across EEG and fMRI sessions.
Table S1 reports within-group statistics. (c) The Centro-parietal positivity (CPP) provides an a priori neural signature of
evidence accumulation. The rate of evidence accumulation was estimated as the linear slope of the CPP during the time
window indicated by the black bar. Older adults exhibited reduced integration slopes for single targes (top) and were marked
by constrained load-related slope shallowing under elevated uncertainty (bottom). To illustrate age- and condition-
differences in integration slope, responses have been rescaled to the [0, 1] range for visualization. Fig. S1-3 shows original
traces. ***a p=0e-10 ***b p = 5.1e-10 ***c p = 4.5e-05 ***d p = 2.8e-05.
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106 To characterize probe-related decision processes, we fitted a hierarchical drift-diffusion model 5% (HDDM) to

107 patticipants’ responses. The model estimates (a) the drift rate at which evidence is integrated towards a decision bound,
108 (b) the distance between correct and incorrect decision bounds, and (a) the non-decision time of probe processing
109 and response execution. Across sessions and age groups the best fitting models (see Figure S1-2) consistently included
110 uncertainty effects in all three parameters. Here, we focused on the drift rate based on its close association to sampled
111 evidence ¥. Text S1-2 reports the remaining parameters. With rising uncertainty, drift rates decreased for both age
112 groups, indicating that uncertainty generally constrained choice evidence for the probed feature. Crucially, relative to
113 younger adults, older participants’ drift rates wetre reduced when only a single feature was cued as relevant and
114 decreased less alongside increasing uncertainty (Figure 1b). These effects remained present when only features with
115 age-matched single-target accuracies were included in the model (Text S1-3a). In relative terms, such dampened
116 adjustment reflected larger relative performance decreases when transitioning into more uncertain contexts in older
117 than younger adults (Text S1-3b). Neither accuracy nor drift rate variations between individual features could account
118 for the obsetved age effects (Text S1-4).

119 a 52 g

120 We assessed the convergence of behavioral results with an < Ll ‘

121 a priori neural proxy signature of evidence integration, the g Ny »\/;\l o )

122 slope of the EEG’s centroparietal positive potential (CPP 3 A SVM

123 5 Figure 1lc, see also Figure S1-5) prior to decisions. ; ; ' : W, decoding

124 Consistent with behavioral modeling, CPP slopes were T 50 ..\./\/ ______________ mask

125 flatter for older relative to younger participants in single- é

126 target contexts, and older adults’ uncertainty-related 0 5 10

127 modulation of CPP slopes was minimal (Figure 1¢). In line Time (s) following stimulus onset

o

128 with both indices capturing latent evidence integration,

129 CPP and drift estimates were intet-individually related S

130 (Fig. S1-5), both for single targets (£(93) = 0.51, 95%CI = g

131 [0.34,0.64], p = 1.4e-07; age-partial: t(92) = 0.34, 95%CI = 350l
<

132 [0.14,0.5] p = 9.3e-04), and their uncertainty modulation
133 (£(93) = 0.45, 95%CI = [0.27,0.59], p = 6.1e-06; age-partial:
134 £(92) = 0.27, 95%CI = [0.08,0.45], p = 0.01; Fig S1-5c¢).
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Figure 2. Decoding of prevalent options from visual cortex. (a)

145 single targets, and more constrained absolute drift rate timing of stimulus presentation considering the temporal lag in
146 reductions under uncertainty. the hemodynamic response. Lines indicate periods of
147 statistically significant differences from chance decoding

148 2.2 Decodine indicates uncertaintv-induced trade- accuracy (50%) as assessed by cluster-based permutation tests.
) g y The inset highlights the visual cortex mask from which signals

149 offs between feature specificity and sensitivity. were extracted for decoding. (b) Same as in a, but for separate
150 feature probes. Bars indicate sign. above-chance accuracy during
151 Higher single-target drift rates and larger drift reductions the approximate time of stimulus presentation. (c) Decoding
152 may reflect an adaptive trade-off between reduced single- accuracy for probed and unprobed features as a function of the

153 target specificity and clevated sensitivity to multiple features NUmber of cued targets; and decoding accuracy for all features

. . . as a function of age. Accuracy was averaged across significant
154 under higher uncertainty. However, as decisions were . °9 Y J S sigmiie
decoding timepoints for cued features. Means +- within-subject

155 linked to the probed feature, they cannot elucidate how .\, for (un)probed features, means +- SEM for age analysis.
156 unprobed features were processed. To clarify this
157 question, we performed fMRI decoding analyses. We
158 created pairwise classifiers that targeted the sensory representation of each feature’s prevalent option (e.g., left vs.

159 rightward movement) based on BOLD responses in visual cortex (see Methods: fMRI decoding of prevalent feature options).
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160 The prevalent option of individual features could be decoded above chance during stimulus presentation (Fig. 2a).

161 Robust decoding was observed for all cued features except for saturation, for which discrimination was also
162 behaviorally most challenging (Fig. S1-1). Above-chance decoding in the same time window of interest was not
163  observed for uncued feature options, except for motion discrimination (see Fig. 2b), indicating that patticipants mainly
164 discriminated task-relevant feature options 8.

165 Next, we assessed uncertainty and age effects on decoding accuracy. First, we applied classifiers to trials in which
166 target features were probed, which mirrors the behavioral task. A linear mixed effects model indicated a significant

167 reduction in decoding accuracy with increasing uncertainty (8 = -0.18, SE = 0.05, t = -3.56, p = 0.00037; Figure 2¢),
168  as well as reduced decoding accuracy for older adults (3 = -0.862, SE = 0.31, t = -2.77, p = 0.007), but no significant
169 interaction (p = 0.76). Crucially, such uncertainty-related precision losses may trade-off against sensitivity to other
170 cued, but ultimately unprobed features. We tested this possibility by considering decoding accuracy across all unprobed
171 features in any given trial. This analysis indicated that uncertainty indeed slightly increased decoding accuracy across
172 unprobed featutes (8 = 0.077, SE = 0.026, t = 2.94, p = 0.0033). Decoding accuracy trended to be lower in older
173 compated to younger adults (8 = -0.259, SE = 0.134, t = -1.92, p = 0.0574). Again, no significant interaction was
174 obsetved (p = 0.434). Consistent with opposing uncertainty effects on probed and unprobed features, no significant
175 uncertainty effect was indicated when all trials were considered (3 = 0.012, SE = 0.024, t = 0.53, p = 0.5927), but
176 decoding accuracy was globally reduced in older adults (8 = -.41, SE = 0.144, t = -2.84, p = 0.0056). Decoding analyses

177 thus suggest that rising uncertainty increased sensitivity to more diverse features in both age groups, albeit at the cost
178  of reduced precision for single features.
179

180 2.3 MAAT performance generalizes to feature selection in the context of low perceptual demands.
181
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Figure 3. MAAT evidence integration relates to prepotent response inhibition. (a) Centro-Parietal
Positivity (CPP) traces and speech signal power suggest high validity for the semi-automatically labeled
speech onset times (SOTs). The CPP trace has been averaged across age and congruency conditions and
displays means +/- SEM. The inset shows the mean EEG topography during the final 300 ms prior to speech
onset. (b) The voiced Stroop task indicated robust interference costs whose magnitude was larger in older
adults. Table S1 reports within-group statistics. (c) Participants with larger MAAT drift rates showed faster
responses to incongruent trials (e.g., responding blue to the inset stimulus), also after accounting for
categorical age (squares: younger; diamonds: older) and covariation with congruent SOTs (see main text).

182 Relative to younger adults, older adults appear to have encoded less single-target evidence for downstream decisions.
183 However, the multifaceted demands of the MAAT do not resolve whether such differences arise from task
184  idiosyncrasies such as the necessity to resolve high perceptual uncertainty for each feature, or whether they captute

185 differences related to flexible feature selection. To adjudicate between these accounts, participants also performed a
186 Stroop task, which probes the capacity to inhibit prepotent responses to one of two features (the color vs. semantics)
187 of a presented word >7. We recorded voice responses as a more naturalistic modality for older adults 8. To estimate
188 speech onset times (SOT's ~ reaction times), we labeled the voice onset in each trial’s recording (see methods). Labeled
189 SOTSs showed high validity as the neural CPP peaked immediately prior to SOTs (Fig. 3a). In line with the Stroop
190 literature 38, older adults incurred larger behavioral interference costs (Fig. 3b) than younger adults. These behavioral
191 results were mirrored by neural CPP slopes: interference made pre-response CPP slopes shallower in both age groups,
192 but to a larger extent in older adults, and the magnitude of individual slope reductions tracked behavioral interference

193 costs (Fig. S3-1). Crucially, patticipants with higher MAAT drift rates wete also faster responders in the incongruent
194 conditdon (Fig. 3c), pointing to a bettet capacity to inhibit prepotent tesponses. Notably, relations between MAAT
195 drift rates and SOTs in the Stroop interference condition (£(93) = -0.65, 95%CI = [-0.75,-0.51], p = 1.2e-12) held after
196 controlling for age and SOTs in the congruent condition (£(91) = -0.29, 95%CI = [-0.46,-0.09], p = 0.01), whereas the
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197  opposite was not obsetved (congruent SOTs-drift: £(93) = -0.4, 95%CI = [-0.56,-0.22], p = 4.7e-05, age- and incongruent
198  SOT-partial £(91) = 0.13, 95%CI = [-0.07,0.33], p = 0.2). As such, selective inhibition of intetfeting features, as
199  opposed to processing speed, appears to be a key conttibutor to individual MAAT drift rates. Taken together, these
200 findings suggest that individual and age differences in MAAT drift rates generalize to flexible feature selection also in

201 petrceptually unambiguous contexts.
202
203 2.4 Theta power and pupil diameter upregulation with elevated uncertainty dampens in old age.

204

205 Obur results indicate age-related constraints in perceptual and decision adjustment to uncertainty. To test whether such
206 constraints are rooted in a reduced neural uncertainty response as expected under a maintenance account of cognitive
207 and brain aging, we assessed several a priori signatures (see %) during MAAT stimulus presentation by means of two-
208  group task pattial-least-squates analyses (PLS, see methods). First, we assessed the effect of uncertainty on
209 frontocentral theta power, an index of cognitive control > and exploration under uncertainty ®. Uncertainty increased
210  theta power in both age groups (Figure 4a), but to a lesser extent in older adults (Figure 4a). Next, we assessed phasic
211 changes in pupil diameter, a signature that covaries with neuromodulation and arousal 162, has been related to frontal
212 control 229306364 and is sensitive to rising demands  such as dynamically changing and uncertain contexts 28, Once
213 again, we observed that uncertainty increased pupil diameter in both age groups, with mote constrained upregulation

214 inolder adults (Fig. 4b). This effect could not be explained by a “spill-over” of differential luminance responses duting
215 the cueing phase (see Fig. $4-2). The magnitude of pupil modulation was related to individual theta power increases
216 (x(98) = .28, 95%CI = [0.09, 0.46], p = 0.005; age-partial: t(97) = .19, 95%CI = [0, 0.38], p = 0.05), indicating a joint

217  uncertainty modulation. These results indicate that both age groups wete sensitive to rising uncertainty, albeit older
218 adults to a dampened extent.
219
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Figure 4. Uncertainty increases theta power (a) and pupil diameter (b) across the adult lifespan, but
increases are attenuated in older age. (Left) The topography indicates mean bootstrap ratios (BSR) from
the task partial least squares (PLS) model. “Brainscores” summarize the expression of this pattern into a
single score for each condition and participant (see methods; Fig. S4-1 shows condition-wise Brainscores).
(Center) Age comparison of linear Brainscore changes under uncertainty (~age x load interaction; p-values
refer to unpaired t-tests). Both signatures exhibited significant uncertainty modulation in younger, as well
as older adults (as assessed via one-sample t-tests; see Table S1), with constrained modulation in older
adults. (Right) Time series data are presented as means +- within-subject S.E.Ms. Orange shading in a
indicates the timepoints across which data have been averaged for the task PLS. Black lines in b indicate
time points exceeding a BSR of 3 (~99% threshold). The uncertainty modulation of pupil diameter occurred
on top of a general pupil constriction due to stimulus-evoked changes in luminance upon task onset (see
inset). Luminance did by stimulus design not systematically differ across load levels.
220

221 2.5 Only younger adults adjust posterior cortical excitability to varying uncertainty.

222

223 Elevated uncertainty may impact petception by altering sensoty excitability. To test this, we focused on three indices
224 related to cortical excitability: alpha power, sample entropy, and apetiodic 1/f slopes 3:¢7. We constrained analyses to
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Figure 5. Only younger adults upregulate cortical excitability under increased uncertainty. (a-c) Results of
task partial least squares (PLS) models, assessing relations of alpha power (a), sample entropy (b) and aperiodic
1/f slope (c) to uncertainty. (Left) Topographies indicate mean bootstrap ratios (BSR). Orange dots indicate the
sensors across which data were averaged for data visualization. (Center) Age comparison of linear uncertainty
effects (~age x uncertainty interaction). Statistics refer to unpaired t-tests. For condition-wise Brainscores, see
Fig. S4-1. All three signatures exhibited significant uncertainty modulation in younger, but not in older adults.
Table Sa reports within-group statistics. (Right) Time series data are presented as means +- within-subject
S.E.Ms. Orange shading in a indicates the timepoints across which data have been averaged for the respective
task-PLS. Black lines in b indicate time points exceeding a BSR of 3 (~99% threshold).

225 posterior sensors as we targeted visual-parietal cortices. Text §5-3 reports whole-channel analyses. In younger adults,
226  we observed uncertainty effects on all three signatures (Fig. 5 a-c), akin to those we previously reported . In line with
227 putative excitability increases, posterior alpha power decreased alongside uncertainty, while sample entropy increased
228  and the apetiodic spectral slope shallowed. However, we found no evidence of a similar modulation in older adults
229 for any of the probed signatures (Fig. 5, see also Fig. S4-1), indicating a failure of the aged system to adjust to changing
230  uncertainty demands. Such failure may be rooted in a less precise estimation of environmental uncertainty in the aged
231 neural system 1. However, we reduced inference demands in our design by providing overt cues on each trial, and
232 keeping the cue set identical for eight consecutive trials. In line with age-invariant sensitivity to uncertainty cues, we
233 obsetved comparable increases in pre-stimulus alpha power alongside uncertainty in both age groups (Fig. S5-1, see
234 also Text S5-1). However, these increases wete not associated with subsequent behavioral drift rate adjustments (Fig.

235  S5-1 and Text S5-1), arguing against a direct tole of pre-stimulus alpha power in adjudicating uncertainty. We
236 additionally considered the steady-state visual evoked potential (SSVEP) as a proxy of bottom-up processing. Despite

237  robust and comparable SSVEPs in both age groups, we found no evidence of uncettainty modulation in either group
238 (Fig. S5-2, see also Text S5-2). Given that the 30 Hz flicker frequency was shared between all stimulus features, this
239 suggests that sensory processing of the compound stimulus was similar between uncertainty conditions and age
240  groups. Taken together, our results suggest that older adults may have suffered from a relative failure to adjust
241 perceptual excitability to changing feature relevance, rather than insensitivity to uncertainty information or an inability
242 to encode the undifferentiated stimulus.

243

244 2.6 BOLD modulation links neuro-behavioral responses to uncertainty across the adult lifespan.
245

246  Finally, we investigated uncertainty-related changes in whole-brain fMRI BOLD activation duting stimulus

247  presentation, extending sensitivity also to subcortical areas like the thalamus that ate considered ctitical for managing
248  task uncertainty 306869, We targeted associations between uncertainty-related BOLD modulation and the a priori
249 neutobehavioral signatures (i.e., uncertainty-induced changes in drift rate, theta powet, pupil diameter, alpha powet,
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Figure 6: Multivariate relation of EEG/pupil/behavioral signatures to fMRI BOLD uncertainty modulation. (a) Results of a
behavioral partial least squares (PLS) analysis linking linear changes in BOLD activation to interindividual EEG, pupil, and
behavioral differences. Table Sy lists peak coordinates. (b) The multivariate expression of BOLD changes alongside rising
uncertainty was reduced in older compared with younger adults. Table S1 reports within-group statistics. (c) Individual fMR/
Brainscore differences related to behavioral composite scores, also after accounting for age covariation. Squares = younger
individuals; diamonds = older individuals. (d) Contributing signatures to the fMRI Brainscore. All signature estimates refer to
linear uncertainty changes. Error bars represent bootstrapped 95% confidence values. (e) Major nuclei and projection zones in
which behavioral relations are maximally reliable according to average Bootstrap ratios (red) and the percentage of voxels in
each subregion exceeding a BSR of 3. See Methods for abbreviations. Strongest expression is observed in nuclei that project
to fronto-parietal cortical targets. (f) Visualization of uncertainty modulation for the mediodorsal nucleus, a “higher order”
nucleus, and the LGN, a visual relay nucleus. Traces display mean +/- SEM. The green shading indicates the approximate
stimulus presentation period after accounting for the delay in the hemodynamic response function.

1/f slopes, and sample entropy) using a multivariate behavioral PLS analysis (see Methods; Text S4-1 repotts a task PLS
targeting the main effect of uncertainty). We identified a single latent variable (LV; permuted p < le-3) with positive
frontopatietal and thalamic loadings, and most pronounced negative loadings in medial PFC and hippocampus (Fig.
6a, Table S5). Loadings on this inter-individual difference LV resembled the main effect of uncertainty on BOLD
activation (Fig. S6-1a). Older adults expressed this LV to a lesser extent than younger adults as indicated by lower
tMRI Brainscores (Fig. 6b), indicating dampened BOLD modulation in the face of changing uncertainty. Brainscores were
associated with the latent score of neurobehavioral input signatures (Fig. 6¢), such that less dampened, more “young-
like” BOLD modulation tracked a larger modulation of decision, EEG, and pupil signatures. Fig. 6d depicts relations
to the individual signatures of the model: across age groups, greater BOLD modulation corresponded to larger drift
rate reductions, more pronounced theta power and pupil diameter increases, and larger excitability modulation (see

10
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260  Fig. S6-2a for mote signatures). Brainscores did not significantly vary by gender (Fig. S6-2b). As the PLS model

201 captured variance both within and across age groups, we used linear-mixed-effects models to assess the age-
262 dependency of these relations. These models indicated that all a priori signatures, except sample entropy and 1/f
263 modulation, predicted Brainscores also after accounting for the shared main effects of age (Table 1). This indicates a
264 robust coupling of uncertainty effects between most signatures, while aligning with unobserved posterior excitability

265 modulation in older adults. Control analyses indicate that within- and between-group differences in BOLD modulation
266 did not reflect differential choice difficulty (i.e., accuracy) for individual features (Figs. S6-3 & S1-4c¢).
267

Predictor t-value p-value partial n?
Behavioral score 4.6043 1.32e-05 0.1962
age | -6.3809 7.00e-09 0.3192
Drift mod. -4.3334 3.74e-05 0.2308
age | -3.9624 0.0001 0.2006
Pupil mod. 4171 6.86e-05 0.1622
age | -0.7664 1.20e-09 0.3375
Theta mod. 4.2533 5.05e-05 0.2005
age | -4.8662 4.69¢-06 0.2471
Alpha mod. 3.2185 0.0017 0.1294
age | -4.934 3.57e-06 0.2589
1/f mod. 0.10914 0.91 1.4502¢-04
age | -60.7591 1.24e-09 0.3574
SampEn mod. 1.5944 0.11 0.0279
age | -0.7385 1.37e-09 0.3390
268
269 Table 1: Summary of Brainscore predictors, while controlling for categorical age. Separate
270 linear-mixed-effects models assessed effects of target signature, categorical age, and age x
271 signature interactions on Brainscores. We observed no significant interaction in any of the models
272 (all p > 0.05), pointing to consistent relations across age groups; therefore, all reported models
273 only include main effects of signature and age. Fig. S6-2 reports similar results using partial
274 regressions. Degrees of freedom: 92 (all models).
275

276  Behavioral relations wete closely tracked by thalamic BOLD activation. To obtain insights within this differentiated
277 structure, we assessed regional loadings based on projection zones and nucleus segmentations (Fig, 6¢). Loadings were
278 highest in subregions with frontoparietal projections, including the mediodorsal nucleus (Fig. 6f). In contrast, a

>

279 traditional visual “relay” nucleus of the thalamus, the lateral geniculate nucleus, did not show sensitivity to our

280 uncertainty manipulation (Fig. 6f). This indicates a specificity of thalamic effects that coheres with functional

281 subdivisions and alludes to uncertainty-invariant sensory processing of the compound stimulus. These results indicate
282 that the mediodorsal thalamus contributes to maintained uncertainty adjustments across the adult lifespan.

283 Task uncertainty is a contextual challenge '7 that necessitates flexible control, including attentional and
284  working memory adjustment (see also Supplementary Text 7). We probed whether the fMRI activation obsetved here
285  can be reduced to either of these processes. In line with our operationalization capturing latent uncertainty, teverse
286  inference analyses indicate relations between spatial loadings of the behavioral PLS and prior “state entropy”?
287  activation (Fig. S6-4) and meta-analytic “uncertainty” maps. This ovetlap was larger than with either “working
288  memory” or “attention” maps (see Text S6-4), suggesting that task uncettainty introduces multifaceted demands 70
289 that do not fully converge with traditional working memory or attention manipulations.

290

291 3. Discussion

292

293 Managing uncertainty is vital for navigating the flux of life. While some environments help us to prioritize specific
294 inputs over others, many contexts provide few, contrasting, or ambiguous cues. Here, we manipulate task uncertainty
295  via unambiguous cues that are repeated on each trial. This design allows us to ask how task uncertainty impacts
296 downstream processing, in contrast with prior designs that ask how perceptually ambiguous task cues impact

297 processing of unambiguous inputs %7173, We show that healthy older adults exhibit markedly dampened adaptations
298 to explicit uncertainty variations across coupled EEG/fMRI/pupil signatures. Our results thereby extend obsetvations

299 that older adults rely less on uncertainty representations to guide internal computations ' by characterizing several
300  plausible mechanisms for this shortfall. Specifically, our results suggest that such computational constraints do not
301 exclusively stem from an inadequate sensitivity to latent uncertainty, as overt uncertainty cues were similarly processed
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302 across age groups. Rather, our findings support the maintenance account of cognitive and brain aging 74, whetein
303 individuals with a more “young-like” response more dynamically adjust perceptual and decision computations
304  according to momentary uncertainty.

305

306 3.1 Age differences in selecting features of multi-task stimuli.

307

308  Inout retro-cue design, evidence integration towards perceptual choices indirectly indexes how multi-task stimuli were
309 processed. Older adults showed reduced modulation of evidence integration as a function of uncertainty but were also
310 marked by reduced drift rates in response to single-target cues. This is consistent with age-related problems of goal
311 selection in the context of inherently ambiguous multi-task stimuli 131475, Mayr (2001) indicated that “even when
312 people have complete knowledge about the type of action to petform in the immediate future, they have problems
313 implementing this knowledge in an optimal manner when more than one action rule may be relevant in principle” (p.
314  105). The MAAT’s multi-dimensional stimuli constantly feature such rule ambiguity, thus requiting internal
315 segregation and prioritization among possible task goals. A question concerns the relation of such “global set-selection
316 costs” to working memory capacity 131475, given that multi-task stimuli (and their cues) also requite maintenance of
317  larger task sets. While the MAAT does not fully tesolve this debate (Supplementary Text 7), it uses single-ttial cues and
318  homogeneous cue blocks to limit working memoty demands. As such, results for the single-tatget condition
319 conceptually replicate prior observations of large age differences in static set selection costs. In tandem, our uncertainty
320 manipulation indicates age differences in dynamic task set management, indicated by reduced adjustment of
321 downstream decision processes and larger relative performance costs in older as compared to younger adults.

322

323 3.2 Fronto-thalamic circuits may enable stable and flexible feature selection across the adult lifespan.

324

325  As part of the neural uncertainty response, we observed a behaviorally relevant upregulation of anterior cingulate
326 cortex (ACC) BOLD activation and (presumably ACC-based 76) mediofrontal theta power. By charting the
327 progression through multiple task contexts 77-7%, the ACC can estimate contextual volatility 8 and uncertainty 168! to
328 guide exploration of alternative goals, strategies, and attentional targets 908284, Non-human animal studies suggest that
329 high task uncertainty switches ACC dynamics to a state of increased excitability ¢7-85 and stochastic activity 8, which
330  benefits concurrent sensitivity to alternate task rules 87. Also in humans, the ACC is sensitive to stimulus features
331 before they behaviorally guide task strategies 8088, suggesting that the ACC contributes to the exploration of alternate
332 task strategies 8%, While our results align with such contribution, we also localize high uncertainty sensitivity in the
333  mediodotsal (MD) thalamus, which aligns with the MD being a key partner for selecting, switching, and maintaining
334  cortical task representations 239192 especially in uncertain contexts that tequire multifaceted computational adjustments
335 30,6869 Extrapolating from this emerging perspective, the MD-ACC circuit may regulate the extent of task set stability
336 vs. flexibility 935 according to contextual demands (Fig. 7a). Partial evidence for such a notion is provided by models
337 that link task stability in low-uncertainty contexts to thalamic engagement %. The current observations suggest a
338 complementary thalamic role in flexible task set management. While maintained across the adult lifespan, BOLD and
339 theta power signals indicated that such MD-ACC upregulation dampened in older age 9798, Indeed, the ACC network
340  is particulatly susceptible to age-related metabolic declines 3537 as well as structutal atrophy #4. Retained ACC function
341 on the other hand is a hallmark of cognitive tesetve %, relates to maintained executive function ¥, and is a fruitful
342 targetof cognitive interventions in older adults %8. Given evidence of a key role of the MD thalamus in the coordination

343 of ACC engagement and our observations of reduced MD-ACC sensitivity to uncertainty in older age, the thalamus
344 may be an underappreciated site for cascading age-related deficits in cognitive stability and flexibility.

345
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346
347 Figure 7. Schematic model summary. (a) In static contexts, prefrontal-hippocampal networks may signal high
348 confidence in the current task state, which enables stable task sets, and a targeted processing of specific sensory
349 representations with high acuity. Such selective processing of specific task-relevant features benefits their efficient
350 evidence integration. Such selectivity would be suboptimal in contexts with uncertain or changing task sets,
351 however. An MD-ACC circuit may track such uncertainty and enhance stochastic task set flexibility in changing or
352 ambiguous contexts. In coordination with posterior-parietal cortex, this feasibly enables more diverse albeit less
353 precise perceptual representations. (b) The neural system of younger adults may more dynamically adjust feature
354 fidelity during stimulus presentation to the degree of uncertainty. Observed effects align with a switch between a
355 specific high-acuity processing of individual features (blue), and a more diverse, if less precise processing of multiple
356 features (red; see also Thiele & Bellgrove, 2018). In contrast, the aged neural system may be stuck in a suboptimal
357 middle ground that affords neither stable precision, nor flexible imprecision. mPFC = medial prefrontal cortex; HC
358 = hippocampus; ACC = anterior cingulate cortex; MD = mediodorsal thalamus.
359
360 3.3 Neuromodulation may sculpt the dynamic range of uncertainty adjustments.
361
362  Neurotransmitter systems provide a candidate substrate for computational adjustments under uncertainty. In response
363 to tising uncertainty, phasic norepinephrine release can sensitize the system to incoming signals 19101 by increasing
364 neuto-behavioral activation 61102105, Pupil diameter, an index that is partially sensitive to noradrenetrgic drive 63,
365 robustly increases alongside uncertainty during learning 28 and attention %4, environmental exploration %%, and change
366 points in dynamic environments 286619, Notably, increases have been observed in contexts that require an agent to
367 learn more or less about a single option!’’; i.e., conditions in which sensitivity for oze option increases. Here, pupil
368  increases precede decreases in evidence integration for single features. Under the notion that uncertainty requites
369 exploration of a larger space of options, we argue that this is akin to a lower learning rate for an individual feature at
370 the benefit of distributed learning across uncertain features. Non-selective gain increases, e.g., provided by global
371 arousal, can favor such distributed learning 198, We obsetve that pupil sensitivity to tising uncertainty is retained actoss
372 the adult lifespan but dampens in older age. Such dampening hints at declining noradrenergic responsiveness in older

373 age 4109110 arising from reduced LC integrity ':112, and/or dectreased LC engagement '13. Notably, pupil sensitivity
374 to volatility has been related to the ACC as a primary soutce of cortical LC input 2714 and joint increases of ACC

375 activation and pupil diameter in uncertain, or dynamic contexts has consistently been observed in studies that record
376  both signals 229306364 While futute studies need to clarify the origin of constrained pupil adjustments in older age, our
377  results affirm the relevance of the extended LC system for attentional function across the lifespan #1. In contrast to
378 noradrenaline’s potential role in sensitizing, cholinergic innervation from the basal forebrain may foster selectivity via
379 cortical gain increases 115116, Notably, basal forebrain BOLD activation decreased under uncertainty alongside regions
380 such as the medial prefrontal cortex and hippocampus, that are sensitive to subjective confidence 17, suggesting that

381 these regions may support stable task beliefs when uncertainty is low 85118119 (Fig. 7a). The constrained BOLD
382  modulation obsetved in older adults may thus point to teduced task set stability in low-uncettainty contexts (Fig. 7b)
383 11 plausibly as a consequence of limited cholinergic gain control. Similar ideas have been captured in the cortical gain
384  theory of aging 2, but in the context of the dopamine system 312!, Computational models and pharmacological
385  studies indeed suppott a role of dopamine availability in task set stability and flexibility 22123, For instance,
386 amphetamines (operating via the DA system) can in- and decrease task set stability in ACC 124125 depending on baseline

387  dopamine levels in frontoparietal cortex and thalamus 126, Given that our results align with the fronto-thalamic system
388  being a primary neural substrate of cognitive aging 3945127, the potential contribution of age-related dopamine
389 depletion to constrained uncertainty adjustments desetves future clarification.

390
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391 3.4 Excitability as a neural mechanism for acuity/sensitivity trade-offs.

392

393  Uncertainty motivates sensitivity to multiple features at the cost of selective precision (or “acuity”) 3. Out decoding
394 results cohere with this notion, suggesting that representational fidelity depends on whether a featute is included in
395 the current task set 18, but also on competition with other elements for shared neuro-computational resources 8.
396  Excitability changes in parietal/sensoty cortices provide a candidate neural implementation for such trade-off. One
397  index of (decreased) cortical excitability is alpha power. Models suggest that broad alpha power increases reflect active
398 inhibition of irrelevant information 12133, while targeted alpha desynchronization can selectively disinhibit relevant
399  information *. With advancing adult age, alpha power decreases broadly, which has been linked to inhibitory filtering
400  deficits 41134157 that manifest in maladaptive sensitivity also to irrelevant 7 and non-salient features 38 of compound
401 stimuli ¢. Decoding and decision analyses indeed indicate that older adults’ task performance suffered from reduced
402 single-target information, in line with selective filtering deficits 13%140. Alpha desynchronization, in turn, is thought to
403 reflect increased sensitivity when multiple input featutes 26 have to be jointly tracked #1142 and retained in working
404 memory 43146, In addition to alpha power, aperiodic dynamics such as the spectral slope of the EEG potential 147 and
405  signal entropy 8 may also index levels of neutral excitability ¢7-147. Here, we teproduce uncertainty-guided excitability
406  increases as indexed by all three signatures in younger adults 3, but find no evidence for a comparable modulation in
407  older age. Such deficit may be rooted in age-related declines of GABAetgic inhibition 42%3. Aperiodic dynamics at rest
408  suggest increased excitatory tone in older age 9151, including in the cutrent sample '*. Such imbalances 52 may
409 constrain the dynamic range of excitability modulation in older age, both on- and off-task 33133, It is also possible that
410  the consistently high level of perceptual uncertainty, i.c., the difficulty of arbitrating between choice options of each
411 feature, was ovetly taxing especially for older participants. Based on behavioral and decoding results, younger adults
412 wete indeed better able to arbitrate feature-specific options across uncertainty levels, relative to older adults. In this
413 scenario, preserved excitability modulation may be observed if choice evidence was less ambiguous for individual
414  features. However, petformance on the Stroop task suggests that age-related deficits (and individual differences) in
415  feature selection generalize to contexts of low perceptual ambiguity. Moteover, variations in perceptual difficulty
416  actoss featutes could not explain inter-individual and age differences in neural uncertainty modulation. As perceptual
417  uncertainty resolution relies on partially dissociable circuits from those implicated in feature selection 15415, future
418  work needs to chatt the ability to resolve either type actross the lifespan.

419

420 3.5 The role of wotking memory

421

422 It is nototiously challenging to distinguish the explanatory powet of competing functional mechanisms that could
423 explain age-related differences in cognition. In the cutrent paradigm the manipulation of uncertainty was accomplished
424 by varying the number of potentially relevant features, which arguably may also increase working memory load.
425 However, there are several reasons why we believe that uncertainty is the primary driver of the observed pattern of
426 results. First, the increase of age differences was greatest when transitioning from one to two possible features. While
427 both one and two features should remain well within working memory capacity, the difference between these two
428 conditions is highly significant on the uncertainty dimension (i.e., the contrast between certainty and uncertainty).
429 Further, our reversed-inference analyses indicate that the neuroanatomical results are more consistent with age effects
430 in uncertainty processing than in working-memory functioning. On a more theoretical level, it is important to note
431 that when it comes to aging, working memory is not a simple, unidimensional construct. For example, the fact that
432 age-independent individual differences and age differences express themselves in markedly different manners 157159,
433 makes this construct much less attractive as a general, candidate mechanism. Instead, an age-related failure to
434 dynamically respond to uncertainty has the potential of providing a unifying explanation of age differences across
435  patadigms and domains.

436

437 3.6 Conclusion

438

439 Uncertainty provides an important signal for adaptive cognitive control. We highlight that implementing such
440  uncertainty-based control presents a principled challenge for the aged brain. Our results thus argue that uncertainty
441 provides a useful lens on healthy cognitive aging and undetline the need to better understand the integrated neural
442 basis of estimating and computationally leveraging uncertainty signals across the lifespan.
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443 Methods

444

445 Sample. 47 healthy young adults (mean age = 25.8 years, SD = 4.6, range 18 to 35 years; 25 women) and 53 healthy
446 older adults (mean age = 68.7 years, SD = 4.2, range 59 to 78 years; 28 women) performed a perceptual decision task
447 during 64-channel active scalp EEG acquisition. 42 younger adults and all older adults returned for a subsequent 3T
448 fMRI session. We recruited a combined total of N = 100 patticipants, with approximately age-matched and gender-
449 matched sample sizes informed by our prior inter-individual work 30. Gender of participants was determined based
450  on self-report. Participants wete tectuited from the patticipant database of the Max Planck Institute for Human
451 Development, Betlin, Germany (MPIB). Participants were right-handed, as assessed with a modified version of the
452 Edinburgh Handedness Inventory 1, and had normal or corrected-to-normal vision. Participants reported to be in
453  good health with no known histoty of neutrological or psychiatric incidences and wete paid for their patticipation (10
454 € per hour). All older adults had Mini Mental State Examination (MMSE) 11.162 scores above 25. All participants gave
455 written informed consent according to the institutional guidelines of the Deutsche Gesellschaft fiir Psychologie
456 (DGPS) ethics boatd, which approved the study.

457

458 Procedure: EEG Session. Participants were seated 60 cm in front of a monitor in an acoustically and electrically
459 shielded chamber with their heads placed on a chin rest. Following electrode placement, participants were instructed
460  to rest with their eyes open and closed, each for 3 minutes. Afterwards, participants performed a Stroop task (see
401 below), followed by the visual attention task instruction & practice (see below), the performance of the task and a

462 second Stroop assessment. Stimuli were presented on a 60 Hz 1920x1080p LCD screen (AG Neovo X24) using
463  PsychToolbox 3.0.11 163165 The session lasted ~3 hours. EEG was continuously recorded from 60 active (Ag/AgCl)
464  electrodes using BrainAmp amplifiers (Brain Products GmbH, Gilching, Germany). Scalp electrodes wete atranged
465  within an elastic cap (EASYCAP GmbH, Herrsching, Germany) according to the 10% system 66, with the ground

466  placed at AFz. To monitor eye movements, two additional electrodes were placed on the outer canthi (hotizontal
467 EOG) and one electrode below the left eye (vertical EOG). During recording, all electrodes were referenced to the
468  right mastoid electrode, while the left mastoid electrode was recorded as an additional channel. Online, signals were

469 digitized at a sampling rate of 1 kHz. In addition to EEG, we simultaneously tracked eye movements and assessed
470  pupil diameter using EyeLink 1000+ hardware (SR Reseatch, v.4.594) with a sampling rate of 1kHz.

471

472 Procedure: MRI session. A second testing session included structural and functional MRI assessments. First,
473  patticipants teceived a short refresh of the task (“MAAT”, see below) instructions and practiced the task outside the
474 scanner. Then, participants wete placed in the TimTrio 3T scanner and were instructed in the button mapping. We
475 collected the following sequences: T1w, task (4 runs), T2w, resting state, DTI, with a 15 min out-of-scanner break
476 following the task acquisition. The session lasted ~3 houts. Whole-brain task fMRI data (4 runs 4 ~11,5 mins, 1066

477  volumes per run) wete collected via a 3T Siemens TrioTim MRI system (Etlangen, Germany) using a multi-band EPI
478 sequence (factor 4; TR = 645 ms; TE = 30 ms; flip angle 60°; FoV = 222 mm; voxel size 3x3x3 mm; 40 transverse
479 slices. The first 12 volumes (12 X 645 ms = 7.7 sec) were removed to ensure a steady state of tissue magnetization
480 (total remaining volumes = 1054 per run). A T1-weighted structural scan (MPRAGE: TR = 2500 ms; TE = 4.77 ms;
481 flip angle 7°; FoV = 256 mm; voxel size 1x1x1 mm; 192 sagittal slices) and a T2-weighted structural scan wete also

482 acquired (GRAPPA: TR = 3200 ms; TE = 347 ms; FoV = 256 mm; voxel size 1x1x1 mm; 176 sagittal slices).
483
484  The multi-attribute attention task (“MAAT”). The MAAT requites participants to sample up to four visual

485  features in a compound stimulus, in the absence of systematic variation in bottom-up visual stimulation (see Figure
486  1). Participants wete shown a dynamic stimulus that combined four features of visual squares: theit color (red/green),
487 movement direction (left, right), size (small, large) and saturation (low, high). The task incorporates features from
488  random dot motion tasks which have been extensively studied in both animal models 167169 and humans 55170,
489 Following stimulus presentation, a probe queried the prevalence of one feature (e.g., color: whether the stimulus
490 contained more red or green squares) via 2-AFC (alternative forced choice). Before stimulus onset, a valid cue
491 informed participants about the feature set, out of which the probe feature would be selected. We parametrically
492 manipulated task uncertainty by including between one and four features in the cue. Participants were instructed to
493  respond as fast and accurately as possible to increase their chance of bonus. They wete instructed to use cue

494 information to guide their attention during stimulus presentation between “focusing on a single feature” vs.
495  “considering multiple features” to optimally prepare for the upcoming probe.
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496 The perceptual difficulty of each feature was determined by (a) sensory differences between the two options
497  and (b) the relative evidence for either option. For (a) the following values wete used: high (RGB: 128, 255, 0) and
498 low saturation green (RGB: 192, 255, 128) and high (RGB: 255, 0, 43) and low saturated red (RGB: 255, 128, 149) for

499 color and saturation, 5 and 8 pixels for size differences and a coherence of .2 for directions. For (b) the relative choice
500 evidence was chosen as follows: color: 60/40; direction: 80/20; size: 65/35; saturation: 60/40. Parameter difficulty
501 was established in a pilot population, with the aim to produce above-chance accuracy for individual features.
502 Parameters wete held constant across age groups to equate bottom-up inputs.

503 Each session included four approx. 10 min task runs, each including eight blocks of eight trials (i.e., a total
504 of 32 trial blocks; 256 trials). The size and constellation of the cue set was held constant within eight-trial blocks to
505 reduce set switching and working memory demands. At the onset of each block, the valid cue set, composed of one
506  to four target featutes, was presented for 5 s. Each trial was structured as follows: tecuing phase (1 s), fixation phase
507 (2 s), dynamic stimulus phase (3 s), probe phase (incl. response; 2 s); ITI (un-jittered; 1.5 s). At the offset of each
508 block, participants received performance feedback for 3 s. The four features spanned a constellation of 16 feature
509 combinations (4x4), of which presentation frequency was matched within participants. The size and type of the cue
510 set was pseudo-randomized: Within each run, every set size was presented once, but never directly following a block
511 of the same set size. In every block, each feature in the active set acted as a probe in at least one trial. Moreover, any
512 feature served as a probe equally often across blocks. The dominant options for each feature were counterbalanced
513 across all trials of the experiment. To retain high motivation during the task and encourage fast and accurate responses,
514 we instructed participants that one response would randomly be drawn at the end of each block; if this response was
515 correct and faster than the mean RT during the preceding block, they would earn a reward of 20 cents. However, we
516  pseudo-randomized feedback such that all participants received an additional fixed payout of 10 € per session. This
517 bonus was paid at the end of the second session, at which point patticipants were debriefed.

518

519 Stroop performance. Participants performed a voiced Stroop task before and after the main MAAT task in the EEG
520 session. EEG signals were acquired during task performance. One participant did not complete the second Stroop
521 acquisition. In the Stroop task, we presented three words (RED, GREEN, BLUE) ecither in the congruent or
522 incongruent display colot. Each of the two runs consisted of 81 trials, with fully matched combinations, i.e., 1/3

523 congruent trials. Stimuli were presented for two seconds, followed by a one-second I'TI with a centrally presented
524  fixation cross. Participants were instructed to indicate the displayed color as fast and accurately as possible following
525 stimulus onset by speaking into a microphone. During analysis, speech on- and offsets were pre-labeled automatically

526  using a custom tool (Computet-Assisted Response Labeler (CARL); doi: 10.5281/zenodo.7505622), and manually
527  inspected and refined by one of two trained labelers. Voiced responses were manually labeled using the CARL GUIL
528 Speech onset times (SOTs) were highly reliable across two Stroop sessions preceding and following the MAAT (r =

529 .83, p =5¢-20), as were individual interference costs (r = .64, p =5e-13). We therefore averaged SOT's estimates across
530 both runs, where available. For EEG analyses, single-trial time series were aligned to SOTs, and averaged according
531 to coherence conditions. The centroparietal positive potential was extracted from channel POz, at which we observed
532 a maximum potential during the average 300 ms prior to SOT (see inset in Fig. 3a).

533

534  Behavioral estimates of probe-related decision processes. Sequential sampling models, such as the drift-diffusion
535  model, have been used to charactetize evolving petceptual decisions in 2-AFC random dot motion tasks 55, memory
536 rettieval 17!, and probabilistic decision making 172. We estimated individual evidence integration parameters within the

537 HDDM 0.6.0 toolbox > to regularize relatively sparse within-subject data with group priors based on a large number
538  of participants. Premature responses faster than 250 ms were excluded prior to modeling, and the probability of

539 outliers was set to 5%. 7000 Markov-Chain Monte Carlo samples were sampled to estimate parameters, with the first
540 5000 samples being discarded as burn-in to achieve convergence. We judged convergence for each model by visually
541 assessing both Markov chain convergence and posterior predictive fits. Individual estimates were averaged across the
542 remaining 2000 samples for follow-up analyses. We fitted data to cotrect and incorrect RT's (termed ‘accutacy coding
543 in Wiecki, et al. 3¥). To explain differences in decision components, we compared four separate models. In the ‘full
544 model’, we allowed the following parameters to vary between conditions: (i) the mean drift rate across trials, (i) the
545 threshold separation between the two decision bounds, (iii) the non-decision time, which represents the summed
546  duration of sensory encoding and response execution. In the remaining models, we reduced model complexity, by
547  only varying (a) drift, (b) drift + threshold, or (¢) drift + NDT, with a null model fixing all three parametets. For
548  model comparison, we first used the Deviance Information Critetion (DIC) to select the model which provided the

549 best fit to out data. The DIC compates models based on the maximal log-likelihood value, while penalizing model
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550  complexity. The full model provided the best fit to the empitical data based on the DIC index (Figure S1c) in both
551 the EEG and the fMRI session, and in either age group. Posterior predictive checks indicated a suitable recovery of
552 behavioral effects using this full solution. Given the obsetrvation of high reliability between sessions 3 (see also Figure
553  S1-2), we averaged parameter estimates across the EEG and fMRI sessions for the main analysis. In contrast with
554  previous work ¥, we did not constrain boundary separation estimates '7? here given out observation of CPP threshold
555 differences in older adults (see Figure S1-3a). See also Text 1-2 for a brief discussion of NDT and boundary separation.
556

557 EEG preprocessing. Preprocessing and analysis of EEG data were conducted with the FieldTtip toolbox
558 (v.20170904) 17* and using custom-written MATLAB (The MathWorks Inc., Natick, MA, USA) code. Offline, EEG
559  data were filtered using a 4% order Butterworth filter with a passband of 0.5 to 100 Hz. Subsequently, data were
560  downsampled to 500 Hz and all channels wete re-referenced to mathematically averaged mastoids. Blink, movement
561 and heart-beat artifacts wete identified using Independent Component Analysis (ICA; 175) and removed from the
562 signal. Artifact-contaminated channels (determined across epochs) were automatically detected using (a) the FASTER
563  algorithm 176, and by (b) detecting outliers exceeding three standard deviations of the kurtosis of the distribution of
564  powert values in each epoch within low (0.2-2 Hz) or high (30-100 Hz) frequency bands, respectively. Rejected channels

565 wete interpolated using spherical splines '77. Subsequently, noisy epochs were likewise excluded based on a custom
566  implementation of FASTER and on recursive outlier detection. Finally, recordings were segmented to stimulus onsets
567  and wete epoched into sepatate trials. To enhance spatial specificity, scalp cutrent density estimates wete detived via

568 4t order spherical splines 177 using a standard 1005 channel layout (conductivity: 0.33 S/m; regularization: 1°-05; 14t
569 degree polynomials).

570

571 Electrophysiological estimates of probe-related decision processes.

572

573 Centro-Parietal Positivity (CPP). The Centro-Parietal Positivity (CPP) is an electrophysiological signature of
574 internal evidence-to-bound accumulation >173178, We investigated the task modulation of this established signature

575 and assessed its convergence with behavioral parameter estimates. To derive the CPP, preprocessed EEG data were
576  low-pass filtered at 8 Hz with a 6™ order Butterworth filter to exclude low-frequency oscillations, epoched relative to
577  response and averaged across trials within each condition. In accordance with the literature, this revealed a dipolar

578  scalp potential that exhibited a positive peak over parietal channel POz (Fig. 1¢). We temporally normalized individual
579 CPP estimates to a condition-specific baseline during the final 250 ms preceding probe onset. As a proxy of evidence

580 drift rate, CPP slopes were estimates via linear regression from -250 ms to -100 ms surrounding response execution,
581 while the average CPP amplitude from -50 ms to 50 ms served as an indicator of decision thresholds (i.e., boundary
582 separation; e.g., 13).

583

584  Contralateral mu-beta. Decteases in contralateral mu-beta power provide a complementary, effector-specific
585 signature of evidence integration 36173, We estimated mu-beta power using 7-cycle wavelets for the 8-25 Hz range with
586  astep size of 50 ms. Spectral power was time-locked to probe presentation and response execution. We re-mapped
587 channels to describe data recorded contra- and ipsi-lateral to the executed motor response in each trial, and averaged
588 data from those channels to derive grand average mu-beta time courses. Individual average mu-beta time series were
589 baseline-corrected using the -400 to -200 ms prior to probe onset, separately for each condition. For contralateral
590  motor responses, remapped sites C3/5 and CP3/CP5 were selected based on the grand average topography for
591 lateralized response executions (see inset in Figure S2a). Mu-beta slopes were estimated via linear regression from -
592 250 ms to -50 ms prior to response execution, while the average power from -50 ms to 50 ms indexed decision
593  thresholds (e.g., '7).

594

595 Electrophysiological indices of top-down modulation during sensation

596

597 Low-frequency alpha and theta power. We estimated low-frequency power via a 7-cycle wavelet transform (linearly
598 spaced center frequencies; 1 Hz steps; 2 to 15 Hz). The step size of estimates was 50 ms, ranging from -1.5 s ptior to
599 cue onset to 3.5 s following stimulus offset. Estimates wete loglO-transformed at the single trial level 7%, with no
600 explicit baseline-correction. For statistics, data were averaged across time windows of interest (see respective Figure
601 captions) and entered a task-PLS analysis (see “Multivatiate partial least squares analyses”) to quantify the magnitude
602  of power modulation as a function of target load without the need to pre-specify relevant channels.

603
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604  Steady State Visual Evoked Potential (SSVEP). The SSVEP characterizes the phase-locked, entrained visual
605 activity (here 30 Hz) during dynamic stimulus updates (e.g., ). These features differentiate it from induced broadband
606  activity or muscle artefacts in similar frequency bands. We used these propetties to normalize individual single-trial
607 SSVEP responses prior to averaging: (a) we calculated an FFT for overlapping one second epochs with a step size of
608 100 ms (Hanning-based multitaper) and averaged them within each uncertainty condition; (b) spectrally normalized
609 30 Hz estimates by subtracting the average of estimates at 28 and 32 Hz, effectively removing broadband effects (i.c.,
610  apetiodic slopes), and; (c) we subtracted a temporal baseline -700 to -100 ms prior to stimulus onset. Linear uncertainty
611 effects on SSVEPs were assessed by paired t-tests on linear uncertainty slope estimates across posterior channel
612 averages.

613

614  Time-resolved sample entropy. Sample entropy '#! quantifies the irregularity of a time seties of length IN by assessing

615 the conditional probability that two sequences of # consecutive data points will remain similar when another sample
616 (m+1) is included in the sequence (for a visual example see Figure 1A in 148). Sample entropy is defined as the inverse
617 natural logarithm of this conditional similarity: The similarity criterion (r) defines the tolerance within which two points
618 are considered similar and is defined relative to the standard deviation (~variance) of the signal (here set to r = .5).
619  We set the sequence length 7 to 2, in line with previous applications 8. An adapted version of sample entropy
620 calculations implemented in the mMSE toolbox (available from https://github.com/LNDG/mMSE) was used 148,182,
621 wherein entropy is estimated across discontinuous data segments to provide time-resolved estimates. The estimation
622 of scale-wise entropy actoss trials allows for an estimation of coatse scale entropy also for short time-bins (i.e., without
623  requiting long, continuous signals), while quickly converging with entropy estimates from continuous tecordings 8.
624  To remove the influence of postetior-occipital low-frequency rhythms on entropy estimates, we notch-filtered the 8-
625 15 Hz alpha band using 6% order Butterworth filter prior to the entropy calculation 3. Time-resolved entropy
626 estimates were calculated for 500 ms windows from -1 s pre-stimulus to 1.25 s post-probe with a step size of 150 ms.
627 As entropy values are implicitly normalized by the variance in each time bin via the similatity criterion, no temporal

628  baseline cortection was applied.

629

630  Apetiodic (1/f) slopes. The aperiodic 1/f slope of neural recordings is closely related to the sample entropy of
631 broadband signals '8 and has been suggested as a proxy for cortical excitation-inhibition balance '47. Spectral estimates
632  were computed by means of a Fast Foutier Transform (FFT) over the final 2.5 s of the presentation petiod (to exclude
633 onset transients) for lineatly spaced frequencies between 2 and 80 Hz (step size of 0.5 Hz; Hanning-tapered segments
634 zero-padded to 20 s) and subsequently averaged. Spectral power was log10-transformed to render power values more
635 normally distributed across participants. Power spectral density (PSD) slopes were estimated using the fooof toolbox
636 (v1.0.0-dev) using default parameters 84,

637

638  Pupil diameter. Pupil diameter was recorded duting the EEG session using EyeLink 1000 at a sampling rate of 1000
639  Hz and was analyzed using FieldTtip and custom-written MATLAB scripts. Blinks wete automatically indicated by
640 the EyeLink software (version 4.40). To increase the sensitivity to periods of partially occluded pupils or eye

641 movements, the first derivative of eye-tracker-based vertical eye movements was calculated, z-standardized, and
642  outliers >= 3 STD wete removed. We additionally removed data within 150 ms preceding ot following indicated
643 outliers. Finally, missing data were linearly interpolated, and data were epoched to 3.5 s prior to stimulus onset to 1 s
644  following stimulus offset. We quantified phasic arousal responses via the rate of change of pupil diameter traces as
645 this measure (i) has higher temporal precision and (ii) has been more strongly associated with noradrenergic responses
646  than the overall response '8. We down-sampled pupil timeseries to 100 Hz. First detivative pupil traces were
647 smoothed using a 300 ms moving median. For statistics, timeseries were entered into a task-PLS (see “Multivariate
648  partial least squares analyses”) to quantify the magnitude of pupil modulation as a function of tatget load without the
649  need to pre-specify a relevant time window.

650

651 fMRI-based analyses

652

653 Preprocessing of functional MRI data. fMRI data were preprocessed with FSL 5 (RRID:SCR_002823) 186,187, Pre-
654  processing included motion cortrection using McFLIRT, smoothing (7mm) and high-pass filtering (.01 Hz) using an
655 8th order zero-phase Butterworth filter applied using MATLAB’s filtfilt function. We registered individual functional
656  runs to the individual, ANTS brain-extracted T2w images (6 DOF), to T1w images (6 DOF) and finally to 3mm
657  standatd space ICBM 2009c MNI152 nonlinear symmettic) 188 using nonlinear transformations in ANT's 2.1.0 '8 (for
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658  one patticipant, no T2w image was acquited and 6 DOF transformation of BOLD data was preformed directly to the
659  Tlw structural scan). We then masked the functional data with the ICBM 2009¢ GM tissue prior (thresholded at a
660 probability of 0.25), and detrended the functional images (up to a cubic trend) using SPM12’s spm_detrend. We also

661 used a series of extended preprocessing steps to further reduce potential non-neural artifacts 153190, Specifically, we
662 examined data within-subject, within-run via spatial independent component analysis (ICA) as implemented in FSL-
663  MELODIC "' Due to the high multiband data dimensionality in the absence of low-pass filtering, we constrained
664  the solution to 30 components per participant. Noise components were identified according to several key critetia:
665 a) Spiking (components dominated by abrupt time seties spikes); b) Motion (prominent edge or “ringing” effects,
666 sometimes [but not always| accompanied by large time series spikes); ¢) Susceptibility and flow attifacts (prominent
667  air-tissue boundary ot sinus activation; typically represents cardio/tespiratory effects); d) White matter (WM) and
668 ventricle activation 9% ¢) Low-frequency signal drift 1%3; f) High power in high-frequency ranges unlikely to represent
669  neural activity (= 75% of total spectral power ptresent above .10 Hz;); and g) Spatial distributon (“spotty” ot
670  “speckled” spatial pattern that appeats scattered randomly across = 25% of the brain, with few if any clusters with =
671 80 contiguous voxels). Examples of these various components we typically deem to be noise can be found in 4. By
672 default, we utilized a conservative set of rejection criteria; if manual classification decisions were challenging due to
673  mixing of “signal” and “noise” in a single component, we generally elected to keep such components. Three
674 independent raters of noise components were utilized; > 90% inter-rater reliability was required on separate data
675 before denoising decisions were made on the current data. Components identified as artifacts were then regressed
676 from corresponding fMRI runs using the regfilt command in FSL.. To reduce the influence of motion and physiological
677 fluctuations, we regtessed FSL’s 6 DOF motion parametets from the data, in addition to average signal within white
678 matter and CSF masks. Masks were created using 95% tissue probability thresholds to create conservative masks. Data
679 and regressors were demeaned and linearly detrended prior to multiple linear regression for each run. To further
680 reduce the impact of potential motion outliers, we censored significant DVARS outliers during the regression as

681 described by . We calculated the ‘practical significance’ of DVARS estimates and applied a threshold of 5 1%. The
682 regression-based residuals were subsequently spectrally interpolated during DVARS outliers as described in 15 and
683 7. BOLD analyses wete restricted to participants with both EEG and MRI data available (N = 42 YA, N = 53 OA).
684

685 fMRI decoding of prevalent feature options. We performed a decoding analysis to analyze the extent to which

686  participants’ visual cortices contained information about the prevalent option of each feature. N = 2 older adults with
687  two missing runs each wete not included in this analysis due to the limited number of eligible trials. We trained a
688  decodet based on BOLD signals from within a visual cortex mask that included Julich parcellations ranging from V1
689 to area MT. We resliced the mask to 3mm and created an intersection mask with the cortical grey matter mask used
690 throughout the remaining analyses. For classification analyses, we used linear support-vector machines (SVM) 198
691 implemented with libsvm (www.csie.ntu.edu.tw/~cjlin/libsvm). As no separate session was tecorded, we trained
692 classifiers based on all trials (across uncertainty conditions) in which the target feature was probed, therefore
693 necessitating but not exhaustively capturing trials on which the respective feature was also cued. By experimental
694  design, the number of trials in which a target feature was probed was matched across uncertainty levels. We used a
695 bootstrap classification approach in the context of leave-one-out cross-validation to derive single-trial estimates of
696  decoding accuracy. To increase the signal-to-noise ratio for the decoders, we averaged randomly selected trials into
697 three folds (excluding any trial used for testing) and concatenated two pseudo-trials from each condition to create the
698  training set. Trained decodets were then applied to the left-out trial. This train-and-test procedure was randomly
699 repeated 100 times to create bootstrapped single-trial estimates. Finally, decoding accuracy was averaged across trials
700 based on condition assignment (e.g., whether a given feature was cued or uncued). To assess above-chance decoding
701 accuracy in time, we used univariate cluster-based permutation analyses (CBPAs). These univariate tests were
702 petformed by means of dependent samples t-tests, and cluster-based permutation tests 1% were performed to control
703 for multiple comparisons. Initially, a clustering algorithm formed clusters based on significant t-tests of individual data
704 points (p <.05, two-sided; cluster entry threshold) with the spatial constraint of a cluster covering a minimum of three
705 neighboring channels. Then, the significance of the observed cluster-level statistic (based on the summed t-values
706 within the cluster) was assessed by compatison to the distribution of all permutation-based cluster-level statistics. The
707 final cluster p-value was assessed as the proportion of 1000 Monte Catlo iterations in which the clustet-level statistic
708 was exceeded. Cluster significance was indicated by p-values below .025 (two-sided cluster significance threshold). To
709 test uncertainty and age effects, we initially fitted linear mixed effects models with random intercepts and fixed effects
710 of uncertainty, age, and an uncettainty x age interaction. As no significant interaction was indicated for any of the

711 models (probed: p = 0.760; unprobed: p = 0.434; all: p = 0.625), we removed the interaction term for the main effect
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712 estimation. We constrained analysis to timepoints for which the cluster-based permutation analysis indicated above-
713 chance decoding for cued features (Fig. 2a; 4.5-11.5 s post-stimulus onset). We focused on probed and unprobed
714 feature trials, as they are matched in trial number at each uncertainty level.

715

716 ~ BOLD uncertainty modulation and relation to multi-modal signatures. We conducted a 15 level analysis using
717 SPM12 to identify beta weights for each condition separately. Design variables included stimulus presentation (4
718 volumes; separate regressors for each uncertainty condition; parametrically modulated by sequence position), onset
719 cue (no mod.), and probe (2 volumes, parametric modulation by RT). Design vatiables were convolved with a
720 canonical HRF, including its temporal derivative as a nuisance term. Nuisance regressors included 24 motion
721 parameters 200, as well as continuous DVARS estimates. Autotregressive modelling was implemented via FAST. Output
722 beta images for each uncertainty condition were finally averaged across runs. At the group (204) level, we examined
723 the relatdonship between voxel-wise 15t level beta weights and uncertainty conditions within a task PLS analysis; and
724 probed links between linear BOLD modulation and interindividual differences in multi-modal signatures of interest
725 via a behavioral PLS (see Multivariate partial least squares analyses). For visualization, spatial clusters were defined based
726 on a minimum distance of 10 mm, and by exceeding a size of 25 voxels. We identified regions associated with peak
727  activity based on cytoarchitectonic probabilistic maps implemented in the SPM Anatomy Toolbox (Vetsion 2.2¢) 201,
728 If no assignment was found, the most proximal assighment to the peak coordinates was reported.

729

730  Temporal dynamics of thalamic engagement. To visualize the uncertainty modulation of thalamic activity, we
731 extracted signals within a binary mask of thalamic divisions extracted from the Morel atlas 22, Preprocessed BOLD
732 timeseries were segmented into trials, spanning the period from the stimulus onset to the onset of the feedback phase.
733 Given a time-to-peak of a canonical hemodynamic response function (HRF) between 5-6 seconds, we designated the
734 3 second interval from 5-8 seconds following the stimulus onset trigger as the stimulus presentation intetval, and the
735 2 second interval from 3-5 s as the fixation interval, respectively. Single-trial time series were then temporally
736  normalized to the temporal average during the approximate fixation interval.

737

738 Thalamic loci of behavioral PLS. To assess the thalamic loci of most reliable behavioral relations, we assessed
739 bootstrap ratios within two thalamic masks. First, for nucleic subdivisions, we used the Morel parcellation scheme as

740 consolidated and kindly provided by Hwang et al. 293 for 3 mm data at 3T field strength. The abbreviations are as
741 follows: AN: anterior nucleus; VM: ventromedial; VL: ventrolateral; MGN: medial geniculate nucleus; LGN: lateral

742 geniculate nucleus; MD: mediodorsal; PuA: anterior pulvinar; LP: lateral-postetior; IL: intra-laminar; VA: ventral-
743 anterior; PuM: medial pulvinar; Pul: pulvinar proper; Pul.: lateral pulvinar. Second, to assess cortical white-matter
744 projections we considered the ovetlap with seven structurally detived cortical projection zones suggested by Horn &

745  Blankenburg 24, which were detived from a latge adult sample (IN = 169). We binatized continuous probability maps
746  at a relative 75% threshold of the respective maximum probability, and re-sliced masks to 3mm (ICBM 2009c¢
747 MNI152).

748

749 Statistical analyses

750

751 Outlier handling. For each signature, we defined outliers at the subject-level as individuals within their respective
752 age gtoup whose values (e.g., estimates of linear modulation) exceeded three scaled median absolute deviations (MAD)
753 as implemented in MATLAB. Such individual data points wetre winsotized ptior to statistical analysis. For repeated
754 measures analyses, such individuals were removed ptior to statistical assessment.

755

756  Linear uncertainty effect estimates. To estimate the linear uncertainty modulation of dependent variables, we
757 calculated 1°t level beta estimates (y = intercept+B*target load+e) and assessed the slope difference from zero at the
758  within-group level (see Table S1) using two-sided paired t-tests. Similatly, we compated linear uncertainty effect
759 estimates between groups using two-sides unpaired t-tests. We assessed the relation of individual linear load effects
760  between measutes of interest via Pearson cottelations.

761

762  Within-subject centering. To visually emphasize effects within participants, we use within-subject centeting across
763 repeated measures conditions by subtracting individual cross-condition means and adding global group means. For
764  these visualizations, only the mean of the dependent values directly reflects the otiginal units of measutement, as
765 individual data points by construction do not reflect between-subject variation averaged across conditions. This
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766  procedure equals the creation of within-subject standatd etrors 205 Within-subject centeting is exclusively used for
767  display and explicitly noted in the respective legends.

768

769 Multivariate partial least squares analyses. For data with a high-dimensional structure, we performed multivariate
770  partial least squares analyses. PLS is a multivariate statistical technique used to identify relationships between two sets
771 of variables. In neuroimaging studies, task PLS is often employed to relate brain activity (measured by techniques like
772 fMRI, EEG, or MEG) to experimental conditions (task PLS) or behavioral measures (behavioral PLS) 206207,

773 To assess main effects of uncertainty, we performed Task PLS analyses. Task PLS begins by calculating a
774 between-subject covariance matrix (COV) between conditions and a ‘wenral’ index. This covariance matrix is then

775 decomposed using singular value decomposition (SVD). This yields a left singular vector of expetimental condition
776 weights (U), a right singular vector of brain weights (V), and a diagonal matrix of singular values (S). Task PLS

777  produces orthogonal latent variables (LVs) that reflect optimal relations between experimental conditions (e.g., target
778 load) and (neural) data of interest. We ran a task PLS version in which group means were removed from condition
779 means to highlight how conditions were modulated by group membership, i.c., condition and condition-by-group

780 effects. Separate task PLS analyses were performed for ‘neural’ values of theta power (Fig. 4), pupil diameter (Fig. 4),
781 excitability signatures (Fig. 5), fMRI BOLD (84), and pre-stimulus alpha power (§5).

782 To examine multivariate telations between BOLD signal changes under uncertainty and interindividual
783  differences in decision, excitability, and pupil modulation, we petformed a behavioral PLS analysis (Fig. 6). This
784 analysis initially calculates a between-subject correlation matrix (CORR) between (1) a ‘neural’index and (2) a “bebavioral’

785 variable of interest (although called ‘bebavioral’, this variable can reflect any variable of interest). As the neural index, we
786 estimated linear coefficients between 1% level beta estimates ~ uncertainty, fitted within each voxel. As behavioral
787 variables, we included the signatures reported on the left of Figure Gc, incl. drift estimates, pupil diametet, spectral
788  powet, and excitability indices). Analogous to task PLS, CORR is decomposed using SVD: SVDcorr = UST”, which
789  produces a mattix of left singular vectors of behavioral weights (U), a matrix of right singular vectots of neural weights
790 (1), and a diagonal matrix of singular values ().

791 Across PLS variants, each LV (otrdered strongest to weakest in ) is charactetized by a data pattern that

792 depicts the strongest available relation between brain and conditions/behavioral data. Significance of detected
793 relations of both PLS model types was assessed using 1000 permutation tests of the singular value corresponding to
794 the LV. Subsequent bootstrapping indicated the robustness of within-LV neural saliences across 1000 data resamples
795 208, By dividing each brain weight (from 1) by its bootstrapped standard etrot, we obtained “bootstrap ratios” (BSRs)
796  as normalized robustness estimates. We generally threshold BSRs at values of £3.00 (~99.9% confidence intetval).

797  We obtained a summaty measure of each participant- and condition-wise expression of a LV’s pattern (a “Brainscore”
798 by multiplying the vector of weights (1) by each participant’s and condition’s vector of input data values (P): Brainscore
799 = I”P". To summarize uncertainty modulation, task PLS Brainscores were analyzed as described in “Linear uncertainty
800  effect estimates”.

801

802  Data availability. Primary EEG, fMRI, and behavioral data will be made available upon publication (for younger
803 adults see https://osf.io/ugdb8/). Structural MRI data are exempt from public shatring according to obtained
804 informed consent. All data are available from the corresponding authors upon reasonable request.
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806 Code availability. Experiment code is available from https://git.mpib-betlin.mpg.de/LNDG/multi-attribute-task.
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