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 2 

0. Abstract 14 
 15 
The ability to prioritize among input features according to relevance enables adaptive behaviors across the human 16 
lifespan. However, relevance often remains ambiguous, and such uncertainty increases demands for dynamic control. 17 
While both cognitive stability and flexibility decline during healthy ageing, it is unknown whether aging alters how 18 
uncertainty impacts perception and decision-making, and if so, via which neural mechanisms. Here, we assess 19 
uncertainty adjustment across the adult lifespan (N = 100; cross-sectional) via behavioral modelling and a theoretically 20 
informed set of EEG-, fMRI-, and pupil-based signatures. On the group level, older adults show a broad dampening 21 
of uncertainty adjustment relative to younger adults. At the individual level, older individuals with more young-like 22 
neural responses also showed better maintained cognitive control. Our results highlight neural mechanisms whose 23 
maintenance plausibly enables flexible task-set, perception, and decision computations across the adult lifespan. 24 
   25 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 18, 2024. ; https://doi.org/10.1101/2023.07.14.549093doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.14.549093
http://creativecommons.org/licenses/by/4.0/


 3 

1. Introduction 26 
 27 
Prioritizing goal-relevant input features is central to cognitive control and adaptive behaviors. But how do we discern 28 
relevant signals from distractions? While some contexts explicitly highlight specific features (e.g., a single road sign 29 
emphasizing school children) 1, most contexts provide only sparse (e.g., a “!” sign) or contrasting cues (e.g., multiple 30 
signs: school children, bicycles, construction, …). Whereas selective cues enable us to prioritize individual features 31 
with high acuity, ambiguity about which input features are goal-relevant (i.e., task uncertainty) demands broader levels 32 
of sensitivity, even at the expense of precision 2,3. An adaptive system should track the moment-to-moment variations 33 
in uncertainty, and tune perception, guide decisions, and select actions accordingly 4,5. Here, we examine whether a 34 
failure to adapt computations to varying task uncertainty is a key characteristic of healthy human cognitive aging.  35 
 36 
Behavioral observations support aging-related deficits in uncertainty adjustment. In contexts that cue specific task-37 
relevant features of compound stimuli, older adults remain sensitive also to irrelevant features 6,7, indicating challenges 38 
in stable feature selection 8-11. Conversely, older adults show inflexibility when contexts require dynamic feature 39 
switches 12-14, and incur substantial “fade-out” costs when transitioning from dynamic to stable contexts 15. Such 40 
observations suggest that older adults may be stuck in a suboptimal ‘middle ground’ that neither affords stable task 41 
selectivity when uncertainty is low, nor task flexibility in dynamic or uncertain contexts. Although age-related deficits 42 
have been reported for aligning computations (e.g., learning rate) to uncertainty 16, it remains unclear whether such 43 
underutilization arises from challenges in estimating uncertainty, or from an inability to leverage adequate estimates. 44 
For uncertainty to provide a principled and comprehensive lens on aging-related adaptivity constraints, first evidence 45 
is required to establish whether and/or how neural responses to uncertainty differ in the older adult brain. 46 
 47 
How brain function adjusts to variable uncertainty remains debated 17, but emerging models implicate interacting 48 
systems that define task sets, tune perception, and inform decision formation 18-20. Task-set management has been 49 
localized to fronto-parietal cortex 20,21, with recent evidence suggesting additional thalamic contributions in uncertain 50 
contexts 22,23. When task sets specify target features, perceptual networks can constrain relevant information by 51 
combining distractor inhibition 24 with target enhancement 25. In contrast, high uncertainty about goal-relevant targets 52 
may facilitate sensitivity to multiple features via broad increases in excitability 26. Such regime switches can be 53 
orchestrated by diffuse neurotransmitter systems that adjust computational precision to changing demands 2; for 54 
example, pupil dilation (as a proxy) 27 transiently increases alongside uncertainty 28,29. In young adults, we observed 55 
such an integrated response to rising uncertainty 30, encompassing increased fronto-thalamic BOLD activation, 56 
increased pupil diameter, and increased EEG-based cortical excitability. These results indicate that interacting systems 57 
enable adaptive responses to variable task uncertainty. But does the responsiveness of these systems differ across the 58 
adult lifespan? 59 
 60 
Initial behavioral evidence from reward-learning paradigms suggests that older adults are less able to represent and 61 
use uncertainty 16. Moreover, the general observation that older adults’ brain activity is less responsive to varying 62 
demands 31-33 is suggestive of less adaptive responses per se. Senescence is marked by changes across multiple systems, 63 
including diminished prefrontal cortex function 34, metabolic decreases in cognitive control networks 35-37, progressive 64 
deterioration of subcortical neurotransmitter systems 38-40 alongside reduced pupil size modulation 41, reduced cortical 65 
inhibition 42,43, and structural declines of coordinating nodes such as the thalamus 44,45. Many of these systems can be 66 
linked to the representation of, and adaptive response to, uncertainty 30. Yet, there is also a long-standing challenge in 67 
the cognitive neuroscience of aging to identify, and distinguish between, competing functional explanations for 68 
changes in adaptivity. Reductions in working-memory capacity 46, inhibition 47, or processing speed 48 have all been 69 
proposed as general changes underlying a wide range of deficits. The fact that age differences usually occur even in 70 
minimal-demand baseline conditions 32 can additionally complicate inferences from observed age differences in 71 
adaptivity. Here, we use convergent evidence from a broad spectrum of behavioral and neural signatures (decision 72 
modeling, EEG, fMRI, pupillometry) alongside a host of controls to establish altered uncertainty processing as a core 73 
feature of human brain aging. 74 
 75 
In our approach, we tested whether we could explain individual differences in adaptivity among older adults. 76 
Specifically, a “maintenance account of aging” 49 suggests that cognitive deficits with senescence emerge when neural 77 
resources become insufficient to meet demands, which implies that older adults with more “young-like” resource 78 
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engagement should better maintain function. We test this account by examining the degree to which older adults 79 
express a young-adult pattern of specific neuro-behavioral signatures when adapting to uncertainty. 80 
 81 
2. Results 82 
 83 
We examined multimodal signatures (decision modeling, EEG, fMRI, pupillometry) in 47 younger (avg. 26 years) and 84 
53 older (avg. 69 years) adults to comprehensively test uncertainty adjustment across the adult lifespan. Participants 85 
performed a perceptual decision task that manipulated uncertainty about which feature(s) of a compound stimulus 86 
would become decision relevant. By assessing signatures that change under task uncertainty in younger adults’ 30, we 87 
highlight dampened uncertainty modulation in older adults along with more constrained changes to perceptual 88 
evidence integration. Older adults with more “young-like” brain responses showed benefits in feature selection, 89 
providing initial evidence that maintained uncertainty adjustment supports adaptive control in healthy ageing.  90 
 91 
2.1 Older adults express constrained uncertainty modulation of evidence integration. 92 
 93 
During EEG and fMRI acquisition, participants performed a Multi-Attribute Attention Task ("MAAT"; 30; Figure 1a, 94 
S1-0). Participants had to sample dynamic visual stimuli that varied along four features: color (green/red), movement 95 
direction (left/right), size (small/large), and color saturation (low/high). Stimuli were presented for three seconds, 96 
after which participants had to indicate the more prevalent of two options for a single probed feature. Valid pre-97 
stimulus cues indicated which features could be probed on the current trial. Uncertainty was parametrically 98 
manipulated by increasing the number of cued features 50,51. When participants received a single cue, they could attend 99 
to only a single target feature during stimulus presentation (low uncertainty); whereas multi-feature cues reduced 100 
information about which feature would be probed, thus necessitating (extra-dimensional) attention switches 52,53 101 
between up to four target features (“target load”; high uncertainty) to optimally inform probe-related decisions. 102 
Younger and older adults performed above chance level for all visual features (Figure S1-1).  103 
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 104 

 105 

Figure 1. Older adults show constrained decision-related adjustments to rising uncertainty. (a) A Multi-Attribute 
Attention Task (“MAAT”) requires participants to sample up to four visual features of a compound stimulus for a subsequent 
perceptual decision. On each trial, participants were first cued to the set of possible probe features (here: motion direction 
and colour). The compound stimulus (which always included all four features) was then presented for 3 s, followed by a single-
feature probe (here: prevalence of red vs. green colour in the preceding stimulus). Uncertainty was manipulated as the 
number of target features (one to four) in the pre-stimulus cue (see also Figure S1-0). Behavioral data were modelled with a 
drift diffusion model, in which evidence for options is accumulated with a ‘drift rate’ . (b) Drift rate estimates from behavioural 
modelling. Older adults exhibited reduced accumulation rates for single targets (top) and were marked by more limited drift 
reductions under elevated uncertainty (bottom). Data points represent individual averages across EEG and fMRI sessions. 
Table S1 reports within-group statistics. (c) The Centro-parietal positivity (CPP) provides an a priori neural signature of 
evidence accumulation. The rate of evidence accumulation was estimated as the linear slope of the CPP during the time 
window indicated by the black bar. Older adults exhibited reduced integration slopes for single targes (top) and were marked 
by constrained load-related slope shallowing under elevated uncertainty (bottom). To illustrate age- and condition-
differences in integration slope, responses have been rescaled to the [0, 1] range for visualization. Fig. S1-3 shows original 
traces. ***a p=0e-10 ***b p = 5.1e-10 ***c p = 4.5e-05 ***d p = 2.8e-05. 
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To characterize probe-related decision processes, we fitted a hierarchical drift-diffusion model 54 (HDDM) to 106 
participants’ responses. The model estimates (a) the drift rate at which evidence is integrated towards a decision bound, 107 
(b) the distance between correct and incorrect decision bounds, and (a) the non-decision time of probe processing 108 
and response execution. Across sessions and age groups the best fitting models (see Figure S1-2) consistently included 109 
uncertainty effects in all three parameters. Here, we focused on the drift rate based on its close association to sampled 110 
evidence 30. Text S1-2 reports the remaining parameters. With rising uncertainty, drift rates decreased for both age 111 
groups, indicating that uncertainty generally constrained choice evidence for the probed feature. Crucially, relative to 112 
younger adults, older participants’ drift rates were reduced when only a single feature was cued as relevant and 113 
decreased less alongside increasing uncertainty (Figure 1b). These effects remained present when only features with 114 
age-matched single-target accuracies were included in the model (Text S1-3a). In relative terms, such dampened 115 
adjustment reflected larger relative performance decreases when transitioning into more uncertain contexts in older 116 
than younger adults (Text S1-3b). Neither accuracy nor drift rate variations between individual features could account 117 
for the observed age effects (Text S1-4). 118 

 119 
We assessed the convergence of behavioral results with an 120 
a priori neural proxy signature of evidence integration, the 121 
slope of the EEG’s centroparietal positive potential (CPP 122 
55; Figure 1c, see also Figure S1-5) prior to decisions. 123 
Consistent with behavioral modeling, CPP slopes were 124 
flatter for older relative to younger participants in single-125 
target contexts, and older adults’ uncertainty-related 126 
modulation of CPP slopes was minimal (Figure 1c). In line 127 
with both indices capturing latent evidence integration, 128 
CPP and drift estimates were inter-individually related 129 
(Fig. S1-5), both for single targets (r(93) = 0.51, 95%CI = 130 
[0.34,0.64], p = 1.4e-07; age-partial: r(92) = 0.34, 95%CI = 131 
[0.14,0.5] p = 9.3e-04), and their uncertainty modulation 132 
(r(93) = 0.45, 95%CI = [0.27,0.59], p = 6.1e-06; age-partial: 133 
r(92) = 0.27, 95%CI = [0.08,0.45], p = 0.01; Fig S1-5c). 134 
We also investigated contralateral beta power as a 135 
signature of motor response preparation 56 (Figure S1-6) 136 
but did not observe clear relations to drift rate or CPP 137 
estimates (Text S1-6), suggesting that it may be a less 138 
suitable evidence integration index here. Reduced 139 
modulation of pre-response slopes in older adults was 140 
observed (at both central and parietal sites) also after 141 
controlling for overlapping potentials locked to probe 142 
onset (Text S1-7). Taken together, older adults’ decisions 143 
were marked by reduced evidence integration rates for 144 
single targets, and more constrained absolute drift rate 145 
reductions under uncertainty.  146 
 147 
2.2 Decoding indicates uncertainty-induced trade-148 

offs between feature specificity and sensitivity.  149 
 150 
Higher single-target drift rates and larger drift reductions 151 
may reflect an adaptive trade-off between reduced single-152 
target specificity and elevated sensitivity to multiple features 153 
under higher uncertainty. However, as decisions were 154 
linked to the probed feature, they cannot elucidate how 155 
unprobed features were processed. To clarify this 156 
question, we performed fMRI decoding analyses. We 157 
created pairwise classifiers that targeted the sensory representation of each feature’s prevalent option (e.g., left vs. 158 
rightward movement) based on BOLD responses in visual cortex (see Methods: fMRI decoding of prevalent feature options). 159 

Figure 2. Decoding of prevalent options from visual cortex. (a) 
Decoding accuracy for cued and uncued features across age 
groups (means +/- SEM). Grey shading indicates the approximate 
timing of stimulus presentation considering the temporal lag in 
the hemodynamic response. Lines indicate periods of 
statistically significant differences from chance decoding 
accuracy (50%) as assessed by cluster-based permutation tests. 
The inset highlights the visual cortex mask from which signals 
were extracted for decoding. (b) Same as in a, but for separate 
feature probes. Bars indicate sign. above-chance accuracy during 
the approximate time of stimulus presentation. (c) Decoding 
accuracy for probed and unprobed features as a function of the 
number of cued targets; and decoding accuracy for all features 
as a function of age. Accuracy was averaged across significant 
decoding timepoints for cued features. Means +- within-subject 
SEM for (un)probed features, means +- SEM for age analysis. 
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The prevalent option of individual features could be decoded above chance during stimulus presentation (Fig. 2a). 160 
Robust decoding was observed for all cued features except for saturation, for which discrimination was also 161 
behaviorally most challenging (Fig. S1-1). Above-chance decoding in the same time window of interest was not 162 
observed for uncued feature options, except for motion discrimination (see Fig. 2b), indicating that participants mainly 163 
discriminated task-relevant feature options 18.  164 

Next, we assessed uncertainty and age effects on decoding accuracy. First, we applied classifiers to trials in which 165 
target features were probed, which mirrors the behavioral task. A linear mixed effects model indicated a significant 166 
reduction in decoding accuracy with increasing uncertainty (β = -0.18, SE = 0.05, t = -3.56, p = 0.00037; Figure 2c), 167 
as well as reduced decoding accuracy for older adults (β = -0.862, SE = 0.31, t = -2.77, p = 0.007), but no significant 168 
interaction (p = 0.76). Crucially, such uncertainty-related precision losses may trade-off against sensitivity to other 169 
cued, but ultimately unprobed features. We tested this possibility by considering decoding accuracy across all unprobed 170 
features in any given trial. This analysis indicated that uncertainty indeed slightly increased decoding accuracy across 171 
unprobed features (β = 0.077, SE = 0.026, t = 2.94, p = 0.0033). Decoding accuracy trended to be lower in older 172 
compared to younger adults (β = -0.259, SE = 0.134, t = -1.92, p = 0.0574). Again, no significant interaction was 173 
observed (p = 0.434). Consistent with opposing uncertainty effects on probed and unprobed features, no significant 174 
uncertainty effect was indicated when all trials were considered (β = 0.012, SE = 0.024, t = 0.53, p = 0.5927), but 175 
decoding accuracy was globally reduced in older adults (β = -.41, SE = 0.144, t = -2.84, p = 0.0056). Decoding analyses 176 
thus suggest that rising uncertainty increased sensitivity to more diverse features in both age groups, albeit at the cost 177 
of reduced precision for single features. 178 
 179 
2.3 MAAT performance generalizes to feature selection in the context of low perceptual demands.  180 
 181 

Relative to younger adults, older adults appear to have encoded less single-target evidence for downstream decisions. 182 
However, the multifaceted demands of the MAAT do not resolve whether such differences arise from task 183 
idiosyncrasies such as the necessity to resolve high perceptual uncertainty for each feature, or whether they capture 184 
differences related to flexible feature selection. To adjudicate between these accounts, participants also performed a 185 
Stroop task, which probes the capacity to inhibit prepotent responses to one of two features (the color vs. semantics) 186 
of a presented word 57. We recorded voice responses as a more naturalistic modality for older adults 58. To estimate 187 
speech onset times (SOTs ~ reaction times), we labeled the voice onset in each trial’s recording (see methods). Labeled 188 
SOTs showed high validity as the neural CPP peaked immediately prior to SOTs (Fig. 3a). In line with the Stroop 189 
literature 58, older adults incurred larger behavioral interference costs (Fig. 3b) than younger adults. These behavioral 190 
results were mirrored by neural CPP slopes: interference made pre-response CPP slopes shallower in both age groups, 191 
but to a larger extent in older adults, and the magnitude of individual slope reductions tracked behavioral interference 192 
costs (Fig. S3-1). Crucially, participants with higher MAAT drift rates were also faster responders in the incongruent 193 
condition (Fig. 3c), pointing to a better capacity to inhibit prepotent responses. Notably, relations between MAAT 194 
drift rates and SOTs in the Stroop interference condition (r(93) = -0.65, 95%CI = [-0.75,-0.51], p = 1.2e-12) held after 195 
controlling for age and SOTs in the congruent condition (r(91) = -0.29, 95%CI = [-0.46,-0.09], p = 0.01), whereas the 196 

Figure 3. MAAT evidence integration relates to prepotent response inhibition. (a) Centro-Parietal 
Positivity (CPP) traces and speech signal power suggest high validity for the semi-automatically labeled 
speech onset times (SOTs). The CPP trace has been averaged across age and congruency conditions and 
displays means +/- SEM. The inset shows the mean EEG topography during the final 300 ms prior to speech 
onset. (b) The voiced Stroop task indicated robust interference costs whose magnitude was larger in older 
adults. Table S1 reports within-group statistics. (c) Participants with larger MAAT drift rates showed faster 
responses to incongruent trials (e.g., responding blue to the inset stimulus), also after accounting for 
categorical age (squares: younger; diamonds: older) and covariation with congruent SOTs (see main text). 
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opposite was not observed (congruent SOTs-drift: r(93) = -0.4, 95%CI = [-0.56,-0.22], p = 4.7e-05, age- and incongruent 197 
SOT-partial: r(91) = 0.13, 95%CI = [-0.07,0.33], p = 0.2). As such, selective inhibition of interfering features, as 198 
opposed to processing speed, appears to be a key contributor to individual MAAT drift rates. Taken together, these 199 
findings suggest that individual and age differences in MAAT drift rates generalize to flexible feature selection also in 200 
perceptually unambiguous contexts. 201 
 202 
2.4 Theta power and pupil diameter upregulation with elevated uncertainty dampens in old age. 203 
 204 
Our results indicate age-related constraints in perceptual and decision adjustment to uncertainty. To test whether such 205 
constraints are rooted in a reduced neural uncertainty response as expected under a maintenance account of cognitive 206 
and brain aging, we assessed several a priori signatures (see 30) during MAAT stimulus presentation by means of two-207 
group task partial-least-squares analyses (PLS, see methods). First, we assessed the effect of uncertainty on 208 
frontocentral theta power, an index of cognitive control 59 and exploration under uncertainty 60. Uncertainty increased 209 
theta power in both age groups (Figure 4a), but to a lesser extent in older adults (Figure 4a). Next, we assessed phasic 210 
changes in pupil diameter, a signature that covaries with neuromodulation and arousal 61,62, has been related to frontal 211 
control 2,29,30,63,64, and is sensitive to rising demands 65 such as dynamically changing and uncertain contexts 28,66. Once 212 
again, we observed that uncertainty increased pupil diameter in both age groups, with more constrained upregulation 213 
in older adults (Fig. 4b). This effect could not be explained by a “spill-over” of differential luminance responses during 214 
the cueing phase (see Fig. S4-2). The magnitude of pupil modulation was related to individual theta power increases 215 
(r(98) = .28, 95%CI = [0.09, 0.46], p = 0.005; age-partial: r(97) = .19, 95%CI = [0, 0.38], p = 0.05), indicating a joint 216 
uncertainty modulation. These results indicate that both age groups were sensitive to rising uncertainty, albeit older 217 
adults to a dampened extent. 218 
 219 

 220 
2.5 Only younger adults adjust posterior cortical excitability to varying uncertainty. 221 
 222 
Elevated uncertainty may impact perception by altering sensory excitability. To test this, we focused on three indices 223 
related to cortical excitability: alpha power, sample entropy, and aperiodic 1/f slopes 30,67. We constrained analyses to 224 

Figure 4. Uncertainty increases theta power (a) and pupil diameter (b) across the adult lifespan, but 
increases are attenuated in older age. (Left) The topography indicates mean bootstrap ratios (BSR) from 
the task partial least squares (PLS) model. “Brainscores” summarize the expression of this pattern into a 
single score for each condition and participant (see methods; Fig. S4-1 shows condition-wise Brainscores). 
(Center) Age comparison of linear Brainscore changes under uncertainty (~age x load interaction; p-values 
refer to unpaired t-tests). Both signatures exhibited significant uncertainty modulation in younger, as well 
as older adults (as assessed via one-sample t-tests; see Table S1), with constrained modulation in older 
adults. (Right) Time series data are presented as means +- within-subject S.E.Ms. Orange shading in a 
indicates the timepoints across which data have been averaged for the task PLS. Black lines in b indicate 
time points exceeding a BSR of 3 (~99% threshold). The uncertainty modulation of pupil diameter occurred 
on top of a general pupil constriction due to stimulus-evoked changes in luminance upon task onset (see 
inset). Luminance did by stimulus design not systematically differ across load levels.   
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posterior sensors as we targeted visual-parietal cortices. Text S5-3 reports whole-channel analyses. In younger adults, 225 
we observed uncertainty effects on all three signatures (Fig. 5 a-c), akin to those we previously reported 30. In line with 226 
putative excitability increases, posterior alpha power decreased alongside uncertainty, while sample entropy increased 227 
and the aperiodic spectral slope shallowed. However, we found no evidence of a similar modulation in older adults 228 
for any of the probed signatures (Fig. 5, see also Fig. S4-1), indicating a failure of the aged system to adjust to changing 229 
uncertainty demands. Such failure may be rooted in a less precise estimation of environmental uncertainty in the aged 230 
neural system 16. However, we reduced inference demands in our design by providing overt cues on each trial, and 231 
keeping the cue set identical for eight consecutive trials. In line with age-invariant sensitivity to uncertainty cues, we 232 
observed comparable increases in pre-stimulus alpha power alongside uncertainty in both age groups (Fig. S5-1, see 233 
also Text S5-1). However, these increases were not associated with subsequent behavioral drift rate adjustments (Fig. 234 
S5-1 and Text S5-1), arguing against a direct role of pre-stimulus alpha power in adjudicating uncertainty. We 235 
additionally considered the steady-state visual evoked potential (SSVEP) as a proxy of bottom-up processing. Despite 236 
robust and comparable SSVEPs in both age groups, we found no evidence of uncertainty modulation in either group 237 
(Fig. S5-2, see also Text S5-2). Given that the 30 Hz flicker frequency was shared between all stimulus features, this 238 
suggests that sensory processing of the compound stimulus was similar between uncertainty conditions and age 239 
groups. Taken together, our results suggest that older adults may have suffered from a relative failure to adjust 240 
perceptual excitability to changing feature relevance, rather than insensitivity to uncertainty information or an inability 241 
to encode the undifferentiated stimulus. 242 
 243 
2.6  BOLD modulation links neuro-behavioral responses to uncertainty across the adult lifespan. 244 
 245 
Finally, we investigated uncertainty-related changes in whole-brain fMRI BOLD activation during stimulus 246 
presentation, extending sensitivity also to subcortical areas like the thalamus that are considered critical for managing 247 
task uncertainty 30,68,69. We targeted associations between uncertainty-related BOLD modulation and the a priori 248 
neurobehavioral signatures (i.e., uncertainty-induced changes in drift rate, theta power, pupil diameter, alpha power, 249 

Figure 5. Only younger adults upregulate cortical excitability under increased uncertainty. (a-c) Results of 
task partial least squares (PLS) models, assessing relations of alpha power (a), sample entropy (b) and aperiodic 
1/f slope (c) to uncertainty. (Left) Topographies indicate mean bootstrap ratios (BSR). Orange dots indicate the 
sensors across which data were averaged for data visualization. (Center) Age comparison of linear uncertainty 
effects (~age x uncertainty interaction). Statistics refer to unpaired t-tests. For condition-wise Brainscores, see 
Fig. S4-1. All three signatures exhibited significant uncertainty modulation in younger, but not in older adults. 
Table S1 reports within-group statistics. (Right) Time series data are presented as means +- within-subject 
S.E.Ms. Orange shading in a indicates the timepoints across which data have been averaged for the respective 
task-PLS. Black lines in b indicate time points exceeding a BSR of 3 (~99% threshold).  

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 18, 2024. ; https://doi.org/10.1101/2023.07.14.549093doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.14.549093
http://creativecommons.org/licenses/by/4.0/


 10 

1/f slopes, and sample entropy) using a multivariate behavioral PLS analysis (see Methods; Text S4-1 reports a task PLS 250 
targeting the main effect of uncertainty). We identified a single latent variable (LV; permuted p < 1e-3) with positive 251 
frontoparietal and thalamic loadings, and most pronounced negative loadings in medial PFC and hippocampus (Fig. 252 
6a, Table S5). Loadings on this inter-individual difference LV resembled the main effect of uncertainty on BOLD 253 
activation (Fig. S6-1a). Older adults expressed this LV to a lesser extent than younger adults as indicated by lower 254 
fMRI Brainscores (Fig. 6b), indicating dampened BOLD modulation in the face of changing uncertainty. Brainscores were 255 
associated with the latent score of neurobehavioral input signatures (Fig. 6c), such that less dampened, more “young-256 
like” BOLD modulation tracked a larger modulation of decision, EEG, and pupil signatures. Fig. 6d depicts relations 257 
to the individual signatures of the model: across age groups, greater BOLD modulation corresponded to larger drift 258 
rate reductions, more pronounced theta power and pupil diameter increases, and larger excitability modulation (see 259 

Figure 6: Multivariate relation of EEG/pupil/behavioral signatures to fMRI BOLD uncertainty modulation. (a) Results of a 
behavioral partial least squares (PLS) analysis linking linear changes in BOLD activation to interindividual EEG, pupil, and 
behavioral differences. Table S4 lists peak coordinates. (b) The multivariate expression of BOLD changes alongside rising 
uncertainty was reduced in older compared with younger adults. Table S1 reports within-group statistics. (c) Individual fMRI 
Brainscore differences related to behavioral composite scores, also after accounting for age covariation. Squares = younger 
individuals; diamonds = older individuals. (d) Contributing signatures to the fMRI Brainscore. All signature estimates refer to 
linear uncertainty changes. Error bars represent bootstrapped 95% confidence values. (e) Major nuclei and projection zones in 
which behavioral relations are maximally reliable according to average Bootstrap ratios (red) and the percentage of voxels in 
each subregion exceeding a BSR of 3. See Methods for abbreviations. Strongest expression is observed in nuclei that project 
to fronto-parietal cortical targets. (f) Visualization of uncertainty modulation for the mediodorsal nucleus, a “higher order” 
nucleus, and the LGN, a visual relay nucleus. Traces display mean +/- SEM. The green shading indicates the approximate 
stimulus presentation period after accounting for the delay in the hemodynamic response function. 
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Fig. S6-2a for more signatures). Brainscores did not significantly vary by gender (Fig. S6-2b). As the PLS model 260 
captured variance both within and across age groups, we used linear-mixed-effects models to assess the age-261 
dependency of these relations. These models indicated that all a priori signatures, except sample entropy and 1/f 262 
modulation, predicted Brainscores also after accounting for the shared main effects of age (Table 1). This indicates a 263 
robust coupling of uncertainty effects between most signatures, while aligning with unobserved posterior excitability 264 
modulation in older adults. Control analyses indicate that within- and between-group differences in BOLD modulation 265 
did not reflect differential choice difficulty (i.e., accuracy) for individual features (Figs. S6-3 & S1-4c).  266 

 267 
Predictor t-value p-value partial η2 

Behavioral score 4.6043 1.32e-05 0.1962 
age -6.3809 7.00e-09 0.3192 

Drift mod. -4.3334 3.74e-05 0.2308 
age -3.9624 0.0001 0.2006 

Pupil mod. 4.171 6.86e-05 0.1622 
age -6.7664 1.20e-09 0.3375 

Theta mod. 4.2533 5.05e-05 0.2005 
age -4.8662 4.69e-06 0.2471 

Alpha mod. 3.2185 0.0017 0.1294 
age -4.934 3.57e-06 0.2589 

1/f mod. 0.10914 0.91 1.4502e-04 
age -6.7591 1.24e-09 0.3574 

SampEn mod. 1.5944 0.11 0.0279 
age -6.7385 1.37e-09 0.3390 

 268 
Table 1: Summary of Brainscore predictors, while controlling for categorical age. Separate 269 
linear-mixed-effects models assessed effects of target signature, categorical age, and age x 270 
signature interactions on Brainscores. We observed no significant interaction in any of the models 271 
(all p > 0.05), pointing to consistent relations across age groups; therefore, all reported models 272 
only include main effects of signature and age. Fig. S6-2 reports similar results using partial 273 
regressions. Degrees of freedom: 92 (all models). 274 

 275 
Behavioral relations were closely tracked by thalamic BOLD activation. To obtain insights within this differentiated 276 
structure, we assessed regional loadings based on projection zones and nucleus segmentations (Fig, 6e). Loadings were 277 
highest in subregions with frontoparietal projections, including the mediodorsal nucleus (Fig. 6f). In contrast, a 278 
traditional visual “relay” nucleus of the thalamus, the lateral geniculate nucleus, did not show sensitivity to our 279 
uncertainty manipulation (Fig. 6f). This indicates a specificity of thalamic effects that coheres with functional 280 
subdivisions and alludes to uncertainty-invariant sensory processing of the compound stimulus. These results indicate 281 
that the mediodorsal thalamus contributes to maintained uncertainty adjustments across the adult lifespan. 282 

Task uncertainty is a contextual challenge 17 that necessitates flexible control, including attentional and 283 
working memory adjustment (see also Supplementary Text 7). We probed whether the fMRI activation observed here 284 
can be reduced to either of these processes. In line with our operationalization capturing latent uncertainty, reverse 285 
inference analyses indicate relations between spatial loadings of the behavioral PLS and prior “state entropy”29 286 
activation (Fig. S6-4) and meta-analytic “uncertainty” maps. This overlap was larger than with either “working 287 
memory” or “attention” maps (see Text S6-4), suggesting that task uncertainty introduces multifaceted demands 70 288 
that do not fully converge with traditional working memory or attention manipulations. 289 
 290 
3. Discussion 291 
 292 
Managing uncertainty is vital for navigating the flux of life. While some environments help us to prioritize specific 293 
inputs over others, many contexts provide few, contrasting, or ambiguous cues. Here, we manipulate task uncertainty 294 
via unambiguous cues that are repeated on each trial. This design allows us to ask how task uncertainty impacts 295 
downstream processing, in contrast with prior designs that ask how perceptually ambiguous task cues impact 296 
processing of unambiguous inputs 68,71-73. We show that healthy older adults exhibit markedly dampened adaptations 297 
to explicit uncertainty variations across coupled EEG/fMRI/pupil signatures. Our results thereby extend observations 298 
that older adults rely less on uncertainty representations to guide internal computations 16 by characterizing several 299 
plausible mechanisms for this shortfall. Specifically, our results suggest that such computational constraints do not 300 
exclusively stem from an inadequate sensitivity to latent uncertainty, as overt uncertainty cues were similarly processed 301 
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across age groups. Rather, our findings support the maintenance account of cognitive and brain aging 74, wherein 302 
individuals with a more “young-like” response more dynamically adjust perceptual and decision computations 303 
according to momentary uncertainty. 304 
 305 
3.1 Age differences in selecting features of multi-task stimuli. 306 
 307 
In our retro-cue design, evidence integration towards perceptual choices indirectly indexes how multi-task stimuli were 308 
processed. Older adults showed reduced modulation of evidence integration as a function of uncertainty but were also 309 
marked by reduced drift rates in response to single-target cues. This is consistent with age-related problems of goal 310 
selection in the context of inherently ambiguous multi-task stimuli 13,14,75. Mayr (2001) indicated that “even when 311 
people have complete knowledge about the type of action to perform in the immediate future, they have problems 312 
implementing this knowledge in an optimal manner when more than one action rule may be relevant in principle” (p. 313 
105). The MAAT’s multi-dimensional stimuli constantly feature such rule ambiguity, thus requiring internal 314 
segregation and prioritization among possible task goals. A question concerns the relation of such “global set-selection 315 
costs” to working memory capacity 13,14,75, given that multi-task stimuli (and their cues) also require maintenance of 316 
larger task sets. While the MAAT does not fully resolve this debate (Supplementary Text 7), it uses single-trial cues and 317 
homogeneous cue blocks to limit working memory demands. As such, results for the single-target condition 318 
conceptually replicate prior observations of large age differences in static set selection costs. In tandem, our uncertainty 319 
manipulation indicates age differences in dynamic task set management, indicated by reduced adjustment of 320 
downstream decision processes and larger relative performance costs in older as compared to younger adults. 321 
 322 
3.2 Fronto-thalamic circuits may enable stable and flexible feature selection across the adult lifespan. 323 
 324 
As part of the neural uncertainty response, we observed a behaviorally relevant upregulation of anterior cingulate 325 
cortex (ACC) BOLD activation and (presumably ACC-based 59,76) mediofrontal theta power. By charting the 326 
progression through multiple task contexts 77-79, the ACC can estimate contextual volatility 80 and uncertainty 16,81 to 327 
guide exploration of alternative goals, strategies, and attentional targets 60,82-84. Non-human animal studies suggest that 328 
high task uncertainty switches ACC dynamics to a state of increased excitability 67,85 and stochastic activity 86, which 329 
benefits concurrent sensitivity to alternate task rules 87. Also in humans, the ACC is sensitive to stimulus features 330 
before they behaviorally guide task strategies 86,88, suggesting that the ACC contributes to the exploration of alternate 331 
task strategies 89,90. While our results align with such contribution, we also localize high uncertainty sensitivity in the 332 
mediodorsal (MD) thalamus, which aligns with the MD being a key partner for selecting, switching, and maintaining 333 
cortical task representations 23,91,92 especially in uncertain contexts that require multifaceted computational adjustments 334 
30,68,69 . Extrapolating from this emerging perspective, the MD-ACC circuit may regulate the extent of task set stability 335 
vs. flexibility 93-95 according to contextual demands (Fig. 7a). Partial evidence for such a notion is provided by models 336 
that link task stability in low-uncertainty contexts to thalamic engagement 96. The current observations suggest a 337 
complementary thalamic role in flexible task set management. While maintained across the adult lifespan, BOLD and 338 
theta power signals indicated that such MD-ACC upregulation dampened in older age 97,98. Indeed, the ACC network 339 
is particularly susceptible to age-related metabolic declines 35-37 as well as structural atrophy 44. Retained ACC function 340 
on the other hand is a hallmark of cognitive reserve 99, relates to maintained executive function 37, and is a fruitful 341 
target of cognitive interventions in older adults 98. Given evidence of a key role of the MD thalamus in the coordination 342 
of ACC engagement and our observations of reduced MD-ACC sensitivity to uncertainty in older age, the thalamus 343 
may be an underappreciated site for cascading age-related deficits in cognitive stability and flexibility.  344 
 345 
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 346 
Figure 7. Schematic model summary. (a) In static contexts, prefrontal-hippocampal networks may signal high 347 
confidence in the current task state, which enables stable task sets, and a targeted processing of specific sensory 348 
representations with high acuity. Such selective processing of specific task-relevant features benefits their efficient 349 
evidence integration. Such selectivity would be suboptimal in contexts with uncertain or changing task sets, 350 
however. An MD-ACC circuit may track such uncertainty and enhance stochastic task set flexibility in changing or 351 
ambiguous contexts. In coordination with posterior-parietal cortex, this feasibly enables more diverse albeit less 352 
precise perceptual representations. (b) The neural system of younger adults may more dynamically adjust feature 353 
fidelity during stimulus presentation to the degree of uncertainty. Observed effects align with a switch between a 354 
specific high-acuity processing of individual features (blue), and a more diverse, if less precise processing of multiple 355 
features (red; see also Thiele & Bellgrove, 2018). In contrast, the aged neural system may be stuck in a suboptimal 356 
middle ground that affords neither stable precision, nor flexible imprecision. mPFC = medial prefrontal cortex; HC 357 
= hippocampus; ACC = anterior cingulate cortex; MD = mediodorsal thalamus. 358 

 359 
3.3 Neuromodulation may sculpt the dynamic range of uncertainty adjustments. 360 
 361 
Neurotransmitter systems provide a candidate substrate for computational adjustments under uncertainty. In response 362 
to rising uncertainty, phasic norepinephrine release can sensitize the system to incoming signals 100,101 by increasing 363 
neuro-behavioral activation 61,102,103. Pupil diameter, an index that is partially sensitive to noradrenergic drive 65, 364 
robustly increases alongside uncertainty during learning 28 and attention 104, environmental exploration 105, and change 365 
points in dynamic environments 28,66,106. Notably, increases have been observed in contexts that require an agent to 366 
learn more or less about a single option107; i.e., conditions in which sensitivity for one option increases. Here, pupil 367 
increases precede decreases in evidence integration for single features. Under the notion that uncertainty requires 368 
exploration of a larger space of options, we argue that this is akin to a lower learning rate for an individual feature at 369 
the benefit of distributed learning across uncertain features. Non-selective gain increases, e.g., provided by global 370 
arousal, can favor such distributed learning 108. We observe that pupil sensitivity to rising uncertainty is retained across 371 
the adult lifespan but dampens in older age. Such dampening hints at declining noradrenergic responsiveness in older 372 
age 41,109,110, arising from reduced LC integrity 111,112, and/or decreased LC engagement 113. Notably, pupil sensitivity 373 
to volatility has been related to the ACC as a primary source of cortical LC input 27,114, and joint increases of ACC 374 
activation and pupil diameter in uncertain, or dynamic contexts has consistently been observed in studies that record 375 
both signals 2,29,30,63,64. While future studies need to clarify the origin of constrained pupil adjustments in older age, our 376 
results affirm the relevance of the extended LC system for attentional function across the lifespan 41. In contrast to 377 
noradrenaline’s potential role in sensitizing, cholinergic innervation from the basal forebrain may foster selectivity via 378 
cortical gain increases 115,116. Notably, basal forebrain BOLD activation decreased under uncertainty alongside regions 379 
such as the medial prefrontal cortex and hippocampus, that are sensitive to subjective confidence 117, suggesting that 380 
these regions may support stable task beliefs when uncertainty is low 85,118,119 (Fig. 7a). The constrained BOLD 381 
modulation observed in older adults may thus point to reduced task set stability in low-uncertainty contexts (Fig. 7b) 382 
11, plausibly as a consequence of limited cholinergic gain control. Similar ideas have been captured in the cortical gain 383 
theory of aging 120, but in the context of the dopamine system 39,121. Computational models and pharmacological 384 
studies indeed support a role of dopamine availability in task set stability and flexibility 122,123. For instance, 385 
amphetamines (operating via the DA system) can in- and decrease task set stability in ACC 124,125 depending on baseline 386 
dopamine levels in frontoparietal cortex and thalamus 126. Given that our results align with the fronto-thalamic system 387 
being a primary neural substrate of cognitive aging 39,45,127, the potential contribution of age-related	 dopamine 388 
depletion to constrained uncertainty adjustments deserves future clarification. 389 
 390 
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3.4 Excitability as a neural mechanism for acuity/sensitivity trade-offs. 391 
  392 
Uncertainty motivates sensitivity to multiple features at the cost of selective precision (or “acuity”) 3. Our decoding 393 
results cohere with this notion, suggesting that representational fidelity depends on whether a feature is included in 394 
the current task set 18, but also on competition with other elements for shared neuro-computational resources 128. 395 
Excitability changes in parietal/sensory cortices provide a candidate neural implementation for such trade-off. One 396 
index of (decreased) cortical excitability is alpha power. Models suggest that broad alpha power increases reflect active 397 
inhibition of irrelevant information 129-133, while targeted alpha desynchronization can selectively disinhibit relevant 398 
information 44. With advancing adult age, alpha power decreases broadly, which has been linked to inhibitory filtering 399 
deficits 41,134-137  that manifest in maladaptive sensitivity also to irrelevant 7 and non-salient features 138 of compound 400 
stimuli 6. Decoding and decision analyses indeed indicate that older adults’ task performance suffered from reduced 401 
single-target information, in line with selective filtering deficits 139,140. Alpha desynchronization, in turn, is thought to 402 
reflect increased sensitivity when multiple input features 26 have to be jointly tracked 141,142 and retained in working 403 
memory 143-146. In addition to alpha power, aperiodic dynamics such as the spectral slope of the EEG potential 147 and 404 
signal entropy 148 may also index levels of neural excitability 67,147. Here, we reproduce uncertainty-guided excitability 405 
increases as indexed by all three signatures in younger adults 30, but find no evidence for a comparable modulation in 406 
older age. Such deficit may be rooted in age-related declines of GABAergic inhibition 42,43. Aperiodic dynamics at rest 407 
suggest increased excitatory tone in older age 149-151, including in the current sample 148. Such imbalances 152 may 408 
constrain the dynamic range of excitability modulation in older age, both on- and off-task 33,153. It is also possible that 409 
the consistently high level of perceptual uncertainty, i.e., the difficulty of arbitrating between choice options of each 410 
feature, was overly taxing especially for older participants. Based on behavioral and decoding results, younger adults 411 
were indeed better able to arbitrate feature-specific options across uncertainty levels, relative to older adults. In this 412 
scenario, preserved excitability modulation may be observed if choice evidence was less ambiguous for individual 413 
features. However, performance on the Stroop task suggests that age-related deficits (and individual differences) in 414 
feature selection generalize to contexts of low perceptual ambiguity. Moreover, variations in perceptual difficulty 415 
across features could not explain inter-individual and age differences in neural uncertainty modulation. As perceptual 416 
uncertainty resolution relies on partially dissociable circuits from those implicated in feature selection 154-156, future 417 
work needs to chart the ability to resolve either type across the lifespan. 418 
 419 
3.5 The role of working memory 420 
 421 
It is notoriously challenging to distinguish the explanatory power of competing functional mechanisms that could 422 
explain age-related differences in cognition. In the current paradigm the manipulation of uncertainty was accomplished 423 
by varying the number of potentially relevant features, which arguably may also increase working memory load. 424 
However, there are several reasons why we believe that uncertainty is the primary driver of the observed pattern of 425 
results. First, the increase of age differences was greatest when transitioning from one to two possible features. While 426 
both one and two features should remain well within working memory capacity, the difference between these two 427 
conditions is highly significant on the uncertainty dimension (i.e., the contrast between certainty and uncertainty). 428 
Further, our reversed-inference analyses indicate that the neuroanatomical results are more consistent with age effects 429 
in uncertainty processing than in working-memory functioning. On a more theoretical level, it is important to note 430 
that when it comes to aging, working memory is not a simple, unidimensional construct. For example, the fact that 431 
age-independent individual differences and age differences express themselves in markedly different manners 157-159, 432 
makes this construct much less attractive as a general, candidate mechanism. Instead, an age-related failure to 433 
dynamically respond to uncertainty has the potential of providing a unifying explanation of age differences across 434 
paradigms and domains. 435 
 436 
3.6 Conclusion 437 
 438 
Uncertainty provides an important signal for adaptive cognitive control. We highlight that implementing such 439 
uncertainty-based control presents a principled challenge for the aged brain. Our results thus argue that uncertainty 440 
provides a useful lens on healthy cognitive aging and underline the need to better understand the integrated neural 441 
basis of estimating and computationally leveraging uncertainty signals across the lifespan.  442 
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Methods 443 
 444 
Sample. 47 healthy young adults (mean age = 25.8 years, SD = 4.6, range 18 to 35 years; 25 women) and 53 healthy 445 
older adults (mean age = 68.7 years, SD = 4.2, range 59 to 78 years; 28 women) performed a perceptual decision task 446 
during 64-channel active scalp EEG acquisition. 42 younger adults and all older adults returned for a subsequent 3T 447 
fMRI session. We recruited a combined total of N = 100 participants, with approximately age-matched and gender-448 
matched sample sizes informed by our prior inter-individual work 30. Gender of participants was determined based 449 
on self-report. Participants were recruited from the participant database of the Max Planck Institute for Human 450 
Development, Berlin, Germany (MPIB). Participants were right-handed, as assessed with a modified version of the 451 
Edinburgh Handedness Inventory 160, and had normal or corrected-to-normal vision. Participants reported to be in 452 
good health with no known history of neurological or psychiatric incidences and were paid for their participation (10 453 
€ per hour). All older adults had Mini Mental State Examination (MMSE) 161,162 scores above 25. All participants gave 454 
written informed consent according to the institutional guidelines of the Deutsche Gesellschaft für Psychologie 455 
(DGPS) ethics board, which approved the study. 456 
 457 
Procedure: EEG Session. Participants were seated 60 cm in front of a monitor in an acoustically and electrically 458 
shielded chamber with their heads placed on a chin rest. Following electrode placement, participants were instructed 459 
to rest with their eyes open and closed, each for 3 minutes. Afterwards, participants performed a Stroop task (see 460 
below), followed by the visual attention task instruction & practice (see below), the performance of the task and a 461 
second Stroop assessment. Stimuli were presented on a 60 Hz 1920x1080p LCD screen (AG Neovo X24) using 462 
PsychToolbox 3.0.11 163-165. The session lasted ~3 hours. EEG was continuously recorded from 60 active (Ag/AgCl) 463 
electrodes using BrainAmp amplifiers (Brain Products GmbH, Gilching, Germany). Scalp electrodes were arranged 464 
within an elastic cap (EASYCAP GmbH, Herrsching, Germany) according to the 10% system 166, with the ground 465 
placed at AFz. To monitor eye movements, two additional electrodes were placed on the outer canthi (horizontal 466 
EOG) and one electrode below the left eye (vertical EOG). During recording, all electrodes were referenced to the 467 
right mastoid electrode, while the left mastoid electrode was recorded as an additional channel. Online, signals were 468 
digitized at a sampling rate of 1 kHz. In addition to EEG, we simultaneously tracked eye movements and assessed 469 
pupil diameter using EyeLink 1000+ hardware (SR Research, v.4.594) with a sampling rate of 1kHz. 470 
 471 
Procedure: MRI session. A second testing session included structural and functional MRI assessments. First, 472 
participants received a short refresh of the task (“MAAT”, see below) instructions and practiced the task outside the 473 
scanner. Then, participants were placed in the TimTrio 3T scanner and were instructed in the button mapping. We 474 
collected the following sequences: T1w, task (4 runs), T2w, resting state, DTI, with a 15 min out-of-scanner break 475 
following the task acquisition. The session lasted ~3 hours. Whole-brain task fMRI data (4 runs á ~11,5 mins, 1066 476 
volumes per run) were collected via a 3T Siemens TrioTim MRI system (Erlangen, Germany) using a multi-band EPI 477 
sequence (factor 4; TR = 645 ms; TE = 30 ms; flip angle 60°; FoV = 222 mm; voxel size 3x3x3 mm; 40 transverse 478 
slices. The first 12 volumes (12 × 645 ms = 7.7 sec) were removed to ensure a steady state of tissue magnetization 479 
(total remaining volumes = 1054 per run). A T1-weighted structural scan (MPRAGE: TR = 2500 ms; TE = 4.77 ms; 480 
flip angle 7°; FoV = 256 mm; voxel size 1x1x1 mm; 192 sagittal slices) and a T2-weighted structural scan were also 481 
acquired (GRAPPA: TR = 3200 ms; TE = 347 ms; FoV = 256 mm; voxel size 1x1x1 mm; 176 sagittal slices). 482 
 483 
The multi-attribute attention task (“MAAT”). The MAAT requires participants to sample up to four visual 484 
features in a compound stimulus, in the absence of systematic variation in bottom-up visual stimulation (see Figure 485 
1). Participants were shown a dynamic stimulus that combined four features of visual squares: their color (red/green), 486 
movement direction (left, right), size (small, large) and saturation (low, high). The task incorporates features from 487 
random dot motion tasks which have been extensively studied in both animal models 167-169 and humans 55,170. 488 
Following stimulus presentation, a probe queried the prevalence of one feature (e.g., color: whether the stimulus 489 
contained more red or green squares) via 2-AFC (alternative forced choice). Before stimulus onset, a valid cue 490 
informed participants about the feature set, out of which the probe feature would be selected. We parametrically 491 
manipulated task uncertainty by including between one and four features in the cue. Participants were instructed to 492 
respond as fast and accurately as possible to increase their chance of bonus. They were instructed to use cue 493 
information to guide their attention during stimulus presentation between “focusing on a single feature” vs. 494 
“considering multiple features” to optimally prepare for the upcoming probe. 495 
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The perceptual difficulty of each feature was determined by (a) sensory differences between the two options 496 
and (b) the relative evidence for either option. For (a) the following values were used: high (RGB: 128, 255, 0) and 497 
low saturation green (RGB: 192, 255, 128) and high (RGB: 255, 0, 43) and low saturated red (RGB: 255, 128, 149) for 498 
color and saturation, 5 and 8 pixels for size differences and a coherence of .2 for directions. For (b) the relative choice 499 
evidence was chosen as follows: color: 60/40; direction: 80/20; size: 65/35; saturation: 60/40. Parameter difficulty 500 
was established in a pilot population, with the aim to produce above-chance accuracy for individual features. 501 
Parameters were held constant across age groups to equate bottom-up inputs. 502 

Each session included four approx. 10 min task runs, each including eight blocks of eight trials (i.e., a total 503 
of 32 trial blocks; 256 trials). The size and constellation of the cue set was held constant within eight-trial blocks to 504 
reduce set switching and working memory demands. At the onset of each block, the valid cue set, composed of one 505 
to four target features, was presented for 5 s. Each trial was structured as follows: recuing phase (1 s), fixation phase 506 
(2 s), dynamic stimulus phase (3 s), probe phase (incl. response; 2 s); ITI (un-jittered; 1.5 s). At the offset of each 507 
block, participants received performance feedback for 3 s. The four features spanned a constellation of 16 feature 508 
combinations (4x4), of which presentation frequency was matched within participants. The size and type of the cue 509 
set was pseudo-randomized: Within each run, every set size was presented once, but never directly following a block 510 
of the same set size. In every block, each feature in the active set acted as a probe in at least one trial. Moreover, any 511 
feature served as a probe equally often across blocks. The dominant options for each feature were counterbalanced 512 
across all trials of the experiment. To retain high motivation during the task and encourage fast and accurate responses, 513 
we instructed participants that one response would randomly be drawn at the end of each block; if this response was 514 
correct and faster than the mean RT during the preceding block, they would earn a reward of 20 cents. However, we 515 
pseudo-randomized feedback such that all participants received an additional fixed payout of 10 € per session. This 516 
bonus was paid at the end of the second session, at which point participants were debriefed.  517 

 518 
Stroop performance. Participants performed a voiced Stroop task before and after the main MAAT task in the EEG 519 
session. EEG signals were acquired during task performance. One participant did not complete the second Stroop 520 
acquisition. In the Stroop task, we presented three words (RED, GREEN, BLUE) either in the congruent or 521 
incongruent display color. Each of the two runs consisted of 81 trials, with fully matched combinations, i.e., 1/3rd 522 
congruent trials. Stimuli were presented for two seconds, followed by a one-second ITI with a centrally presented 523 
fixation cross. Participants were instructed to indicate the displayed color as fast and accurately as possible following 524 
stimulus onset by speaking into a microphone. During analysis, speech on- and offsets were pre-labeled automatically 525 
using a custom tool (Computer-Assisted Response Labeler (CARL); doi: 10.5281/zenodo.7505622), and manually 526 
inspected and refined by one of two trained labelers. Voiced responses were manually labeled using the CARL GUI. 527 
Speech onset times (SOTs) were highly reliable across two Stroop sessions preceding and following the MAAT (r = 528 
.83, p =5e-26), as were individual interference costs (r = .64, p =5e-13). We therefore averaged SOTs estimates across 529 
both runs, where available. For EEG analyses, single-trial time series were aligned to SOTs, and averaged according 530 
to coherence conditions. The centroparietal positive potential was extracted from channel POz, at which we observed 531 
a maximum potential during the average 300 ms prior to SOT (see inset in Fig. 3a).   532 

 533 
Behavioral estimates of probe-related decision processes. Sequential sampling models, such as the drift-diffusion 534 
model, have been used to characterize evolving perceptual decisions in 2-AFC random dot motion tasks 55, memory 535 
retrieval 171, and probabilistic decision making 172. We estimated individual evidence integration parameters within the 536 
HDDM 0.6.0 toolbox 54 to regularize relatively sparse within-subject data with group priors based on a large number 537 
of participants. Premature responses faster than 250 ms were excluded prior to modeling, and the probability of 538 
outliers was set to 5%. 7000 Markov-Chain Monte Carlo samples were sampled to estimate parameters, with the first 539 
5000 samples being discarded as burn-in to achieve convergence. We judged convergence for each model by visually 540 
assessing both Markov chain convergence and posterior predictive fits. Individual estimates were averaged across the 541 
remaining 2000 samples for follow-up analyses. We fitted data to correct and incorrect RTs (termed ‘accuracy coding‘ 542 
in Wiecki, et al. 54). To explain differences in decision components, we compared four separate models. In the ‘full 543 
model’, we allowed the following parameters to vary between conditions: (i) the mean drift rate across trials, (ii) the 544 
threshold separation between the two decision bounds, (iii) the non-decision time, which represents the summed 545 
duration of sensory encoding and response execution. In the remaining models, we reduced model complexity, by 546 
only varying (a) drift, (b) drift + threshold, or (c) drift + NDT, with a null model fixing all three parameters. For 547 
model comparison, we first used the Deviance Information Criterion (DIC) to select the model which provided the 548 
best fit to our data. The DIC compares models based on the maximal log-likelihood value, while penalizing model 549 
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complexity. The full model provided the best fit to the empirical data based on the DIC index (Figure S1c) in both 550 
the EEG and the fMRI session, and in either age group. Posterior predictive checks indicated a suitable recovery of 551 
behavioral effects using this full solution. Given the observation of high reliability between sessions 30 (see also Figure 552 
S1-2), we averaged parameter estimates across the EEG and fMRI sessions for the main analysis. In contrast with 553 
previous work 30, we did not constrain boundary separation estimates 173 here given our observation of CPP threshold 554 
differences in older adults (see Figure S1-3a). See also Text 1-2 for a brief discussion of NDT and boundary separation. 555 

 556 
EEG preprocessing. Preprocessing and analysis of EEG data were conducted with the FieldTrip toolbox 557 
(v.20170904) 174 and using custom-written MATLAB (The MathWorks Inc., Natick, MA, USA) code. Offline, EEG 558 
data were filtered using a 4th order Butterworth filter with a passband of 0.5 to 100 Hz. Subsequently, data were 559 
downsampled to 500 Hz and all channels were re-referenced to mathematically averaged mastoids. Blink, movement 560 
and heart-beat artifacts were identified using Independent Component Analysis (ICA; 175) and removed from the 561 
signal. Artifact-contaminated channels (determined across epochs) were automatically detected using (a) the FASTER 562 
algorithm 176, and by (b) detecting outliers exceeding three standard deviations of the kurtosis of the distribution of 563 
power values in each epoch within low (0.2-2 Hz) or high (30-100 Hz) frequency bands, respectively. Rejected channels 564 
were interpolated using spherical splines 177. Subsequently, noisy epochs were likewise excluded based on a custom 565 
implementation of FASTER and on recursive outlier detection. Finally, recordings were segmented to stimulus onsets 566 
and were epoched into separate trials. To enhance spatial specificity, scalp current density estimates were derived via 567 
4th order spherical splines 177 using a standard 1005 channel layout (conductivity: 0.33 S/m; regularization: 1^-05; 14th 568 
degree polynomials). 569 
 570 
Electrophysiological estimates of probe-related decision processes. 571 
 572 
Centro-Parietal Positivity (CPP). The Centro-Parietal Positivity (CPP) is an electrophysiological signature of 573 
internal evidence-to-bound accumulation 55,173,178. We investigated the task modulation of this established signature 574 
and assessed its convergence with behavioral parameter estimates. To derive the CPP, preprocessed EEG data were 575 
low-pass filtered at 8 Hz with a 6th order Butterworth filter to exclude low-frequency oscillations, epoched relative to 576 
response and averaged across trials within each condition. In accordance with the literature, this revealed a dipolar 577 
scalp potential that exhibited a positive peak over parietal channel POz (Fig. 1c). We temporally normalized individual 578 
CPP estimates to a condition-specific baseline during the final 250 ms preceding probe onset. As a proxy of evidence 579 
drift rate, CPP slopes were estimates via linear regression from -250 ms to -100 ms surrounding response execution, 580 
while the average CPP amplitude from -50 ms to 50 ms served as an indicator of decision thresholds (i.e., boundary 581 
separation; e.g., 173).  582 
 583 
Contralateral mu-beta. Decreases in contralateral mu-beta power provide a complementary, effector-specific 584 
signature of evidence integration 56,173. We estimated mu-beta power using 7-cycle wavelets for the 8-25 Hz range with 585 
a step size of 50 ms. Spectral power was time-locked to probe presentation and response execution. We re-mapped 586 
channels to describe data recorded contra- and ipsi-lateral to the executed motor response in each trial, and averaged 587 
data from those channels to derive grand average mu-beta time courses. Individual average mu-beta time series were 588 
baseline-corrected using the -400 to -200 ms prior to probe onset, separately for each condition. For contralateral 589 
motor responses, remapped sites C3/5 and CP3/CP5 were selected based on the grand average topography for 590 
lateralized response executions (see inset in Figure S2a). Mu-beta slopes were estimated via linear regression from -591 
250 ms to -50 ms prior to response execution, while the average power from -50 ms to 50 ms indexed decision 592 
thresholds (e.g., 173). 593 
 594 
Electrophysiological indices of top-down modulation during sensation 595 
 596 
Low-frequency alpha and theta power. We estimated low-frequency power via a 7-cycle wavelet transform (linearly 597 
spaced center frequencies; 1 Hz steps; 2 to 15 Hz). The step size of estimates was 50 ms, ranging from -1.5 s prior to 598 
cue onset to 3.5 s following stimulus offset. Estimates were log10-transformed at the single trial level 179, with no 599 
explicit baseline-correction. For statistics, data were averaged across time windows of interest (see respective Figure 600 
captions) and entered a task-PLS analysis (see “Multivariate partial least squares analyses”) to quantify the magnitude 601 
of power modulation as a function of target load without the need to pre-specify relevant channels. 602 
 603 
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Steady State Visual Evoked Potential (SSVEP). The SSVEP characterizes the phase-locked, entrained visual 604 
activity (here 30 Hz) during dynamic stimulus updates (e.g., 180). These features differentiate it from induced broadband 605 
activity or muscle artefacts in similar frequency bands. We used these properties to normalize individual single-trial 606 
SSVEP responses prior to averaging: (a) we calculated an FFT for overlapping one second epochs with a step size of 607 
100 ms (Hanning-based multitaper) and averaged them within each uncertainty condition; (b) spectrally normalized 608 
30 Hz estimates by subtracting the average of estimates at 28 and 32 Hz, effectively removing broadband effects (i.e., 609 
aperiodic slopes), and; (c) we subtracted a temporal baseline -700 to -100 ms prior to stimulus onset. Linear uncertainty 610 
effects on SSVEPs were assessed by paired t-tests on linear uncertainty slope estimates across posterior channel 611 
averages. 612 
 613 
Time-resolved sample entropy. Sample entropy 181 quantifies the irregularity of a time series of length N by assessing 614 
the conditional probability that two sequences of m consecutive data points will remain similar when another sample 615 
(m+1) is included in the sequence (for a visual example see Figure 1A in 148).  Sample entropy is defined as the inverse 616 
natural logarithm of this conditional similarity: The similarity criterion (r) defines the tolerance within which two points 617 
are considered similar and is defined relative to the standard deviation (~variance) of the signal (here set to r = .5). 618 
We set the sequence length m to 2, in line with previous applications 148. An adapted version of sample entropy 619 
calculations implemented in the mMSE toolbox (available from https://github.com/LNDG/mMSE) was used 148,182, 620 
wherein entropy is estimated across discontinuous data segments to provide time-resolved estimates. The estimation 621 
of scale-wise entropy across trials allows for an estimation of coarse scale entropy also for short time-bins (i.e., without 622 
requiring long, continuous signals), while quickly converging with entropy estimates from continuous recordings 183. 623 
To remove the influence of posterior-occipital low-frequency rhythms on entropy estimates, we notch-filtered the 8-624 
15 Hz alpha band using 6th order Butterworth filter prior to the entropy calculation 148. Time-resolved entropy 625 
estimates were calculated for 500 ms windows from -1 s pre-stimulus to 1.25 s post-probe with a step size of 150 ms. 626 
As entropy values are implicitly normalized by the variance in each time bin via the similarity criterion, no temporal 627 
baseline correction was applied.  628 
 629 
Aperiodic (1/f) slopes. The aperiodic 1/f slope of neural recordings is closely related to the sample entropy of 630 
broadband signals 148 and has been suggested as a proxy for cortical excitation-inhibition balance 147. Spectral estimates 631 
were computed by means of a Fast Fourier Transform (FFT) over the final 2.5 s of the presentation period (to exclude 632 
onset transients) for linearly spaced frequencies between 2 and 80 Hz (step size of 0.5 Hz; Hanning-tapered segments 633 
zero-padded to 20 s) and subsequently averaged. Spectral power was log10-transformed to render power values more 634 
normally distributed across participants. Power spectral density (PSD) slopes were estimated using the fooof toolbox 635 
(v1.0.0-dev) using default parameters 184.  636 
 637 
Pupil diameter. Pupil diameter was recorded during the EEG session using EyeLink 1000 at a sampling rate of 1000 638 
Hz and was analyzed using FieldTrip and custom-written MATLAB scripts. Blinks were automatically indicated by 639 
the EyeLink software (version 4.40). To increase the sensitivity to periods of partially occluded pupils or eye 640 
movements, the first derivative of eye-tracker-based vertical eye movements was calculated, z-standardized, and 641 
outliers >= 3 STD were removed. We additionally removed data within 150 ms preceding or following indicated 642 
outliers. Finally, missing data were linearly interpolated, and data were epoched to 3.5 s prior to stimulus onset to 1 s 643 
following stimulus offset. We quantified phasic arousal responses via the rate of change of pupil diameter traces as 644 
this measure (i) has higher temporal precision and (ii) has been more strongly associated with noradrenergic responses 645 
than the overall response 185. We down-sampled pupil timeseries to 100 Hz. First derivative pupil traces were 646 
smoothed using a 300 ms moving median. For statistics, timeseries were entered into a task-PLS (see “Multivariate 647 
partial least squares analyses”) to quantify the magnitude of pupil modulation as a function of target load without the 648 
need to pre-specify a relevant time window.  649 
 650 
fMRI-based analyses 651 
 652 
Preprocessing of functional MRI data. fMRI data were preprocessed with FSL 5 (RRID:SCR_002823) 186,187. Pre-653 
processing included motion correction using McFLIRT, smoothing (7mm) and high-pass filtering (.01 Hz) using an 654 
8th order zero-phase Butterworth filter applied using MATLAB’s filtfilt function. We registered individual functional 655 
runs to the individual, ANTs brain-extracted T2w images (6 DOF), to T1w images (6 DOF) and finally to 3mm 656 
standard space (ICBM 2009c MNI152 nonlinear symmetric) 188 using nonlinear transformations in ANTs 2.1.0 189 (for 657 
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one participant, no T2w image was acquired and 6 DOF transformation of BOLD data was preformed directly to the 658 
T1w structural scan). We then masked the functional data with the ICBM 2009c GM tissue prior (thresholded at a 659 
probability of 0.25), and detrended the functional images (up to a cubic trend) using SPM12’s spm_detrend. We also 660 
used a series of extended preprocessing steps to further reduce potential non-neural artifacts 153,190. Specifically, we 661 
examined data within-subject, within-run via spatial independent component analysis (ICA) as implemented in FSL-662 
MELODIC 191. Due to the high multiband data dimensionality in the absence of low-pass filtering, we constrained 663 
the solution to 30 components per participant. Noise components were identified according to several  key  criteria:  664 
a) Spiking  (components  dominated  by  abrupt  time  series  spikes);  b) Motion (prominent  edge or “ringing” effects, 665 
sometimes [but not always] accompanied by large time series spikes); c) Susceptibility and flow artifacts (prominent 666 
air-tissue boundary or sinus  activation;  typically  represents  cardio/respiratory  effects); d) White matter (WM) and 667 
ventricle  activation 192; e) Low-frequency signal  drift 193; f) High power in high-frequency ranges unlikely to represent 668 
neural activity (≥ 75% of total spectral power present above .10 Hz;); and g) Spatial distribution (“spotty” or 669 
“speckled” spatial pattern that appears scattered randomly across ≥ 25% of the brain, with few if any clusters with ≥ 670 
80 contiguous voxels). Examples of these various components we typically deem to be noise can be found in 194. By 671 
default, we utilized a conservative set of rejection criteria; if manual classification decisions were challenging due to 672 
mixing of “signal” and “noise” in a single component, we generally elected to keep such components. Three 673 
independent raters of noise components were utilized; > 90% inter-rater reliability was required on separate data 674 
before denoising decisions were made on the current data. Components identified as artifacts were then regressed 675 
from corresponding fMRI runs using the regfilt command in FSL. To reduce the influence of motion and physiological 676 
fluctuations, we regressed FSL’s 6 DOF motion parameters from the data, in addition to average signal within white 677 
matter and CSF masks. Masks were created using 95% tissue probability thresholds to create conservative masks. Data 678 
and regressors were demeaned and linearly detrended prior to multiple linear regression for each run. To further 679 
reduce the impact of potential motion outliers, we censored significant DVARS outliers during the regression as 680 
described by 195. We calculated the ‘practical significance’ of DVARS estimates and applied a threshold of 5 196. The 681 
regression-based residuals were subsequently spectrally interpolated during DVARS outliers as described in 195 and 682 
197. BOLD analyses were restricted to participants with both EEG and MRI data available (N = 42 YA, N = 53 OA). 683 
 684 
fMRI decoding of prevalent feature options. We performed a decoding analysis to analyze the extent to which 685 
participants’ visual cortices contained information about the prevalent option of each feature. N = 2 older adults with 686 
two missing runs each were not included in this analysis due to the limited number of eligible trials. We trained a 687 
decoder based on BOLD signals from within a visual cortex mask that included Jülich parcellations ranging from V1 688 
to area MT. We resliced the mask to 3mm and created an intersection mask with the cortical grey matter mask used 689 
throughout the remaining analyses. For classification analyses, we used linear support-vector machines (SVM) 198 690 
implemented with libsvm (www.csie.ntu.edu.tw/~cjlin/libsvm). As no separate session was recorded, we trained 691 
classifiers based on all trials (across uncertainty conditions) in which the target feature was probed, therefore 692 
necessitating but not exhaustively capturing trials on which the respective feature was also cued. By experimental 693 
design, the number of trials in which a target feature was probed was matched across uncertainty levels. We used a 694 
bootstrap classification approach in the context of leave-one-out cross-validation to derive single-trial estimates of 695 
decoding accuracy. To increase the signal-to-noise ratio for the decoders, we averaged randomly selected trials into 696 
three folds (excluding any trial used for testing) and concatenated two pseudo-trials from each condition to create the 697 
training set. Trained decoders were then applied to the left-out trial. This train-and-test procedure was randomly 698 
repeated 100 times to create bootstrapped single-trial estimates. Finally, decoding accuracy was averaged across trials 699 
based on condition assignment (e.g., whether a given feature was cued or uncued). To assess above-chance decoding 700 
accuracy in time, we used univariate cluster-based permutation analyses (CBPAs). These univariate tests were 701 
performed by means of dependent samples t-tests, and cluster-based permutation tests 199 were performed to control 702 
for multiple comparisons. Initially, a clustering algorithm formed clusters based on significant t-tests of individual data 703 
points (p <.05, two-sided; cluster entry threshold) with the spatial constraint of a cluster covering a minimum of three 704 
neighboring channels. Then, the significance of the observed cluster-level statistic (based on the summed t-values 705 
within the cluster) was assessed by comparison to the distribution of all permutation-based cluster-level statistics. The 706 
final cluster p-value was assessed as the proportion of 1000 Monte Carlo iterations in which the cluster-level statistic 707 
was exceeded. Cluster significance was indicated by p-values below .025 (two-sided cluster significance threshold). To 708 
test uncertainty and age effects, we initially fitted linear mixed effects models with random intercepts and fixed effects 709 
of uncertainty, age, and an uncertainty x age interaction. As no significant interaction was indicated for any of the 710 
models (probed: p = 0.760; unprobed: p = 0.434; all: p = 0.625), we removed the interaction term for the main effect 711 
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estimation. We constrained analysis to timepoints for which the cluster-based permutation analysis indicated above-712 
chance decoding for cued features (Fig. 2a; 4.5-11.5 s post-stimulus onset). We focused on probed and unprobed 713 
feature trials, as they are matched in trial number at each uncertainty level. 714 
 715 
BOLD uncertainty modulation and relation to multi-modal signatures. We conducted a 1st level analysis using 716 
SPM12 to identify beta weights for each condition separately. Design variables included stimulus presentation (4 717 
volumes; separate regressors for each uncertainty condition; parametrically modulated by sequence position), onset 718 
cue (no mod.), and probe (2 volumes, parametric modulation by RT). Design variables were convolved with a 719 
canonical HRF, including its temporal derivative as a nuisance term. Nuisance regressors included 24 motion 720 
parameters 200, as well as continuous DVARS estimates. Autoregressive modelling was implemented via FAST. Output 721 
beta images for each uncertainty condition were finally averaged across runs. At the group (2nd) level, we examined 722 
the relationship between voxel-wise 1st level beta weights and uncertainty conditions within a task PLS analysis; and 723 
probed links between linear BOLD modulation and interindividual differences in multi-modal signatures of interest 724 
via a behavioral PLS (see Multivariate partial least squares analyses). For visualization, spatial clusters were defined based 725 
on a minimum distance of 10 mm, and by exceeding a size of 25 voxels. We identified regions associated with peak 726 
activity based on cytoarchitectonic probabilistic maps implemented in the SPM Anatomy Toolbox (Version 2.2c) 201. 727 
If no assignment was found, the most proximal assignment to the peak coordinates was reported. 728 
 729 
Temporal dynamics of thalamic engagement. To visualize the uncertainty modulation of thalamic activity, we 730 
extracted signals within a binary mask of thalamic divisions extracted from the Morel atlas 202. Preprocessed BOLD 731 
timeseries were segmented into trials, spanning the period from the stimulus onset to the onset of the feedback phase. 732 
Given a time-to-peak of a canonical hemodynamic response function (HRF) between 5-6 seconds, we designated the 733 
3 second interval from 5-8 seconds following the stimulus onset trigger as the stimulus presentation interval, and the 734 
2 second interval from 3-5 s as the fixation interval, respectively. Single-trial time series were then temporally 735 
normalized to the temporal average during the approximate fixation interval.  736 
 737 
Thalamic loci of behavioral PLS. To assess the thalamic loci of most reliable behavioral relations, we assessed 738 
bootstrap ratios within two thalamic masks. First, for nucleic subdivisions, we used the Morel parcellation scheme as 739 
consolidated and kindly provided by Hwang et al. 203 for 3 mm data at 3T field strength. The abbreviations are as 740 
follows: AN: anterior nucleus; VM: ventromedial; VL: ventrolateral; MGN: medial geniculate nucleus; LGN: lateral 741 
geniculate nucleus; MD: mediodorsal; PuA: anterior pulvinar; LP: lateral-posterior; IL: intra-laminar; VA: ventral-742 
anterior; PuM: medial pulvinar; Pul: pulvinar proper; PuL: lateral pulvinar. Second, to assess cortical white-matter 743 
projections we considered the overlap with seven structurally derived cortical projection zones suggested by Horn & 744 
Blankenburg 204, which were derived from a large adult sample (N = 169). We binarized continuous probability maps 745 
at a relative 75% threshold of the respective maximum probability, and re-sliced masks to 3mm (ICBM 2009c 746 
MNI152).  747 
 748 
Statistical analyses 749 
 750 
Outlier handling. For each signature, we defined outliers at the subject-level as individuals within their respective 751 
age group whose values (e.g., estimates of linear modulation) exceeded three scaled median absolute deviations (MAD) 752 
as implemented in MATLAB. Such individual data points were winsorized prior to statistical analysis. For repeated 753 
measures analyses, such individuals were removed prior to statistical assessment. 754 
 755 
Linear uncertainty effect estimates. To estimate the linear uncertainty modulation of dependent variables, we 756 
calculated 1st level beta estimates (y = intercept+β*target load+e) and assessed the slope difference from zero at the 757 
within-group level (see Table S1) using two-sided paired t-tests. Similarly, we compared linear uncertainty effect 758 
estimates between groups using two-sides unpaired t-tests. We assessed the relation of individual linear load effects 759 
between measures of interest via Pearson correlations.  760 
 761 
Within-subject centering. To visually emphasize effects within participants, we use within-subject centering across 762 
repeated measures conditions by subtracting individual cross-condition means and adding global group means. For 763 
these visualizations, only the mean of the dependent values directly reflects the original units of measurement, as 764 
individual data points by construction do not reflect between-subject variation averaged across conditions. This 765 
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procedure equals the creation of within-subject standard errors 205. Within-subject centering is exclusively used for 766 
display and explicitly noted in the respective legends. 767 
 768 
Multivariate partial least squares analyses. For data with a high-dimensional structure, we performed multivariate 769 
partial least squares analyses. PLS is a multivariate statistical technique used to identify relationships between two sets 770 
of variables. In neuroimaging studies, task PLS is often employed to relate brain activity (measured by techniques like 771 
fMRI, EEG, or MEG) to experimental conditions (task PLS) or behavioral measures (behavioral PLS) 206,207.  772 

To assess main effects of uncertainty, we performed Task PLS analyses. Task PLS begins by calculating a 773 
between-subject covariance matrix (COV) between conditions and a ‘neural’ index. This covariance matrix is then 774 
decomposed using singular value decomposition (SVD). This yields a left singular vector of experimental condition 775 
weights (U), a right singular vector of brain weights (V), and a diagonal matrix of singular values (S). Task PLS 776 
produces orthogonal latent variables (LVs) that reflect optimal relations between experimental conditions (e.g., target 777 
load) and (neural) data of interest. We ran a task PLS version in which group means were removed from condition 778 
means to highlight how conditions were modulated by group membership, i.e., condition and condition-by-group 779 
effects. Separate task PLS analyses were performed for ‘neural’ values of theta power (Fig. 4), pupil diameter (Fig. 4), 780 
excitability signatures (Fig. 5), fMRI BOLD (S4), and pre-stimulus alpha power (S5). 781 

To examine multivariate relations between BOLD signal changes under uncertainty and interindividual 782 
differences in decision, excitability, and pupil modulation, we performed a behavioral PLS analysis (Fig. 6). This 783 
analysis initially calculates a between-subject correlation matrix (CORR) between (1) a ‘neural’ index and (2) a ‘behavioral’ 784 
variable of interest (although called ‘behavioral’, this variable can reflect any variable of interest). As the neural index, we 785 
estimated linear coefficients between 1st level beta estimates ~ uncertainty, fitted within each voxel. As behavioral 786 
variables, we included the signatures reported on the left of Figure 6c, incl. drift estimates, pupil diameter, spectral 787 
power, and excitability indices). Analogous to task PLS, CORR is decomposed using SVD: SVDCORR = USV´, which 788 
produces a matrix of left singular vectors of behavioral weights (U), a matrix of right singular vectors of neural weights 789 
(V), and a diagonal matrix of singular values (S).  790 

Across PLS variants, each LV (ordered strongest to weakest in S) is characterized by a data pattern that 791 
depicts the strongest available relation between brain and conditions/behavioral data. Significance of detected 792 
relations of both PLS model types was assessed using 1000 permutation tests of the singular value corresponding to 793 
the LV. Subsequent bootstrapping indicated the robustness of within-LV neural saliences across 1000 data resamples 794 
208. By dividing each brain weight (from V) by its bootstrapped standard error, we obtained “bootstrap ratios” (BSRs) 795 
as normalized robustness estimates. We generally threshold BSRs at values of ±3.00 (∼99.9% confidence interval). 796 
We obtained a summary measure of each participant- and condition-wise expression of a LV’s pattern (a “Brainscore”) 797 
by multiplying the vector of weights (V)  by each participant’s and condition’s vector of input data values (P): Brainscore 798 
= VP´. To summarize uncertainty modulation, task PLS Brainscores were analyzed as described in “Linear uncertainty 799 
effect estimates”. 800 
 801 
Data availability. Primary EEG, fMRI, and behavioral data will be made available upon publication (for younger 802 
adults see https://osf.io/ug4b8/). Structural MRI data are exempt from public sharing according to obtained 803 
informed consent. All data are available from the corresponding authors upon reasonable request. 804 
 805 
Code availability. Experiment code is available from https://git.mpib-berlin.mpg.de/LNDG/multi-attribute-task. 806 
Analysis code is available from https://git.mpib-berlin.mpg.de/LNDG/stateswitchage/stsw. 807 
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