

1 **Broadscale dampening of uncertainty adjustment in the aging brain**  
2

3 Julian Q. Kosciessa<sup>1,2,3\*</sup>, Ulrich Mayr<sup>4</sup>, Ulman Lindenberger<sup>1,2</sup>, & Douglas D. Garrett<sup>1,2\*</sup>  
4

5 <sup>1</sup> Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin and London

6 <sup>2</sup> Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany

7 <sup>3</sup> Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands

8 <sup>4</sup> Department of Psychology, University of Oregon, Eugene, OR 97403, United States  
9

10 Julian Q. Kosciessa: <https://orcid.org/0000-0002-4553-2794>

11 Ulrich Mayr: <https://orcid.org/0000-0002-7512-4556>

12 Ulman Lindenberger: <https://orcid.org/0000-0001-8428-6453>

13 Douglas D. Garrett: <https://orcid.org/0000-0002-0629-7672>

14 **0. Abstract**

15  
16 The ability to prioritize among input features according to relevance enables adaptive behaviors across the human  
17 lifespan. However, relevance often remains ambiguous, and such uncertainty increases demands for dynamic control.  
18 While both cognitive stability and flexibility decline during healthy ageing, it is unknown whether aging alters how  
19 uncertainty impacts perception and decision-making, and if so, via which neural mechanisms. Here, we assess  
20 uncertainty adjustment across the adult lifespan ( $N = 100$ ; cross-sectional) via behavioral modelling and a theoretically  
21 informed set of EEG-, fMRI-, and pupil-based signatures. On the group level, older adults show a broad dampening  
22 of uncertainty adjustment relative to younger adults. At the individual level, older individuals with more young-like  
23 neural responses also showed better maintained cognitive control. Our results highlight neural mechanisms whose  
24 maintenance plausibly enables flexible task-set, perception, and decision computations across the adult lifespan.  
25

26 **1. Introduction**

27  
28 Prioritizing goal-relevant input features is central to cognitive control and adaptive behaviors. But how do we discern  
29 relevant signals from distractions? While some contexts explicitly highlight specific features (e.g., a single road sign  
30 emphasizing school children)<sup>1</sup>, most contexts provide only sparse (e.g., a “!” sign) or contrasting cues (e.g., multiple  
31 signs: school children, bicycles, construction, ...). Whereas selective cues enable us to prioritize individual features  
32 with high acuity, ambiguity about which input features are goal-relevant (i.e., *task uncertainty*) demands broader levels  
33 of sensitivity, even at the expense of precision<sup>2,3</sup>. An adaptive system should track the moment-to-moment variations  
34 in uncertainty, and tune perception, guide decisions, and select actions accordingly<sup>4,5</sup>. Here, we examine whether a  
35 failure to adapt computations to varying task uncertainty is a key characteristic of healthy human cognitive aging.  
36

37 Behavioral observations support aging-related deficits in uncertainty adjustment. In contexts that cue specific task-  
38 relevant features of compound stimuli, older adults remain sensitive also to irrelevant features<sup>6,7</sup>, indicating challenges  
39 in stable feature selection<sup>8-11</sup>. Conversely, older adults show inflexibility when contexts require dynamic feature  
40 switches<sup>12-14</sup>, and incur substantial “fade-out” costs when transitioning from dynamic to stable contexts<sup>15</sup>. Such  
41 observations suggest that older adults may be stuck in a suboptimal ‘middle ground’ that neither affords stable task  
42 selectivity when uncertainty is low, nor task flexibility in dynamic or uncertain contexts. Although age-related deficits  
43 have been reported for aligning computations (e.g., learning rate) to uncertainty<sup>16</sup>, it remains unclear whether such  
44 underutilization arises from challenges in estimating uncertainty, or from an inability to leverage adequate estimates.  
45 For uncertainty to provide a principled and comprehensive lens on aging-related adaptivity constraints, first evidence  
46 is required to establish whether and/or how neural responses to uncertainty differ in the older adult brain.  
47

48 How brain function adjusts to variable uncertainty remains debated<sup>17</sup>, but emerging models implicate interacting  
49 systems that define task sets, tune perception, and inform decision formation<sup>18-20</sup>. Task-set management has been  
50 localized to fronto-parietal cortex<sup>20,21</sup>, with recent evidence suggesting additional thalamic contributions in uncertain  
51 contexts<sup>22,23</sup>. When task sets specify target features, perceptual networks can constrain relevant information by  
52 combining distractor inhibition<sup>24</sup> with target enhancement<sup>25</sup>. In contrast, high uncertainty about goal-relevant targets  
53 may facilitate sensitivity to multiple features via broad increases in excitability<sup>26</sup>. Such regime switches can be  
54 orchestrated by diffuse neurotransmitter systems that adjust computational precision to changing demands<sup>2</sup>; for  
55 example, pupil dilation (as a proxy)<sup>27</sup> transiently increases alongside uncertainty<sup>28,29</sup>. In young adults, we observed  
56 such an integrated response to rising uncertainty<sup>30</sup>, encompassing increased fronto-thalamic BOLD activation,  
57 increased pupil diameter, and increased EEG-based cortical excitability. These results indicate that interacting systems  
58 enable adaptive responses to variable task uncertainty. But does the responsiveness of these systems differ across the  
59 adult lifespan?

60  
61 Initial behavioral evidence from reward-learning paradigms suggests that older adults are less able to represent and  
62 use uncertainty<sup>16</sup>. Moreover, the general observation that older adults’ brain activity is less responsive to varying  
63 demands<sup>31-33</sup> is suggestive of less adaptive responses per se. Senescence is marked by changes across multiple systems,  
64 including diminished prefrontal cortex function<sup>34</sup>, metabolic decreases in cognitive control networks<sup>35-37</sup>, progressive  
65 deterioration of subcortical neurotransmitter systems<sup>38-40</sup> alongside reduced pupil size modulation<sup>41</sup>, reduced cortical  
66 inhibition<sup>42,43</sup>, and structural declines of coordinating nodes such as the thalamus<sup>44,45</sup>. Many of these systems can be  
67 linked to the representation of, and adaptive response to, uncertainty<sup>30</sup>. Yet, there is also a long-standing challenge in  
68 the cognitive neuroscience of aging to identify, and distinguish between, competing functional explanations for  
69 changes in adaptivity. Reductions in working-memory capacity<sup>46</sup>, inhibition<sup>47</sup>, or processing speed<sup>48</sup> have all been  
70 proposed as general changes underlying a wide range of deficits. The fact that age differences usually occur even in  
71 minimal-demand baseline conditions<sup>32</sup> can additionally complicate inferences from observed age differences in  
72 adaptivity. Here, we use convergent evidence from a broad spectrum of behavioral and neural signatures (decision  
73 modeling, EEG, fMRI, pupillometry) alongside a host of controls to establish altered uncertainty processing as a core  
74 feature of human brain aging.  
75

76 In our approach, we tested whether we could explain individual differences in adaptivity among older adults.  
77 Specifically, a “maintenance account of aging”<sup>49</sup> suggests that cognitive deficits with senescence emerge when neural  
78 resources become insufficient to meet demands, which implies that older adults with more “young-like” resource

79 engagement should better maintain function. We test this account by examining the degree to which older adults  
80 express a young-adult pattern of specific neuro-behavioral signatures when adapting to uncertainty.  
81

82 **2. Results**

83  
84 We examined multimodal signatures (decision modeling, EEG, fMRI, pupillometry) in 47 younger (avg. 26 years) and  
85 53 older (avg. 69 years) adults to comprehensively test uncertainty adjustment across the adult lifespan. Participants  
86 performed a perceptual decision task that manipulated uncertainty about which feature(s) of a compound stimulus  
87 would become decision relevant. By assessing signatures that change under task uncertainty in younger adults' <sup>30</sup>, we  
88 highlight damped uncertainty modulation in older adults along with more constrained changes to perceptual  
89 evidence integration. Older adults with more "young-like" brain responses showed benefits in feature selection,  
90 providing initial evidence that maintained uncertainty adjustment supports adaptive control in healthy ageing.  
91

92 **2.1 Older adults express constrained uncertainty modulation of evidence integration.**  
93

94 During EEG and fMRI acquisition, participants performed a **Multi-Attribute Attention Task** ("MAAT"; <sup>30</sup>; Figure 1a,  
95 S1-0). Participants had to sample dynamic visual stimuli that varied along four features: color (green/red), movement  
96 direction (left/right), size (small/large), and color saturation (low/high). Stimuli were presented for three seconds,  
97 after which participants had to indicate the more prevalent of two options for a single probed feature. Valid pre-  
98 stimulus cues indicated which features could be probed on the current trial. Uncertainty was parametrically  
99 manipulated by increasing the number of cued features <sup>50,51</sup>. When participants received a single cue, they could attend  
100 to only a single target feature during stimulus presentation (low uncertainty); whereas multi-feature cues reduced  
101 information about which feature would be probed, thus necessitating (extra-dimensional) attention switches <sup>52,53</sup>  
102 between up to four target features ("target load"; high uncertainty) to optimally inform probe-related decisions.  
103 Younger and older adults performed above chance level for all visual features (Figure S1-1).

104



**Figure 1. Older adults show constrained decision-related adjustments to rising uncertainty.** (a) A Multi-Attribute Attention Task ("MAAT") requires participants to sample up to four visual features of a compound stimulus for a subsequent perceptual decision. On each trial, participants were first cued to the set of possible probe features (here: motion direction and colour). The compound stimulus (which always included all four features) was then presented for 3 s, followed by a single-feature probe (here: prevalence of red vs. green colour in the preceding stimulus). Uncertainty was manipulated as the number of target features (one to four) in the pre-stimulus cue (see also Figure S1-a). Behavioral data were modelled with a drift diffusion model, in which evidence for options is accumulated with a 'drift rate'. (b) Drift rate estimates from behavioural modelling. Older adults exhibited reduced accumulation rates for single targets (top) and were marked by more limited drift reductions under elevated uncertainty (bottom). Data points represent individual averages across EEG and fMRI sessions. Table S1 reports within-group statistics. (c) The Centro-parietal positivity (CPP) provides an *a priori* neural signature of evidence accumulation. The rate of evidence accumulation was estimated as the linear slope of the CPP during the time window indicated by the black bar. Older adults exhibited reduced integration slopes for single targets (top) and were marked by constrained load-related slope shallowing under elevated uncertainty (bottom). To illustrate age- and condition-differences in integration slope, responses have been rescaled to the [0, 1] range for visualization. Fig. S1-3 shows original traces. \*\*\*a  $p = 1.0 \times 10^{-10}$  \*\*\*b  $p = 5.1 \times 10^{-10}$  \*\*\*c  $p = 4.5 \times 10^{-5}$  \*\*\*d  $p = 2.8 \times 10^{-5}$ .

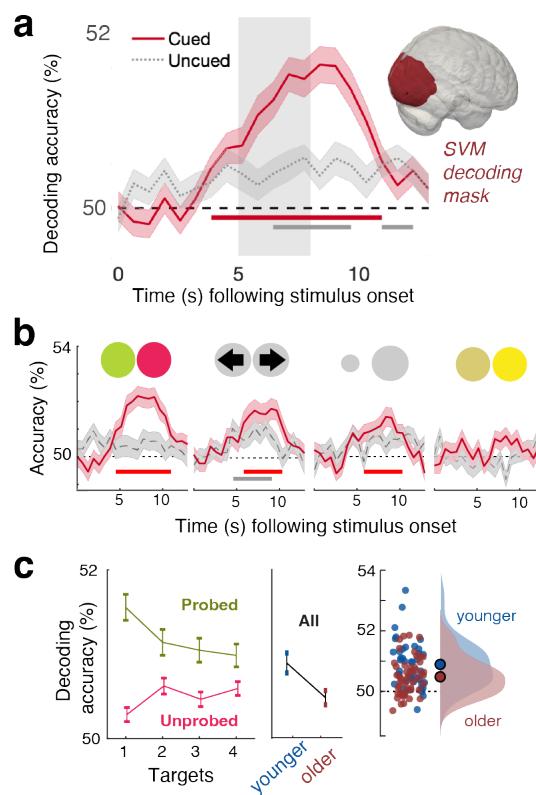
105

106 To characterize probe-related decision processes, we fitted a hierarchical drift-diffusion model <sup>54</sup> (HDDM) to  
 107 participants' responses. The model estimates (a) the drift rate at which evidence is integrated towards a decision bound,  
 108 (b) the distance between correct and incorrect decision bounds, and (c) the non-decision time of probe processing  
 109 and response execution. Across sessions and age groups the best fitting models (see Figure S1-2) consistently included  
 110 uncertainty effects in all three parameters. Here, we focused on the drift rate based on its close association to sampled  
 111 evidence <sup>30</sup>. Text S1-2 reports the remaining parameters. With rising uncertainty, drift rates decreased for both age  
 112 groups, indicating that uncertainty generally constrained choice evidence for the probed feature. Crucially, relative to  
 113 younger adults, older participants' drift rates were reduced when only a single feature was cued as relevant and  
 114 decreased less alongside increasing uncertainty (Figure 1b). These effects remained present when only features with  
 115 age-matched single-target accuracies were included in the model (Text S1-3a). In relative terms, such damped  
 116 adjustment reflected larger relative performance decreases when transitioning into more uncertain contexts in older  
 117 than younger adults (Text S1-3b). Neither accuracy nor drift rate variations between individual features could account  
 118 for the observed age effects (Text S1-4).

119  
 120 We assessed the convergence of behavioral results with an *a priori* neural proxy signature of evidence integration, the  
 121 slope of the EEG's centroparietal positive potential (CPP)  
 122 <sup>55</sup>; Figure 1c, see also Figure S1-5) prior to decisions.  
 123 Consistent with behavioral modeling, CPP slopes were  
 124 flatter for older relative to younger participants in single-  
 125 target contexts, and older adults' uncertainty-related  
 126 modulation of CPP slopes was minimal (Figure 1c). In line  
 127 with both indices capturing latent evidence integration,  
 128 CPP and drift estimates were inter-individually related  
 129 (Fig. S1-5), both for single targets ( $r(93) = 0.51$ , 95%CI =  
 130  $[0.34, 0.64]$ ,  $p = 1.4e-07$ ; *age-partial*:  $r(92) = 0.34$ , 95%CI =  
 131  $[0.14, 0.5]$   $p = 9.3e-04$ ), and their uncertainty modulation  
 132 ( $r(93) = 0.45$ , 95%CI =  $[0.27, 0.59]$ ,  $p = 6.1e-06$ ; *age-partial*:  
 133  $r(92) = 0.27$ , 95%CI =  $[0.08, 0.45]$ ,  $p = 0.01$ ; Fig S1-5c).  
 134 We also investigated contralateral beta power as a  
 135 signature of motor response preparation <sup>56</sup> (Figure S1-6)  
 136 but did not observe clear relations to drift rate or CPP  
 137 estimates (Text S1-6), suggesting that it may be a less  
 138 suitable evidence integration index here. Reduced  
 139 modulation of pre-response slopes in older adults was  
 140 observed (at both central and parietal sites) also after  
 141 controlling for overlapping potentials locked to probe  
 142 onset (Text S1-7). Taken together, older adults' decisions  
 143 were marked by reduced evidence integration rates for  
 144 single targets, and more constrained absolute drift rate  
 145 reductions under uncertainty.  
 146

## 148 2.2 Decoding indicates uncertainty-induced trade- 149 offs between feature specificity and sensitivity.

150 Higher single-target drift rates and larger drift reductions  
 151 may reflect an adaptive trade-off between reduced single-  
 152 target specificity and elevated sensitivity to *multiple* features  
 153 under higher uncertainty. However, as decisions were  
 154 linked to the probed feature, they cannot elucidate how  
 155 unprobed features were processed. To clarify this  
 156 question, we performed fMRI decoding analyses. We  
 157 created pairwise classifiers that targeted the sensory representation of each feature's prevalent option (e.g., left vs.  
 158 rightward movement) based on BOLD responses in visual cortex (see *Methods: fMRI decoding of prevalent feature options*).

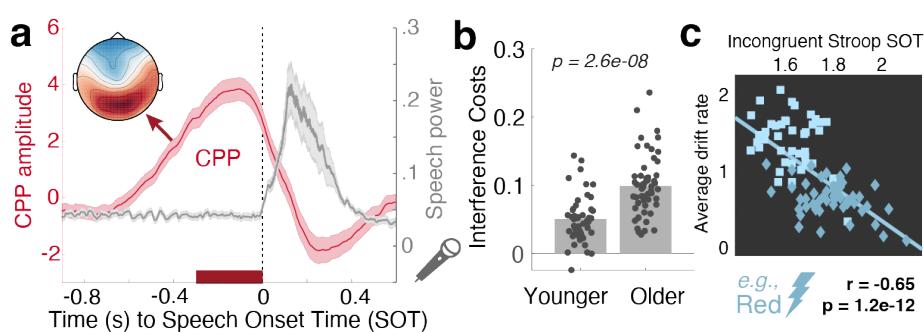


**Figure 2. Decoding of prevalent options from visual cortex.** (a) Decoding accuracy for cued and uncued features across age groups (means +/- SEM). Grey shading indicates the approximate timing of stimulus presentation considering the temporal lag in the hemodynamic response. Lines indicate periods of statistically significant differences from chance decoding accuracy (50%) as assessed by cluster-based permutation tests. The inset highlights the visual cortex mask from which signals were extracted for decoding. (b) Same as in a, but for separate feature probes. Bars indicate sign. above-chance accuracy during the approximate time of stimulus presentation. (c) Decoding accuracy for probed and unprobed features as a function of the number of cued targets; and decoding accuracy for all features as a function of age. Accuracy was averaged across significant decoding timepoints for cued features. Means +/- within-subject SEM for (un)probed features, means +/- SEM for age analysis.

160 The prevalent option of individual features could be decoded above chance during stimulus presentation (Fig. 2a).  
161 Robust decoding was observed for all cued features except for saturation, for which discrimination was also  
162 behaviorally most challenging (Fig. S1-1). Above-chance decoding in the same time window of interest was not  
163 observed for uncued feature options, except for motion discrimination (see Fig. 2b), indicating that participants mainly  
164 discriminated task-relevant feature options<sup>18</sup>.

165 Next, we assessed uncertainty and age effects on decoding accuracy. First, we applied classifiers to trials in which  
166 target features were probed, which mirrors the behavioral task. A linear mixed effects model indicated a significant  
167 reduction in decoding accuracy with increasing uncertainty ( $\beta = -0.18$ , SE = 0.05,  $t = -3.56$ ,  $p = 0.00037$ ; Figure 2c),  
168 as well as reduced decoding accuracy for older adults ( $\beta = -0.862$ , SE = 0.31,  $t = -2.77$ ,  $p = 0.007$ ), but no significant  
169 interaction ( $p = 0.76$ ). Crucially, such uncertainty-related precision losses may trade-off against sensitivity to other  
170 cued, but ultimately unprobed features. We tested this possibility by considering decoding accuracy across all *unprobed*  
171 features in any given trial. This analysis indicated that uncertainty indeed slightly increased decoding accuracy across  
172 unprobed features ( $\beta = 0.077$ , SE = 0.026,  $t = 2.94$ ,  $p = 0.0033$ ). Decoding accuracy tended to be lower in older  
173 compared to younger adults ( $\beta = -0.259$ , SE = 0.134,  $t = -1.92$ ,  $p = 0.0574$ ). Again, no significant interaction was  
174 observed ( $p = 0.434$ ). Consistent with opposing uncertainty effects on probed and unprobed features, no significant  
175 uncertainty effect was indicated when all trials were considered ( $\beta = 0.012$ , SE = 0.024,  $t = 0.53$ ,  $p = 0.5927$ ), but  
176 decoding accuracy was globally reduced in older adults ( $\beta = -.41$ , SE = 0.144,  $t = -2.84$ ,  $p = 0.0056$ ). Decoding analyses  
177 thus suggest that rising uncertainty increased sensitivity to more diverse features in both age groups, albeit at the cost  
178 of reduced precision for single features.  
179

### 180 2.3 MAAT performance generalizes to feature selection in the context of low perceptual demands. 181



182 **Figure 3. MAAT evidence integration relates to prepotent response inhibition.** (a) Centro-Parietal  
183 Positivity (CPP) traces and speech signal power suggest high validity for the semi-automatically labeled  
184 speech onset times (SOTs). The CPP trace has been averaged across age and congruency conditions and  
185 displays means +/- SEM. The inset shows the mean EEG topography during the final 300 ms prior to speech  
186 onset. (b) The voiced Stroop task indicated robust interference costs whose magnitude was larger in older  
187 adults. Table S1 reports within-group statistics. (c) Participants with larger MAAT drift rates showed faster  
188 responses to incongruent trials (e.g., responding blue to the inset stimulus), also after accounting for  
189 categorical age (squares: younger; diamonds: older) and covariation with congruent SOTs (see main text).

182 Relative to younger adults, older adults appear to have encoded less single-target evidence for downstream decisions.  
183 However, the multifaceted demands of the MAAT do not resolve whether such differences arise from task  
184 idiosyncrasies such as the necessity to resolve high perceptual uncertainty for each feature, or whether they capture  
185 differences related to flexible feature selection. To adjudicate between these accounts, participants also performed a  
186 Stroop task, which probes the capacity to inhibit prepotent responses to one of two features (the color vs. semantics)  
187 of a presented word<sup>57</sup>. We recorded voice responses as a more naturalistic modality for older adults<sup>58</sup>. To estimate  
188 speech onset times (SOTs ~ reaction times), we labeled the voice onset in each trial's recording (see methods). Labeled  
189 SOTs showed high validity as the neural CPP peaked immediately prior to SOTs (Fig. 3a). In line with the Stroop  
190 literature<sup>58</sup>, older adults incurred larger behavioral interference costs (Fig. 3b) than younger adults. These behavioral  
191 results were mirrored by neural CPP slopes: interference made pre-response CPP slopes shallower in both age groups,  
192 but to a larger extent in older adults, and the magnitude of individual slope reductions tracked behavioral interference  
193 costs (Fig. S3-1). Crucially, participants with higher MAAT drift rates were also faster responders in the incongruent  
194 condition (Fig. 3c), pointing to a better capacity to inhibit prepotent responses. Notably, relations between MAAT  
195 drift rates and SOTs in the Stroop interference condition ( $r(93) = -0.65$ , 95%CI = [-0.75,-0.51],  $p = 1.2e-12$ ) held after  
196 controlling for age and SOTs in the congruent condition ( $r(91) = -0.29$ , 95%CI = [-0.46,-0.09],  $p = 0.01$ ), whereas the

197 opposite was not observed (congruent SOTs-drift:  $r(93) = -0.4$ , 95%CI = [-0.56,-0.22],  $p = 4.7e-05$ , *age- and incongruent*  
198 *SOT-partial*:  $r(91) = 0.13$ , 95%CI = [-0.07,0.33],  $p = 0.2$ ). As such, selective inhibition of interfering features, as  
199 opposed to processing speed, appears to be a key contributor to individual MAAT drift rates. Taken together, these  
200 findings suggest that individual and age differences in MAAT drift rates generalize to flexible feature selection also in  
201 perceptually unambiguous contexts.

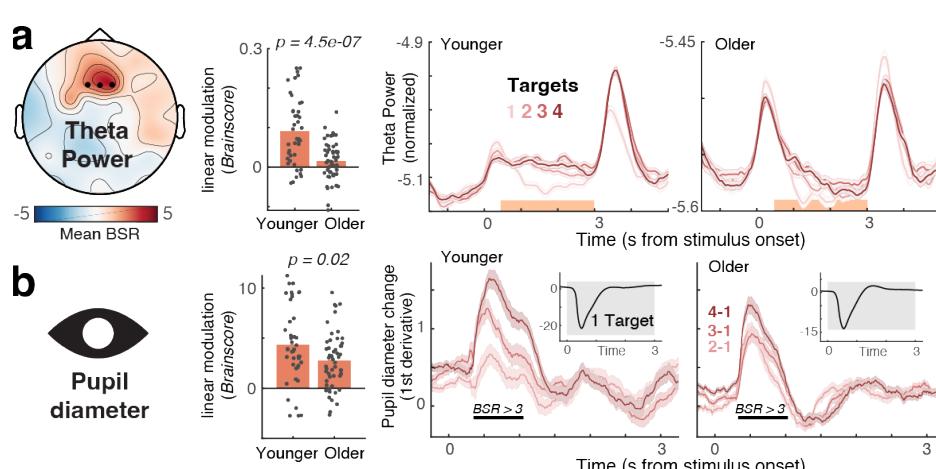
202

#### 203 2.4 Theta power and pupil diameter upregulation with elevated uncertainty dampens in old age.

204

205 Our results indicate age-related constraints in perceptual and decision adjustment to uncertainty. To test whether such  
206 constraints are rooted in a reduced neural uncertainty response as expected under a maintenance account of cognitive  
207 and brain aging, we assessed several *a priori* signatures (see <sup>30</sup>) during MAAT stimulus presentation by means of two-  
208 group task partial-least-squares analyses (PLS, see methods). First, we assessed the effect of uncertainty on  
209 frontocentral theta power, an index of cognitive control <sup>59</sup> and exploration under uncertainty <sup>60</sup>. Uncertainty increased  
210 theta power in both age groups (Figure 4a), but to a lesser extent in older adults (Figure 4a). Next, we assessed phasic  
211 changes in pupil diameter, a signature that covaries with neuromodulation and arousal <sup>61,62</sup>, has been related to frontal  
212 control <sup>2,29,30,63,64</sup>, and is sensitive to rising demands <sup>65</sup> such as dynamically changing and uncertain contexts <sup>28,66</sup>. Once  
213 again, we observed that uncertainty increased pupil diameter in both age groups, with more constrained upregulation  
214 in older adults (Fig. 4b). This effect could not be explained by a “spill-over” of differential luminance responses during  
215 the cueing phase (see Fig. S4-2). The magnitude of pupil modulation was related to individual theta power increases  
216 ( $r(98) = .28$ , 95%CI = [0.09, 0.46],  $p = 0.005$ ; *age-partial*:  $r(97) = .19$ , 95%CI = [0, 0.38],  $p = 0.05$ ), indicating a joint  
217 uncertainty modulation. These results indicate that both age groups were sensitive to rising uncertainty, albeit older  
218 adults to a dampened extent.

219



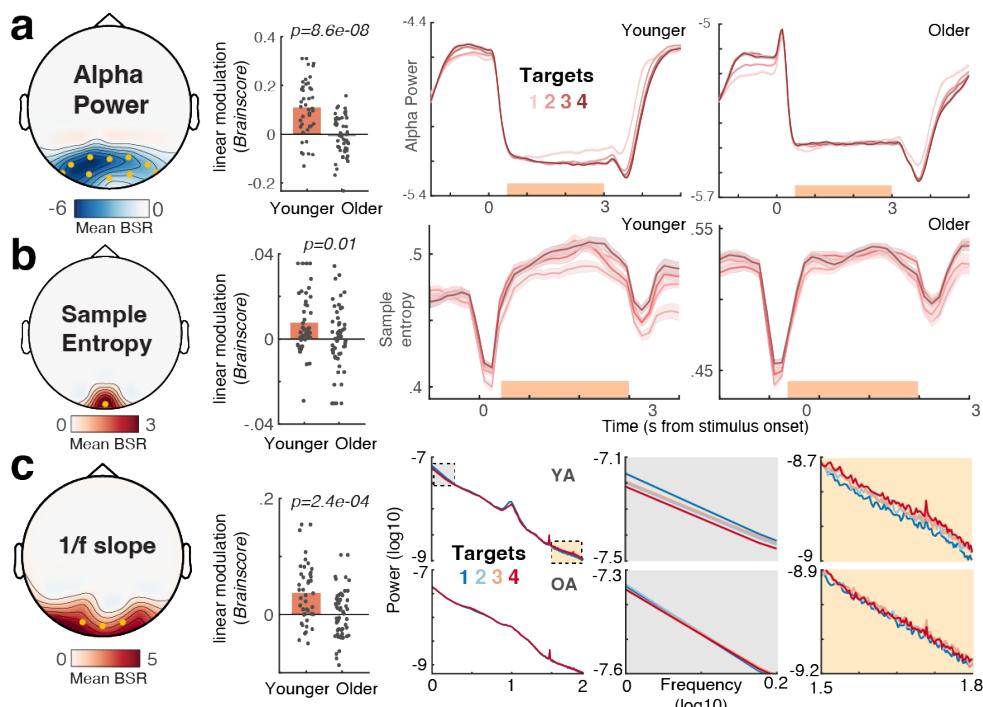
220

221 **Figure 4. Uncertainty increases theta power (a) and pupil diameter (b) across the adult lifespan, but**  
222 **increases are attenuated in older age.** (Left) The topography indicates mean bootstrap ratios (BSR) from  
223 the task partial least squares (PLS) model. “Brainscores” summarize the expression of this pattern into a  
224 single score for each condition and participant (see methods; Fig. S4-1 shows condition-wise Brainscores).  
225 (Center) Age comparison of linear Brainscore changes under uncertainty (–age x load interaction;  $p$ -values  
226 refer to unpaired t-tests). Both signatures exhibited significant uncertainty modulation in younger, as well  
227 as older adults (as assessed via one-sample t-tests; see Table S1), with constrained modulation in older  
228 adults. (Right) Time series data are presented as means +- within-subject S.E.Ms. Orange shading in a  
229 indicates the timepoints across which data have been averaged for the task PLS. Black lines in b indicate  
230 time points exceeding a BSR of 3 (~99% threshold). The uncertainty modulation of pupil diameter occurred  
231 on top of a general pupil constriction due to stimulus-evoked changes in luminance upon task onset (see  
232 inset). Luminance did by stimulus design not systematically differ across load levels.

233

#### 234 2.5 Only younger adults adjust posterior cortical excitability to varying uncertainty.

235 Elevated uncertainty may impact perception by altering sensory excitability. To test this, we focused on three indices  
236 related to cortical excitability: alpha power, sample entropy, and aperiodic 1/f slopes <sup>30,67</sup>. We constrained analyses to



**Figure 5. Only younger adults upregulate cortical excitability under increased uncertainty.** (a-c) Results of task partial least squares (PLS) models, assessing relations of alpha power (a), sample entropy (b) and aperiodic  $1/f$  slope (c) to uncertainty. (Left) Topographies indicate mean bootstrap ratios (BSR). Orange dots indicate the sensors across which data were averaged for data visualization. (Center) Age comparison of linear uncertainty effects (~age x uncertainty interaction). Statistics refer to unpaired t-tests. For condition-wise *Brainscores*, see Fig. S4-1. All three signatures exhibited significant uncertainty modulation in younger, but not in older adults. Table S1 reports within-group statistics. (Right) Time series data are presented as means +- within-subject S.E.Ms. Orange shading in a indicates the timepoints across which data have been averaged for the respective task-PLS. Black lines in b indicate time points exceeding a BSR of 3 (~99% threshold).

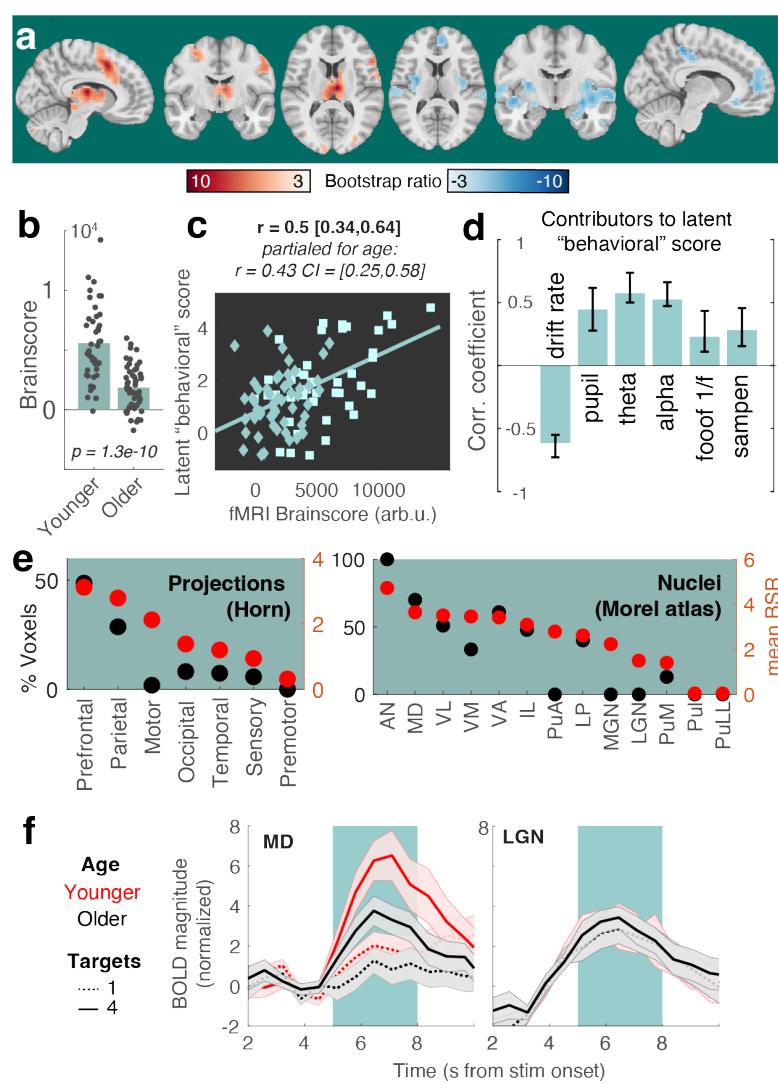
225 posterior sensors as we targeted visual-parietal cortices. *Text S5-3* reports whole-channel analyses. In younger adults,  
 226 we observed uncertainty effects on all three signatures (Fig. 5 a-c), akin to those we previously reported<sup>30</sup>. In line with  
 227 putative excitability increases, posterior alpha power decreased alongside uncertainty, while sample entropy increased  
 228 and the aperiodic spectral slope shallowed. However, we found no evidence of a similar modulation in older adults  
 229 for any of the probed signatures (Fig. 5, see also Fig. S4-1), indicating a failure of the aged system to adjust to changing  
 230 uncertainty demands. Such failure may be rooted in a less precise estimation of environmental uncertainty in the aged  
 231 neural system<sup>16</sup>. However, we reduced inference demands in our design by providing overt cues on each trial, and  
 232 keeping the cue set identical for eight consecutive trials. In line with age-invariant sensitivity to uncertainty cues, we  
 233 observed comparable increases in pre-stimulus alpha power alongside uncertainty in both age groups (Fig. S5-1, see  
 234 also *Text S5-1*). However, these increases were not associated with subsequent behavioral drift rate adjustments (Fig.  
 235 S5-1 and *Text S5-1*), arguing against a direct role of pre-stimulus alpha power in adjudicating uncertainty. We  
 236 additionally considered the steady-state visual evoked potential (SSVEP) as a proxy of bottom-up processing. Despite  
 237 robust and comparable SSVEPs in both age groups, we found no evidence of uncertainty modulation in either group  
 238 (Fig. S5-2, see also *Text S5-2*). Given that the 30 Hz flicker frequency was shared between all stimulus features, this  
 239 suggests that sensory processing of the compound stimulus was similar between uncertainty conditions and age  
 240 groups. Taken together, our results suggest that older adults may have suffered from a relative failure to adjust  
 241 perceptual excitability to changing feature relevance, rather than insensitivity to uncertainty information or an inability  
 242 to encode the undifferentiated stimulus.

243

## 244 **2.6 BOLD modulation links neuro-behavioral responses to uncertainty across the adult lifespan.**

245

246 Finally, we investigated uncertainty-related changes in whole-brain fMRI BOLD activation during stimulus  
 247 presentation, extending sensitivity also to subcortical areas like the thalamus that are considered critical for managing  
 248 task uncertainty<sup>30,68,69</sup>. We targeted associations between uncertainty-related BOLD modulation and the *a priori*  
 249 neurobehavioral signatures (i.e., uncertainty-induced changes in drift rate, theta power, pupil diameter, alpha power,



**Figure 6: Multivariate relation of EEG/pupil/behavioral signatures to fMRI BOLD uncertainty modulation.** (a) Results of a behavioral partial least squares (PLS) analysis linking linear changes in BOLD activation to interindividual EEG, pupil, and behavioral differences. Table S4 lists peak coordinates. (b) The multivariate expression of BOLD changes alongside rising uncertainty was reduced in older compared with younger adults. Table S1 reports within-group statistics. (c) Individual *fMRI Brainscore* differences related to behavioral composite scores, also after accounting for age covariation. Squares = younger individuals; diamonds = older individuals. (d) Contributing signatures to the *fMRI Brainscore*. All signature estimates refer to linear uncertainty changes. Error bars represent bootstrapped 95% confidence values. (e) Major nuclei and projection zones in which behavioral relations are maximally reliable according to average Bootstrap ratios (red) and the percentage of voxels in each subregion exceeding a BSR of 3. See Methods for abbreviations. Strongest expression is observed in nuclei that project to fronto-parietal cortical targets. (f) Visualization of uncertainty modulation for the mediodorsal nucleus, a “higher order” nucleus, and the LGN, a visual relay nucleus. Traces display mean +/- SEM. The green shading indicates the approximate stimulus presentation period after accounting for the delay in the hemodynamic response function.

1/f slopes, and sample entropy) using a multivariate behavioral PLS analysis (see *Methods*; Text S4-1 reports a task PLS targeting the main effect of uncertainty). We identified a single latent variable (LV; *permuted p* < 1e-3) with positive frontoparietal and thalamic loadings, and most pronounced negative loadings in medial PFC and hippocampus (Fig. 6a, Table S5). Loadings on this inter-individual difference LV resembled the main effect of uncertainty on BOLD activation (Fig. S6-1a). Older adults expressed this LV to a lesser extent than younger adults as indicated by lower *fMRI Brainscores* (Fig. 6b), indicating dampened BOLD modulation in the face of changing uncertainty. *Brainscores* were associated with the latent score of neurobehavioral input signatures (Fig. 6c), such that less dampened, more “young-like” BOLD modulation tracked a larger modulation of decision, EEG, and pupil signatures. Fig. 6d depicts relations to the individual signatures of the model: across age groups, greater BOLD modulation corresponded to larger drift rate reductions, more pronounced theta power and pupil diameter increases, and larger excitability modulation (see

260 Fig. S6-2a for more signatures). Brainscores did not significantly vary by gender (Fig. S6-2b). As the PLS model  
261 captured variance both within and across age groups, we used linear-mixed-effects models to assess the age-  
262 dependency of these relations. These models indicated that all *a priori* signatures, except sample entropy and 1/f  
263 modulation, predicted *Brainscores* also after accounting for the shared main effects of age (Table 1). This indicates a  
264 robust coupling of uncertainty effects between most signatures, while aligning with unobserved posterior excitability  
265 modulation in older adults. Control analyses indicate that within- and between-group differences in BOLD modulation  
266 did not reflect differential choice difficulty (i.e., accuracy) for individual features (Figs. S6-3 & S1-4c).  
267

| Predictor               | t-value | p-value         | partial $\eta^2$ |
|-------------------------|---------|-----------------|------------------|
| <b>Behavioral score</b> | 4.6043  | <b>1.32e-05</b> | 0.1962           |
| age                     | -6.3809 | <b>7.00e-09</b> | 0.3192           |
| <b>Drift mod.</b>       | -4.3334 | <b>3.74e-05</b> | 0.2308           |
| age                     | -3.9624 | <b>0.0001</b>   | 0.2006           |
| <b>Pupil mod.</b>       | 4.171   | <b>6.86e-05</b> | 0.1622           |
| age                     | -6.7664 | <b>1.20e-09</b> | 0.3375           |
| <b>Theta mod.</b>       | 4.2533  | <b>5.05e-05</b> | 0.2005           |
| age                     | -4.8662 | <b>4.69e-06</b> | 0.2471           |
| <b>Alpha mod.</b>       | 3.2185  | <b>0.0017</b>   | 0.1294           |
| age                     | -4.934  | <b>3.57e-06</b> | 0.2589           |
| <b>1/f mod.</b>         | 0.10914 | 0.91            | 1.4502e-04       |
| age                     | -6.7591 | <b>1.24e-09</b> | 0.3574           |
| <b>SampEn mod.</b>      | 1.5944  | 0.11            | 0.0279           |
| age                     | -6.7385 | <b>1.37e-09</b> | 0.3390           |

268  
269 **Table 1: Summary of Brainscore predictors, while controlling for categorical age.** Separate  
270 linear-mixed-effects models assessed effects of target signature, categorical age, and age  $\times$   
271 signature interactions on Brainscores. We observed no significant interaction in any of the models  
272 (all  $p > 0.05$ ), pointing to consistent relations across age groups; therefore, all reported models  
273 only include main effects of signature and age. Fig. S6-2 reports similar results using partial  
274 regressions. Degrees of freedom: 92 (all models).  
275

276 Behavioral relations were closely tracked by thalamic BOLD activation. To obtain insights within this differentiated  
277 structure, we assessed regional loadings based on projection zones and nucleus segmentations (Fig. 6e). Loadings were  
278 highest in subregions with frontoparietal projections, including the mediodorsal nucleus (Fig. 6f). In contrast, a  
279 traditional visual “relay” nucleus of the thalamus, the lateral geniculate nucleus, did not show sensitivity to our  
280 uncertainty manipulation (Fig. 6f). This indicates a specificity of thalamic effects that coheres with functional  
281 subdivisions and alludes to uncertainty-invariant sensory processing of the compound stimulus. These results indicate  
282 that the mediodorsal thalamus contributes to maintained uncertainty adjustments across the adult lifespan.

283 Task uncertainty is a contextual challenge <sup>17</sup> that necessitates flexible control, including attentional and  
284 working memory adjustment (see also *Supplementary Text 7*). We probed whether the fMRI activation observed here  
285 can be reduced to either of these processes. In line with our operationalization capturing latent uncertainty, reverse  
286 inference analyses indicate relations between spatial loadings of the behavioral PLS and prior “state entropy”<sup>29</sup>  
287 activation (Fig. S6-4) and meta-analytic “uncertainty” maps. This overlap was larger than with either “working  
288 memory” or “attention” maps (see Text S6-4), suggesting that task uncertainty introduces multifaceted demands <sup>70</sup>  
289 that do not fully converge with traditional working memory or attention manipulations.  
290

### 291 3. Discussion

292 Managing uncertainty is vital for navigating the flux of life. While some environments help us to prioritize specific  
293 inputs over others, many contexts provide few, contrasting, or ambiguous cues. Here, we manipulate task uncertainty  
294 via unambiguous cues that are repeated on each trial. This design allows us to ask how task uncertainty impacts  
295 downstream processing, in contrast with prior designs that ask how perceptually ambiguous task cues impact  
296 processing of unambiguous inputs <sup>68,71-73</sup>. We show that healthy older adults exhibit markedly dampened adaptations  
297 to explicit uncertainty variations across coupled EEG/fMRI/pupil signatures. Our results thereby extend observations  
298 that older adults rely less on uncertainty representations to guide internal computations <sup>16</sup> by characterizing several  
299 plausible mechanisms for this shortfall. Specifically, our results suggest that such computational constraints do not  
300 exclusively stem from an inadequate sensitivity to latent uncertainty, as overt uncertainty cues were similarly processed  
301

302 across age groups. Rather, our findings support the maintenance account of cognitive and brain aging <sup>74</sup>, wherein  
303 individuals with a more “young-like” response more dynamically adjust perceptual and decision computations  
304 according to momentary uncertainty.

305

### 306 **3.1 Age differences in selecting features of multi-task stimuli.**

307

308 In our retro-cue design, evidence integration towards perceptual choices indirectly indexes how multi-task stimuli were  
309 processed. Older adults showed reduced modulation of evidence integration as a function of uncertainty but were also  
310 marked by reduced drift rates in response to single-target cues. This is consistent with age-related problems of goal  
311 selection in the context of inherently ambiguous multi-task stimuli <sup>13,14,75</sup>. Mayr (2001) indicated that “even when  
312 people have complete knowledge about the type of action to perform in the immediate future, they have problems  
313 implementing this knowledge in an optimal manner when more than one action rule may be relevant in principle” (p.  
314 105). The MAAT’s multi-dimensional stimuli constantly feature such rule ambiguity, thus requiring internal  
315 segregation and prioritization among possible task goals. A question concerns the relation of such “global set-selection  
316 costs” to working memory capacity <sup>13,14,75</sup>, given that multi-task stimuli (and their cues) also require maintenance of  
317 larger task sets. While the MAAT does not fully resolve this debate (*Supplementary Text 7*), it uses single-trial cues and  
318 homogeneous cue blocks to limit working memory demands. As such, results for the single-target condition  
319 conceptually replicate prior observations of large age differences in static set selection costs. In tandem, our uncertainty  
320 manipulation indicates age differences in *dynamic* task set management, indicated by reduced adjustment of  
321 downstream decision processes and larger relative performance costs in older as compared to younger adults.

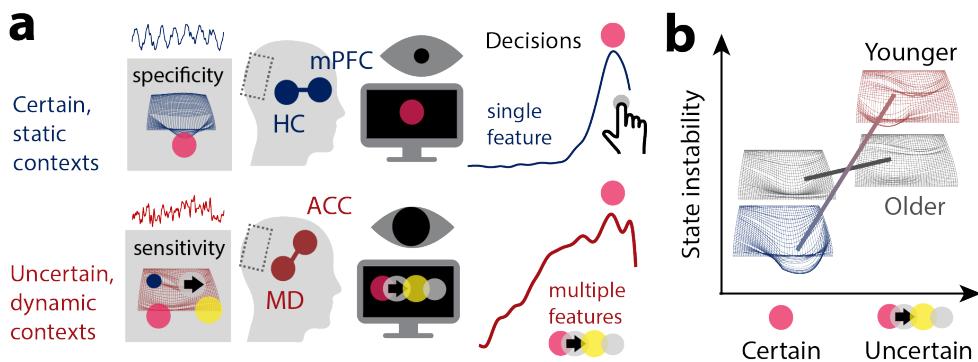
322

### 323 **3.2 Fronto-thalamic circuits may enable stable and flexible feature selection across the adult lifespan.**

324

325 As part of the neural uncertainty response, we observed a behaviorally relevant upregulation of anterior cingulate  
326 cortex (ACC) BOLD activation and (presumably ACC-based <sup>59,76</sup>) mediofrontal theta power. By charting the  
327 progression through multiple task contexts <sup>77-79</sup>, the ACC can estimate contextual volatility <sup>80</sup> and uncertainty <sup>16,81</sup> to  
328 guide exploration of alternative goals, strategies, and attentional targets <sup>60,82-84</sup>. Non-human animal studies suggest that  
329 high task uncertainty switches ACC dynamics to a state of increased excitability <sup>67,85</sup> and stochastic activity <sup>86</sup>, which  
330 benefits concurrent sensitivity to alternate task rules <sup>87</sup>. Also in humans, the ACC is sensitive to stimulus features  
331 before they behaviorally guide task strategies <sup>86,88</sup>, suggesting that the ACC contributes to the exploration of alternate  
332 task strategies <sup>89,90</sup>. While our results align with such contribution, we also localize high uncertainty sensitivity in the  
333 mediodorsal (MD) thalamus, which aligns with the MD being a key partner for selecting, switching, and maintaining  
334 cortical task representations <sup>23,91,92</sup> especially in uncertain contexts that require multifaceted computational adjustments  
335 <sup>30,68,69</sup>. Extrapolating from this emerging perspective, the MD-ACC circuit may regulate the extent of task set stability  
336 vs. flexibility <sup>93-95</sup> according to contextual demands (Fig. 7a). Partial evidence for such a notion is provided by models  
337 that link task stability in low-uncertainty contexts to thalamic engagement <sup>96</sup>. The current observations suggest a  
338 complementary thalamic role in flexible task set management. While maintained across the adult lifespan, BOLD and  
339 theta power signals indicated that such MD-ACC upregulation dampened in older age <sup>97,98</sup>. Indeed, the ACC network  
340 is particularly susceptible to age-related metabolic declines <sup>35-37</sup> as well as structural atrophy <sup>44</sup>. Retained ACC function  
341 on the other hand is a hallmark of cognitive reserve <sup>99</sup>, relates to maintained executive function <sup>37</sup>, and is a fruitful  
342 target of cognitive interventions in older adults <sup>98</sup>. Given evidence of a key role of the MD thalamus in the coordination  
343 of ACC engagement and our observations of reduced MD-ACC sensitivity to uncertainty in older age, the thalamus  
344 may be an underappreciated site for cascading age-related deficits in cognitive stability and flexibility.

345



346  
347  
348  
349  
350  
351  
352  
353  
354  
355  
356  
357  
358  
359  
360  
361  
362  
363  
364  
365  
366  
367  
368  
369  
370  
371  
372  
373  
374  
375  
376  
377  
378  
379  
380  
381  
382  
383  
384  
385  
386  
387  
388  
389  
390

**Figure 7. Schematic model summary.** (a) In static contexts, prefrontal-hippocampal networks may signal high confidence in the current task state, which enables stable task sets, and a targeted processing of specific sensory representations with high acuity. Such selective processing of specific task-relevant features benefits their efficient evidence integration. Such selectivity would be suboptimal in contexts with uncertain or changing task sets, however. An MD-ACC circuit may track such uncertainty and enhance stochastic task set flexibility in changing or ambiguous contexts. In coordination with posterior-parietal cortex, this feasibly enables more diverse albeit less precise perceptual representations. (b) The neural system of younger adults may more dynamically adjust feature fidelity during stimulus presentation to the degree of uncertainty. Observed effects align with a switch between a specific high-acuity processing of individual features (blue), and a more diverse, if less precise processing of multiple features (red; see also Thiele & Bellgrove, 2018). In contrast, the aged neural system may be stuck in a suboptimal middle ground that affords neither stable precision, nor flexible imprecision. mPFC = medial prefrontal cortex; HC = hippocampus; ACC = anterior cingulate cortex; MD = mediodorsal thalamus.

### 3.3 Neuromodulation may sculpt the dynamic range of uncertainty adjustments.

Neurotransmitter systems provide a candidate substrate for computational adjustments under uncertainty. In response to rising uncertainty, phasic norepinephrine release can sensitize the system to incoming signals<sup>100,101</sup> by increasing neuro-behavioral activation<sup>61,102,103</sup>. Pupil diameter, an index that is partially sensitive to noradrenergic drive<sup>65</sup>, robustly increases alongside uncertainty during learning<sup>28</sup> and attention<sup>104</sup>, environmental exploration<sup>105</sup>, and change points in dynamic environments<sup>28,66,106</sup>. Notably, increases have been observed in contexts that require an agent to learn more or less about a single option<sup>107</sup>; i.e., conditions in which sensitivity for *one* option increases. Here, pupil increases precede *decreases* in evidence integration for single features. Under the notion that uncertainty requires exploration of a larger space of options, we argue that this is akin to a lower learning rate for an individual feature at the benefit of distributed learning across uncertain features. Non-selective gain increases, e.g., provided by global arousal, can favor such distributed learning<sup>108</sup>. We observe that pupil sensitivity to rising uncertainty is retained across the adult lifespan but dampens in older age. Such dampening hints at declining noradrenergic responsiveness in older age<sup>41,109,110</sup>, arising from reduced LC integrity<sup>111,112</sup>, and/or decreased LC engagement<sup>113</sup>. Notably, pupil sensitivity to volatility has been related to the ACC as a primary source of cortical LC input<sup>27,114</sup>, and joint increases of ACC activation and pupil diameter in uncertain, or dynamic contexts has consistently been observed in studies that record both signals<sup>2,29,30,63,64</sup>. While future studies need to clarify the origin of constrained pupil adjustments in older age, our results affirm the relevance of the extended LC system for attentional function across the lifespan<sup>41</sup>. In contrast to noradrenaline's potential role in sensitizing, cholinergic innervation from the basal forebrain may foster selectivity via cortical gain increases<sup>115,116</sup>. Notably, basal forebrain BOLD activation decreased under uncertainty alongside regions such as the medial prefrontal cortex and hippocampus, that are sensitive to subjective confidence<sup>117</sup>, suggesting that these regions may support stable task beliefs when uncertainty is low<sup>85,118,119</sup> (Fig. 7a). The constrained BOLD modulation observed in older adults may thus point to reduced task set stability in low-uncertainty contexts (Fig. 7b)<sup>11</sup>, plausibly as a consequence of limited cholinergic gain control. Similar ideas have been captured in the cortical gain theory of aging<sup>120</sup>, but in the context of the dopamine system<sup>39,121</sup>. Computational models and pharmacological studies indeed support a role of dopamine availability in task set stability and flexibility<sup>122,123</sup>. For instance, amphetamines (operating via the DA system) can in- and decrease task set stability in ACC<sup>124,125</sup> depending on baseline dopamine levels in frontoparietal cortex and thalamus<sup>126</sup>. Given that our results align with the fronto-thalamic system being a primary neural substrate of cognitive aging<sup>39,45,127</sup>, the potential contribution of age-related dopamine depletion to constrained uncertainty adjustments deserves future clarification.

391 **3.4 Excitability as a neural mechanism for acuity/sensitivity trade-offs.**

392  
393 Uncertainty motivates sensitivity to multiple features at the cost of selective precision (or “acuity”) <sup>3</sup>. Our decoding  
394 results cohere with this notion, suggesting that representational fidelity depends on whether a feature is included in  
395 the current task set <sup>18</sup>, but also on competition with other elements for shared neuro-computational resources <sup>128</sup>.  
396 Excitability changes in parietal/sensory cortices provide a candidate neural implementation for such trade-off. One  
397 index of (decreased) cortical excitability is alpha power. Models suggest that broad alpha power increases reflect active  
398 inhibition of irrelevant information <sup>129-133</sup>, while targeted alpha desynchronization can selectively disinhibit relevant  
399 information <sup>44</sup>. With advancing adult age, alpha power decreases broadly, which has been linked to inhibitory filtering  
400 deficits <sup>41,134-137</sup> that manifest in maladaptive sensitivity also to irrelevant <sup>7</sup> and non-salient features <sup>138</sup> of compound  
401 stimuli <sup>6</sup>. Decoding and decision analyses indeed indicate that older adults’ task performance suffered from reduced  
402 single-target information, in line with selective filtering deficits <sup>139,140</sup>. Alpha desynchronization, in turn, is thought to  
403 reflect increased sensitivity when multiple input features <sup>26</sup> have to be jointly tracked <sup>141,142</sup> and retained in working  
404 memory <sup>143-146</sup>. In addition to alpha power, aperiodic dynamics such as the spectral slope of the EEG potential <sup>147</sup> and  
405 signal entropy <sup>148</sup> may also index levels of neural excitability <sup>67,147</sup>. Here, we reproduce uncertainty-guided excitability  
406 increases as indexed by all three signatures in younger adults <sup>30</sup>, but find no evidence for a comparable modulation in  
407 older age. Such deficit may be rooted in age-related declines of GABAergic inhibition <sup>42,43</sup>. Aperiodic dynamics at rest  
408 suggest increased excitatory tone in older age <sup>149-151</sup>, including in the current sample <sup>148</sup>. Such imbalances <sup>152</sup> may  
409 constrain the dynamic range of excitability modulation in older age, both on- and off-task <sup>33,153</sup>. It is also possible that  
410 the consistently high level of perceptual uncertainty, i.e., the difficulty of arbitrating between choice options of each  
411 feature, was overly taxing especially for older participants. Based on behavioral and decoding results, younger adults  
412 were indeed better able to arbitrate feature-specific options across uncertainty levels, relative to older adults. In this  
413 scenario, preserved excitability modulation may be observed if choice evidence was less ambiguous for individual  
414 features. However, performance on the Stroop task suggests that age-related deficits (and individual differences) in  
415 feature selection generalize to contexts of low perceptual ambiguity. Moreover, variations in perceptual difficulty  
416 across features could not explain inter-individual and age differences in neural uncertainty modulation. As perceptual  
417 uncertainty resolution relies on partially dissociable circuits from those implicated in feature selection <sup>154-156</sup>, future  
418 work needs to chart the ability to resolve either type across the lifespan.

419  
420 **3.5 The role of working memory**

421  
422 It is notoriously challenging to distinguish the explanatory power of competing functional mechanisms that could  
423 explain age-related differences in cognition. In the current paradigm the manipulation of uncertainty was accomplished  
424 by varying the number of potentially relevant features, which arguably may also increase working memory load.  
425 However, there are several reasons why we believe that uncertainty is the primary driver of the observed pattern of  
426 results. First, the increase of age differences was greatest when transitioning from one to two possible features. While  
427 both one and two features should remain well within working memory capacity, the difference between these two  
428 conditions is highly significant on the uncertainty dimension (i.e., the contrast between certainty and uncertainty).  
429 Further, our reversed-inference analyses indicate that the neuroanatomical results are more consistent with age effects  
430 in uncertainty processing than in working-memory functioning. On a more theoretical level, it is important to note  
431 that when it comes to aging, working memory is not a simple, unidimensional construct. For example, the fact that  
432 age-independent individual differences and age differences express themselves in markedly different manners <sup>157-159</sup>,  
433 makes this construct much less attractive as a general, candidate mechanism. Instead, an age-related failure to  
434 dynamically respond to uncertainty has the potential of providing a unifying explanation of age differences across  
435 paradigms and domains.

436  
437 **3.6 Conclusion**

438  
439 Uncertainty provides an important signal for adaptive cognitive control. We highlight that implementing such  
440 uncertainty-based control presents a principled challenge for the aged brain. Our results thus argue that uncertainty  
441 provides a useful lens on healthy cognitive aging and underline the need to better understand the integrated neural  
442 basis of estimating and computationally leveraging uncertainty signals across the lifespan.

443 **Methods**

444

445 **Sample.** 47 healthy young adults (mean age = 25.8 years, SD = 4.6, range 18 to 35 years; 25 women) and 53 healthy  
446 older adults (mean age = 68.7 years, SD = 4.2, range 59 to 78 years; 28 women) performed a perceptual decision task  
447 during 64-channel active scalp EEG acquisition. 42 younger adults and all older adults returned for a subsequent 3T  
448 fMRI session. We recruited a combined total of N = 100 participants, with approximately age-matched and gender-  
449 matched sample sizes informed by our prior inter-individual work <sup>30</sup>. Gender of participants was determined based  
450 on self-report. Participants were recruited from the participant database of the Max Planck Institute for Human  
451 Development, Berlin, Germany (MPIB). Participants were right-handed, as assessed with a modified version of the  
452 Edinburgh Handedness Inventory <sup>160</sup>, and had normal or corrected-to-normal vision. Participants reported to be in  
453 good health with no known history of neurological or psychiatric incidences and were paid for their participation (10  
454 € per hour). All older adults had Mini Mental State Examination (MMSE) <sup>161,162</sup> scores above 25. All participants gave  
455 written informed consent according to the institutional guidelines of the Deutsche Gesellschaft für Psychologie  
456 (DGPS) ethics board, which approved the study.

457

458 **Procedure: EEG Session.** Participants were seated 60 cm in front of a monitor in an acoustically and electrically  
459 shielded chamber with their heads placed on a chin rest. Following electrode placement, participants were instructed  
460 to rest with their eyes open and closed, each for 3 minutes. Afterwards, participants performed a Stroop task (see  
461 below), followed by the visual attention task instruction & practice (see below), the performance of the task and a  
462 second Stroop assessment. Stimuli were presented on a 60 Hz 1920x1080p LCD screen (AG Neovo X24) using  
463 PsychToolbox 3.0.11 <sup>163-165</sup>. The session lasted ~3 hours. EEG was continuously recorded from 60 active (Ag/AgCl)  
464 electrodes using BrainAmp amplifiers (Brain Products GmbH, Gilching, Germany). Scalp electrodes were arranged  
465 within an elastic cap (EASYCAP GmbH, Herrsching, Germany) according to the 10% system <sup>166</sup>, with the ground  
466 placed at AFz. To monitor eye movements, two additional electrodes were placed on the outer canthi (horizontal  
467 EOG) and one electrode below the left eye (vertical EOG). During recording, all electrodes were referenced to the  
468 right mastoid electrode, while the left mastoid electrode was recorded as an additional channel. Online, signals were  
469 digitized at a sampling rate of 1 kHz. In addition to EEG, we simultaneously tracked eye movements and assessed  
470 pupil diameter using EyeLink 1000+ hardware (SR Research, v.4.594) with a sampling rate of 1kHz.

471

472 **Procedure: MRI session.** A second testing session included structural and functional MRI assessments. First,  
473 participants received a short refresh of the task (“MAAT”, see below) instructions and practiced the task outside the  
474 scanner. Then, participants were placed in the TimTrio 3T scanner and were instructed in the button mapping. We  
475 collected the following sequences: T1w, task (4 runs), T2w, resting state, DTI, with a 15 min out-of-scanner break  
476 following the task acquisition. The session lasted ~3 hours. Whole-brain task fMRI data (4 runs á ~11,5 mins, 1066  
477 volumes per run) were collected via a 3T Siemens TrioTim MRI system (Erlangen, Germany) using a multi-band EPI  
478 sequence (factor 4; TR = 645 ms; TE = 30 ms; flip angle 60°; FoV = 222 mm; voxel size 3x3x3 mm; 40 transverse  
479 slices. The first 12 volumes (12 × 645 ms = 7.7 sec) were removed to ensure a steady state of tissue magnetization  
480 (total remaining volumes = 1054 per run). A T1-weighted structural scan (MPRAGE: TR = 2500 ms; TE = 4.77 ms;  
481 flip angle 7°; FoV = 256 mm; voxel size 1x1x1 mm; 192 sagittal slices) and a T2-weighted structural scan were also  
482 acquired (GRAPPA: TR = 3200 ms; TE = 347 ms; FoV = 256 mm; voxel size 1x1x1 mm; 176 sagittal slices).

483

484 **The multi-attribute attention task (“MAAT”).** The MAAT requires participants to sample up to four visual  
485 features in a compound stimulus, in the absence of systematic variation in bottom-up visual stimulation (see Figure  
486 1). Participants were shown a dynamic stimulus that combined four features of visual squares: their color (red/green),  
487 movement direction (left, right), size (small, large) and saturation (low, high). The task incorporates features from  
488 random dot motion tasks which have been extensively studied in both animal models <sup>167-169</sup> and humans <sup>55,170</sup>.  
489 Following stimulus presentation, a probe queried the prevalence of one feature (e.g., color: whether the stimulus  
490 contained more red or green squares) via 2-AFC (alternative forced choice). Before stimulus onset, a valid cue  
491 informed participants about the feature set, out of which the probe feature would be selected. We parametrically  
492 manipulated task uncertainty by including between one and four features in the cue. Participants were instructed to  
493 respond as fast and accurately as possible to increase their chance of bonus. They were instructed to use cue  
494 information to guide their attention during stimulus presentation between “focusing on a single feature” vs.  
495 “considering multiple features” to optimally prepare for the upcoming probe.

496 The perceptual difficulty of each feature was determined by (a) sensory differences between the two options  
497 and (b) the relative evidence for either option. For (a) the following values were used: high (RGB: 128, 255, 0) and  
498 low saturation green (RGB: 192, 255, 128) and high (RGB: 255, 0, 43) and low saturated red (RGB: 255, 128, 149) for  
499 color and saturation, 5 and 8 pixels for size differences and a coherence of .2 for directions. For (b) the relative choice  
500 evidence was chosen as follows: color: 60/40; direction: 80/20; size: 65/35; saturation: 60/40. Parameter difficulty  
501 was established in a pilot population, with the aim to produce above-chance accuracy for individual features.  
502 Parameters were held constant across age groups to equate bottom-up inputs.

503 Each session included four approx. 10 min task runs, each including eight blocks of eight trials (i.e., a total  
504 of 32 trial blocks; 256 trials). The size and constellation of the cue set was held constant within eight-trial blocks to  
505 reduce set switching and working memory demands. At the onset of each block, the valid cue set, composed of one  
506 to four target features, was presented for 5 s. Each trial was structured as follows: recuing phase (1 s), fixation phase  
507 (2 s), dynamic stimulus phase (3 s), probe phase (incl. response; 2 s); ITI (un-jittered; 1.5 s). At the offset of each  
508 block, participants received performance feedback for 3 s. The four features spanned a constellation of 16 feature  
509 combinations (4x4), of which presentation frequency was matched within participants. The size and type of the cue  
510 set was pseudo-randomized: Within each run, every set size was presented once, but never directly following a block  
511 of the same set size. In every block, each feature in the active set acted as a probe in at least one trial. Moreover, any  
512 feature served as a probe equally often across blocks. The dominant options for each feature were counterbalanced  
513 across all trials of the experiment. To retain high motivation during the task and encourage fast and accurate responses,  
514 we instructed participants that one response would randomly be drawn at the end of each block; if this response was  
515 correct and faster than the mean RT during the preceding block, they would earn a reward of 20 cents. However, we  
516 pseudo-randomized feedback such that all participants received an additional fixed payout of 10 € per session. This  
517 bonus was paid at the end of the second session, at which point participants were debriefed.

518

519 **Stroop performance.** Participants performed a voiced Stroop task before and after the main MAAT task in the EEG  
520 session. EEG signals were acquired during task performance. One participant did not complete the second Stroop  
521 acquisition. In the Stroop task, we presented three words (RED, GREEN, BLUE) either in the congruent or  
522 incongruent display color. Each of the two runs consisted of 81 trials, with fully matched combinations, i.e., 1/3<sup>rd</sup>  
523 congruent trials. Stimuli were presented for two seconds, followed by a one-second ITI with a centrally presented  
524 fixation cross. Participants were instructed to indicate the displayed color as fast and accurately as possible following  
525 stimulus onset by speaking into a microphone. During analysis, speech on- and offsets were pre-labeled automatically  
526 using a custom tool (**Computer-Assisted Response Labeler (CARL)**; doi: 10.5281/zenodo.7505622), and manually  
527 inspected and refined by one of two trained labelers. Voiced responses were manually labeled using the CARL GUI.  
528 Speech onset times (SOTs) were highly reliable across two Stroop sessions preceding and following the MAAT ( $r = .83$ ,  $p = 5e-26$ ), as were individual interference costs ( $r = .64$ ,  $p = 5e-13$ ). We therefore averaged SOTs estimates across  
529 both runs, where available. For EEG analyses, single-trial time series were aligned to SOTs, and averaged according  
530 to coherence conditions. The centroparietal positive potential was extracted from channel POz, at which we observed  
531 a maximum potential during the average 300 ms prior to SOT (see inset in Fig. 3a).

532

533 **Behavioral estimates of probe-related decision processes.** Sequential sampling models, such as the drift-diffusion  
534 model, have been used to characterize evolving perceptual decisions in 2-AFC random dot motion tasks <sup>55</sup>, memory  
535 retrieval <sup>171</sup>, and probabilistic decision making <sup>172</sup>. We estimated individual evidence integration parameters within the  
536 HDDM 0.6.0 toolbox <sup>54</sup> to regularize relatively sparse within-subject data with group priors based on a large number  
537 of participants. Premature responses faster than 250 ms were excluded prior to modeling, and the probability of  
538 outliers was set to 5%. 7000 Markov-Chain Monte Carlo samples were sampled to estimate parameters, with the first  
539 5000 samples being discarded as burn-in to achieve convergence. We judged convergence for each model by visually  
540 assessing both Markov chain convergence and posterior predictive fits. Individual estimates were averaged across the  
541 remaining 2000 samples for follow-up analyses. We fitted data to correct and incorrect RTs (termed ‘accuracy coding’  
542 in Wiecki, et al. <sup>54</sup>). To explain differences in decision components, we compared four separate models. In the ‘full  
543 model’, we allowed the following parameters to vary between conditions: (i) the mean drift rate across trials, (ii) the  
544 threshold separation between the two decision bounds, (iii) the non-decision time, which represents the summed  
545 duration of sensory encoding and response execution. In the remaining models, we reduced model complexity, by  
546 only varying (a) drift, (b) drift + threshold, or (c) drift + NDT, with a null model fixing all three parameters. For  
547 model comparison, we first used the Deviance Information Criterion (DIC) to select the model which provided the  
548 best fit to our data. The DIC compares models based on the maximal log-likelihood value, while penalizing model  
549

550 complexity. The full model provided the best fit to the empirical data based on the DIC index (Figure S1c) in both  
551 the EEG and the fMRI session, and in either age group. Posterior predictive checks indicated a suitable recovery of  
552 behavioral effects using this full solution. Given the observation of high reliability between sessions<sup>30</sup> (see also Figure  
553 S1-2), we averaged parameter estimates across the EEG and fMRI sessions for the main analysis. In contrast with  
554 previous work<sup>30</sup>, we did not constrain boundary separation estimates<sup>173</sup> here given our observation of CPP threshold  
555 differences in older adults (see Figure S1-3a). See also Text 1-2 for a brief discussion of NDT and boundary separation.  
556

557 **EEG preprocessing.** Preprocessing and analysis of EEG data were conducted with the FieldTrip toolbox  
558 (v.20170904)<sup>174</sup> and using custom-written MATLAB (The MathWorks Inc., Natick, MA, USA) code. Offline, EEG  
559 data were filtered using a 4<sup>th</sup> order Butterworth filter with a passband of 0.5 to 100 Hz. Subsequently, data were  
560 downsampled to 500 Hz and all channels were re-referenced to mathematically averaged mastoids. Blink, movement  
561 and heart-beat artifacts were identified using Independent Component Analysis (ICA;<sup>175</sup>) and removed from the  
562 signal. Artifact-contaminated channels (determined across epochs) were automatically detected using (a) the FASTER  
563 algorithm<sup>176</sup>, and by (b) detecting outliers exceeding three standard deviations of the kurtosis of the distribution of  
564 power values in each epoch within low (0.2-2 Hz) or high (30-100 Hz) frequency bands, respectively. Rejected channels  
565 were interpolated using spherical splines<sup>177</sup>. Subsequently, noisy epochs were likewise excluded based on a custom  
566 implementation of FASTER and on recursive outlier detection. Finally, recordings were segmented to stimulus onsets  
567 and were epoched into separate trials. To enhance spatial specificity, scalp current density estimates were derived via  
568 4<sup>th</sup> order spherical splines<sup>177</sup> using a standard 1005 channel layout (conductivity: 0.33 S/m; regularization: 1<sup>-05</sup>; 14<sup>th</sup>  
569 degree polynomials).

570  
571 **Electrophysiological estimates of probe-related decision processes.**

572  
573 **Centro-Parietal Positivity (CPP).** The Centro-Parietal Positivity (CPP) is an electrophysiological signature of  
574 internal evidence-to-bound accumulation<sup>55,173,178</sup>. We investigated the task modulation of this established signature  
575 and assessed its convergence with behavioral parameter estimates. To derive the CPP, preprocessed EEG data were  
576 low-pass filtered at 8 Hz with a 6<sup>th</sup> order Butterworth filter to exclude low-frequency oscillations, epoched relative to  
577 response and averaged across trials within each condition. In accordance with the literature, this revealed a dipolar  
578 scalp potential that exhibited a positive peak over parietal channel POz (Fig. 1c). We temporally normalized individual  
579 CPP estimates to a condition-specific baseline during the final 250 ms preceding probe onset. As a proxy of evidence  
580 drift rate, CPP slopes were estimated via linear regression from -250 ms to -100 ms surrounding response execution,  
581 while the average CPP amplitude from -50 ms to 50 ms served as an indicator of decision thresholds (i.e., boundary  
582 separation; e.g.,<sup>173</sup>).  
583

584 **Contralateral mu-beta.** Decreases in contralateral mu-beta power provide a complementary, effector-specific  
585 signature of evidence integration<sup>56,173</sup>. We estimated mu-beta power using 7-cycle wavelets for the 8-25 Hz range with  
586 a step size of 50 ms. Spectral power was time-locked to probe presentation and response execution. We re-mapped  
587 channels to describe data recorded contra- and ipsi-lateral to the executed motor response in each trial, and averaged  
588 data from those channels to derive grand average mu-beta time courses. Individual average mu-beta time series were  
589 baseline-corrected using the -400 to -200 ms prior to probe onset, separately for each condition. For contralateral  
590 motor responses, remapped sites C3/5 and CP3/CP5 were selected based on the grand average topography for  
591 lateralized response executions (see inset in Figure S2a). Mu-beta slopes were estimated via linear regression from -  
592 250 ms to -50 ms prior to response execution, while the average power from -50 ms to 50 ms indexed decision  
593 thresholds (e.g.,<sup>173</sup>).  
594

595 **Electrophysiological indices of top-down modulation during sensation**  
596

597 **Low-frequency alpha and theta power.** We estimated low-frequency power via a 7-cycle wavelet transform (linearly  
598 spaced center frequencies; 1 Hz steps; 2 to 15 Hz). The step size of estimates was 50 ms, ranging from -1.5 s prior to  
599 cue onset to 3.5 s following stimulus offset. Estimates were log10-transformed at the single trial level<sup>179</sup>, with no  
600 explicit baseline-correction. For statistics, data were averaged across time windows of interest (see respective Figure  
601 captions) and entered a task-PLS analysis (see “Multivariate partial least squares analyses”) to quantify the magnitude  
602 of power modulation as a function of target load without the need to pre-specify relevant channels.  
603

604 **Steady State Visual Evoked Potential (SSVEP).** The SSVEP characterizes the phase-locked, entrained visual  
605 activity (here 30 Hz) during dynamic stimulus updates (e.g.,<sup>180</sup>). These features differentiate it from induced broadband  
606 activity or muscle artefacts in similar frequency bands. We used these properties to normalize individual single-trial  
607 SSVEP responses prior to averaging: (a) we calculated an FFT for overlapping one second epochs with a step size of  
608 100 ms (Hanning-based multitaper) and averaged them within each uncertainty condition; (b) spectrally normalized  
609 30 Hz estimates by subtracting the average of estimates at 28 and 32 Hz, effectively removing broadband effects (i.e.,  
610 aperiodic slopes), and; (c) we subtracted a temporal baseline -700 to -100 ms prior to stimulus onset. Linear uncertainty  
611 effects on SSVEPs were assessed by paired t-tests on linear uncertainty slope estimates across posterior channel  
612 averages.

613  
614 **Time-resolved sample entropy.** Sample entropy<sup>181</sup> quantifies the irregularity of a time series of length  $N$  by assessing  
615 the conditional probability that two sequences of  $m$  consecutive data points will remain similar when another sample  
616 ( $m+1$ ) is included in the sequence (for a visual example see Figure 1A in<sup>148</sup>). Sample entropy is defined as the inverse  
617 natural logarithm of this conditional similarity: The similarity criterion ( $r$ ) defines the tolerance within which two points  
618 are considered similar and is defined relative to the standard deviation ( $\sim$ variance) of the signal (here set to  $r = .5$ ).  
619 We set the sequence length  $m$  to 2, in line with previous applications<sup>148</sup>. An adapted version of sample entropy  
620 calculations implemented in the mMSE toolbox (available from <https://github.com/LNDG/mMSE>) was used<sup>148,182</sup>,  
621 wherein entropy is estimated across discontinuous data segments to provide time-resolved estimates. The estimation  
622 of scale-wise entropy across trials allows for an estimation of coarse scale entropy also for short time-bins (i.e., without  
623 requiring long, continuous signals), while quickly converging with entropy estimates from continuous recordings<sup>183</sup>.  
624 To remove the influence of posterior-occipital low-frequency rhythms on entropy estimates, we notch-filtered the 8-  
625 15 Hz alpha band using 6<sup>th</sup> order Butterworth filter prior to the entropy calculation<sup>148</sup>. Time-resolved entropy  
626 estimates were calculated for 500 ms windows from -1 s pre-stimulus to 1.25 s post-probe with a step size of 150 ms.  
627 As entropy values are implicitly normalized by the variance in each time bin via the similarity criterion, no temporal  
628 baseline correction was applied.

629  
630 **Aperiodic (1/f) slopes.** The aperiodic 1/f slope of neural recordings is closely related to the sample entropy of  
631 broadband signals<sup>148</sup> and has been suggested as a proxy for cortical excitation-inhibition balance<sup>147</sup>. Spectral estimates  
632 were computed by means of a Fast Fourier Transform (FFT) over the final 2.5 s of the presentation period (to exclude  
633 onset transients) for linearly spaced frequencies between 2 and 80 Hz (step size of 0.5 Hz; Hanning-tapered segments  
634 zero-padded to 20 s) and subsequently averaged. Spectral power was log10-transformed to render power values more  
635 normally distributed across participants. Power spectral density (PSD) slopes were estimated using the fooof toolbox  
636 (v1.0.0-dev) using default parameters<sup>184</sup>.

637  
638 **Pupil diameter.** Pupil diameter was recorded during the EEG session using EyeLink 1000 at a sampling rate of 1000  
639 Hz and was analyzed using FieldTrip and custom-written MATLAB scripts. Blinks were automatically indicated by  
640 the EyeLink software (version 4.40). To increase the sensitivity to periods of partially occluded pupils or eye  
641 movements, the first derivative of eye-tracker-based vertical eye movements was calculated, z-standardized, and  
642 outliers  $\geq 3$  STD were removed. We additionally removed data within 150 ms preceding or following indicated  
643 outliers. Finally, missing data were linearly interpolated, and data were epoched to 3.5 s prior to stimulus onset to 1 s  
644 following stimulus offset. We quantified phasic arousal responses via the rate of change of pupil diameter traces as  
645 this measure (i) has higher temporal precision and (ii) has been more strongly associated with noradrenergic responses  
646 than the overall response<sup>185</sup>. We down-sampled pupil timeseries to 100 Hz. First derivative pupil traces were  
647 smoothed using a 300 ms moving median. For statistics, timeseries were entered into a task-PLS (see “Multivariate  
648 partial least squares analyses”) to quantify the magnitude of pupil modulation as a function of target load without the  
649 need to pre-specify a relevant time window.

650  
651 **fMRI-based analyses**

652  
653 **Preprocessing of functional MRI data.** fMRI data were preprocessed with FSL 5 (RRID:SCR\_002823)<sup>186,187</sup>. Pre-  
654 processing included motion correction using McFLIRT, smoothing (7mm) and high-pass filtering (.01 Hz) using an  
655 8<sup>th</sup> order zero-phase Butterworth filter applied using MATLAB’s filtfilt function. We registered individual functional  
656 runs to the individual, ANTs brain-extracted T2w images (6 DOF), to T1w images (6 DOF) and finally to 3mm  
657 standard space (ICBM 2009c MNI152 nonlinear symmetric)<sup>188</sup> using nonlinear transformations in ANTs 2.1.0<sup>189</sup> (for

658 one participant, no T2w image was acquired and 6 DOF transformation of BOLD data was preformed directly to the  
659 T1w structural scan). We then masked the functional data with the ICBM 2009c GM tissue prior (thresholded at a  
660 probability of 0.25), and detrended the functional images (up to a cubic trend) using SPM12's *spm\_detrend*. We also  
661 used a series of extended preprocessing steps to further reduce potential non-neural artifacts <sup>153,190</sup>. Specifically, we  
662 examined data within-subject, within-run via spatial independent component analysis (ICA) as implemented in FSL-  
663 MELODIC <sup>191</sup>. Due to the high multiband data dimensionality in the absence of low-pass filtering, we constrained  
664 the solution to 30 components per participant. Noise components were identified according to several key criteria:  
665 a) Spiking (components dominated by abrupt time series spikes); b) Motion (prominent edge or “ringing” effects,  
666 sometimes [but not always] accompanied by large time series spikes); c) Susceptibility and flow artifacts (prominent  
667 air-tissue boundary or sinus activation; typically represents cardio/respiratory effects); d) White matter (WM) and  
668 ventricle activation <sup>192</sup>; e) Low-frequency signal drift <sup>193</sup>; f) High power in high-frequency ranges unlikely to represent  
669 neural activity ( $\geq 75\%$  of total spectral power present above .10 Hz); and g) Spatial distribution (“spotty” or  
670 “speckled” spatial pattern that appears scattered randomly across  $\geq 25\%$  of the brain, with few if any clusters with  $\geq$   
671 80 contiguous voxels). Examples of these various components we typically deem to be noise can be found in <sup>194</sup>. By  
672 default, we utilized a conservative set of rejection criteria; if manual classification decisions were challenging due to  
673 mixing of “signal” and “noise” in a single component, we generally elected to keep such components. Three  
674 independent raters of noise components were utilized;  $> 90\%$  inter-rater reliability was required on separate data  
675 before denoising decisions were made on the current data. Components identified as artifacts were then regressed  
676 from corresponding fMRI runs using the *regfilt* command in FSL. To reduce the influence of motion and physiological  
677 fluctuations, we regressed FSL's 6 DOF motion parameters from the data, in addition to average signal within white  
678 matter and CSF masks. Masks were created using 95% tissue probability thresholds to create conservative masks. Data  
679 and regressors were demeaned and linearly detrended prior to multiple linear regression for each run. To further  
680 reduce the impact of potential motion outliers, we censored significant DVARS outliers during the regression as  
681 described by <sup>195</sup>. We calculated the ‘practical significance’ of DVARS estimates and applied a threshold of 5 <sup>196</sup>. The  
682 regression-based residuals were subsequently spectrally interpolated during DVARS outliers as described in <sup>195</sup> and  
683 <sup>197</sup>. BOLD analyses were restricted to participants with both EEG and MRI data available (N = 42 YA, N = 53 OA).  
684

685 **fMRI decoding of prevalent feature options.** We performed a decoding analysis to analyze the extent to which  
686 participants' visual cortices contained information about the prevalent option of each feature. N = 2 older adults with  
687 two missing runs each were not included in this analysis due to the limited number of eligible trials. We trained a  
688 decoder based on BOLD signals from within a visual cortex mask that included Jülich parcellations ranging from V1  
689 to area MT. We resliced the mask to 3mm and created an intersection mask with the cortical grey matter mask used  
690 throughout the remaining analyses. For classification analyses, we used linear support-vector machines (SVM) <sup>198</sup>  
691 implemented with libsvm ([www.csie.ntu.edu.tw/~cjlin/libsvm](http://www.csie.ntu.edu.tw/~cjlin/libsvm)). As no separate session was recorded, we trained  
692 classifiers based on all trials (across uncertainty conditions) in which the target feature was probed, therefore  
693 necessitating but not exhaustively capturing trials on which the respective feature was also cued. By experimental  
694 design, the number of trials in which a target feature was probed was matched across uncertainty levels. We used a  
695 bootstrap classification approach in the context of leave-one-out cross-validation to derive single-trial estimates of  
696 decoding accuracy. To increase the signal-to-noise ratio for the decoders, we averaged randomly selected trials into  
697 three folds (excluding any trial used for testing) and concatenated two pseudo-trials from each condition to create the  
698 training set. Trained decoders were then applied to the left-out trial. This train-and-test procedure was randomly  
699 repeated 100 times to create bootstrapped single-trial estimates. Finally, decoding accuracy was averaged across trials  
700 based on condition assignment (e.g., whether a given feature was cued or uncued). To assess above-chance decoding  
701 accuracy in time, we used univariate cluster-based permutation analyses (CBPAs). These univariate tests were  
702 performed by means of dependent samples t-tests, and cluster-based permutation tests <sup>199</sup> were performed to control  
703 for multiple comparisons. Initially, a clustering algorithm formed clusters based on significant t-tests of individual data  
704 points ( $p < .05$ , two-sided; cluster entry threshold) with the spatial constraint of a cluster covering a minimum of three  
705 neighboring channels. Then, the significance of the observed cluster-level statistic (based on the summed t-values  
706 within the cluster) was assessed by comparison to the distribution of all permutation-based cluster-level statistics. The  
707 final cluster p-value was assessed as the proportion of 1000 Monte Carlo iterations in which the cluster-level statistic  
708 was exceeded. Cluster significance was indicated by p-values below .025 (two-sided cluster significance threshold). To  
709 test uncertainty and age effects, we initially fitted linear mixed effects models with random intercepts and fixed effects  
710 of uncertainty, age, and an uncertainty x age interaction. As no significant interaction was indicated for any of the  
711 models (probed:  $p = 0.760$ ; unprobed:  $p = 0.434$ ; all:  $p = 0.625$ ), we removed the interaction term for the main effect

712 estimation. We constrained analysis to timepoints for which the cluster-based permutation analysis indicated above-  
713 chance decoding for cued features (Fig. 2a; 4.5-11.5 s post-stimulus onset). We focused on probed and unprobed  
714 feature trials, as they are matched in trial number at each uncertainty level.

715  
716 **BOLD uncertainty modulation and relation to multi-modal signatures.** We conducted a 1<sup>st</sup> level analysis using  
717 SPM12 to identify beta weights for each condition separately. Design variables included stimulus presentation (4  
718 volumes; separate regressors for each uncertainty condition; parametrically modulated by sequence position), onset  
719 cue (no mod.), and probe (2 volumes, parametric modulation by RT). Design variables were convolved with a  
720 canonical HRF, including its temporal derivative as a nuisance term. Nuisance regressors included 24 motion  
721 parameters<sup>200</sup>, as well as continuous DVARS estimates. Autoregressive modelling was implemented via FAST. Output  
722 beta images for each uncertainty condition were finally averaged across runs. At the group (2<sup>nd</sup>) level, we examined  
723 the relationship between voxel-wise 1<sup>st</sup> level beta weights and uncertainty conditions within a task PLS analysis; and  
724 probed links between linear BOLD modulation and interindividual differences in multi-modal signatures of interest  
725 via a behavioral PLS (see *Multivariate partial least squares analyses*). For visualization, spatial clusters were defined based  
726 on a minimum distance of 10 mm, and by exceeding a size of 25 voxels. We identified regions associated with peak  
727 activity based on cytoarchitectonic probabilistic maps implemented in the SPM Anatomy Toolbox (Version 2.2c)<sup>201</sup>.  
728 If no assignment was found, the most proximal assignment to the peak coordinates was reported.  
729

730 **Temporal dynamics of thalamic engagement.** To visualize the uncertainty modulation of thalamic activity, we  
731 extracted signals within a binary mask of thalamic divisions extracted from the Morel atlas<sup>202</sup>. Preprocessed BOLD  
732 timeseries were segmented into trials, spanning the period from the stimulus onset to the onset of the feedback phase.  
733 Given a time-to-peak of a canonical hemodynamic response function (HRF) between 5-6 seconds, we designated the  
734 3 second interval from 5-8 seconds following the stimulus onset trigger as the stimulus presentation interval, and the  
735 2 second interval from 3-5 s as the fixation interval, respectively. Single-trial time series were then temporally  
736 normalized to the temporal average during the approximate fixation interval.  
737

738 **Thalamic loci of behavioral PLS.** To assess the thalamic loci of most reliable behavioral relations, we assessed  
739 bootstrap ratios within two thalamic masks. First, for nucleic subdivisions, we used the Morel parcellation scheme as  
740 consolidated and kindly provided by Hwang et al.<sup>203</sup> for 3 mm data at 3T field strength. The abbreviations are as  
741 follows: AN: anterior nucleus; VM: ventromedial; VL: ventrolateral; MGN: medial geniculate nucleus; LGN: lateral  
742 geniculate nucleus; MD: mediodorsal; PuA: anterior pulvinar; LP: lateral-posterior; IL: intra-laminar; VA: ventral-  
743 anterior; PuM: medial pulvinar; PuL: pulvinar proper; PuL: lateral pulvinar. Second, to assess cortical white-matter  
744 projections we considered the overlap with seven structurally derived cortical projection zones suggested by Horn &  
745 Blankenburg<sup>204</sup>, which were derived from a large adult sample ( $N = 169$ ). We binarized continuous probability maps  
746 at a relative 75% threshold of the respective maximum probability, and re-sliced masks to 3mm (ICBM 2009c  
747 MNI152).

748  
749 **Statistical analyses**

750  
751 **Outlier handling.** For each signature, we defined outliers at the subject-level as individuals within their respective  
752 age group whose values (e.g., estimates of linear modulation) exceeded three scaled median absolute deviations (MAD)  
753 as implemented in MATLAB. Such individual data points were winsorized prior to statistical analysis. For repeated  
754 measures analyses, such individuals were removed prior to statistical assessment.  
755

756 **Linear uncertainty effect estimates.** To estimate the linear uncertainty modulation of dependent variables, we  
757 calculated 1<sup>st</sup> level beta estimates ( $y = \text{intercept} + \beta * \text{target load} + e$ ) and assessed the slope difference from zero at the  
758 within-group level (see Table S1) using two-sided paired t-tests. Similarly, we compared linear uncertainty effect  
759 estimates between groups using two-sides unpaired t-tests. We assessed the relation of individual linear load effects  
760 between measures of interest via Pearson correlations.  
761

762 **Within-subject centering.** To visually emphasize effects within participants, we use within-subject centering across  
763 repeated measures conditions by subtracting individual cross-condition means and adding global group means. For  
764 these visualizations, only the mean of the dependent values directly reflects the original units of measurement, as  
765 individual data points by construction do not reflect between-subject variation averaged across conditions. This

766 procedure equals the creation of within-subject standard errors <sup>205</sup>. Within-subject centering is exclusively used for  
767 display and explicitly noted in the respective legends.  
768

769 **Multivariate partial least squares analyses.** For data with a high-dimensional structure, we performed multivariate  
770 partial least squares analyses. PLS is a multivariate statistical technique used to identify relationships between two sets  
771 of variables. In neuroimaging studies, task PLS is often employed to relate brain activity (measured by techniques like  
772 fMRI, EEG, or MEG) to experimental conditions (task PLS) or behavioral measures (behavioral PLS) <sup>206,207</sup>.

773 To assess main effects of uncertainty, we performed Task PLS analyses. Task PLS begins by calculating a  
774 between-subject covariance matrix (COV) between conditions and a ‘*neural*’ index. This covariance matrix is then  
775 decomposed using singular value decomposition (SVD). This yields a left singular vector of experimental condition  
776 weights (U), a right singular vector of brain weights (V), and a diagonal matrix of singular values (S). Task PLS  
777 produces orthogonal latent variables (LVs) that reflect optimal relations between experimental conditions (e.g., target  
778 load) and (neural) data of interest. We ran a task PLS version in which group means were removed from condition  
779 means to highlight how conditions were modulated by group membership, i.e., condition and condition-by-group  
780 effects. Separate task PLS analyses were performed for ‘*neural*’ values of theta power (Fig. 4), pupil diameter (Fig. 4),  
781 excitability signatures (Fig. 5), fMRI BOLD (S4), and pre-stimulus alpha power (S5).

782 To examine multivariate relations between BOLD signal changes under uncertainty and interindividual  
783 differences in decision, excitability, and pupil modulation, we performed a behavioral PLS analysis (Fig. 6). This  
784 analysis initially calculates a between-subject correlation matrix (CORR) between (1) a ‘*neural*’ index and (2) a ‘*behavioral*’  
785 variable of interest (although called ‘*behavioral*’, this variable can reflect any variable of interest). As the *neural* index, we  
786 estimated linear coefficients between 1<sup>st</sup> level beta estimates ~ uncertainty, fitted within each voxel. As behavioral  
787 variables, we included the signatures reported on the left of Figure 6c, incl. drift estimates, pupil diameter, spectral  
788 power, and excitability indices). Analogous to task PLS, CORR is decomposed using SVD:  $SVD_{CORR} = USV'$ , which  
789 produces a matrix of left singular vectors of behavioral weights (U), a matrix of right singular vectors of neural weights  
790 (V), and a diagonal matrix of singular values (S).

791 Across PLS variants, each LV (ordered strongest to weakest in S) is characterized by a data pattern that  
792 depicts the strongest available relation between brain and conditions/behavioral data. Significance of detected  
793 relations of both PLS model types was assessed using 1000 permutation tests of the singular value corresponding to  
794 the LV. Subsequent bootstrapping indicated the robustness of within-LV neural saliences across 1000 data resamples  
795 <sup>208</sup>. By dividing each brain weight (from V) by its bootstrapped standard error, we obtained “bootstrap ratios” (BSRs)  
796 as normalized robustness estimates. We generally threshold BSRs at values of  $\pm 3.00$  ( $\sim 99.9\%$  confidence interval).  
797 We obtained a summary measure of each participant- and condition-wise expression of a LV’s pattern (a “*Brainscore*”)  
798 by multiplying the vector of weights (V) by each participant’s and condition’s vector of input data values (P):  $Brainscore = VP'$ . To summarize uncertainty modulation, task PLS *Brainscores* were analyzed as described in “Linear uncertainty  
799 effect estimates”.  
800

801 **Data availability.** Primary EEG, fMRI, and behavioral data will be made available upon publication (for younger  
802 adults see <https://osf.io/ug4b8/>). Structural MRI data are exempt from public sharing according to obtained  
803 informed consent. All data are available from the corresponding authors upon reasonable request.  
804

805 **Code availability.** Experiment code is available from <https://git.mpib-berlin.mpg.de/LNDG/multi-attribute-task>.  
806 Analysis code is available from <https://git.mpib-berlin.mpg.de/LNDG/stateswitchage/stsw>.  
807

808 **Acknowledgements.** This study was conducted within the ‘Lifespan Neural Dynamics Group’ at the Max Planck  
809 UCL Centre for Computational Psychiatry and Ageing Research in the Max Planck Institute for Human Development  
810 (MPIB) in Berlin, Germany. DDG was supported by an Emmy Noether Programme grant from the German Research  
811 Foundation. UL acknowledges financial support from the Intramural Innovation Fund of the Max Planck Society.  
812 JQK, DDG and UL were partially supported by the Max Planck UCL Centre for Computational Psychiatry and Ageing  
813 Research. The participating institutions are the Max Planck Institute for Human Development, Berlin, Germany, and  
814 University College London, London, UK. For more information, see <https://www.mps-ucl-centre.mpg.de/en/comp2psych>. The funders had no role in study design, data collection and analysis, decision to  
815 publish, or preparation of the manuscript. We thank our research assistants and participants for their contributions.  
816  
817  
818

819 **Author contributions.** JQK: Conceptualization, Methodology, Investigation, Software, Formal analysis,  
820 Visualization, Writing – original draft, Writing – review and editing, Validation, Data Curation; UM:  
821 Conceptualization, Writing – review and editing, UL: Conceptualization, Resources, Writing – review and editing,  
822 Supervision, Funding acquisition; DDG: Conceptualization, Methodology, Software, Resources, Writing—review and  
823 editing, Supervision, Project administration, Funding acquisition.

824

825 **Competing interests.** The authors declare no competing interests.

826

827

828

829

830 **References**

831

832 1 Desimone, R. & Duncan, J. Neural Mechanisms of Selective Visual-Attention. *Annual Review of Neuroscience* **18**,  
833 193-222 (1995). <https://doi.org/10.1146/annurev.neuro.18.1.193>

834 2 Findling, C., Skvortsova, V., Dromnelle, R., Palminteri, S. & Wyart, V. Computational noise in reward-guided  
835 learning drives behavioral variability in volatile environments. *Nat Neurosci* **22**, 2066-2077 (2019).  
<https://doi.org/10.1038/s41593-019-0518-9>

836 3 Tavoni, G., Doi, T., Pizzica, C., Balasubramanian, V. & Gold, J. I. Human inference reflects a normative balance of  
837 complexity and accuracy. *Nat Hum Behav* **6**, 1153-1168 (2022). <https://doi.org/10.1038/s41562-022-01357-z>

838 4 Huys, Q. J. M., Browning, M., Paulus, M. P. & Frank, M. J. Advances in the computational understanding of  
839 mental illness. *Neuropsychopharmacology* **46**, 3-19 (2021). <https://doi.org/10.1038/s41386-020-0746-4>

840 5 Pulcu, E. & Browning, M. The Misestimation of Uncertainty in Affective Disorders. *Trends in cognitive sciences* **23**,  
841 865-875 (2019). <https://doi.org/10.1016/j.tics.2019.07.007>

842 6 Quigley, C. & Muller, M. M. Feature-selective attention in healthy old age: a selective decline in selective  
843 attention? *The Journal of neuroscience : the official journal of the Society for Neuroscience* **34**, 2471-2476 (2014).  
<https://doi.org/10.1523/JNEUROSCI.2718-13.2014>

844 7 Amer, T. & Hasher, L. Conceptual processing of distractors by older but not younger adults. *Psychol Sci* **25**, 2252-  
845 2258 (2014). <https://doi.org/10.1177/0956797614555725>

846 8 Kennedy, B. L. & Mather, M. in *The aging brain: Functional adaptation across adulthood* (ed G. R. Samanez-  
847 Larkin) 45-72 (American Psychological Association, 2019).

848 9 Hasher, L. & Zacks, R. T. in *The psychology of learning and motivation* Vol. 22 (ed G. H. Bower) pp. 193-225  
849 (Academic Press, 1988).

850 10 Salthouse, T. A. & Meinz, E. J. Aging, Inhibition, Working-Memory, and Speed. *J Gerontol B-Psychol* **50**, P297-  
851 P306 (1995). <https://doi.org/10.1093/geronb/50B.6.P297>

852 11 Lindenberger, U. & Mayr, U. Cognitive aging: is there a dark side to environmental support? *Trends in cognitive  
853 sciences* **18**, 7-15 (2014). <https://doi.org/10.1016/j.tics.2013.10.006>

854 12 McDowd, J. M. & Craik, F. I. M. Effects of aging and task difficulty on divided attention performance. *Journal of  
855 experimental psychology. Human perception and performance* **14**, 267-280 (1988). [https://doi.org/10.1037/0096-1523.14.2.267](https://doi.org/10.1037/0096-<br/>856 1523.14.2.267)

857 13 Kray, J., Li, K. Z. & Lindenberger, U. Age-related changes in task-switching components: the role of task  
858 uncertainty. *Brain and cognition* **49**, 363-381 (2002).

859 14 Mayr, U. Age differences in the selection of mental sets: the role of inhibition, stimulus ambiguity, and response-  
860 set overlap. *Psychology and aging* **16**, 96-109 (2001). <https://doi.org/10.1037/0882-7974.16.1.96>

861 15 Spieler, D. H., Mayr, U. & LaGrone, S. Outsourcing cognitive control to the environment: adult age differences in  
862 the use of task cues. *Psychon Bull Rev* **13**, 787-793 (2006). <https://doi.org/10.3758/bf03193998>

863 16 Nassar, M. R. et al. Age differences in learning emerge from an insufficient representation of uncertainty in older  
864 adults. *Nat Commun* **7**, 11609 (2016). <https://doi.org/10.1038/ncomms11609>

865 17 Bach, D. R. & Dolan, R. J. Knowing how much you don't know: a neural organization of uncertainty estimates.  
866 *Nature reviews. Neuroscience* **13**, 572-586 (2012). <https://doi.org/10.1038/nrn3289>

867 18 Xue, C., Kramer, L. E. & Cohen, M. R. Dynamic task-belief is an integral part of decision-making. *Neuron* **110**  
868 (2022). <https://doi.org/10.1016/j.neuron.2022.05.010>

869 19 Okazawa, G. & Kiani, R. Neural Mechanisms that Make Perceptual Decisions Flexible. *Annu Rev Physiol* (2022).  
<https://doi.org/10.1146/annurev-physiol-031722-024731>

870 20 Mante, V., Sussillo, D., Shenoy, K. V. & Newsome, W. T. Context-dependent computation by recurrent dynamics  
871 in prefrontal cortex. *Nature* **503**, 78-84 (2013). <https://doi.org/10.1038/nature12742>

872 21 Miller, E. K. & Buschman, T. J. Cortical circuits for the control of attention. *Current Opinion in Neurobiology* **23**,  
873 216-222 (2013). <https://doi.org/10.1016/j.conb.2012.11.011>

874 22 Halassa, M. M. & Kastner, S. Thalamic functions in distributed cognitive control. *Nat Neurosci* **20**, 1669-1679  
875 (2017). <https://doi.org/10.1038/s41593-017-0020-1>

876 23 Rikhye, R. V., Gilra, A. & Halassa, M. M. Thalamic regulation of switching between cortical representations  
877 enables cognitive flexibility. *Nat Neurosci* **21**, 1753-1763 (2018). <https://doi.org/10.1038/s41593-018-0269-z>

878 24 Moher, J., Lakshmanan, B. M., Egeth, H. E. & Ewen, J. B. Inhibition drives early feature-based attention. *Psychol  
879 Sci* **25**, 315-324 (2014). <https://doi.org/10.1177/0956797613511257>

880 25 Jehee, J. F., Brady, D. K. & Tong, F. Attention improves encoding of task-relevant features in the human visual  
881 cortex. *The Journal of neuroscience : the official journal of the Society for Neuroscience* **31**, 8210-8219 (2011).  
<https://doi.org/10.1523/JNEUROSCI.6153-09.2011>

882 26 Griffiths, B. J. et al. Alpha/beta power decreases track the fidelity of stimulus-specific information. *Elife* **8**, e33107  
883 (2019). <https://doi.org/10.7554/elife.49562>

884 27 Joshi, S., Li, Y., Kalwani, R. M. & Gold, J. I. Relationships between Pupil Diameter and Neuronal Activity in the  
885 Locus Coeruleus, Colliculi, and Cingulate Cortex. *Neuron* **89**, 221-234 (2016).  
<https://doi.org/10.1016/j.neuron.2015.11.028>

886 28 Nassar, M. R. et al. Rational regulation of learning dynamics by pupil-linked arousal systems. *Nat Neurosci* **15**,  
887 1040-1046 (2012). <https://doi.org/10.1038/nn.3130>

893 29 Muller, T. H., Mars, R. B., Behrens, T. E. & O'Reilly, J. X. Control of entropy in neural models of environmental  
894 state. *Elife* **8** (2019). <https://doi.org/10.7554/elife.39404>

895 30 Kosciessa, J. Q., Lindenberger, U. & Garrett, D. D. Thalamocortical excitability modulation guides human  
896 perception under uncertainty. *Nat Commun* **12**, 2430 (2021). <https://doi.org/10.1038/s41467-021-22511-7>

897 31 Cabeza, R. *et al.* Maintenance, reserve and compensation: the cognitive neuroscience of healthy ageing. *Nature  
898 reviews. Neuroscience* **19**, 701-710 (2018). <https://doi.org/10.1038/s41583-018-0068-2>

899 32 Nagel, I. E. *et al.* Performance level modulates adult age differences in brain activation during spatial working  
900 memory. *Proceedings of the National Academy of Sciences of the United States of America* **106**, 22552-22557  
901 (2009). <https://doi.org/10.1073/pnas.0908238106>

902 33 Garrett, D. D., Kovacevic, N., McIntosh, A. R. & Grady, C. L. The modulation of BOLD variability between  
903 cognitive states varies by age and processing speed. *Cereb Cortex* **23**, 684-693 (2013).  
<https://doi.org/10.1093/cercor/bhs055>

904 34 Nyberg, L. *et al.* Longitudinal evidence for diminished frontal cortex function in aging. *Proceedings of the  
905 National Academy of Sciences of the United States of America* **107**, 22682-22686 (2010).  
<https://doi.org/10.1073/pnas.1012651108>

906 35 Pardo, J. V. *et al.* Where the brain grows old: decline in anterior cingulate and medial prefrontal function with  
907 normal aging. *Neuroimage* **35**, 1231-1237 (2007). <https://doi.org/10.1016/j.neuroimage.2006.12.044>

908 36 Ishibashi, K. *et al.* Longitudinal effects of aging on (18)F-FDG distribution in cognitively normal elderly  
909 individuals. *Sci Rep-Uk* **8**, 11557 (2018). <https://doi.org/10.1038/s41598-018-29937-y>

910 37 Pardo, J. V., Nyabwari, S. M., Lee, J. T. & Alzheimer's Disease Neuroimaging, I. Aging-Related Hypometabolism  
911 in the Anterior Cingulate Cortex of Cognitively Intact, Amyloid-Negative Seniors at Rest Mediates the  
912 Relationship between Age and Executive Function but Not Memory. *Cereb Cortex Commun* **1**, tgaao20 (2020).  
<https://doi.org/10.1093/texcom/tgaa020>

913 38 Li, S. C., Lindenberger, U. & Sikstrom, S. Aging cognition: from neuromodulation to representation. *Trends in  
914 cognitive sciences* **5**, 479-486 (2001).

915 39 Backman, L., Lindenberger, U., Li, S. C. & Nyberg, L. Linking cognitive aging to alterations in dopamine  
916 neurotransmitter functioning: recent data and future avenues. *Neuroscience and biobehavioral reviews* **34**, 670-  
917 677 (2010). <https://doi.org/10.1016/j.neubiorev.2009.12.008>

918 40 Mather, M. & Harley, C. W. The Locus Coeruleus: Essential for Maintaining Cognitive Function and the Aging  
919 Brain. *Trends in cognitive sciences* **20**, 214-226 (2016). <https://doi.org/10.1016/j.tics.2016.01.001>

920 41 Dahl, M. J., Mather, M., Sander, M. C. & Werkle-Bergner, M. Noradrenergic Responsiveness Supports Selective  
921 Attention across the Adult Lifespan. *The Journal of neuroscience : the official journal of the Society for  
922 Neuroscience* **40**, 4372-4390 (2020). <https://doi.org/10.1523/JNEUROSCI.0398-19.2020>

923 42 Lalwani, P. *et al.* Neural distinctiveness declines with age in auditory cortex and is associated with auditory  
924 GABA levels. *Neuroimage* **201** (2019). <https://doi.org/10.1016/j.neuroimage.2019.116033>

925 43 Simmonite, M. *et al.* Age-Related Declines in Occipital GABA are Associated with Reduced Fluid Processing  
926 Ability. *Acad Radiol* **26**, 1053-1061 (2019). <https://doi.org/10.1016/j.acra.2018.07.024>

927 44 Fama, R. & Sullivan, E. V. Thalamic structures and associated cognitive functions: Relations with age and aging.  
928 *Neuroscience and biobehavioral reviews* **54**, 29-37 (2015). <https://doi.org/10.1016/j.neubiorev.2015.03.008>

929 45 Garrett, D. D. *et al.* Lost Dynamics and the Dynamics of Loss: Longitudinal Compression of Brain Signal  
930 Variability is Coupled with Declines in Functional Integration and Cognitive Performance. *Cereb Cortex* **31**, 5239-  
931 5252 (2021). <https://doi.org/10.1093/cercor/bhab154>

932 46 Sander, M. C., Lindenberger, U. & Werkle-Bergner, M. Lifespan age differences in working memory: a two-  
933 component framework. *Neuroscience and biobehavioral reviews* **36**, 2007-2033 (2012).  
<https://doi.org/10.1016/j.neubiorev.2012.06.004>

934 47 Hasher, L., Lustig, C. & Zacks, R. in *Variation in working memory*. 227-249 (Oxford University Press, 2007).

935 48 Salthouse, T. a. The processing-speed theory of adult age differences in cognition. *Psychological review* **103**,  
936 403-428 (1996).

937 49 Nyberg, L. & Lindenberger, U. in *The Cognitive Neurosciences* (eds David Poeppel, George R. Mangun, &  
938 Michael S. Gazzaniga) o (The MIT Press, 2020).

939 50 Keri, S., Decety, J., Roland, P. E. & Gulyas, B. Feature uncertainty activates anterior cingulate cortex. *Hum Brain  
940 Mapp* **21**, 26-33 (2004). <https://doi.org/10.1002/hbm.10150>

941 51 Vogels, R., Eeckhout, H. & Orban, G. A. The effect of feature uncertainty on spatial discriminations. *Perception*  
942 **17**, 565-577 (1988). <https://doi.org/10.1080/p170565>

943 52 Dias, R., Robbins, T. W. & Roberts, A. C. Dissociation in prefrontal cortex of affective and attentional shifts.  
944 *Nature* **380**, 69-72 (1996). <https://doi.org/10.1038/380069ao>

945 53 Friedman, N. P. & Robbins, T. W. The role of prefrontal cortex in cognitive control and executive function.  
946 *Neuropsychopharmacology* **47**, 72-89 (2022). <https://doi.org/10.1038/s41386-021-01132-0>

947 54 Wiecki, T. V., Sofer, I. & Frank, M. J. HDDM: Hierarchical Bayesian estimation of the Drift-Diffusion Model in  
948 Python. *Front Neuroinform* **7**, 14 (2013). <https://doi.org/10.3389/fninf.2013.00014>

949 55 Kelly, S. P. & O'Connell, R. G. Internal and external influences on the rate of sensory evidence accumulation in  
950 the human brain. *The Journal of neuroscience : the official journal of the Society for Neuroscience* **33**, 19434-19441  
951 (2013). <https://doi.org/10.1523/JNEUROSCI.3355-13.2013>

956 56 Donner, T. H., Siegel, M., Fries, P. & Engel, A. K. Buildup of choice-predictive activity in human motor cortex  
957 during perceptual decision making. *Current biology : CB* **19**, 1581-1585 (2009).  
<https://doi.org:10.1016/j.cub.2009.07.066>

959 57 Cohen, J. D., Dunbar, K. & McClelland, J. L. On the control of automatic processes: a parallel distributed  
960 processing account of the Stroop effect. *Psychological review* **97**, 332-361 (1990). <https://doi.org:10.1037/0033-295X.97.3.332>

962 58 Davidson, D. J., Zacks, R. T. & Williams, C. C. Stroop interference, practice, and aging. *Neuropsychology, development, and cognition. Section B, Aging, neuropsychology and cognition* **10**, 85-98 (2003).  
<https://doi.org:10.1076/anec.10.2.85.14463>

965 59 Cavanagh, J. F. & Frank, M. J. Frontal theta as a mechanism for cognitive control. *Trends in cognitive sciences* **18**,  
966 414-421 (2014). <https://doi.org:10.1016/j.tics.2014.04.012>

967 60 Cavanagh, J. F., Figueroa, C. M., Cohen, M. X. & Frank, M. J. Frontal Theta Reflects Uncertainty and  
968 Unexpectedness during Exploration and Exploitation. *Cerebral Cortex* **22**, 2575-2586 (2012).  
<https://doi.org:10.1093/cercor/bhr332>

970 61 McGinley, M. J. et al. Waking State: Rapid Variations Modulate Neural and Behavioral Responses. *Neuron* **87**,  
971 1143-1161 (2015). <https://doi.org:10.1016/j.neuron.2015.09.012>

972 62 Thiele, A. & Bellgrove, M. A. Neuromodulation of Attention. *Neuron* **97**, 769-785 (2018).  
<https://doi.org:10.1016/j.neuron.2018.01.008>

974 63 Gompf, H. S. et al. Locus ceruleus and anterior cingulate cortex sustain wakefulness in a novel environment. *The  
975 Journal of neuroscience : the official journal of the Society for Neuroscience* **30**, 14543-14551 (2010).  
<https://doi.org:10.1523/JNEUROSCI.3037-10.2010>

977 64 Critchley, H. D., Tang, J., Glaser, D., Butterworth, B. & Dolan, R. J. Anterior cingulate activity during error and  
978 autonomic response. *Neuroimage* **27**, 885-895 (2005). <https://doi.org:10.1016/j.neuroimage.2005.05.047>

979 65 Joshi, S. & Gold, J. I. Pupil Size as a Window on Neural Substrates of Cognition. *Trends in cognitive sciences* **24**,  
980 466-480 (2020). <https://doi.org:10.1016/j.tics.2020.03.005>

981 66 Murphy, P. R., Wilming, N., Hernandez-Bocanegra, D. C., Prat-Ortega, G. & Donner, T. H. Adaptive circuit  
982 dynamics across human cortex during evidence accumulation in changing environments. *Nat Neurosci* **24**, 987-  
983 997 (2021). <https://doi.org:10.1038/s41593-021-00839-z>

984 67 Weber, J. et al. Population coding and oscillatory subspace synchronization integrate context into actions.  
985 *bioRxiv*, 2021.2012.2017.473118 (2021). <https://doi.org:10.1101/2021.12.17.473118>

986 68 Mukherjee, A., Lam, N. H., Wimmer, R. D. & Halassa, M. M. Thalamic circuits for independent control of  
987 prefrontal signal and noise. *Nature* (2021). <https://doi.org:10.1038/s41586-021-04056-3>

988 69 Soltani, A. & Izquierdo, A. Adaptive learning under expected and unexpected uncertainty. *Nature Reviews  
989 Neuroscience* **20**, 635-644 (2019). <https://doi.org:10.1038/s41583-019-0180-y>

990 70 Pergola, G. et al. The Regulatory Role of the Human Mediodorsal Thalamus. *Trends in cognitive sciences* **22**, 1011-  
991 1025 (2018). <https://doi.org:10.1016/j.tics.2018.08.006>

992 71 Tsumura, K., Aoki, R., Takeda, M., Nakahara, K. & Jimura, K. Cross-Hemispheric Complementary Prefrontal  
993 Mechanisms during Task Switching under Perceptual Uncertainty. *The Journal of neuroscience : the official  
994 journal of the Society for Neuroscience* **41**, 2197-2213 (2021). <https://doi.org:10.1523/JNEUROSCI.2096-20.2021>

995 72 Tsumura, K. et al. Reversible Fronto-occipitotemporal Signaling Complements Task Encoding and Switching  
996 under Ambiguous Cues. *Cereb Cortex* **32**, 1911-1931 (2022). <https://doi.org:10.1093/cercor/bhab324>

997 73 Tsumura, K. et al. Perceptual Uncertainty Alternates Top-down and Bottom-up Fronto-Temporal Network  
998 Signaling during Response Inhibition. *The Journal of neuroscience : the official journal of the Society for  
999 Neuroscience* **42**, 4567-4579 (2022). <https://doi.org:10.1523/JNEUROSCI.2537-21.2022>

1000 74 Nyberg, L., Lovden, M., Riklund, K., Lindenberger, U. & Backman, L. Memory aging and brain maintenance.  
1001 *Trends in cognitive sciences* **16**, 292-305 (2012). <https://doi.org:10.1016/j.tics.2012.04.005>

1002 75 Gajewski, P. D., Ferdinand, N. K., Kray, J. & Falkenstein, M. Understanding sources of adult age differences in  
1003 task switching: Evidence from behavioral and ERP studies. *Neuroscience and biobehavioral reviews* **92**, 255-275  
1004 (2018). <https://doi.org:10.1016/j.neubiorev.2018.05.029>

1005 76 Ridderinkhof, K. R., Ullsperger, M., Crone, E. A. & Nieuwenhuis, S. The role of the medial frontal cortex in  
1006 cognitive control. *Science* **306**, 443-447 (2004). <https://doi.org:10.1126/science.1100301>

1007 77 Enel, P., Procyk, E., Quilodran, R. & Dominey, P. F. Reservoir Computing Properties of Neural Dynamics in  
1008 Prefrontal Cortex. *Plos Comput Biol* **12**, e1004967 (2016). <https://doi.org:10.1371/journal.pcbi.1004967>

1009 78 Holroyd, C. B., Ribas-Fernandes, J. J. F., Shahnazian, D., Silvetti, M. & Verguts, T. Human midcingulate cortex  
1010 encodes distributed representations of task progress. *Proceedings of the National Academy of Sciences of the  
1011 United States of America* **115**, 6398-6403 (2018). <https://doi.org:10.1073/pnas.1802650115>

1012 79 Lapish, C. C., Durstewitz, D., Chandler, L. J. & Seamans, J. K. Successful choice behavior is associated with  
1013 distinct and coherent network states in anterior cingulate cortex. *Proceedings of the National Academy of  
1014 Sciences of the United States of America* **105**, 11963-11968 (2008). <https://doi.org:10.1073/pnas.0804045105>

1015 80 Behrens, T. E., Woolrich, M. W., Walton, M. E. & Rushworth, M. F. Learning the value of information in an  
1016 uncertain world. *Nat Neurosci* **10**, 1214-1221 (2007). <https://doi.org:10.1038/nn1954>

1017 81 Geurts, L. S., Cooke, J. R. H., van Bergen, R. S. & Jehee, J. F. M. Subjective confidence reflects representation of  
1018 Bayesian probability in cortex. *Nat Hum Behav* **6**, 294-305 (2022). <https://doi.org:10.1038/s41562-021-01247-w>

1019 82 Powell, N. J. & Redish, A. D. Representational changes of latent strategies in rat medial prefrontal cortex  
1020 precede changes in behaviour. *Nat Commun* **7**, 12830 (2016). <https://doi.org/10.1038/ncomms12830>  
1021 83 Minxha, J., Adolphs, R., Fusi, S., Mamelak, A. N. & Rutishauser, U. Flexible recruitment of memory-based choice  
1022 representations by the human medial frontal cortex. *Science* **368** (2020). <https://doi.org/10.1126/science.aba3313>  
1023 84 White, J. K. *et al.* A neural network for information seeking. *Nat Commun* **10**, 5168 (2019).  
<https://doi.org/10.1038/s41467-019-13135-z>  
1025 85 Domenech, P., Rheims, S. & Koechlin, E. Neural mechanisms resolving exploitation-exploration dilemmas in the  
1026 medial prefrontal cortex. *Science* **369** (2020). <https://doi.org/10.1126/science.abb0184>  
1027 86 Karlsson, M. P., Tervo, D. G. & Karpova, A. Y. Network resets in medial prefrontal cortex mark the onset of  
1028 behavioral uncertainty. *Science* **338**, 135-139 (2012). <https://doi.org/10.1126/science.1226518>  
1029 87 Buschman, T. J., Denovellis, E. L., Diogo, C., Bullock, D. & Miller, E. K. Synchronous Oscillatory Neural  
1030 Ensembles for Rules in the Prefrontal Cortex. *Neuron* **76**, 838-846 (2012).  
<https://doi.org/10.1016/j.neuron.2012.09.029>  
1032 88 Schuck, N. W. *et al.* Medial prefrontal cortex predicts internally driven strategy shifts. *Neuron* **86**, 331-340 (2015).  
<https://doi.org/10.1016/j.neuron.2015.03.015>  
1034 89 Holroyd, C. B. & Verguts, T. The Best Laid Plans: Computational Principles of Anterior Cingulate Cortex. *Trends  
1035 in cognitive sciences* **25**, 316-329 (2021). <https://doi.org/10.1016/j.tics.2021.01.008>  
1036 90 Monosov, I. E., Haber, S. N., Leuthardt, E. C. & Jezzini, A. Anterior Cingulate Cortex and the Control of Dynamic  
1037 Behavior in Primates. *Current biology : CB* **30**, R1442-R1454 (2020). <https://doi.org/10.1016/j.cub.2020.10.009>  
1038 91 Schmitt, L. I. *et al.* Thalamic amplification of cortical connectivity sustains attentional control. *Nature* **545**, 219-  
1039 223 (2017). <https://doi.org/10.1038/nature22073>  
1040 92 Bolkan, S. S. *et al.* Thalamic projections sustain prefrontal activity during working memory maintenance (vol 20,  
1041 pg 987, 2017). *Nature Neuroscience* **21**, 1138-1138 (2018). <https://doi.org/10.1038/s41593-018-0132-2>  
1042 93 Trick, L. M., Perl, T. & Sethi, N. Age-related differences in multiple-object tracking. *J Gerontol B-Psychol* **60**,  
1043 P102-P105 (2005). <https://doi.org/DOI 10.1093/geronb/60.2.P102>  
1044 94 Dorum, E. S. *et al.* Age-related differences in brain network activation and co-activation during multiple object  
1045 tracking. *Brain Behav* **6** (2016). <https://doi.org/10.1002/brb3.533>  
1046 95 Wild-Wall, N. & Falkenstein, M. Age-dependent impairment of auditory processing under spatially focused and  
1047 divided attention: An electrophysiological study. *Biological Psychology* **83**, 27-36 (2010).  
<https://doi.org/10.1016/j.biopsych.2009.09.011>  
1048 96 Ueltzhoffer, K., Armbruster-Genc, D. J. & Fiebach, C. J. Stochastic Dynamics Underlying Cognitive Stability and  
1049 Flexibility. *Plos Comput Biol* **11**, e1004331 (2015). <https://doi.org/10.1371/journal.pcbi.1004331>  
1050 97 Cummins, T. D. R. & Finnigan, S. Theta power is reduced in healthy cognitive aging. *Int J Psychophysiol* **66**, 10-17  
1051 (2007). <https://doi.org/10.1016/j.ijpsycho.2007.05.008>  
1052 98 Anguera, J. A. *et al.* Video game training enhances cognitive control in older adults. *Nature* **501**, 97-101 (2013).  
<https://doi.org/10.1038/nature12486>  
1053 99 Arenaza-Urquijo, E. M. *et al.* Relationships between years of education and gray matter volume, metabolism  
1054 and functional connectivity in healthy elders. *Neuroimage* **83**, 450-457 (2013).  
<https://doi.org/10.1016/j.neuroimage.2013.06.053>  
1055 100 Aston-Jones, G. & Cohen, J. D. An integrative theory of locus coeruleus-norepinephrine function: adaptive gain  
1056 and optimal performance. *Annu Rev Neurosci* **28**, 403-450 (2005).  
<https://doi.org/10.1146/annurev.neuro.28.061604.135709>  
1057 101 Yu, A. J. & Dayan, P. Uncertainty, neuromodulation, and attention. *Neuron* **46**, 681-692 (2005).  
<https://doi.org/10.1016/j.neuron.2005.04.026>  
1058 102 Carter, M. E. *et al.* Tuning arousal with optogenetic modulation of locus coeruleus neurons. *Nat Neurosci* **13**,  
1059 1526-1533 (2010). <https://doi.org/10.1038/nn.2682>  
1060 103 Mather, M., Clewett, D., Sakaki, M. & Harley, C. W. Norepinephrine ignites local hotspots of neuronal excitation:  
1061 How arousal amplifies selectivity in perception and memory. *The Behavioral and brain sciences* **39**, e200 (2016).  
<https://doi.org/10.1017/S0140525X15000667>  
1062 104 Geng, J. J., Blumenfeld, Z., Tyson, T. L. & Minzenberg, M. J. Pupil diameter reflects uncertainty in attentional  
1063 selection during visual search. *Frontiers in human neuroscience* **9**, 435 (2015).  
<https://doi.org/10.3389/fnhum.2015.00435>  
1064 105 Jepma, M. & Nieuwenhuis, S. Pupil diameter predicts changes in the exploration-exploitation trade-off:  
1065 evidence for the adaptive gain theory. *Journal of cognitive neuroscience* **23**, 1587-1596 (2011).  
<https://doi.org/10.1162/jocn.2010.21548>  
1066 106 Vincent, P., Parr, T., Benrimoh, D. & Friston, K. J. With an eye on uncertainty: Modelling pupillary responses to  
1067 environmental volatility. *Plos Comput Biol* **15**, e1007126 (2019). <https://doi.org/10.1371/journal.pcbi.1007126>  
1068 107 Zenon, A. Eye pupil signals information gain. *P Roy Soc B-Biol Sci* **286**, 20191593 (2019).  
<https://doi.org/10.1098/rspb.2019.1593>  
1069 108 Pettine, W. W., Louie, K., Murray, J. D. & Wang, X.-J. Hierarchical Network Model Excitatory-Inhibitory Tone  
1070 Shapes Alternative Strategies for Different Degrees of Uncertainty in Multi-Attribute Decisions. *bioRxiv* (2020).  
1071 109 Hammerer, D. *et al.* Locus coeruleus integrity in old age is selectively related to memories linked with salient  
1072 negative events. *Proceedings of the National Academy of Sciences of the United States of America* **115**, 2228-2233  
1073 (2018). <https://doi.org/10.1073/pnas.1712268115>

1083 110 Dahl, M. J. *et al.* The integrity of dopaminergic and noradrenergic brain regions is associated with different  
1084 aspects of late-life memory performance. *Nat Aging* **3**, 1128-1143 (2023). <https://doi.org/10.1038/s43587-023-00469-z>

1085 111 Arnsten, A. F. T. & Goldmanrakic, P. S. Catecholamines and Cognitive Decline in Aged Nonhuman-Primates.  
1086 *Annals of the New York Academy of Sciences* **444**, 218-234 (1985). <https://doi.org/DOI 10.1111/j.1749-6632.1985.tb37592.x>

1087 112 Dahl, M. J. *et al.* Rostral locus coeruleus integrity is associated with better memory performance in older adults.  
1088 *Nat Hum Behav* **3**, 1203-1214 (2019). <https://doi.org/10.1038/s41562-019-0715-2>

1089 113 Dahl, M. J., Mather, M. & Werkle-Bergner, M. Noradrenergic modulation of rhythmic neural activity shapes  
1090 selective attention. *Trends in cognitive sciences* **26**, 38-52 (2022). <https://doi.org/10.1016/j.tics.2021.10.009>

1091 114 Ebitz, R. B. & Platt, M. L. Neuronal activity in primate dorsal anterior cingulate cortex signals task conflict and  
1092 predicts adjustments in pupil-linked arousal. *Neuron* **85**, 628-640 (2015).  
<https://doi.org/10.1016/j.neuron.2014.12.053>

1093 115 Froemke, R. C. Plasticity of cortical excitatory-inhibitory balance. *Annu Rev Neurosci* **38**, 195-219 (2015).  
<https://doi.org/10.1146/annurev-neuro-071714-034002>

1094 116 Munn, B. R., Muller, E. J., Wainstein, G. & Shine, J. M. The ascending arousal system shapes neural dynamics to  
1095 mediate awareness of cognitive states. *Nat Commun* **12**, 6016 (2021). <https://doi.org/10.1038/s41467-021-26268-x>

1096 117 De Martino, B., Fleming, S. M., Garrett, N. & Dolan, R. J. Confidence in value-based choice. *Nat Neurosci* **16**, 105-  
1097 110 (2013). <https://doi.org/10.1038/nn.3279>

1098 118 McGuire, J. T., Nassar, M. R., Gold, J. I. & Kable, J. W. Functionally dissociable influences on learning rate in a  
1099 dynamic environment. *Neuron* **84**, 870-881 (2014). <https://doi.org/10.1016/j.neuron.2014.10.013>

1100 119 Akaishi, R., Kolling, N., Brown, J. W. & Rushworth, M. Neural Mechanisms of Credit Assignment in a Multicue  
1101 Environment. *The Journal of neuroscience : the official journal of the Society for Neuroscience* **36**, 1096-1112  
1102 (2016). <https://doi.org/10.1523/JNEUROSCI.3159-15.2016>

1103 120 Li, S. C. & Rieckmann, A. Neuromodulation and aging: implications of aging neuronal gain control on cognition.  
1104 *Current Opinion in Neurobiology* **29**, 148-158 (2014). <https://doi.org/10.1016/j.conb.2014.07.009>

1105 121 Backman, L., Nyberg, L., Lindenberger, U., Li, S. C. & Farde, L. The correlative triad among aging, dopamine,  
1106 and cognition: Current status and future prospects. *Neuroscience and biobehavioral reviews* **30**, 791-807 (2006).  
<https://doi.org/10.1016/j.neubiorev.2006.06.005>

1107 122 Durstewitz, D. & Seamans, J. K. The dual-state theory of prefrontal cortex dopamine function with relevance to  
1108 catechol-o-methyltransferase genotypes and schizophrenia. *Biol Psychiatry* **64**, 739-749 (2008).  
<https://doi.org/10.1016/j.biopsych.2008.05.015>

1109 123 Rolls, E. T., Loh, M., Deco, G. & Winterer, G. Computational models of schizophrenia and dopamine modulation  
1110 in the prefrontal cortex. *Nature reviews. Neuroscience* **9**, 696-709 (2008). <https://doi.org/10.1038/nrn2462>

1111 124 Lapish, C. C., Balaguer-Ballester, E., Seamans, J. K., Phillips, A. G. & Durstewitz, D. Amphetamine Exerts Dose-  
1112 Dependent Changes in Prefrontal Cortex Attractor Dynamics during Working Memory. *The Journal of  
1113 neuroscience : the official journal of the Society for Neuroscience* **35**, 10172-10187 (2015).  
<https://doi.org/10.1523/JNEUROSCI.2421-14.2015>

1114 125 Hashemnia, S., Euston, D. R. & Gruber, A. J. Amphetamine reduces reward encoding and stabilizes neural  
1115 dynamics in rat anterior cingulate cortex. *Elife* **9** (2020). <https://doi.org/10.7554/elife.56755>

1116 126 Samanez-Larkin, G. R. *et al.* A thalamocortical dopamine network for psychostimulant-enhanced human  
1117 cognitive flexibility. *Biol Psychiatry* **74**, 99-105 (2013). <https://doi.org/10.1016/j.biopsych.2012.10.032>

1118 127 Garrett, D. D. *et al.* Dynamic regulation of neural variability during working memory reflects dopamine,  
1119 functional integration, and decision-making. *bioRxiv*, 2022.2005.2005.490687 (2022).  
<https://doi.org/10.1101/2022.05.05.490687>

1120 128 Ma, W. J., Husain, M. & Bays, P. M. Changing concepts of working memory. *Nat Neurosci* **17**, 347-356 (2014).  
<https://doi.org/10.1038/nn.3655>

1121 129 Klimesch, W., Sauseng, P. & Hanslmayr, S. EEG alpha oscillations: the inhibition-timing hypothesis. *Brain Res Rev* **53**, 63-88 (2007). <https://doi.org/10.1016/j.brainresrev.2006.06.003>

1122 130 Haegens, S., Nacher, V., Luna, R., Romo, R. & Jensen, O. alpha-Oscillations in the monkey sensorimotor  
1123 network influence discrimination performance by rhythmical inhibition of neuronal spiking. *Proceedings of the  
1124 National Academy of Sciences of the United States of America* **108**, 19377-19382 (2011).  
<https://doi.org/10.1073/pnas.1117190108>

1125 131 Capilla, A., Schoffelen, J. M., Paterson, G., Thut, G. & Gross, J. Dissociated alpha-Band Modulations in the Dorsal  
1126 and Ventral Visual Pathways in Visuospatial Attention and Perception. *Cerebral Cortex* **24**, 550-561 (2014).  
<https://doi.org/10.1093/cercor/bhs343>

1127 132 Jensen, O. & Mazaheri, A. Shaping functional architecture by oscillatory alpha activity: gating by inhibition.  
1128 *Frontiers in human neuroscience* **4** (2010). <https://doi.org/10.3389/fnhum.2010.00186>

1129 133 Sauseng, P. *et al.* Brain oscillatory substrates of visual short-term memory capacity. *Current biology : CB* **19**,  
1130 1846-1852 (2009). <https://doi.org/10.1016/j.cub.2009.08.062>

1131 134 Borghini, G. *et al.* Alpha Oscillations Are Causally Linked to Inhibitory Abilities in Ageing. *Journal of Neuroscience*  
1132 **38**, 4418-4429 (2018). <https://doi.org/10.1523/Jneurosci.1285-17.2018>

1146 135 ElShafei, H. A., Fornoni, L., Masson, R., Bertrand, O. & Bidet-Caulet, A. Age-related modulations of alpha and  
1147 gamma brain activities underlying anticipation and distraction. *PLoS one* **15** (2020).  
<https://doi.org/10.1371/journal.pone.0229334>

1148 136 Vaden, R. J., Hutcheson, N. L., McCollum, L. A., Kentros, J. & Visscher, K. M. Older adults, unlike younger adults,  
1149 do not modulate alpha power to suppress irrelevant information. *Neuroimage* **63**, 1127-1133 (2012).  
<https://doi.org/10.1016/j.neuroimage.2012.07.050>

1150 137 Leenders, M. P., Lozano-Soldevilla, D., Roberts, M. J., Jensen, O. & De Weerd, P. Diminished Alpha  
1151 Lateralization During Working Memory but Not During Attentional Cueing in Older Adults. *Cereb Cortex* **28**, 21-  
1152 32 (2018). <https://doi.org/10.1093/cercor/bhw345>

1153 138 Lee, T. H. *et al.* Arousal increases neural gain via the locus coeruleus-norepinephrine system in younger adults  
1154 but not in older adults. *Nat Hum Behav* **2**, 356-366 (2018). <https://doi.org/10.1038/s41562-018-0344-1>

1155 139 Gazzaley, A. & D'Esposito, M. Top-down modulation and normal aging. *Annals of the New York Academy of  
1156 Sciences* **1097**, 67-83 (2007). <https://doi.org/10.1196/annals.1379.010>

1157 140 Gazzaley, A. *et al.* Age-related top-down suppression deficit in the early stages of cortical visual memory  
1158 processing. *Proceedings of the National Academy of Sciences of the United States of America* **105**, 13122-13126  
1159 (2008). <https://doi.org/10.1073/pnas.0806074105>

1160 141 Klimesch, W. EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis.  
1161 *Brain Res Brain Res Rev* **29**, 169-195 (1999). [https://doi.org/10.1016/s0165-0173\(98\)00056-3](https://doi.org/10.1016/s0165-0173(98)00056-3)

1162 142 Borghini, G., Astolfi, L., Vecchiato, G., Mattia, D. & Babiloni, F. Measuring neurophysiological signals in aircraft  
1163 pilots and car drivers for the assessment of mental workload, fatigue and drowsiness. *Neuroscience and  
1164 biobehavioral reviews* **44**, 58-75 (2014). <https://doi.org/10.1016/j.neubiorev.2012.10.003>

1165 143 Kardan, O. *et al.* Distinguishing cognitive effort and working memory load using scale-invariance and alpha  
1166 suppression in EEG. *Neuroimage* **211** (2020). <https://doi.org/10.1016/j.neuroimage.2020.116622>

1167 144 Fukuda, K., Mance, I. & Vogel, E. K. alpha Power Modulation and Event-Related Slow Wave Provide Dissociable  
1168 Correlates of Visual Working Memory. *The Journal of neuroscience : the official journal of the Society for  
1169 Neuroscience* **35**, 14009-14016 (2015). <https://doi.org/10.1523/JNEUROSCI.5003-14.2015>

1170 145 Zanto, T. P. & Gazzaley, A. Neural suppression of irrelevant information underlies optimal working memory  
1171 performance. *The Journal of neuroscience : the official journal of the Society for Neuroscience* **29**, 3059-3066  
1172 (2009). <https://doi.org/10.1523/JNEUROSCI.4621-08.2009>

1173 146 Sghirripa, S. *et al.* Load-dependent modulation of alpha oscillations during working memory encoding and  
1174 retention in young and older adults. *Psychophysiology* **58** (2021). <https://doi.org/10.1111/psyp.13719>

1175 147 Gao, R., Peterson, E. J. & Voytek, B. Inferring synaptic excitation/inhibition balance from field potentials.  
1176 *Neuroimage* **158**, 70-78 (2017). <https://doi.org/10.1016/j.neuroimage.2017.06.078>

1177 148 Kosciessa, J. Q., Kloosterman, N. A. & Garrett, D. D. Standard multiscale entropy reflects neural dynamics at  
1178 mismatched temporal scales: What's signal irregularity got to do with it? *Plos Comput Biol* **16**, e1007885 (2020).  
<https://doi.org/10.1371/journal.pcbi.1007885>

1179 149 McIntosh, A. R. *et al.* Spatiotemporal Dependency of Age-Related Changes in Brain Signal Variability. *Cerebral  
1180 Cortex* **24**, 1806-1817 (2014). <https://doi.org/10.1093/cercor/bht030>

1181 150 Voytek, B. *et al.* Age-Related Changes in 1/f Neural Electrophysiological Noise. *Journal of Neuroscience* **35**, 13257-  
1182 13265 (2015). <https://doi.org/10.1523/Jneurosci.2332-14.2015>

1183 151 Waschke, L., Wostmann, M. & Obleser, J. States and traits of neural irregularity in the age-varying human brain.  
1184 *Scientific Reports* **7** (2017). <https://doi.org/10.1038/s41598-017-17766-4>

1185 152 Waschke, L., Kloosterman, N. A., Obleser, J. & Garrett, D. D. Behavior needs neural variability. *Neuron* **109**, 751-  
1186 766 (2021). <https://doi.org/10.1016/j.neuron.2021.01.023>

1187 153 Garrett, D. D. *et al.* Amphetamine modulates brain signal variability and working memory in younger and older  
1188 adults. *Proceedings of the National Academy of Sciences of the United States of America* **112**, 7593-7598 (2015).  
<https://doi.org/10.1073/pnas.1504090112>

1189 154 Komura, Y., Nikkuni, A., Hirashima, N., Uetake, T. & Miyamoto, A. Responses of pulvinar neurons reflect a  
1190 subject's confidence in visual categorization. *Nature Neuroscience* **16**, 749-755 (2013).  
<https://doi.org/10.1038/nn.3393>

1191 155 Jaramillo, J., Mejias, J. F. & Wang, X. J. Engagement of Pulvino-cortical Feedforward and Feedback Pathways in  
1192 Cognitive Computations. *Neuron* **101**, 321-336 e329 (2019). <https://doi.org/10.1016/j.neuron.2018.11.023>

1193 156 Wilke, M., Turchi, J., Smith, K., Mishkin, M. & Leopold, D. A. Pulvinar inactivation disrupts selection of  
1194 movement plans. *The Journal of neuroscience : the official journal of the Society for Neuroscience* **30**, 8650-8659  
1195 (2010). <https://doi.org/10.1523/JNEUROSCI.0953-10.2010>

1196 157 Morales, P., Moss, M. E. & Mayr, U. Age differences in the recovery from interruptions. *Psychology and aging* **37**,  
1197 816-826 (2022). <https://doi.org/10.1037/pag0000706>

1198 158 Jost, K., Bryck, R. L., Vogel, E. K. & Mayr, U. Are old adults just like low working memory young adults? Filtering  
1199 efficiency and age differences in visual working memory. *Cereb Cortex* **21**, 1147-1154 (2011).  
<https://doi.org/10.1093/cercor/bhq185>

1200 159 Schwarzkopp, T., Mayr, U. & Jost, K. Early selection versus late correction: Age-related differences in controlling  
1201 working memory contents. *Psychology and aging* **31**, 430-441 (2016). <https://doi.org/10.1037/pag0000103>

1202 160 Oldfield, R. C. The assessment and analysis of handedness: the Edinburgh inventory. *Neuropsychologia* **9**, 97-113  
1203 (1971). [https://doi.org/10.1016/0028-3932\(71\)90067-4](https://doi.org/10.1016/0028-3932(71)90067-4)

1210 161 Folstein, M. F., Robins, L. N. & Helzer, J. E. The Mini-Mental State Examination. *Arch Gen Psychiat* **40**, 812-812  
1211 (1983).

1212 162 Kessler, J., Markowitsch, H. & Denzler, P. *Mini-mental-status-test (MMST)*. (Beltz Test GMBH, 2000).

1213 163 Kleiner, M., Brainard, D. & Pelli, D. What's new in Psychtoolbox-3? *Perception* **36**, 14-14 (2007).

1214 164 Pelli, D. G. The VideoToolbox software for visual psychophysics: Transforming numbers into movies. *Spatial  
1215 Vision* **10**, 437-442 (1997). <https://doi.org/10.1163/156856897x00366>

1216 165 Brainard, D. H. The Psychophysics Toolbox. *Spatial Vision* **10**, 433-436 (1997).  
<https://doi.org/10.1163/156856897x00357>

1217 166 Oostenveld, R. & Praamstra, P. The five percent electrode system for high-resolution EEG and ERP  
1218 measurements. *Clin Neurophysiol* **112**, 713-719 (2001). [https://doi.org/10.1016/s1388-2457\(00\)00527-7](https://doi.org/10.1016/s1388-2457(00)00527-7)

1219 167 Gold, J. I. & Shadlen, M. N. The neural basis of decision making. *Annu Rev Neurosci* **30**, 535-574 (2007).  
<https://doi.org/10.1146/annurev.neuro.29.051605.113038>

1220 168 Hanks, T. D. & Summerfield, C. Perceptual Decision Making in Rodents, Monkeys, and Humans. *Neuron* **93**, 15-  
1221 31 (2017). <https://doi.org/10.1016/j.neuron.2016.12.003>

1222 169 Siegel, M., Buschman, T. J. & Miller, E. K. Cortical information flow during flexible sensorimotor decisions.  
1223 *Science* **348**, 1352-1355 (2015). <https://doi.org/10.1126/science.aab0551>

1224 170 Banca, P. *et al.* Evidence accumulation in obsessive-compulsive disorder: the role of uncertainty and monetary  
1225 reward on perceptual decision-making thresholds. *Neuropsychopharmacology* **40**, 1192-1202 (2015).  
<https://doi.org/10.1038/npp.2014.303>

1226 171 Ratcliff, R. Theory of Memory Retrieval. *Psychological review* **85**, 59-108 (1978). <https://doi.org/10.1037/0033-295x.85.2.59>

1227 172 Frank, M. J. *et al.* fMRI and EEG predictors of dynamic decision parameters during human reinforcement  
1228 learning. *The Journal of neuroscience : the official journal of the Society for Neuroscience* **35**, 485-494 (2015).  
<https://doi.org/10.1523/JNEUROSCI.2036-14.2015>

1229 173 McGovern, D. P., Hayes, A., Kelly, S. P. & O'Connell, R. G. Reconciling age-related changes in behavioural and  
1230 neural indices of human perceptual decision-making. *Nat Hum Behav* **2**, 955-966 (2018).  
<https://doi.org/10.1038/s41562-018-0465-6>

1231 174 Oostenveld, R., Fries, P., Maris, E. & Schoffelen, J. M. FieldTrip: Open source software for advanced analysis of  
1232 MEG, EEG, and invasive electrophysiological data. *Computational intelligence and neuroscience* **2011**, 156869  
1233 (2011). <https://doi.org/10.1155/2011/156869>

1234 175 Bell, A. J. & Sejnowski, T. J. An information-maximization approach to blind separation and blind deconvolution.  
1235 *Neural Comput* **7**, 1129-1159 (1995). <https://doi.org/10.1162/neco.1995.7.6.1129>

1236 176 Nolan, H., Whelan, R. & Reilly, R. B. FASTER: Fully Automated Statistical Thresholding for EEG artifact  
1237 Rejection. *Journal of neuroscience methods* **192**, 152-162 (2010). <https://doi.org/10.1016/j.jneumeth.2010.07.015>

1238 177 Perrin, F., Pernier, J., Bertrand, O. & Echallier, J. F. Spherical splines for scalp potential and current density  
1239 mapping. *Electroencephalography and clinical neurophysiology* **72**, 184-187 (1989). [https://doi.org/10.1016/0013-4694\(89\)90180-6](https://doi.org/10.1016/0013-<br/>1240 4694(89)90180-6)

1241 178 O'Connell, R. G., Dockree, P. M. & Kelly, S. P. A supramodal accumulation-to-bound signal that determines  
1242 perceptual decisions in humans. *Nat Neurosci* **15**, 1729-1735 (2012). <https://doi.org/10.1038/nn.3248>

1243 179 Smulders, F. T. Y., ten Oever, S., Donkers, F. C. L., Quaedflieg, C. W. E. M. & van de Ven, V. Single-trial log  
1244 transformation is optimal in frequency analysis of resting EEG alpha. *European Journal of Neuroscience* **48**, 2585-  
1245 2598 (2018). <https://doi.org/10.1111/ejn.13854>

1246 180 Ding, J., Sperling, G. & Srinivasan, R. Attentional modulation of SSVEP power depends on the network tagged  
1247 by the flicker frequency. *Cereb Cortex* **16**, 1016-1029 (2006). <https://doi.org/10.1093/cercor/bhj044>

1248 181 Richman, J. S. & Moorman, J. R. Physiological time-series analysis using approximate entropy and sample  
1249 entropy. *Am J Physiol-Heart C* **278**, H2039-H2049 (2000).

1250 182 Kloosterman, N. A., Kosciessa, J. Q., Lindenberger, U., Fahrenfort, J. J. & Garrett, D. D. Boosts in brain signal  
1251 variability track liberal shifts in decision bias. *Elife* **9** (2020). <https://doi.org/10.7554/elife.54201>

1252 183 Grandy, T. H., Garrett, D. D., Schmiedek, F. & Werkle-Bergner, M. On the estimation of brain signal entropy  
1253 from sparse neuroimaging data. *Sci Rep-Uk* **6**, 23073 (2016). <https://doi.org/10.1038/srep23073>

1254 184 Donoghue, T. *et al.* Parameterizing neural power spectra into periodic and aperiodic components. *Nat Neurosci*  
1255 **23**, 1655-1665 (2020). <https://doi.org/10.1038/s41593-020-00744-x>

1256 185 Reimer, J. *et al.* Pupil fluctuations track fast switching of cortical states during quiet wakefulness. *Neuron* **84**,  
1257 355-362 (2014). <https://doi.org/10.1161/j.neuron.2014.09.033>

1258 186 Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W. & Smith, S. M. Fsl. *Neuroimage* **62**, 782-790  
1259 (2012). <https://doi.org/10.1016/j.neuroimage.2011.09.015>

1260 187 Smith, S. M. *et al.* Advances in functional and structural MR image analysis and implementation as FSL.  
1261 *Neuroimage* **23**, S208-S219 (2004). <https://doi.org/10.1016/j.neuroimage.2004.07.051>

1262 188 Fonov, V. *et al.* Unbiased average age-appropriate atlases for pediatric studies. *Neuroimage* **54**, 313-327 (2011).  
<https://doi.org/10.1016/j.neuroimage.2010.07.033>

1263 189 Avants, B. B. *et al.* A reproducible evaluation of ANTs similarity metric performance in brain image registration.  
1264 *Neuroimage* **54**, 2033-2044 (2011). <https://doi.org/10.1016/j.neuroimage.2010.09.025>

1272 190 Garrett, D. D., Kovacevic, N., McIntosh, A. R. & Grady, C. L. Blood oxygen level-dependent signal variability is  
1273 more than just noise. *The Journal of neuroscience : the official journal of the Society for Neuroscience* **30**, 4914-  
1274 4921 (2010). <https://doi.org/10.1523/JNEUROSCI.5166-09.2010>  
1275 191 Beckmann, C. F. & Smith, S. M. Probabilistic independent component analysis for functional magnetic  
1276 resonance imaging. *ieee T Med Imaging* **23**, 137-152 (2004). <https://doi.org/10.1109/TMI.2003.822821>  
1277 192 Birn, R. M. The role of physiological noise in resting-state functional connectivity. *Neuroimage* **62**, 864-870  
1278 (2012). <https://doi.org/10.1016/j.neuroimage.2012.01.016>  
1279 193 Smith, A. M. *et al.* Investigation of low frequency drift in fMRI signal. *Neuroimage* **9**, 526-533 (1999).  
<https://doi.org/10.1006/nimg.1999.0435>  
1280 194 Garrett, D. D., McIntosh, A. R. & Grady, C. L. Brain signal variability is parametrically modifiable. *Cereb Cortex* **24**,  
1281 2931-2940 (2014). <https://doi.org/10.1093/cercor/bht150>  
1282 195 Power, J. D. *et al.* Methods to detect, characterize, and remove motion artifact in resting state fMRI. *Neuroimage*  
1283 **84**, 320-341 (2014). <https://doi.org/10.1016/j.neuroimage.2013.08.048>  
1284 196 Afyouni, S. & Nichols, T. E. Insight and inference for DVARS. *Neuroimage* **172**, 291-312 (2018).  
<https://doi.org/10.1016/j.neuroimage.2017.12.098>  
1285 197 Parkes, L., Fulcher, B., Yucel, M. & Fornito, A. An evaluation of the efficacy, reliability, and sensitivity of motion  
1286 correction strategies for resting-state functional MRI. *Neuroimage* **171**, 415-436 (2018).  
<https://doi.org/10.1016/j.neuroimage.2017.12.073>  
1287 198 Muller, K. R., Mika, S., Ratsch, G., Tsuda, K. & Scholkopf, B. An introduction to kernel-based learning algorithms.  
1288 *ieee T Neural Networ* **12**, 181-201 (2001). <https://doi.org/10.1109/72.914517>  
1289 199 Maris, E. & Oostenveld, R. Nonparametric statistical testing of EEG- and MEG-data. *Journal of neuroscience  
1290 methods* **164**, 177-190 (2007). <https://doi.org/10.1016/j.jneumeth.2007.03.024>  
1291 200 Friston, K. J., Williams, S., Howard, R., Frackowiak, R. S. & Turner, R. Movement-related effects in fMRI time-  
1292 series. *Magn Reson Med* **35**, 346-355 (1996). <https://doi.org/10.1002/mrm.1910350312>  
1293 201 Eickhoff, S. B. *et al.* A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional  
1294 imaging data. *Neuroimage* **25**, 1325-1335 (2005). <https://doi.org/10.1016/j.neuroimage.2004.12.034>  
1295 202 Krauth, A. *et al.* A mean three-dimensional atlas of the human thalamus: generation from multiple histological  
1296 data. *Neuroimage* **49**, 2053-2062 (2010). <https://doi.org/10.1016/j.neuroimage.2009.10.042>  
1297 203 Hwang, K., Bertolero, M. A., Liu, W. B. & D'Esposito, M. The Human Thalamus Is an Integrative Hub for  
1298 Functional Brain Networks. *The Journal of neuroscience : the official journal of the Society for Neuroscience* **37**,  
1299 5594-5607 (2017). <https://doi.org/10.1523/JNEUROSCI.0067-17.2017>  
1300 204 Horn, A. & Blankenburg, F. Toward a standardized structural-functional group connectome in MNI space.  
1301 *Neuroimage* **124**, 310-322 (2016). <https://doi.org/10.1016/j.neuroimage.2015.08.048>  
1302 205 Loftus, G. R. & Masson, M. E. Using confidence intervals in within-subject designs. *Psychon Bull Rev* **1**, 476-490  
1303 (1994). <https://doi.org/10.3758/BF03210951>  
1304 206 Krishnan, A., Williams, L. J., McIntosh, A. R. & Abdi, H. Partial Least Squares (PLS) methods for neuroimaging: a  
1305 tutorial and review. *Neuroimage* **56**, 455-475 (2011). <https://doi.org/10.1016/j.neuroimage.2010.07.034>  
1306 207 McIntosh, A. R., Bookstein, F. L., Haxby, J. V. & Grady, C. L. Spatial pattern analysis of functional brain images  
1307 using partial least squares. *Neuroimage* **3**, 143-157 (1996). <https://doi.org/10.1006/nimg.1996.0016>  
1308 208 Efron, B. & Tibshirani, R. Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of  
1309 Statistical Accuracy. *Statistical Science* **1**, 54-75 (1986). <https://doi.org/10.1214/ss/1177013815>  
1310 209  
1311 210  
1312 211  
1313 212