

1 Evolving together: Cassandra retrotransposons gradually mirror 2 promoter mutations of the 5S rRNA genes

3 **Sophie Maiwald¹, Ludwig Mann¹, Sònia Garcia^{*2} and Tony Heitkam^{*1}**

4 ¹ Faculty of Biology, Technische Universität Dresden, 01069 Dresden, Germany

5 ² Institut Botànic de Barcelona (IBB-CSIC), Passeig del Migdia s/n, 08038 Barcelona, Catalonia, Spain

6

7 *These authors share senior authorships and serve as communicating authors:

8 Sònia Garcia, Tony Heitkam

9 soniagarcia@ibb.csic.es, tony.heitkam@tu-dresden.de

10

11 **Abstract**

12 The 5S rRNA genes are among the most conserved nucleotide sequences across all species. Similar to
13 the 5S preservation we observe the occurrence of 5S-related non-autonomous retrotransposons, so-
14 called Cassandra. Cassandras harbor highly conserved 5S rDNA-related sequences within their long
15 terminal repeats (LTRs), advantageously providing them with the 5S internal promoter. However, the
16 dynamics of Cassandra retrotransposon evolution in the context of 5S rRNA gene sequence
17 information and structural arrangement are still unclear, especially: 1) do we observe repeated or
18 gradual domestication of the highly conserved 5S promoter by Cassandras and 2) do changes in 5S
19 organization such as in the linked 35S-5S rDNA arrangements impact Cassandra evolution? Here, we
20 show evidence for gradual co-evolution of Cassandra sequences with their corresponding 5S rDNAs.
21 To follow the impact of 5S rDNA variability on Cassandra TEs, we investigate the Asteraceae family
22 where highly variable 5S rDNAs, including 5S promoter shifts and both linked and separated 35S-5S
23 rDNA arrangements have been reported. Cassandras within the Asteraceae mirror 5S rDNA promoter
24 mutations of their host genome, likely as an adaptation to the host's specific 5S transcription factors
25 and hence compensating for evolutionary changes in the 5S rDNA sequence. Changes in the 5S rDNA
26 sequence and in Cassandras seem uncorrelated with linked/separated rDNA arrangements. We place
27 all these observations into the context of angiosperm 5S rDNA-Cassandra evolution, discuss
28 Cassandra's origin hypotheses (single or multiple) and Cassandra's possible impact on rDNA and plant
29 genome organization, giving new insights into the interplay of ribosomal genes and transposable
30 elements.

31

32

1 **Keywords**

2 5S rDNA, ribosomal genes, 5S promoter, 35S-5S linkage, Cassandra, transposable elements,
3 retrotransposons, long terminal repeats, concerted evolution, sequence mimicry, plant genomes,

4 Asteraceae

5

6

1 **Introduction**

2 Despite both being repetitive genome components, the tandemly arranged ribosomal genes (rDNAs)
3 and the dispersed transposable elements (TEs) seem to not have much in common. Yet, rDNAs and TEs
4 can enter intricate co-evolution processes that are sometimes proposed, but neither fully appreciated
5 nor understood; neither in their evolutionary mechanisms and implications nor in their effect on the
6 genome.

7 Ribosomal RNAs (those encoded by ribosomal DNAs) comprise 80% of the RNA found in a typical cell
8 and account for 60% of the ribosomal mass, having an essential role in protein synthesis (O'Connor and
9 Adams 2010; Eaves et al. 2020). In eukaryotes there are four ribosomal RNA genes. The 18S, 5.8S, and
10 26S (28S/25S) rRNA genes are coded in a single operon (called 35S in plants and 45S rDNA in animals
11 Hemleben et al. 2021) and the 5S rRNA gene is usually coded outside this operon, by 5S rDNA. These
12 rDNAs are present in high numbers, from 50 to 13,000 copies per cell.

13 The 5S rDNA is perhaps the most enigmatic of the rRNA genes. It consists of a small transcriptional unit
14 of about 120 base pairs and a non-transcribed spacer (NTS), normally clustered in long tandem arrays.
15 While the 5S rRNA gene sequence is highly conserved, the NTS is variable in length and sequence, even
16 in closely related species. The rapidly evolving nature of the NTS has been used for inferring
17 interspecific relationships in many plant species (Perina et al. 2011; Waminal et al. 2014; Alexandrov et
18 al. 2021). For such an apparently simple molecule of fundamental importance we know so very little,
19 and many features of 5S remain unknown or controversial, e.g., although 5S rRNA is essential for the
20 function of ribosomes, its specific role still remains unclear. Evolutionary biologists have conflicting
21 views on its evolution, some assuming 5S rDNA to be a paradigm of concerted evolution, whilst others
22 proposing alternative models (Brown et al. 1972; Nei and Rooney 2005). Another interesting feature is
23 the range of genomic arrangements in which 5S rDNA can be found: although typically organized in
24 tandems, it can be linked to their repetitive gene families (such as the 35S/45S DNA), scattered in the
25 genome or located in linear or circular extrachromosomal DNA units (Drouin and de Sá 1995; Cohen et
26 al. 2010; Rebordinos et al. 2013; Vierna et al. 2013). However, we still don't know of any evolutionary
27 advantage or biological functional differences of one 5S rDNA arrangement over another.

28 In contrast to the 5S rDNA, transposable elements (TEs) occur in a wide variety of structures and
29 sequences (Bourque et al. 2018). Among those, long terminal repeat (LTR) retrotransposons are the
30 most widespread in plants, sometimes accounting for more than 80 % of their genomes (Schnable et
31 al. 2009). They are flanked by the name-giving LTRs that encode Polymerase II (Pol II) promoter motifs
32 as well as transcription start and stop sites. Full-length retrotransposons usually carry all protein
33 domains needed for their retrotransposition and can operate autonomously. Nevertheless, non-
34 autonomous LTR retrotransposons also exist, with many not carrying any open reading frames at all.

1 Instead, these short terminal repeat retrotransposons in miniature (TRIMs) proliferate by exploiting the
2 amplification machinery of their autonomous counterparts (Witte et al. 2001; Gao et al. 2016).
3 Intriguingly, the ubiquitous TRIM family Cassandra deviates strongly from all other known TRIMs:
4 Instead of carrying a retrotransposon-typical Pol II promoter, the Cassandra TRIMs have replaced this
5 by co-opting the Polymerase III (Pol III) promoter from the 5S rRNA gene; hence, Cassandra
6 retrotransposons and the 5S rDNA often share considerable sequence stretches and adopt similar
7 secondary structures after transcription (Kalendar et al. 2008). Being unusually widespread across plant
8 genomes (Gao et al. 2016), including monocots, dicots, and ferns (but not gymnosperms), Cassandras
9 are believed to be ancient (Antonius-Klemola et al. 2006; Kalendar and Schulman 2006; Yin et al. 2014;
10 Gao et al. 2016; Maiwald et al. 2021).
11 Both being ancient parts of the genome, actively using Pol III promoters and generating RNAs that
12 adopt distinct secondary structures, Cassandra retrotransposons and 5S rDNAs share many similarities.
13 Nevertheless, it is still unclear how Cassandra retrotransposons and the 5S rDNA depend on each other
14 and if these two sequence classes co-evolve. We aim to understand how changes in the 5S rDNA
15 sequence, structure and organization are mirrored by Cassandra retrotransposons.
16 To tackle this question, we focus on the Asteraceae, probably the largest and more diverse plant family,
17 which harbors a wide variation in 5S rDNA sequence, structure and genomic organization. The
18 Asteraceae family comprises over 25,000 species that fall into more than 1700 genera (Mandel et al.
19 2019). An unusual 5S rDNA organization, in which the 5S rDNA is linked to the 35S rDNA, has been
20 detected in three large groups of subfamily Asteroideae (tribes Anthemideae, Gnaphalieae and the
21 Heliantheae alliance), accounting for nearly 25% of this families' species (Garcia et al. 2010). A later
22 study detected a significant sequence divergence in the conserved C-box of the 5S promoter in some,
23 but not all, Asteraceae with 35S-5S linkage (Garcia et al. 2012). Thus, the Asteraceae harbor a range of
24 5S rDNAs variations – much more than other plant families. If Cassandra retrotransposons are impacted
25 by changes in the 5S rDNA, this plant family offers a superior starting point to understand any potential
26 5S rDNA-Cassandra co-evolution. To date, over 25 Asteraceae genome assemblies are available
27 (www.plabipd.de; last accessed 22.05.2023), offering a generous resource for investigating the
28 potential rDNA–retrotransposon co-evolution.
29 Here, we systematically follow Cassandra and 5S rDNA evolution across plants and especially within
30 the Asteraceae. To better understand the make-up of canonical Cassandra retrotransposons and their
31 dependence on the 5S rDNA, we first mined all published sequences across plants. Then, focusing on
32 the Asteraceae with their diverging 5S rDNA landscapes, we analyzed 15 *de novo* identified Cassandra
33 sequences from 22 Asteraceae genomes and checked how 5S rDNA changes may impact Cassandra
34 evolution. For this, we targeted two major shifts in 5S rDNA evolution: Promoter sequence mutation
35 and emergence of the 35S-5S linkage.

1 **Material and Methods**

2 **Plant material and genomic DNA sequencing**

3 Plants of *Artemisia annua* (MV8) from the living collection of the Institut Botànic de Barcelona (Spain),
4 and *Tragopogon porrifolius* (TRA18) provided by the IPK Genebank of the Plant Genome Resources
5 Center Gatersleben (Germany), were grown under long day conditions in the greenhouse. Genomic
6 DNA was extracted from 1-3 g of fresh leaf material with a modified CTAB (cetyltrimethyl/ammonium
7 bromide) protocol after (1987) and Cullings (1992).

8 For both species WGS library preparation (TruSeq DNA kit) and sequencing was carried out by
9 Macrogen Inc. Europe, using an Illumina NovaSeq machine. The sequencing yielded around 4.5 Gb of
10 151 bp paired-end reads for each species, with an insert size of 660 bp (*A. annua*) and 470 bp
11 (*T. porrifolius*), respectively.

12

13 **Retrieval of published plant Cassandra retrotransposon sequences**

14 We manually extracted representative Cassandra retrotransposon sequences from all published
15 reports that targeted plant genomes. For further analyses, we included 66 Cassandra-named
16 sequences from these studies, which we could unambiguously determine to be Cassandra
17 retrotransposons by manual annotation (supp. table 1).

18

19 **Screening of genome sequence assemblies for new Cassandra retrotransposons**

20 As some Asteraceae species show an unusual variation in 5S rDNA sequence and genomic
21 arrangement, we focused on *de novo* identification of Cassandra sequences in these species. For
22 identification purposes we used published genomes of 22 Asteraceae species (supp. table 1). A multi-
23 query BLAST search with known plant Cassandra sequences against these genomes was not successful.
24 The first *de novo* identification in an Asteraceae genome was performed in *Artemisia annua* with TRIM-
25 specific LTR Finder settings (Gao et al. 2016): -d 30, -D 2000, -l 30, -L 500 and relaxed parameters for
26 motif detection, only looking for PBS and PPT motifs (no conserved regions, TG - CA architecture or TSD
27 sequences to detect diversified sequences). LTR-Finder hits were extracted and used to perform a
28 multi-query BLAST search (Megablast, wordsize 28, Gap cost: 2/2, scoring 1/-2) with known Cassandra
29 sequences and the *Artemisia annua*-specific 5S rRNA gene. BLAST hits were processed by manual
30 inspection, followed by annotation of a reference full length sequence. The *Artemisia annua*-specific
31 Cassandra sequence was included in the Cassandra dataset, which was then again used for a multi-
32 query BLAST against the remaining Asteraceae genome assemblies. Genomes of Cichorioideae
33 subfamily showed no Cassandra positive BLAST hits and therefore were screened with the LTR-Finder
34 routine again, but yielded no results.

35

1 **5S rRNA gene retrieval and identification**

2 5S rRNA gene information for selected species was obtained from the 5S rRNA database
3 (<http://combio.pl/rrna>; Szymanski et al. 2016) and the NCBI nucleotide database. As we focused
4 especially on species within the Asteraceae, of which some do not have published 5S rDNA data, we
5 performed Readcluster analysis with the RepeatExplorer pipeline on Galaxy (Novák et al. 2013). Paired-
6 end, randomly selected WGS datasets (Illumina) were downloaded from the ENA and analyzed by the
7 pipeline RepeatExplorer (<https://repeatexplorer.elixir-cerit-sc.cz/galaxy>). For long read data we used
8 the RepeatExplorer Utilitier “Create sample of long reads” and “Get pseudo short paired end reads
9 from long reads” to adapt read length. After checking quality with FastQC (Andrews 2010), reads were
10 trimmed and adapters removed when present. Read sampling (5 million reads per pair) was carried
11 out, reads were interlaced and subsequently analyzed by TAREAN (a tool for the identification of
12 genomic tandem repeats from NGS data), as implemented in RepeatExplorer (default settings). 5S
13 rDNAs were detected as one of the tandem repeats present in the analyzed genomes and the
14 consensus sequence was extracted for each of the analyzed species. These 5S rDNA sequences were
15 compared with a standard 5S rDNA reference sequence (*Arabidopsis thaliana* E006, from the 5SrRNAdb
16 by Szymanski et al. 2016) with Geneious Prime® 2023.0.1, and the corresponding genic portion of each
17 of the target species was extracted.

18

19 **Determining the linkage between 5S rDNA and 35S rDNA by low coverage assembly**

20 To confirm the potential linkage of the ribosomal genes WGS data from selected species (supp. table
21 1) was retrieved from the respective sequence archives (ENA, SRA, and GSA). The read quality was
22 checked using FastQC 0.11.9 (Andrews 2010) and quality or adapter trimming was carried out using
23 Trimmomatic 0.39 (Bolger et al. 2014) when necessary. Reads were sub-sampled to match a 1x genome
24 coverage using seqtk 1.3 (Li et al. 2013) or RepeatExplorer Utilities “Create sample of long reads” (<https://www.elixir-czech.cz/>; Novák et al. 2020) for short and long reads, respectively. For sequencing
25 data with less available data all available reads were used. For the first assembly round MEGAHIT 1.2.9
26 (Li et al. 2016) with the meta-large preset was used and only contigs larger than 5 kb were kept. The
27 second assembly round was done with SPAdes genome assembler 3.15.5 (Bankevich et al. 2012) using
28 the isolate preset, a coverage cut-off of 20 and the megahit final contigs as trusted contigs. The
29 resulting assemblies were visualized using the Bandage 0.9.0 (Wick et al. 2015) assembly viewer. Nodes
30 were colored by BLAST hits using the ribosomal genes of *Helianthus annuus* and drawn around the
31 BLAST hits using a distance of 5-25, respectively.

32

33

34

1 **Cassandra metadata and comparison with 5S rRNA genes**

2 Sequence comparison for Cassandra full length and LTR sequences was performed with multi sequence
3 alignments (MUSCLE; Edgar 2004) and manual refinement. Cassandra sequences were then grouped
4 into families according to their level of similarity. We applied a pairwise identity threshold of 70 % for
5 family assignment. Exceptions were made for families with different variants. These families showed
6 variants with indels, which affect the overall alignment pairwise identity in a negative way. But
7 nevertheless, sequences could be grouped into one family due to their similarity in non-indel areas. To
8 compare species-specific 5S rRNA genes with the corresponding Cassandra sequence we performed
9 species-, lineage-, and family-specific alignments (MUSCLE) and dotplots.

10 All studies regarding nucleotide sequence motifs and variability of Cassandra sequences were
11 performed by manual inspections of the MUSCLE alignments.

12

13 **Data availability**

14 All accession numbers for published genome assemblies, Cassandra retrotransposons and 5S rRNA
15 genes are listed in supp. table 1. *De novo* Cassandra sequences identified in this study are available at
16 NCBI under the following study: PRJEB61458 (acc. numbers: OX591319-OX591330 and OY284499-
17 OY284501). Sequence alignments for plant family specific Cassandra LTRs are available at Zenodo:
18 <https://zenodo.org/record/8144620>. WGS raw sequence data of *Artemisa annua* and *Tragopogon*
19 *porrifolius* data for this study have been deposited in the European Nucleotide Archive (ENA) at EMBL-
20 EBI under accession number PRJEB63080 (<https://www.ebi.ac.uk/ena/browser/view/PRJEB63080>,
21 ERR11535563 and ERR11535566).

22

1 **Results**

2 **Cassandras form a lineage in plants: They share 5S promoters in their LTRs, but differ in sequence** 3 **and length**

4 To better understand the relationship between Cassandra retrotransposons and the 5S rDNA, we first
5 compiled a Cassandra dataset across different plant species and expanded it with full length Cassandras
6 from published Asteraceae genomes. Our motivation to investigate the structural hallmarks of
7 Cassandra retrotransposons beyond the Asteraceae were initial difficulties in Cassandra identification:
8 As Cassandras carry highly conserved regions and share LTR similarities across the plant kingdom
9 (Maiwald et al. 2021), one could assume that they constitute a single Cassandra family with derivatives,
10 scattered across plant genomes. However, for Asteraceae genomes, an initial similarity search via BLAST
11 was not successful, indicating either greater divergence in Cassandra sequence or absence in
12 Asteraceae genomes. Adopting a *de novo* approach relying solely on structure-based criteria, however,
13 we retrieved Cassandra sequences for 15 out of the 22 investigated Asteraceae genome sequences.
14 Sequence-wise, Asteraceae-derived Cassandras differ slightly from previously published Cassandra
15 sequences (see below).

16 We complemented this Asteraceae dataset with 66 published Cassandra sequences from other plants,
17 reaching 81 Cassandra reference sequences, each representing the Cassandra retrotransposon
18 landscape of the respective genome. This dataset allows us to investigate structural hallmarks of
19 Cassandra sequences across the plants and to understand how Asteraceae Cassandras compare to
20 other plant Cassandras.

21 Being non-autonomous LTR retrotransposons, all Cassandras in our dataset show no remains of any
22 coding regions. Sequence-wise, all of them show LTR/LTR identities of at least 74 % (suppl. table 2).
23 Structurally, they harbor a methionine *primer binding site* (PBS) and a *polypurine tract* (PPT) for first
24 and second strand synthesis by a reverse transcriptase (suppl. table 2).

25 Regarding element and LTR lengths, Cassandra sequences across the angiosperms show a wide range
26 of sizes. The smallest Cassandra in our dataset is from *Saruma henryi* (Aristolochiaceae) with a length
27 of 563 bp, whereas the largest from *Glycine max* (Fabaceae), with a length 968 bp, is almost double in
28 size. It is noticeable that Cassandra full-length elements are more or less equal-sized within one plant
29 family (supp. table 2). Furthermore, longer Cassandra full length retrotransposons also tend to have
30 rather long LTR sequences. For example, the longest Cassandras reside within the Fabaceae (Cassandra
31 length approx. 900 bp; LTR lengths: approx. 400 bp), whereas smaller representatives are found in the
32 Piperales and Polypodiales (Cassandra length: approx. 600 bp; LTR length approx. 200 bp; figure 1, supp.
33 table 2). Similar rules apply to the internal region. There seems to be a plant family-specific conserved
34 preference of internal region size lengths, which, in contrast to the LTR lengths, does not correlate with
35 the overall length.

Figure 1: LTR comparison of 81 Cassandra retrotransposons. We performed an all-against-all dotplot analysis, where similarities between defined windows ($k = 12$, allowed mismatches $n = 3$) are marked as a dot. If sequences show larger regions of similarity, multiple dots form linear patterns. Sequences are shaded according to the longest common substring, meaning sequences with a high number of matching windows are shaded in dark gray and white/light gray for sequences with a small number of similar sequence units. Each and every sequence shows at least a small diagonal, which information-wise can be mainly limited to the conserved region Cassandra sequences share with the 5S rDNA and a short promoter-flanking region. Cassandra LTR sequences show increased similarity within one plant family but tend to accumulate mutations for more distal ones. Visualization of phylogenetic relationships are indicated by colored lines and resemble the current taxonomy proposed by the Angiosperm Phylogeny group (2017).

1 Placing the Asteraceae Cassandra retrotransposons into this framework of typical plant Cassandra
2 lengths, they are on the smaller side, due to their short LTR and internal sequences with median length
3 values of 270 bp and 82 bp respectively, similarly to Cassandras from the Rosaceae, Amaranthaceae
4 and ferns.

5 Regarding LTR sequence conservation, a typical family-defining feature of an LTR retrotransposon, the
6 variation is very high across all 81 plant Cassandra sequences. All of them have an overall pairwise
7 identity of 44.4 %. Dotplot comparison about all plant Cassandras led us to the identification of
8 Cassandra families based on plant family-specific similarities (see a comparative analysis among all
9 Cassandra species in figure 1). A closer look into LTR identities also revealed high values > 70 % within
10 different plant families (table 1; plots with darker shading in figure 1). The exceptionally low sequence
11 identity for Cassandras within the Fabaceae and Asteraceae can be explained by variant formation
12 (suppl. figure 1) due to indels within the LTRs of certain species.

13

14 **Table 1:** Median length [bp] and family pairwise identity values [%] of plant Cassandras for families with
15 two or more members. The number of representative Cassandras resembles the number of species
16 with Cassandra retrotransposons within this plant family.

plant family	# of representative Cassandra	median length [bp]	overall pairwise identity [%]	LTR pairwise identity [%]	internal pairwise identity [%]
Poaceae	32	731	74.5	77.1	65.5
Fabaceae	6	912	56.0	55.3	75.1
Rosaceae	7	665	82.1	81.9	85.5
Brassicaceae	6	804	73.9	74.4	64.8
Caryophyllaceae	2	803	69.4	76.4	50.2
Amaranthaceae	3	761	64.2	74.7	42.4
Asteraceae	15	630	61.4	61.6	67.5

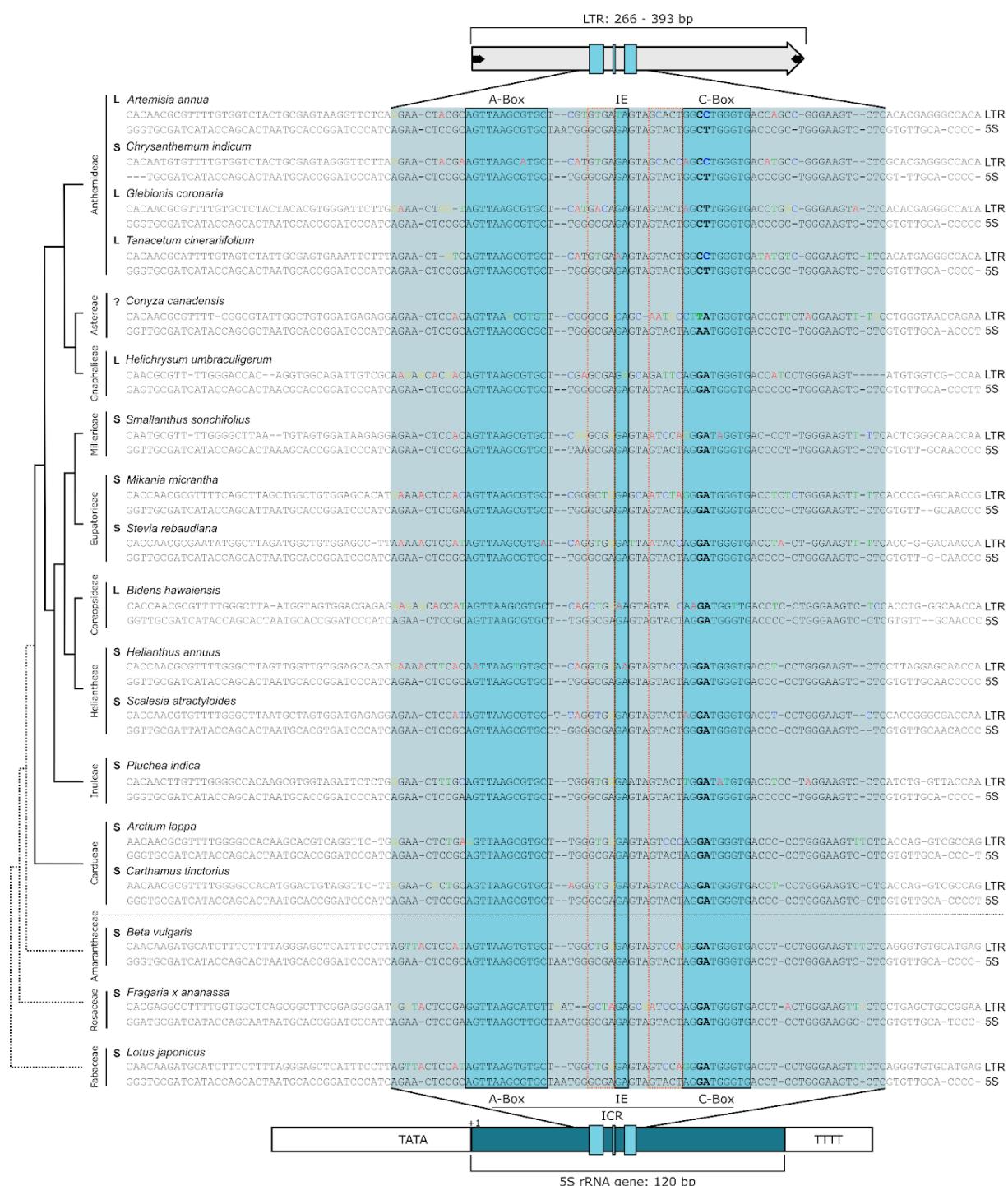
17 To understand the main hallmarks of Cassandra retrotransposons and to assess the extent of Cassandra
18 variability in angiosperms, we compared the sequence relationships of the Cassandra LTR regions, the
19 internal regions, and the plant species. As seen in table 1, Cassandra shows high pairwise identity
20 values >70 % for at least one of the two main sequence compartments: LTR (Poaceae, Brassicaceae,
21 Caryophyllaceae, Amaranthaceae) or internal region (Fabaceae). Exceptions are Rosaceae Cassandras,
22 with the highest values of pairwise identity for both LTR and internal region, and Asteraceae
23 Cassandras, with the lowest conservation for both structural components. A patchy pattern for
24 Asteraceae Cassandras is also seen within the dotplot (figure 1) and sequence alignments (suppl. figure
25 2) and resembles the phylogenetic assignment to the corresponding tribes of these species. Hence, a

1 higher similarity of LTRs is not accompanied by conservation of the internal region and the other way
2 around. Also, transcription-wise, there seems to be no need to preserve either LTR and/or internal
3 regions as all combinations of similarity patterns in the two components are present across Cassandra
4 families.

5 Considering this context, we find that LTRs of Asteraceae Cassandras are characterized by their short
6 lengths (table1, suppl. table 2) and lesser conservation compared to most of the other plant families
7 studied.

8

9 **Some Asteraceae harbor a Cassandra-related, non-autonomous LTR retrotransposon without the
10 iconic 5S promoter**


11 As we investigated BLAST results queried against the newly identified Asteraceae Cassandra from
12 *A. annua*, we observed a mix of Cassandra-positive hits in the genomes of the Carduoideae. This led
13 us to identify, for the first time, Cassandra-related non-autonomous LTR elements without the 5S
14 promoter. These occur in some Asteraceae species of subfamily Carduoideae. These Cassandra-like
15 elements share a part of their internal region with the canonical Cassandra, but differ in LTR sequence
16 and length (suppl. figure 2). Most strikingly, as the iconic Cassandra 5S promoter is missing, these
17 sequences do not represent Cassandra retrotransposons, but canonical terminal-repeat
18 retrotransposons in miniature (TRIMs). In two species (*Arctium lappa* and *Carthamus tinctorius*) these
19 Cassandra-like TRIMs co-exist with Cassandra, whereas in *Cynara cardunculus* only the Cassandra-like
20 TRIM is present. As such, these Cassandra-like TEs may represent evolutionary progenitors or
21 intermediates.

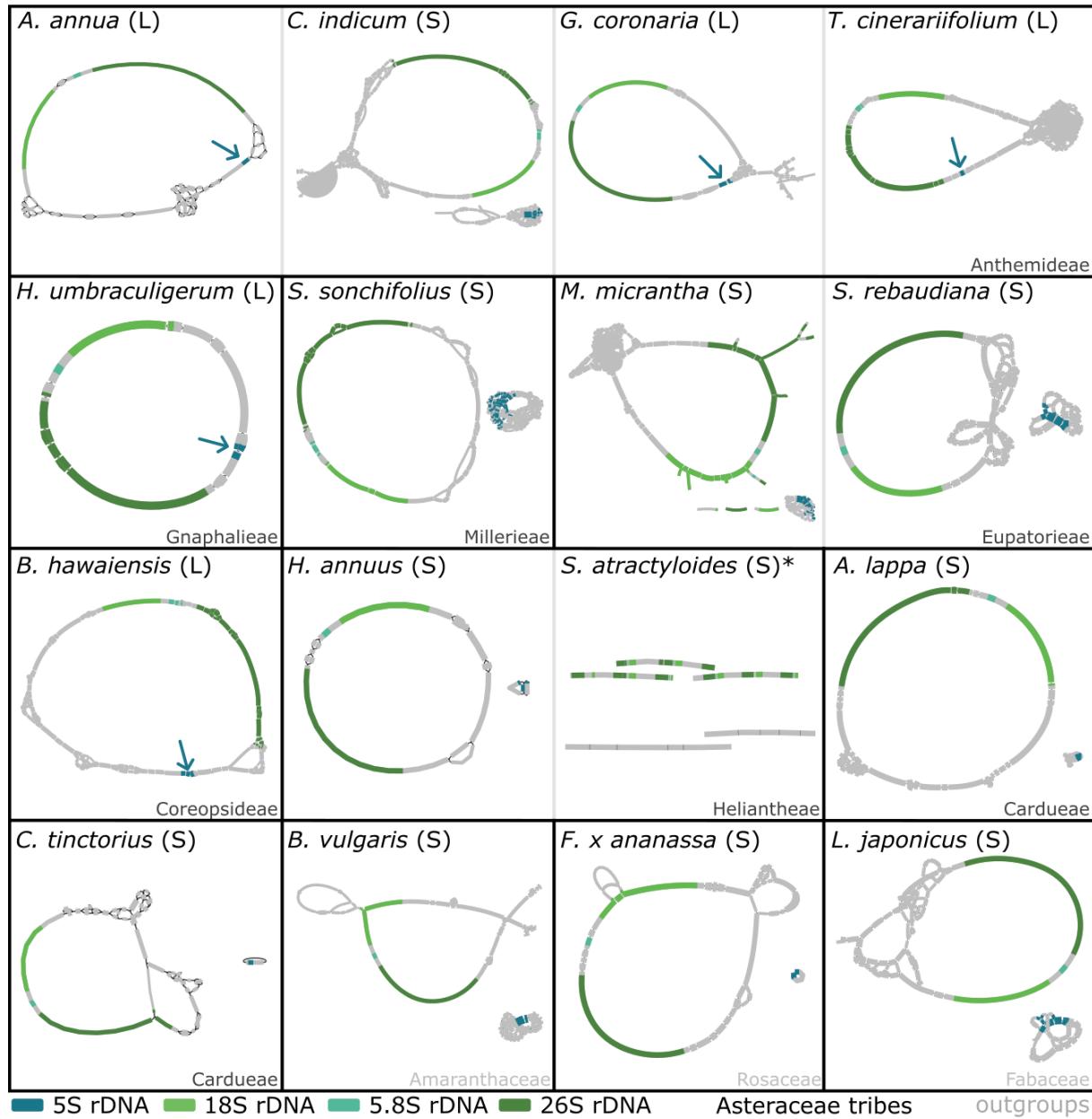
22

23 **Plant Cassandra sequences share a conserved 5S rDNA similarity region**

24 Out of the 81 Cassandra retrotransposons in our dataset, we compared them to their corresponding
25 published or newly annotated Asteraceae 5S rRNA gene, if available. By definition, all Cassandra
26 sequences harbor a region similar to their corresponding 5S rRNA gene. The length of this similarity
27 region is species-specific and always located approximately in the middle of the LTR sequence
28 (suppl. table 2). The shared similarity region spans to the internal control region (ICR) with the
29 promoter motifs (A-Box, intermediate element (IE) and C-Box) in all Cassandras. Although some
30 species, like *Malus × domestica* (suppl. table 2), show a large similarity region of more than 100 nt, we
31 were able to define a “core” unit of ~ 70 bp present in all Cassandra sequences (suppl. table 2, figure 2).
32 Although the core unit itself is present and conserved in all Cassandras, the position of the similarity
33 regions within the LTR varies (suppl. table 2), but it is never located at the LTR termini. We observe
34 family-specific similarity regions located within a region of 25 – 75 % of all LTR nucleotide positions.

35

Figure 2: Similarity region shared by the 5S rRNA gene and Cassandra retrotransposons in the Asteraceae and other plants. Differences from the 5S gene are highlighted in colors (A = red, T = green, C = blue, G = yellow). Key sequence variation in the C-Box is highlighted in bold. The arrangement of the 5S rDNA in a linked (L) or separated (S) configuration is indicated (see also figure 3). The regions of high sequence divergence between the Box motifs are marked with an orange rectangle.


Within this highly conserved similarity region there is a very prominent variation: two kinds of C-Boxes. One of these motifs is solely specific for the Asteraceae Cassandra sequences within the Anthemideae tribe, the other is found in the remaining species. These prominent deviations can be explained by a closer look at the corresponding genomic 5S rRNA genes. In certain Asteraceae species, the usually

1 highly conserved C-Box is slightly different, showing a 5'-GGCTGGGTG-3' motif instead of the
2 canonical 5'-AGGATGGGTG-3'. This C-Box variation is mirrored by the corresponding Cassandra
3 sequence, although it is not identical, showing a 5'-GGCCTGGGTG-3' motif (figure 2; bold bases within
4 the C-Box). We hence observe that Cassandra elements somehow mimic changes in the 5S promoter
5 of the 5S rRNA gene.

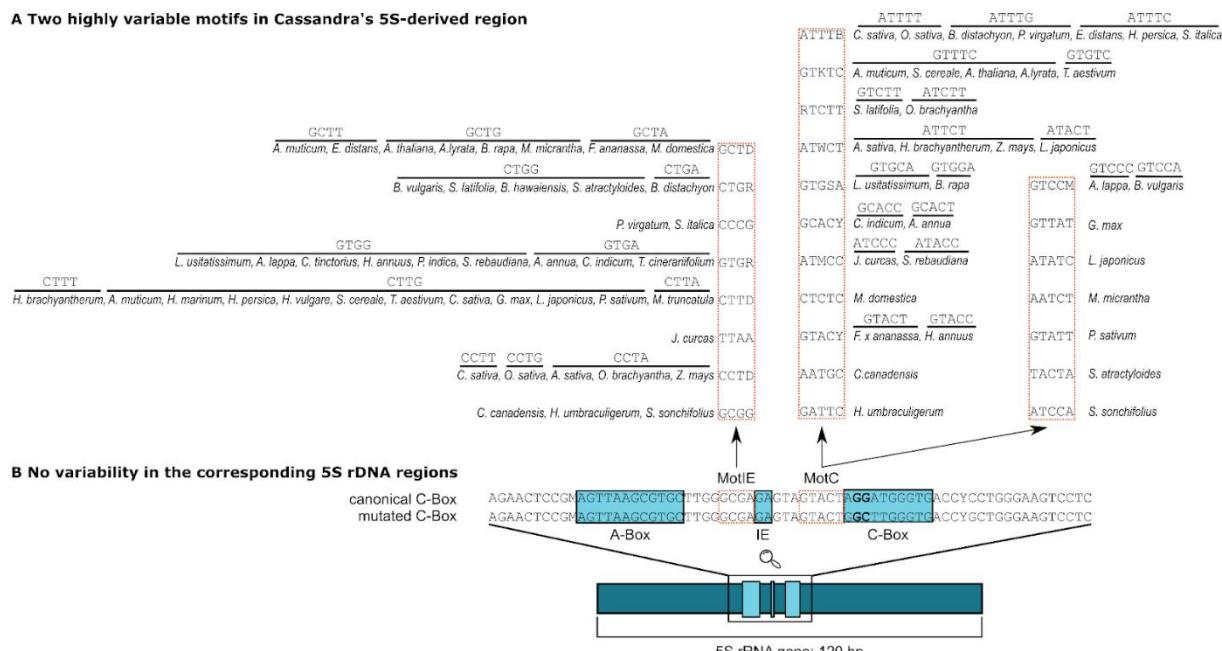
6
7 **The 5S promoter motif changed after the emergence of the 35S-5S linkage in the Asteraceae**
8 Interestingly, the 5S promoters with the mutated C-Box emerged in the Anthemideae, a tribe well-
9 known for harboring 5S genes in a linked arrangement, such as species of the genus *Artemisia* (Garcia
10 et al. 2009). We wondered if there was any relation between the 35S-5S linkage and the promoter shift,
11 and if they evolved independently or within similar timespans.

12 We already have data regarding the promoter sequences (figure 2), but for some of the species, the 5S
13 arrangement has yet to be determined. Hence, we analyzed the 5S arrangement in all Asteraceae
14 species and the three chosen outgroups for figure 2. This was done by low coverage read assembly,
15 where the 35S and 5S contigs were visualized (figure 3). Arrangement-wise, we observed 10 separate
16 and 5 linked rDNA arrangements within our dataset.

17 We conclude that the Asteraceae species *Artemisia annua*, *Glebionis coronaria*, *Tanacetum*
18 *cinerariifolium* (all within the Anthemideae), *Helichrysum umbraculigerum* (Gnaphalieae) and *Bidens*
19 *hawaiensis* (Coreopsidæ) have 35S-5S linkage. Clearly, despite 35S-5S linkage occurring often in the
20 Anthemideae as reported, it is neither restricted to this tribe nor present in all species of this tribe.
21 Instead, linkage occurs polyphyletically and is not necessarily associated with the promoter shift limited
22 to the Anthemideae (figure 2). Nevertheless, considering linkage in the Anthemideae and its sister tribe
23 Gnaphalieae, we assume that the linked 35S-5S arrangement emerged first and that the promoter
24 sequences shifted later in the evolutionary timeline.

Figure 3: 35S-5S linkage of ribosomal RNA genes is present in several, but not all, Asteraceae species.

The graphs represent the low coverage assembly of the rRNA genes and show gene order, arrangement and organization. Complete circular graphs represent the typical rRNA monomer for each species. Linked ribosomal genes (L) show a single circular graph including the 5S rDNA gene (marked by arrows; five instances). Separated ribosomal RNA genes (S) show two graphs (10 instances). For *Scalesia atractyloides* (*), read quality strongly impaired the alignments and prevented full circular assemblies. Nevertheless, the rRNA genes were assembled completely, with several copies being separated by spacers. A separated arrangement can be concluded even from the imperfect assembly of *S. atractyloides* rDNAs. Five of the Asteraceae show the 35S-5S linkage being neither restricted to species with the promoter shift (see *Helichrysum umbraculigerum* and *Bidens hawaiensis*) nor affecting all species with the shifted promoter (see *Chrysanthemum indicum*). The line thickness is associated to the coverage depth of individual contigs; however, these are not comparable across the species shown. Sequence representation is not to scale.


1 Fixed in the 5S gene, but variable in the TE: Cassandra 5S regions show two variable sequence motifs

Having clarified that the promoter shifts and 35S-5S linkage are not always correlated, we wondered about the sequence variability between the promoter box motifs. If some motifs are more variable than others, they may be used to gain further insight in the evolutionary history of the 5S rRNA gene and the accompanying Cassandra retrotransposons: As highlighted in figure 2, the LTR core unit includes the highly conserved 5S rDNA promoter box motifs and parts of their flanking genic region. However, in Cassandra, not all parts of the similarity region are as highly conserved as the promoter box motifs.

9 Comparing Cassandra retrotransposon sequences to the 5S rRNA genes, we note that Cassandra
10 retrotransposons have regions of high variability just next to the box motifs: In the promoter-flanking
11 regions, an accumulation of mutations appears to be tolerated between the boxes (figure 4). The
12 nucleotide sequence most prone to mutations thereby seems to be right in front of the conserved box
13 motifs, e.g., between the A-Box and the Intermediate Element (IE), we observe 4 nt long and between
14 the IE and the C-Box 5 nt long polymorphic motifs, further referred as MotIE and MotC (figure 4).

15

A Two highly variable motifs in Cassandra's 5S-derived region

16

17 **Figure 4: Polymorphic motifs in Cassandra LTR - 5S similarity region.** Within the conserved 5S region
18 within the Cassandra LTR we observe variable motifs between the highly conserved promoter boxes
19 (A-Box, Intermediate Element - IE, C-Box). Depending on their localization and association with the
20 nearest conserved promoter boxes, they are called MotIE and MotC. For MotIE and MotC we observe
21 shifts in sequence information within the Cassandra LTRs (A). In contrast, there is no observable
22 variability in the corresponding 5S rDNA genes in these regions (B). For 5S rDNA of corresponding genes
23 consensuses for mutated and canonical C-Boxes are shown.

24

25

1 To better understand the regions of variability between the Cassandra LTRs, we further investigated
2 the nucleotide compositions in the MotIE and MotC regions and how they map back to the 5S rDNA.
3 Most striking are the differences in nucleotide composition of MotIE and MotC polymorphisms. 45
4 Cassandra sequences show a MotIE polymorphism with eight observable nucleotide motif variants
5 (figure 4) and only one being species-specific (*J. curcas*). MotC divergence from the 5S rRNA gene was
6 detectable in 37 out of 45 Cassandra sequences. Here, variability is even higher and we observe 18
7 different motifs with nine of them being specific for species of Rosaceae (*M. domestica*), Fabaceae
8 (*G. max*, *L. japonicus*, *P. sativum*) and Asteraceae (*C. canadensis*, *H. umbraculigerum*, *M. micrantha*, *S.*
9 *atraclyoides*, *S. sonchifolius*). Nevertheless, most motif changes appear as stochastic variation and
10 carry no clear phylogenetic signal.

11
12 **Assembling a framework to analyze Cassandra and 5S rDNA co-evolution**
13 To better understand the co-evolution mechanisms that accompany the interplay of Cassandra
14 retrotransposons and the 5S rDNA, we collected comprehensive Cassandra data across the vascular
15 plants. We focused especially on the Asteraceae, combining Cassandra information, 5S rDNA promoters
16 and 35S-5S linkage to illustrate the variable landscape of the 5S-Cassandra interaction (figure 5). For
17 Asteraceae we gathered data from 11 plant tribes and 22 plant families (figure 5; column 1). Limitations
18 are in the data foundation, as for some species not all required sequencing reads were available (figure
19 5; column 2). Nevertheless, our data provides a comprehensive framework that – for the first time –
20 allows tracing Cassandra evolution (figure 5; column 3) in comparison to 5S evolutionary changes, such
21 as promoter and arrangement shifts (figure 5; column 4).
22

Asteraceae phylogeny		data sources		Cassandra		5S rDNA		
tribe	species	genome assembly	read data	full length Cassandra	acquired via	5S rDNA gene	canonical promoter 5S Cassandra	linkage
Asteroideae	<i>Artemisia annua</i>	✓	✓	✓	LTR-Finder	✓	✗	✗
	<i>Chrysanthemum indicum</i>	✓	✓	✓	BLAST	✓	✗	✗
	<i>Glebionis coronaria</i>	✓	✓	✓	BLAST	✓	✗	✗
	<i>Tanacetum cinerariifolium</i>	✓	✓	✓	BLAST	✓	✗	✓
	<i>Coryza (Erigeron) canadensis</i>	✓	✗	✓	BLAST	✓	✓	✗
	<i>Gnaphalium umbraculigerum</i>	✓	✓	✓	BLAST	✓	✓	✓
	<i>Smallanthus sonchifolius</i>	✓	✓	✓	BLAST	✓	✓	✗
	<i>Eupatorium</i>	✓	✓	✓	BLAST	✓	✓	✗
	<i>Mikania micrantha</i>	✓	✓	✓	BLAST	✓	✓	✗
	<i>Stevia rebaudiana</i>	✓	✓	✓	BLAST	✓	✓	✗
	<i>Bidens hawaiensis</i>	✓	✓	✓	BLAST	✓	✓	✓
Helianthae	<i>Helianthus annuus</i>	✓	✓	✓	BLAST	✓	✓	✗
	<i>Scalesia atraclyoides</i>	✓	✓	✓	BLAST	✓	✓	✗
	<i>Pluchea indica</i>	✓	✓	✓	BLAST	✓	✓	NA
	<i>Cichorium endivia</i>	✓	✓	✗	NA	NA	NA	NA
	<i>Cichorium intybus</i>	✓	✓	✗	NA	NA	NA	NA
Cichorioideae	<i>Lactuca sativa</i>	✓	✓	✗	NA	✓	✓	NA
	<i>Taraxacum kok-saghyz</i>	✓	✓	✗	NA	NA	NA	NA
	<i>Taraxacum mongolicum</i>	✓	✗	✗	NA	NA	NA	NA
	<i>Tragopogon porrifolius</i>	✗	✓	✗	NA	✓	✓	✗
	<i>Arctium lappa</i>	✓	✓	✓	BLAST	✓	✓	✗
Carduoideae	<i>Carduus tinctorius</i>	✓	✓	✓	BLAST	✓	✓	✗
	<i>Cynara cardunculus</i>	✓	✗	✗	NA	✓	✓	NA

23
24 **Figure 5: Framework for understanding the interplay between Cassandra retrotransposons and the**
25 **5S rDNA in the Asteraceae: Summary, integrative overview and data-based limitations.** The
26 Asteraceae phylogeny in the first column is based on Mandel et al. (2019).

1 **Discussion**

2 **Plant Cassandras share structural hallmarks, but are variable in sequence and length: Cassandra is**
3 **better defined as a lineage than as a family**

4 As they are present across the plant kingdom, it could be assumed that Cassandra forms a single family
5 of non-autonomous LTR retrotransposons. Our dataset of plant Cassandras now offers the most
6 comprehensive framework up to date to re-examine, if all plant Cassandra sequences indeed form a
7 single family. If we follow TE taxonomy, LTR retrotransposons are firstly classified into superfamilies and
8 lineages according to their structure, e.g. by the presence and order of conserved regions, and in a
9 second step by the sequence of the conserved regions (Wicker et al. 2007; Arkhipova 2017; Neumann
10 et al. 2019). The main focus is usually on the enzymatic domains, as these are most conserved (Malik
11 and Eickbush 1999; Malik 2005; Eickbush and Jamburuthugoda 2008). For family classification, LTR
12 sequences are compared across sequences, but other parameters, such as element and LTR lengths as
13 well as the internal sequences are also considered (Wicker et al. 2007). As Cassandra retrotransposons
14 do not code for any proteins, we can only take into account these length and sequence parameters.

15 Across the plant kingdom, represented here by 18 plant families, 81 Cassandra retrotransposons share
16 the 5S promoter as a central motif in the LTR. However, apart from this, they show large variability in
17 element length, structure and nucleotide information (figure 1, table 1, suppl. table 1). For the LTR as
18 a family-defining hallmark (Simon and Zimmerly 2008), we recognized family-specific sequence and
19 length similarities beyond the conserved 5S-derived similarity region. Nevertheless, for Asteraceae and
20 Fabaceae sequences, we surprisingly observe more variability in the LTRs (table 1) than in the internal
21 region. This is caused by indels in the LTRs of the Asteraceae and Fabaceae Cassandras that can be
22 interpreted as tribe/subfamily-specific phylogenetic signals. We observe a link between Cassandra
23 diversification and species richness in the Asteraceae and Fabaceae, as these two belong to the most
24 species-rich plant families, with various subfamilies (Christenhusz and Byng 2016). Therefore, it is not
25 surprising that we see this variation also in repetitive elements. Regarding internal regions, we observe
26 mostly preferred size ranges and conservation within plant families (i.e., within the Rosaceae and
27 Fabaceae). Despite this general trend, the internal Cassandra regions can sometimes vary within the
28 same family as observed in the Amaranthaceae (see also Maiwald et al. 2021 for an in-depth report).

29 Concluding, apart from the 5S promoter as shared structural hallmark, Cassandra sequences and
30 lengths are variable and can form several Cassandra families. Taxonomically, we therefore understand
31 Cassandra retrotransposons as a lineage of non-autonomous LTR retrotransposons rather than a family.
32 This is in line with the lineage concepts of autonomous LTR retrotransposons that are based on
33 structural similarities (Llorens et al. 2009; Du et al. 2010). For example, TEs of the chromovirus lineage
34 have a chromodomain in the integrase region (Neumann et al. 2011; Weber et al. 2013) and TEs of the
35 Retand/Ogre lineage have two instead of a single ribonuclease H region (Neumann et al. 2019). If we

1 put our observations in the frameworks for TE classification (see also the TE Hub initiative; Elliott et al.
2 2021), we can extend the lineage concept towards non-autonomous retrotransposons, and suggest the
3 concept of a Cassandra lineage, encompassing all non-autonomous LTR retrotransposons that contain
4 a similar 5S promoter region.

5

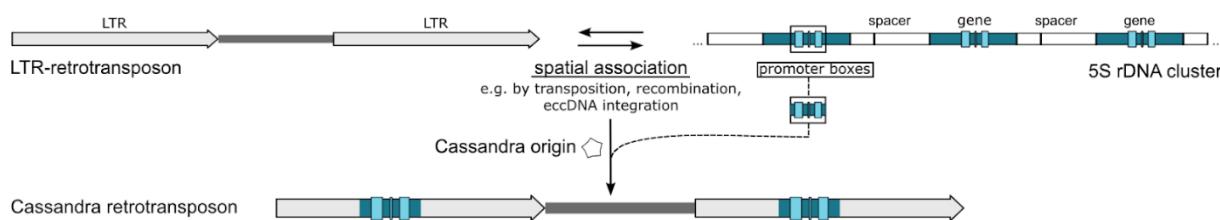
6 **Co-evolution of Cassandra and the 5S rDNA**

7 For all Cassandras in our dataset for which we could retrieve the corresponding 5S rDNA gene, we
8 observe mirroring of the conserved promoter box motifs. This is particularly noticeable within the
9 Asteraceae, where different 5S variants and organizations have been described (Garcia et al. 2010;
10 Garcia et al. 2012) and which we therefore investigated in detail (figure 5). We here describe
11 Cassandra's promoter mimicry in a depth that was not possible before. Nevertheless, promoter
12 mimicry is not exclusively observed in Cassandra sequences. In plants, sequence mirroring strategies
13 are widely found: "target mimicry", for example, describes endogenous long non-coding RNAs that
14 mimic and inhibit other small RNA molecules (miRNAs; Wu et al. 2013; Ye et al. 2014; Li et al. 2015).
15 Although compared to these mechanisms, Cassandra promoter shifts may not affect genome integrity
16 as strongly.

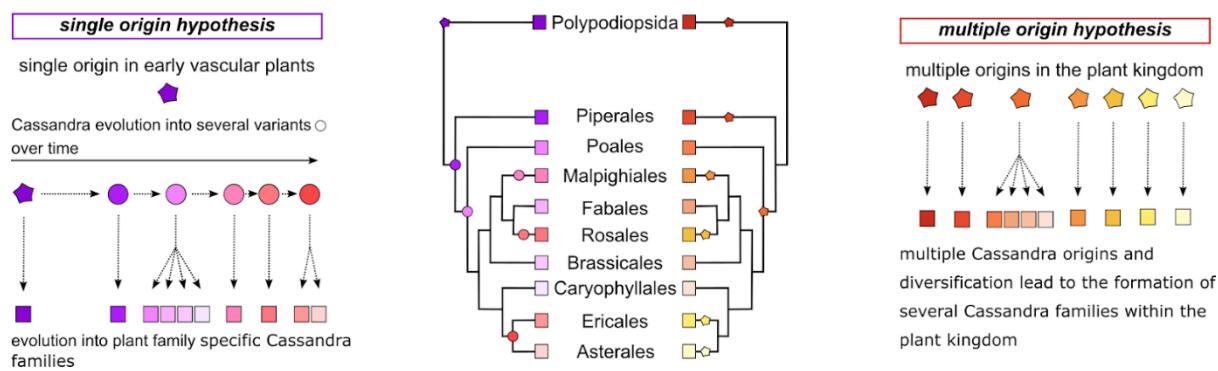
17 Regarding the mechanisms behind Cassandra promoter mimicry, an initial mutation within the 5S rDNA
18 gene in an Anthemideae ancestor is a likely scenario. Due to concerted evolution of the ribosomal
19 genes (Nei and Rooney 2005), mutations can spread through the array and become fixed. This is well
20 in line with the current concerted evolution models of the 5S rDNA. We can assume, then, that a
21 mutated C-Box in the 5S rDNA would be followed by molecular changes in the corresponding
22 transcription factors on a cellular level to guarantee sufficient transcription.

23 As Cassandra retrotransposons rely on the 5S rDNA promoter for transcription (Kalendar et al. 2008;
24 Maiwald et al. 2021), they need to either adapt or become inactive relics. This would also increase the
25 mutation pressure for Cassandra sequences. Cassandra's promoter mimicry that mirrors the mutation
26 in the C-Box (either random or also caused by gene conversion) was likely necessary to maintain TE
27 integrity and to avoid vanishing. As an alternative hypothesis, an independent emergence of the C-Box
28 in Cassandra sequences within the Anthemideae spawned from each 5S rDNA variant could also be
29 possible, but seems unlikely, as overall sequence identity between Anthemideae Cassandras and the
30 other Asteraceae is too high.

31 We thus suggest the following chain of events: First, the rDNA promoter mutated, followed
32 by homogenization/concerted evolution. Second, Cassandra retrotransposons mirrored these C-Box
33 shifts to survive. Third, mobilization (and with this reverse transcription, amplification and integration)
34 of Cassandra retrotransposons led to further copies with the new promoter. At the same time, spread
35 through already existing Cassandra copies may have been influenced by gene conversion and even by


1 homogenization in tandemly arranged Cassandras (as seen in Yin et al. 2014; Kalendar et al. 2020;
2 Maiwald et al. 2021).
3 In contrast to the highly conserved 5S promoter box motifs and the observed cases of promoter
4 mimicry, we observed hypervariable motifs in the immediate vicinity of the highly conserved promoter
5 boxes in the Cassandra LTRs. The hypervariable motifs MotIE and MotC of Cassandra are most striking
6 in this context, i.e., within the expected most conserved region of the already highly conserved 5S rRNA
7 gene. However, we assume the necessary preservation of the promoter boxes to enable transcription,
8 whereas mutations in other regions are tolerated and can at least reach as much variability as the non-
9 5S-derived sequence regions. Interestingly, mutations in these hypervariable motifs did not include
10 larger indels. So, retention of certain lengths and spacing between the conserved promoter boxes
11 seems to be mandatory, likely to enable the folding of secondary structures, as suggested previously
12 for both 5S rDNA C-box variants (Garcia et al. 2012).

13


14 **Did Cassandra retrotransposons emerge multiple times?**

15 Despite having rebuked an independent Cassandra emergence in tribe Anthemideae, the question
16 holds: Is it likely that Cassandra emerged several times in the plant kingdom? For the purpose of this
17 study, we consider Cassandra emergence as the process of obtaining a 5S promoter in the LTR of a
18 retrotransposon. The acquisition of new, prominent, genic promoters such as the 5S, would enable a
19 retrotransposon to pursue new strategies for proliferation. This is already well known for non-
20 autonomous retrotransposons, e.g., for SINES in animals (Vassetzky and Kramerov 2013). Even apart
21 from promoter structures, many instances of co-option of other sequence modules by TEs were
22 observed (reviewed by Cosby et al. 2019; Wang and Han 2021). We hypothesize that the emergence of
23 Cassandra retrotransposons was caused by spatial association of an LTR retrotransposon near an
24 existing or extrachromosomally located 5S rDNA array (figure 6A). Also, a direct integration of
25 Cassandra into a 5S rDNA cluster is imaginable as this would enable a first quick Cassandra outburst
26 through accessible regulatory transcription factors (Dewannieux et al. 2004; Lynch et al. 2015) before
27 elimination due to 5S homogenization (Garcia et al., 2023). Either way, the close proximity of a
28 Cassandra progenitor and nuclear 5S rDNA would have allowed promoter obtainment, without
29 harming the 5S gene itself. An explanation for this neutral interaction could be a tendency to
30 pseudogene accumulation at the borders of ribosomal RNA arrays (Robicheau et al. 2017).

A Cassandra emergence by obtaining 5S rDNA promoter motifs

B hypothetical scenarios for the Cassandra origin

1 **Figure 6: Cassandra origin and evolution within the plant kingdom.** We suggest a Cassandra origin by
2 obtaining 5S rDNA promoter (and flanking) regions due to spatial association, e.g., transposition,
3 recombination or eccDNA integration through a LTR-retrotransposon (A). Based on our data we assume
4 Cassandra originating (star) either as a single event in early vascular plants (B - left side; purple star) or
5 multiple origins (B - right side; red/yellow stars) in the plant kingdom. In the single origin scenario one
6 originator formed multiple variants (purple/pink circles). Each of the Cassandra families, we observe
7 today (purple/pink rectangles), is a successor of one of these variants. For the multiple origin
8 hypothesis, the scenario slightly changes with each family (red/yellow rectangles) being assignable to
9 one of the newly emerged Cassandras (red/yellow stars) within the plant kingdom.
10
11

12 For Cassandra establishment we will discuss two hypotheses:

13 On the one hand, Cassandra retrotransposons may have arisen only once in the early vascular plants
14 (Figure 6B - left side), which led to a stable Cassandra population in ancestral species. The single origin
15 hypothesis is supported by the strong conservation of the 5S promoter region – a 70 bp sequence
16 stretch that extends well past the promoter boxes, as pointed previously. In this scenario, this 5S region
17 was obtained by an LTR retrotransposon once and was retained through plant and Cassandra evolution.
18 This retention across the evolution of vascular plants may well be possible. If TE populations do not
19 harm or significantly alter gene expression, they tend to be tolerated by the host (Zhang and Mager
20 2012), which could have been the case for Cassandra 5S regions. Following this line of thought, the
21 large sequence differences between Cassandra retrotransposons of different plant families arose as
22 result of mutation and sequence reshuffling.

23 On the other hand, Cassandra retrotransposons may have originated at multiple time points during
24 plant evolution (Figure 6B - right side), forming several independent Cassandra populations in the plant
25 kingdom. If Cassandra emerged independently, we would consider the 70 bp region including the 5S
26 promoter as a sequence module that was taken up multiple times by non-autonomous LTR

1 retrotransposons, thereby forming Cassandra sequences repeatedly, in independent manners.
2 Modular evolution is one of the typical strategies of TE evolution, occurring across all major TE clades
3 and lineages (Smyshlyaev et al. 2013; Heitkam et al. 2014; Seibt et al. 2020).
4 In the light of both scenarios, the newly identified Cassandra-like retrotransposon – a TE with high
5 similarity to Cassandra, but without the 5S promoter – could be a possible Cassandra precursor. By
6 acquiring the 5S promoter module, a full Cassandra may have been formed from this Cassandra-like
7 TRIM. Alternatively, these Cassandra-like elements may have arisen from Cassandras that have lost the
8 5S rDNA promoter. Nevertheless, losing such a beneficial hallmark doesn't seem to be advantageous.
9 Either way, after Cassandra emergence, a range of different evolutionary mechanisms act on these TEs,
10 including the accumulation of mutations, rearrangements, recombination, reshuffling, and even
11 polymerization. These processes caused Cassandra diversification into different variants which,
12 through further diversification, formed the Cassandra families we observe today (figure 6B - both
13 sides). Both scenarios can explain Cassandra retrotransposons with large LTR similarity within plant
14 families (figure 1). Diversification of transposable elements due to read-through transcription (Xiao et
15 al. 2008; Elrouby and Bureau 2010; Jiang and Ramachandran 2013), recombination (Devos et al. 2002;
16 El Baidouri and Panaud 2013; Yin et al. 2014; Yin et al. 2015; Kalendar et al. 2020; Maiwald et al. 2021)
17 and chimeric TE formation (Vicient et al. 2005; Wollrab et al. 2012; Sanchez et al. 2017) is a common
18 mechanism. Also, the formation of extrachromosomal DNA during reverse transcription can influence
19 TE sequence and structure on a nucleotide level (Drost and Sanchez 2019).
20 Whatever form of evolution has taken place, the 5S promoter is a powerful sequence module to be
21 shuffled around, as it grants access to a reliable, environmental stress-independent transcription. The
22 procurement of additional sequence information through reshuffling is known as a great step in LTR
23 retrotransposon evolution (Malik and Eickbush 1999; Malik and Eickbush 2001) and, a part from
24 conserved protein domains, this could also apply to promoter regions, as seen for SINEs (Seibt et al.
25 2020). The neat observed borders of the similarity region within all Cassandra LTRs (figure 2) clearly
26 hint to some sort of modular reshuffling, with either the flanking LTR regions diversifying over time
27 (single origin) or modular obtainment of this region by multiple “initiator” elements (multiple origin).
28 Nevertheless, the strong similarity across the whole 5S region leads us to favor the single origin
29 hypothesis.
30

31 **Has Cassandra carried the 5S gene into the linked arrangement?**

32 35S-5S linkage is one the of the most prominent hallmarks of 5S rDNA in the Asteraceae. It is reported
33 for several species (Garcia et al. 2010), but as a big controversy not necessarily in line with the recent
34 phylogeny (Mandel et al. 2019). Our integrative dataset includes five Asteraceae with 5S rDNAs in linked
35 arrangements (figure 5). We find that linkage is present in the Anthemideae, Gnaphalieae and

1 Coreopsideae tribes, but in a patchy manner: First, phylogenetically, these three tribes are not direct
2 sisters. Second, there is variation even within a tribe, as for instance, the Anthemideae contain both
3 arrangement types (figure 3, figure 5; Garcia et al. 2009; Garcia et al. 2010). This patchy pattern of
4 linked and separate arrangements across the phylogeny of the Asteraceae can be explained by either
5 (1) multiple emergences of 35S-5S linkage or (2) a singular emergence of linkage followed by
6 subsequent losses.

7 Regarding the multiple emergences of 35S-5S linkage in closely related Asteraceae, we consider this as
8 unlikely. Despite reports of independent emergence for example in Ginkgo and other gymnosperm taxa
9 (Garcia and Kovařík 2013), we consider the affected Asteraceae tribes as too closely related to have
10 linkage occurring by chance.

11 Instead, we favor a single emergence, followed by loss of linkage within certain tribes/species and the
12 retention in others. This scenario could be the result of frequent hybridization and polyploidization
13 among the Asteraceae: If species with separate (S) and linked (L) arrangements hybridize, they would
14 generate F1 hybrids (S×L) that have both arrangement types. One of them likely vanishes during the
15 following generations (probably through concerted evolution mechanisms), thus enabling alternating
16 and patchy distributions of S and L arrangements in and across populations. This scenario is supported
17 by reports of frequent hybridization, polyploidization and general species richness in the Asteraceae
18 (Semple and Watanabe 2023). Nevertheless, in both scenarios, there had to be a coexistence of linked
19 and separate arrangements for a certain timespan after emergence, which can be seen by accidental
20 observation of unlinked 5S rDNA units in an otherwise L-type species, *Coreopsis major* (Garcia et al.
21 2010). Clearly, for all scenarios, one 5S arrangement was retained whereas the other had to vanish –
22 either by chance or by selection. On a molecular level, the fixation of one 5S arrangement type can be
23 achieved by homogenization and concerted evolution processes.

24 As discussed for the promoter shifts, we see that Cassandra clearly follows 5S rDNA evolution.
25 Therefore, we asked if Cassandra could also impact 35S-5S linkage emergence. At first glance it seems
26 obvious: due to their mobility and copy-and-paste mode of proliferation, Cassandras could have carried
27 the 5S rRNA gene into the 35S rDNA array, as considered previously (Garcia et al. 2009; Garcia et al.
28 2010). However, if we have a closer look at Cassandra itself, this seems very unlikely for two main
29 reasons:

30 (1) None of the 81 species-specific Cassandras in our dataset (from 17 different plant families all across
31 the plant kingdom) carried the whole 5S rDNA gene. The region is always limited to a module containing
32 the promoter regions and a short part of the flanking genic region.
33 (2) Retrotransposons have a totally different structure compared to ribosomal DNA clusters, with other
34 mechanisms putting evolutionary pressure on the sequence.

1 On the flip-side, we assume that 35S-5S linkage might have had an influence on Cassandra emergence
2 and evolution. One can assume a limitation of 5S diversification through linkage, as concerted evolution
3 may have a greater impact on 5S in linked arrangements as opposed to 5S in separated arrangements.
4 Mutation rates support this hypothesis (Sònia Garcia et al., personal communication). If the linked
5 arrangements allowed a faster spreading and fixation of 5S mutations in the array, it would be the
6 perfect starting ground for the observed promoter shifts in the Anthemideae. As discussed above, in
7 order to survive, Cassandra sequences then must adapt to this shift and mimic the new C-Box
8 variant/information.

9

10 **Conclusion**

11 We collated a dataset of 81 species-specific plant Cassandra retrotransposons and defined the
12 presence of the 5S-related sequence stretch in the LTR as a hallmark defining the Cassandra TE lineage.
13 Narrowing down on the Asteraceae, a plant family with wide variation in the 5S gene sequence and
14 organization, we put together a comprehensive Cassandra-5S rDNA framework to trace the interplay
15 between Cassandra TEs and 5S rDNA evolution. We find that shifts in 5S promoters are mimicked
16 closely by the TE, whereas overall reorganization in 5S rDNA architecture does not impact the
17 Cassandra landscapes. We here provide convincing evidence for gradual Cassandra-5S rDNA co-
18 evolution that gives insight into the interplay between TEs and rDNA in plant genomes.

19

1 **Declarations**

2 **Ethics approval and consent to participate**

3 Not applicable

4 **Consent for publication**

5 All authors have read and approved this manuscript.

6 **Availability of data and materials**

7 Link to external archive

8 **Competing interests**

9 The authors declare no competing interests.

10

11 **Funding**

12 This publication was realized within the Back-to-Research Grant financed by the Ministry of Research,
13 Culture and Tourism (SMWK) of the Free State of Saxony, received by SM. SG receives grants from the
14 Agencia Estatal de Investigación, Government of Spain (PID2020-119163GB-I00), funded by
15 MCIN/AEI/10.13039/501100011033). Interactions between the Dresden and Barcelona labs are
16 enabled by an EMBO Short term fellowship (Ref. 8989) and a Dresden Senior Fellowship to SG. Open
17 Access funding is enabled and organized by TU Dresden.

18

19 **Authors' contributions**

20 Analysis: SM, SG, LM

21 Writing: all

22 Figures: SM, LM

23 Conception: all

24

25 **Acknowledgements**

26 Open Access funding was enabled and organized by the Sächsische Staats- und Universitätsbibliothek
27 and the Technische Universität Dresden. Daniel Vitales and Joan Pere Pascual-Díaz are acknowledged
28 for help with 5S rDNA analysis. Computational resources were provided by the ELIXIR-CZ project
29 (LM2015047), part of the international ELIXIR infrastructure." (see <https://repeatexplorer-elixir.cerit-sc.cz/>)

31

1 **References**

2 Alexandrov OS, Razumova OV, Karlov GI. 2021. A comparative study of 5S rDNA non-transcribed
3 spacers in Elaeagnaceae species. *Plants* 10:4.

4 Andrews S. 2010. FASTQC. A quality control tool for high throughput sequence data.
5 <https://www.bioinformatics.babraham.ac.uk/projects/fastqc/>.

6 Antonius-Klemola K, Kalendar R, Schulman AH. 2006. TRIM retrotransposons occur in apple and are
7 polymorphic between varieties but not sports. *Theor Appl Genet* 112:999–1008.

8 Arkhipova IR. 2017. Using bioinformatic and phylogenetic approaches to classify transposable
9 elements and understand their complex evolutionary histories. *Mobile DNA* 8:19.

10 Badouin H, Gouzy J, Grassa CJ, Murat F, Staton SE, Cottret L, Lelandais-Brière C, Owens GL, Carrère S,
11 Mayjonade B, et al. 2017. The sunflower genome provides insights into oil metabolism,
12 flowering and Asterid evolution. *Nature* 546:148–152.

13 Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S,
14 Prjibelski AD, et al. 2012. SPAdes: A new genome assembly algorithm and its applications to
15 single-cell sequencing. *J Comput Biol* 19:455–477.

16 Baum B, Johnson D. 2011. A comparison of the 5S rDNA diversity in the *Hordeum brachyantherum*
17 *californicum* complex with those of the eastern Asiatic *Hordeum roshevitzii* and the South
18 American *Hordeum cordobense* (Triticeae: Poaceae). *Canadian Journal of Botany* 80:752–762.

19 Baum BR, Bailey LG, Belyayev A, Raskina O, Nevo E. 2004. The utility of the nontranscribed spacer of
20 5S rDNA units grouped into unit classes assigned to haplomes - a test on cultivated wheat and
21 wheat progenitors. *Genome* 47:590–599.

22 Baum BR, Edwards T, Johnson DA. 2013. What does the 5S rRNA multigene family tell us about the
23 origin of the annual Triticeae (Poaceae)? *Genome* 56:245–266.

24 Baum BR, Johnson DA. 1994. The molecular diversity of the 5S rRNA gene in barley (*Hordeum vulgare*).
25 *Genome* 37:992–998.

26 Baum BR, Johnson DA. 1998. The 5S rRNA gene in sea barley (*Hordeum marinum* Hudson sensu lato):
27 sequence variation among repeat units and relationship to the X haplome in barley (*Hordeum*).
28 *Genome* 41:652–661.

29 Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data.
30 *Bioinformatics* 30:2114–2120.

31 Bourque G, Burns KH, Gehring M, Gorbunova V, Seluanov A, Hammell M, Imbeault M, Izsvák Z, Levin
32 HL, Macfarlan TS, et al. 2018. Ten things you should know about transposable elements.
33 *Genome Biol* 19:199.

34 Brown DD, Wensink PC, Jordan E. 1972. A comparison of the ribosomal DNA's of *Xenopus laevis* and
35 *Xenopus mulleri*: the evolution of tandem genes. *J Mol Biol* 63:57–73.

36 Christenhusz MJM, Byng JW. 2016. The number of known plants species in the world and its annual
37 increase. *Phytotaxa* 261:201.

38 Cohen S, Agmon N, Sobol O, Segal D. 2010. Extrachromosomal circles of satellite repeats and 5S
39 ribosomal DNA in human cells. *Mobile DNA* 1:11.

1 Cosby RL, Chang N-C, Feschotte C. 2019. Host–transposon interactions: conflict, cooperation, and
2 cooption. *Genes Dev.* 33:1098–1116.

3 Cullings K w. 1992. Design and testing of a plant-specific PCR primer for ecological and evolutionary
4 studies. *Mol Ecol* 1:233–240.

5 Devos KM, Brown JKM, Bennetzen JL. 2002. Genome size reduction through illegitimate recombination
6 counteracts genome expansion in *Arabidopsis*. *Genome Res* 12:1075–1079.

7 Dewannieux M, Dupressoir A, Harper F, Pierron G, Heidmann T. 2004. Identification of autonomous
8 IAP LTR retrotransposons mobile in mammalian cells. *Nat Genet* 36:534–539.

9 Dohm JC, Minoche AE, Holtgräwe D, Capella-Gutiérrez S, Zakrzewski F, Tafer H, Rupp O, Sørensen TR,
10 Stracke R, Reinhardt R, et al. 2014. The genome of the recently domesticated crop plant sugar
11 beet (*Beta vulgaris*). *Nature* 505:546–549.

12 Doyle JJ, Doyle JL eds. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue.
13 *Phytochemical Bulletin*:11–15.

14 Drost H-G, Sanchez DH. 2019. Becoming a selfish clan: Recombination associated to reverse-
15 transcription in LTR retrotransposons. *Genome Biol Evol* 11:3382–3392.

16 Drouin G, de Sá MM. 1995. The concerted evolution of 5S ribosomal genes linked to the repeat units
17 of other multigene families. *Mol Biol Evol* 12:481–493.

18 Du J, Tian Z, Hans CS, Laten HM, Cannon SB, Jackson SA, Shoemaker RC, Ma J. 2010. Evolutionary
19 conservation, diversity and specificity of LTR-retrotransposons in flowering plants: insights
20 from genome-wide analysis and multi-specific comparison. *Plant J* 63:584–598.

21 Eaves LA, Gardner AJ, Fry RC. 2020. Chapter 2 - Tools for the assessment of epigenetic regulation. In:
22 Fry RC, editor. *Environmental Epigenetics in Toxicology and Public Health*. Vol. 22.
23 *Translational Epigenetics*. Academic Press. p. 33–64. Available from:
24 <https://www.sciencedirect.com/science/article/pii/B9780128199688000020>

25 Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput.
26 *Nucleic Acids Res* 32:1792–1797.

27 Eickbush TH, Jamburuthugoda VK. 2008. The diversity of retrotransposons and the properties of their
28 reverse transcriptases. *Virus Res* 134:221–234.

29 El Baidouri M, Panaud O. 2013. Comparative genomic paleontology across plant kingdom reveals the
30 dynamics of TE-driven genome evolution. *Genome Biol Evol* 5:954–965.

31 Elliott TA, Heitkam T, Hubley R, Quesneville H, Suh A, Wheeler TJ, The TE Hub Consortium. 2021. TE
32 Hub: A community-oriented space for sharing and connecting tools, data, resources, and
33 methods for transposable element annotation. *Mobile DNA* 12:16.

34 Ellis TH, Lee D, Thomas CM, Simpson PR, Cleary WG, Newman MA, Burcham KW. 1988. 5S rRNA genes
35 in *Pisum*: sequence, long range and chromosomal organization. *Mol Gen Genet* 214:333–342.

36 Elrouby N, Bureau TE. 2010. Bs1, a new chimeric gene formed by retrotransposon-mediated exon
37 shuffling in maize. *Plant Physiol* 153:1413–1424.

1 Fan W, Wang S, Wang H, Wang A, Jiang F, Liu H, Zhao H, Xu D, Zhang Y. 2022. The genomes of chicory,
2 endive, great burdock and yacon provide insights into Asteraceae palaeo-polyploidization
3 history and plant inulin production. *Mol Ecol Resour* 22:3124–3140.

4 Fulnecek J, Matyásek R, Kovářík A. 2002. Distribution of 5-methylcytosine residues in 5S rRNA genes in
5 *Arabidopsis thaliana* and *Secale cereale*. *Mol Genet Genomics* 268:510–517.

6 Gao D, Li Y, Kim KD, Abernathy B, Jackson SA. 2016. Landscape and evolutionary dynamics of terminal
7 repeat retrotransposons in miniature in plant genomes. *Genome Biol* 17:7.

8 Garcia S, Crhák Khaitová L, Kovařík A. 2012. Expression of 5 S rRNA genes linked to 35 S rDNA in plants,
9 their epigenetic modification and regulatory element divergence. *BMC Plant Biol* 12:95.

10 Garcia S, Kovařík A. 2013. Dancing together and separate again: gymnosperms exhibit frequent
11 changes of fundamental 5S and 35S rRNA gene (rDNA) organisation. *Heredity* 111:23–33.

12 Garcia S, Lim KY, Chester M, Garnatje T, Pellicer J, Vallès J, Leitch AR, Kovařík A. 2009. Linkage of 35S
13 and 5S rRNA genes in *Artemisia* (family Asteraceae): first evidence from angiosperms.
14 *Chromosoma* 118:85–97.

15 Garcia S, Panero JL, Siroky J, Kovářík A. 2010. Repeated reunions and splits feature the highly dynamic
16 evolution of 5S and 35S ribosomal RNA genes (rDNA) in the Asteraceae family. *BMC Plant
17 Biology*:18.

18 Goldsborough PB, Ellis TH, Lomonossoff GP. 1982. Sequence variation and methylation of the flax 5S
19 RNA genes. *Nucleic Acids Res* 10:4501–4514.

20 He Z, Feng X, Chen Q, Li L, Li S, Han K, Guo Z, Wang J, Liu M, Shi C, et al. 2022. Evolution of coastal
21 forests based on a full set of mangrove genomes. *Nat Ecol Evol* 6:738–749.

22 Heitkam T, Holtgräwe D, Dohm JC, Minoche AE, Himmelbauer H, Weisshaar B, Schmidt T. 2014.
23 Profiling of extensively diversified plant LINEs reveals distinct plant-specific subclades. *Plant J*
24 79:385–397.

25 Hemleben V, Grierson D, Borisjuk N, Volkov RA, Kovářík A. 2021. Personal perspectives on plant
26 ribosomal RNA genes research: From precursor-rRNA to molecular evolution. *Front Plant Sci*
27 12.

28 Hisano H, Tsujimura M, Yoshida H, Terachi T, Sato K. 2016. Mitochondrial genome sequences from wild
29 and cultivated barley (*Hordeum vulgare*). *BMC Genomics* 17:824.

30 Isobe SN, Shirasawa K, Nagano S, Hirakawa H. 2018. Current status of octoploid strawberry
31 (*Fragaria × ananassa*) genome study. In: Hytönen T, Graham J, Harrison R, editors. *The Genomes of Rosaceous Berries and Their Wild Relatives. Compendium of Plant Genomes*.
32 Cham: Springer International Publishing. p. 129–137. Available from:
33 https://doi.org/10.1007/978-3-319-76020-9_10

35 Jiang S-Y, Ramachandran S. 2013. Genome-wide survey and comparative analysis of LTR
36 retrotransposons and their captured genes in rice and sorghum. *PLoS One* 8:e71118.

37 Kalendar R, Raskina O, Belyayev A, Schulman AH. 2020. Long tandem arrays of Cassandra
38 retroelements and their role in genome dynamics in plants. *IJMS* 21:2931.

1 Kalendar R, Schulman AH. 2006. IRAP and REMAP for retrotransposon-based genotyping and
2 fingerprinting. *Nat Protoc* 1:2478–2484.

3 Kalendar R, Tanskanen J, Chang W, Antonius K, Sela H, Peleg O, Schulman AH. 2008. Cassandra
4 retrotransposons carry independently transcribed 5S RNA. *PNAS* 105:5833–5838.

5 Li D, Luo R, Liu C-M, Leung C-M, Ting H-F, Sadakane K, Yamashita H, Lam T-W. 2016. MEGAHIT v1.0: A
6 fast and scalable metagenome assembler driven by advanced methodologies and community
7 practices. *Methods* 102:3–11.

8 Li F, Wang W, Zhao N, Xiao B, Cao P, Wu X, Ye C, Shen E, Qiu J, Zhu Q-H, et al. 2015. Regulation of
9 Nicotine biosynthesis by an endogenous target mimicry of microRNA in tobacco. *Plant Physiol*
10 169:1062–1071.

11 Li H, Jain C, Bufallo V, Murray K, Langhorst B, Klötzl F. 2013. Seqtk: a fast and lightweight tool for
12 processing FASTA or FASTQ sequences. <https://github.com/lh3/seqtk> [Internet]. Available
13 from: <https://github.com/lh3/seqtk>

14 Li J, Wan Q, Abbott RJ, Rao G-Y. 2013. Geographical distribution of cytotypes in the *Chrysanthemum*
15 *indicum* complex as evidenced by ploidy level and genome-size variation. *J Syst Evol* 51:196–
16 204.

17 Lin T, Xu X, Du H, Fan X, Chen Q, Hai C, Zhou Z, Su X, Kou L, Gao Q, et al. 2022. Extensive sequence
18 divergence between the reference genomes of *Taraxacum kok-saghyz* and *Taraxacum*
19 *mongolicum*. *Sci China Life Sci* 65:515–528.

20 Liu B, Yan J, Li W, Yin L, Li P, Yu H, Xing L, Cai M, Wang Hengchao, Zhao M, et al. 2020. *Mikania micrantha*
21 genome provides insights into the molecular mechanism of rapid growth. *Nat Commun* 11:340.

22 Llorens C, Muñoz-Pomer A, Bernad L, Botella H, Moya A. 2009. Network dynamics of eukaryotic LTR
23 retroelements beyond phylogenetic trees. *Biol Direct* 4:41.

24 Lynch VJ, Nnamani MC, Kapusta A, Brayer K, Plaza SL, Mazur EC, Emera D, Sheikh SZ, Grützner F,
25 Bauersachs S, et al. 2015. Ancient transposable elements transformed the uterine regulatory
26 landscape and transcriptome during the evolution of mammalian pregnancy. *Cell Rep* 10:551–
27 561.

28 Maiwald S, Weber B, Seibt KM, Schmidt T, Heitkam T. 2021. The Cassandra retrotransposon landscape
29 in sugar beet (*Beta vulgaris*) and related Amaranthaceae: recombination and re-shuffling lead
30 to a high structural variability. *Ann Bot* 127:91–109.

31 Malik HS. 2005. Ribonuclease H evolution in retrotransposable elements. *Cytogenet Genome Res*
32 110:392–401.

33 Malik HS, Eickbush TH. 1999. Modular evolution of the integrase domain in the Ty3/Gypsy class of LTR
34 retrotransposons. *J Virol* 73:5186–5190.

35 Malik HS, Eickbush TH. 2001. Phylogenetic analysis of ribonuclease H domains suggests a late, chimeric
36 origin of LTR retrotransposable elements and retroviruses. *Genome Res* 11:1187–1197.

37 Mandel JR, Dikow RB, Siniscalchi CM, Thapa R, Watson LE, Funk VA. 2019. A fully resolved backbone
38 phylogeny reveals numerous dispersals and explosive diversifications throughout the history
39 of Asteraceae. *PNAS* 116:14083–14088.

1 Mun T, Bachmann A, Gupta V, Stougaard J, Andersen SU. 2016. Lotus Base: An integrated information
2 portal for the model legume *Lotus japonicus*. *Sci Rep* 6:39447.

3 Nei M, Rooney AP. 2005. Concerted and birth-and-death evolution of multigene families. *Annu. Rev.*
4 *Genet.* 39:121–152.

5 Neumann P, Navrátilová A, Kobližková A, Kejnovský E, Hřibová E, Hobza R, Widmer A, Doležel J, Macas
6 J. 2011. Plant centromeric retrotransposons: a structural and cytogenetic perspective. *Mobile*
7 *DNA* 2:4.

8 Neumann P, Novák P, Hoštáková N, Macas J. 2019. Systematic survey of plant LTR-retrotransposons
9 elucidates phylogenetic relationships of their polyprotein domains and provides a reference
10 for element classification. *Mobile DNA* 10:1.

11 Novák P, Neumann P, Macas J. 2020. Global analysis of repetitive DNA from unassembled sequence
12 reads using RepeatExplorer2. *Nat Protoc* 15:3745–3776.

13 Novák P, Neumann P, Pech J, Steinhaisl J, Macas J. 2013. RepeatExplorer: a Galaxy-based web server
14 for genome-wide characterization of eukaryotic repetitive elements from next-generation
15 sequence reads. *Bioinformatics* 29:792–793.

16 O'Connor CM, Adams JU. 2010. Essentials of Cell Biology. Cambridge: NPG Education Available from:
17 <https://www.nature.com/scitable/ebooks/essentials-of-cell-biology-14749010/>

18 O'Neill K, Pirro S. 2020. The complete genome sequence of *Stevia rebaudiana*, the Sweetleaf. Available
19 from: <https://f1000research.com/articles/9-751>

20 Pedrosa A, Sandal N, Stougaard J, Schweizer D, Bachmair A. 2002. Chromosomal map of the model
21 legume *Lotus japonicus*. *Genetics* 161:1661–1672.

22 Peng Y, Lai Z, Lane T, Nageswara-Rao M, Okada M, Jasieniuk M, O'Geen H, Kim RW, Sammons RD,
23 Rieseberg LH, et al. 2014. De novo genome assembly of the economically important weed
24 Horseweed using integrated data from multiple sequencing platforms. *Plant Physiol* 166:1241–
25 1254.

26 Perina A, Seoane D, González-Tizón AM, Rodríguez-Fariña F, Martínez-Lage A. 2011. Molecular
27 organization and phylogenetic analysis of 5S rDNA in crustaceans of the genus *Pollicipes* reveal
28 birth-and-death evolution and strong purifying selection. *BMC Evol Biol* 11:304.

29 Rebordinos L, Cross I, Merlo A. 2013. High evolutionary dynamism in 5S rDNA of fish: state of the art.
30 *Cytogenet Genome Res* 141:103–113.

31 Rey-Baños R, Sáenz de Miera LE, García P, Pérez de la Vega M. 2017. Obtaining retrotransposon
32 sequences, analysis of their genomic distribution and use of retrotransposon-derived genetic
33 markers in lentil (*Lens culinaris* Medik.). Kalendar R, editor. *PLoS ONE* 12:e0176728.

34 Reyes-Chin-Wo S, Wang Z, Yang X, Kozik A, Arikit S, Song C, Xia L, Froenicke L, Lavelle DO, Truco M-J,
35 et al. 2017. Genome assembly with in vitro proximity ligation data and whole-genome
36 triplication in lettuce. *Nat Commun* 8:14953.

37 Robicheau BM, Susko E, Harrigan AM, Snyder M. 2017. Ribosomal RNA genes contribute to the
38 formation of pseudogenes and junk DNA in the human genome. *Genome Biol Evol* 9:380–397.

1 Sanchez DH, Gaubert H, Drost H-G, Zabet NR, Paszkowski J. 2017. High-frequency recombination
2 between members of an LTR retrotransposon family during transposition bursts. *Nat Commun*
3 8:1283.

4 Sardouei-Nasab S, Nemati Z, Mohammadi-Nejad G, Haghi R, Blattner FR. 2023. Phylogenomic
5 investigation of safflower (*Carthamus tinctorius*) and related species using genotyping-by-
6 sequencing (GBS). *Sci Rep* 13:6212.

7 Scaglione D, Reyes-Chin-Wo S, Acquadro A, Froenicke L, Portis E, Beitel C, Tirone M, Mauro R, Lo
8 Monaco A, Mauromicale G, et al. 2016. The genome sequence of the outbreeding globe
9 artichoke constructed de novo incorporating a phase-aware low-pass sequencing strategy of
10 F1 progeny. *Sci Rep* 6:19427.

11 Schmidt T, Schwarzacher T, Heslop-Harrison JS. 1994. Physical mapping of rRNA genes by fluorescent
12 in-situ hybridization and structural analysis of 5S rRNA genes and intergenic spacer sequences
13 in sugar beet (*Beta vulgaris*). *Theoret. Appl. Genetics* 88:629–636.

14 Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, et
15 al. 2009. The B73 maize genome: Complexity, diversity, and dynamics. *Science* 326:1112–1115.

16 Seibt KM, Schmidt T, Heitkam T. 2020. The conserved 3' Angio-domain defines a superfamily of short
17 interspersed nuclear elements (SINEs) in higher plants. *Plant J* 101:681–699.

18 Semple J, Watanabe K. 2023. An overview to the index to chromosome numbers in Asteraceae
19 database: Revisiting base chromosome numbers, polyploidy, descending dysploidy, and
20 hybridization. In: Garcia S, Nualart Deuxeus N, editors. *Plant Genomics and Cytogenetic
21 Databases*. Vol. 2073. *Methods in Molecular Biology*.

22 Shen Q, Zhang L, Liao Z, Wang S, Yan T, Shi P, Liu M, Fu X, Pan Q, Wang Y, et al. 2018. The genome of
23 *Artemisia annua* provides insight into the evolution of Asteraceae family and Artemisinin
24 biosynthesis. *Mol Plant* 11:776–788.

25 Simon DM, Zimmerly S. 2008. A diversity of uncharacterized reverse transcriptases in bacteria. *Nucleic
26 Acids Res* 36:7219–7229.

27 Smyshlyaev G, Voigt F, Blinov A, Barabas O, Novikova O. 2013. Acquisition of an Archaea-like
28 ribonuclease H domain by plant L1 retrotransposons supports modular evolution. *PNAS*
29 110:20140–20145.

30 Song Y, Yang Y, Xu L, Bian C, Xing Y, Xue H, Hou W, Men W, Dou D, Kang T. 2023. The burdock database:
31 a multi-omic database for *Arctium lappa*, a food and medicinal plant. *BMC Plant Biology* 23:86.

32 Staton SE, Bakken BH, Blackman BK, Chapman MA, Kane NC, Tang S, Ungerer MC, Knapp SJ, Rieseberg
33 LH, Burke JM. 2012. The sunflower (*Helianthus annuus* L.) genome reflects a recent history of
34 biased accumulation of transposable elements. *Plant J* 72:142–153.

35 Szymanski M, Zielezinski A, Barciszewski J, Erdmann VA, Karlowski WM. 2016. 5SRNAdb: an
36 information resource for 5S ribosomal RNAs. *Nucleic Acids Res* 44:D180–D183.

37 The Angiosperm Phylogeny Group. 2017. APG IV: Angiosperm Phylogeny Group classification for the
38 orders and families of flowering plants. *Bot J Linn Soc* 161:105–121.

39 Thibaud-Nissen F, DiCuccio M, Hlavina W, Kimchi A, Kitts PA, Murphy TD, Pruitt KD, Souvorov A. 2016.
40 P8008 The NCBI eukaryotic genome annotation pipeline. *Journal of Animal Science* 94:184.

1 Vassetzky NS, Kramerov DA. 2013. SINEBase: a database and tool for SINE analysis. *Nucleic Acids Res*
2 41:D83–D89.

3 Vicient CM, Kalendar R, Schulman AH. 2005. Variability, recombination, and mosaic evolution of the
4 barley BARE-1 retrotransposon. *J Mol Evol* 61:275–291.

5 Vierna J, Wehner S, Höner zu Siederdissen C, Martínez-Lage A, Marz M. 2013. Systematic analysis and
6 evolution of 5S ribosomal DNA in metazoans. *Heredity* 111:410–421.

7 Waminal N, Ryu K, Park B, Kim H. 2014. Phylogeny of Cucurbitaceae species in Korea based on 5S rDNA
8 non-transcribed spacer. *Genes Genomics* 36.

9 Wang J, Han G-Z. 2021. Unearthing LTR retrotransposon *gag* genes co-opted in the deep evolution of
10 eukaryotes. *Mol Biol Evol* 38:3267–3278.

11 Wang S, Wang A, Wang H, Jiang F, Xu D, Fan W. 2022. Chromosome-level genome of a leaf vegetable
12 *Glebionis coronaria* provides insights into the biosynthesis of monoterpenoids contributing to
13 its special aroma. *DNA Res* 29:dsac036.

14 Weber B, Heitkam T, Holtgräwe D, Weisshaar B, Minoche AE, Dohm JC, Himmelbauer H, Schmidt T.
15 2013. Highly diverse chromoviruses of *Beta vulgaris* are classified by chromodomains and
16 chromosomal integration. *Mobile DNA* 4:8.

17 Wick RR, Schultz MB, Zobel J, Holt KE. 2015. Bandage: interactive visualization of de novo genome
18 assemblies. *Bioinformatics* 31:3350–3352.

19 Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M,
20 Panaud O, et al. 2007. A unified classification system for eukaryotic transposable elements.
21 *Nat Rev Genet* 8:973–982.

22 Witte C-P, Le QH, Bureau T, Kumar A. 2001. Terminal-repeat retrotransposons in miniature (TRIM) are
23 involved in restructuring plant genomes. *PNAS* 98:13778–13783.

24 Wollrab C, Heitkam T, Holtgräwe D, Weisshaar B, Minoche AE, Dohm JC, Himmelbauer H, Schmidt T.
25 2012. Evolutionary reshuffling in the Errantivirus lineage Elbe within the *Beta vulgaris* genome.
26 *Plant J* 72:636–651.

27 Wu H-J, Wang Z-M, Wang M, Wang X-J. 2013. Widespread long noncoding RNAs as endogenous target
28 mimics for microRNAs in plants. *Plant Physiol* 161:1875–1884.

29 Wu Z, Liu H, Zhan W, Yu Z, Qin E, Liu S, Yang T, Xiang N, Kudrna D, Chen Y, et al. 2021. The chromosome-
30 scale reference genome of safflower (*Carthamus tinctorius*) provides insights into linoleic acid
31 and flavonoid biosynthesis. *Plant Biotechnol J* 19:1725–1742.

32 Xiao H, Jiang N, Schaffner E, Stockinger EJ, Van Der Knaap E. 2008. A retrotransposon-mediated gene
33 duplication underlies morphological variation of Tomato fruit. *Science* 319:1527–1530.

34 Xu X, Yuan H, Yu X, Huang S, Sun Y, Zhang T, Liu Q, Tong H, Zhang Y, Wang Y, et al. 2021. The
35 chromosome-level Stevia genome provides insights into steviol glycoside biosynthesis. *Hortic
36 Res* 8:129.

37 Yamashiro T, Shiraishi A, Satake H, Nakayama K. 2019. Draft genome of *Tanacetum cinerariifolium*, the
38 natural source of mosquito coil. *Sci Rep* 9:18249.

1 Ye C-Y, Xu H, Shen E, Liu Y, Wang Y, Shen Y, Qiu J, Zhu Q-H, Fan L. 2014. Genome-wide identification of
2 non-coding RNAs interacted with microRNAs in soybean. *Front Plant Sci* 5.

3 Yin H, Du J, Li L, Jin C, Fan L, Li M, Wu J, Zhang S. 2014. Comparative genomic analysis reveals multiple
4 long terminal repeats, lineage-specific amplification, and frequent interelement
5 recombination for Cassandra retrotransposon in Pear (*Pyrus bretschneideri* Rehd.). *Genome*
6 *Biol Evol* 6:1423–1436.

7 Yin H, Du J, Wu Jun, Wei S, Xu Y, Tao S, Wu Juyou, Zhang S. 2015. Genome-wide annotation and
8 comparative analysis of long terminal repeat retrotransposons between Pear species of *P.*
9 *bretschneideri* and *P. communis*. *Sci Rep* 5:17644.

10 Zhang Y, Mager DL. 2012. Gene properties and chromatin state influence the accumulation of
11 transposable elements in genes. *PLoS ONE* 7:e30158.

12 Zhao M, Zhi H, Doust AN, Li W, Wang Yongfang, Li H, Jia G, Wang Yongqiang, Zhang N, Diao X. 2013.
13 Novel genomes and genome constitutions identified by GISH and 5S rDNA and knotted1
14 genomic sequences in the genus *Setaria*. *BMC Genomics* 14:244.

15