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Abstract— Nucleotide diversity at a site is influenced by the
relative strengths of neutral and selective population genetic
processes. Therefore, attempts to identify sites under positive
selection require an understanding of the expected diversity in
its absence. The nucleotide diversity of a gene was previously
found to correlate with its length. In this work, I measure
nucleotide diversity at synonymous sites and uncover a pattern
of low diversity towards the translation initiation site (TIS)
of a gene. The degree of reduction in diversity at the TIS
and the length of this region of reduced diversity can be
quantified as ”Effect Size” and ”Effect Length” respectively,
using parameters of an asymptotic regression model. Estimates
of Effect Length across bacteria covaried with recombination
rates as well as with a multitude of fast-growth adaptations such
as the avoidance of mRNA secondary structure around TIS, the
number of rRNAs, and relative codon usage of ribosomal genes.
Thus, the dependence of nucleotide diversity on gene length
is governed by a combination of selective and non-selective
processes. These results have implications for the estimation of
effective population size and relative mutation rates based on
”silent-site” diversity, and for pN/pS-based prediction of genes
under selection.

I. INTRODUCTION

Populations in nature are known to be genetically
polymorphic. The extent of this within-species
polymorphism varies dramatically among loci across a
genome [1]–[5]. As a result, there is considerable interest
in identifying targets of positive natural selection based
on their diversity relative to a set of known or assumed
neutral loci [6]–[9]. Naturally, this endeavor would benefit
from a better understanding of the processes that govern
background genetic variation.

In our study on the variability of transcription factors and
their target genes in E. coli, we found nucleotide diversity
of genes to be positively correlated to their length and this
effect was stronger for synonymous sites in comparison to
non-synonymous sites [10]. Nucleotide diversity at a locus
is calculated as the average pairwise difference per site
among sequences in a population and so, is not expected
to show any correlation with gene length. Since nucleotide
diversity is now the fundamental measure of variation
in population genetics [11, 12], and provides a basis for
common tests of neutral evolution [13, 14], any factor that
shapes its distribution within or across species must be
clearly understood.

Variation in synonymous diversity across genes could be
a reflection of varying degrees of selection on synonymous
codons. Selection on codon usage has been observed to
be correlated to gene length in Escherichia coli [15] and
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Drosophila [16]. Independently, a pattern of low synonymous
substitution rates at both ends of a gene has been observed in
many organisms [17]–[20], which is likely due to selection
against mRNA secondary structure around ribosome-binding
sites and initiation codons for efficient translation initiation
[21]. Consequently, this is believed to operate within the
first 50 bases of the translation initiation site (TIS) [18],
and thus, would seem unlikely to be an explanation for
the observed correlation of synonymous diversity with gene
length. However, it could be that the region over which
this selection operates extends beyond the first 50 sites and
varies in length across species. We can resolve this issue by
quantifying these patterns of synonymous polymorphism in
a more systematic manner than attempted previously. More
generally, the selection acting on translational efficiency in
a bacterial species is expected to improve its growth rate.
If this selection is indeed the primary force that drives the
correlation between synonymous diversity and gene length,
then we can expect these patterns to be more evident in
species with higher growth rates, irrespective of the exact
mechanisms.

In this paper, I first develop a method to quantify
the average pattern of synonymous diversity over the
length of E. coli genes. Then, I apply this method to
multiple bacterial species in order to study how the
strength of diversity-length correlation varies across species.
After controlling for statistical correlates, I test the effect
of recombination rates and several metrics of improved
translation on the distribution of observed patterns of
synonymous polymorphism across species.

II. METHODS

Selection of strains: Genome assemblies were acquired from
NCBI RefSeq, last accessed on Sep. 14, 2020. From the
list of bacterial assemblies present on NCBI, the following
were excluded: those missing from RefSeq, those that are
miss-classified or uncultured, those without species name,
or with the term ”Candidatus” in place of a genus name, or
”bacterium” in place of a species name. Out of the remaining
species in the list, the ones with at least 30 chromosomal
or higher level assemblies were selected, giving 75 species
with a total of 9230 assemblies. For 24 species with more
than 100 assemblies, 100 were randomly selected to reduce
the overall computational burden, leaving a final set of 5272
genomes spread across 75 bacterial species.
For each species, genomes were further filtered to exclude
highly similar ones. This was done based on the degree of
overlap in their sets of chromosomal non-redundant protein
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ids. There are two sources of variation among these sets,
viz., a) changes in the amino acid sequence of homologous
proteins, and b) changes in the accessory genome. The
pairwise dissimilarity between sets was measured with
Jaccard distance, i.e., dj = 1 − A∩B

A∪B for protein sets
corresponding to genomes A & B. Finally, a set of strains
were selected for each species given a pairwise distance
matrix such that they differed by at least 1 % in their set
of protein ids i.e., dj ≥ 0.01. This step brought down the
total number of assemblies to 4939.
Computing nucleotide diversity: Ortholog groups across
selected strains of a species were identified using
SonicParanoid (v1.3.8) in its fast mode with default
parameters [22]. Single-copy orthologs, present in at least
75 % of the analyzed genomes, were selected for further
analysis. Amino-acid sequences of orthologs were aligned
using Clustal Omega (v1.2.4) [23] and converted to codon
alignments using PAL2NAL (v14) [24]. Sites with over 70
% gaps were excluded. N-fold degeneracy of each site was
determined using a consensus sequence derived from the
alignment with a minimum consensus character threshold of
60 %. For each site, nucleotide diversity (π) was calculated
as follows: π = 2

∑
ij fifj

N(N−1) , where the summation is over all
possible pairs of 4 bases and fi signifies their counts among
N sequences.
Effect length estimation: Diversity profiles over sites were
quantified with respect to their effect size and length i.e.,
the magnitude and extent of the reduction in mean diversity
observed near the start of a gene. Effect size is defined as the
log-2 fold decrease in mean diversity at the start compared to
the maximum mean diversity over the first 500 sites. Effect
length is defined as the site at which the mean diversity
attains the midpoint of its range. An asymptotic regression
model (negative exponential) of the following form was used
to fit observed mean diversities over 4-fold degenerate sites.

π̄(l) = dmax + (dmin − dmax)e
−cl + ε

where π̄(l) is the observed mean diversity at a site l bases
downstream of the translation start site (index 0). dmax is
the maximum mean diversity attainable as l goes to +∞,
dmin is the minimum estimated mean diversity at l = 0,
and c governs the relative rate of increase in diversity with
distance from gene start. The error (ε) in estimating the
site-specific mean is assumed to be additive, and independent
with variance σ2/w [25]. Weights (w) are set to the number
of genes for each site to take into account fluctuations
in the mean due to varying sample sizes. Regression was
performed using R’s nonlinear least squares function nls
with its Gauss-Newton algorithm. Initial estimates of model
parameters were obtained using R’s SSasymp. Effect size
Se and length Le were calculated using estimates of c, dmin

and dmax, as follows:

Se = log2(
dmax

dmin
);Le =

ln 2

c

The standard errors of these estimates can be derived from
the standard errors of model parameters using the Delta

method as follows:

σ(Le) = ln 2σKe−K

√
1−

σ2
K

4

σ(Se) =
1

ln 2

√
σ2
dmax

dmax
2 +

σ2
dmin

dmin
2 − 2σdmax,dmin

dmaxdmin

where σ stands for standard error and K = ln c is used since
SSasymp fits the above model using ln c.

Positional probabilities for RNA-secondary structure:
Vienna RNA package (v2.4.16) was used to predict RNA
secondary structures [26]. The probability of each site
remaining unpaired (open) in an RNA secondary structure
was computed for every gene in a genome over a
region from 100 bp upstream to 200 bp downstream
(-100:+200) of the translation start site. Partition functions
were used to get the base-pairing probabilities of each
site in a thermodynamic ensemble of secondary structures.
Probabilities were converted to z-scores following Molina’s
method [18], with the flanking regions marked as -90 to
-51 and +151 to +190. A z-statistic profile was generated
for one reference genome from each species. Effect length
corresponding to selection on mRNA secondary structure Ls

was defined as the first site +5 onwards at which the z-score
drops to zero; effect size Ss was measured as the maximum
z-score over the same region.

Estimation of recombination rate: Recombination rate for
each species was estimated from codon alignments, using the
Mcorr program [27]. Alignments of individual genes were
first concatenated in a single alignment in XMFA format,
which was submitted as input to the program. Mcorr takes
a coalescent approach to estimate the mutational (θp =
2Neµ) and recombinational divergence (ϕp = 2Neγ) of a
bacterial population given a sample of genomes, by fitting
an analytical model to substitution correlation profile among
pairs of synonymous sites. The rate of recombination relative
to mutation rate (r/m) was estimated as ϕp/θp. Estimates
were log-transformed (Box-Cox’s λ = 0) for regression
analysis.

Estimation of codon-usage bias and minimum doubling
times: Codon-usage bias (CUB) was estimated using gRodon
package in R [28]. gRodon uses CUB of highly expressed
genes, and other associated variables, to predict minimum
doubling times based on a regression model trained on
growth rate data from Vieira-Silva & Rocha 2010, and Madin
et al 2020 [29, 30]. For each genome, its multi-FASTA file
of coding sequences was used as input to gRodon. First,
ribosomal genes were used as the set of highly expressed
genes to calculate CUB, which was then used to predict
minimum doubling times DTpred. Estimates of CUBHE and
DTpred were averaged over all genomes for each species.
A squared-root transformation was applied to CUBHE

(Box-Cox’s λ = 0.5) prior to regression analysis, and
DTpred was log-transformed (Box-Cox’s λ = −0.1).

Phylogenetic reconstruction: UBCG program was used
to reconstruct bacterial phylogeny based on concatenated
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amino acid alignments of 81 universal bacterial markers [31].
Only one reference genome assembly was used for each
bacterial species. In the absence of a reference assembly,
as defined in the NCBI RefSeq database, a representative
genome was used. For the two species (Planctomycetes and
Wolbachia) that lacked both a reference and a representative
genome, the genome with the number of genes closest
to the mean was selected. Contigs identified as plasmid
by the NCBI annotation pipeline were removed from
these reference sequences. Positions with more than 50
% gaps were removed from the alignment. A maximum
likelihood phylogeny was estimated using the RAxML
program (v8.2.12), with a Jones-Taylor-Thornton (JTT)
model of sequence evolution, along with CAT approximation
[32]. UBCG provides branch support in terms of a gene
support index (GSI), i.e., the number of gene trees supporting
a bipartition in the species tree. The default threshold of a
minimum of 95 % similarity was used to decide whether a
branch is supported by a gene tree. The tree was rooted in
between Terrabacteria and Gracilicutes, following a recently
published rooted phylogeny of all bacteria [33].

Phylogenetic comparative analysis: A phylogenetic
generalized least squares approach (phylo-GLS) was used
to test for relationships among variables across species while
accounting for their phylogenetic correlation. The strength of
the phylogenetic signal on the distribution of a genetic trait
or residuals of a regression model can be quantified using
Pagel’s λ [34]. Pagel’s λ is a multiplier of the off-diagonal
entries of the phylogenetic covariance matrix wherein a value
of 0 signifies independent evolution and a value of 1 signifies
the evolution in complete accordance with Brownian motion
over shared ancestry [35]. gls function from R package
”nlme” was used to perform generalized least squares, and
corPagel function from R package ”ape” was used to
calculate the required correlation structure based on Pagel’s
λ [36].

Statistical analysis: Variables were transformed, wherever
necessary, using Box-Cox transformation to reduce skewness
and approximate normality. Variance Inflation Factor (VIF)
was used to check and control for strong collinearity among
predictors. VIF for a variable is calculated as 1

1−R2 of a
linear regression in which it appears as a response variable
dependent on the rest of the predictors. Regression was
performed on scaled variables (using mean and standard
deviation) to make coefficients comparable. All statistical
analyses were performed using R (v4.1.2).

III. RESULTS

A. Diversity-length correlation reflects reduced
polymorphism toward gene starts

We have seen previously that nucleotide diversity is
positively correlated with gene length in Escherichia coli
[10]. The strength of this correlation was stronger for
synonymous sites, suggesting that the process driving this
length-dependence was directly acting on the nucleotide
sequence. In this study, I estimate diversity from 4-fold

Fig. 1: Correlation between nucleotide diversity and gene
length. Nucleotide diversity was estimated from silent sites (4-fold
degenerate) of 3547 genes present in at least 75 % of the 96 E.
coli genomes. X- and Y-axis are limited to their respective upper
95th percentile for visualization. The black line shows the LOESS
curve with a span of 0.75 and highlights the broad trend of change
in synonymous diversity with gene length.

degenerate sites to eliminate the effect of any selection
acting on amino-acid sequences. For a collection of 96 E.
coli genomes, selected as described in Methods, the positive
correlation between gene length and silent-site diversity
was evident, with a distinctly non-linear, saturating trend
Figure 1. This could result from an underlying pattern of
site-to-site variation in nucleotide diversity such that shorter
genes have a smaller proportion of high-diversity sites. Such
patterns of reduced variation near translation initiation sites
(TIS) have been observed previously [17]–[20]. The primary
question here is whether these patterns can explain the
observed diversity-length correlation. Since the patterns over
individual genes are highly variable [SI Figure 1], I instead
focus on the trend of average nucleotide diversity over
sites, quantify the magnitude and reach of this effect, and
compare patterns across species to understand the basis of
the observed correlation between gene length and nucleotide
diversity.

As an asymptotic trend in the nucleotide diversity of
a site averaged over genes is apparent from Figure 2A,
a natural choice of fit for diversity-site profiles would be
the asymptotic regression (ASR) model. Such a negative
exponential equation can be used to quantify the magnitude
and extent of this effect on diversity, which can be compared
across samples of strains or species. Here onward, “Effect
length Le” is defined as the number of silent sites from the
translation starts at which the estimated average diversity
is halfway to saturation, and “Effect size Se” is defined
as the log-2 fold difference between the maximum and
minimum estimated mean diversity. Effect length in E. coli
was estimated as equal to 76 [Figure 2A]. The point of
saturation can be conservatively approximated as 4Le = 304.
The estimated Effect Size of 2.2 captures the nearly 5-fold
decrease in diversity at the start site relative to its expected
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Fig. 2: Patterns of reduced diversity toward the start of bacterial genes. A) Asymptotic regression fit to mean nucleotide diversity
of 4-fold degenerate sites averaged over E. coli genes. Le and Se mark the estimates of Effect Length and Size respectively, quantifying
the magnitude and extent of the observed reduction respectively. B) Linear regression of the strength of correlation between gene length
and silent-site diversity on estimates of Le for 63 bacterial species with Se > 0 and ρ > 0.

value at saturation.

Using 75 species with at least 30 genomes, the ASR
model described above could be fit to the mean nucleotide
diversity profile of 69 species, 65 of which had a positive
Effect Size. Thus, over 85 % of the analyzed species showed
clear signs of reduced polymorphism towards the 5’-end
of genes. The estimates of Effect Length ranged from
11 in Streptococcus thermophilus to 88 in Acinetobacter
baumannii. The variability in Effect Length estimates across
species was greater than that of the Effect Size, both in
terms of their observed coefficients of variation, 0.39 v/s
0.32, and as the ratios of observed standard deviation to
the corresponding standard error in E. coli, 4.72 v/s 3.94.
Estimates of Le and Se across species were correlated to
each other (Spearman correlation, ρ = 0.46), as well as
to the strength of the correlation between gene length and
nucleotide diversity (ρLe

= 0.54, ρSe
= 0.45). Multiple

linear regression of this correlation coefficient (ρl) on Le and
Se found the effect of Le to be much stronger than that of Se

(PLe
= 0.0004, PSe

= 0.0462). A simple linear regression
with Le alone explained nearly one-third of the variation
in the degree of gene-length dependence of nucleotide
diversity [Figure 2B]. The rest of this study is focused on
understanding the factors that shape the distribution of Effect
Length across species.

Sss ln r/m
√
Nrrn

√
CUBHE

ln r/m 0.04√
Nrrn 0.25 -0.04√

CUBHE 0.38 -0.27 0.58
Le 0.26 -0.35 0.47 0.51

TABLE I: Spearman correlation among Effect Length and its
covariates.

B. Effect length is shaped by selection on mRNA secondary
structure and the rate of recombination

The observed distribution of Effect Lengths across species
could be biased by confounding variables. Before proceeding
with understanding the effect of biological factors, I tested
for the correlation of Effect Length with potential statistical
confounders, such as the number of strains, number of genes,
average gene length, mean nucleotide diversity, and GC
content [SI Text 1]. Only the number of strains had a
significant correlation with Effect Length and was controlled
for in further analyses [SI Table 1].

The most common explanation for reduced polymorphism
at 5’-ends of protein-coding genes seems to be the selection
to avoid mRNA secondary structure formation around TIS
[17, 18, 37]. However, this selection is believed to operate
within the first 50 bp of CDS, and consequently, attempts
to quantify the magnitude and extent of this effect have
focused only on this limited region. To test if the selection
of mRNA secondary structure can explain the variation
in Le across species, I used RNA secondary structure
prediction over a larger region i.e. 100 bases upstream to
200 bases downstream of TIS, and estimated the average
secondary-structure free length (Lss) for each species. More
specifically, I calculated the probability of each base being
unpaired across an ensemble of possible RNA secondary
structures over the specified region of every gene in a
genome. I converted raw probabilities to Z-scores following
Molina’s approach [18], such that the Z-score measures the
tendency of a base to be unpaired relative to the bases
at the ends of the segment. I defined Effect Length (Lss)
and Effect Size (Sss) in this context as the first site at
which Z-score drops to 0 and as the maximum Z-score
respectively. Lss for 75 species ranged from 23 to 114, with
limited dispersion, as indicated by its inter-quartile range
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Sss ln r/m
√
Nrrn

√
CUBHE Nstrain RMSE R2 MAE

1 - - + - - 16.44 0.31 13.26
2 - + + - - 16.12 0.32 12.90
3 - + + - + 15.88 0.33 12.71
4 - + + + + 14.50 0.43 11.56
5 + + + + + 14.38 0.43 11.37

TABLE II: Regression models of Effect Length on different subsets of predictors. The models with minimum test Root Mean Squared
Error (RMSE) in each category of the number of predictors have been listed. Plus(+) signs mark the variables corresponding to each
model. The last column lists the Mean Absolute Error of each model (MAE).

(IQR = Q3 − Q1) of 9, relative to that of Le with IQR
= 24 [Figure 3B]. Le has a negligible correlation with Lss

(ρ = −0.08, P = 0.51, N = 64, Spearman correlation) but
a significant correlation with Sss (ρ = 0.27, P = 0.03).
Even when accounting for the number of strains in a multiple
regression model, the effect of Sss on Le remains significant
(P (Sss) = 0.0187, P (Nstrains) = 0.0048). Hence, while the
length over which the selection to avoid mRNA secondary
structure operates is relatively more uniform, patterns of low
diversity near TIS do exhibit a weak dependence on the
strength of this effect across species.

Even if the strength of selection was uniform, Effect
Length could still differ among species due to the
varying extent of linkage disequilibrium. If recombination
is infrequent, then even the neutral sites linked to loci
under purifying selection will have reduced polymorphism
[38]. I tested this idea by estimating the ratios of
recombination-to-mutation rate per nucleotide site using
Mcorr [Methods] [27]. Mcorr uses a coalescent-based
approach to estimate the recombinational and mutational
divergence of a bacterial population given a sample. Out
of 64 species with Effect length, r/m of 2 species had
extreme values viz., Bordetella parapertussis (< 10−3) and
Wolbachia (> 103), leaving 62 species. Linear regression
along with the number of strains identified a significantly
negative effect of r/m on Le (P = 0.0097) [Figure 3C].
The model had a strong phylogenetic signal (Pagel’s λ =
0.7), even accounting for which didn’t eliminate the effect
of recombination rate on Le (P = 0.0152). Therefore,
low levels of recombination extend the regions of reduced
diversity around TlSS beyond the short length over which
the selection to avoid mRNA secondary structure operates.

C. Effect length reflects growth phenotype of a species

The avoidance of the mRNA secondary structure around
the translation start site, as discussed above, is a mechanism
to improve translation initiation rates through greater
accessibility of ribosomes to their binding sites [39]. All
else being equal, a more efficient translation should lead to
faster growth of the species. Since a greater magnitude of this
selection leads to a longer Effect Length, one might expect
Effect Length to correlate with improved growth phenotypes.
However, the growth characteristics of the majority of
bacteria are unknown as they remain unculturable, and even
for those that can be cultured, their growth potential might
not be realized in laboratory conditions. In the absence of
experimentally verified growth rates for many species, I used

genome-based predictions of minimum doubling times to test
this idea. More specifically, I used the gRodon program that
employs relative codon usage bias of highly expressed genes
(CUB-HE) and additional metrics to predict the minimum
doubling time for a given genome [28]. Additionally, I
used the average rRNA count (Nrrn)for each species as the
number of rRNAs is known to correlate with faster growth
[29]. All of the 4 variables viz., CUB-HE, Nrrn, Le, and
predicted minimum doubling times (DTpred) were correlated
to each other [Figure 3D-F, Table I]. Le was more strongly
correlated with CUB-HE and Nrrn than with DTpred itself.
Considering collinearity among CUB-HE, Nrrn and DTpred,
Variance Inflation Factor (VIF) of CUB-HE and DTpred was
comparable to each other and greater than that of Nrrn

[SI Table 2]. Since DTpred is additionally a composite
measure based on other genome characteristics, I chose to
include CUB-HE in the following regression analysis instead
of DTpred. Multiple linear regression of Le on Nrrn and
CUB-HE, along with Nstrains found all three predictors to
be relevant [SI Table 2]. The residuals of this model showed
a weak phylogenetic signal (Pagel’s λ = 0.1(−0.19, 0.4 :
95%CI)), even accounting for which didn’t change the
above results.

The application of genomic attributes to test for a
relationship between Effect Length and maximum growth
rate is not entirely satisfactory since it is possible that
the Effect Length is associated with other aspects of these
genomic traits that are unrelated to their effect on growth
rates. Any relationship between Effect Length and growth
rates would be far more convincing if corroborated with
experimental data. Minimum doubling times determined
through cell cultures are indeed available for at least
half of the species used in this study. However, one of
the main issues in using experimental growth rates is
the variation caused due to different laboratory growth
conditions, in particular, temperature. In the most recent
collection of experimental rates, a correction for differences
in temperature was applied by normalizing all growth rates
to 20◦C assuming Q10 = 2.5. Such normalized growth rates
were available for 31 of the species used in this study. For
another 4 species, growth rates were taken from a previous
collection [29] and normalized for temperature using the
same approach as above. Finally, with these experimentally
determined, minimum doubling times (h) of 35 species,
I tested for a relationship between Effect Length and
maximum growth rates. Effect Length was indeed correlated
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Fig. 3: Effect Length and its predictors across species. A) Distribution of Effect Length within and across species. Within-species
distribution is represented by a random sample, of the same size as the number of species, drawn from a Normal distribution with mean
and standard deviation equal to the estimate of Effect Length in E. coli and its standard error respectively. Across-species distribution
is more dispersed with its lower range of values well beyond the distribution of Effect Length in E. coli. B) Selection to avoid mRNA
secondary structure around TlSS. Z-score profiles for the probability of a base being unpaired in an mRNA secondary structure were drawn
for 75 species. Z-scores for different species show considerable variation in their maximum values but attain baseline within a narrow
range of positions. C) Variation in Effect Length can be partially explained by species-specific recombination rate. The recombination
rate was measured using Mcorr as a log-ratio of the rate of recombination to mutation D) & E). Effect Length was strongly correlated
with rRNA count and relative codon usage bias of highly expressed genes respectively. Both predictors were squared-root transformed
based on their Box-Cox λ. F) Effect Length is negatively correlated with predicted as well as experimentally observed minimum doubling
times. Doubling times are in hours. Natural logarithm of doubling times was taken for appropriate Box-Cox transformation. All mentioned
p-values are for simple linear regression of Effect Length on a given predictor.

with minimum doubling times (ρ = −0.5, P = 0.004,
Spearman correlation. R2 = 0.24), suggesting that Effect
Length might reflect the strength of selection on the growth
characteristics of an organism.

D. Fast growth adaptations coupled with recombination
rates shape the distribution of Effect Length across species

Having studied the association of individual factors with
Effect Length and found a set of key correlates, the
final step was to identify the most effective predictors
and their independent effects. Multiple linear regression
of Le on Sss, r/m,Nrrn, CUBHE and Nstrains using 62
species identified rRNA count and recombination rate as the
top two significant predictors followed by the number of
strains. I compared the full model against simpler models
using a backward elimination procedure with a 10-fold
cross-validation repeated 100 times. The full model turned
out to be the best model as judged by its minimum prediction
RMSE (RMSE = 14.38, R2 = 0.43), with rRNA count
and recombination rate as the two most effective predictors
[Table II].

The phylogenetic signal in this model was weak enough
to be ignored in favor of a simpler model (Pagel’s

λ = 0.1 (-0.31:0.52, 95% CI)). However, this lack of
phylogenetic signal is expected with a large number of
parameters and few observations, and thus cannot be
taken as evidence of phylogenetic independence of the
distribution of Effect Length as governed by the above
factors. To test for true independence, I split the dataset
by the two major phylogenetic groups i.e. Terrabacteria
(24) and Gracilicutes (38). Gram-positive and Gram-negative
bacteria belong to the groups Terrabacteria and Gracilicutes
respectively. The full models trained on one group and
tested on the other performed poorly (R2 ≊ 0.07),
which highlights the phylogenetic dependence of these
relationships. While these individual models are useful
for demonstrating the phylogenetic dependence of Effect
Length on its covariates, they lack the power to reveal
all relevant relationships in this limited dataset. In the
absence of extensive population genomic data presently,
all of the above predictors should be considered relevant
to the full distribution of Effect Length across species.
Therefore, a pronounced lack of polymorphism at silent
sites toward 5’-ends of protein-coding genes is a reflection
of the combined action of fast-growth adaptations and
recombination rate.
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IV. DISCUSSION

In this study, I sought to identify a basis for a
positive correlation between nucleotide diversity and gene
length observed previously [10]. The pattern of reduced
polymorphism toward the translation start site explains a
considerable proportion of this gene-length dependence.
Fitting an asymptotic regression model to the observed
pattern of mean diversity over sites enabled quantification
of the size (Se) and length (Le) of this effect across species.
With a phylogenetic comparative approach, I found the
distribution of Effect Length to be shaped by a combination
of selective and non-selective processes.

Effect Lengths of different bacteria showed a positive
correlation with their maximal growth rates. Species with
smaller doubling times are under stronger selection for
optimizing translation rates, and Effect Length could be
a reflection of the strength of this selection. This view
is supported by correlations of Effect Length with other
fast-growth adaptations, such as rRNA copy number, and
codon-usage bias of highly expressed genes. Alternatively,
the strength of selection acting on the starting region of genes
could be the same across species but the countering effect
of random genetic drift is weaker in fast-growing bacteria.
Indeed, Effective population size (Ne) was found to correlate
positively with growth rate across bacterial species [40].
When Ne is higher, variants that increase the stability of
RNA secondary structures around translation start sites can
be more effectively removed from the population, resulting
in a clear pattern of reduced polymorphism in the starting
region of genes, and reflected in the higher estimates of Le.

Eyre-walker found synonymous codon bias in E. coli to
positively correlate with gene length among genes expressed
at comparable levels and argued that it reflected selection to
avoid missense errors in longer proteins due to their higher
cost of production [15]. While this could certainly be true
for the small set of proteins used in his study, especially
ribosomal proteins, it is expected to lead to a negative
correlation between silent-site diversity and gene length on
a genome-wide scale, contrary to our observations. The
counter-acting selection towards the 5’-end of genes could
explain this pattern, such that shorter genes have a lower
bias due to conflicting forms of selection, but he assumed it
to be relevant for the first 50 bases. The selection to avoid
mRNA secondary structure around TIS does indeed appear
to be limited to this range [18, 37]. However, nucleotide
diversity of linked neutral sites further downstream in the
gene would also be reduced due to this purifying selection
[38]. Indeed, the wide range of variation in recombination
rates across bacteria [41] seems to have shaped the Effect
Length distribution, such that species with low recombination
frequency are more likely to show higher Effect Length.

Estimates of synonymous diversity have been used to
study mutation rate variation across genes after controlling
for many suspected factors [2]. However, gene length was
not controlled for in that study and shows a significant
correlation with the estimates of synonymous diversity, even

after correcting for other correlates (ρ = 0.15, P = 1.64 ×
10−14, Spearman rank correlation). Admittedly, there’s still
substantial unexplained variation in the synonymous diversity
of genes which highlights the need for continued efforts
in understanding selective and neutral processes that shape
nucleotide composition and patterns of diversity [42]–[45].

To study the efficacy of natural selection in driving any
genetic trait to fixation, evolutionary biologists need to
know the effective population size. Under mutation-drift
equilibrium, the nucleotide heterozygosity of a bacterial
population is expected to approximate 2Neµ, where µ is the
per-base pair mutation rate per generation [46]. Thus, given
experimental measures of µ, Ne is commonly estimated by
equating the above expression with the nucleotide diversity
of 4-fold degenerate sites assuming their near-neutrality
[47, 48]. However, as quantified in this study by the effect
size, estimates of Ne at the start of bacterial genes can
be nearly 5-fold lower than the average [49]. Given that
the extent of this effect varies substantially across species,
these regions of reduced polymorphism should be separately
identified and removed before effective population sizes of
different species are compared.

One final issue with ignoring the non-neutrality of
synonymous diversities and their gene-length dependence
concerns the detection of genes under positive selection.
Common tests of the strength of selection acting on
a protein-coding sequence involve the ratio of the rate
of non-synonymous substitutions to that of synonymous
substitutions [50]–[52]. Often, the ratio of non-synonymous
to synonymous diversity is used instead of substitution
rates [53]–[55], or the method is used for intraspecific
comparisons [56, 57], both of which can be misleading in
their own [58, 59]. However, the pattern of reduced variation
toward gene starts studied here using synonymous diversity
is also visible when synonymous substitution rates are used
instead [17]. Therefore, the extent of purifying selection
on synonymous sites seen in this study could lead to an
overestimation of the prevalence of positive selection [60].
Increasing recognition of potentially unknown sources and
consequences of even weak synonymous selection continues
to advance our ability to identify genuine cases of molecular
adaptation [61].

V. DATA AVAILABILITY

The source codes, plotting scripts, metadata, and analysis
outputs of this study can be accessed from the GitHub
repository A-Farhan/diversity length correlation.
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