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Abstract

Single-cell RNA sequencing has revolutionized the study of immuno-oncology, cancer biology,
and developmental biology by enabling the joint characterization of gene expression and cellular
heterogeneity in a single platform. As of July 2023, the Gene Expression Omnibus now contains
over 4000 published single-cell data sets, providing an invaluable opportunity for reanalysis to
identify new cell types or cellular states as well as their defining transcriptional programs. To
facilitate the reprocessing of these public datasets, we have devised a single-cell RNA
sequencing analysis framework for data retrieval, quality control, expression normalization,
dimension reduction, cell clustering, and data integration. Additionally, we have developed a
Shiny App visualization platform that enables the exploration of gene expression, cell type
annotations, and cell lineages through a user interface. We performed a re-analysis of single-
cell RNAseq data generated from acute myeloid leukemia and tumor-reactive lymphocytes and
found our pipeline to faithfully recapitulated the cell type assignment as well as expected lineage
trajectories. Altogether, we present BERLIN, a single-cell RNAseq analysis pipeline that
facilitates the integration and public dissemination of results from the reanalysis.

Introduction.

Single-cell RNA sequencing (scRNA-seq) has emerged as a robust and powerful method for
examining the complexities of cellular heterogeneity, genetic expression, and cell state
trajectories (Liu & Trapnell 2016). The Gene Expression Omnibus now contains more than 4000
scRNAseq data series. The current challenge is developing an effective strategy to standardize
the reprocessing and data analysis with considerations to quality filtering, normalization, cell
type identification, and differentiated lineages. While there are several flavors of sequencing
protocol, including 10x genomics, Smart-seq2, Drop-seq, CEL-seg2, and Microwell-seq, these
single-cell sequencing approaches generally have a high dropout rate in gene quantification.
Thus, careful quality control and filtering of low-quality cell is necessary (Chen et al. 2019; llicic
et al. 2016). The integration of data generated from these different protocols also present
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unique challenges to the analysis due the variable capture efficiency and read coverage biases.
One proposed strategy is to integrate the data by leveraging anchored gene features to correct
for unwanted technical effects (Hafemeister & Satija 2019). Additional to addressing protocol
variation, there is also a lack of standard in cell type assignment, which remains an open
challenge in the scRNAseq analysis field (Lahnemann et al. 2020). Despite several automated
cell type assignment algorithms are available, manual determination of the final cell type
assignment is still necessary.

Here we generated BERLIN, a basic analytical pipeline protocol, that outlines a workflow for
analyzing scRNAseq data. This protocol encompasses crucial steps, including quality control,
normalization, data scaling, dimensionality reduction, clustering, and automated cell annotation.
By following this protocol, users can effectively analyze scRNA-seq data, discern distinct cell
populations, and gain valuable insights into cellular dynamics and functions. The results are
explorable by ISCVA, an Interactive Single Cell Visual Analytics (Smalley et al. 2021) as well as
with Shiny app, including UMAP , the EASY App , and the PATH-SURVEYOR Pathway
Connectivity App. Overall, this protocol establishes a structured workflow for researchers, and a
reproducible framework for scRNA-seq analysis and visualization.

Methodology

Installation Dependencies

BERLIN was developed with the open-source R programming language (v.4.2.2). The workflow
leverages single cell RNAseq R packages that aid in clustering, cell annotation, and data
manipulation. The single cell analysis is performed with Seurat (v.4.3.0) and Seurat helper
packages, such as SeuratDisk (v.0.0.0.9020), and SingleCellExperiment (v.1.28.0). Cell
annotation was performed with the R packages celldex (v.1.8.0), DoubletFinder (v.2.0.3), and
SingleR (v.2.0.0) and for data cleaning and manipulation dplyr (v.1.1.2) and tibble (v.3.2.1) were
used. The results of the BERLIN workflow can be visualized in the DRPPM-EASY
(ExprAnalysisShinY), Shiny-UMAP, and PATH-SURVEYOR Pathway Connectivity applications
that are compatible with R (v.4.2.2). There are package installation scripts for the BERLIN
workflow and R Shiny applications through the GitHub page.

Single-cell RNAseq Analysis Protocol
To maintain consistent and reliable cell annotation quality, the following steps were
implemented to re-annotate cell types:
1. Unsupervised Louvain clustering algorithm: Utilized a multi-resolution approach to
perform clustering, which aids in identifying distinct cell populations within the dataset.
2. SingleR cell type prediction: Employed the SingleR algorithm with multiple reference
panels to predict cell types.
3. Gene marker identification: Identified specific gene markers associated with each cell
type.
4. Visualization of dimensional reduction, annotations, and expression features: Utilized
techniques such as dimensionality reduction (e.g., t-SNE or UMAP) to visualize the data
in lower-dimensional space. Cell type annotations and expression features were
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integrated into the visualization, allowing for a comprehensive exploration of the sScRNA-
seq results.

5. Comparison of gene markers with public gene markers using the Pathway Connectivity
app: This facilitated the assessment of overlap and similarities between the discovered
gene markers and existing knowledge using the Jaccard distance calculation.

Input Format

The input file should be a raw count matrix of single cells, with each row representing a gene
and each column representing a specific cell. The values within the matrix indicate the raw
expression counts or read counts of genes in each cell. It is important to ensure that the input
file is in a compatible format, such as Comma-Separated Values (CSV), tab-delimited text
(TXT), or Tab-Separated Values (TSV), as these formats can be easily read and processed by
R and the Seurat package. The package also accepts CellRanger input files: matrix
(matrix.mtx), barcode (barcode.tsv), and features (features.tsv). Examples of the input file can
be found in https://github.com/shawlab-moffitt/BERLIN/tree/main/2-
Single_Cell_RNAseq_Pipeline/Input

Standard Quality Control

Perform quality control (QC) steps to filter out low-quality cells and genes. The percentages of
mitochondrial genes and ribosomal protein genes were estimated for each cell. While the
filtering criteria might be dependent on the library preparation protocol, cells with high
mitochondrial and ribosomal gene content, or cells with low humber of detectable features are
typically removed from analysis.

gc.seurat <- function(seurat, species, nFeature) {

mt.pattern <- case_when(
species == "Human" ~ ""MT-",
species == "Mouse" ~ ""mt-",
TRUE ~ ""MT-"

)

ribo.pattern <- case_when(
species == "Human" ~ "*RP[LS]",
species == "Mouse" ~ "*Rp][Is]",
TRUE ~ ""RP[LS]"

)

# Calculate percentage of mitochondrial and ribosomal genes
seurat[["percent.mt"]] <- PercentageFeatureSet(seurat, pattern = mt.pattern, assay = "RNA")
seurat[["percent.rp"]] <- PercentageFeatureSet(seurat, pattern = ribo.pattern, assay = "RNA")

# Filter cells based on QC criteria
seurat[, seurat[["percent.mt"]] <= 20 & seurat[['nFeature_RNA"]] >= nFeature]

}

seurat_obj <- gc.seurat(seurat_obj, "Human", 500)
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Expression Normalization

Unigue molecular identifiers (UMI) counts are adjusted for library size and sequencing depth by
dividing each UMI count by the total UMI count of that gene across all cells. This will ensure that
expression values can be compared accurately. In Seurat, global-scaling normalization method
“LogNormalize” that normalizes the gene expression measurements for each cell by the total
expression, multiplies this by a scale factor (10,000 by default), and log-transforms the result.
This enables the preservation of the relative gene expression difference among cells.

seurat_obj <- NormalizeData(seurat_obj, normalization.method = "LogNormalize", scale.factor =
10000)

Generating Cell Cycle Scores.

CellCycleScoring (Hao et al. 2021) function was used to determine the cell cycle activity for
each cell. Specifically, the expression levels of certain genes associated with the cell cycle are
analyzed and cell cycle scores are assigned to individual cells.

seurat_obj <- CellCycleScoring(object = seurat_obj, g2m.features = cc.genes$g2m.genes,
s.features = cc.genes$s.genes)

Scaling Data

Scaling normalizes and transform gene expression values, which helps remove unwanted
technical variation, can improve downstream analyses. The scaling method used by default is
the "LogNormalize" method, which performs a natural logarithm transformation followed by
centering and scaling of the gene expression values. During the scaling process, the variables
suspected to contribute to the batch variation can be specified in 'vars.to.regress'
(nFeature_RNA and percent.mt in this case) are then regressed out in the analysis.

seurat_obj <- ScaleData(seurat_obj, vars.to.regress = c("nFeature_ RNA", "percent.mt"),
verbose = FALSE)

Principal Component Analysis (PCA)

Conduct PCA on the scaled data to reduce the dimensionality of the dataset while preserving
the most significant sources of variation. This step helps identify major sources of heterogeneity
within the dataset.

seurat_obj <- RunPCA(seurat_obj, npcs = 30, verbose = FALSE, seed.use = 42)
Nearest Neighbor and SNN clustering

Examining features derived by unsupervised selection as well as visualization of clusters in low
dimensional space will reveal both biology as well as technical batch effects (Becht et al. 2018;
Chen et al. 2019; Stuart et al. 2019). First, PCA is used to define cell neighbors in the low
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dimension space. Next, the algorithm performs clustering of the cells by constructing a shared
nearest neighbor (SNN) graph, which connects cells based on their similarities in gene
expression pattern. The Louvain algorithm is applied to optimize the modularity of a network by
iteratively assigning nodes (cells) to different communities (clusters), which maximizes the
within-community connections. Our pipeline performs the analysis at different resolutions to
reveal high-and-low resolution groupings of cell types.

seurat_obj <- FindNeighbors(seurat_obj, reduction = "pca”, dims = 1:30)

seurat_obj <- FindClusters(seurat_obj, resolution = ¢(0.10, 0.15, 0.25,0.75))

Doublet Finder

DoubletFinder is used to identify cells with putative doublets (McGinnis et al. 2019).

nExp <- round(ncol(seurat_obj) * 0.04) # expect 4% doublets

seurat_obj <- doubletFinder_v3(seurat_obj, pN = 0.25, pK = 0.09, nExp = nExp, PCs = 1:10)
Automated Cell Annotation using SingleR and Celldex

SingleR and Celldex were applied to automatically annotate cell types. Celldex was utilized to
download gene expression from the BlueprintEncodeData as part of the encode consortium,
SingleR was used to compare and predict the cell type based on the gene expression of the
reference dataset (Aran et al. 2019).

hpca.ref <- celldex::HumanPrimaryCellAtlasData()

dice.ref <- celldex::DatabaselmmuneCellExpressionData()
blueprint.ref <- celldex::BlueprintEncodeData()
monaco.ref <- celldex::MonacolmmuneData()

northern.ref <- celldex::NovershternHematopoieticData()

hpca.main <- SingleR(test = sce, assay.type.test = 1, ref = hpca.ref, labels =
hpca.ref$label.main)

hpca.fine <- SingleR(test = sce, assay.type.test = 1, ref = hpca.ref, labels = hpca.ref$label.fine)

Output files

Files that are generated from our pipeline include the following:
1. Metadata: Metadata is a data frame consisting of information derived from the pipeline:
a. Cell Cycle Score (S.score,G2M.score, and Phase)
QC percentage (percent.rp and perdent.mt)
Doublets (pANN and DF.classfication)
Resoulutions (integrated_snn_res or RNA_snn_res)
Umap and Tshe coordinates
Single R annotations

~®oo00o
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g. Manually curated cell annotations

2. H5 Seurat-compliant file: Export the processed and analyzed data in the H5 Seurat file
format. The H5 file is a hierarchical file that contains the expression values, dimensional
reduction results, clustering information, metadata, raw counts and any other information
stored within the Seurat object. The H5 Seurat object is the primary input file to the
downstream post-processing.

3. H5 ISCVA-compliant file: The H5 ISCVA-compliant file is a specific file format designed
to load and interact with the Interactive Single Cell Visual Analytics (ISCVA) application.

ScRNAseq post-Processing: Identifying defining markers.

Input File

e H5 Seurat-compliant file: Load in the processed and analyzed data in the H5 Seurat file
format. This file contains the expression values, dimensionality reduction results,
clustering information, and metadata. It serves as a comprehensive representation of the
analyzed single-cell RNAseq data.

Post Processing: Find MarkersThe H5-compliant Seurat object is loaded in using the
LodH5Seurat() function from the SeuratDisk R package.

seurat_obj <- SeuratDisk::LoadH5Seurat(h5 _file,
assays = c("integrated”, "RNA"),
reductions = c("pca", "tsne", "umap", "
graphs = NULL,
images = NULL,
meta.data=T,
commands = F,

verbose = F)

rpca"),

The gene markers for each Seurat cluster, with three or more cells, were derived using the
FindMarkers() function from the Seurat package. From the markers identified, they were filtered
into up-regulated (P<0.05 and LogFC>0) and down-regulated (P<0.05 and LogFC<0) datasets
and written to an individual files for each cluster and a comprehensive excel notebook. This
analysis can also be performed on an additional clustering criterion from the metadata file which
the user can input in the beginning of the script. Furthermore, the upregulated gene markers
from each cluster are used to develop a gene set of enriched markers per cluster, which is
written out to a file for the user.

unfiltered_markers <- FindMarkers(object = seurat_obj, ident.1 = cells, min.pct = .25)
upreg_markers <- unfiltered_markers[unfiltered_markers$p_val_adj < 0.05 &
unfiltered_markers$avg_log2FC > 0, ]

dnreg_markers <- unfiltered_markers[unfiltered_markers$p_val_adj < 0.05 &
unfiltered_markers$avg_log2FC < 0, ]
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Post Processing: Subset 1000 cell matrix

To generate input files for the R Shiny Applications, the data is subset to a default 1000 cells by
random sample with the ability for the user to set the seed. The assays of the Seurat object are
iterated over and the subset count matrices, meta data, and H5 file are written to file.

Output Files

1. Cluster Differentially Expressed Gene Markers: There are text files containing the DEG
of each cluster as well as an excel workbook file containing all of the marker tables
generated.

2. Cluster Labeled Gene Set: The gene markers from each cluster make up their indivdual
geneset which is writted to a text and Rdata file.

3. Subset Scaled count matrix: The scaled count matrix has been normalized by log

normalization and scaled and regressed based on ‘nFeature_ RNA’ and mitochondria

percentage.

Subset Raw count matrix: Raw count matrix contains the original counts.

5. Subset Normalized count matrix: The normalized count matrix is normalized by log
normalization, but has not been scaled.

6. Subset Metadata file: A data frame that contains additional information associated with
individual cells.

>

Single-cell RNAseq Shiny App Explorer

We have developed a companion shiny app tool that provides users with the ability to visualize
the output from BERLIN single-cell RNAseq analysis. This tool allows for the visualization of
dimension reductions, major cell clustering at different resolution, and gene expression patterns.
To demonstrate our tool’s functionality, we performed a SCRNAseq reanalysis of a patient’s
acute myeloid leukemia sample (van Galen et al. 2019) and CD69+103+ tumor-reactive
lymphocytes derived from a ovarian cancer sample (Anadon et al. 2022). The Shiny app can
facilitate cell type assignment using five different strategies: 1) cell type evaluation based on
known gene markers. Using the AML scRNAseq data as an example, we first projected the cells
in a Uniform Manifold Approximation and Projection (Figure 2A) unsupervised groupings defined
based on the Louvaine clustering algorithm (Figure 2B). Lyz expression was high in cluster 4
and 7 (Figure 2C), which were annotated as Mono-like and GMP-like cells, respectively in the
original manuscript (Figure 2D). The Lysozyme marker is a classical lineage-affiliated marker in
myelomonocytic and granulocyte progenitor populations (Ye et al. 2003). 2) our pipeline
provides a Jaccard pathway connectivity approach to compare gene markers derived from each
cluster with publicly available gene markers. Through this approach, we validated that cluster 4
resemble mono-like cells and cluster 7 as GMP-like cells. We further identified cluster 3 as cDC-
like cells and clusters 0 and 2 as HSC progenitors (Figure 3). 3) Gene markers can also be
visualized as a barplots or boxplots for each cluster (Figure 4A), and predicted cell type
annotation can be examined in each cluster (Figure 4B) and evaluated by a simple statistical
test to evaluate the overrepresentation of a cell type in a cluster through a Fisher’'s Exact Test
(Figure 5). 4) our pipeline enables the real-time analysis of cell lineage by a Slingshot trajectory
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(Street et al. 2018), which can be jointly analyzed with the defined cluster and gene expression.
We reanalyzed the T resident memory (TRM) cells derived from an ovarian cancer patient. Our
trajectory analysis was able to identify four major cell types along the lineage trajectory
consisting of TRM-stem, TRM-eff, TRM-prolif, and TRM-exhausted cells (Figure 6).
Interestingly, our analysis further revealed two distinct population of TRM-progenitor effector
cells, which both contained high IL7R but with varying mid to high expression of GZMB (Figure
6). To facilitate an integrative gene expression analysis, samples can also be grouped based on
genotype and explored by the DRPPM-EASY app (Obermayer et al. 2022). Finally, prognosis
biomarkers derived from each cluster or cell types can also be evaluated using the PATH-
SURVEYOR suite (Obermayer et al. 2023).

Discussion

We have developed BERLIN, a basic unified protocol for single-cell RNAseq data analysis. With
this pipeline, users can streamline analysis of publicly available scRNAseq datasets. As an
interactive visualization tool is needed for a multidisciplinary research team to evaluate the
same data set together, we further developed a Shiny app as a companion visualization tool.
The app can be effortlessly set up and applied to multiple single-cell datasets. The shiny app
allows for in-depth analysis of cell lineage, gene markers, and cell differentiation trajectory.
Gene markers derived from our analysis can be further evaluated as biomarkers and associated
with patient’s outcome through the PATH-SURVEYOR suite, and pathways enriched in each
cell type can be examined through the DRPPM-EASY app suite. Collectively, these integrative
applications will propel the user to gain additional insights into the gene regulatory mechanisms
as well as the cell type’s potential as a prognostic biomarker.

In summary, our shiny app tool, coupled with the BERLIN pipeline, serves as a valuable
resource for researchers in the fields of immuno-oncology, cancer biology, and developmental
biology. Our tool will empower researchers to effectively analyze and virualize their single-cell
data analysis, facilitating a deeper understanding of cellular dynamics and molecular processes
in various domains of biological research.

Data Accessibility
https://github.com/shawlab-moffitt/BERLIN/

Example Shiny app is available:
http://shawlab.science/shiny/BERLIN GSE192780 TRM UMAP App/
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Figure 1. BERLIN single-cell analysis processing. A) Single-cell RNAseq analysis with
standard quality control of barcode and gene features. Cells are annotated using SingleR
backed by the CellDex database. B) Post processing of the single-cell analysis with H5 Seurat
as the input. Unsupervised clustering is performed and cell types are assigned. Sampling of
1000 cells was performed to generate a smaller file for the Shiny app visualization.
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Figure 2. BERLIN-Shiny visualization of a SCRNAseq data derived from an AML patient sample.
Our app offers a multi-pronged visualization of both gene expression and cell type features.
Dimension reduction was performed by the BERLIN pipeline and UMAP coordinates were
selected for visualization (A). Cells are colored based on the cluster defined by Seurat (B). A
subset of cells was demonstrated to be highly expressed with Lysozome (LYZ) (C). The highly
expressed cells were putatively annotated as monocyte-like (D).
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Figure 3. Cell type assignment with Jaccard connectivity analysis of AML cells.
Upregulated gene marks in each cluster were compared to publicly available gene sets. As a
separate validation, we also included up-regulated genes in each annotated cell type. The
reference gene sets are marked with *
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Figure 4. Feature comparison. A) Continuous features can be compared using violin or
boxplot. B) Categorical features can be evaluated using stacked barplots.
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Figure 5.
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Fishers Exact test found that seurat_clusters - 0 is significantly enriched in monaco.main - Monocytes, based on a Pvalue of 7.359e-13 and an odds ratio of

2.090709.
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Figure 5. Enrichment of cell types or gene features. After generating a contingency table,
enrichment can be performed using a Fisher's Exact Test.
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Figure 6. Single-cell lineage analysis of CD69+ 103+ tumor infiltrative T cells derived from
ovarian cancer. A curve representing the cell differentiation trajectory is generated by
Slingshot. The user can specify the cell grouping and the starting cluster of the analysis. The
plot shows the differentiation trajectory of T resident memory cells supported by gene
expression marker for stemness (IL7R and CD28), effector (GZMB), proliferation (CDK1), and
exhaustion (CTLA4).
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Figure 1. BERLIN single-cell analysis processing. A) Single-cell RNAseq analysis with standard quality
control of barcode and gene features. Cells are annotated using SingleR backed by the CellDex databas
B) Post processing of the single-cell analysis with H5 Seurat as the input. Unsupervised clustering is
performed and cell types are assigned. Sampling of 1000 cells was performed to generate a smaller fil
for the Shinv app visualization.
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Figure 2. BERLIN-Shiny visualization of a sScRNAseq data derived from an AML patient sample. Our app offers a multi-pronged visualizatior
of both gene expression and cell type features. Dimension reduction was performed by the BERLIN pipeline and UMAP coordinates were
selected for visualization (A). Cells are colored based on the cluster defined by Seurat (B). A subset of cells was demonstrated to be highl
expressed with Lysozome (LYZ) (C). The highly expressed cells were putatively annotated as monocyte-like (D).
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Figure 4. Feature comparison. A) Continuous features can be compared using violin or boxplot.
B) Categorical features can be evaluated using stacked barplots.
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Fishers Exact test found that seurat_clusters - 0 is significantly enriched in monaco.main - Monocytes, based on a Pvalue of 7.359e-13 and an odds ratio of
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Figure 5. Enrichment of cell types or gene features. After generating a contingency table,
enrichment can be performed using a Fisher’s Exact Test.
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Figure 6. Single-cell lineage analysis of CD69+ 103+ tumor infiltrative T cells derived from ovarian cancer. A curve
representing the cell differentiation trajectory is generated by Slingshot. The user can specify the cell grouping and the
starting cluster of the analysis. The plot shows the differentiation trajectory of T resident memory cells supported by gene
expression marker for stemness (IL7R and CD28), effector (GZMB), proliferation (CDK1), and exhaustion (CTLA4).
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