

1 **Title:** The Role and Mechanism of TEAD4 in Preimplantation Embryonic
2 Development in Mice and Cattle

3 **Authors:** Xiaotong Wu^{1,2,#}, Yan Shi^{1,2,#}, Bingjie Hu^{1,2,#}, Panpan Zhao^{1,2}, Shuang Li^{1,2},
4 Lieying Xiao^{1,2}, Shaohua Wang^{1,2}, and Kun Zhang^{1,2,*}

5 **Author Affiliation:** ¹Laboratory of Mammalian Molecular Embryology, College of
6 Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; ²Key
7 Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of
8 Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou,
9 Zhejiang 310058, China

10 **Footnotes:** [#]X.W. and Y.S. contributed equally to this work. ^{*}To whom
11 correspondence may be addressed. Email: kzhang@zju.edu.cn

12 **Corresponding Author:** Kun Zhang, Room 301 E Building, 866 Yuhangtang Rd,
13 Hangzhou, Zhejiang 310058, China, Tel: 86-571-8898-2506; Email:
14 kzhang@zju.edu.cn

15 **Keywords:** Mouse, Bovine, Embryo, Base editing, Tead4, Trophectoderm

16 **Grants:** This project was supported by Wenzhou Major Science and Technology
17 Innovation Project [No. ZF2022009 to K.Z.], National Natural Science Foundation of
18 China [No. 32161143032 and No. 32072731 to K.Z.], and China Postdoctoral Science
19 Foundation [No. 2021M702872 to P.Z.].

20 **Abstract**

21 Tead4, a critical transcription factor expressed during preimplantation development, is
22 essential for the expression of trophectoderm-specific genes in mice. However, the
23 functional mechanism of *Tead4* in mouse preimplantation development and its
24 conservation across mammals remain unclear. Here, we report that Tead4 is a crucial
25 transcription factor necessary for blastocyst formation in mice. Disruption of *Tead4*
26 through base editing results in developmental arrest at the morula stage. Additionally,
27 RNA-seq analysis reveals dysregulation of 670 genes in *Tead4* knockout embryos. As
28 anticipated, *Tead4* knockout leads to a decrease in trophectoderm genes *Cdx2* and
29 *Gata3*. Intriguingly, we observed a reduction in *Krt8*, suggesting that Tead4
30 influences the integrity of the trophectoderm epithelium in mice. More importantly,
31 we noted a dramatic decrease in nuclear Yap in outside cells for *Tead4*-deficient
32 morula, indicating that Tead4 directly regulates Hippo signaling. In contrast, bovine
33 embryos with *TEAD4* depletion could still develop to blastocysts with normal
34 expression of *CDX2*, *GATA3*, and *SOX2*, albeit with a decrease in total cell number
35 and ICM cell number. In conclusion, we propose that Tead4 regulates mouse
36 blastocyst formation via *Krt8* and *Yap*, both of which are critical regulators of mouse
37 preimplantation development.

38 **Introduction**

39 Upon fertilization, a totipotent zygote continuously divides to create a blastocyst, a
40 process known as preimplantation embryonic development in mammals.
41 Morphologically, the zygote undergoes cleavage, compaction, polarization, and
42 cavitation to generate a blastocyst with three embryonic layers: the trophectoderm
43 (TE), epiblast (EPI), and primitive endoderm (PE). The TE differentiates to form the
44 placenta, the EPI gives rise to the fetus, and the PE develops into the yolk sac.
45 Although the preimplantation development appears conserved across mammalian
46 species, there are notable differences in regulation of key biological events within this
47 period ¹⁻³.

48 *Tead4* is one of the four members of TEAD family transcription factors ⁴. *Tead4*
49 mRNA begins to express faintly at the 2-cell stage, peaks at the 8-cell stage, and
50 maintains its expression during the blastocyst stage. The knockout (KO) of *Tead4*
51 through homologous recombination results in developmental arrest at the morula
52 stage ⁵⁻⁷. Furthermore, the mRNA expression of TE marker genes *Cdx2*, *Gata3*,
53 *Eomes*, *Fgfr2*, *Itga7*, and *Cdh3* decreased significantly, while the mRNA expression
54 of ICM marker genes *Fgf4*, *Sox2*, and *Oct4* remained unaffected in *Tead4* KO
55 embryos. It has been believed that *Tead4* operates upstream of genes associated with
56 TE specification and function ⁸⁻¹¹. However, considering that these TE marker genes
57 (*Cdx2*, *Gata3* etc.) are not essential for TE specification and blastocyst formation, it
58 remains unclear how *Tead4* leads to developmental arrest at morula stage in mice.

59 While the significance of *Tead4* in regulating TE specification and differentiation
60 in mice has been well established by KO studies, the role and regulatory mechanism
61 in other mammalian species remains unclear. Recently, two studies showed that
62 knocking down TEAD4 via RNA interference does not affect development to the
63 blastocyst stage in cattle, however, they produced contrasting results regarding the
64 role of TEAD4 in TE marker genes. Given the limitation of the RNAi approach in
65 completely removing endogenous mRNA, the functional role of TEAD4 in lineage

66 specification and blastocyst formation in bovine preimplantation development
67 remains elusive.

68 In this study, we have created robust models of *Tead4* KO embryos to determine
69 the mechanisms underlying the requirement of Tead4 in mouse embryos and whether
70 TEAD4 is essential for blastocyst formation in cattle. Through RNA-seq and
71 immunofluorescence analysis of the wildtype (WT) and KO embryos, we have
72 unveiled the functional requirement of Tead4 in lineage segregation, integrity of TE
73 epithelium, and Hippo signaling during blastocyst formation in mice. Interestingly,
74 this is in stark contrast to the effects of bovine TEAD4, which is not required for
75 blastocyst formation and lineage differentiation in cattle.

76 **Results**

77 **Generation of Point Mutations in Mouse *Tead4***

78 To investigate mechanisms underlying the role of Tead4 in TE lineage specification in
79 mouse preimplantation embryos, we first utilized cytosine base editor 3 (BE3), a
80 CRISPR-based tool, to induce point mutations in mouse *Tead4*. BE3 could mediate
81 the conversion of C-G base pairs to T-A base pairs (C to T, G to A)¹², thereby
82 generating premature stop codons. We initially designed two guide RNAs (gRNAs) in
83 mouse *Tead4* exon 1 and exon 7, anticipating that the stop codons would be produced
84 by conversions of C4, C5 to T for gRNA1 and C6, C7 to T for gRNA2 at the target
85 sites (Fig. 1A).

86 We subsequently microinjected a mixture of BE3 mRNA and gRNAs into mouse
87 zygotes (Fig. 1B). To validate the efficiency of base editing, we collected mouse
88 embryos at morula stage (E3.25) and conducted genotyping, revealing that 73.1%
89 (76/104) of the embryos were correctly edited at two target sites for gRNA1, 84.5%
90 (82/97) for gRNA2, and 89.9% (107/119) for gRNA1 or gRNA2 (Fig. 1C). The
91 editing efficiency of other genotypes was significantly lower than these ones (Table.
92 S1). Consistent with the change of genome, the nuclear intensity of Tead4 was

93 significantly reduced in KO embryos (Fig. 1D). These results clearly demonstrate the
94 robust editing efficiency of *Tead4* by BE3 in mouse preimplantation embryos.

95 **Tead4 is Essential for Mouse Blastocoel Formation**

96 Given the high editing efficiency, we sought to explore the abnormalities in *Tead4* KO
97 embryos. In WT embryos, we first detected TEAD4 with a weak signal at the four-cell
98 stage, followed by an increase in immunostaining intensity from the eight-cell stage
99 and maintained to the blastocyst stage (Fig. S1). We then tracked the preimplantation
100 development from the two-cell stage to examine if there would be any morphological
101 differences between *Tead4* WT and KO embryos. The *Tead4* KO embryos underwent
102 compaction at the eight-cell stage and remained morphologically indistinguishable
103 from the WT embryos until the morula stage. Then, the *Tead4* KO embryos arrested at
104 the morula stage while the *Tead4* WT embryos formed blastocyst (Fig. 2A). However,
105 the cells of the *Tead4* KO embryos were found to proliferate at increased rates similar
106 to those of the *Tead4* WT embryos until E3.25 (Fig. 2B). These results confirm that
107 *Tead4* plays an essential role in morula to blastocyst transition in mouse embryos.

108 **RNA-seq Analysis of Mouse *Tead4*-deficient Embryos**

109 The developmental phenotypes resulting from disruption of *Tead4* led us to determine
110 the effects of *Tead4* on gene expression regulating blastocyst formation at the
111 molecular level. Thus, we collected embryos from WT and KO groups at the late
112 morula stage (E3.25) and then performed RNA-seq (Fig. 3A). Notably, cDNA from
113 each embryo was used for genotyping before library construction (Fig. S2A).
114 Principal component analysis (PCA) showed that two independent replicates of
115 RNA-seq samples from each WT and KO group displayed high correlation (Fig. S2B,
116 C). Moreover, *Tead4* was significantly decreased in the KO group, further confirming
117 robust KO efficiency of *Tead4* by base editor (Table. S2).

118 Compared with WT embryos, 670 genes were differentially expressed in *Tead4*
119 KO embryos, with 360 upregulated genes and 310 downregulated genes (Fig. 3B and
120 Table. S2). We observed an increase in the expression of pluripotent genes *Oct4*, *Fgf1*,

121 *Carm1*, *Rhob*, and *Gata4* and a reduction in TE genes *Gata3* and *Cdx2* (Fig. 3C),
122 which aligns with an increased expression of these downregulated genes from morula
123 stage onward in normal embryos (Fig. S2D, E). Additionally, we found a
124 transcriptional repression of tight junction components, such as *Cldn6*, *Tjp3*, *Tjp2*,
125 *Myl6*, *Myl12b*, *Cxadr*, *Cgnl1*, *Clmp*, *Dlg3*, *Amotl2* and *Erbb2*, cytoskeleton
126 component *Krt8* and Hippo signaling components *Lats2* and *Amotl2* compared with
127 WT embryos.

128 Indeed, gene ontology (GO) enrichment analysis revealed that downregulated
129 genes enriched in cell-cell junctions, tight junctions, apicolateral plasma membrane
130 and Hippo signaling (Fig. 3D), which were similar to the results of Kyoto
131 Encyclopedia of Genes and Genomes (KEGG) pathway analysis (Fig. 3E).
132 Meanwhile, the upregulated genes enriched in negative regulation of cell-substrate
133 adhesion, positive regulation of cell migration and negative regulation of epithelial
134 cell proliferation (Fig. 3F). These data suggest that Tead4 plays functional roles in TE
135 specification, tight junctions and Hippo signaling.

136 **Tead4 is Required for Mouse Lineage Specification of Trophectoderm**

137 Given the reduction in TE associated markers *Cdx2* and *Gata3* expression through
138 transcriptomic analysis, we asked whether Tead4 could influence TE identity. To
139 address this hypothesis, we performed IF to determine whether there was a reduction
140 at protein level. IF analysis showed a significant decrease in *Cdx2* and *Gata3*
141 expression compared with WT embryos (Fig. 4A, B). Contrary to *Cdx2* and *Gata3*
142 expression, disruption of *Tead4* did not alter *Sox2* and *Nanog* expression levels
143 compared with WT embryos (Fig. 4A, C). These results reveal that Tead4 has a
144 significant impact on maintaining TE-specific gene expression but not pluripotency
145 genes in mouse embryos.

146 **Tead4 is Required for Trophectoderm Epithelium Integrity**

147 Epithelium integrity of TE cells is critical for blastocyst formation and expansion ¹³.
148 Our RNA-seq analysis showed a reduction in genes encoding critical components in

149 adhesion junction, tight junction and intermediate components that regulating
150 paracellular integrity. This result raised the question of whether Tead4 may influence
151 TE epithelium integrity in mouse preimplantation embryos. To verify this result, we
152 detected the average intensity of E-Cadherin and β -Catenin (adhesion junction)¹⁴⁻¹⁶,
153 TJP2 (tight junction)¹⁷⁻¹⁹ and KRT8 (intermediate filament)²⁰. We observed only
154 minor changes in E-Cadherin, β -Catenin and TJP2 (Fig. 5A-C), while there is a
155 significant reduction in KRT8 in *Tead4* KO embryos (Fig. 5D), further substantiating
156 the idea that Tead4 impacts TE epithelium integrity.

157 **Tead4 Regulates Hippo Signaling Pathway**

158 RNA-seq analysis also revealed dysregulation of critical components in Hippo
159 signaling pathway, which plays a crucial role in TE lineage specification. As Yap is a
160 core component of Hippo signaling, we examined its expression level and noticed a
161 dramatic decrease in nuclear Yap for *Tead4*-deficient embryos (Fig. 6A), implying
162 that Tead4 directly regulates Hippo signaling in mice.

163 Moreover, the transcription factor Tfap2c is a key regulator of blastocyst
164 formation and tight junctions²¹ and mirrors the roles of Tead4 we discovered.
165 Furthermore, Tfap2c could regulate the Hippo signaling pathway partly via Pard6b²².
166 Thus, we initially aimed to ascertain whether Tead4 regulates *Tfap2c* expression in
167 mouse embryos. However, we found comparable TFAP2C expression levels between
168 WT and *Tead4* KO groups (Fig. 6B), indicating that Tead4 does not act upstream of
169 Tfap2c in mouse preimplantation embryos. Then, we hypothesized that Tead4 might
170 regulate the Hippo signaling pathway via Pard6b. Interestingly, immunofluorescence
171 analysis revealed a slight change in PARD6B (Fig. 6C). Collectively, our results
172 suggest that Tead4 directly regulates Hippo signaling, but not via Pard6b.

173 **TEAD4 is Not Required for Blastocyst Formation in Cattle**

174 To investigate if the role of TEAD4 is conserved between mouse and bovine early
175 embryos, we employed BE3 to introduce point mutations in bovine *TEAD4*. We
176 designed two gRNAs in bovine *TEAD4* exon 3 and exon 6 and expected that the

177 premature stop codons would be induced by transition mutation of C4, C5 to T for
178 gRNA1 and C5 to T for gRNA2 at the target DNA sites (Fig. 7A). To evaluate the
179 editing efficiency, we co-injected BE3 mRNA and gRNAs into bovine zygotes (Fig.
180 7B) and collected the embryos at D8.0 for genotyping. Genotyping results revealed
181 that 85.7% (36/42) of the embryos were correctly edited at target sites for gRNA1,
182 57.1% (24/42) for gRNA2 and 95.3% (41/43) for gRNA1 or gRNA2 (Fig. 7C). These
183 results demonstrate that base editing provides high editing efficiency of *TEAD4* in
184 bovine embryos.

185 We first observed the preimplantation development at D8.0 and found bovine
186 *TEAD4* WT and KO embryos with a comparable number of blastocysts (Fig. 7D).
187 However, the total cell number and ICM cell number of bovine *TEAD4* KO embryos
188 were significantly decreased while the TE cell number was similar (Fig. 7E, F, G),
189 suggesting that cell proliferation of TE was suppressed in *TEAD4* KO embryos. These
190 observations indicate that *TEAD4* is not essential for morula to blastocyst transition in
191 bovine embryos.

192 **TEAD4 is Not Required for Bovine Lineage Specification of Trophoblast**

193 Despite blastocyst formation in *TEAD4* KO bovine embryos, we sought to gain
194 insight into lineage specification during early development. The staining results
195 indicated that expression of both CDX2 and GATA3, TE associated markers^{7,23,24},
196 were comparable to the WT embryos (Fig. 8A, B, C). Similarly, the expression level
197 of pluripotent gene SOX2¹ barely changed compared with the WT embryos (Fig. 8D,
198 E). Based on the above results, we questioned whether there would be any effects on
199 gene expression in *TEAD4*-depleted embryos before D8.0. We therefore collected
200 embryos at D7.0 and conducted RNA-seq. PCA displayed low correlation between
201 two independent replicates of RNA-seq samples from each WT and KO group (Fig.
202 S4), and the transcriptome data showed only three downregulated genes and no
203 upregulated gene compared with the WT embryos (Table. S3), further supporting the

204 similar developmental capability between two groups. In summary, these data indicate
205 that TEAD4 is not necessary for TE lineage specification in bovine embryos.

206 Discussion

207 How the first lineage specification event in mammals is resolved is a fundamental
208 question in developmental biology. This study explores the potential mechanisms
209 underlying the functional requirement of *Tead4* in the first lineage specification in
210 mice and determines the dispensable role of TEAD4 in bovine preimplantation
211 embryos. Three novel findings have emerged from this study. Firstly, we have
212 identified a dysregulation of 670 genes in *Tead4* KO embryos. Secondly, we have
213 observed a reduction in KRT8, suggesting that *Tead4* influences the integrity of the
214 TE epithelium in mice, and a decrease in nuclear YAP for *Tead4*-deficient embryos,
215 indicating that *Tead4* directly regulates Hippo signaling. Lastly, we have found that
216 bovine embryos with TEAD4 depletion can still develop to blastocysts with normal
217 expression of *CDX2*, *GATA3*, and *SOX2*. In summary, we propose that *Tead4*
218 regulates mouse blastocyst formation via *Krt8* and *Yap*, both of which are critical
219 regulators of mouse preimplantation development (Fig. 9).

220 We established that *Tead4* is required for blastocyst formation and TE lineage
221 specification by using a base editing approach to induce *Tead4* ablation. This is
222 consistent with earlier studies using homologous recombination. Recently, scientists
223 also used WT Cas9 to study gene function in mammalian preimplantation embryos.
224 However, the genome editing with WT Cas9 exhibits low editing efficiency and
225 induces mosaic genotypes, which complicates the phenotypic analysis and
226 developmental assessment of the injected embryos. Base editors, derived from
227 CRISPR/Cas9 mediated genome editing, can be used to precisely install target point
228 mutations with fewer undesired byproducts and without double-strand DNA breaks
229 (DSBs), donor DNA templates and homology directed repair (HDR)^{25,26}. In this study,
230 our two gRNAs exhibited about 80% targeted editing and injection of the mixture
231 resulted in almost 100% targeted editing efficiency in the embryo we used for

232 RNA-seq and IF. Thus, base editing represents a robust and reliable approach to
233 dissect gene function in mammalian early embryos, especially helpful for animals for
234 which germline genetic engineering is challenging.

235 It is believed that polarity-Hippo/Yap signaling plays a key role in TE initiation in
236 mammals. The Hippo signaling pathway acquires different states in inner and outer
237 cells of the embryo, resulting in different fates. Unphosphorylated Yap/TAZ enters the
238 nucleus of outer cells, binds to Tead4, and activates the expression of TE lineage
239 specifiers. Interestingly, *Tead4* KO results in dysregulation of several genes encoding
240 key components of the Hippo signaling pathway, including *Lats2* and *Amotl2*.
241 Importantly, the signal intensity of Yap in the nuclear region is drastically reduced
242 after *Tead4* ablation, indicating a failure of Yap to translocate to outer cells and
243 eventually triggering a failed TE specification.

244 Krt8 and Krt18 are key components of intermediate filaments, enriched at the
245 apical domain and inherited asymmetrically by outer cells ²⁰. Krt8 accomplishes
246 translocated expression from nuclear to cell borders and expresses exclusively in the
247 TE cell layer but not inner cell mass at late blastocyst stage in mouse preimplantation
248 embryos ^{27,28}, indicating Krt8 as a marker of TE in mouse. Krt8 ablation results in a
249 decrease in Yap, a transcriptional binding factor and Cdx2 exhibited reduced
250 expression in Yap-depleted embryos in mice ²⁰, reflecting that Krt8 regulates Cdx2
251 through Yap in mouse preimplantation embryos. We then found a reduction in Krt8
252 and Cdx2 in *Tead4* disrupted mouse embryos (Fig. 4A; 5D). Taken together, Tead4
253 could regulate Cdx2 directly or through Krt8-Yap (Fig. 9A).

254 Recently, two studies showed that knocking down *TEAD4* via RNA interference
255 does not affect development to the blastocyst stage in cattle, but they produced
256 contrasting results regarding the role of TEAD4 in TE marker genes. Specifically,
257 Hiroki Akizawa et al. found that knocking down *TEAD4* significantly reduced the
258 transcript levels of *CDX2* but did not affect the expression of *GATA3* in bovine
259 embryos ²⁹; while Nobuyuki Sakurai et al. found that *TEAD4*, *CDX2*, *GATA3*, *OCT4*

260 and *NANOG* transcripts were not affected in Tead4 knockdown bovine embryos³⁰. To
261 resolve this issue, our data clearly show that *TEAD4* KO does not affect TE and ICM
262 lineage markers. Considering highly conserved TEAD family proteins, it is possible
263 that other TEADs could play a compensatory role with TEAD4, which warrants
264 further study.

265 In summary, we confirm the essential role of Tead4 in blastocyst formation and
266 TE specification in mouse preimplantation embryos. Our data suggest this functional
267 role is likely mediated by Krt8 and Yap. Moreover, Tead4 is dispensable for blastocyst
268 formation and TE lineage specification in cattle.

269 **Materials and methods**

270 **Ethics statement**

271 Animals were maintained in accordance with the Guidelines for Ethical Review of
272 laboratory Animal Welfare and approved by Zhejiang University.

273 **Mouse embryo collection and *in vitro* culture**

274 Embryos were collected from 8-10-week-old B6D2F1 (C57BL/6×DBA/2; Beijing
275 Vital River Laboratory Animal Technology) superovulated female mice with 8
276 international units (IU) of pregnant mares' serum gonadotropin (PMSG; Sansheng
277 Pharmaceutical) and 8 IU human chorionic gonadotropin (hCG; Sansheng
278 Pharmaceutical) 46-48 hours later, and then crossed with B6D2F1 male mice.
279 Embryos were isolated from oviducts in M2 medium (MilliporeSigma) and
280 transferred to hyaluronidase solution (MilliporeSigma) to remove cumulus cells and
281 cultured in KSOM medium (MilliporeSigma) at 37°C with 5% CO₂. Mouse embryos
282 were fixed at the following times post fertilization: one-cell stage (12h post
283 fertilization, E0.5), two-cell stage (36h post fertilization, E1.5), four-cell stage (48h
284 post fertilization, E2.0), eight-cell stage (60h post fertilization, E2.5), sixteen-cell
285 stage (72h post fertilization, E3.0), morula stage (78h post fertilization, E3.25), early
286 blastocyst stage (90h post fertilization, E3.75), late blastocyst stage (102h post
287 fertilization, E4.25).

288 **Bovine embryo *in vitro* production**

289 Procedures for bovine embryo *in vitro* production includes *in vitro* maturation (IVM),
290 *in vitro* fertilization (IVF) and *in vitro* culture (IVC). Cumulus-oocyte complexes
291 (COCs) with more than three cumulus cell layers were cultured in IVM medium at
292 38.5°C with 5% CO₂ for 22-24 h. The IVM medium contains Medium-199 (Sigma),
293 10% fetal bovine serum (FBS) (Gibco), 1 IU/ml follicle-stimulating hormone (FSH)
294 (Sansheng Biological Technology), 0.1 IU/ml luteinizing hormone (LH) (Solarbio), 1
295 mM sodium pyruvate (Thermo Fisher Scientific), 2.5 mM GlutaMAX (Thermo Fisher
296 Scientific) and 10 µg/ml gentamicin. Matured COCs were incubated with
297 spermatozoa (1-5×10⁶/ml) purified from thawed semen with Percoll in BO-IVF
298 medium (IVF Bioscience) at 38.5°C with 5% CO₂ for 9-12 h. The cumulus cells were
299 removed with 1 mg/ml hyaluronidase, followed by embryo culture in BO-IVC
300 Medium (IVF Bioscience) until late blastocyst stage (192 h post fertilization, D8.0).

301 **Creation of zygotic Tead4 knockout**

302 Guide RNAs (gRNAs) were designed on BE-designer (<http://www.rgenome.net>) and
303 synthesized with 5' extended CACC and AAAC (Sangon Biotech) on the two DNA
304 strands respectively before annealed to double strands. The DNA oligos were then
305 ligated to PX458 vector linearized by BpiI (Takara) and cloned into *E.coli* DH5α
306 competent cells (Takara). Plasmids were extracted from bacterial cultured overnight,
307 followed by amplification as polymerase chain reaction (PCR) templates. The PCR
308 primers contain T7 promoter. The sequences of gRNAs and primers are listed in Table
309 S4.

310 ***In vitro* transcription and microinjection**

311 BE3 plasmid was purchased from Addgene (Cat# 73021) and linearized with NotI,
312 followed by purification with GeneJET PCR Purification Kit (Thermo Fisher
313 Scientific) and *in vitro* transcription with mMESSAGE mMACHINE T7 Ultra Kit
314 (Thermo Fisher Scientific). gRNAs were *in vitro* transcribed with MEGAshortscript
315 T7 High Yield Transcription Kit (Thermo Fisher Scientific). Controls were injected

316 with BE3 mRNA (final concentration, 200 ng/μl) and KOs were injected with a
317 combination of two gRNAs (final concentration, 100 ng/μl respectively) and BE3
318 mRNA (final concentration, 200 ng/μl). mRNAs were microinjected into cytoplasm of
319 zygotes 20-22 h post hCG injection, using an Eppendorf transferman
320 micromanipulators.

321 **Genotyping of single embryo**

322 Each embryo was individually collected into a tube containing lysis buffer (40 nM
323 Tris-HCl, 1% NP-40, 1% Triton X-100 and 0.4 ng/ml Proteinase K) and then
324 incubated at 55°C for 1 h and 95°C for 10 min as PCR template. Nested PCR was
325 performed with rTaq (Takara), followed by the PCR product fragments sequencing
326 with Sanger sequencing. The sequences of primers are listed in Table S4 and the
327 Nested PCR reaction conditions are listed in Table S5.

328 **Immunofluorescence**

329 Embryos were washed third in 0.1% PBS/PVP (PBS containing 0.1% PVP) and fixed
330 in 4% paraformaldehyde (PFA) for 10 min (bovine, 30 min) at room temperature (RT),
331 followed by permeabilization in PBST (PBS containing 0.5% Triton X-100) for 30
332 min (bovine, 40 min). Embryos were then blocked in 10% FBS in 0.1% Triton
333 X-100/PBS for 1 h (bovine, 2 h) and incubated with primary antibodies in blocking
334 solution overnight at 4°C. The embryos were washed third in 0.1% Triton X-100/PBS
335 and incubated with secondary antibodies in blocking solution for 1 h (bovine, 2 h)
336 before washed in 0.1% Triton X-100/PBS. The embryos were then incubated with
337 DAPI in PBS for 10 min (bovine, 20 min) and imaged in drops of 0.1% Triton
338 X-100/PBS on glass slide with Zeiss LSM 880 confocal microscope. All antibodies
339 involved in this research are listed in Table S6.

340 **RNA-seq library construction and sequencing**

341 Mouse embryos were collected after removal of the zona pellucida with Tyrode's
342 solution at morula stage (n=24, 2 biological replicates). Total RNA was extracted with
343 Arcturus PicoPure RNA Isolation Kit (Life Technologies). Then mRNAs were

344 fragmented using oligo(dT)25 beads and reverse transcribed. Sequencing libraries
345 were constructed with NEB Next Ultra RNA Library Prep Kit for Illumina (New
346 England Biolabs). The cDNA was preamplified with KAPA HiFi HotStart ReadyMix,
347 purified with Ampure XP beads, fragmented by Tn5 enzyme (Vazyme) and amplified
348 for 15-18 cycles before paired-end 150 bp sequencing on Illumina NovaSeq
349 (Novogene).

350 **RNA-seq data alignment and analysis**

351 The raw sequencing reads were trimmed with Trimmomatic (version 0.39)³¹ to
352 remove adaptor sequences and low quality reads and obtain clean reads which were
353 then mapped to mm10 with Hisat2 (version 2.1.0)³². The raw read counts were
354 calculated with featureCounts (version 1.6.3)³³ and then normalized to FPKM with
355 Cufflinks (version 2.2.1)³⁴. The differentially expressed genes were identified by
356 DESeq2 with fold change >2 or <0.5 and adjusted *P*-value <0.05. Enrichment analysis
357 of differentially expressed genes was performed with the Database for Annotation,
358 Visualization and Integrated Discovery (DAVID)^{35,36}.

359 **Statistical analysis**

360 Charts and statistics were generated in GraphPad Prism 8.0 and ImageJ. Quantitative
361 analysis was performed with two-tailed unpaired Student's t-test and is presented as
362 mean±standard error of the mean (s.e.m.). P<0.05 indicates significant difference.

363 **Acknowledgements**

364 We are grateful to members of K.Z. lab for their helpful discussions and comments on
365 this manuscript. We thank laboratory of animal center of Zhejiang University for
366 taking care of mice, analysis center of agrobiology and environmental sciences of
367 Zhejiang University for Zeiss LSM 880.

368 **Author contributions**

369 Conceptualization, X.W., Y.S. and K.Z.; Investigation, X.W., Y.S., P.Z., B.H., S.L. and
370 L.X.; Formal analysis, X.W., Y.S., B.H. and S.L.; Writing - original draft, X.W.;

371 Writing - review & editing, S.W. and K.Z.; Funding acquisition, K.Z.; Supervision:
372 S.W. and K.Z.

373 **Declaration of interest**

374 The authors declare no competing interests.

375 **References**

- 376 1. Luo, L., Shi, Y., Wang, H., Wang, Z., Dang, Y., Li, S., Wang, S., and Zhang, K.
377 (2022). Base editing in bovine embryos reveals a species-specific role of
378 SOX2 in regulation of pluripotency. *Plos Genet* 18. ARTN e1010307
379 10.1371/journal.pgen.1010307.
- 380 2. Simmet, K., Zakhartchenko, V., Philippou-Massier, J., Blum, H., Klymiuk, N.,
381 and Wolf, E. (2018). OCT4/POU5F1 is required for NANOG expression in
382 bovine blastocysts. *Proc Natl Acad Sci U S A* 115, 2770-2775.
383 10.1073/pnas.1718833115.
- 384 3. Gerri, C., Menchero, S., Mahadevaiah, S.K., Turner, J.M.A., and Niakan, K.K.
385 (2020). Human Embryogenesis: A Comparative Perspective. *Annu Rev Cell
386 Dev Biol* 36, 411-440. 10.1146/annurev-cellbio-022020-024900.
- 387 4. Kaneko, K.J., and DePamphilis, M.L. (1998). Regulation of gene expression at
388 the beginning of mammalian development and the TEAD family of
389 transcription factors. *Dev Genet* 22, 43-55. Doi
390 10.1002/(Sici)1520-6408(1998)22:1<43::Aid-Dvg5>3.0.Co;2-7.
- 391 5. Nishioka, N., Yamamoto, S., Kiyonari, H., Sato, H., Sawada, A., Ota, M.,
392 Nakao, K., and Sasaki, H. (2008). Tead4 is required for specification of
393 trophectoderm in pre-implantation mouse embryos. *Mech Develop* 125,
394 270-283. 10.1016/j.mod.2007.11.002.
- 395 6. Yagi, R., Kohn, M.J., Karavanova, I., Kaneko, K.J., Vullhorst, D.,
396 DePamphilis, M.L., and Buonanno, A. (2007). Transcription factor TEAD4
397 specifies the trophectoderm lineage at the beginning of mammalian
398 development. *Development* 134, 3827-3836. 10.1242/dev.010223.
- 399 7. Nishioka, N., Inoue, K., Adachi, K., Kiyonari, H., Ota, M., Ralston, A., Yabuta,
400 N., Hirahara, S., Stephenson, R.O., Ogonuki, N., et al. (2009). The Hippo
401 signaling pathway components Lats and Yap pattern Tead4 activity to
402 distinguish mouse trophectoderm from inner cell mass. *Dev Cell* 16, 398-410.
403 10.1016/j.devcel.2009.02.003.
- 404 8. Jedrusik, A., Bruce, A.W., Tan, M.H., Leong, D.E., Skamagki, M., Yao, M.,
405 and Zernicka-Goetz, M. (2010). Maternally and zygotically provided Cdx2
406 have novel and critical roles for early development of the mouse embryo. *Dev
407 Biol* 344, 66-78. 10.1016/j.ydbio.2010.04.017.
- 408 9. Ralston, A., Cox, B.J., Nishioka, N., Sasaki, H., Chea, E., Rugg-Gunn, P., Guo,
409 G., Robson, P., Draper, J.S., and Rossant, J. (2010). Gata3 regulates

- 410 trophoblast development downstream of Tead4 and in parallel to Cdx2.
411 Development 137, 395-403. 10.1242/dev.038828.

412 10. Wu, G.M., Gentile, L., Fuchikami, T., Sutter, J., Psathaki, K., Esteves, T.C.,
413 Arauzo-Bravo, M.J., Ortmeier, C., Verberk, G., Abe, K., and Scholer, H.R.
414 (2010). Initiation of trophectoderm lineage specification in mouse embryos is
415 independent of Cdx2. Development 137, 4159-4169. 10.1242/dev.056630.

416 11. Home, P., Ray, S., Dutta, D., Bronshteyn, I., Larson, M., and Paul, S. (2009).
417 GATA3 Is Selectively Expressed in the Trophectoderm of Peri-implantation
418 Embryo and Directly Regulates Cdx2 Gene Expression. J Biol Chem 284,
419 28729-28737. 10.1074/jbc.M109.016840.

420 12. Komor, A.C., Kim, Y.B., Packer, M.S., Zuris, J.A., and Liu, D.R. (2016).
421 Programmable editing of a target base in genomic DNA without
422 double-stranded DNA cleavage. Nature 533, 420-+. 10.1038/nature17946.

423 13. Duranthon, V., Watson, A.J., and Lonergan, P. (2008). Preimplantation embryo
424 programming: transcription, epigenetics, and culture environment.
425 Reproduction 135, 141-150. 10.1530/Rep-07-0324.

426 14. Larue, L., Ohsugi, M., Hirchenhain, J., and Kemler, R. (1994). E-Cadherin
427 Null Mutant Embryos Fail to Form a Trophectoderm Epithelium. P Natl Acad
428 Sci USA 91, 8263-8267. DOI 10.1073/pnas.91.17.8263.

429 15. Riethmacher, D., Brinkmann, V., and Birchmeier, C. (1995). A Targeted
430 Mutation in the Mouse E-Cadherin Gene Results in Defective Preimplantation
431 Development. P Natl Acad Sci USA 92, 855-859. DOI 10.1073/pnas.92.3.855.

432 16. De Vries, W.N., Evsikov, A.V., Haac, B.E., Fancher, K.S., Holbrook, A.E.,
433 Kemler, R., Solter, D., and Knowles, B.B. (2004). Maternal beta-catenin and
434 E-cadherin in mouse development. Development 131, 4435-4445.
435 10.1242/dev.01316.

436 17. Xu, J., Kausalya, P.J., Phua, D.C., Ali, S.M., Hossain, Z., and Hunziker, W.
437 (2008). Early embryonic lethality of mice lacking ZO-2, but Not ZO-3, reveals
438 critical and nonredundant roles for individual zonula occludens proteins in
439 mammalian development. Mol Cell Biol 28, 1669-1678.
440 10.1128/MCB.00891-07.

441 18. Sheth, B., Nowak, R.L., Anderson, R., Kwong, W.Y., Papenbrock, T., and
442 Fleming, T.P. (2008). Tight junction protein ZO-2 expression and relative
443 function of ZO-1 and ZO-2 during mouse blastocyst formation. Exp Cell Res
444 314, 3356-3368. 10.1016/j.yexcr.2008.08.021.

445 19. Katsuno, T., Umeda, K., Matsui, T., Hata, M., Tamura, A., Itoh, M., Takeuchi,
446 K., Fujimori, T., Nabeshima, Y., Noda, T., et al. (2008). Deficiency of zonula
447 occludens-1 causes embryonic lethal phenotype associated with defected yolk
448 sac angiogenesis and apoptosis of embryonic cells. Mol Biol Cell 19,
449 2465-2475. 10.1091/mbc.E07-12-1215.

450 20. Lim, H.Y.G., Alvarez, Y.D., Gasnier, M., Wang, Y., Tetlak, P., Bissiere, S.,
451 Wang, H., Biro, M., and Plachta, N. (2020). Keratins are asymmetrically

- 452 inherited fate determinants in the mammalian embryo. *Nature* **585**, 404-409.
453 10.1038/s41586-020-2647-4.

454 21. Choi, I., Carey, T.S., Wilson, C.A., and Knott, J.G. (2012). Transcription factor
455 AP-2gamma is a core regulator of tight junction biogenesis and cavity
456 formation during mouse early embryogenesis. *Development* **139**, 4623-4632.
457 10.1242/dev.086645.

458 22. Cao, Z., Carey, T.S., Ganguly, A., Wilson, C.A., Paul, S., and Knott, J.G.
459 (2015). Transcription factor AP-2gamma induces early Cdx2 expression and
460 represses Hippo signaling to specify the trophectoderm lineage. *Development*
461 **142**, 1606-1615. 10.1242/dev.120238.

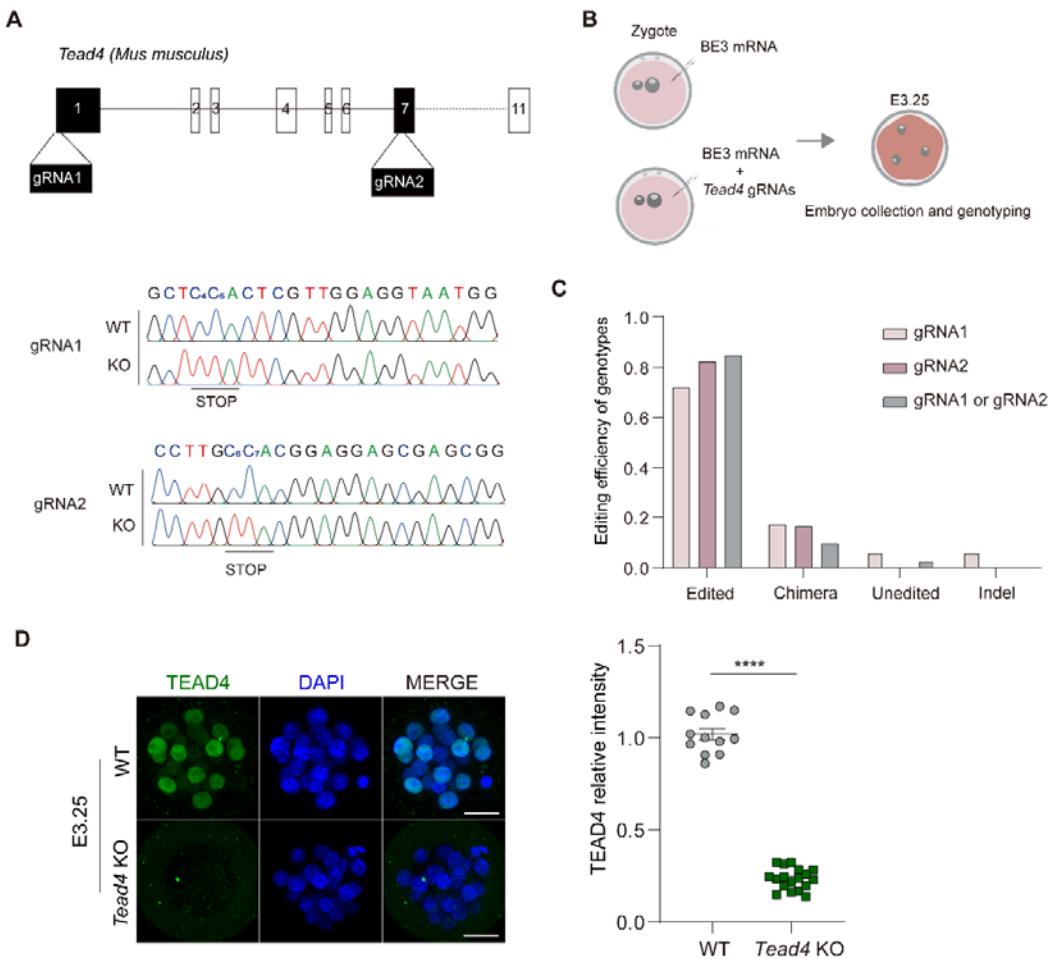
462 23. Plusa, B., Frankenberg, S., Chalmers, A., Hadjantonakis, A.K., Moore, C.A.,
463 Papalopulu, N., Papaioannou, V.E., Glover, D.M., and Zernicka-Goetz, M.
464 (2005). Downregulation of Par3 and aPKC function directs cells towards the
465 ICM in the preimplantation mouse embryo. *J Cell Sci* **118**, 505-515.
466 10.1242/jcs.01666.

467 24. Shi, Y., Hu, B.J., Wang, Z.Z.C., Wu, X.T., Luo, L., Li, S., Wang, S.H., Zhang,
468 K., and Wang, H.A. (2023). Functional role of GATA3 and CDX2 in lineage
469 specification during bovine early embryonic development. *Reproduction* **165**,
470 325-333. 10.1530/REP-22-0269.

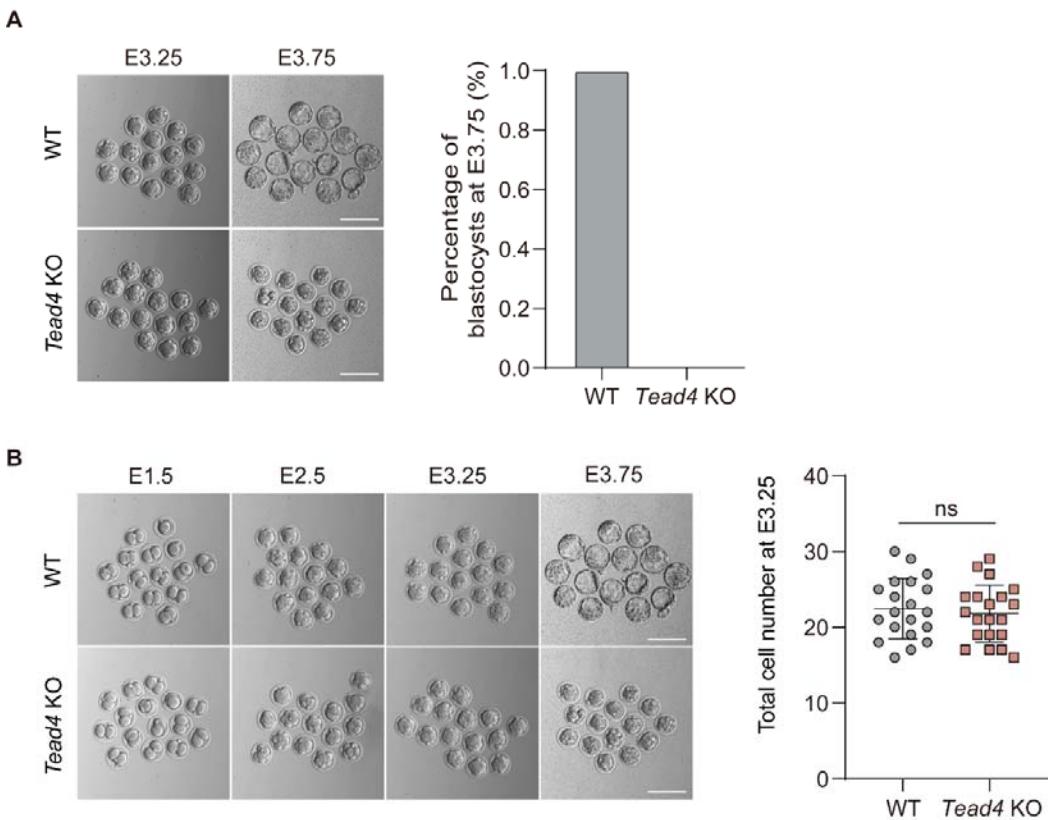
471 25. Komor, A.C., Badran, A.H., and Liu, D.R. (2017). CRISPR-Based
472 Technologies for the Manipulation of Eukaryotic Genomes (vol 168, pg 20,
473 2017). *Cell* **169**, 559-559. 10.1016/j.cell.2017.04.005.

474 26. Yang, B., Yang, L., and Chen, J. (2019). Development and Application of Base
475 Editors. *Crispr J* **2**, 91-104. 10.1089/crispr.2019.0001.

476 27. Schwarz, N., Windoffer, R., Magin, T.M., and Leube, R.E. (2015). Dissection
477 of keratin network formation, turnover and reorganization in living murine
478 embryos. *Sci Rep* **5**, 9007. 10.1038/srep09007.


479 28. Paulin, D., Babinet, C., Weber, K., and Osborn, M. (1980). Antibodies as
480 Probes of Cellular-Differentiation and Cytoskeletal Organization in the Mouse
481 Blastocyst. *Experimental Cell Research* **130**, 297-304. Doi
482 10.1016/0014-4827(80)90006-3.

483 29. Akizawa, H., Kobayashi, K., Bai, H., Takahashi, M., Kagawa, S., Nagatomo,
484 H., and Kawahara, M. (2018). Reciprocal regulation of TEAD4 and CCN2 for
485 the trophectoderm development of the bovine blastocyst. *Reproduction* **155**,
486 563-571. 10.1530/REP-18-0043.


487 30. Sakurai, N., Takahashi, K., Emura, N., Hashizume, T., and Sawai, K. (2017).
488 Effects of downregulating TEAD4 transcripts by RNA interference on early
489 development of bovine embryos. *J Reprod Dev* **63**, 135-142.
490 10.1262/jrd.2016-130.

491 31. Bolger, A.M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible
492 trimmer for Illumina sequence data. *Bioinformatics* **30**, 2114-2120.
493 10.1093/bioinformatics/btu170.

- 494 32. Kim, D., Langmead, B., and Salzberg, S.L. (2015). HISAT: a fast spliced
495 aligner with low memory requirements. *Nat Methods* 12, 357-360.
496 10.1038/nmeth.3317.
- 497 33. Liao, Y., Smyth, G.K., and Shi, W. (2014). featureCounts: an efficient general
498 purpose program for assigning sequence reads to genomic features.
499 *Bioinformatics* 30, 923-930. 10.1093/bioinformatics/btt656.
- 500 34. Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D.R., Pimentel,
501 H., Salzberg, S.L., Rinn, J.L., and Pachter, L. (2014). Differential gene and
502 transcript expression analysis of RNA-seq experiments with TopHat and
503 Cufflinks (vol 7, pg 562, 2012). *Nat Protoc* 9, 2513-2513.
504 10.1038/nprot1014-2513a.
- 505 35. Huang da, W., Sherman, B.T., and Lempicki, R.A. (2009). Bioinformatics
506 enrichment tools: paths toward the comprehensive functional analysis of large
507 gene lists. *Nucleic Acids Res* 37, 1-13. 10.1093/nar/gkn923.
- 508 36. Huang da, W., Sherman, B.T., and Lempicki, R.A. (2009). Systematic and
509 integrative analysis of large gene lists using DAVID bioinformatics resources.
510 *Nat Protoc* 4, 44-57. 10.1038/nprot.2008.211.
- 511
- 512

526

527

528 **Fig 2. Depletion of *Tead4* leads to developmental arrest at morula stage in mouse.**

529 (A) Quantification of the number of blastocysts in control and *Tead4* KO mouse

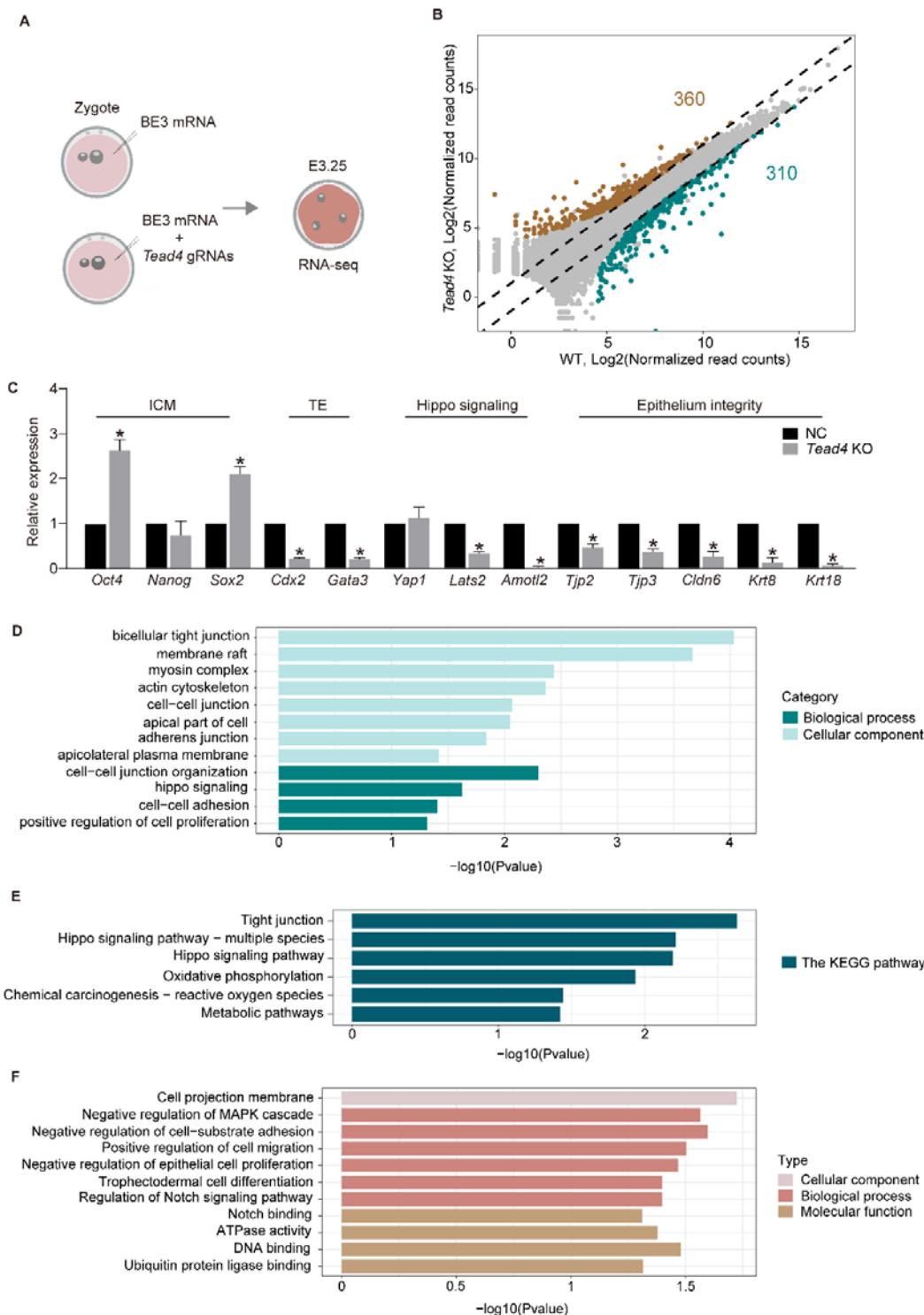
530 embryos. Scale bar, 25 μ m. Data are mean \pm s.e.m. (n=30).

531 (B) Quantification of total cell number in control and *Tead4* KO embryos at E3.25.

532 Data are mean \pm s.e.m. (n=40).

533

534


535

536

537

538

539

540

541 **Fig 3. Identification of *Tead4* target genes with RNA-seq in mouse embryo.**

542 (A) Scheme of RNA-seq in mouse *Tead4* knockout embryos. Zygotes were injected
 543 with BE3 mRNA or *Tead4* gRNAs and BE3 mRNA. Embryos were cultured to
 544 morula stage (E3.25) and subjected to genotyping and RNA-seq analysis.

545 (B) Scatter plots showing change of global gene expression in mouse embryos
546 injected with *Tead4* gRNAs and BE3 mRNA compared with embryos injected with
547 only BE3 mRNA at E3.25.

548 (C) Relative expression of genes responsible for ICM specification, TE differentiation,
549 Hippo signaling and epithelium integrity of TE layers (Fold Change >2 or <0.5 and
550 $P_{adj} < 0.05$).

551 (D-E) GO (D) and KEGG (E) analysis showing downregulated genes enriched in in
552 tight junction and Hippo signaling pathway (Fold Change >2 or <0.5 and $P_{adj} < 0.05$).
553 (F) GO analysis showing upregulated genes enriched in in cell adhesion and epithelial
554 cell proliferation (Fold Change >2 or <0.5 and $P_{adj} < 0.05$).

555

556

557

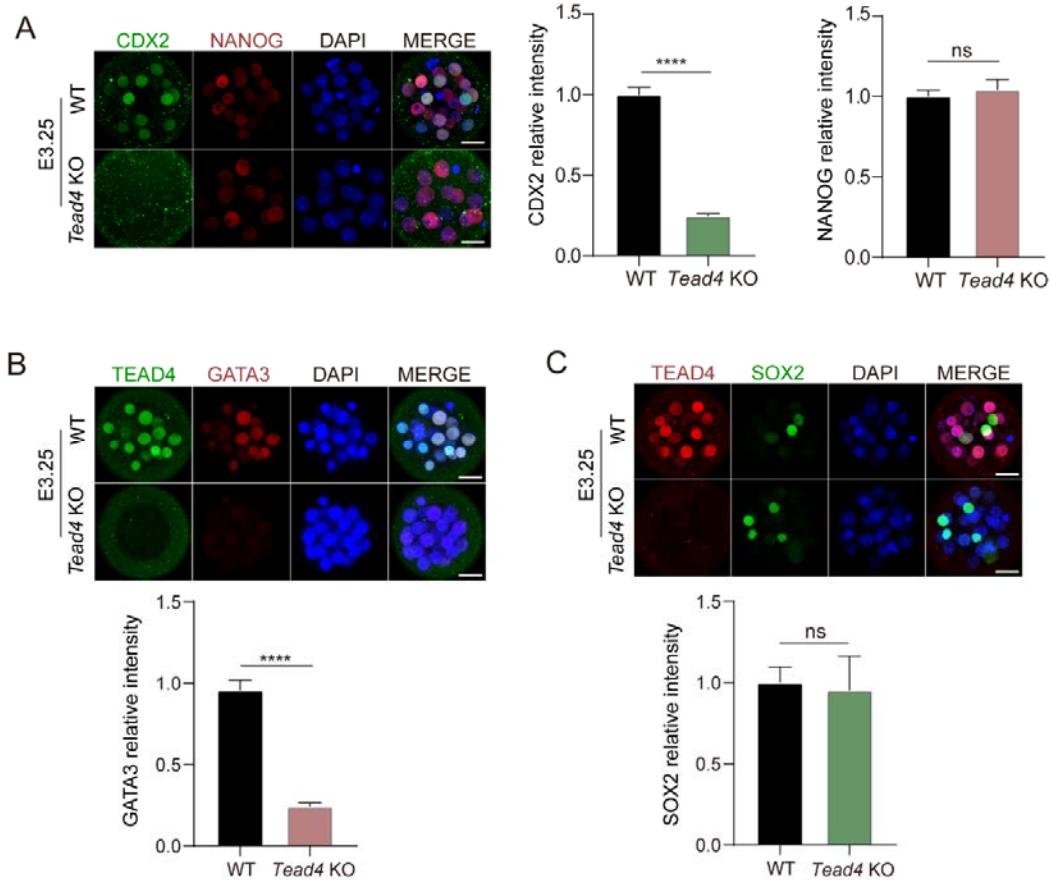
558

559

560

561

562


563

564

565

566

567

568

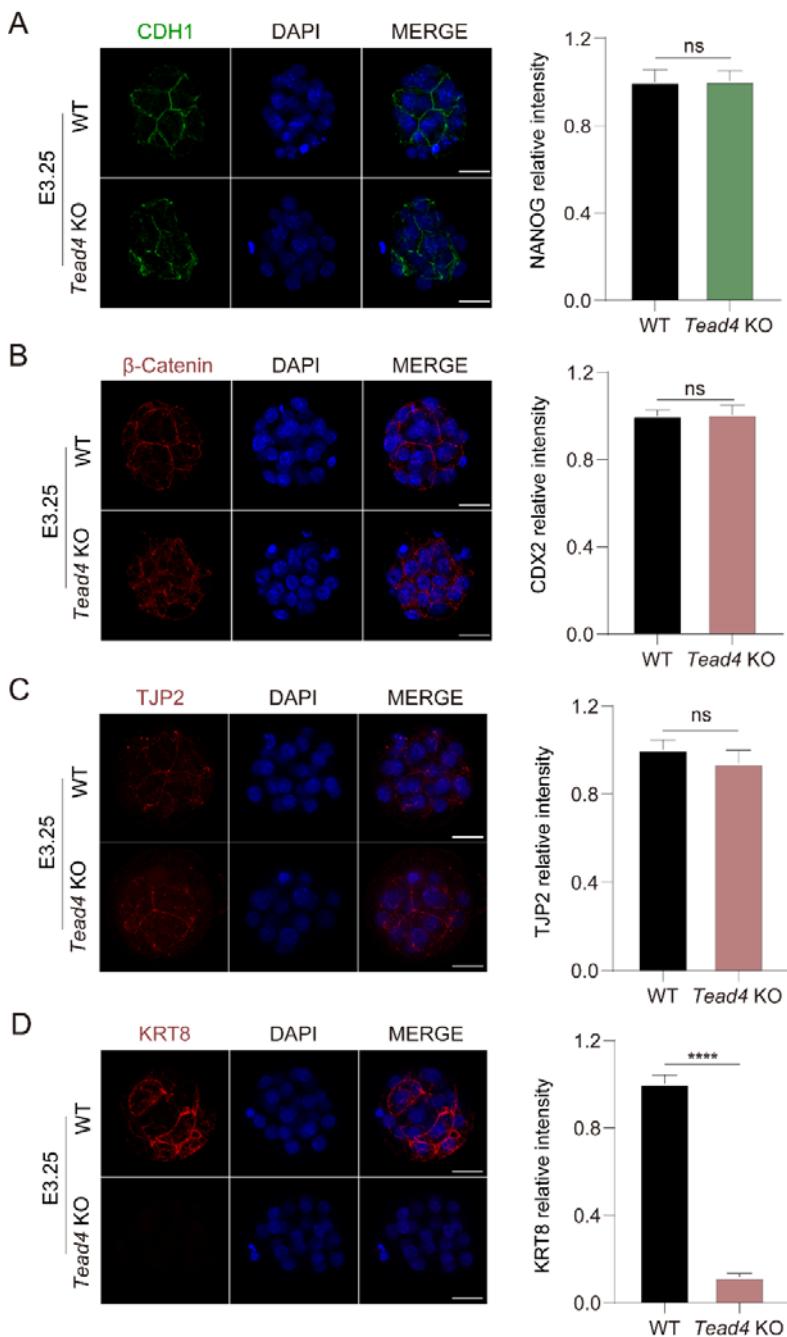
569 **Fig 4. *Tead4* plays a key role in trophectoderm specification in mouse.**

570 (A-C) Confocal images and quantification of the relative fluorescence intensity of (A)
571 CDX2 (n=24, 3 biological replicates) and NANOG (n=26), (B) GATA3 (n=19, 3
572 biological replicates), and (C) SOX2 (n=18, 3 biological replicates) in control and
573 *Tead4* KO mouse embryos at morula stage. Scale bar, 25 μ m. Data are mean \pm s.e.m.
574 ****: P<0.0001.

575

576

577

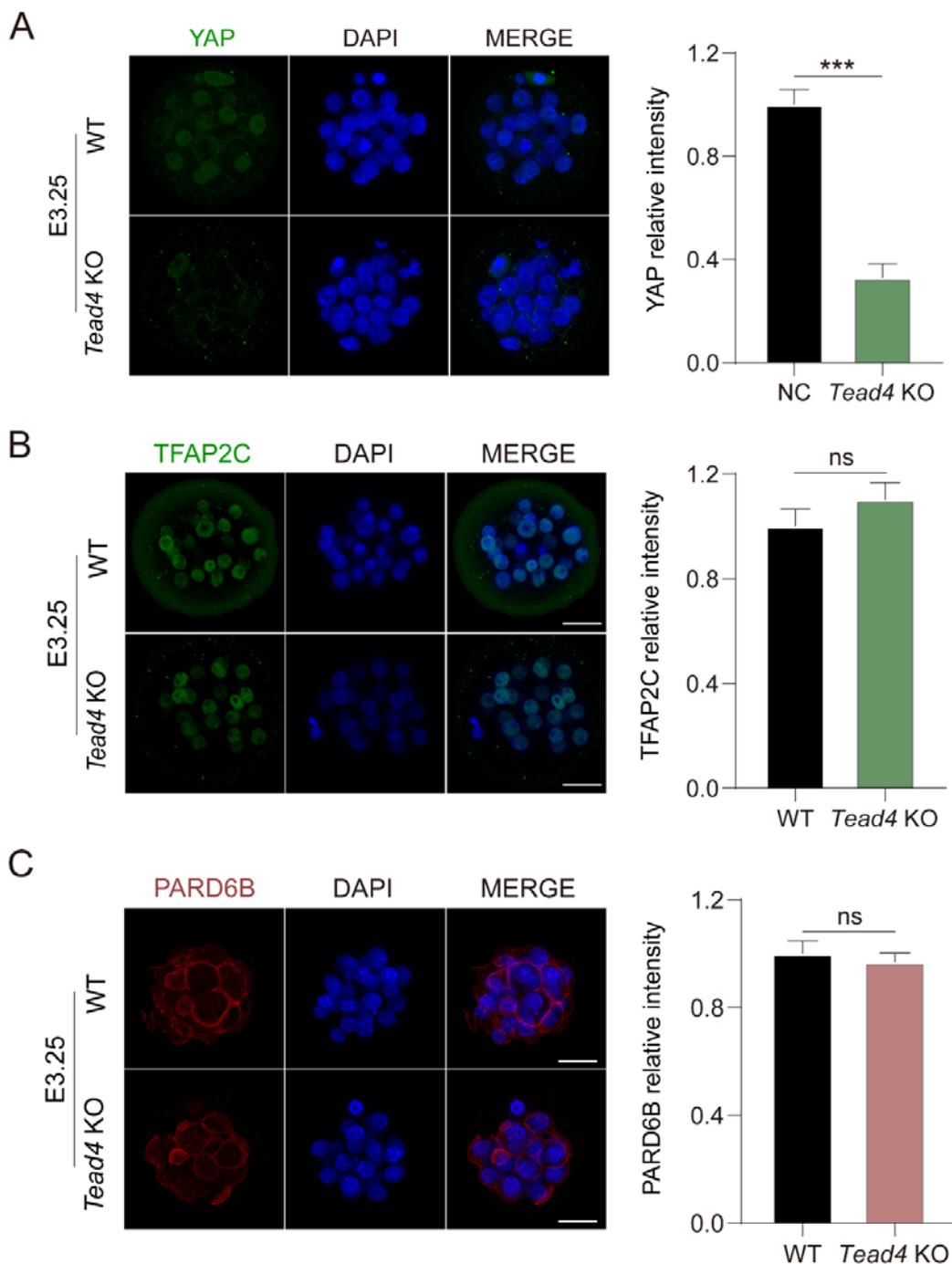

578

579

580

581

582

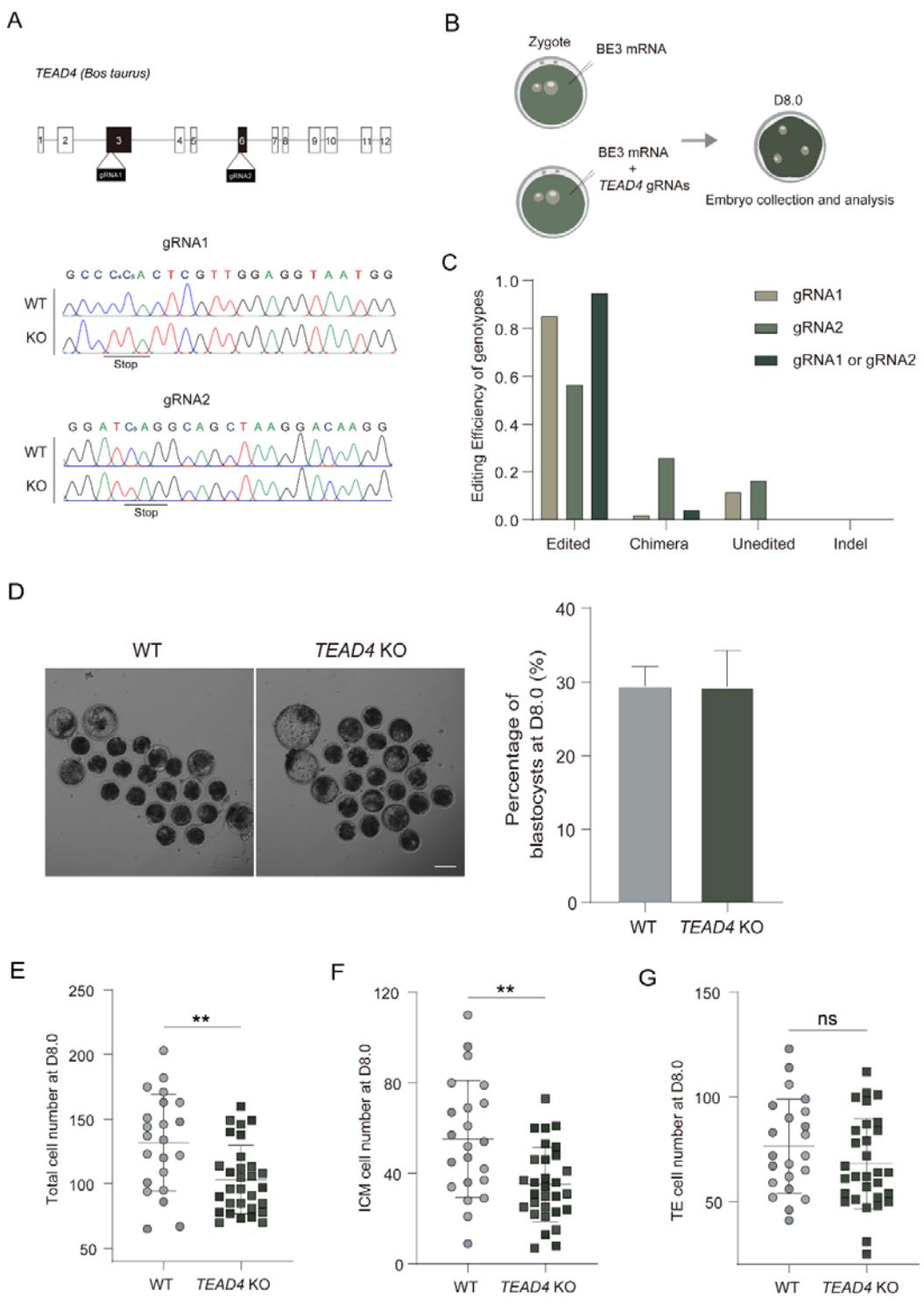


583

584 **Fig 5. Impaired trophectoderm epithelium integrity in mouse *Tead4* KO embryo.**

585 (A-D) Confocal images and quantification of the relative fluorescence intensity of (A)
586 CDH1 (n=26), (B) β -catenin (n=22), (C) TJP2 (n=29, 3 biological replicates) and (D)
587 KRT8 (n=27, 3 biological replicates) in control and *Tead4* KO mouse embryos at
588 morula stage. Scale bar, 25 μ m. Data are mean \pm s.e.m. ****: P<0.0001.

589


590

591 **Fig 6. *Tead4* regulates HIPPO signaling not via *Pard6b* in mouse.**

592 (A-C) Confocal images and quantification of the relative fluorescence intensity of (A)
593 YAP (n=29, 3 biological replicates), (B) TFAP2C (n=20) and (C) PARD6B (n=14) in
594 control and *Tead4* KO mouse embryos at morula stage. Scale bar, 25 μ m. Data are
595 mean \pm s.e.m. ***: P<0.001.

596

597

598

599

600

601

602

603 **Fig 7. *TEAD4* is not required for blastocyst formation in bovine.**

604 (A) Two gRNAs were designed in bovine *TEAD4* exon3 and exon6. C₄, C₅ in gRNA1

605 and C₅ in gRNA2 are potential target sites.

606 (B) Scheme of bovine *TEAD4* knockout. Zygotes were injected with BE3 mRNA or

607 *TEAD4* gRNAs and BE3 mRNA. Embryos were cultured to blastocyst stage (D8.0)

608 and subjected to genotyping and RNA-seq analysis or immunofluorescence.

609 (C) Editing efficiency of different phenotypes in bovine *TEAD4* KO embryos. Data

610 are mean±s.e.m. (n=43, 4 biological replicates).

611 (D) Quantification of the number of blastocysts in control and *TEAD4* KO bovine

612 embryos. Scale bar, 100 μm. Data are mean±s.e.m. (n=160, 4 biological replicates).

613 (E-G) Quantification of total cell number, ICM cell number and TE cell number in

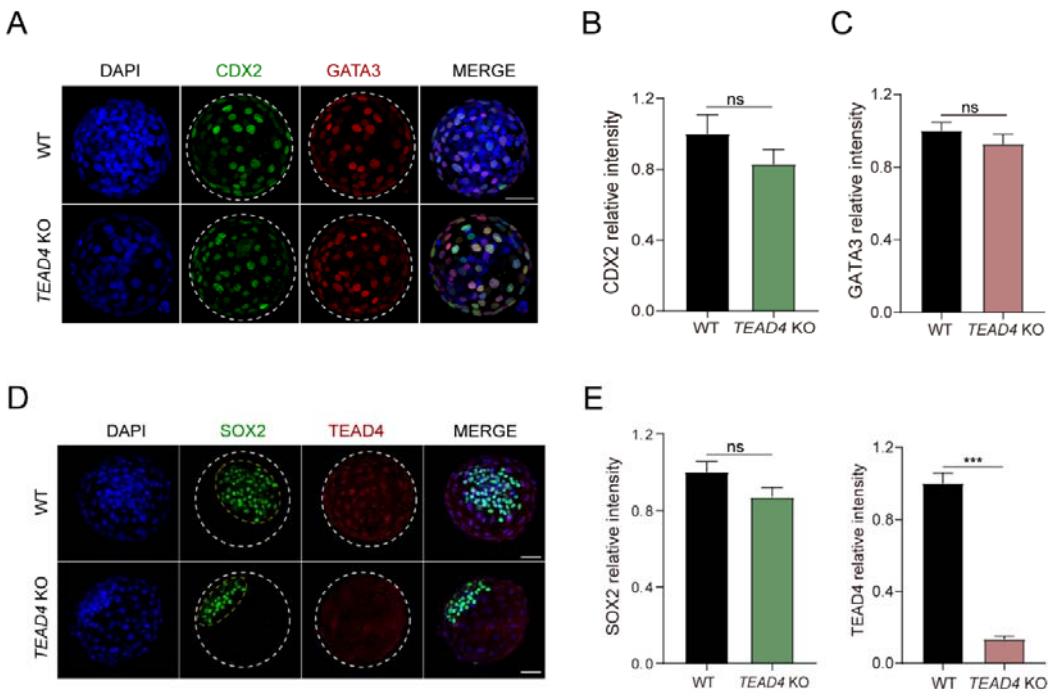
614 control and *TEAD4* KO bovine embryos. Data are mean±s.e.m. (n=52). **: P<0.01.

615

616

617

618


619

620

621

622

623

624
625 **Fig 8. TEAD4 is not required for trophectoderm specification in bovine.**

626 (A-B) Confocal images and quantification of the relative fluorescence intensity of
627 (A-C) CDX2 and GATA3 (n=26), (D-E) SOX2 (n=14, 4 biological replicates) and
628 TEAD4 (n=42, 3 biological replicates) in control and *TEAD4* KO mouse embryos at
629 blstocyst stage (D8.0). Scale bar, 50 μ m. Data are mean \pm s.e.m. ***: P<0.001

630

631

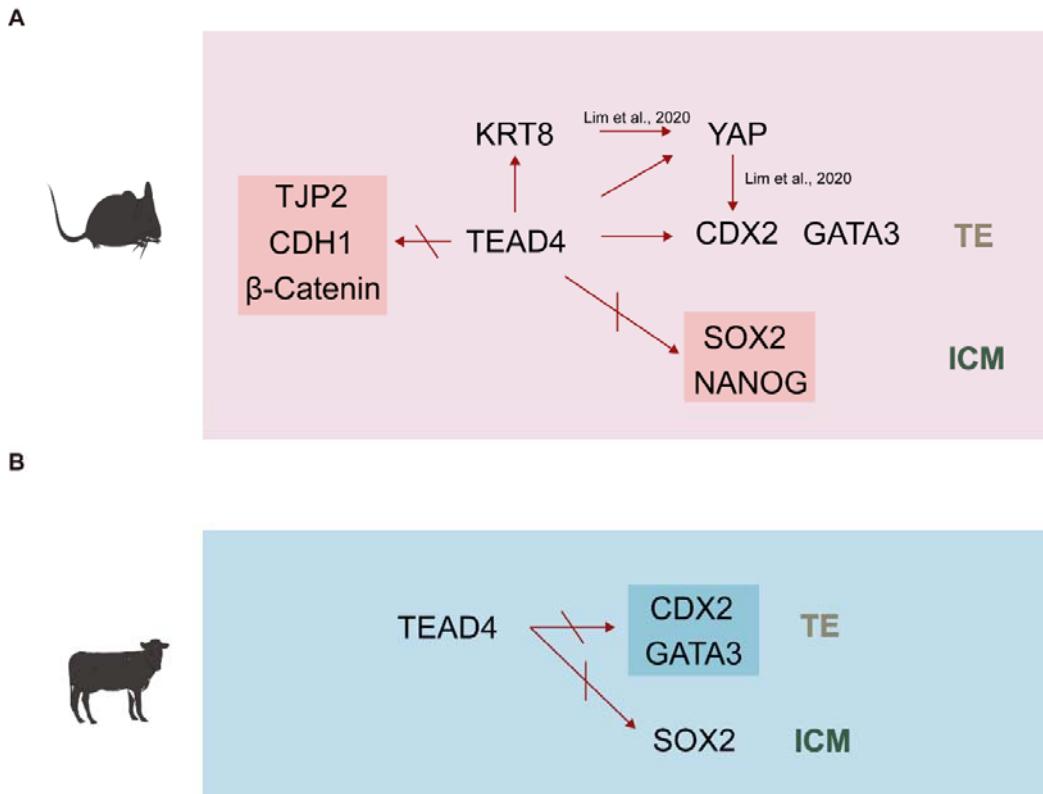
632

633

634

635

636


637

638

639

640

641

643 **Fig 9. Model of TEAD4 transcriptional regulation in mouse and bovine embryo.**
644 For mouse, TEAD4 is crucial for trophectoderm specification and epithelium integrity.
645 For bovine, TEAD4 is not required for lineage specification.

646

647

648

649

650

651

652

653

654

655