

1
2 **Efficacy of a *Pseudomonas aeruginosa* Serogroup O9 Vaccine**
3

4 Dina A. Moustafa^{abc}, Antonio DiGiandomenico^c, Vishnu Raghuram^d, Marc Schulman^c,
5 Jennifer M. Scarff^c, Michael R. Davis, Jr.^c, John J. Varga^{abc},
6 Charles R. Dean^c, and Joanna B. Goldberg^{abc#}

7
8
9
10 ^aDepartment of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep,
11 Emory University School of Medicine, Atlanta, Georgia, USA

12
13 ^bEmory+Children's Center for Cystic Fibrosis and Airway Disease Research, Emory
14 University School of Medicine, Atlanta, Georgia, USA

15
16 ^cDepartment of Microbiology, Immunology, and Cancer Biology, University of Virginia
17 Health System, Charlottesville, VA, USA.

18
19 ^dMicrobiology and Molecular Genetics Program, Graduate Division of Biological and
20 Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA

21
22 [#]Corresponding author: joanna.goldberg@emory.edu

23
24 Running title: *Pseudomonas aeruginosa* serogroup O9 vaccine

25
26
27
28

29 **ABSTRACT**

30
31 There are currently no approved vaccines against the opportunistic pathogen
32 *Pseudomonas aeruginosa*. Among vaccine targets, the lipopolysaccharide (LPS) O
33 antigen of *P. aeruginosa* is the most immunodominant protective candidate. There are
34 twenty different O antigens composed of different repeat sugars structures conferring
35 serogroup specificity, and ten are found most frequently in infection. Thus, one
36 approach to combat infection by *P. aeruginosa* could be to generate immunity with a
37 vaccine cocktail that includes all these serogroups. Serogroup O9 is one of the ten
38 serogroups commonly found in infection, but it has never been developed into a
39 vaccine, likely due, in part, to the acid labile nature of the O9 polysaccharide. Our
40 laboratory has previously shown that intranasal administration of an attenuated
41 *Salmonella* strain expressing the *P. aeruginosa* serogroup O11 LPS O antigen was
42 effective in clearing and preventing mortality in mice following intranasal challenge with
43 serogroup O11 *P. aeruginosa*. Consequently, we set out to develop a *P. aeruginosa*
44 serogroup O9 vaccine using a similar approach. Here we show that *Salmonella*
45 expressing serogroup O9 triggered an antibody-mediated immune response following
46 intranasal administration to mice and that it conferred protection from *P. aeruginosa*
47 serogroup O9 in a murine model of acute pneumonia.

48
49 **INTRODUCTION**

50
51 *Pseudomonas aeruginosa* is a Gram-negative bacterium and an important opportunistic
52 pathogen. It is one of the primary bacteria responsible for nosocomial infections; in
53 particular, acute infections leading to sepsis in patients with ventilator-associated
54 pneumonia and those with burn wounds, surgical incisions, diabetic foot ulcers, and
55 catheters. It is also the primary cause of chronic lung infections in individuals living with
56 cystic fibrosis, leading to morbidity and mortality in this population. In other patients,
57 acute lung infections can lead to chronic infections. *P. aeruginosa* can also infect
58 otherwise healthy individuals, causing otitis externa, otitis media, folliculitis, and
59 keratitis; most of these infections are due to a breach of normal host immune defense
60 (1, 2).

61
62 Infections with *P. aeruginosa* are of particular concern because this bacterium is
63 naturally antibiotic resistant and becoming multidrug-resistant (MDR) or extensively
64 drug resistant (XDR). MDR *P. aeruginosa* is considered a "Serious Threat", as defined
65 by the CDC Antibiotic Resistance Threats in the United States Report-2019. And *P. aeruginosa*
66 infections are notoriously difficult to treat once established. Thus, there is
67 an urgent need to develop new methods to combat infections caused by *P. aeruginosa*.

68
69 Vaccination represents an appropriate approach to prevent infections by *P. aeruginosa*,
70 however, vaccines targeting this bacterium have been under investigation for over 50
71 years, with none having yet been approved (3-6). The surface-exposed
72 lipopolysaccharide (LPS) is the immunodominant protective antigen of *P. aeruginosa*
73 and therefore is considered an appropriate target for vaccine development. LPS is
74 composed of the lipid A embedded in the outer membrane, the core oligosaccharide,

75 and O antigen polysaccharide, which extends out from the surface of the bacterial cell.
76 For *P. aeruginosa*, twenty different International Antigenic Typing System (IATS)
77 serogroups are recognized, based on the expression of the O antigen portion. All of the
78 O antigen structures have been determined (7) with each serogroup possessing
79 subtype strains having subtle variations, leading to over 30 subtypes (8). The
80 serogroup-specificity of the O antigen suggests that a comprehensive *P. aeruginosa*
81 LPS-based vaccine would need to encompass all these subtypes. Fortunately,
82 numerous studies have found 10 serogroups to be most common in various types of
83 infection (9-12).

84
85 One attractive approach would be to develop a cocktail of the most common LPS
86 serogroups as a vaccine. However polysaccharides are generally considered poor
87 immunogens and alone do not elicit a robust immune response (reviewed in (13)).
88 Because of this, many of the currently available polysaccharide based-vaccines are
89 polysaccharide-protein conjugates (14). For *P. aeruginosa*, in the 1980s-1990s the
90 Swiss Serum and Vaccine Institute developed and tested an octavalent conjugated
91 vaccine with eight different *P. aeruginosa* serogroups covalently coupled to the exotoxin
92 A antigen of *P. aeruginosa* (15). While the clinical results of these studies were never
93 reported, this vaccine did not contain serogroups O8 or O9, because they contain
94 internal ketosidic linkages (16) and thus cannot be adequately separated from the toxic
95 lipid A component using acid hydrolysis needed to conjugate to the protein carrier.
96 More recently, Nasrin et al. (12) used a “Multiple Antigen Presenting System” based on
97 high molecular weight polysaccharides (17) and have targeted 8 of the most common *P.*
98 *aeruginosa* O antigen serogroups (12). Serogroup O8 and O9 were also missing from
99 this system.

100
101 Consequently, we set out to develop a vaccine to one of these “neglected” O antigen
102 serogroups of *P. aeruginosa*. Our laboratory has previously shown that intranasal
103 administration of an attenuated *Salmonella* strain expressing the *Pseudomonas*
104 *aeruginosa* serogroup O11 LPS O antigen was effective in clearing and preventing
105 mortality in mice following intranasal challenge with serogroup O11 *P. aeruginosa* (18).
106 Here we show that *Salmonella* expressed serogroup O9 and can trigger an antibody-
107 mediated immune response following intranasal administration that conferred protection
108 in a murine model of acute pneumonia.

109
110
111 **MATERIALS AND METHODS**

112
113 **Cloning and expression of *P. aeruginosa* serogroup O9 O antigen on *S. typhimurium*.** Genomic DNA was isolated from *P. aeruginosa* serogroup O9 strain
114 PAO9 (kindly provided by Gerald B. Pier, Harvard Medical School, Boston, MA), using
115 standard procedures. Genomic DNA was randomly sheared through a syringe needle
116 and was end-repaired and cloned into pWEB::TNC (Epicentre Technologies, Madison,
117 WI), followed by packaging into MaxPlax lambda packaging extracts. The lambda
118 particles were used to infect *Escherichia coli* EP105. Colonies were absorbed with
119 mouse monoclonal antibodies to *P. aeruginosa* serogroup O9 (Rougier Bio-Tech Ltd.).
120

121 Colonies reacting with antisera were separated with anti-mouse antibodies bound to
122 magnetic beads (Dynabeads; Thermo Fisher Scientific) followed by magnetic bead
123 separation using a mini-magnetic particle separator (CPG Inc. Lincoln, Park, NJ).
124 Positive colonies were selected by colony immunoblot using anti-serogroup O9 mouse
125 monoclonal antibody. The serogroup O9 locus was then cloned from the pWEB::TNC
126 plasmid into the broad host range cosmid vector, pLAFR376 (kindly provided by
127 Laurence Rahme, Massachusetts General Hospital, Boston MA). To do this, plasmid
128 DNA from a positive colony was digested into approximately 20-25 kb fragments with
129 *EcoRI* and ligated to completely digested pLAFR376. The ligation reactions were
130 packaged as bacteriophage lambda particles with the Stratagene Gigapack® XL-11
131 packaging system and used to infect *E. coli* HB101. Transformed cells were
132 selected on Luria broth (LB) media containing (tetracycline (Tet) 10 µg/ml) where
133 serogroup O9 positive clones were identified by colony immunoblots using the anti-
134 serogroup O9 mouse monoclonal antibody. The positive clone that exhibited the
135 strongest reaction was grown in broth culture for further characterization. This
136 plasmid was isolated and designated pLAFRO9. The construct was confirmed by
137 enzyme digestion and DNA sequencing (Emory Integrated Genomics Core). Plasmid
138 sequences were assembled using PlasmidSPAdes (3.13.1) and the presence of the
139 serogroup O9 locus was confirmed by BLAST against a reference locus accession
140 AF498420.1. Plasmid pLAFRO9 was transferred to *Salmonella enterica* serovar
141 Typhimurium strain SL3261, by P22 transduction using *S. typhimurium* LB5010 as an
142 intermediate host, as described previously (19) and expression was confirmed by silver-
143 stained gel and Western immunoblot of extracted LPS.
144

145 **Preparation of bacterial strains used for immunization and infection.**

146 *S. typhimurium* SL3261 containing pLAFRO9 (vaccine) or SL3261 containing the
147 cosmid pLAFR376 (vector), were used for immunization. All strains were grown
148 overnight in LB supplemented with 10 µg/ml Tet. Both strains were subcultured and
149 grown to an OD₆₅₀ of 0.5. Bacteria were then washed twice and resuspended in
150 phosphate-buffered saline, pH 7.4 (PBS). For infection, *P. aeruginosa* serogroup O9
151 was grown on Difco™ *Pseudomonas* Isolation Agar (PIA) overnight at 37°C and
152 suspended in PBS to an OD₆₀₀ of 0.5, corresponding to ~10⁹ colony-forming units
153 (CFU)/mL. Inocula were adjusted spectrophotometrically to obtain the desired dose in a
154 volume of 20 µL. All strains were adjusted spectrophotometrically to obtain the desired
155 immunization or challenge dose.
156

157 **LPS extraction, SDS-PAGE, and Western immunoblotting.**

158 LPS extracts of *P. aeruginosa* and *Salmonella* organisms were prepared and separated
159 by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) as
160 described (18) with a Novex X-Cell Surelock minicell system (Invitrogen, Carlsbad, CA).
161 Tris-bis-polyacrylamide gels (12.5%) were cast in 1.0-mm Invitrogen cassettes. After
162 PAGE separation was completed, lysates were electroblotted onto Trans-Blot 0.2-µm-
163 pore-size pure nitrocellulose membranes (Bio-Rad Laboratories, Hercules, CA) by use
164 of a Bio-Rad Mini Trans-Blot electrophoretic transfer cell. Membranes were blocked
165 and then probed with *Pseudomonas* serogroup O9-specific rabbit polyclonal antibodies
166 (Denka Seiken, Tokyo, Japan), followed by incubation with anti-rabbit secondary

167 antibodies conjugated to alkaline phosphatase (Sigma). Reactions were visualized by
168 the addition of Sigma fast 5-bromo-4-chloro-3-indolylphosphate-nitroblue tetrazolium.
169

170 **Immunization with *S. typhimurium* SL3261 and *P. aeruginosa* challenge.**

171 Use of animals in this study was reviewed and approved by the University of Virginia
172 Institutional Animal Care and Use Committee (IACUC) under protocol number 2844-02-
173 11. All mice were kept under specific pathogen-free conditions, and all guidelines for
174 humane endpoints were strictly followed. All animal experiments were conducted in
175 accordance with the “Public Health Service Policy on Humane Care and Use of
176 Laboratory Animals” by NIH, “Animal Welfare Act and Amendments” by USDA, “Guide
177 for the Care and Use of Laboratory Animals” by National Research Council (NRC).
178 Female BALB/c mice, 5 to 6 weeks old (Harlan Laboratory [Indianapolis, IN] or Jackson
179 Laboratory [Bar Harbor, ME]), were immunized intranasally as described (18). Prior to
180 vaccination, mice were anesthetized by intraperitoneal injection of 0.2 ml of xylazine
181 (1.3 mg/ml) and ketamine (6.7 mg/ml) in 0.9% saline. For intranasal vaccination, mice
182 were given 1×10^7 - 1×10^9 CFU of either SL3261 (pLAFRO9) (vaccine) or SL3261
183 (pLAFR376) (vector) intranasally in a 20 μ l volume (10 μ l per nostril). Boosters were
184 performed using the same protocol as the initial vaccination, approximately 14 days
185 after the initial vaccination.

186
187 For bacterial challenge, anesthetized mice were given 20 μ l of *P. aeruginosa* strain
188 PAO9 prepared as described above. For *in vivo* protection experiments, infected mice
189 were observed over 5 days, and animals that were moribund following infection or in
190 any way appeared to be under acute distress were humanely euthanized and were
191 included as non-survivors in the experimental results.

192
193 **Collection of sera.**

194 Sera were collected at four weeks post-immunization as described (18). Briefly, blood
195 was obtained by nicking the lateral tail vein of mice; blood sat at room temperature for
196 about 4 hours and was then placed at 4°C overnight. Serum was removed from the red
197 blood cell pellet and was spun at 1,700 rpm for 10 minutes. Samples were stored at
198 -80°C.

199
200 **ELISA analysis of *P. aeruginosa* PAO9 lipopolysaccharide (LPS) expression from
201 *S. typhimurium*.**

202 Enzyme-linked immunosorbent assay (ELISA) analysis was performed on sera as
203 described (18). Briefly, 96-well microtiter plates were coated with *P. aeruginosa* strain
204 PAO9, incubated overnight at 4°C, washed with PBS plus 0.05% Tween 20 (PBS-T),
205 blocked with PBS supplemented with 2% bovine serum albumin (PBS-B), and then
206 washed with PBS-T again. Serum samples were serially diluted in PBS-B and 100 μ l
207 were placed into each well in PAO9 -coated plates, in duplicate. *Pseudomonas*
208 serogroup O9-specific rabbit polyclonal antibodies were used as positive controls. After
209 overnight incubation at 4°C, the plates were washed three times with PBS-T and air-
210 dried. Secondary antibodies (anti-mouse total IgG, IgG1, IgG2a, IgG2b, IgG3, or IgM
211 conjugated to alkaline phosphatase (Southern Biotechnology Associates, Inc.,
212 Birmingham, AL)) diluted 1:5,000 in PBS-B were then added to individual plates and

213 incubated at 37°C for 1 hour. Plates were developed in the dark for 1 hour with 1 mg/ml
214 4-nitrophenyl phosphate in substrate buffer (24.5 mg MgCl₂, 48 ml diethanolamine per
215 500 ml; pH 9.8); development was stopped by adding 50 µl 3 M NaOH. Plates were
216 read using a plate reader at 405 nm. Data were collected using the SOFTmax PRO
217 software (Molecular Devices Corp., Sunnyvale, CA) and then transferred to GraphPad
218 Prism version 6.0 software (GraphPad Software, San Diego, CA) for analysis. For the
219 Ig titer determination, total serum IgG or IgM absorbance readings were adjusted by
220 subtraction of values obtained from the blank, the x-intercept defined the endpoint titer
221 and represented as the reciprocal dilution. IgG subtype quantification for serum
222 samples was based on standard curves that were designed for each antibody isotype
223 by use of GraphPad Prism version 6 software.

224

225 **Detection of bacterial loads.**

226 For bacterial load quantification, mice were euthanized at 24 hours post-infection and
227 nasal wash and whole lungs were collected aseptically. For the nasal wash, an 18-G
228 catheter was placed at the oropharyngeal opening of the mouse and 1.0 ml of PBS-B
229 was flushed through the nasal passage and collected. Whole lungs were collected from
230 each mouse, weighed, and homogenized in 1 mL of PBS. Tissue homogenates were
231 serially diluted and plated on PIA and CFU determination was made 16 to 18 hours
232 later. Final results were expressed as CFU/ml for nasal washes and CFU/g for lung
233 tissues (18).

234

235 **Passive immunization and infection.**

236 All animal procedures were conducted according to the guidelines of the Emory
237 University Institutional Animal Care and Use Committee (IACUC), under approved
238 protocol number DAR-2003421-042216BN. The study was carried out in strict
239 accordance with established guidelines and policies at Emory University School of
240 Medicine, and recommendations in the Guide for Care and Use of Laboratory Animals
241 of the National Institute of Health, as well as local, state, and federal laws. For passive
242 immunization, 6 to 8-week-old female BALB/c mice were anesthetized and infected via
243 the intranasal route with ~1 x 10⁹ CFU/mouse as described. Antisera collected from
244 PBS-, vector-, or vaccine-immunized mice were delivered to the mice (5 µl /nostril)
245 immediately after infection. Mice were euthanized at 24 h post-infection and nasal
246 washes and whole organs were collected aseptically. Nasal wash collection was
247 performed as described. Lung, liver, and spleen tissues were collected from each
248 mouse, weighed, and homogenized in 1 mL of PBS. Tissue homogenates were serially
249 diluted and plated on PIA and CFU determination was made 18 hours later. Final
250 results were expressed as CFU/ml for nasal washes and CFU/g for other organ tissues.

251

252 **Opsonophagocytic killing assay.**

253 Luminescent opsonophagocytosis assay was performed according to the method as
254 described (20). Immune sera from mice vaccinated with 10⁷ or 10⁹ CFU of SL3261
255 (pLAFRO9) were used, and 3- fold serial dilutions ranging from 1:100 – 1:59,049 were
256 tested in triplicates. Sera collected from vector- and PBS treated mice were also tested
257 using the same dilutions. Constitutively bioluminescent *P. aeruginosa* PAO9 strain was
258 constructed by immobilizing the plasmid pUC18miniTn7T-lux-Tp into the wild-type

259 PAO9 strain to generate PAO9 P1-*lux* according to the method described (21). Briefly,
260 25 μ l of each opsonophagocytosis component: *P. aeruginosa* PAO9 P1-*lux*, from log
261 phase cultures diluted to 2×10^6 CFU/ml; diluted baby rabbit serum (1:10); 2×10^7
262 polymorphonuclear leukocyte (PMN); and sera collected from PBS-, vector-, or vaccine-
263 immunized mice. The percentage of killing was determined by comparing the relative
264 luciferase units (RLU) derived from assays lacking serum to the RLU obtained from
265 assays with vector or vaccine sera. The assay was performed in 96-well plates,
266 following a 120 minute-incubation at 37°C shaking at 250 RPM. Microtiter plates were
267 read using an Envision Multilabel plate reader (PerkinElmer).

268

269 **Statistical analysis.**

270 All analyses were performed using GraphPad Prism version 6 software. ELISA
271 endpoint titers were calculated using the linear regression of duplicate measurements of
272 adjusted OD₄₀₅ and were expressed as the reciprocal dilution. The x-intercept served
273 as the endpoint titer. Antibody titers were compared using the Kruskal-Wallis test for
274 comparison of three groups or the Mann-Whitney U test for two group analysis. The
275 results of survival studies were represented using Kaplan-Meier survival curves and
276 were analyzed by the log-rank test.

277

278

279 **RESULTS**

280

281 **S. typhimurium SL3261 containing pLAFRO9 expresses P. aeruginosa serogroup**
282 **O9 LPS.**

283 We cloned the O antigen locus from the *P. aeruginosa* serogroup O9 strain, PAO9, into
284 the broad host range cosmid, pLAFR376, using standard techniques. The plasmid was
285 transferred to *S. typhimurium* SL3261 using P22 transduction. To confirm expression of
286 *P. aeruginosa* serogroup O9, LPS was purified from PAO9, SL3261, and SL3261
287 (pLAFRO9), and separated by SDS-PAGE. A silver stain gel of the LPS fragments is
288 shown in **Fig. 1A**. The pattern of banding is more similar between the two SL3261
289 samples (lane 2 and lane 3) and distinct from PAO9 LPS (lane 1), however banding is
290 seen in all lanes, indicative of LPS isolation. The LPS was analyzed by immunoblotting
291 and reactivity was detected with polyclonal anti-sera specific for serogroup O9 (**Fig.**
292 **1B**). Sera reacted with LPS from PAO9 (lane 1) and with LPS from the *Salmonella*
293 containing pLAFRO9 (lane 3), no reactivity to LPS from SL3261 (lane 2) was seen.
294 These data confirm expression of the *P. aeruginosa* serogroup O9 LPS in our vaccine
295 strain.

296

297 **Intranasal immunization of mice with SL3261(pLAFRO9) induces serum antibody**
298 **responses that confers protection in an acute pneumonia model.**

299 Our group has previously demonstrated the safety and efficacy of SL3261 expressing
300 PA103 serogroup O11 O-antigen (18, 22). Our previous studies with *P. aeruginosa*
301 serogroup O11 expression in SL3261 showed intranasal administration of 10^7
302 CFU/mouse elicited a protective immune response (18). Based on these prior
303 observations, we intranasally immunized mice on day 0 and day 14 with 10^7
304 CFU/mouse of the vaccine (SL3261 (pLAFRO9)) or the vector control (SL3261
305 (pLAFR376)). The kinetics of the *Pseudomonas*- specific serum IgG and IgM antibody
306 responses in sera collected from vaccine-immunized mice were compared to those
307 immunized with PBS- or vector-only. We compared *Pseudomonas*-specific antibody
308 response on day 14 and on day 28, two weeks after the booster dose.

309

310 Interestingly, intranasal immunization using 10^7 CFU/mouse failed to generate a
311 serogroup O9-specific antibody response. We did not observe a substantial difference
312 in serum IgM response in the immunized mice compared to the vector- or PBS-treated
313 mice (**Fig. 2A**). A similar trend was also observed with the serogroup O9 IgG response
314 (**Fig. 2B**). Notably, we did not observe a substantial increase in the immune response
315 in any of immunized mice on day 28, after receiving the booster dose.

316

317 To examine the ability of the vaccine strain to confer protection against acute
318 pneumonia in intranasally immunized animals, mice were challenged by intranasal
319 infection with *P. aeruginosa* PAO9. Prior to this, we tested the virulence of PAO9
320 delivered via the intranasal route in 20 μ l. As shown in **Fig. 2C**, increased doses
321 decreased the time to when animals became moribund or were under distress, with a
322 50% lethal dose (LD_{50}) calculated for this strain to be $\sim 2.0 \times 10^7$ CFU, according to
323 Reed and Muench (23). Immunized mice were challenged with $\sim 1X$ the LD_{50} (2.0×10^7
324 CFU) and mice were euthanized at 24 hours post-infection to assess colonization in the

325 upper (nasal wash) and lower (lung) respiratory tract. Livers and spleens were also
326 collected for the determination of bacterial CFU. As seen in **Fig. 2D**, no statistical
327 difference was seen in bacterial loads in the lungs of vaccine-immunized animals and
328 vector-immunized animals, but both were different compared to PBS-immunized mice.
329 Furthermore, dissemination to liver and spleens of immunized mice was also detected.
330 There was a significant decrease in the bacterial load in the liver and spleen in the
331 vaccine immunized mice relative to the CFUs recovered from PBS immunized mice.
332 However, no statistical difference in bacterial CFU was observed between mice
333 immunized with the vaccine (SL3261 (pLAFRO9) and mice inoculated with the vector
334 (SL3261 (pLAFR376)) (**Fig. 2E**).
335

336 As we analyzed the ELISA data from this initial experiment, we noted that the IgG levels
337 were not as robust as what we had previously observed for serogroup O11 (18),
338 suggesting that higher doses of the vaccine might be needed.
339

340 We subsequently modified our vaccination protocol and immunized mice with different
341 amounts of the vector or vaccine; we administered 10^7 CFU on day 0 and 14, 10^7 CFU
342 at day 0 and 10^9 CFU at day 14, or 10^9 CFU at day 0 and 10^9 CFU at day 14. Serum
343 samples were taken at 4 weeks post-vaccination, and we observed a direct correlation
344 between the immunization dose and the level of O9-specific IgG, but not IgM (**Fig. 3A &**
345 **3B**), with the mice administered 10^9 CFU of SL3261 (pLAFRO9) exhibiting significantly
346 increased serogroup O9-specific IgG response after the booster immunization (**Fig. 3B**).
347

348 At 6 weeks post-vaccination, mice were challenged with 4.5×10^7 CFU of PAO9 (~2.5X
349 the LD₅₀). After 24 hours, the bacterial colonization in the upper and lower respiratory
350 tract was determined. There was an inverse correlation between the CFU of PAO9 in
351 either upper or lower respiratory tract and the level of IgG (**Fig. 3C**). Notably, we
352 observed a strong correlation between the level of IgG and the subsequent clearance
353 from nasal washes and the lungs, as the bacterial burden tended to decrease with
354 increasing doses of SL3261 (pLAFRO9) administered.
355

356 Based on the results from the previous experiment, we repeated the immunization by
357 administering 10^9 CFU of SL3261 (pLAFRO9) vaccine at day 0 and boosted each
358 mouse with the same dose, 10^9 CFU on day 14. ELISA analysis using sera collected
359 four weeks post-immunization from BALB/c mice that received the vaccine revealed
360 robust *P. aeruginosa* serogroup O9 LPS-specific IgM and IgG antibody response when
361 compared with sera from the vector-immunized or PBS control mice (**Fig. 4A & 4B**).
362

363 The IgG subtype responses to *P. aeruginosa* PAO9 were determined for vaccine-
364 immunized mice. Intranasal immunization elicited significantly higher levels of IgG2a,
365 IgG2b and IgG3. The levels of IgG2a antibodies were significantly higher compared to
366 IgG1 and IgG3 ($P < 0.001$) (**Fig. 4C**).
367

368 Given that we observed a significant increase in *P. aeruginosa* Ig titers following
369 intranasal immunization, we next sought to determine the level of protection against
370 PAO9 challenge in immunized mice. At 6 weeks post-vaccination, mice were

371 challenged with 8.6×10^7 CFU of PAO9 (~4X the LD₅₀). Again, we observed a
372 statistically significant difference in the bacterial counts recovered from vaccine-
373 immunized mice when compared to the PBS and vector-immunized controls in either
374 upper (nasal wash) or lower (lung) respiratory tract (**Fig. 4D**). Furthermore, no bacteria
375 were recovered from the spleen nor liver tissues from vaccine-immunized mice (**Fig.**
376 **4E**).

377

378 **Antibody response induced by intranasal vaccination mediates opsonic killing of *P.***
379 ***aeruginosa* PAO9 *in vitro***

380 We previously demonstrated immunization of *Salmonella* carrying pLPS2 results in the
381 production of O11 O-antigen-specific antibodies and induces opsonic antibodies (18).
382 Here, we examined the efficiency of sera collected from mice immunized and boosted
383 with 10^7 or 10^9 CFU of the vaccine to promote opsonization and phagocytosis of *P.*
384 *aeruginosa* PAO9 by PMNs. As a control, we performed the assay in absence of
385 vaccine-immune sera to further confirm the role of antibodies in protection. Pooled
386 antisera from vaccine-immunized mice mediated high-level opsonophagocytic killing
387 (>50%) of PAO9 strain at serum dilutions up to 1:2,700 compared to the limited killing
388 observed with pooled sera from vector- and PBS-immunized mice (**Fig. 5**).
389

390

391 **Passive transfer of antisera from immunized animals to naïve mice provides**
392 **protection from acute *P. aeruginosa* pneumonia.**

393 To identify whether mice could be protected from pneumonia caused by infection with *P.*
394 *aeruginosa*, undiluted antisera from PBS-, vector-, or vaccine-immunized mice were
395 transferred intranasally to naive BALB/c mice at the same time that they were infected
396 with a sublethal dose of PAO9. Briefly, female BALB/c mice 8-10 weeks old were
397 divided into 3 groups, 5 mice each. Each group received 10 μ l (5 μ l/nostril) of sera
398 collected from mice immunized with: PBS, 10^7 CFU (SL3261 (pLAFR376)), or 10^9 CFU
399 (SL3261 (pLAFRO9)). Immediately after serum administration, mice were intranasally
400 infected with 1.1×10^7 CFU/mouse (~0.5X the LD₅₀) of *P. aeruginosa* PAO9. Mice were
401 euthanized 24 hours post-infection, and the nasal wash, lung, liver, and spleen from
402 each mouse was removed and homogenized to assess bacterial counts.
403

404

405 The number of viable bacteria recovered from the nasal wash and lung tissue of mice
406 receiving vaccine-immune sera was shown to drop significantly as compared to those
407 recovered from mice receiving PBS- and vector-immune sera. We observed a
408 statistically significant difference in the bacterial counts recovered from mice receiving
409 antisera from vaccine-immunized mice when compared to those treated with antisera
410 from PBS- and vector-immunized controls (**Fig. 6A & 6B**) indicating that the immune
411 sera provide protection from infection.
412

413

414 **DISCUSSION**

415

416 Lipopolysaccharide (LPS) is an immunodominant protective antigen for *P. aeruginosa*.
417 The O antigen portion of *P. aeruginosa* LPS confers serogroup specificity and *P.
418 aeruginosa* has 20 different serogroups that vary by sugar composition (24), however
419 10 are most commonly associated with infection (9-12).

420

421 Several groups have attempted to develop vaccines to prevent infection based on LPS
422 and these have met with limited success; there is currently no *P. aeruginosa* licensed
423 vaccine (25, 26). Recently, Nasrin et al. (12) reported a “Multiple Antigen Presenting
424 System” for *P. aeruginosa* based on high molecular weight polysaccharides (17) and
425 have targeted 8 of the most common O antigen serogroups (12), however serogroup O8
426 and O9 are missing from this system. Both serogroup O8 and O9 are acid labile in
427 nature and as such have never been included in a conjugate vaccine cocktail (27).

428

429 Our laboratory previously characterized a vaccine that confers serotype-specific
430 protection against *P. aeruginosa* challenge (18). The vaccine consists of *Salmonella
431 enterica* serovar Typhimurium strain SL3261, an attenuated *aroA* mutant (28),
432 expressing the entire O-antigen locus from a *P. aeruginosa* serogroup O11 strain (19).
433 The *aroA* gene encodes 3-enolpyruvyl-shikimate-5-phosphate synthetase, an enzyme
434 required for the synthesis of amino acids and growth. Intranasal vaccination with this
435 *Salmonella* strain conferred complete protection in mice with challenge doses of 5X the
436 LD₅₀ of both cytotoxic and noncytotoxic *P. aeruginosa* serogroup O11 strains.
437 Moreover, administration of antibodies from vaccinated mice directly into the nasal
438 passageway and lungs of infected mice was able to confer protection when
439 administered up to six hours after infection.

440

441 A caveat to this vaccine is that protection is only directed to serogroup O11 strains. *P.
442 aeruginosa* serogroup O9 is another serogroup commonly found in infection, although it
443 has been “neglected” in these previous *P. aeruginosa* vaccine cocktails. Studies of
444 Faure et al. (9) noted in a survey of clinical isolates that 4% (4/99 total) were serogroup
445 O9 (2% in chronic infections and 2% in acute infections), but that these were not
446 associated with mortality. Using *in silico* serotyping, Thrane et al. (10) found 1.25% of
447 the 1120 genomes they surveyed were serogroup O9. Interestingly, when looking
448 specifically at genomes of isolates from cystic fibrosis patients, this number was much
449 lower (0.38% from 529 genomes) (10). Ozer et al. (11) found serogroup O9 strains
450 accounted for 2% of the isolates they sequenced from diverse sources. And more
451 recently Nasrin et al. (12) surveyed 413 invasive *P. aeruginosa* from 10 different
452 countries worldwide and found ~3% of them were serogroup O9.

453

454 Using a similar approach to what we previously reported expression of the *P.
455 aeruginosa* serogroup O11 O antigen locus in *Salmonella enterica* serovar Typhimurium
456 (19), here we cloned the serogroup O9 locus. We showed that the recombinant
457 *Salmonella* strain expressed *P. aeruginosa* serogroup O9 LPS (Fig. 1). We extracted
458 DNA and performed DNA sequence analysis and confirmed the sequence
459 corresponded to the serogroup O9 locus as reported by Raymond et al. (29).

460
461 We noted a number of subtle but interesting differences between our original
462 experiments with serogroup O11 (18) and those performed here with serogroup O9.
463 We needed to modify our vaccination protocol and increase the dose of *Salmonella* to
464 10⁹ CFU to elicit a robust and protective immune response. This may have reflected
465 low expression of the plasmid-borne genes of the serogroup O9 locus, reduced amount
466 of LPS expressed on *Salmonella*, and/or the lability of the O antigen itself. However,
467 once the inoculum was optimized to generate an immune response, it was protective.
468
469 Prior to the initiation of immunization studies, we needed to find a strain to assess
470 protection. We had not been able to find any reports of using serogroup O9 strains in
471 models of infection, therefore we determined the virulence of PAO9 in our murine
472 intranasal acute pneumonia model. Interestingly, we noted that this strain was not very
473 pathogenic and therefore we needed to give large doses to mice to monitor vaccine-
474 mediated protection. This was also the case for additional serogroup O9 strains
475 obtained from collaborators. Supporting this, Ozer et al. noted that the majority of the
476 serogroup O9 isolates that they characterized (14/15) were in Group A and most Group
477 A strains were lacking the *exoU* gene (11). Similarly, Faure et al. determined that only 1
478 of the 4 serogroup O9 clinical isolates that they examined secreted ExoU (9). ExoU is a
479 marker for highly virulent strains, especially associated with acute lung infections (30),
480 thus if serogroup O9 strains we tested were lacking *exoU* it could explain why they are
481 less able to cause severe infections.
482
483 To our knowledge, there has only been one report of a serogroup O9-specific epidemic,
484 which was an outbreak of dermatitis in a whirlpool at a hotel in Atlanta, Georgia in 1981
485 (31). Whether the lack of detection of outbreaks caused by serogroup O9 isolates is
486 because of avirulence due to the lack of *exoU* and/or the acid labile nature of the O
487 antigen itself is not known but is tempting to speculate. However, that is not to assume
488 that all serogroup O9 *P. aeruginosa* isolates are innocuous. In 2022, there was a fatal
489 case of community-acquired *P. aeruginosa* pneumonia in an otherwise
490 immunocompetent individual following SARS-CoV-2 infection (32).
491
492 While many of the current available bacterial vaccines are based on either purified
493 polysaccharides (pneumococcal polysaccharide vaccine) or polysaccharide-protein
494 conjugates (pneumococcal conjugate vaccines, meningococcal conjugate [menACWY]
495 vaccines, and Hib vaccines). Using recombinant attenuated *Salmonella* for
496 heterologous expression has the advantage of ease of expression of polysaccharide
497 antigens and generating an immune response more typical of a polysaccharide-protein
498 conjugate (33). Supporting this, we found that our vaccine induced high levels of
499 IgG2a, IgG2b, and IgG3 to serogroup O9 (**Fig. 4C**).
500
501 We have previously shown that we could express *P. aeruginosa* serogroup O11 on the
502 human licensed typhoid vaccine strain, *Salmonella* Typhi Ty21a (34), when it contained
503 the plasmid pLPS2 (35) suggesting the feasibility of this approach for human use.
504 Since that time, methods for stable integration of O antigen genes have been developed

505 (36) as well as techniques for the expression of multiple serogroups in the same *S.*
506 *Typhi* Ty21a strain (37).

507
508 We have also found that vaccination with SL3261 (pLAFRO9) induced antibodies that
509 were capable of mediating opsonophagocytosis (**Fig. 5**) and we could transfer
510 protection from immunized mice to naïve mice with the sera alone (**Fig. 6**). This
511 suggests the possibility that this vaccination protocol could be used to develop a
512 passive immunotherapy specific for the “neglected” *P. aeruginosa* serogroup O9. Such
513 an approach has been used for *P. aeruginosa* serogroup O11. There is a fully human
514 anti-LPS IgM monoclonal antibody (Panobacumab) that has been tested in patients with
515 nosocomial *Pseudomonas* pneumonia due to serogroup O11. Treatment with
516 Panobacumab resulted a shorter time to clinical resolution compared to untreated
517 patients (38), but this is only effective for patients infected with a serogroup O11 *P.*
518 *aeruginosa* strain. The advantage is that passive immunotherapy would be applicable
519 to all patients, including the immunocompromised who cannot mount an immune
520 response and who are particularly at risk for *P. aeruginosa* hospital infections. The
521 long-term goal of this research is ultimately the development of a cocktail including all
522 prominent serogroups that could be given to people to protect them against *P.*
523 *aeruginosa* infection by any of the typically encountered strains.

524
525
526

527 **Figure legends**

528

529 **Figure 1. Expression of *P. aeruginosa* serogroup O9 in *S. typhimurium*.** LPS was
530 extracted, applied to SDS-PAGE, and visualized with silver stain (A) or by (B)
531 immunoblot analysis using *Pseudomonas* serotype O9-specific rabbit polyclonal
532 antibody, followed by incubation with anti-rabbit secondary antibody conjugated to
533 alkaline-phosphatase (Sigma). *P. aeruginosa* serogroup O9 strain PAO9 (Lane 1), *S.*
534 *typhimurium* SL321 (lane 2), and from *S. typhimurium* SL3261 containing the plasmid
535 expressing the *P. aeruginosa* serogroup O9 antigen (pLAFRO9) (Lane 3). Molecular
536 weight (MW).

537

538 **Figure 2. Serum antibody response of BALB/c mice following intranasal**
539 **immunization with *S. typhimurium* SL3261 expressing *P. aeruginosa* serogroup**
540 **O9 and bacterial loads in organs of intranasally immunized BALB/c mice after**
541 **intranasal lethal challenge with *P. aeruginosa* PAO9.** Mice were immunized
542 intranasally on day 0 and day 14 with 10^7 CFU/mouse of the vector control (SL3261
543 (pLAFR376)) or the vaccine (SL3261 (pLAFRO9)). Sera were collected 2- and 4-
544 weeks post-vaccination, and the data were analyzed by the Mann-Whitney *U* test. (A)
545 Serum IgM and (B) IgG response to *P. aeruginosa* PAO9 whole antigen. (C) Survival
546 rates for naïve mice after intranasal challenge with various doses of *P. aeruginosa*
547 PAO9 (n=4 mice/group). (D) Bacterial load in the nasal wash and lungs, (E) liver and
548 spleens of intranasally immunized mice 24 hours post-challenge with 2×10^7 CFU of
549 PAO9. All samples were plated for viable CFU on *Pseudomonas* isolation agar (PIA).
550 Each point represents a single mouse.

551

552 **Figure 3. Immune response and bacterial burden in response to immunizing**
553 **BALB/c mice with various doses of *S. typhimurium* SL3261 expressing *P.***
554 ***aeruginosa* serogroup O9.** Anti-*P. aeruginosa* serogroup O9 serum (A) IgM and (B)
555 IgG antibody response after intranasal vaccination of BALB/c mice to various doses of
556 vector or vaccine. (C) Bacterial load in the nasal wash and lungs of intranasally
557 immunized mice 24 hours post-challenge with 4.5×10^7 CFU of PAO9. All samples
558 were plated for viable CFU on PIA. Each point represents a single mouse. Data were
559 analyzed by one-way ANOVA, * P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. Error
560 bars represent the mean and SEM.

561

562 **Figure 4. Immune response and bacterial burden in response to immunizing**
563 **BALB/c mice with *S. typhimurium* SL3261 expressing *P. aeruginosa* serogroup**
564 **O9 at 10^9 CFU/mouse.** Anti-*P. aeruginosa* serogroup O9 serum (A) IgM, (B) IgG
565 antibody, and (C) IgG isotype response after intranasal vaccination of BALB/c mice with
566 10^9 CFU/mouse of SL3261 (pLAFR376) (vector) and SL3261 (pLAFRO9) (vaccine). (D)
567 Bacterial load in the nasal wash and lungs, and (E) liver and spleens of intranasally
568 immunized mice 24 hours post-challenge with 8.6×10^7 CFU of PAO9. All samples
569 were plated for viable CFU on PIA. Each point represents a single mouse. Data were
570 analyzed by one-way ANOVA. * P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. Error
571 bars represent the mean and SEM.

572

573 **Figure 5. Antibody response induced by intranasal vaccination mediates efficient**
574 **opsonic killing of *P. aeruginosa* PAO9 *in vitro*.** Opsonophagocytic killing of *P.*
575 *aeruginosa* PAO9 P1-lux using dilutions of pooled antisera collected from intranasally
576 PBS-, SL3261 (pLAFR376) (vector)-, and SL3261 (pLAFRO9) (vaccine)-immunized
577 BALB/c mice. Plates were read at 120 minutes following the co-incubation of the
578 opsonophagocytosis assay components.

579

580 **Figure 6. Passive antisera transfer from immunized animals provides protection**
581 **to acute *P. aeruginosa* pneumonia in naïve mice.** Bacterial loads in (A) nasal wash
582 and lungs, (B) liver and spleens of BALB/c mice after passive intranasally transferred
583 antisera immediately followed by challenge with 1×10^7 CFU of PAO9. Mice were
584 euthanized 24 hours post-infection. All samples were plated for viable CFU on PIA.
585 Each point represents a single mouse. Data were analyzed by one-way ANOVA. *
586 $P < 0.05$, ** $P < 0.01$, **** $P < 0.001$. Each point represents a single mouse. Error bars
587 represent the mean and SEM.

588

589 **Acknowledgements**

590

591 This work was supported by grants to J.B.G. from the National Institutes of Health (1
592 R01 AI50230, 1 R01 AI68112, and 1 R21 AI53842) and from the Cystic Fibrosis
593 Foundation (GOLDBE00G0 and GOLDBE05P0). J.M.S. and M.R.D were supported in
594 part by the National Institutes of Health through the University of Virginia Infectious
595 Diseases Training Grant AI07406.

596

597

598

599 **References**

- 600 1. Gellatly SL, Hancock RE. 2013. *Pseudomonas aeruginosa*: new insights into
601 pathogenesis and host defenses. *Pathog Dis* 67:159-73.
- 602 2. Diggle SP, Whiteley M. 2020. Microbe Profile: *Pseudomonas aeruginosa*:
603 opportunistic pathogen and lab rat. *Microbiology (Reading)* 166:30-33.
- 604 3. Priebe GP, Goldberg JB. 2014. Vaccines for *Pseudomonas aeruginosa*: a long
605 and winding road. *Expert Rev Vaccines* 13:507-19.
- 606 4. Sainz-Mejias M, Jurado-Martin I, McClean S. 2020. Understanding
607 *Pseudomonas aeruginosa*-host interactions: the ongoing quest for an efficacious
608 vaccine. *Cells* 9.
- 609 5. Killough M, Rodgers AM, Ingram RJ. 2022. *Pseudomonas aeruginosa*: recent
610 advances in vaccine development. *Vaccines (Basel)* 10.
- 611 6. Elmassry MM, Colmer-Hamood JA, Kopel J, San Francisco MJ, Hamood AN.
612 2023. Anti-*Pseudomonas aeruginosa* vaccines and therapies: an assessment of
613 clinical trials. *Microorganisms* 11.
- 614 7. Knirel YA, Bystrova OV, Kocharova NA, Zahringer U, Pier GB. 2006. Conserved
615 and variable structural features in the lipopolysaccharide of *Pseudomonas*
616 *aeruginosa*. *J Endotoxin Res* 12:324-36.
- 617 8. Knirel YA. 1990. Polysaccharide antigens of *Pseudomonas aeruginosa*. *Crit Rev
618 Microbiol* 17:273-304.
- 619 9. Faure K, Shimabukuro D, Ajayi T, Allmond LR, Sawa T, Wiener-Kronish JP.
620 2003. O-antigen serotypes and type III secretory toxins in clinical isolates of
621 *Pseudomonas aeruginosa*. *J Clin Microbiol* 41:2158-60.
- 622 10. Thrane SW, Taylor VL, Lund O, Lam JS, Jelsbak L. 2016. Application of whole-
623 genome sequencing data for O-specific antigen analysis and *in silico* serotyping
624 of *Pseudomonas aeruginosa* isolates. *J Clin Microbiol* 54:1782-8.
- 625 11. Ozer EA, Nnah E, Didelot X, Whitaker RJ, Hauser AR. 2019. The population
626 structure of *Pseudomonas aeruginosa* is characterized by genetic isolation of
627 *exoU*⁺ and *exoS*⁺ lineages. *Genome Biol Evol* 11:1780-1796.
- 628 12. Nasrin S, Hegerle N, Sen S, Nkeze J, Sen S, Permala-Booth J, Choi M, Sinclair
629 J, Tapia MD, Johnson JK, Sow SO, Thaden JT, Fowler VG, Jr., Krogfelt KA,
630 Brauner A, Protonotariou E, Christaki E, Shindo Y, Kwa AL, Shakoor S, Singh-
631 Moodley A, Perovic O, Jacobs J, Lunguya O, Simon R, Cross AS, Tennant SM.
632 2022. Distribution of serotypes and antibiotic resistance of invasive
633 *Pseudomonas aeruginosa* in a multi-country collection. *BMC Microbiol* 22:13.
- 634 13. Weintraub A. 2003. Immunology of bacterial polysaccharide antigens. *Carbohydr
635 Res* 338:2539-47.
- 636 14. Trotter CL, McVernon J, Ramsay ME, Whitney CG, Mulholland EK, Goldblatt D,
637 Hombach J, Kieny MP, subgroup S. 2008. Optimising the use of conjugate
638 vaccines to prevent disease caused by *Haemophilus influenzae* type b, *Neisseria*
639 *meningitidis* and *Streptococcus pneumoniae*. *Vaccine* 26:4434-45.
- 640 15. Cryz SJ, Jr., Furer E, Sadoff JC, Germanier R. 1987. A polyvalent *Pseudomonas*
641 *aeruginosa* O-polysaccharide-toxin A conjugate vaccine. *Antibiot Chemother
(1971)* 39:249-55.
- 643 16. Knirel Yu A, Vinogradov EV, Kocharova NA, Paramonov NA, Kochetkov NK,
644 Dmitriev BA, Stanislavsky ES, Lanyi B. 1988. The structure of O-specific

645 polysaccharides and serological classification of *Pseudomonas aeruginosa* (a
646 review). *Acta Microbiol Hung* 35:3-24.

647 17. Pier GB, Thomas DM. 1982. Lipopolysaccharide and high-molecular-weight
648 polysaccharide serotypes of *Pseudomonas aeruginosa*. *J Infect Dis* 145:217-23.

649 18. DiGiandomenico A, Rao J, Harcher K, Zaidi TS, Gardner J, Neely AN, Pier GB,
650 Goldberg JB. 2007. Intranasal immunization with heterologously expressed
651 polysaccharide protects against multiple *Pseudomonas aeruginosa* infections.
652 *Proc Natl Acad Sci U S A* 104:4624-9.

653 19. Pier GB, Meluleni G, Goldberg JB. 1995. Clearance of *Pseudomonas aeruginosa*
654 from the murine gastrointestinal tract is effectively mediated by O-antigen-
655 specific circulating antibodies. *Infect Immun* 63:2818-25.

656 20. DiGiandomenico A, Warrener P, Hamilton M, Guillard S, Ravn P, Minter R,
657 Camara MM, Venkatraman V, Macgill RS, Lin J, Wang Q, Keller AE, Bonnell JC,
658 Tomich M, Jermutus L, McCarthy MP, Melnick DA, Suzich JA, Stover CK. 2012.
659 Identification of broadly protective human antibodies to *Pseudomonas*
660 *aeruginosa* exopolysaccharide Psl by phenotypic screening. *J Exp Med*
661 209:1273-87.

662 21. Damron FH, McKenney ES, Barbier M, Liechti GW, Schweizer HP, Goldberg JB.
663 2013. Construction of mobilizable mini-Tn7 vectors for bioluminescent detection
664 of gram-negative bacteria and single-copy promoter *lux* reporter analysis. *Appl*
665 *Environ Microbiol* 79:4149-53.

666 22. DiGiandomenico A, Rao J, Goldberg JB. 2004. Oral vaccination of BALB/c mice
667 with *Salmonella enterica* serovar Typhimurium expressing *Pseudomonas*
668 *aeruginosa* O antigen promotes increased survival in an acute fatal pneumonia
669 model. *Infect Immun* 72:7012-21.

670 23. Reed LJ, Muench H. 1938. A simple method of estimating fifty per cent
671 endpoints. *American Journal of Hygiene*:493-497.

672 24. Stanislavsky ES, Lam JS. 1997. *Pseudomonas aeruginosa* antigens as potential
673 vaccines. *FEMS Microbiol Rev* 21:243-77.

674 25. Merakou C, Schaefers MM, Priebe GP. 2018. Progress toward the elusive
675 *Pseudomonas aeruginosa* vaccine. *Surg Infect (Larchmt)* 19:757-768.

676 26. Sousa SA, Seixas AMM, Marques JMM, Leitao JH. 2021. Immunization and
677 immunotherapy approaches against *Pseudomonas aeruginosa* and *Burkholderia*
678 *cepacia* complex infections. *Vaccines (Basel)* 9.

679 27. Pier GB. 2003. Promises and pitfalls of *Pseudomonas aeruginosa*
680 lipopolysaccharide as a vaccine antigen. *Carbohydr Res* 338:2549-56.

681 28. Hoiseth SK, Stocker BA. 1981. Aromatic-dependent *Salmonella typhimurium* are
682 non-virulent and effective as live vaccines. *Nature* 291:238-9.

683 29. Raymond CK, Sims EH, Kas A, Spencer DH, Kutyavin TV, Ivey RG, Zhou Y,
684 Kaul R, Clendenning JB, Olson MV. 2002. Genetic variation at the O-antigen
685 biosynthetic locus in *Pseudomonas aeruginosa*. *J Bacteriol* 184:3614-22.

686 30. Schulert GS, Feltman H, Rabin SD, Martin CG, Battle SE, Rello J, Hauser AR.
687 2003. Secretion of the toxin ExoU is a marker for highly virulent *Pseudomonas*
688 *aeruginosa* isolates obtained from patients with hospital-acquired pneumonia. *J*
689 *Infect Dis* 188:1695-706.

690 31. Khabbaz RF, McKinley TW, Goodman RA, Hightower AW, Highsmith AK, Tait
691 KA, Band JD. 1983. *Pseudomonas aeruginosa* serotype 0:9. New cause of
692 whirlpool-associated dermatitis. *Am J Med* 74:73-7.

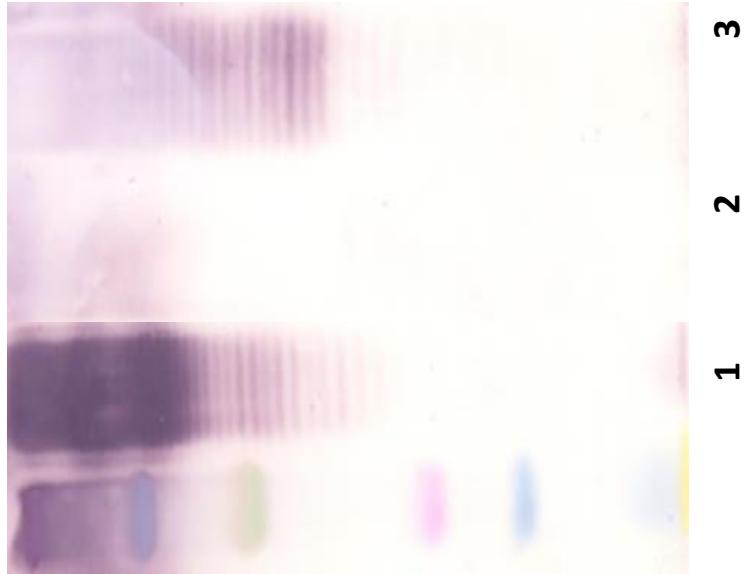
693 32. Barp N, Marcacci M, Biagioli E, Serio L, Busani S, Ventura P, Franceschini E,
694 Orlando G, Venturelli C, Menozzi I, Tambassi M, Scaltriti E, Pongolini S, Sarti M,
695 Pietrangelo A, Girardis M, Mussini C, Meschiari M. 2023. A fatal case of
696 *Pseudomonas aeruginosa* community-acquired pneumonia in an
697 immunocompetent patient: clinical and molecular characterization and literature
698 review. *Microorganisms* 11.

699 33. Su H, Liu Q, Bian X, Wang S, Curtiss R, 3rd, Kong Q. 2021. Synthesis and
700 delivery of *Streptococcus pneumoniae* capsular polysaccharides by recombinant
701 attenuated *Salmonella* vaccines. *Proc Natl Acad Sci U S A* 118.

702 34. Germanier R, Fuer E. 1975. Isolation and characterization of Gal E mutant Ty
703 21a of *Salmonella typhi*: a candidate strain for a live, oral typhoid vaccine. *J*
704 *Infect Dis* 131:553-8.

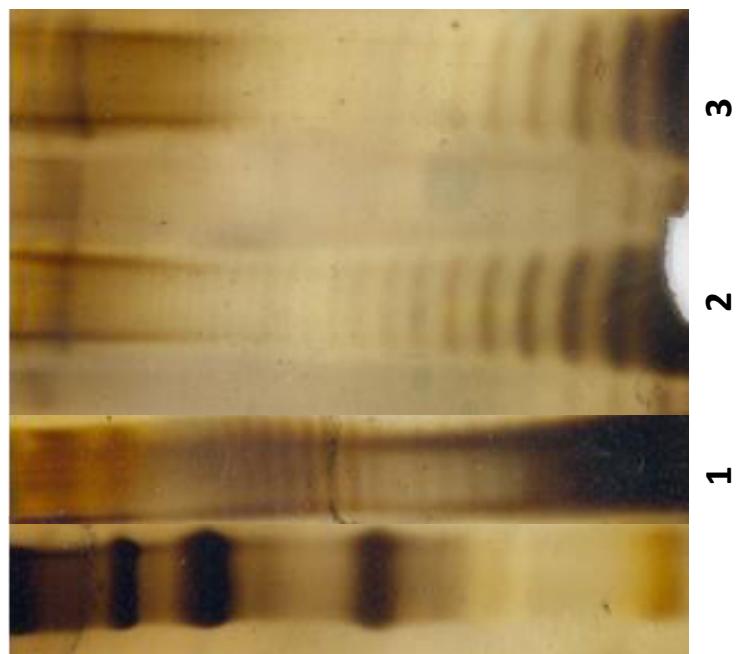
705 35. Goldberg JB, Hatano K, Meluleni GS, Pier GB. 1992. Cloning and surface
706 expression of *Pseudomonas aeruginosa* O antigen in *Escherichia coli*. *Proc Natl*
707 *Acad Sci U S A* 89:10716-20.

708 36. Dharmasena MN, Hanisch BW, Wai TT, Kopecko DJ. 2013. Stable expression of
709 *Shigella sonnei* form I O-polysaccharide genes recombineered into the
710 chromosome of live *Salmonella* oral vaccine vector Ty21a. *Int J Med Microbiol*
711 303:105-13.


712 37. Yu B, Yang M, Wong HY, Watt RM, Song E, Zheng BJ, Yuen KY, Huang JD.
713 2011. A method to generate recombinant *Salmonella typhi* Ty21a strains
714 expressing multiple heterologous genes using an improved recombineering
715 strategy. *Appl Microbiol Biotechnol* 91:177-88.

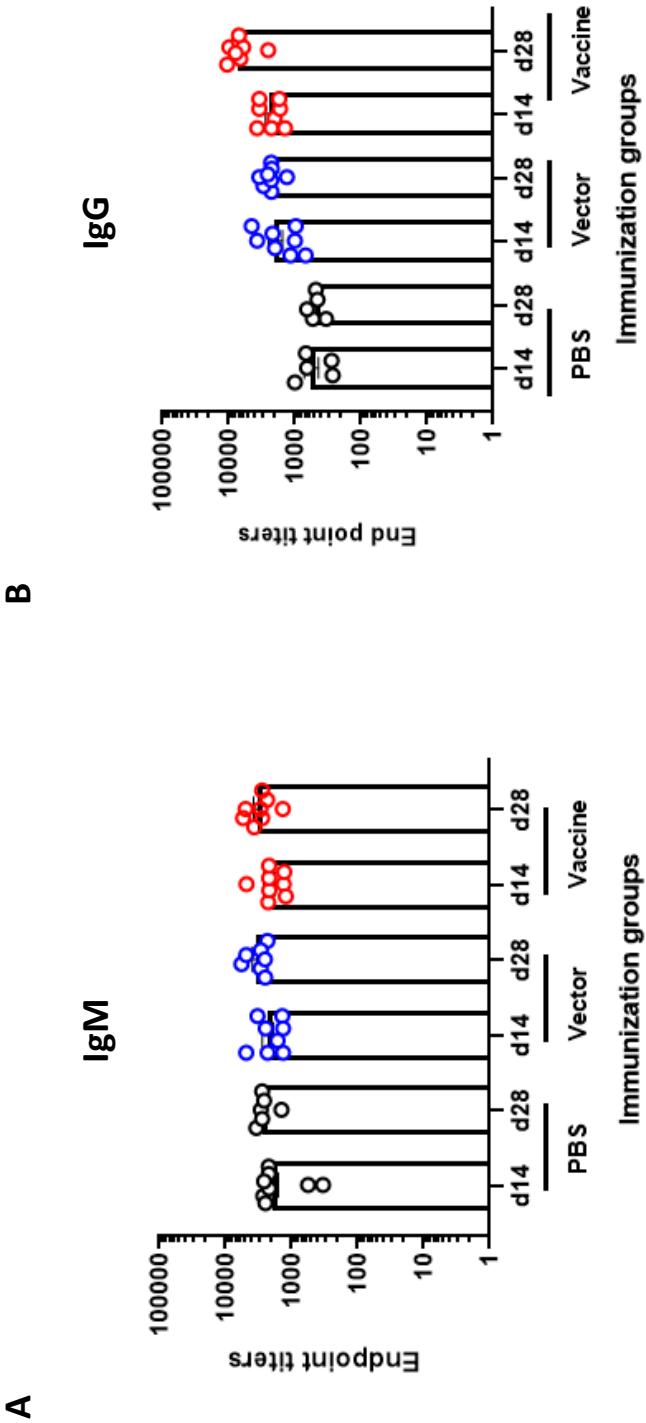
716 38. Que YA, Lazar H, Wolff M, Francois B, Laterre PF, Mercier E, Garbino J, Pagani
717 JL, Revelly JP, Mus E, Perez A, Tamm M, Rouby JJ, Lu Q, Chastre J, Eggimann
718 P. 2014. Assessment of panobacumab as adjunctive immunotherapy for the
719 treatment of nosocomial *Pseudomonas aeruginosa* pneumonia. *Eur J Clin*
720 *Microbiol Infect Dis* 33:1861-7.

721


722

Western immunoblot

B


Silver stain

A

Figure 1

Figure 2

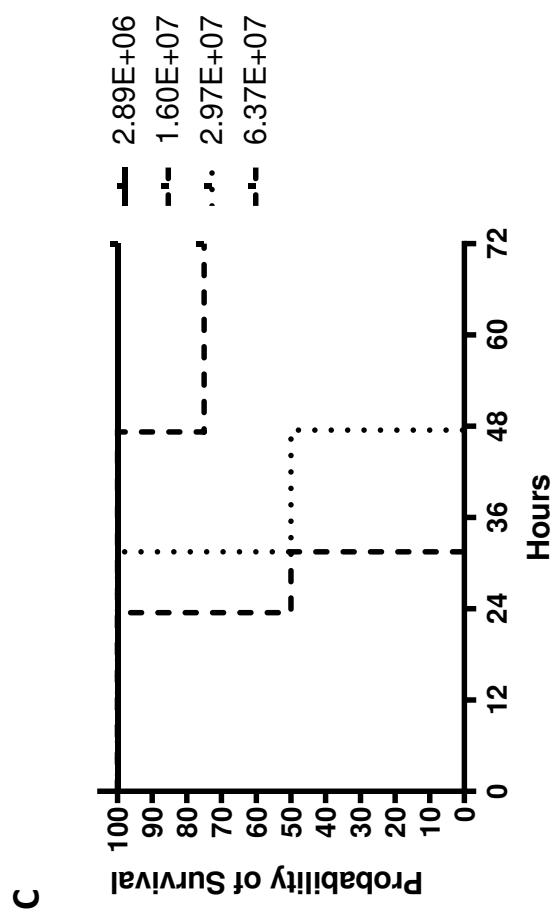


Figure 2

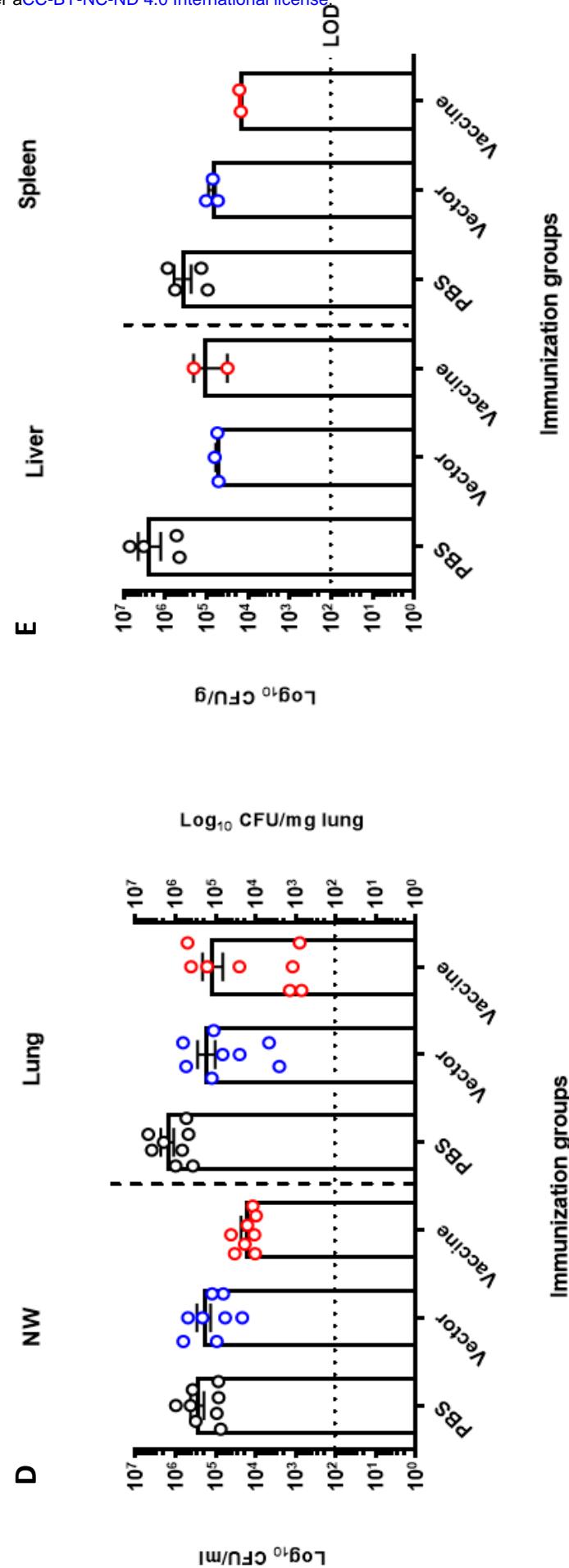


Figure 2

Figure 3

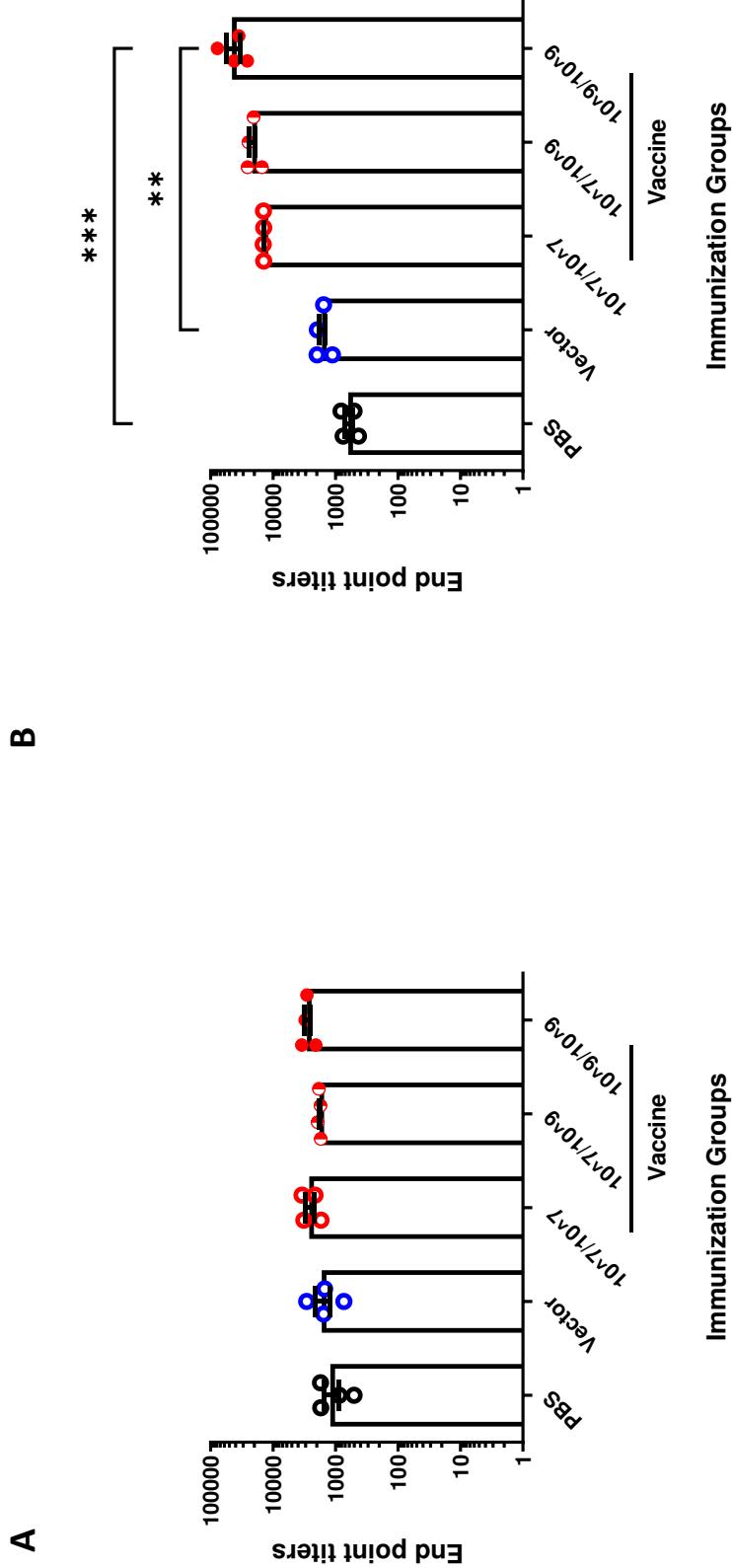
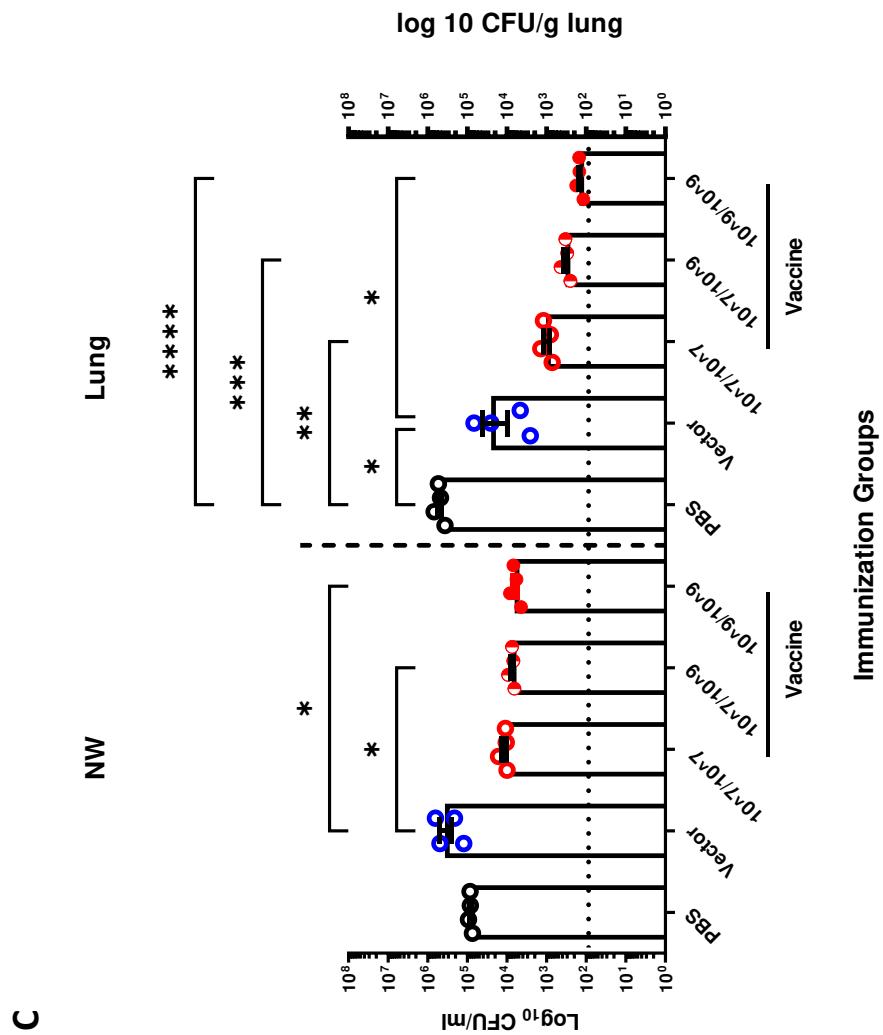



Figure 3

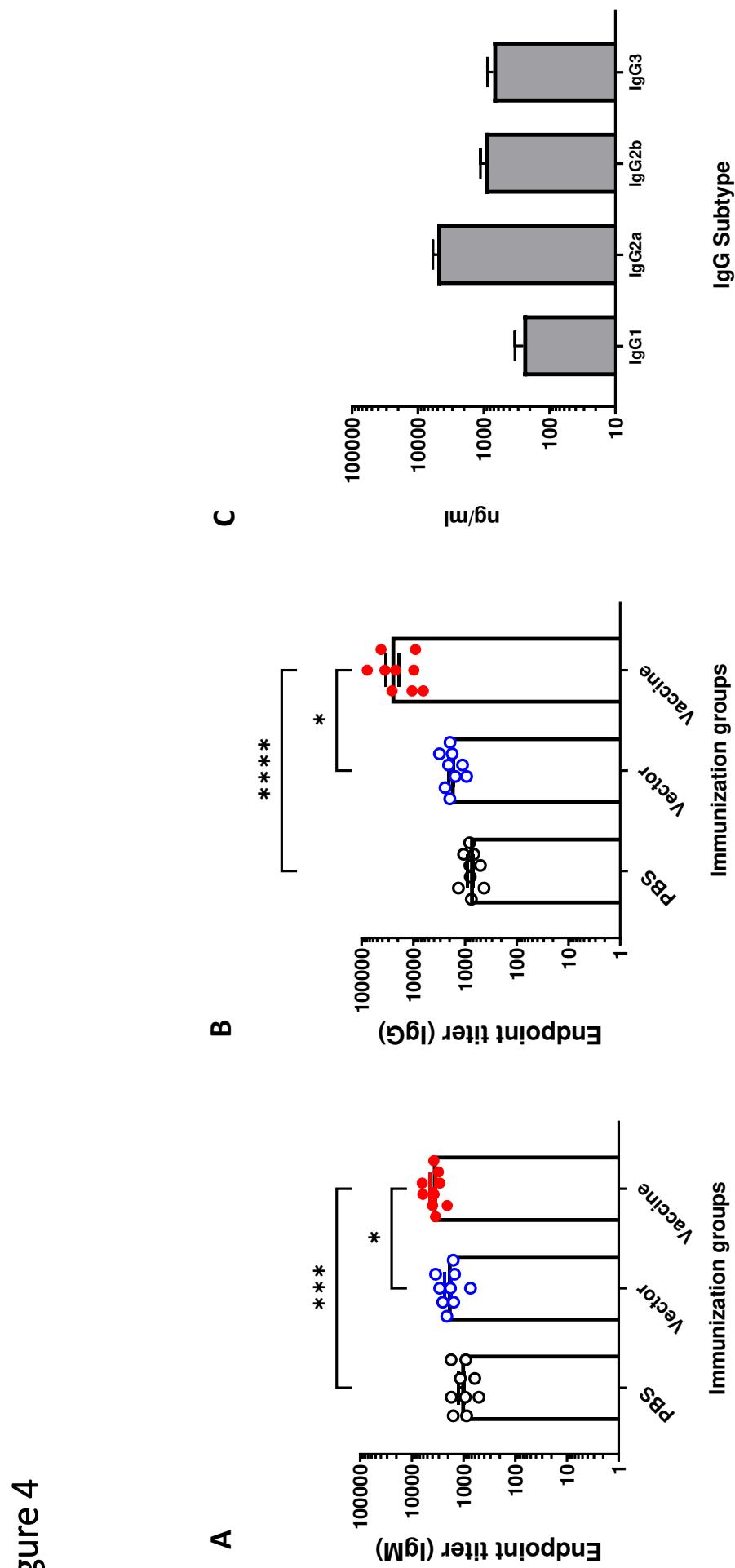


Figure 4

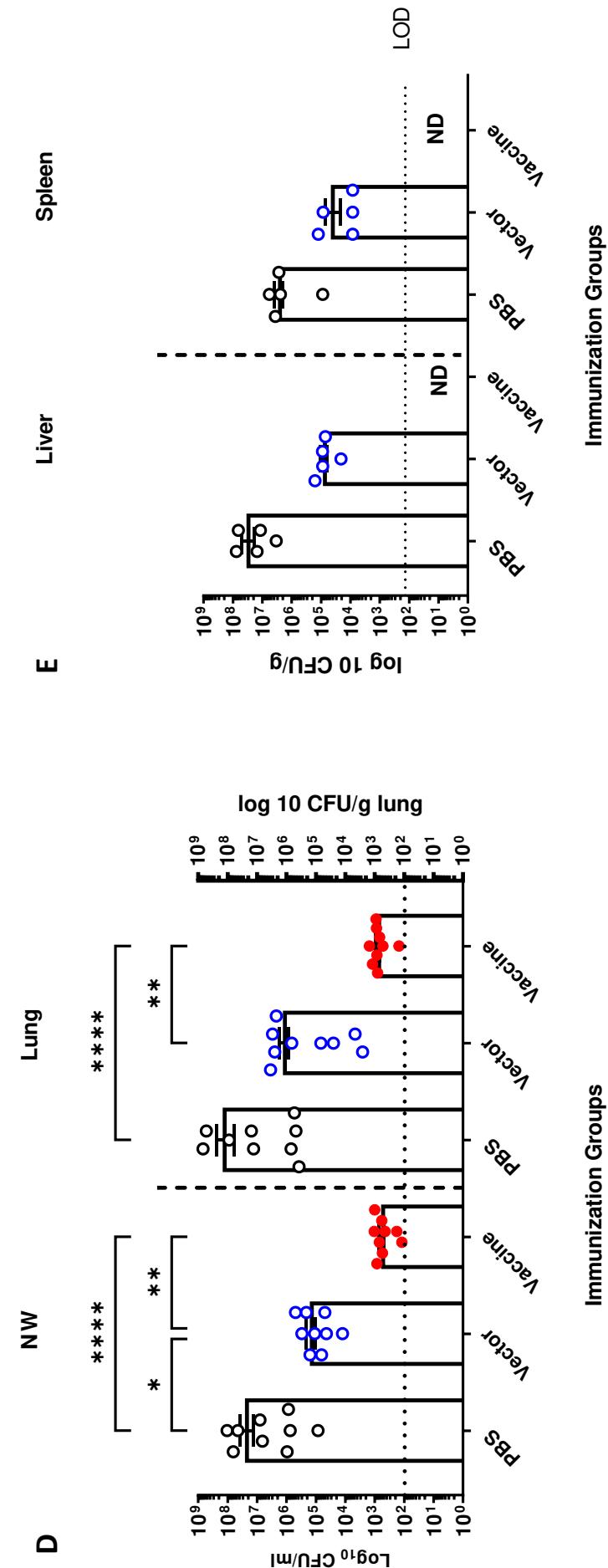


Figure 4

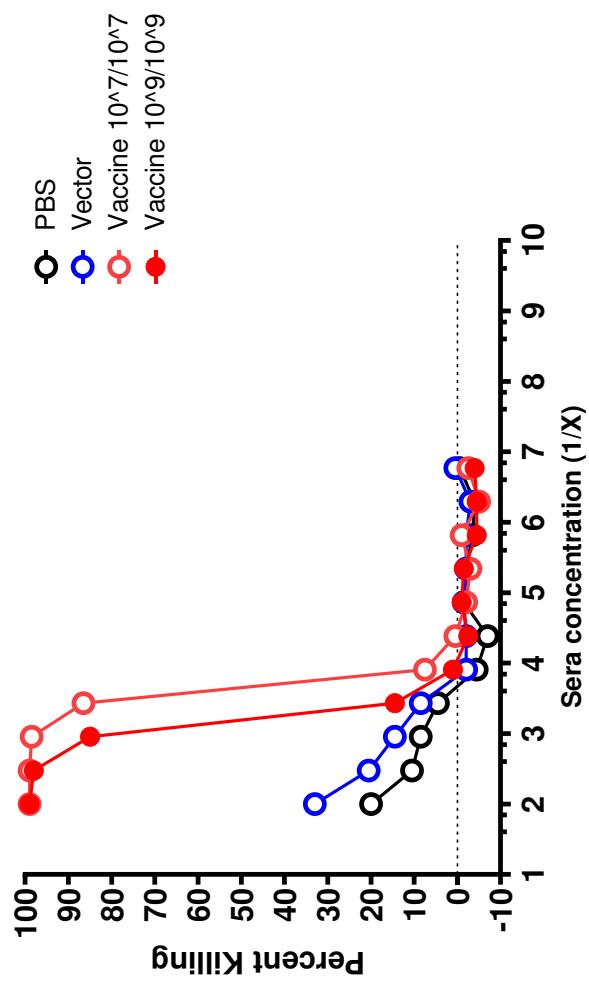


Figure 5

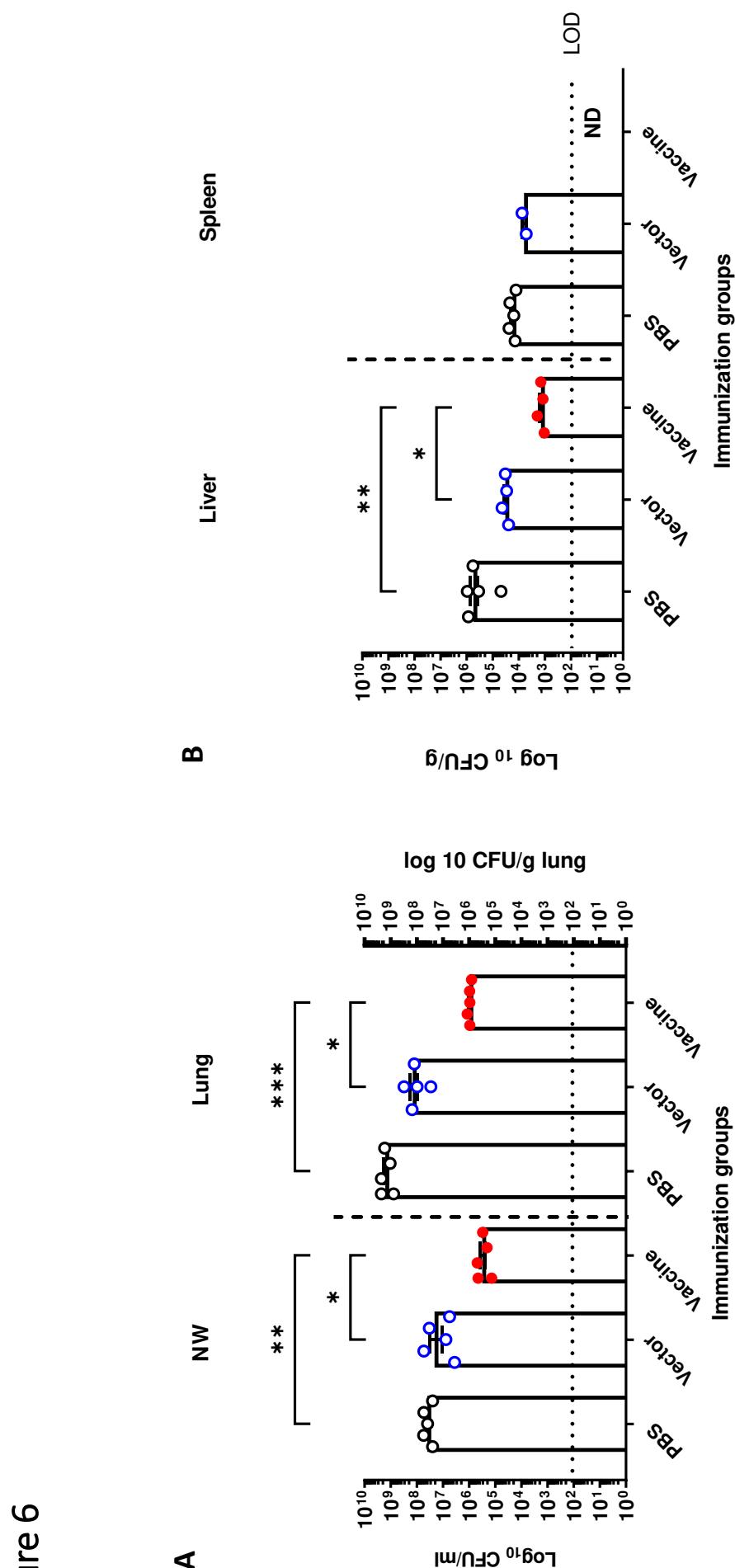


Figure 6