

Characterising neutrophil subtypes in cancer using human and murine single-cell RNA sequencing datasets

3 Rana Fetit¹, Mark White^{1,2}, Megan L. Mills¹, Xabier Cortes-Lavaud¹, Alistair McLaren^{1,2}, John
4 Falconer¹, Kathryn Gilroy^{1,2}, Colin Nixon¹, Kristina Kirschner^{1,2}, Rene Jackstadt¹, Andrew D.
5 Campbell¹, Owen J. Sansom^{1,2}, Colin W. Steele^{1,2}

⁶ ¹CRUK Beatson Institute, Glasgow, UK

⁷School of Cancer Sciences, MVLS, University of Glasgow, UK

8 Running title

9 Conserved transcriptomic signatures of neutrophils in health and cancer.

10 Keywords

11 Neutrophils, single cell RNA sequencing, tumour microenvironment, metastasis, colorectal
12 cancer

13 Statement of significance

14 We identify two recurring neutrophil populations and demonstrate their staged evolution from
15 health to malignancy through the IL1B/CXCL8/CXCR2 axis, allowing for immunotherapeutic
16 neutrophil-targeting approaches to counteract immunosuppressive subtypes that emerge in
17 metastasis.

18 Additional information:

19 Financial support

20 **R.F. and C.W.S.** are funded by a UKRI Future Leaders Fellowship (#MR/W007851/1). **M.W.**
21 is funded by the CRUK Clinical Academic Training Programme (#A29706). **K.K.** is funded by
22 a Blood Cancer UK grant (#23001), an MRC grant (#MR/W000148/1) and an AMS
23 Springboard Award (#SBF005\1133). **A.M.L.** is funded by CRUK TRACC clinical fellowship
24 grant (#SEBSTF-2021\100009). **J.F.** is funded by the McNab endowment and UKRI Future
25 Leaders Fellowship (#MR/W007851/1). **M.M., X. C-L. K.G. C.N., R.J. A.D.C and O.J.S.** are
26 funded by CRUK core funding to the CRUK Beatson Institute (A31287) and **M.M., X. C-L.**
27 **K.G. R.J. A.D.C and O.J.S.** are funded by CRUK Senior Group Leader Programme (A21139
28 and DRCQQR-May21\100002).

29 Corresponding authors

30 Rana Fetit, r.fetit@beatson.gla.ac.uk

31 Colin W. Steele, colin.steele@glasgow.ac.uk

32

33 **Conflict of interest**

34 The authors declare no potential conflicts of interest.

35 **Word count:** 5068 words

36 **Total number of figures and tables:** 4 figures, 4 tables.

37 **ABSTRACT**

38 Neutrophils are a highly heterogenous cellular population. However, a thorough examination
39 of the different transcriptional neutrophil states, between health and malignancy, has not
40 been performed. We utilised single-cell RNA-sequencing of human and murine datasets,
41 both publicly available and independently generated, to identify neutrophil transcriptomic
42 subtypes and their developmental lineages in health and malignancy. Datasets of lung,
43 breast and colorectal cancer (CRC) were integrated to establish and validate the
44 reproducibility of neutrophil gene-signatures. Pseudo-time analysis was used to identify
45 genes driving neutrophil development from health to cancer. Finally, ligand-receptor
46 interactions and signalling pathways between neutrophils and other immune cell populations
47 in primary CRC and metastatic CRC were investigated. We define two main neutrophil
48 subtypes in primary tumours: an activated subtype sharing the transcriptomic signatures of
49 healthy neutrophils; and a tumour-specific subtype. This signature is conserved in murine
50 and human cancer, across different tumour types. In CRC metastases, neutrophils are more
51 heterogenous, exhibiting additional transcriptomic subtypes. Pseudo-time analysis implicates
52 an IL1B/CXCL8/CXCR2 axis in the progression of neutrophils from health to cancer and
53 metastasis, with effects on T-cell effector function. Assessment of global communication
54 signalling identified CD4+ T-cells and macrophages as dominant regulators of the
55 immunosuppressive, metastatic niche, whereas CD8+ T-cells are receivers of signals from
56 other immune cells. We propose that the emergence of metastatic-specific neutrophil
57 subtypes is driven by an IL1/CXCL8/CXCR2 axis, with the evolution of different
58 transcriptomic signals that impair T-cell function at the metastatic site. Thus, a better
59 understanding of the neutrophil transcriptomic programming could optimise
60 immunotherapeutic interventions into early and late interventions, targeting different
61 neutrophil subtypes.

62 INTRODUCTION

63 Neutrophils are short lived cells released from the bone marrow in response to infection and
64 inflammation and represent the most abundant white blood cells circulating. Traditionally
65 thought of as terminally differentiated cells, neutrophils have been shown to demonstrate
66 remarkable plasticity in response to different tissue environments(1), particularly to the
67 tumour microenvironment(2). Indeed, in murine models of human disease, we observed
68 significant phenotypic differences in response to inhibition of neutrophil populations using
69 genetic and pharmacological approaches. In both metastatic pancreatic and colorectal
70 cancer (CRC) models, we observed targeting neutrophil infiltration to metastases resulted in
71 reduction of metastatic burden but with limited impact on primary tumour growth(3–5). These
72 observations are in-keeping with other studies that have shown the potential of targeting
73 metastasis associated neutrophils therapeutically in murine models of cancer(6,7).
74 Understanding the regulation of neutrophils within metastases will permit future therapeutic
75 efforts, with the aim of promoting an anti-tumoural neutrophil phenotype. Oncogenic *KRAS*
76 driver mutations in lung and colorectal cancers(8,9) are thought to play a key role in driving a
77 neutrophil phenotype within tumours, with clear upregulation of neutrophil chemotactic
78 protein production from metastatic lesions(10). Systemic neutrophilia and inflammation have
79 repeatedly been associated with poor outcomes in CRC as well as in other cancers (11).
80 Whilst these observations suggest the key role of neutrophils for promoting metastasis,
81 dense neutrophil infiltration in the primary tumour microenvironment also correlates with poor
82 prognosis in CRC suggesting neutrophils have roles in cancer progression at both primary
83 and metastatic sites (11). Overall clear clinical and pre-clinical evidence exists for pro-
84 tumourigenic neutrophil populations(12).

85 Several studies have utilised single-cell RNA sequencing (ScRNAseq) to delineate the
86 immune cell populations infiltrating the tumour microenvironment in different cancers and
87 their respective mouse models, with a focus on macrophages and T-cell populations(13–18).
88 However, to date, no study has thoroughly investigated neutrophil populations to specifically
89 identify recurrent transcriptional subtypes in health and cancer. This underrepresentation of
90 neutrophil populations in ScRNAseq datasets is largely owing to their short half-life, which
91 dictates the fast processing of freshly procured samples, and the challenges in isolating
92 adequate quality and quantity of RNA for downstream analysis, making neutrophils harder to
93 capture using the common single-cell platforms. However, combining datasets can enable
94 analysis of this underrepresented cell type that has not been extensively evaluated before.
95 Likewise, neutrophil phenotypic differences between normal and tumour associated
96 neutrophils have never been described at a single cell level.

97 Therefore, we sought to assess the differences in neutrophil transcriptional phenotypes
98 between healthy tissue, primary tumour (PT) tissue and liver metastatic (LM) tissue across
99 different cancer types: lung; breast; and CRC. Neutrophils have been shown in these cancer
100 types to influence outcomes, in both mice and humans(19). We hypothesised that
101 neutrophils show plasticity and adaptation to their surroundings to support anti- or pro-
102 tumorigenic processes, with the metastatic site co-opting neutrophils to promote pro-
103 tumorigenic neutrophil function. We demonstrated using publicly available ScRNAseq
104 datasets and data generated from CRC murine models that two main subsets of neutrophils
105 can be identified in health and cancer. We identified the developmental trajectory of these
106 cells and observed a heterogenous group within LM tissue consistent with tissue specific
107 adaptation at the metastatic site. This study lends novel insights to neutrophil single cell
108 transcriptomic phenotypes and infers how these cells may be manipulated for therapeutic
109 benefit in the future.

110 **MATERIALS AND METHODS**

111 **Processing publicly available datasets**

112 Datasets were retrieved from the GEOdatabase and National Omics Encyclopaedia(Table1)
113 and processed using Seurat(version 4.3.0) on R(versions 3.17 and 4.1.1). Datasets were
114 integrated by RPCA using the IntegrateData function then scaled and normalised. Dimension
115 reduction was performed using PCA followed by clustering using the FindNeighbours and
116 FindClusters functions. Marker genes for individual clusters were determined using the
117 FindAllMarkers function and neutrophils were isolated by authors using the cluster identities
118 and markers assigned in the original publications. Datasets were integrated to establish and
119 test neutrophil gene-signatures using the AddModuleScore function. Pseudo-time analysis
120 was performed using Slingshot(version 2.8.0) to identify neutrophil lineages. Gene
121 expression along the different trajectories was performed using TradeSeq(version 1.14.0).
122 Gene Set Enrichment (GSE), Gene Ontology (GO) and KEGG analyses were performed
123 using ClusterProfiler(version 4.8.1) and EnrichR(version 3.2). Ligand-receptor (L-R)
124 interactions and signalling pathways between neutrophils and other immune cell populations
125 in primary and metastatic sites were investigated using CellChat (version 1.6.1). Software
126 processing pipelines are listed in Table2 and all relevant code can be accessed on Github
127 (<https://github.com/ranafetit/NeutrophilCharacterisation>).

128 **Mouse Housing and Ethics**

129 All animal experiments were performed in accordance with the UK Home Office guidelines
130 under project licences 70/9112 and PP390857, adhered to ARRIVE guidelines and were
131 reviewed and approved by the University of Glasgow Animal Welfare and Ethical Review
132 Board. Mice were housed in accordance with UK Home Office Regulations. Mice were fed
133 standard chow diet and given drinking water ad libitum. A mixture of individually ventilated
134 cages and conventional open top cages were used. Both genders of mice were used.
135 Supplementary TableS1 summarises the numbers, sex and genotype of the mice used in
136 this study.

137 **Mouse Models**

138 The different intestinal cancer models are listed in Table 3. Two models of tumour genesis
139 were used, aged genetically engineered mice and intracolonic transplants of murine derived
140 organoids (Supplementary TableS1). All genetically engineered mouse models (GEMMs)
141 were induced with a single 2mg intraperitoneal injection of Tamoxifen (Sigma-Aldrich T5648)
142 when mice weighed >20g aged 6-18 weeks. Mice were aged until clinical endpoint defined
143 as weight loss and/or hunching and/or piloerection and/or paling. For transplant mice, murine

144 tumour derived organoids were injected intracolonically into male immune competent
145 C57BL/6J mice (Charles River strain 632) using previously described methods(20). Tumour
146 organoids were mechanically dissociated into fragments by pipetting and washed twice in
147 PBS. Each mouse was injected with the equivalent of one well of a six well plate in 70uL of
148 PBS. This was injected into the colonic submucosa using a Karl Storz TELE PACK VET X
149 LED endoscopic video unit with associated needle. Transplanted mice were aged until
150 clinical endpoint.

151 **Tissue processing**

152 Endpoint mice were culled and dissected. Entire primary tumour was removed and placed in
153 PBS on ice. The tumour was then chopped into a smooth paste using a McIlwain Tissue
154 Chopper. The paste was transferred to GentleMACS C tubes (Miltenyi Biotec, 130-093-237)
155 with digestion enzymes from the Miltenyi Mouse Tumour Dissociation Kit (Miltenyi Biotec,
156 130-096-730) (2.35mL of RPMI1640, 100µL Enzyme D, 50µL Enzyme R, and 12.5µL
157 Enzyme A). Samples were run on a GentleMACS Octo Dissociator with Heaters (Miltenyi
158 Biotec, 130-096-427) using the 37C_m_TDK_1 programme. After digestion, samples were
159 briefly spun, 10ml of RPMI-10%FBS-2mM EDTA was added and passed through a 70µm
160 strainer. The resultant suspension was then spun down at 1800 RPM for 3 minutes at 4°C,
161 supernatant discarded and the pellet resuspended in 0.5ml DPBS+0.05% BSA and
162 transferred to a FACS collection tube on ice.

163 **ScRNA-sequencing**

164 Mouse tumour cells were sorted using a BD FACSaria (BD Biosciences) and DAPI
165 (Invitrogen, D1306) to remove dead cells, then loaded onto a Chromium Chip G using
166 reagents from the 10x Chromium Single-Cell 3' v3 Gel Bead Kit and Library (10x Genomics)
167 according to the manufacturer's protocol. Libraries were analysed using the Bioanalyzer
168 High Sensitivity DNA Kit (Agilent Technologies) and sequenced on the Illumina NovaSeq
169 6000 with paired-end 150-base reads. Sequence alignment of single cell data to the mm10
170 genome was performed using the count tool from Cellranger(version6.1.2) according to the
171 developers' instructions, generating barcodes, features and matrix output files for each
172 sample. Subsequent analysis was done using R (version 4.1.1) using Seurat (version4.0.4).
173 Samples were input using the Read10X function, filtered to include cells with a minimum of
174 100 expressed genes and genes that are present in at least 3 cells, then further filtered to
175 only include cells with <5% mitochondrial genes, <10% hemoglobin genes, >100 genes/cell
176 and >400 reads/cell. Samples were then integrated by RPCA using the IntegrateData
177 function before being scaled and normalised. Dimension reduction was performed using
178 PCA followed by clustering using the FindNeighbours and FindClusters functions. Marker

179 genes for individual clusters were determined using the FindAllMarkers function. Cell types
180 were annotated using CellTypist and custom gene lists, and subset using the subset
181 function.

182 **Bulk-RNA-sequencing of autochthonous CRC mouse models**

183 Tissue processing, RNA isolation and sequencing were performed as described in(5). Briefly,
184 primary and metastatic tumours were harvested from 5 villin-cre-ER, *Kras*^{G12D/+}, *Trp53*^{fl/fl},
185 *Rosa26*^{N1CD/+} (KPN) mice (model of metastatic CRC). Tumours from intestine, and liver were
186 processed using the Mouse Tumour Dissociation Kit (Miltenyi Biotec #130-096-730) as per
187 the manufacturer's instructions, along with blood obtained by cardiac puncture upon terminal
188 anaesthesia. Neutrophils were sorted based on CD48^{-/lo}Ly6G⁺, CD11b⁺Ly6G⁺ expression
189 and RNA was extracted using the RNeasy Mini kit (QIAGEN, #74104). Purified RNA quality
190 was tested on an Agilent 2200 Tapestation using RNA screen tape. Libraries for cluster
191 generation and RNA sequencing were prepared using the Illumina TruSeq RNA LT Kit after
192 assessing RNA quality and quantity on Agilent 2200 Tapestation (D1000 screentape) and
193 Qubit (Thermo Fisher Scientific), respectively. Libraries were run on Illumina Next Seq 500
194 using the High Output 75 cycles kit. Quality checks on the raw RNA-Seq data files were
195 done using fastqc and fastq_screen (versions 0.11.2 and 0.11.3, respectively). RNA-seq
196 paired-end reads were aligned to the GRCh38 mouse genome using tophat2 with Bowtie
197 (versions 2.0.13 and 2.2.4.0, respectively). Expression levels were determined and analysed
198 using HTSeq (version0.6.1) in R (version3.2.2), utilising Bioconductor data analysis suite
199 and DESeq2.

200 **IHC of human CRCLM tissue**

201 Access to colorectal cancer liver metastatic (CRCLM) patient tissue was authorized by the
202 NHS Greater Glasgow and Clyde Biorepository under their NHS Research Ethics Committee
203 (REC) approval with ethical approval granted in biorepository application #602. Upon
204 successful metastatic liver resections, surplus tissue was stored in 4%PFA at 4°C for 20-48
205 hours. Samples were then transferred to 70% Ethanol and processed by standard histology
206 processing techniques.

207 The following antibodies were stained on a Leica Bond Rx autostainer: CD3 (ab16669,
208 Abcam) and TXNIP (40-3700, Thermo Scientific). All FFPE sections underwent on-board
209 dewaxing (AR9222, Leica) and epitope retrieval using ER2 retrieval solution (AR9640, Leica)
210 for 20 minutes at 95°C. Sections were rinsed with Leica wash buffer (AR9590, Leica) and
211 peroxidase block was performed (Intense R kit; DS9263, Leica) for 5 minutes. Primary
212 antibodies were added at optimal dilutions (CD3, 1/100; TXNIP, 1/400;) then rabbit envision

213 secondary antibody (K4003, Agilent) was applied for 30 minutes. Sections were rinsed and
214 visualised using DAB in Intense R kit.

215 FFPE sections for CD11b/ITGAM (49420, Cell Signaling) staining were loaded into the
216 Agilent pre-treatment module for dewaxing and heat induced epitope retrieval (HIER) using
217 high pH target retrieval solution (TRS) (K8004, Agilent). Sections were heated to 97°C for
218 20 minutes in high pH TRS buffer, rinsed in flex wash buffer (K8007, Agilent) then loaded
219 onto the Dako autostainer. Peroxidase blocking (S2023, Agilent) was performed for 5
220 minutes. Primary CD11b/ITGAM antibody was added (1/400) for 35 minutes, then rabbit
221 envision secondary antibody was applied for 30 minutes. Sections were rinsed before
222 applying Liquid DAB (K3468, Agilent) for 10 minutes. Sections were washed in water and
223 counterstained with haematoxylin z (RBA-4201-00A, CellPath). Finally, all sections were
224 rinsed in tap water, dehydrated through graded ethanol's, placed in xylene then coverslipped
225 using DPX mountant (SEA-1300-00A, CellPath).

226 **RESULTS**

227 **Neutrophils exhibit distinct tissue-specific and tumour-specific signatures.**

228 To examine the transcriptomic signatures of neutrophil subtypes in healthy and tumour
229 tissue, we integrated neutrophil clusters from bone marrow, blood, lung and spleen of
230 healthy mice(14), together with neutrophils from tumour-bearing mouse models of non-small-
231 cell lung cancer (NSCLC)(13) and CRC (KPN). Both NSCLC and CRC tumour models
232 shared a comparable C57BL/6 background with *Kras* and *Tp53* mutations. For CRC,
233 neutrophils were derived from two models of tumour genesis: aged GE mice and intracolonic
234 transplants of murine derived organoids, with the majority being from the latter (Fig.S1A).
235 Unsupervised clustering of neutrophil transcriptomic signatures revealed distinct neutrophil
236 clusters based on their tissue of origin in health (Fig.1A). KPN and lung adenocarcinoma
237 neutrophils formed distinct tumour-specific clusters, suggesting transcriptomic differences
238 (Fig.1B).

239 KPN neutrophils encompassed clusters: 0,4,7,8,10,11,12 and 14 (Fig.1B and Fig.S1B,
240 Fig.S2A). Clusters 0 and 7 were enriched for *Cxcl2* and *Thbs1*, which encode proteins that
241 influence neutrophil motility and chemotaxis. Cluster 0 also expressed *Ccl4* and *Ccl3*, critical
242 for T-cell recruitment and antitumor immunity(21) (Supplementary Table S1). Cluster 10
243 expressed *Cd74*, which plays a role in neutrophil accumulation(22). Cluster 4 was common
244 to both KPN and NSCLC primary tumours (PTs) (Fig.1B; Fig.S1B), and expressed *Cdkn1a*,
245 *Ppia*, *Gngt2* *ler3*, and *Rps27l* (Supplementary Table S2). Three smaller clusters were shared
246 between both PTs: Cluster 12, enriched for the lysosomal genes *Lyz1* and *Psap*, Cluster 14
247 expressing *Ppia*, *Jun* and *Slfn4*, and Cluster 11 enriched for *S100a10* and *Ptma*. Finally,
248 Cluster 8 was equally conserved across healthy and tumour-associated neutrophils
249 (Fig.1A,B; Fig.S1B) and was enriched for interferon (IFN) markers: *Isg15*, *Rsad2*, *Ifit3*, *Ifit1*
250 and *Slfn4* (Supplementary Table S2), a phenomenon previously reported in several
251 ScRNAseq studies of neutrophils(23).

252 **Neutrophils in PTs encompass two transcriptional subtypes in mice**

253 Using the highly expressed markers in healthy and tumour tissues (Supplementary Table
254 S2), we defined two neutrophil signatures. The first represented neutrophils associated with
255 healthy tissue (Healthy-enriched; (H_enriched)). This subtype was observed in both healthy
256 and tumour tissue. The second signature was specific to tumour-associated neutrophils
257 (Tumour-enriched; T_enriched) (Fig.1C-N).

258 To validate the established signatures across different tissues and tumours, we scored them
259 on additional neutrophil ScRNA-seq datasets derived from a mouse model of healthy and
260 breast cancer tissue, utilising the mouse mammary tumour virus (MMTV) promoter–driven
261 expression of the polyomavirus middle-T oncoprotein (PYMT, GSE139125) and neutrophils
262 derived from a compendium of CRC mouse models generated in our lab (Table 2).

263 In PYMT, neutrophils clearly separate into distinct healthy and tumour-specific clusters,
264 recapitulating the findings in NSCLC and CRC datasets (Fig.1C,F). Signature scoring in both
265 PYMT and CRC mouse models revealed that within the PT, tumour-specific neutrophils can
266 be separated into two subgroups: (1) activated neutrophils, which are transcriptionally similar
267 to neutrophils from healthy tissue (Fig.1D,G), and (2) a subtype specific to PTs (Fig.1E,H).
268 Both signatures were preserved in both GEM and transplant models of CRC (Fig. S2B,C).

269 **Neutrophil signatures are conserved between mouse and human.**

270 We then investigated whether these signatures (Table 4) could be translated to humans,
271 using 2 datasets: patient-derived neutrophils from NSCLC tumour and blood (Fig. 1I,
272 [GSE127465](#)); and breast carcinomas (BC) and adjacent healthy tissue (Fig.1L,
273 [GSE114727](#)). Signature scoring in NSCLC confirmed the presence of both neutrophil
274 subsets within the PT (Fig.1J,K) recapitulating the trends observed in mice. Blood-derived
275 neutrophils largely resemble the H_enriched subtype (Fig. 1J). Although the BC dataset
276 contained very few cells, we successfully observed the enrichment of both neutrophil
277 subtypes in tumour-derived neutrophils (Fig.1M,N). Our analysis validates the presence of
278 both neutrophil transcriptomic subtypes in patient PTs, albeit to different extents in the
279 different cancer types and tissues, implying a role of the neutrophil's environment in shaping
280 their transcriptome.

281 **Pseudo-time analysis demonstrates neutrophil lineages progress from H_enriched
282 towards T_enriched neutrophils.**

283 To investigate the developmental trajectory of neutrophils from health to cancer, we
284 performed unsupervised pseudo-time analysis on our integrated mouse dataset (Fig.1O).
285 Individual lineages are shown in Supplementary Table S3. Our results recapitulated the

286 Neutrotime lineage(14): from bone marrow to spleen and blood in healthy neutrophil
287 populations (Fig.1O; Lineage1, Supplementary Table S3), with additional lineages as
288 tumour-specific clusters develop. This trend was equally observed in the murine PYMT and
289 CRC datasets (Fig.1P,Q). In human NSCLC, lineages begin from the blood-derived clusters
290 enriched for the H_enriched signature, and progress towards the tumour-derived clusters
291 enriched for the T_enriched signature (Lineages 1 and 4, Supplementary Table S3 and
292 Fig.1R). Our data identified a developmental trajectory beginning with activated, healthy
293 neutrophils and ending at tumour-specific neutrophils in these datasets.

294 **Interleukin-1B (*Il1b*) is a driver of T_enriched Neutrophil signature.**

295 We analysed gene expression along the different trajectories to identify genes that drive
296 neutrophil differentiation from health to cancer-associated lineages. Specifically, we
297 investigated the genes differentially expressed at the end of the lineages compared with the
298 start. In our integrated dataset, *Il1b* was upregulated in the lineages ending with the tumour
299 clusters (Fig.1S,W). *Il1b* was also among the top 30 lineage-specific differentially expressed
300 genes and was specific to the T_enriched neutrophil clusters PYMT (Fig.1T,X;
301 Supplementary Table S4). This was true for CRC (Fig. 1U,Y; Lineages 4 and 6;
302 Supplementary Table S5). In human-NSCLC, the same trend was observed in Lineages 1, 2
303 and 4 (Supplementary Table S6; Fig.1V,Z). The human BC dataset was too small to perform
304 such an analysis. Taken together, our lineage-specific differential gene expression analyses
305 implicate *Il1b* in the progression of neutrophils towards the T-enriched population in PT.

306 **Neutrophils in CRC liver metastasis (LM) display heterogenous transcriptional
307 programmes.**

308 To investigate whether these neutrophil subtypes are present in metastatic cancer, we
309 isolated neutrophils from the publicly available CRCLM dataset(16) (Fig.2A) and scored
310 them for the two signatures we established in PTs. Neutrophils in CRCLM expressed both
311 H_and T_enriched signatures. However, a remarkable overlap between the two signatures
312 was observed, with no clear separation between the two subtypes, reflecting their
313 heterogeneity (Fig.2B). Some clusters were not enriched for either the H_ or T_enriched
314 neutrophil signature (Fig.2B, blue arrow), suggesting the presence of an additional
315 transcriptionally segregated neutrophil population, specific to metastatic CRC.

316 Unsupervised pseudo-time analysis revealed 5 neutrophil lineages, starting from the clusters
317 enriched for the T_enriched signature (Fig.2C). All lineages shared the same sequence for
318 the first 6 clusters and differed at their terminal clusters (Supplementary Table S3). We
319 focused on lineages 2 and 4 because lineage 2 progressed towards the cluster not enriched
320 for either signature observed in PT while lineage 4 terminated with a cluster expressing both

321 signatures observed in PT (Supplementary Table S3). Collectively, our findings suggest
322 progressive transcriptomic development of neutrophil phenotype from healthy to tumour-
323 specific signatures in PT and finally, a metastatic-specific neutrophil subtype.

324 **CRCLM-specific neutrophils display T-cell suppressive markers.**

325 To characterise the transcriptomic signature of the metastatic-specific neutrophil population,
326 we identified marker genes for the lineage endpoints. The endpoint of Lineage 4 (Cluster 5;
327 Supplementary Table S3) was enriched for the chemokine CXCL8 (Fig.2F,G), the major
328 ligand for G-Protein coupled receptor CXCR2 and associated with immune suppression and
329 tumour progression in this context(24). This cluster also highly expressed *IL1B* (Fig.2H),
330 supporting our hypothesis that *IL1B* is implicated in the progression of neutrophils towards
331 malignancy associated phenotypes. Lineage2 endpoint was enriched for the mRNA
332 encoding Trx-interacting protein (*TXNIP*, Fig.2C,D), the upregulation of which inhibits TRX1
333 and restrains late T-cell expansion(25). This cluster was also enriched for the chemokine
334 receptor CXCR2 (Fig.2E), which is a commonly studied target in murine models of cancer
335 influencing metastatic burden, suggesting these neutrophils identified are functionally
336 relevant. We confirmed the expression of TXNIP in a patient CRCLM sample (Fig. 2K), in
337 tumour regions where immune cells cluster (Fig. 2I-J; black arrows). Moreover, among the
338 10 most highly expressed markers in this cluster were the genes: *RIPOR2* and *STK17B*,
339 which are important for naïve T-cell quiescence, survival and activation(26,27) (Fig.2I;
340 Supplementary Table S7). Our findings suggest that the metastasis-specific neutrophil
341 subtype transcribes genes that are T-cell suppressive.

342 **Murine neutrophils express a metastasis-specific signature in CRCLM bulk-RNA-seq
343 dataset.**

344 We selected the top 11 highly expressed genes in the metastasis-specific neutrophil
345 clusters, which we called Metastasis-enriched (M_enriched) signature (Table 3; Fig.2L,O;
346 Supplementary Table S7). We then compared the established H_enriched, T_enriched and
347 M_enriched gene signatures in a bulk-RNA-seq dataset generated from neutrophils from an
348 autochthonous KPN mouse model of CRC-PT and LM generated in our lab. Higher
349 expression of H_enriched genes was observed in LM compared with the PT tissue (Fig.2M).
350 Neutrophils in both PT and LM tissue equally expressed the T_enriched signature, with a
351 higher expression of few genes such as *Ptma* and *Ifitm1* in LM (Fig.2N). A similar trend was
352 observed in the M_enriched signature, where an increase in *Stk17b*, *Fkbp5*, and *Cxcr2* was
353 observed in LM (Fig.2O). This further validates the trends observed in our ScRNAseq
354 analysis and demonstrates cross-species relevance.

355 **GSE analysis implicates IL-17/CXCR2 axis in metastatic neutrophil populations.**

356 We integrated patient-derived neutrophil Sc-RNAseq signatures from lung and breast cancer
357 PTs (PT_NSCLC and PT_BC), with neutrophils from CRCLM tissue (M_CRC) (Fig.2P). Co-
358 expression analysis revealed that neutrophils from both PT and LM tissue expressed *IL1B*,
359 however, CXCR2 expression was largely specific to LM (Fig.2Q). Metastatic neutrophils co-
360 expressed CXCR2 and TXNIP (Fig.2Q), highlighting the specificity of these markers to
361 neutrophils in CRCLM. Differential gene expression between neutrophils in PT and in
362 CRCLM revealed the upregulation of the NETosis marker *G0S2* and *NFKB1A*. (Fig.2R).
363 Supplementary Table S8 shows the top10 differentially expressed genes, grouped by tumour
364 type. Using the differentially expressed genes in M_CRC neutrophils (Supplementary Table
365 S9), we performed GSE analysis. *G0S2* and *S100A8* were upregulated and are implicated in
366 positive regulation of apoptotic signalling (Fig.2S). GO analysis revealed an upregulation of
367 cytokine-mediated signalling and positive regulation of inflammatory response (Fig.2T).
368 KEGG analysis revealed the up regulation of *IL17*, *TNF* and *NF-kappa-beta* signalling
369 pathways (Fig.2U). This supports the data implicating the *IL17/CXCR2* axis in metastatic
370 neutrophil populations(28).

371 **CRCLM-derived CD4+T-cells transcriptionally diverge from their PT counterparts.**

372 We revisited the publicly available datasets of CRC PT(17) and CRCLM(16) to isolate T-cells
373 and investigate transcriptomic differences in metastasis given the T-cell suppressive
374 phenotype of neutrophils found in CRCLM. Upon integration, CD8+T-cells from both PT and
375 LM largely co-cluster, reflecting their transcriptomic similarity. However, CRCLM-derived
376 CD4+T-cells formed a distinct cluster (Fig. 3A,B). Differential gene expression analysis
377 revealed 660 and 26 differentially expressed genes for the CRCLM-derived CD4 and
378 CD8+T-cells, respectively, compared with their equivalent PT populations (Supplementary
379 Tables S10 and S11). Henceforth, we focused on CD4+T-cells. *IL1B* and *CXCL8* were
380 upregulated, the same genes we identified as drivers of metastatic neutrophil subtype
381 (Fig.3C), suggesting that the *IL1B/CXCL8/CXCR2* axis drives the interaction between
382 neutrophils and T-cells in metastatic tissue.

383 In addition, we observed a downregulation of *RORA*, implicated in CD4 T-cell activation(29),
384 together with Granzyme A (*GZMA*) and pro-inflammatory lipid-mediator leukotriene B (*LTB*);
385 further suggesting the possibility of impaired cytotoxic CD4+T-cell function in CRCLM. GO
386 and KEGG analyses revealed the dysregulation of biological processes converging on the
387 complement system, antigen processing and presentation, together with perturbations in
388 PD1-PDL1 and T-cell receptor signalling pathways in the CRCLM-derived CD4+T-cells
389 (Fig.3D,E). Collectively, this suggests that the regulatory function of CD4+T-cells may be
390 impaired in metastasis, contributing to an immunosuppressive phenotype.

391 **Neutrophils and CD4+T-cells interact through IL1, CXCL and TNF signalling pathways**
392 **in CRCLM.**

393 We then assessed the global cell-cell communication network to investigate how the
394 impaired CD4+T-cells in the metastatic niche may influence neutrophils and other T-cell
395 subtypes. Signals from CD4+T-cells interact with CD8+T-cells and T-regulatory cells (Tregs)
396 and, to a lesser extent, neutrophils (Fig.3F-H). Outgoing signals from neutrophils are
397 received by CD8+T-cells (Fig.J), supporting our hypothesis that neutrophils impair CD8+T-
398 cell function in metastasis. Signals from CD8+T-cells are mostly autocrine (Fig.3I) and Tregs
399 mainly influence CD8+T-cells (Fig.3K). We identified 20 signalling pathways showing
400 significant communications between neutrophils, CD4+, CD8+ T-cells and Tregs
401 (Supplementary Fig.S3). Supplementary Fig.S4A-D show the significant ligand-receptor (L-
402 R) interactions between neutrophils, CD4+T-cells, CD8+T-cells and Tregs to other target
403 cell groups. Neutrophils primarily communicate with CD8+T-cells through the MHC-I
404 pathway (Fig.S4A). CD4+T-cells strongly interact with CD8+T-cells through MHC-I and
405 MHC-II pathways and with Tregs through the MHC-II pathway (Fig.S4B). CD8+T-cells
406 communicate with CD4+T-cells and neutrophils through CD45 and ANNEXIN signalling
407 pathways, respectively (Fig.S4C). Finally, Tregs target CD8+T-cells through the MHC-I
408 signalling pathway (Fig.S4D).

409 We then focused on IL1, CXCL and TNF pathways, based on their involvement in defining
410 the phenotype of metastatic neutrophils. CXCL12-CXCR4 and CXCL8-CXCR2 were the
411 major L-R interactions observed (Fig.3L). CD4+T-cells are major senders of the CXCL12-
412 CXCR4 signals, whereas CXCL8-CXCR2 signals are largely autocrine within neutrophils
413 (Fig.3O). IL1B-IL1R2 significantly contributed to the IL1 pathway in CRCLM (Fig.3M), an L-R
414 interaction largely driven by the CD4+T-cells and neutrophil interactions, as well as
415 neutrophils' autocrine signalling (Fig.3P). This observation supports our pseudo-time findings
416 in the different neutrophil populations. Finally, CD4+T-cells communicate with Tregs,
417 neutrophils and CD8+T-cells through TNF-TNFRSF1B interactions (Fig.3N,Q). Our findings
418 suggest that within the metastatic niche, neutrophils primarily target CD8+T-cells through the
419 MHC-I pathway, in addition to their autoregulation through CXCL and IL1 pathways with
420 CD4+T-cells undertaking a prominent regulatory role.

421 **CD4+T-cells are dominant signal senders in CRCLM.**

422 To elucidate how cells coordinate different pathways to drive communication, we
423 investigated the global communication patterns between the different immune cell
424 populations. We identified 4 outgoing patterns (Fig.4A) and 4 incoming patterns (Fig.4B).
425 Outgoing signals from CD4+T-cells formed the largest communication pattern, with MHC-II

426 and PECAM signalling being autocrine (Fig.4A,B). Outgoing signals from CD8+T-cells
427 converge on the CLEC pathway, which is autocrine, together with signals from ANNEXIN,
428 CD99 and IFN-II pathways. Tregs send signals along the LCK and VCAM pathways and are
429 recipient to CD86 signalling. The IL1 signalling pathway is the most prominent outgoing
430 pathway for neutrophils, which is also autocrine (Fig.4A,B). Neutrophils are influenced by
431 CXCL ligands and ICAM signals from CD4+T-cells, ANNEXIN signals from CD8+T-cells, and
432 ADREG5 signals most likely from other cells in the metastatic microenvironment not
433 explored here. CD4+T-cells receive signals from Tregs through the VCAM pathway, as well
434 as signals along the CD45, CCL and ITGB2 pathways. CD8+T-cells are influenced by LCK
435 signals from Tregs, and additional signals along the CD99 and MHC-I signalling pathways.
436 Finally, we compared the overall signalling roles of CD8 and CD4+T-cells in CRCPT and LM.
437 Our analysis revealed that in PT, CD8+T-cells are prominent senders, whereas the CD4+T-
438 cells are prominent receivers. In CRCLM, these roles are strikingly reversed (Fig.4C).

439 **440 Macrophages communicate with T-cells and TXNIP+Neutrophils through MHC and
CXCL pathways in CRCLM.**

441 We then characterised the neutrophil subtypes in CRCLM to investigate their communication
442 patterns with T-cell and macrophage populations from the same dataset, focusing on the
443 immunosuppressive TXNIP+Neutrophils and SPP1+macrophages(16). We identified 11
444 additional neutrophil subtypes in CRCLM(Fig. 4D, Supplementary Tables S7 and 13):
445 Inflammation regulatory (Inf_reg) neutrophils expressing genes important for inflammatory
446 regulation (*TMG2, CCL4, CCL3 and PI3*), COX+ neutrophils expressing glycolysis genes
447 (*DYNLL1, COX20 and ENO1*), IFN+ neutrophils enriched for interferon response genes
448 (*ISG15, IFIT3, IFIT1 and IFITM3*), ARG1+ neutrophils expressing canonical neutrophil
449 markers (*MMP9 and S100A12*) together with the T-cell suppressive markers *ARG1* and
450 *TXNIP*, HLA-DR+ neutrophils expressing several genes from the human leukocyte antigen
451 (HLA) family (*HLA-DRB1, HLA-DRA*), activated neutrophils enriched for markers of
452 neutrophil activation (*DEFA3, CAMP, LTF, MMP8*) and HSP+, MT+ and RPS+ neutrophils
453 highly expressing heat shock, mitochondrial and ribosomal proteins, respectively and
454 PLPP3+ neutrophils expressing genes that converge on JAK-STAT and EGFR signalling
455 (*PLPP3, FNIP2, PLIN2, SNAPC1, CSTB, CTSD, VEGFA*) and has been reported in other
456 ScRNA-seq studies of neutrophils(13,30).

457 Analysis of the communication network between neutrophil subtypes, T-cells and
458 macrophages confirmed the recipient role of CD8+T-cells in the CRCLM microenvironment
459 (Fig. 4E) with signals from TXNIP+ neutrophils specifically targeting CD8+ T-cells(Fig.4F).
460 Macrophages exhibited diverse communication patters, interacting with all other immune cell

461 subtypes with stronger interactions with CD4+ and CD8+T-cells. This was observed for all
462 macrophage subtypes (Fig.4G-I). The significant L-R interactions with highest
463 communication probabilities from SPP1+, proliferating MKI67+, M1- and M2-like
464 macrophages targeting CD4+ and CD8+T-cells were through the MHC-II and MHC-I
465 pathways, respectively (Supplementary Fig. S5A-D). Both MKI67+ and SPP1+ macrophages
466 exhibited stronger communication probabilities with M1-and M2-like macrophages along the
467 MIF-(CD74/CXCR4) and MIF-(CD74/CXCR2) axes (Fig.S5C,D). Both M1-like and SPP1+
468 macrophages showed the highest communication probability with TXNIP+ neutrophils
469 through the CXCL8-CXCR2 L-R interaction(Fig.S5A,D).Further analysis of the CXCL
470 pathway identified CXCL8-CXCR2 as the major L-R interaction (Fig.4J), with additional
471 outgoing signals from other neutrophil subtypes targeting the TXNIP+ population (Fig.4K).
472 M2-like macrophages communicate with all immune cell populations investigated here
473 through CXCL12-CXCR4 interactions (Fig.4L) whereas signals from both M1-like and
474 SPP1+ macrohages target TXNIP+ and IFN+ neutrophils through the CXCL2-CXCR2
475 interactions (Fig.4M). Finally, analysis of the aggregated cell-cell communication network
476 from all signalling pathways identified both macrophages and CD4+ T-cells as dominant
477 senders in CRCLM (Fig. 4N). Collectively, our data confirm the importance of the
478 CXCL8/CXCR2 axis in immune cell interactions and highlight the dominant roles of
479 macrophages and CD4+ T-cells within the immunosuppressive CRCLM environment.

480 **DISCUSSION**

481 There is a need to identify novel targets for therapy in advanced CRC to circumvent
482 resistance to current treatments(31). Here we have explored neutrophil and T-cell single cell
483 transcriptomic profiles to assess differences in neutrophil phenotypes in health, primary
484 tumours and metastases and gain insight into how the microenvironment is regulated. The
485 major interactions between the different immune cell populations in CRCLM are summarised
486 in Fig. 4O.

487 We demonstrate that in health, neutrophils exhibit different transcriptomic signatures
488 according to the tissue they are derived from. This is also true in cancer, where we
489 demonstrated 2 distinct transcriptomic signatures are observed in PT. In metastases, tumour
490 associated neutrophils exhibit the same signatures as the primary site, however, these
491 populations are heterogenous, encompassing additional, distinct transcriptomic changes.
492 Our findings support the role of the tumour microenvironment in recruiting and transforming
493 neutrophils into more immunosuppressive phenotypes (32).

494 Recent studies have highlighted the roles of opposing neutrophil phenotypes, anti-
495 tumorigenic N1 or pro-tumorigenic N2, that exacerbate the progression of cancer depending
496 on their prevalence(11), however, with advances in understanding of plasticity of neutrophils
497 these states appear oversimplified, with neutrophils likely responsive to both the tissue of
498 residence and microenvironmental signalling of the tumour and associated stromal cells.
499 These populations were largely defined based on their function and no cell surface markers
500 have been identified thus far to differentiate between the two(33). In this study, we
501 established the transcriptomic signatures of two distinct neutrophil subtypes in PTs: Healthy-
502 enriched and Tumour-enriched neutrophil subtypes, which are conserved across species
503 and across different cancers.

504 Neutrophils within CRCLM include a subset enriched for genes implicated in T-cell
505 expansion, survival and activation(25,27). This metastatic-specific signature identified in
506 human CRCLM was equally present in a murine CRCLM Bulk-RNAseq dataset generated in
507 our laboratory. Through the TNF pathway, tumour associated neutrophils induce CD8+Tcell
508 apoptosis, further exacerbating their immunosuppressive phenotype(34). Moreover, S100A8
509 expressing neutrophils facilitate metastasis through the suppression of CD8+T-cells(35).
510 Here, we show an upregulation of TNF signalling in metastatic neutrophils, concomitant with
511 the overexpression of S100A8 and G0S2, implicated in the positive regulation of apoptosis.
512 As such, we propose the presence of a metastasis-specific neutrophil subtype that
513 specifically targets T-cells in order to suppress them.

514 Our pseudo-time analysis suggests a developmental trajectory of neutrophils that
515 progresses from the healthy subtype to the tumour-specific population and finally a
516 metastasis-specific population; a lineage that is largely driven by IL1B/CXCL8/CXCR2 axis.
517 We show that tumour-associated neutrophils not only respond to IL1B/CXCR2 in their
518 environment but equally signal through IL1B and CXCR2 in an autocrine fashion. The
519 IL1B/CXCL8/CXCR2 axis has been implicated in several tumour types and plays a role in
520 neutrophil recruitment(5,36). The genetic ablation of CXCR2 in mice eliminates tumour
521 accumulation and enhances T-cell infiltration and function(37). Moreover, targeting CXCR2+
522 immunosuppressive neutrophils, either independently or in combination with additional
523 treatments, enhances anti-tumour immune activity; specifically, that of CD8+T-cells, and
524 reduces tumour burden across different cancer types(38). This supports the presence of a
525 CXCR2+ T-cell supressing neutrophil subset in CRCLM, the elimination of which can
526 enhance T-cell infiltration and function.

527 It is important to account for the tumour stage when considering the tumour-suppressive
528 effect of targeting CXCR2. We propose that targeting IL1B independently or in combination
529 with CXCR2, could be more favourable at earlier stages, where it may hinder the
530 progression of neutrophils towards the tumour-specific subtype, permitting re-education of
531 neutrophils to a tumour-killing phenotype, in addition to permitting an opportunity for other
532 tumour-directed therapies. Late-stage interventions could target the CXCR2+ T-cell
533 suppressive neutrophil subtypes through utilising CXCR2 antagonists in combination with
534 immune checkpoint inhibitors to counteract T-cell exhaustion. Our findings also implicate the
535 TNF pathway in CRCLM associated neutrophil populations, as well as LTB, complement
536 system and antigen presentation pathways in CD4+T-cells from the same tissue, highlighting
537 the potential of harnessing these aspects of the tumour microenvironment to selectively
538 activate neutrophils for immunotherapy(7).

539 Finally, we demonstrate that the transcriptomic signature of CD4+T-cells is altered in
540 CRCLM. They are drivers of the signalling network in CRCLM and their interaction with
541 neutrophils, CD8+T-cells and Tregs is essential to mediate immunosuppression as
542 summarised in Fig.4D. CD8+ and CD4+T-cells receive signals along the MHC-I and MHC-II
543 pathways respectively, from macrophages and presumably due to direct interactions with
544 tumour cells. The direct effects of IFN-II on T-cells are largely suppressive(39), thus, we
545 hypothesise that incoming IFN-II signals from CD8+T-cells may drive the suppression of
546 CD4+T-cells in metastasis, specifically the cytotoxic subtype. Amongst the outgoing
547 signalling pathways from CD4+T-cells was GALACTIN. The upregulation of Galectin-9 by
548 IFN-II has an apoptosis-inducing activity in both CD4+ and CD8+T-cells; with CD8+T-cells
549 being more susceptible(40). We identified two autocrine signalling pathways in CD4+ and

550 CD8+T-cells: PECAM1 and CLEC, respectively. The adhesion molecule PECAM1 inhibits T-
551 cell function in mice through the effects of TGF-B(41) and the C-type lectin receptor CLEC-1
552 negatively regulates antigen cross-presentation by dendritic cells to CD8+T-cells (42),
553 supporting our hypothesis of diminished T-cell activity in the metastatic environment.

554 We demonstrate that neutrophils receive immunosuppressive signals from both CD4+ and
555 CD8+T-cells. ANNEXIN signalling elicits pro-invasive and pro-tumoral properties in a number
556 of cancers, whereby neutrophil micro-vesicles enriched in Annexin-A1 and TGF-B are
557 immunosuppressive(43). ICAM1 expression immobilises neutrophils and enhances their
558 migration and infiltration(44). Several L-R interactions in the CXCL pathway were between
559 neutrophils, macrophages and CD4+T-cells, suggesting an additional role of CD4+T-cells
560 and macrophages in driving the immunosuppressive neutrophil phenotype. Autocrine IL1B-
561 IL1R2 and CXCL8-CXCL2 interactions within neutrophils support our pseudo-time analysis.
562 Neutrophils are recipients to ADGRE5 signalling, which has a role in tumour invasion and
563 metastasis(45), potentially reflecting tumour-neutrophil interactions. We show that Tregs
564 receive CD86 signals, which upon their engagement with CTLA-4 receptor hamper the
565 antigen presenting ability of antigen presenting cells to activate T-cells(46). They primarily
566 suppress CD4+ and CD8+T-cells via the VCAM and LCK pathways, respectively. VCAM1 is
567 essential for T-cell extravasation and the Src-kinase LCK plays a critical role in initiating and
568 regulating T-cell receptor signalling, whereby LCK inhibition selectively depletes effector
569 Tregs and increases memory CD8+T-cells(47).

570 In conclusion, there exist two neutrophil transcriptomic subtypes that predominate PTs and
571 are conserved across human and mouse cancers. We propose a developmental trajectory
572 progressing from healthy neutrophils towards a tumour-specific subtype in PTs, with
573 heterogenous expression profiles of neutrophils present within metastases, however, a T-cell
574 suppressive neutrophil lineage can be identified in CRCLM that specifically interacts with
575 CD8+T-cells. This lineage is largely driven by the IL1B/CXCL8/CXCR2 axis. The metastatic
576 niche further fosters an immunosuppressive environment, through the interplay between
577 neutrophils, macrophages, CD8+T-cells, CD4+T-cells and Tregs, with CD4+T-cells and
578 macrophages being dominant signal senders and regulators of the immunosuppressive
579 microenvironment. As such, these interactions, and their timings should be considered when
580 developing future immunotherapy trials in CRCLM.

581 **ACKNOWLEDGEMENTS**

582 We would like to thank Ms. Selena McCafferty from Biorepository Research for facilitating
583 the procurement of human CRCLM tissue for Project #602 when available. The authors
584 would like to acknowledge and thank the McNab family for generous financial support for this
585 project.

586 **AUTHORS' CONTRIBUTIONS**

587 RF: Conceptualization, Data generation, Data curation and acquisition, Formal Analysis,
588 Investigation, Software, Validation, Writing – original draft; MW: Data curation and
589 acquisition, Methodology, Visualization, Writing – review & editing; MM: Data curation and
590 acquisition, Methodology; XC-L: Data curation and acquisition; AML: Writing – review &
591 editing, Visualization; JF: Writing – review & editing; KG: Data curation, Methodology,
592 Software; CN: Methodology, Resources; KK: Methodology, Resources; RJ: Writing – review
593 & editing; AD.C: Writing – review & editing; O.J.S: Funding acquisition, Project administration,
594 Supervision; CW.S: Conceptualization, Funding acquisition, Project administration,
595 Supervision, Writing – review & editing.

596

597 **COMPETING INTERESTS**

598 The authors declare no competing or financial interests.

599 **DATA AVAILABILITY**

600 The data generated in this study are available within the article and its supplementary data
601 files. All relevant code has been deposited on Github
602 (<https://github.com/ranafetit/NeutrophilCharacterisation>). Data analysed from publicly
603 available datasets were obtained from Gene Expression Omnibus (GEO) database and
604 National Omics Encyclopaedia as listed in Table1. Data generated independently from GEM
605 and transplant models of CRC in this study are available from Zenodo at
606 (<https://doi.org/10.5281/zenodo.8133995>). Any other data generated in this study are
607 available upon request from the corresponding author.

608

REFERENCES

- 609 1. Ballesteros I, Rubio-Ponce A, Genua M, Lusito E, Kwok I, Fernández-Calvo G, et al. Co-option
610 of Neutrophil Fates by Tissue Environments. *Cell*. 2020;183(5).
- 611 2. McFarlane AJ, Fercoq F, Coffelt SB, Carlin LM. Neutrophil dynamics in the tumor
612 microenvironment. Vol. 131, *Journal of Clinical Investigation*. 2021.
- 613 3. Steele CW, Karim SA, Leach JDG, Bailey P, Upstill-Goddard R, Rishi L, et al. CXCR2 Inhibition
614 Profoundly Suppresses Metastases and Augments Immunotherapy in Pancreatic Ductal
615 Adenocarcinoma. *Cancer Cell*. 2016;29(6).
- 616 4. White M, Tsantoulis P, Lannagan T, Najumudeen A, Ridgeway RA, Campbell AD, et al. 26P
617 NOTCH1 driven metastasis in BRAF mutated colorectal cancer. *Annals of Oncology*. 2022;33.
- 618 5. Jackstadt R, van Hooff SR, Leach JD, Cortes-Lavaud X, Lohuis JO, Ridgway RA, et al. Epithelial
619 NOTCH Signaling Rewires the Tumor Microenvironment of Colorectal Cancer to Drive Poor-
620 Prognosis Subtypes and Metastasis. *Cancer Cell*. 2019;36(3).
- 621 6. Gungabeesoon J, Gort-Freitas NA, Kiss M, Bolli E, Messeemaker M, Siwicki M, et al. A
622 neutrophil response linked to tumor control in immunotherapy. *Cell*. 2023;186(7).
- 623 7. Linde IL, Prestwood TR, Qiu J, Pilarowski G, Linde MH, Zhang X, et al. Neutrophil-activating
624 therapy for the treatment of cancer. *Cancer Cell*. 2023;41(2).
- 625 8. Zhu G, Pei L, Xia H, Tang Q, Bi F. Role of oncogenic KRAS in the prognosis, diagnosis and
626 treatment of colorectal cancer. Vol. 20, *Molecular Cancer*. 2021.
- 627 9. Kargl J, Busch SE, Yang GHY, Kim KH, Hanke ML, Metz HE, et al. Neutrophils dominate the
628 immune cell composition in non-small cell lung cancer. *Nat Commun*. 2017;8.
- 629 10. Steele CW, Whittle T, Joshua Smith J. Review: KRAS mutations are influential in driving hepatic
630 metastases and predicting outcome in colorectal cancer. Vol. 8, *Chinese Clinical Oncology*.
631 2019.
- 632 11. Mizuno R, Kawada K, Itatani Y, Ogawa R, Kiyasu Y, Sakai Y. The role of tumor-associated
633 neutrophils in colorectal cancer. Vol. 20, *International Journal of Molecular Sciences*. 2019.
- 634 12. Hedrick CC, Malanchi I. Neutrophils in cancer: heterogeneous and multifaceted. Vol. 22,
635 *Nature Reviews Immunology*. 2022.
- 636 13. Zilionis R, Engblom C, Pfirschke C, Savova V, Zemmour D, Saatcioglu HD, et al. Single-Cell
637 Transcriptomics of Human and Mouse Lung Cancers Reveals Conserved Myeloid Populations
638 across Individuals and Species. *Immunity*. 2019;50(5).
- 639 14. Grieshaber-Bouyer R, Radtke FA, Cunin P, Stifano G, Levescot A, Vijaykumar B, et al. The
640 neutrotime transcriptional signature defines a single continuum of neutrophils across
641 biological compartments. *Nat Commun*. 2021;12(1).
- 642 15. Alshetaiwi H, Pervolarakis N, McIntyre LL, Ma D, Nguyen Q, Rath JA, et al. Defining the
643 emergence of myeloid-derived suppressor cells in breast cancer using single-cell
644 transcriptomics. *Sci Immunol*. 2020;5(44).
- 645 16. Wu Y, Yang S, Ma J, Chen Z, Song G, Rao D, et al. Spatiotemporal Immune Landscape of
646 Colorectal Cancer Liver Metastasis at Single-Cell Level. *Cancer Discov*. 2022;12(1).

647 17. Zhang L, Li Z, Skrzypczynska KM, Fang Q, Zhang W, O'Brien SA, et al. Single-Cell Analyses
648 Inform Mechanisms of Myeloid-Targeted Therapies in Colon Cancer. *Cell*. 2020;181(2).

649 18. Azizi E, Carr AJ, Plitas G, Cornish AE, Konopacki C, Prabhakaran S, et al. Single-Cell Map of
650 Diverse Immune Phenotypes in the Breast Tumor Microenvironment. *Cell*. 2018;174(5).

651 19. Aloe C, Wang H, Vlahos R, Irving L, Steinfort D, Bozinovski S. Emerging and multifaceted role
652 of neutrophils in lung cancer. Vol. 10, *Translational Lung Cancer Research*. 2021.

653 20. Roper J, Tammela T, Cetinbas NM, Akkad A, Roghanian A, Rickelt S, et al. In vivo genome
654 editing and organoid transplantation models of colorectal cancer and metastasis. *Nat
655 Biotechnol*. 2017;35(6).

656 21. Honey K. CCL3 and CCL4 actively recruit CD8+ T cells. *Nat Rev Immunol*. 2006;6(6).

657 22. Takahashi K, Koga K, Linge HM, Zhang Y, Lin X, Metz CN, et al. Macrophage CD74 contributes
658 to MIF-induced pulmonary inflammation. *Respir Res*. 2009;10.

659 23. McLaren AS, Fetit R, Wood CS, Falconer J, Steele CW. Single cell sequencing of neutrophils
660 demonstrates phenotypic heterogeneity and functional plasticity in health, disease, and
661 cancer. *Chin Clin Oncol* [Internet]. 2023 Apr;12(2):18–18. Available from:
662 <https://cco.amegroups.com/article/view/112683/html>

663 24. Xiong X, Liao X, Qiu S, Xu H, Zhang S, Wang S, et al. CXCL8 in Tumor Biology and Its
664 Implications for Clinical Translation. Vol. 9, *Frontiers in Molecular Biosciences*. 2022.

665 25. Muri J, Thut H, Kopf M. The thioredoxin-1 inhibitor Txnip restrains effector T-cell and germinal
666 center B-cell expansion. *Eur J Immunol*. 2021;51(1).

667 26. Froehlich J, Versapuech M, Megrelis L, Largeteau Q, Meunier S, Tanchot C, et al. FAM65B
668 controls the proliferation of transformed and primary T cells. *Oncotarget*. 2016;7(39).

669 27. Mao P, Hever MP, Niemaszyk LM, Haghkerdar JM, Yanco EG, Desai D, et al. Serine/threonine
670 kinase 17A is a novel p53 target gene and modulator of cisplatin toxicity and reactive oxygen
671 species in testicular cancer cells. *Journal of Biological Chemistry*. 2011;286(22).

672 28. Wu L, Awaji M, Saxena S, Varney ML, Sharma B, Singh RK. IL-17–CXC Chemokine Receptor 2
673 Axis Facilitates Breast Cancer Progression by Up-Regulating Neutrophil Recruitment. *American
674 Journal of Pathology*. 2020;190(1).

675 29. Haim-Vilmosky L, Henriksson J, Walker JA, Miao Z, Natan E, Kar G, et al. Mapping Rora
676 expression in resting and activated CD4+ T cells. *PLoS One*. 2021;16(5 May).

677 30. Kleinstein SE, McCarrison J, Ahmed A, Hasturk H, Van Dyke TE, Freire M. Transcriptomics of
678 type 2 diabetic and healthy human neutrophils. *BMC Immunol*. 2021;22(1).

679 31. Shan J, Han D, Shen C, Lei Q, Zhang Y. Mechanism and strategies of immunotherapy resistance
680 in colorectal cancer. Vol. 13, *Frontiers in Immunology*. 2022.

681 32. Blanter M, Gouwy M, Struyf S. Studying neutrophil function in vitro: Cell models and
682 environmental factors. Vol. 14, *Journal of Inflammation Research*. 2021.

683 33. Ohms M, Möller S, Laskay T. An Attempt to Polarize Human Neutrophils Toward N1 and N2
684 Phenotypes in vitro. *Front Immunol*. 2020;11.

685 34. Michaeli J, Shaul ME, Mishalian I, Hovav AH, Levy L, Zolotriov L, et al. Tumor-associated
686 neutrophils induce apoptosis of non-activated CD8 T-cells in a TNF α and NO-dependent
687 mechanism, promoting a tumor-supportive environment. *Oncoimmunology*. 2017;6(11).

688 35. Wagner NB, Weide B, Gries M, Reith M, Tarnanidis K, Schuermans V, et al. Tumor
689 microenvironment-derived S100A8/A9 is a novel prognostic biomarker for advanced
690 melanoma patients and during immunotherapy with anti-PD-1 antibodies. *J Immunother
691 Cancer*. 2019;7(1).

692 36. Raza S, Rajak S, Tewari A, Gupta P, Chattopadhyay N, Sinha RA, et al. Multifaceted role of
693 chemokines in solid tumors: From biology to therapy. Vol. 86, *Seminars in Cancer Biology*.
694 2022.

695 37. Steele CW, Karim SA, Leach JDG, Bailey P, Upstill-Goddard R, Rishi L, et al. CXCR2 Inhibition
696 Profoundly Suppresses Metastases and Augments Immunotherapy in Pancreatic Ductal
697 Adenocarcinoma. *Cancer Cell*. 2016;29(6).

698 38. Gulhati P, Schalck A, Jiang S, Shang X, Wu CJ, Hou P, et al. Targeting T cell checkpoints 41BB
699 and LAG3 and myeloid cell CXCR1/CXCR2 results in antitumor immunity and durable response
700 in pancreatic cancer. *Nat Cancer*. 2023;4(1).

701 39. Whitmire JK, Tan JT, Whitton JL. Interferon- γ acts directly on CD8+ T cells to increase their
702 abundance during virus infection. *Journal of Experimental Medicine*. 2005;201(7).

703 40. Yang R, Sun L, Li CF, Wang YH, Yao J, Li H, et al. Galectin-9 interacts with PD-1 and TIM-3 to
704 regulate T cell death and is a target for cancer immunotherapy. *Nat Commun*. 2021;12(1).

705 41. New man DK, Fu G, Adams T, Cui W, Arumugam V, Bluemn T, et al. The adhesion molecule
706 PECAM-1 enhances the TGF- β -mediated inhibition of T cell function. *Sci Signal*. 2016;9(418).

707 42. Drouin M, Saenz J, Gauttier V, Evrard B, Teppaz G, Pengam S, et al. CLEC-1 is a death sensor
708 that limits antigen cross-presentation by dendritic cells and represents a target for cancer
709 immunotherapy. *Sci Adv*. 2022;8(46).

710 43. Araújo TG, Mota STS, Ferreira HSV, Ribeiro MA, Goulart LR, Vecchi L. Annexin a1 as a regulator
711 of immune response in cancer. Vol. 10, *Cells*. 2021.

712 44. Yang L, Froio RM, Sciuto TE, Dvorak AM, Alon R, Luscinskas FW. ICAM-1 regulates neutrophil
713 adhesion and transcellular migration of TNF- α -activated vascular endothelium under flow.
714 *Blood*. 2005;106(2).

715 45. Aust G, Zheng L, Quaas M. To Detach, Migrate, Adhere, and Metastasize: CD97/ADGRE5 in
716 Cancer. Vol. 11, *Cells*. 2022.

717 46. Dees S, Ganesan R, Singh S, Grewal IS. Regulatory T cell targeting in cancer: Emerging
718 strategies in immunotherapy. Vol. 51, *European Journal of Immunology*. 2021.

719 47. Li C, Jiang P, Wei S, Xu X, Wang J. Regulatory T cells in tumor microenvironment: New
720 mechanisms, potential therapeutic strategies and future prospects. Vol. 19, *Molecular Cancer*.
721 2020.

722 48. Tauriello DVF, Palomo-Ponce S, Stork D, Berenguer-Llergo A, Badia-Ramentol J, Iglesias M, et
723 al. TGF β drives immune evasion in genetically reconstituted colon cancer metastasis. *Nature*.
724 2018;554(7693).

725 49. Amirkhah R, Gilroy K, Malla SB, Lannagan TRM, Byrne RM, Fisher NC, et al. MmCMS:
726 mouse models' consensus molecular subtypes of colorectal cancer. Br J Cancer. 2023;
727

728 **TABLES**

729 **Table 1: Description of public datasets used in this study.**

Author	Accession number	Species	Tissue	Tumour	Description
Zilionis et al., 2019	GSE127465	Human, Mouse	Blood, Lung	PT	Non-small-cell lung cancer
Grieshaber-Bouyer et al., 2021	GSE165276	Mouse	Bone marrow, Blood, Spleen	None	Healthy tissue
Alshetaiwi et al., 2020	GSE139125	Mouse	Breast	PT	Polyomavirus middle T oncoprotein breast cancer
Azizi et al., 2018	GSE114727	Human	Breast	PT	Breast carcinomas and adjacent healthy tissue
Wu et al., 2022	OEP001756	Human	Liver	MET	Colorectal cancer liver metastasis
Zhang et al., 2020	GSE146771	Human	Colon	PT	Colorectal cancer

730 PT=Primary Tumour, MET=Metastatic Tumour

731 **Table 2: Links to software processing pipelines on Github.**

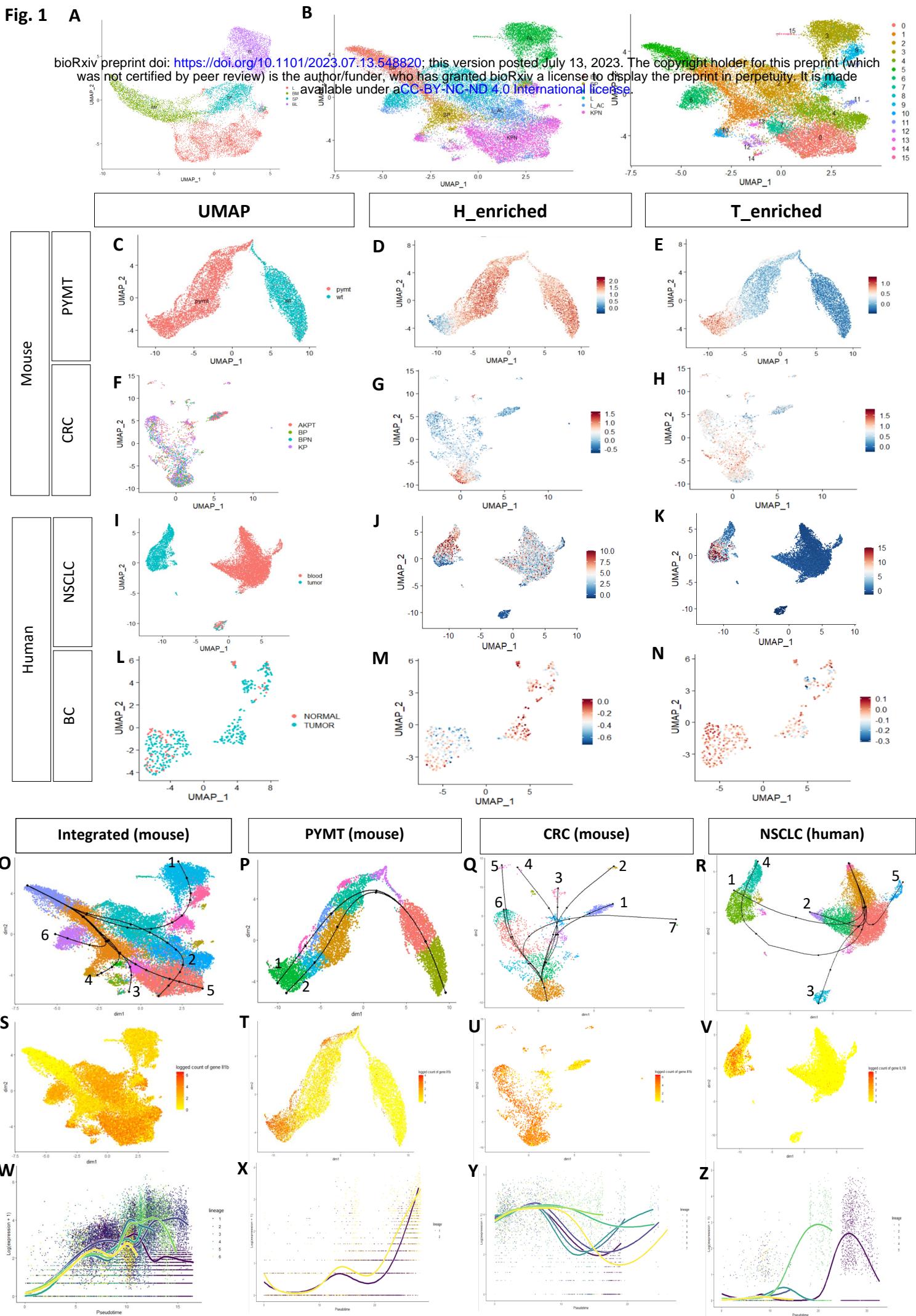
Software	Github Identifier
Seurat	https://github.com/satijalab/seurat
Slingshot	https://github.com/kstreet13/slingshot
TradeSeq	https://github.com/statOmics/tradeSeq
ClusterProfiler	https://github.com/YuLab-SMU/clusterProfiler
EnrichR	https://github.com/wjawaid/enrichR
CellChat	https://github.com/sqjin/CellChat
Cellranger	https://github.com/10XGenomics/cellranger
CellTypist	https://github.com/Teichlab/celltypist
tophat2	https://github.com/DaeHwanKimLab/tophat2
Bowtie	https://github.com/BenLangmead/bowtie
HTSeq	https://github.com/simon-anders/htseq
DESeq2	https://github.com/mikelove/DESeq2

732

733 **Table 3: Description of CRC mouse models used.**

Mouse model	Mutations	Reference
AKPT Transplant	<i>villinCre^{ER} Apc^{f/f} Kras^{G12D/+} Trp53^{f/f} TgfbR1^{f/f}</i>	(48)
BP GEMM	<i>villinCre^{ER} Braf^{A600E/+} Trp53^{f/f}</i>	(4,49)
BPN GEMM	<i>villinCre^{ER} Braf^{A600E/+} Trp53^{f/f} Rosa26^{N1icd/+}</i>	(49)
KP GEMM	<i>villinCre^{ER} Kras^{G12D/+} Trp53^{f/f}</i>	(5)
KPN GEMM and Transplant	<i>villinCre^{ER} Kras^{G12D/+}, Trp53^{f/f}, Rosa26^{N1icd/+}</i>	(5)

734


735 **Table 4: Healthy- and Tumour- enriched neutrophil signatures in human and mouse.**

Human			Mouse		
Healthy-enriched	Tumour-enriched	Metastasis-enriched	Healthy-enriched	Tumour-enriched	Metastasis-enriched
MMP8	CDKN1A	TXNIP	Mmp8	Cdkn1a	Txnip
IFITM2	PPIA	RIPOR2	Ifitm6	Ppia	Riopr2
IFITM3	IFITM1	CXCR2	S100a6	Ifitm1	Cxcr2
S100A6	TAGLN2	FKBP5	Lyz1	Tagln2	Fkbp5
LYZ	ISG15	CEBPD	Lyz2	Isg15	Cebpd
CTLA4	GNGT2	STK17B	Ctla2a	Gngt2	Stk17b
CHI3L1	CXCL8	SMAP2	Chil3	Cxcl12	Smap2
G0S2	CCL4	CTSS	G0s2	Ccl4	Ctss
FPR2	CD14	JAML	Fpr2	Cd14	Jaml
	RPS27L	IGHM		Rps27l	Ighm
	IER3	CD74		Ier3	Cd74
	CCL3			Ccl3	
	IFIT3			Ifit3	
	IFIT1			Ifit1	
	IL1B			Il1b	
	WFDC1			Wfdc17	
	THBS1			Thbs1	
	PTMA			Ptma	

736

Fig. 1 A

bioRxiv preprint doi: <https://doi.org/10.1101/2023.07.13.548820>; this version posted July 13, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

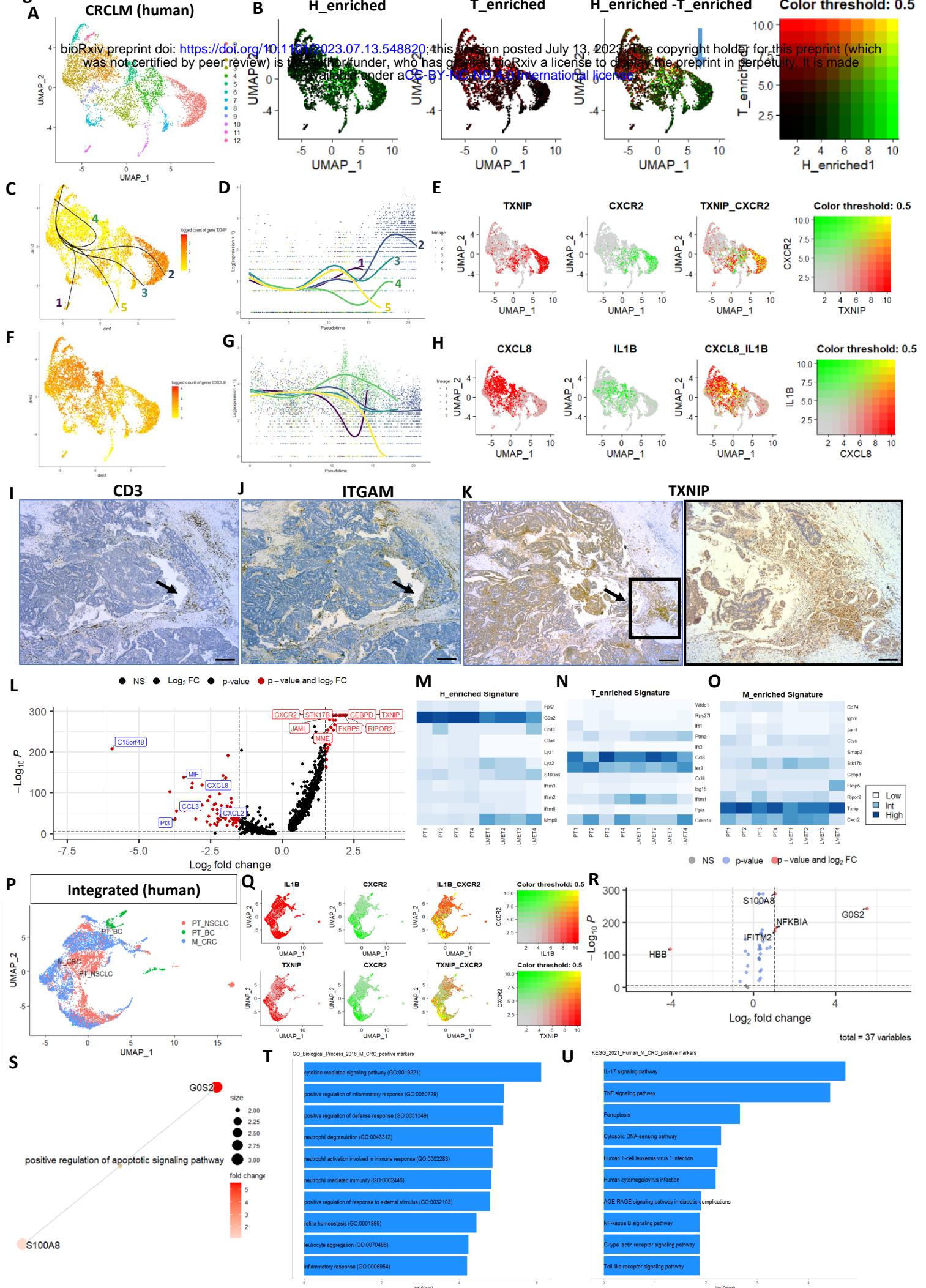


Fig.1. Characterisation of neutrophil signatures and lineages in health and primary tumours.

bioRxiv preprint doi: <https://doi.org/10.1101/2023.07.13.548820>; this version posted July 13, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

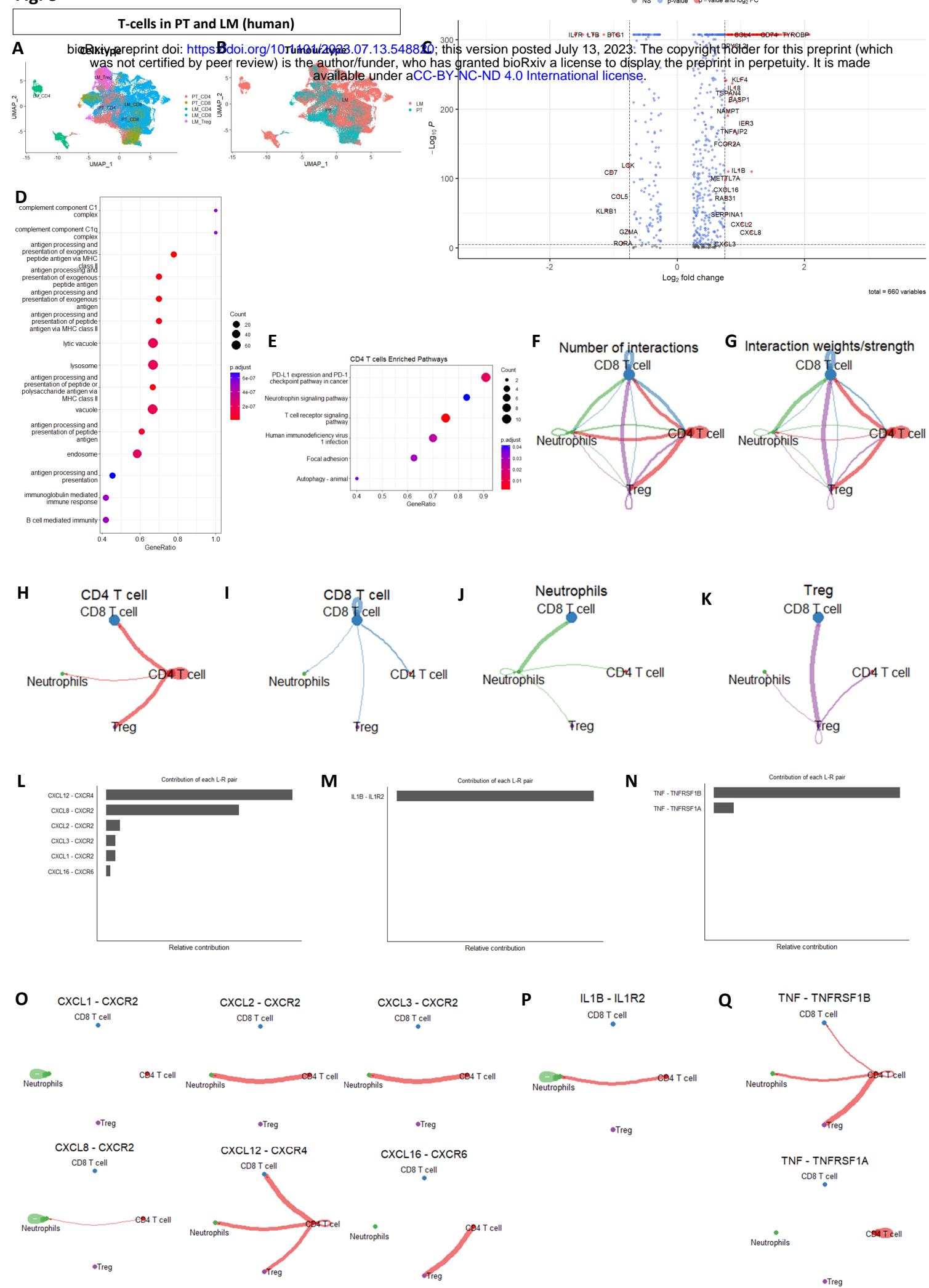
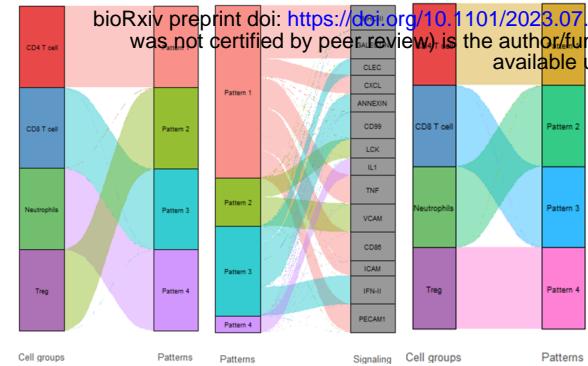

(A) UMAP plot of healthy neutrophils grouped by tissue type. BM: healthy bone marrow, SP: healthy spleen, L: healthy lung, BL: healthy blood. (B) UMAP plots of healthy and tumour-derived neutrophils grouped by tissue type and Seurat clusters (0-15). L_AC: lung adenocarcinoma, KPN: colorectal cancer with *Kras*, *Trp53* and Notch mutations. (C) UMAP plot of neutrophils in mouse breast cancer model. WT: healthy breast tissue, PYMT: polyomavirus middle-T oncoprotein tumour. (D,E) Scoring of Healthy_enriched (H_enriched) and Tumour_enriched (T_enriched) neutrophil signatures. (F) UMAP plot of neutrophils in mouse CRC model. All neutrophils are tumour-derived. (G,H) H_enriched and T_enriched signatures in CRC. (I) UMAP plot of human NSCLC neutrophils. Blood: blood-derived, tumour: tumour-derived. (J,K) H_enriched and T_enriched signatures NSCLC. (L) UMAP plot of human breast cancer (BC) neutrophils. Most neutrophils are tumour-derived. (M,N) H_enriched and T_enriched signatures in BC. (O-R) Unsupervised pseudo-time analysis of neutrophils in mouse and human datasets. Lineages in the individual datasets are numbered. (S-V) *II1b/IL1B* is differentially expressed at the end of tumour-specific lineages. (W-Z) Estimated smoothers for *II1b/IL1B* expression over pseudo-time across the different lineages.

Fig. 2

Fig.2. Characterisation of neutrophils in metastasis.

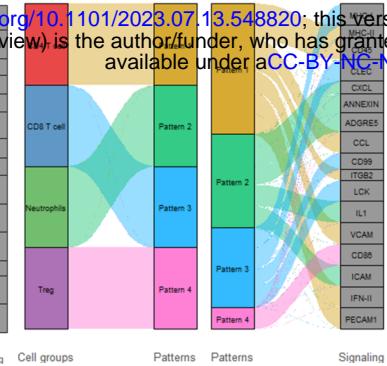
(A) UMAP of neutrophils in CRC. (B) UMAP of expression of H_enriched and T_enriched signatures. (C) UMAP of TXNIP expression over the different numbered pseudo-time lineages. (D) Unsupervised pseudo-time analysis and estimated smoothers for TXNIP expression over the different numbered pseudo-time lineages. (E) Co-expression of TXNIP and CXCR2. (F, G) Expression and estimated smoothers for CXCL8 over pseudo-time. (H) Co-expression of CXCL8 and IL1B. (I, J) IHC staining of CD3 (T-cells) and ITGAM (Neutrophils) in a patient CRCLM sample at 4x, scalebars=50 μ m. Black arrows indicate regions where immune cells cluster. (K) IHC staining of TXNIP in a patient CRCLM sample at 4x (left) and 10x(right). Scalebars=50 μ m. (L) Differentially expressed genes in metastasis-specific neutrophil cluster. (M-O) H_enriched, T_enriched and M_enriched gene signatures in mouse Bulk-RNAseq neutrophil dataset. PT: Primary tumour, LMET: Liver metastasis. (P) UMAP plot of integrated human neutrophils from primary tumours (PT) and metastatic (M) datasets of different cancers. (Q) Co-expression of CXCR2 with *IL1B* (top) and *TXNIP* (bottom). (R) Differential gene expression between neutrophils in malignancy compared to PT. (S-U) GESA, GO and KEGG analysis of M_CRC neutrophils.

Fig. 3

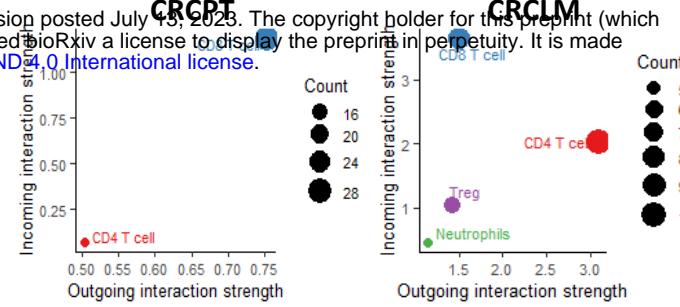

Fig.3. CD4+T-cells are transcriptomically altered in metastasis.

(A,B)UMAP plots of CD4+ and CD8+T-cells in PT and LM grouped by cell type and tumour type, respectively. (C) Differential gene expression of CD4+T-cells in LM compared to PT. (D,E) GO and KEGG analyses of metastatic CD4+T-cells. (F,G) Global cell-cell communication network and the interaction strengths between Neutrophils, CD4+,CD8+ and Treg cells. (H-K) Outgoing signals sent from each cell group. (L-N) The contribution of each L-R pair to the overall signalling pathway for CXCL, IL1 and TNF pathways. (O-Q) Visualization of the cell-cell communication patterns mediated by each significant L-R pair for the three pathways.

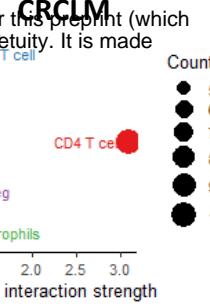
Fig. 4


A

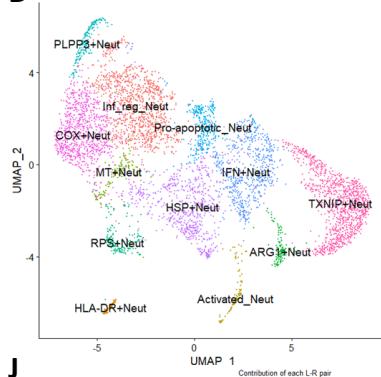
Outgoing communication patterns of secreting cells

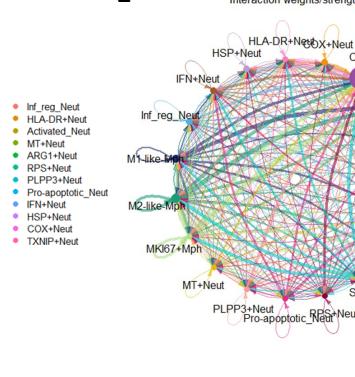

B

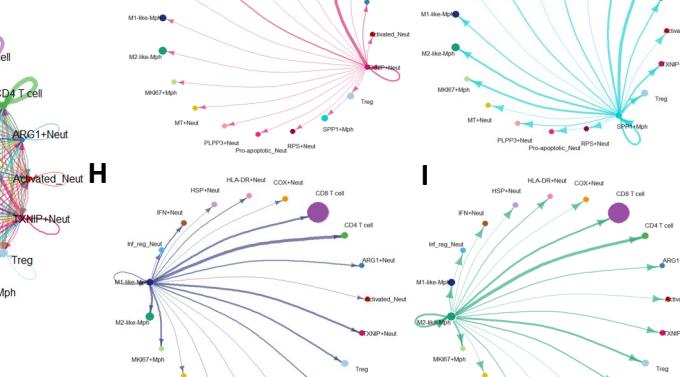
Incoming communication patterns of target cells



C


CRCPT

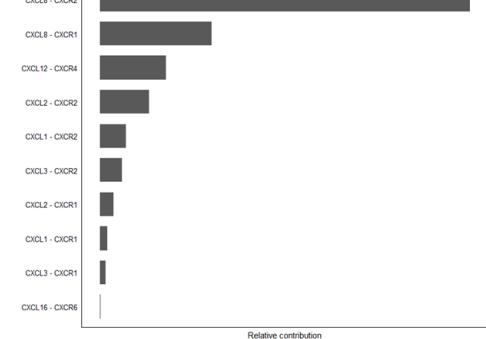

CRCLM


D

E

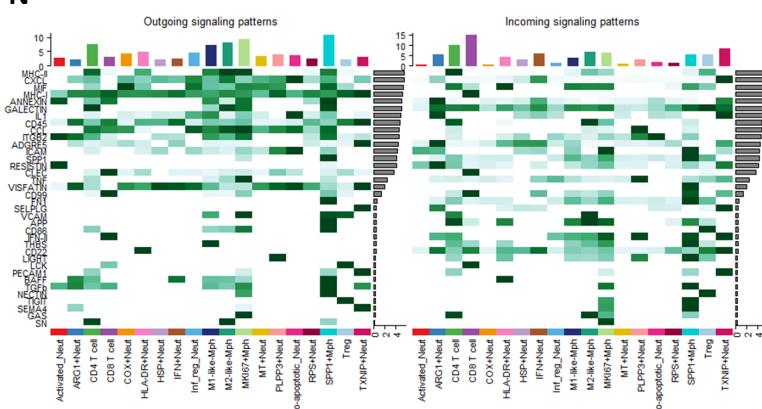
F

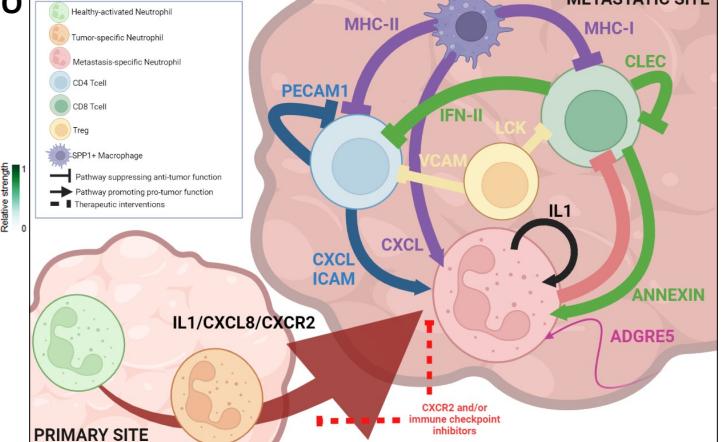
H


I

M

J


K


L

N

O

Fig.4. Signalling patterns in CRCLM.

bioRxiv preprint doi: <https://doi.org/10.1101/2023.07.13.548820>; this version posted July 13, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

(A,B) Outgoing and incoming signalling patterns in CRCLM. (C) Cellular roles as dominant senders (sources) and receivers (targets) in CRCPT and LM. (D)UMAP plot of neutrophil subtypes in CRCLM. (E) Interaction strength of the global communication patterns between neutrophil, T-cell and macrophage subtypes. (F-I) Outgoing signal strengths from TXNIP+ neutrophils, SPP1+ macrophages, M1- and M2-like macrophages respectively. (J) The contribution of each L-R pair to the overall CXCL signalling pathway amongst macrophage, neutrophil and T-cell subtypes. (K-M) Visualization of the cell-cell communication patterns mediated by the most significant L-R pairs in CXCL pathway. (N) Heatmap showing significant outgoing and incoming signalling patterns in all communication pathways with dominant sender and receiver immune cell subtypes. (O) Summary of findings. IL1/CXCL8/CXCR2 axis drives neutrophil progression from health to cancer and malignancy. Several signalling pathways between neutrophils and other immune cells come to play to foster an immunosuppressive, metastatic niche. Targeting different chemokines in along the IL1/CXCL8/CXCR2 will allow future stratification of treatments into targeting different neutrophil subtypes at early and late stages of cancer. Figure created by biorender.com.