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21 Abstract

22  Aging is often associated with decline in brain processing power and neural predictive
23  capabilities. To challenge this notion, we used the excellent tempora resolution of
24  magnetoencephalography (MEG) to record the whole-brain activity of 39 older adults (over
25 60 years old) and 37 young adults (aged 18-25 years) during recognition of previously
26 memorised and novel musical sequences. Our results demonstrate that independent of
27  behavioural measures, older compared to young adults showed increased rapid auditory
28  cortex responses (around 100 and 250 ms after each tone of the sequence) and decreased later
29  responses (around 250 and 350 ms) in hippocampus, ventromedial prefrontal cortex and
30 inferior frontal gyrus. Working memory abilities were associated with stronger brain activity
31 for both young and older adults. Our findings unpick the complexity of the healthy aging
32  brain, showing age-related neura transformations in predictive and memory processes and
33 chalenging simplistic notions that non-pathological aging merely diminishes neural
34  predictive capabilities.

35
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39 Introduction

40 Aging is amagor omni comprehensive phenomenon which brings new challenges and places
41 large financia burden on society™ % While most studies have investigated the biological
42  correlates of full-blown disorders such as Alzheimer’s and other types of dementia® *, less
43  research has focused on the neural changes associated with normal, non-pathological aging.
44  However, this is crucia to understand the modifications of the brain function and structure
45  acrossthelifespan and to eventually identify early markers of the age-related neural decline.
46 Previous research on the neurophysiology of non-pathological aging has predominantly
47  examined age-related changes in resting state brain activity 2. This research has revealed
48  differences between the spontaneous brain functioning of young versus older adults. For
49 instance, in a magnetoencephalography (MEG) study, Tibon and colleagues ° reported that
50 decreased occurrence of lower-order and increased occurrence of higher-order brain networks
51 werelinked to aging. Similarly, combining functional connectivity derived from MEG resting
52  state datawith performance in motor learning, Mary and colleagues ° revealed that young and
53 older participants presented differently active neura circuits in resting state after being
54  exposed to motor learning. In another study, Alu and colleagues examined the impact of
55  aging on brain dynamics using electroencephalography (EEG) data and entropy analysis. The
56 findings revealed that older participants had overall higher entropy values across brain
57  regions compared to younger ones ‘. In another investigation using resting state EEG, the
58 authors found a decrease in occipital delta and posterior cortical alpha rhythms associated
59  withaging®.

60 Moving away from resting state, a few studies have investigated the impact of aging on
61 automatic brain processes such as the mismatch negativity (MMN), a component of the even-
62  related potential/field (ERP/F) which automatically originatesin response to deviant stimuli *
63 ™. For instance, using MEG, Cheng and colleagues ** showed a reduction in the fronto-
64 temporo-parietal activity underlying MMN in older compared to young participants. In
65 another MEG study, the authors revealed that longer peak latencies and smaller amplitudes
66  were found in the MMN of older versus young adults **. Similarly, in an EEG study, Kisley
67  and colleagues showed that older adults presented reduced MMN amplitude at fronto-central
68  sites and decreased sensory gating efficiency compared to younger adults *°. Taking together,
69 these findings suggest that aging is associated with declines in automatic central auditory
70  processing of deviant stimuli and with a mild decline of the cognitive ear, possibly related to

71 slow brain atrophy typical of aging *°.
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72 The neurophysiology of aging has also focused on memory task-based paradigms . For
73 instance, a few studies suggested that the brain functioning during long-term recognition is
74 impaired in older compared to young adults. Gajewski and Falkenstein ** revealed decreased
75 and delayed ERP components (e.g. N200, P300a and P300b) in older adults when they
76  performed a two-back memory task. Along this line, using EEG, Vaden and colleagues *®
77 showed that in a suppression of visua information task, the correct performances were
78 associated with a robust modulation of alpha power only in young but not in older adults.
79  Similarly, Federmeier and colleagues *° demonstrated that older compared to young adults
80 had areduced neural efficiency when recognising familiar words.
81 Previous research has also investigated the impact of aging on short-term recognition of
82 information, showing atered brain functioning in older compared to young adults. In a
83 classic MEG study, Babiloni and colleagues % used two delayed response tasks, reporting
84  dtered alpha event-related desynchronisation (ERD) associated with aging. In a recent EEG
85 study, Costa and colleagues %! investigated the age-related differences in the neural activity
86  during short-term recognition of musical sequences. They showed that older adults reported
87  decreased slow negative responses associated with auditory processing compared to young
88  participants.
89 Taken together, the largest part of research on the neurophysiology of aging has
90 concentrated on resting state studies. Still, thorough examinations of the age-related neural
91 changes of memory have been produced, pointing to an overall impaired brain functioning in
92  older populations. However, little is known on the impact of aging on the fast-scale brain
93 dynamics underlying predictive and memory processes of sequences unfolding over time.
94  Similarly, the age-related neural changes underlying predictions in cognitive tasks remain
95 €usive.
96 To address these intriguing topics, the predictive coding theory (PCT) offers a suitable
97 framework. Indeed, PCT states that the brain is constantly updating internal models to predict
98 information and stimuli from the external world %% In recent years, music has emerged as a
99 privileged tool to investigate PCT and understand how the brain encodes, recognises and
100 predicts tempora sequences ? . Along this line, in our previous studies we have combined
101 recently developed musical memory paradigms with state-of-the-art neuroimaging
102 techniques, focusing on the brain dynamics of healthy young participants when they encoded
103 and recognised musical sequences. We discovered that encoding of sounds recruited a large

104 network of functionally connected brain areas, especialy in the right hemisphere, such as
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105 Heschl’s and superior temporal gyri, frontal operculum, cingulate gyrus, insula, basal ganglia,
106  and hippocampus . Similarly, long-term recognition of short musical sequences recruited
107 nearly the same brain network. However, in this case, the recruitment was bilateral, and it
108  showed hierarchical dynamics from lower- to higher-order brain areas in different frequency
109 bands (e.g. 0.1-1 Hz and 2-8 Hz) # and in relation to the recognition of previously
110  memorised or varied musical sequences®” .

111 In the current study, we took a new fundamental step by using musical memory paradigms
112  and advanced neuroimaging techniques to investigate the impact of aging on the fast-scale
113  brain dynamics underlying predictive and memory processes for musical sequences unfolding
114  over time.

115
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116 Results

117  Overview of the experimental design and analysis pipeline

118 In this study, we investigated the impact of aging on the fast-scale spatiotemporal brain
119 dynamics underlying recognition of previously memorised musical sequences. In brief,
120  during magnetoencephaography (MEG) recordings, two groups of participants (39 older
121  adults [older than 60 years old] and 37 young adults [younger than 25 years old]) listened to
122  thefirst musical sentence of the Prelude in C minor, BWV 847 by Johann Sebastian Bach and
123  were instructed to memorise it to the best of their ability. As shown in Figure 1 and Figure
124 S1, participants were subsequently presented with five-tone musical excerpts (M) taken from
125  the music they previously memorised and with carefully matched variations. The variations
126 consisted of five-tone musical sequences generated by systematicaly altering the M
127  sequences after either the first (NT1) or third (NT3) tone. For each musical sequence,
128 participants were requested to assess whether the sequence was taken from the memorised
129 musical piece (M) or whether it was new (N). Additional details on the stimuli are available
130 in the Methods section. Key background information on the two samples of participants is
131 reportedin Table 1.

132 The analysis pipeline of this study is partly depicted in Figure 1 and consisted of
133  contrasting the brain activity of young versus older adults at MEG sensor and source levels.
134 First, we used Monte Carlo simulations (MCS) on univariate tests of MEG sensor data.
135 This was followed by estimating the sources of the brain activity which generated the
136 differences between young and older adults. Second, we focused on eight key regions of
137 interest (ROIs) and analysed whether their time series differed between older and young
138  adults. Third, we assessed the impact of WM, years of general and musical education, sex,
139  and age groups on the brain activity underlying recognition of the musical sequences.

140 Additional details are available in the Methods section, while the codes used for these
141 analyses are extensively reported at the following links:

142  https://github.com/Ieonardob92/MEG_Aging Bach.qgit

143  https://qgithub.com/leonardob92/LBPD-1.0.qit
144
145
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148  Figure 1. Experimental design, stimuli, and analysis pipeline.

149  a-— Thirty-seven young and 39 older adults were invited to participate in the experiment. b — The brain activity
150  of the participants was collected using magnetoencephalography (MEG), while their structural brain images
151  were acquired using magnetic resonance imaging (MR!). ¢ — Participants were requested to memorise a short
152  nusical piece (lasting about 30 seconds). Then, we used an old/new auditory recognition task (left). Here, one
153 at a time, five-tone temporal sequences (i.e., musical melodies) were presented in randomised order and
154  participants were ingtructed to respond with button presses whether they were taken from the musical piece they
155  previously memorised (‘old’ or memorised musical sequences, ‘M’) or they were novel (‘new musical
156  sequences, ‘N'). Three types of temporal sequences (M, NT1, NT3) were used in the study. The figure shows a
157  graphical depiction of how the novel musical sequences were created with regards to the previously memorised
158  ones (right). The N sequences were created through systematic variations of the M sequences. For example, in
159  the middle row, it is depicted a sequence (NT1) where we changed all tones but the first one (indicated by the
160  red colours). Likewise, the bottom row shows a sequence where we changed only the last two tones (NT3). ¢ —
161  After pre-procesing the MEG data, we co-registered it with the individual anatomical MRI data and
162  reconstructed its brain sources using a beamforming algorithm. This procedure returned one time series for
163  each of the 3559 reconstructed brain sources. e — We constrained the source reconstructed data to eight brain
164  regions of interest (ROIs) which were selected based on previous literature (left). For each of the ROI, we

165  sudied the differences over time between the brain activity of young versus older adults (right).

166
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Musical i
o . Education
Participant grouns N Age Sex WH (raw) training
(vears)
(years)
Young adults (< 25) 37 21.89%2.05 18F; 19 M 43.00t7.15 3.24%3.72 13.57 £ 2.62
Older adults (> 60) 39 67.72+5.35 24F; 15M 38.42t7.71 3.08+4.31 14.20 % 4.63

172
173  Table 1. Background information on the two age samples

174  Number of participants, age, sex, WM, years of musical training and general education reported independently
175  for the two age groups. The numbers for age, WM, and years of musical training and general education
176  correspond to mean and standard deviations.

177
178

179 Behavioural results
180 We calculated the impact of age on response accuracy and reaction times during the musical
181  recognition task that participants performed in the MEG.
182 Regarding the response accuracy, there was a statistically significant difference
183  between the two age groups in the memory task (F(3, 61) = 7.18, p < .001, Wilks' A =.739,
184 partia 12 = .26). Follow-up ANCOVAs showed that older adults scored lower than young
185  adults when correctly identifying NT1 (F(1, 63) = 13.03, p < .001) and NT3 sequences (F(1,
186  63) = 19.89, p < .001). Years of education (F(3, 61) = 3.37, p= .02, Wilks A =. 857, partial
187 n?=.14), WM scores (F(3, 61) = 7.07, p < .001, Wilks' A =.742, partial n* = .26), and years
188 of musical training (F(3, 61) = 4.61, p= .005, Wilks A = . 815, partiad n?= .18) were
189 datistically significant covariates. Specifically, years of education had a satisticaly
190 dignificant effect on correctly identifying M (F(1, 63) = 4.58, p= .03) and NT1 sequences
191 (F(1, 63) = 6.52, p=.01), meaning that higher number of years of education was associated
192  to higher number of correct responses. Similarly, WM capacity had a statistically significant
193 positive effect on correctly identifying NT1 (F(1, 63) = 14.31, p < .001) and NT3 sequences
194  (F(1, 63) = 19.24, p < .001). Finaly, years of musical training had a statistically significant
195 positive effect on correctly identifying NT1 (F(1, 63) = 5.45, p=.02) and NT3 sequences
196  (F(1, 63) = 13.80, p < .001).
197 With respect to the average reaction time during recognition of M, NT1 and NT3
198  sequences, we found a statistically significant difference between the two age groups on the
199  reaction times (F(3, 64) = 2.904, p= .04, Wilks A = .880, partial n? = .12). However, this
200 effect was non-significant in follow-up ANCOVAs. Regarding the covariates, only WM
8
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201  scores had asignificant effect on the dependent variables (F(3, 64) = 5.18, p =.002, Wilks' A
202  =.804, partial n° = .20). In particular, we observed that high WM scores were associated with
203  lower average reaction time when correctly identifying NT1 (F(1, 66) = 10.96, p = .001) and
204  NT3 sequences (F(1, 66) = 4.29, p = .04).
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209  Figure 2. Impact of aging, education, musical training and WM on the recognition of musical sequences.

210  a - Raincloud plots show the overlapping distributions and normalized data points of both age groups with
211  regards to the recognition of the previoudy memorised and novel (NT1 and NT3) musical sequences. Boxplots
212  showthe median and interquartile (IQR, 25 — 75%) range, whiskers depict the 1.5*I QR from the quartile. Each

9
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213  dot corresponds to the number of correct responses (top plot) or the mean reaction time (bottom plot) of each
214  participant. The plot above refers to the number accuracy in the task, while the bottom plot to the reaction
215  times. b — Correlation matrix between memorised, NT1, NT3 (number of correct responses, top plot, and
216 reaction times, bottom plot), years of education, WM, years of musical training. Sgnificant correlations are
217  indicated by the stars (* p < .05; ** p < .01; *** p < .001).

218

219

220 Aging and whole-brain activity

221  To assess the difference between the brain activity of older and young adults while they
222  recognised the musical sequences, we calculated several independent samples t-tests with
223  unequal variances and then corrected for multiple comparisons using cluster-based MCS (t-
224 test threshold = .05, MCS threshold = .001, 1000 permutations). As reported in detail in the
225 Methods section, this procedure was computed independently for the three experimental
226  conditions (M, NT1, NT3).

227 The analyses returned several significant clusters, highlighting overall reduced brain
228 activity adong a wide array of MEG sensors in older participants. In addition, a few
229 dgnificant clusters showed stronger brain activity in older participants. Table 2 shows the
230 key information of the larger significant clusters for the three experimental conditions, while
231 Table S1 provides complete statistical information.

232
233
Memorised musical sequences — young > older adults
Cluster # Size MCS p-val Max t-val Time (1) Time (end)
1 305 <.001 4,05 1,704 1,812
2 218 <.001 3,85 0,568 0,656
3 190 <.001 3,34 0,356 0,476
Memorised musical sequences - older >young adults
Cluster # Size MCS p-val Max t-val Time (1) Time (end)
1 292 <.001 -6,08 0,072 0,128

NT1musical sequences — youny > older adults

Cluster # Size MCS p-val Max t-val Time (1) Time (end)
1 415 <.001 4,47 0,272 0,400
2 215 <.001 4,10 1,760 1,908
3 175 <.001 4,85 1,916 1,996

NT1musical sequences — older > young adults

Cluster # Size MCS p-val Max t-val Time (1) Time (end)

1 695 <.001 -7,03 0,048 0,164

NT3 musical sequences — young > older adults

10
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Cluster # Size MCS p-val Max t-val Time (1) Time (end)
1 154 <.001 4,26 1,292 1,420
2 88 <.001 4,16 1,056 1,092
3 75 <.001 4,16 1,068 1,140
NT3 musical sequences — older > young adults
Cluster # Size MCS p-val Max t-val Time (1) Time (end)
1 388 <.001 -5,43 0,076 0,144

234
235  Table2. The effect of aging on the whole-brain activity - MEG sensors

236  Information on the significant clusters emerged at MEG sensors level by contraging the brain activity
237  underlying recognition of musical sequences of young versus older adults. The results are reported
238  independently for each condition (M, NT1, and NT3) and strength of the contrast (young > older and older >
239  young). The table shows the size of the cluster, the MCS p-value, the maximum t-value within the cluster and the
240 timeextent of the significance of the difference between older and young adults.

241

242

243 After anaysing the brain activity at the MEG sensor level, we computed source
244 reconstruction analyses using a beamforming algorithm to estimate the brain sources that
245  generated the signal recorded by the MEG sensors. For each of the significant clusters, we
246  contrasted the source-reconstructed brain activity of older versus young adults and corrected
247  for multiple comparisons using a three-dimensional (3D) cluster-based MCS (a < .05, MCS
248 p-vaue = .001). These analyses returned several significant clusters of brain activity,
249 reveding that the main brain regions differentiating older from young adults were the
250 primary and secondary auditory cortices, post-central gyrus, hippocampal regions, inferior
251 frontal gyrus, and ventromedia prefrontal cortex. These results are depicted in Figures S3
252  and $4 and reported in detail in Table S2 and S3.

253

254  Aging and functional brain regions of interest (ROIs)

255 To strengthen the reliability of our results and allow an easier comparison with previous
256 literature, we computed a complementary analysis by investigating the difference between the
257  brain activity of older versus young adults in a selected array of functional ROIs that were
258  previously described by Bonetti and colleagues . These areas (described in detail in Table
259 4 and shown in Figure S2) were the bilateral media cingulate gyrus (MC), bilateral
260 ventromedial prefrontal cortex (VMPFC), left (HITL) and right hippocampal area and
261 inferior temporal cortex (HITR), left (ACL) and right auditory cortex (ACR), and left (IFGL)

262  and right inferior frontal gyrus (IFGR). We contrasted the brain activity of young versus
11
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263 older adults by computing an independent-sample t-test for each ROI, timepoint, and
264  condition. We corrected for multiple comparisons using 1D cluster-based MCS (t-value
265  threshold = .05, MCS p-value = .001).

266 This analysis returned several significant clusters showing differences in the brain activity
267  of older compared to young adults. Of particular interest are the clusters reported in the HITR
268 (p<.001, k = 25; max t-val = 4.70, time: 640 — 736 ms) and IFGR (cluster 1: p <.001, k =
269  38; max t-val =-4.59, time: 464 — 612 ms; cluster 2: p < .001, k = 33; max t-val = -5.04, time:
270 1260 — 1388 ms) showing reduced activity for older versus young adults when recognising
271  previously memorised musical sequences. In addition, older versus young participants were
272  characterised by a weaker signal in response to the variation of the origina musical
273  sequences. This was particularly evident for HITR (NT1: p <.001, k = 24; max t-val = -3.53,
274 time: 1284 — 1376 ms; NT3: p < .001, k = 21; max t-val = -4.01, time: 1320 — 1400 ms),
275 VMPFC (NT1: p<.001, k = 15; max t-val = -3.57, time: 1320 — 1376 ms; NT3: p<.001, k =
276  23; max t-val =-3.97, time: 1672 — 1760 ms), and HITL (NT3: p <.001, k = 12; max t-val = -
277  3.31, time: 1324 — 1368 ms).

278 Finally, older adults showed a stronger activity in ACL in response to the first tone of the
279  sequencesin al conditions (M: p <.001, k = 14; max t-val = 5.37, time: 84— 136 ms, NT1: p
280 <.001, k = 15; max t-val = 5.86, time: 88 — 144 ms; NT3: p <.001, k = 16; max t-val = 6.04,
281 time: 84 — 144 ms) and in relation to each tone until the variation was introduced (Figure 3,
282  first row). These results are depicted in Figures 3 and 4 and extensively reported in Table
283 Sb.

284

285
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288  Figure 3. Older adults show stronger activity in auditory cortex and reduced responses in medial temporal
289  lobeduring recognition of musical sequences.

290 a - The results show that the older adults have significantly stronger activity in the left auditory cortex
291  compared to young adults only when recognising the melodies that were previously memorised. In fact, the top
292  graphsindicate a component occurring about 300 ms after the onset of each tone that was stronger for the older
293  adults for all the tones in the M condition and for all the tones before introducing the variations in the N
294  conditions (i.e. one tone for NT1 and three tones for NT3). In addition, the N100 response to the first tone of the
295  sequences was significantly stronger for old versus young adults in all conditions. b - Conversely, older adults
296  showed significantly decreased activity in the hippocampal and inferior temporal regions. This was particularly
297  evident for conditions NT1 and NT3. Here, as highlighted by the red bottom graphs, the older versus young
298  adults exhibited reduced prediction error responses when the sequence was varied. This happened especially
299  for the first tone which introduced the variation in the melodies (i.e. tone two for NT1 and tone four for NT3).
300 Finally, even if to a smaller extent, reduced activity in older adults was also observed for the M condition,
301  where positive components of the neural signals were reduced for all the tones except for the first one.

302  Note that the figure shows the source localised brain activity illustrated for each experimental condition (M,
303  NT1, NT3) in four ROIs (left and right auditory cortex, left and right hippocampal and inferior temporal
304  regions). Grey areas show the statistically significant differences of the brain activity between young (solid red
305 line) and older adults (solid blue, shading indicates standard error in both cases), while red and blue graphs
306  highlight neural components of particular interest. The sketch of the musical tones represents the onset of the
307  sounds forming the musical sequences. The brain templates illustrate the spatial extent of the ROIs.
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313  Figure 4. Impact of aging on the cingulate gyrus, ventromedial prefrontal cortex and inferior frontal gyrus
314  responsesduring recognition of musical sequences.
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315  The red graphs in the second row highlight that the VMPFC produced a weaker activity indexing prediction
316  error for the older versus young adults for conditions NT1 and NT3, in an analogous manner to the right
317  hippocampal and inferior temporal regions shown in Figure 3. Notably, while these two brain regions also
318  showed a decreased activity for the M condition for older versus young adults, this did not happen for the
319 VMPFC. Finally, the last row of this figure shows a much stronger activity originated in the right inferior
320 frontal gyrus of the young versus older adults. This was particularly evident for the M sequences and consisted

321  of anegative component peaking approximately 250 ms after the onset of each musical tone.

322 Note that the figure shows the source localised brain activity illustrated for each experimental condition (M,
323  NT1, NT3) in four ROIs (medial cingulate gyrus, ventromedial prefrontal cortex [VMPFC], left and right
324  inferior frontal gyrus). Grey areas show the statigtically significant differences of the brain activity between
325  young (solid red line) and older adults (solid blue, shading indicates standard error in both cases), while red
326  and blue graphs highlight neural components of particular interest. The sketch of the musical tones represents
327  the onset of the sounds forming the musical sequences. The brain templates illustrate the spatial extent of the
328 ROIs.

329
330

331 WM, musical expertise, education level, aging and neural data

332 Finaly, we computed two additional analyses to assess whether potential confounding
333 variables had an impact on the relationship between aging and the neural mechanisms
334  underlying recognition of musical sequences.

335 In the first analysis we computed three independent multivariate analyses of covariance
336 (MANCOVASs), one for each experimental condition. In each MANCOVA, the dependent
337  variables were the highest peaks of the neural data for the eight ROIs, while the independent
338 variables were age, sex, years of forma musical expertise, WM, and years of formal
339  education (see Methods for additional details).

340 The results of the MANCOVASs showed a significant main effect for age in all
341  experimental conditions: M (F(8, 59) = 4.62, p= .0002, Wilks A = .614, partial n* = .39),
342 NT1 (F(8, 59) = 3.117, p= .005, Wilks A = .703, partial n* = .30), and NT3 (F(8, 59) =
343  3.575,p=.002, Wilks' A = .674, partial n” = .33). This confirmed the impact of age on the
344  neural data The other variables did not show any significant results, indicating that no
345 confounding variables affected the relationship between age and the neural data. However,
346 WM approached the significance in al experimental conditions, showing moderate effect
347 sizess M (F(8, 59) = 4.62,p= .09, Wilks A = .802, partial n?= .20), NT1 (F(8, 59) =
348  1.313,p=.25, Wilks A =.849, partial n? = .15), and NT3 (F(8, 59) = 1.691, p = .11, Wilks
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349 A = .814, partial n” = .19). Thisindicated that WM may partially affect the brain dynamics of
350 musical recognition in relation to aging.

351 Following the results of the MANCOV As, we computed independent analyses of variance
352 (ANOVAS) for each time-point, ROl and condition and used cluster-based 3D MCS to
353  correct for multiple comparisons. We used two-way ANOVASs with the following levels:
354 WM (high and low performers) and age (older and young adults). The analysis returned
355 dignificant key clusters for three main ROIs in the NT3 condition: HITR (NT3: p <.001, k =
356  40; max F-val = 17.66, time: 1308 - 1464 ms), VMPFC (NT3: p <.001, k = 32; max F-val =
357 13.57, time: 1300 - 1424 ms), HITL (NT3: p <.001, k = 24; max F-val = 9.36, time: 1304 -
358 1396 ms). Figure 5 show the time series of these ROIs in relation to age and WM, while
359 detailed statistical results are reported in Table S6.

360

361
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364
365  Figure 5. Impact of WM and aging on the ventromedial prefrontal cortex and medial temporal lobe
366  responsesduring recognition of musical sequences.

367  The black graphs in the NT3 plots (all rows) highlight that the strongest brain prediction error in response to
368  the variation of the original musical sequences occurred in young adults who performed very well in the WM
369  tasks. The strength of the prediction error was lower and very similar for young adults with low WM and older
370  adults with high WM. Finally, older adults with low WM presented the most reduced prediction error signal in
371  the brain. This was particularly evident for the right hippocampal and inferior temporal regions as well as for
372  the VMPFC. A similar, but less pronounced, effect was observed in the VMPFC for M and NT1.
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375  Note that the figure shows the source localised brain activity illustrated for each experimental condition (M,
376  NT1, NT3) in three (ventromedial prefrontal cortex [ VMPFC], left and right hippocampal and inferior temporal
377  regions). Graphs indicates the key event of interest in the brain responses, while the grey areas show the
378  satistically significant differences of the brain activity between the participants grouped in the following four
379  groups: young adults - high WM (i), young adults - low WM, older adults - high WM, older adults - low WM.
380  <olid line indicates the average over participants, independently for the four groups, while the shaded area the
381 standard errors. The sketch of the musical tones represents the onset of the sounds forming the musical
382  sequences. The brain templatesillustrate the spatial extent of the ROIs.

383

384

385

386 Finally, we computed an additional sub-analysis to assess whether we could distinguish a
387  sub-sample of the older participants based on their brain activity. To this aim, we used one-
388 way ANOVASs contrasting three age-groups: young (younger than 25), older adults 60-68
389 (age between 60 and 68, n = 23) and older adults > 68 (older than 68, n = 16). Then, we
390 corrected for multiple comparisons with cluster-based 3D MCS. The results highlighted that
391 the oldest group within the older adults was characterised by overall reduced brain activity,
392 especialy in response to the variation of the original sequences. This was particularly evident
393 for HITR (NT3: p<.001, k = 22; max F-val = 7.92, time: 1312 - 1396 ms), VMPFC (NT3: p
394 <.001, k = 15; max F-val =7.73, time: 1320 - 1376 ms), HITL (NT3: p <.001, k = 13; max
395 F-val = 10.01, time: 1316 - 1364 ms). Figure 6 shows the time series of these ROIs in
396 relation to the three age groups, while detailed statistical results are reported in Table S7.

397
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402
403  Figure 6. Ventromedial prefrontal cortex and medial temporal lobe responses during recognition of musical
404  sequencesfor three age groups (young adults, adults between 60 and 68 years of age, adults older than 68).

405  Theblack graphsin the NT1 and NT3 plots (all rows) highlight that the strength of the brain prediction error in
406  response to the variation of the original musical sequences was modulated by age. In fact, the strongest signal
407  wasrecorded for the young adults. A reduced prediction error was observed for the adults aged between 60 and
408 68, while the weakest signal occurred for the adults older than 68 years. As observed for the WM in Figure 5,
409 thiseffect was particularly evident for the VMPFC and right hippocampal and inferior temporal regions.

410  Note that the figure shows the source localised brain activity illustrated for each experimental condition (M,
411  NT1, NT3) in three (ventromedial prefrontal cortex [ VMPFC], left and right hippocampal and inferior temporal
412  regions). Graphs indicates the key event of interest in the brain responses, while the grey areas show the
413  statistically significant differences of the brain activity between the participants grouped in the following three
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groups: young adults (i), adults between 60 and 68 years of age (ii), adults older than 68 years (iii). Solid line
indicates the average over participants, independently for the four groups, while the shaded area the standard
errors. The sketch of the musical tones represents the onset of the sounds forming the musical sequences. The
brain templatesillustrate the spatial extent of the ROIs.
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424  Discussion

425 In this study, we have combined fast neuroimaging with the recognition of previously
426  memorised and novel musical sequences to unpick the complexity of the healthy aging brain.
427  Our findings chalenge simplistic notions that non-pathological aging merely diminishes
428 neura predictive capabilities by showing age-related neural transformations in predictive and
429  memory processes.

430 During the recognition of the previously memorised melodies, the left auditory cortex
431  exhibited stronger activity in response to each sound of the sequence for the older compared
432 to young adults. Conversely, other brain regions of key importance for memory and
433  predictive processes such as the hippocampus, inferior temporal cortex and inferior frontal
434  gyrus showed an overall decreased activity for the older adults. In response to the varied
435 musical sequences, the left auditory cortex did not exhibit any difference between older and
436 young adults after the musical sequence was atered. Conversely, a much-reduced activity
437  was observed for the older adults after the sequence was changed. This effect was particularly
438 strong for the condition NT3 where the sequence was atered after the fourth tone, and it
439  primarily regarded hippocampus, inferior temporal cortex and ventromedial prefrontal cortex.
440 Working memory (WM) abilities also affected the brain responses, especialy for the
441  condition NT3, both in older and young individuals. The brain activity after varying the
442  original musical sequence was reduced for participants with lower WM skills.

443 In relation to the behavioura responses, no differences between older and young adults
444 were found when inspecting the accuracy and reaction times associated with the recognition
445  of the previously memorised sequences. Conversely, older adults reported lower accuracy
446  when recognising the varied musical sequences (both NT1 and NT3). No differences were
447  observed for the reaction times.

448 As expected, the results of this study are consistent with our previous research on the brain
449  dynamics underlying the encoding and recognition of musical sequences in healthy young
450 individuals, which showed that the recognition of the previously memorised and varied
451 musical sequence is built over time through a rapid hierarchical pathway of components
452  originated in the auditory cortex and progressing to the hippocampus, ventromedial prefrontal
453  cortex and inferior temporal cortex **°. Beyond this, the most notable finding of our study is
454  the altered brain functioning observed in older compared to young adults. On the one hand,
455  this occurred through an overall reduction of the brain activity generated in memory brain

456  regions, supporting previous findings which reported diminished brain responses in aging
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457  populations in avariety of different contexts, spanning from resting state to automatic neural
458  responses and conscious tasks > © & 13 14 172031 O the other hand, only for the recognition
459  of the previously memorised sequences, older adults showed increased activity in the left
460 auditory cortex. This altered brain functioning supports the hypothesis that neural predictive
461  processes in non-pathological aging are not simply reduced, but qualitatively transformed *.
462 Overall, our results can be very well interpreted within the large framework of the PCT,
463  providing arelevant contribution to the age-related changes of its neural underpinnings. PCT
464  podits that the brain is constantly updating internal models to predict information and stimuli
465  from the external world %, Recently, it has been successfully linked to complex cognitive
466  processes, finding a notable example in the neuroscience of music. Vuust and colleagues > 2
467  suggested that, while processing music, the brain repeatedly generates hypotheses and
468 predictions about the upcoming unfolding of musical sequences. When the prediction
469 matches the incoming sounds, the brain recognises the music. Conversely, when the
470  expectation is violated by different sounds, predictions errors arise. Our findings point to
471 impaired conscious predictive coding processes in healthy older adults, as evidenced by
472  reduced brain activity during the prediction and recognition of both origina and varied
473  musical sequences. As such, they provide novel insights into the brain dynamics of PCT
474 across the lifespan of healthy adults. These results are also coherent with previous studies
475  which showed an age-related reduction of automatic predictive processes such as MMN %,
476  Notably, our study largely expands on their significance by showing age-related changes of
477  conscious predictive processes and novelty detection and not only automatic responses to
478  subtle environmental irregularities as typically donein MMN studies.

479 Along thisline, we revealed decreased activity in older adults during the recognition of the
480 previously memorised musical sequences in brain regions particularly relevant for memory
481  and predictive processes, such as the hippocampus (especially in the right hemisphere) 3* 34,
482  Numerous studies have shown the detrimental effects of aging on the hippocampus and
483 memory performance. For instance, it has been shown that aging is associated with reduced

35, 36

484  hippocampal size and that it affects the long-term potentiation (LTP) and long-term
485  depression (LTD) occurring in the hippocampal neurons *’. The altered size and functionality
486 of LTP and LTD in the hippocampus occurring with aging might be reflected in the reduction
487  of hippocampal activity that we observed in older adults in our study during the recognition

488  of the previously learned musical sequences. The stronger involvement of the hippocampus
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489 in the right hemisphere is coherent with the plethora of findings which reported the right-
490  hemispheric dominancein music processing *.

491 Another essential brain region for understanding, predicting and producing language and
492  music istheinferior frontal gyrus * “°, which also showed a sharp decreased activity in older
493  adults in our study. This is a rather interesting result since there is scarce evidence showing
494  impaired functionality in the inferior frontal gyrus in aging populations, suggesting that this
495  effect may be specifically linked to the age-related changes underlying the prediction and
496  recognition of musical sequences. Moreover, the inferior frontal gyrus does not normally play
497 a pivotal role in the recognition of memorised musical sequences. However, our results
498 suggest that it may provide an additional, relevant contribution to this memory process,
499  which is instead largely attenuated in aging populations, as clearly shown by the contrast
500 between the brain activity of young and older adults. This evidence might also point to a
501 general reduced functionality of the inferior frontal gyrus in older adults, potentially
502 contributing to explain the challenges older adults often face in linguistic, predictive and
503  memory tasks **.

504 On a related note, our findings revealed an intriguing pattern of increased activity in the
505 left auditory cortex of older adults during the recognition of musical sequences. This
506 increased activity was observed for the N100 component to the first sound, as well as for the
507  positive component peaking around 350-400 ms after each sound of the sequence. Coherently
508 with PCT, it is plausible that the increased activity in the left auditory cortex is a result of
509 top-down influences from the hippocampus and ventromedial prefrontal and inferior temporal
510 cortices , which are supposed to actively monitor the unfolding musical sequence #*. In this
511 case, when they successfully predict the sequence, they require less effort from the left
512  auditory cortex. In a young and more effective brain, the more refined prediction and higher
513 control exerted by those brain regions would result in a reduced activity in the auditory
514  cortex, exactly as we observed in our study.

515 Interestingly, no significant differences were found between older and young adults in
516 terms of accuracy and reaction times when recognising previously memorised sequences.
517 This finding suggests that brain activity may undergo aterations before behavioural
518 manifestations become apparent. This observation raises exciting possibilities for using brain
519 activity as a potential biomarker for the early detection of cognitive decline, which should be

520 further explored by future studies.
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521 We aso examined the impact of aging on the recognition of varied musical sequences and
522  the prediction error arising when the original sequences were altered. We identified the key
523 involvement of the left and, especialy, right hippocampus and bilateral ventromedial
524  prefrontal cortex. The hippocampus is a central brain region for prediction error ** * and its
525 reduced activity in older adults suggests that aging is associated with decreased ability to
526  consciously process errors and deviations from previously learned sequences.

527 Similarly, the ventromedial prefrontal cortex, a brain region implicated in reasoning and
528  evauation processes *°, exhibited reduced activity in older adults. In accordance with our
529 findings, studies have shown that age-related changes in the ventromedia prefrontal cortex
530 are associated with decline in cognitive control and decision-making abilities ** . For
531 instance, O’ Callaghan and colleagues *° found that individuals with ventromedial prefrontal
532 cortex damage and healthy older adults reported reduced awareness of the presented stimuli
533 during learning tasks. This relates to our results, suggesting that the reduced activity in the
534  ventromedial prefrontal cortex observed in older adults might represent the neural signature
535 of the decreased conscious prediction error and awareness of the musical novelty in aging.
536 To be noted, splitting the older adult participants into two age groups further strengthens
537 thereliability of our previously described results, as it reveals a more pronounced reduction
538 in brain activity in participants older than 68 compared to those aged 60-68. This highlights
539 theprogressive nature of age-related changes in brain functioning.

540 Lastly, we showed a relationship between the participants WM abilities and the brain
541  activity. Participants with higher WM exhibited stronger brain activity, particularly when
542  recognising the varied musical sequences. This finding underscores the potential of using
543 WM as a predictor of preserved brain activity in older adults. In fact, older adults with high
544 WM capacity showed brain activity levels similar to those of young adults with lower WM
545  capacity. This finding is strongly in line with previous research on cognitive reserve,
546  suggesting that higher cognitive abilities in older populations represent a protective factor
547  against mild cognitive impairment and dementia “*°.

548 In summary, the present study provides valuable novel insights into the impact of aging on
549 the brain function and shows how age is not aways related to decline but rather to a
550 comprehensive transformation of brain regions, including the hippocampus, inferior frontal
551 gyrus, and ventromedia prefrontal and auditory cortices. The results provide an important

552  contribution to understanding age-related neural changes and reveal the potential of our
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553 methods to identify possible biomarkers for healthy aging and early detection of
554  transformative changesin brain function.
555
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556 Materials and methods
557

558 Participants

559  After removing one participant due to technical issues with the MEG signal, the sample
560 consisted of 76 participants (34 males, 42 females), divided into two age groups. young and
561 older adults. The older adult group consisted of 39 participants (24 females, 15 males) aged
562 60 to 81 years old (mean age: 67.72 + 5.35 years). The young group included 37 participants
563 (18 females, 19 males) aged 18 to 25 years old (mean age: 21.89 = 2.05 years). The
564 nationality of all participants was Danish. The inclusion criteria for the participants were the
565 following: (i) norma hedth (no reported neurological nor psychiatric illness), (ii) age
566  between 18 and 25 years old (young adults' group) and older than 60 years (older adults
567  group), (iii) normal hearing according to the age group of each participant, (iv) normal sight
568 or corrected to normal sight (e.g., contact lenses), and (v) understanding and acceptance of
569 participant information. The exclusion criteria that we applied were: (i) use of prescribed
570 medication that could affect the centra nervous system, (ii) neurological or psychiatric
571 illness, (iii) lack of cooperation or verbal agreement for participating in the study, (iv)
572  magnetic resonance imaging (MRI) contraindications, (v) age between 26 and 59 years old,
573 and impaired hearing (vi).

574 The project was approved by the Institutional Review Board of Aarhus University (case
575 number: DNC-IRB-2021-012). The experimental procedures complied with the Declaration
576  of Helsinki — Ethical Principles for Medical Research. Participants’ informed consent was
577  obtained before the beginning of the experiment.

578

579  Experimental stimuli and design

580 In this study, we presented participants with an auditory recognition task based on the
581 old/new paradigm that we developed in our previous works . At the same time, we
582  recorded their brain activity using magnetoencephalography (MEG). The participants were
583  required to listen to a brief musical piece (roughly 25 seconds) twice and were instructed to
584 memorise it as best as they could. The musical piece comprised the initial four measures of
585  Johann Sebastian Bach’s Prelude No. 2 in C Minor, BWV 847. The wave audio file that we
586  used in the experiment was generated using Finale (MakeMusic, Boulder, CO). The volume
587  of themusical stimuli was set to 60 dB for 67 participants and to 70 dB on average for nine of

588 our participants older than 70 years who presented a very mild hearing impairment, as
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589 typicaly occurring with aging. To limit the adjustment of the volume across participants to
590 only afew of them, we used sounds that almost always fell in the range 125 - 650 Hz, which
591 s only marginally affected by the typical hearing loss occurring with aging >'. Each tone
592  within the piece had the same duration of around 350 ms. In the second phase of the task,
593 participants were presented with 81 musical sequences consisting of five tones and lasting
594 1750 ms. They were then asked to identify whether each sequence was part of the original
595 musical piece (old or memorised sequence [M]) or if it was a different musical sequence
506 (new or novel sequence [N]) (see Figure 1). For the purpose of this study, we presented
597  participants with 27 sequences from the original musical piece and created 54 variations of
598 the origina melodies. The musical sequences used in the study are depicted in Figure S1.
599  The two types of stimuli used in the study were created as follows. The M sequences were
600 comprised of the first five tones from the first three measures of the musical piece. These
601 sequences were presented atotal of 27 times, nine times for each sequence. The N sequences
602 were generated by systematically atering the three M sequences (see Figure 1). This
603 involved changing every musical tone of the sequence while keeping the first tone (NT1) or
604 the first three tones (NT3) the same as the M sequences. Nine variations were created for
605 each of the original M sequences and each of the two categories of N. As aresult, there were
606 27 N sequences for each category and 54 N sequences in total. The variations were created

607  following specific rules:

608 e Inverted melodic contour (used twice): this involved creating a variation with a
609 melodic contour that was inverted relative to the original M sequence. (i.e., if the
610 melodic contour of the M segquence was down-down-up-down, the N sequence would
611 be up-up-down-up).

612 e Same tone scrambled (used three times): this involved scrambling the remaining tones
613 of the M sequence (e.g., M sequence C-E-D-E-C, was changed into NT1 sequence C-
614 C-E-E-D).

615 e Same tone (used three times): this involved using the same tone repeatedly, sometimes
616 varying only the octave (e.g., M sequence C-E-D-E-C, became NT1 sequence C-E*
617 E® Eg Ey).

618 e Scrambling intervals (used once): this involved scrambling the intervals between the
619 tones (e.g., M sequence 6™m - 2™m — 2™m — 3%m, was changed to NT1 sequence
620 2"m, 6"m, 3“m, 2™m).
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621 We adopted this procedure to study the difference between young and older adults with
622 regards to their brain dynamics underlying (i) the recognition of previously memorised
623  auditory sequences and (ii) their conscious detection of the varied sequences.

624

625 Neural data acquisition

626  During this study, MEG recordings were conducted at Aarhus University Hospital (AUH),
627  Aarhus, Denmark, using an Elekta Neuromag TRIUX MEG scanner with 306 channels. The
628  data was recorded with an analogue filtering of 0.1 — 330 Hz at a sampling rate of 1000 Hz.
629 To ensure accurate co-registration with the MRI anatomical scans, the head shape of
630 participants and the position of four Head Position Indicator (HPI) coils were registered using
631 a 3D digitizer (Polhemus Fastrak, Colchester, VT, USA). During the MEG recordings, two
632 sets of bipolar electrodes were also used to record cardiac rhythm and eye movements,
633 allowing for removal of electrocardiography (ECG) and electro-oculography (EOG) artifacts
634 inalater stage of the analysis.

635 The MRI scans were recorded on a CE-approved 3T Siemens MRI-scanner at AUH using
636 the following structural T1 sequence parameters: echo time (TE) = 2.61 ms, repetition time
637 (TR) = 2300 ms, reconstructed matrix size = 256 x 256, echo spacing = 7.6 ms, and
638  bandwidth = 290 Hz/Px.

639 The MEG and MRI recordings were conducted on separate days.

640

641 Working memory, musical expertise and background data

642 We evaluated domain-general working memory (WM) abilities using the Digit Span and
643  Arithmetic subtests from the Wechsler Adult Intelligence Scale IV’s Working Memory index.
644  The Digit Span subtest required participants to listen and repeat sequences of numbers in the
645 same, inverse, or ascending order. The Arithmetic subtest involved solving mathematical
646  operations provided orally by the experimenters without external aids. We combined the raw
647  scores from both subtests to calculate individual WM abilities, with scores ranging from five
648 to 70. Additionaly, we assessed forma musical training using the Goldsmiths Musical
649 Sophigtication Index (Gold-MSl) questionnaire, which includes 39 questions on musical
650 skills, experience, and habits. We used the Musical Training facet, which estimates an
651 individua’s history of formal musical training, and scores range from seven to 49.

652 In addition, we collected general background data such as the years of education. These

653 data were then used as covariates in later stages of the analysis to assess whether they had an
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654 impact on the relationship between age and neura data during recognition of auditory
655  seguences.
656

657 Behavioural data during MEG recording

658 During the auditory recognition task, we recorded participants’ responses and reaction times.
659 Wethen used this data to estimate differences in response accuracy and average reaction time
660 between young and older participants, and to calculate the impact of sex, years of education,
661 WM ahilities, and years of musical training on the behavioural data.

662 We computed two independent multivariate analysis of variance (MANCOVA, Wilk's
663 Lambda[A], a = .05) *? using group as the independent variable (young vs older) and years
664 of education, WM scores, years of musical training, and sex as covariates. In one
665 MANCOVA, number of correct responses (divided into M, NT1 and NT3) were used as the
666 three dependent variables. In the other MANCOVA, average reaction time during correct
667  responses (divided into M, NT1, and NT3) were used as the three dependent variables. The
668  effect size was calculated using partia eta squared (i.e., partial n°).

669 To determine the effects of the independent variable and covariate, univariate anayses of
670 covariance (ANCOVA) were computed individually for each of the dependent variables and
671 satistically significant covariates.

672

673 MEG data pre-processing

674 The MEG data obtained from 204 planar gradiometers and 102 magnetometers was initially
675 subjected to pre-processing with MaxFilter >, which helped to reduce external interferences.
676 We applied signal space separation and the following MaxFilter parameters: spatiotemporal
677 sSgnal space separation [SSS], down-sample from 1000Hz to 250Hz, correlation limit
678  between inner and outer subspaces used to reject overlapping intersecting inner/outer signals
679 during spatiotemporal SSS: 0.98, movement compensation using cHPI coils (default step
680 size: 10 ms).

681 After conversion to Statistical Parametric Mapping (SPM) format, the data was pre-
682 processed and analysed in MATLAB using both in-house-built codes (LBPD,
683  https://github.com/leonardob92/LBPD-1.0.git) and the freely available Oxford Centre for
684 Human Brain Activity (OHBA) Software Library (OSL) ** (https://ohba-
685 anaysis.github.io/osl-docs/), which utilises Fieldtrip *°, FSL *°, and SPM ' toolboxes. We

686 visually inspected the filtered MEG data using OSLview to remove large artifacts, which
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687  accounted for less than 0.1% of the total data. We employed independent component analysis
688  (ICA) to separate and remove eyeblink and heartbeat interference from the brain data *®. This
689 involved decomposing the original signal into independent components, discarding the
690 components that detected eyeblink and heartbeat activities, and reconstructing the signal
691 using the remaining components. We then epoched the signal into 81 trials and baseline-
692 corrected it by subtracting the mean signal recorded in the baseline from the post-stimulus
693 brainsigna. Thetrialslasted 3500 ms (3400 ms after the onset of the first tone of the musical
694  sequence plus 100 ms of baseline time) and were categorised into three groups (M, NT1,
695 NT3) with 27 trials each.

696

697 MEG sensor level and aging

698 To assess the difference between the brain activity of young and older adults while they
699 recognised the musical sequences, we calculated several independent samples t-tests with
700 unequal variances and then corrected for multiple comparisons using cluster-based Monte-
701  Carlo simulations (MCS). As it is common in MEG and EEG task studies ** ®°, we computed
702  the average over trials in each condition before performing t-tests, which resulted in three
703 mean trials (M, NT1, NT3). For each condition separately, we computed a t-test for each
704  MEG magnetometer channel and each time-point between O and 2000 ms, contrasting the
705  brain activity of young and older adults. We then reshaped the matrix to obtain a two-
706 dimensional (2D) approximation of the MEG channels layout for each time-point, binarising
707 it based on the p-values obtained from the previous t-tests (threshold = .05) and the sign of t-
708 values. The resulting 3D matrix (MX, 2D x time) consisted of Os when the t-test was not
709 dgnificant and 1s when it was. To correct for multiple comparisons, we identified clusters of
710 1sand assessed their significance using MCS. Specifically, we performed 1000 permutations
711  of the elements of the origina binary matrix MX, identified the maximum cluster size of 1s,
712 and built the distribution of the 2000 maximum cluster sizes. We considered clusters that had
713 asize bigger than the 99.9% maximum cluster sizes of the permuted data to be significant.
714  We applied the MCS procedure to the absolute values of magnetometer MEG channels for
715  both young versus older adults and vice versa.

716

717  Sourcereconstruction
718 MEG provides excellent temporal resolution, but to fully understand the brain activity

719  underlying complex cognitive tasks, the spatial component of the brain activity must also be
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720 identified. To estimate the sources of the brain that generated the signal recorded by the MEG
721  sensors, we computed a source reconstruction protocol using a combination of in-house-built
722  codes and codes available in OSL, SPM, and FieldTrip.

723 The source reconstruction analysis consists of designing a forward model and computing
724 theinverse solution. The forward model considers each brain source as an active dipole and
725  describes how the unitary strength of each dipole is reflected over all MEG sensors. We used
726  magnetometer channels and an 8-mm grid to obtain 3559 dipole locations within the whole
727  brain (voxels). After co-registering the individual structural T1 data with the fiducial points
728 (i.e, information about head landmarks such as the nasion and the left and right pre-auricular
729  points), we computed the forward model using the widely used “Single Shell” method, which
730  resulted in aleadfield model stored in matrix L (sources x MEG channels) ®*. In cases where
731  structural T1 was unavailable, we used atemplate (MNI152-T1 with 8-mm spatia resolution)
732  for theleadfield computation.

733 Afterwards, we calculated the inverse solution, using the established beamforming
734  method, which isa popular and effective algorithm available in the field of neuroscience. The
735  process involves utilising a distinct series of weights that are applied successively to the
736  source positions, enabling the separation of the impact of each source on the activity detected
737 by the MEG channels. This is carried out for every instance of the brain data captured. The
738  beamforming inverse solution is comprised of several key stages, which can be outlined as
739 follows.

740 The data measured by the MEG sensors (B) at time t, can be described by the following
741  equation (1):

742
By =L*Qp,p+ D
743
744  where L isthe leadfield model, Q is the dipole matrix which carries the activity of each active

3 In order to

745 dipole (q) over time, and ' is noise (see Huang and colleagues for details
746  resolve the inverse problem, Q has to be computed. In the beamforming algorithm, to
747  caculated Q, a series of weights have to be computed and applied to the MEG sensors at each
748  timepoint. Thisisdone for each single dipole g and shown in equation (2):
749

Awy =W" * By 2
750
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751 Toobtain g, the weights W have to be computed (here, the subscript T indicates the transpose
752  matrix). The beamforming method relies on the matrix multiplication between L and the
753  covariance matrix between MEG sensors (C). This matrix is calculated on the concatenated
754  experimental trials. More specifically, for each brain source n, the weights W, are calculated

755  asshown inequation (3):

756
Wy = (L' * CH L) ™ L' * €71 ©)
757
758  The calculation of the leadfield model was performed for the three main orientations of each

759  brain source (dipole), as done in the field (see, for example, Nolte ®).

Then, prior to
760 computing the weights, the orientations were reduced (from three to one) by using the
761  singular value decomposition algorithm on the matrix multiplication reported in equation (4).
762  This procedureiswidely adopted and used to simplify the beamforming output ** *.
763

L= svd("+ C71»D7? 4
764
765 In this context, | denotes the leadfield model with the three orientations, while L is the
766 resolved one-orientation model that was used in the estimation of the brain sources in
767 equation (3). The weights were then applied to each brain source and timepoint, with the
768 covariance matrix C being computed based on the continuous signal that resulted from
769  concatenating the trials across all experimental conditions. To counterbalance the source
770  reconstruction bias towards the head’'s centre, the weights were normalised according to
771 Luckhoo and colleagues *. Since we worked on evoked responses, the weights were applied
772  totheneural activity averaged over trials.
773 This procedure allowed us to obtain a time series for each of the 3559 brain sources and
774  each experimental condition. To adjust the sign ambiguity of the evoked responses time
775  series for each brain source, the sign was matched with the N100 response to the first tone of
776  the auditory sequences .
77

778 MEG sourcelevel and aging

779  For each of the significant clusters emerged from the previous analysis a the MEG sensor

780 level, we contrasted the brain activity of young versus older adults. We averaged the time

781 series of all brain sources over the time-window of each significant cluster and computed
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782  independent-sample t-tests contrasting the brain activity of young versus older adults. This
783  procedure was computed independently for the three experimental conditions (M, NT1,
784  NT3). Finally, we corrected for multiple comparisons using a 3D cluster-based MCS (o =
785  .005 [older vs young adults], oo = .05 [young vs older adults], p-value = .001). Here, we used
786 adtricter a level for older vs young adults since the difference in their brain activity was
787  particularly strong and we wanted to highlight the main focus of such differences. For this
788  procedure, we first determined the szes of significant clusters consisting of neighbouring
789  brain voxels. Subsequently, we generated 1000 permutations of the initial data and estimated
790 the sizes of significant clusters formed by neighbouring brain voxels in each permutation.
791 This process yielded a reference distribution of the largest cluster sizes observed in the
792  permutated data. Finally, we identified original clusters as significant if their size was larger
793 than 99.99% of the clusters in the reference distribution. Further details on the MCS
794  agorithm can be found in previous works by Bonetti and colleagues .
795

796  Functional regions of interests (ROIS)

797  We computed a complementary analysis by investigating the difference between the brain
798  activity of young versus older adults in a selected array of functional ROIs, previously
799  described by Bonetti, Fernandez Rubio, Carlomagno, Pantazis, Vuust and Kringelbach .
800 These were derived from the whole-brain analysis of the active brain regions of young adults
801 during recognition of the same musical sequences used in the current study. These areas
802  roughly corresponded to the bilateral medial cingulate gyrus (MC), bilateral ventromedial
803  prefrontal cortex (VMPFC), left (HITL) and right hippocampal area and inferior temporal
804  cortex (HITR), and left (ACL) and right auditory cortex (ACR). In addition, we incorporated
805 the left (IFGL) and right inferior frontal gyrus (IFGR) because these regions displayed
806 marked differences between young and older adults.

807 This additional analysis allowed us to reconstruct with greater precision the time series of
808 each brain region that played a central role in auditory sequence recognition. Thus, while it
809 did not provide additional information to the previous analysis, it refined its significance. In
810 Table $4, we reported the Montreal Neurological Institute (MNI) coordinates of each voxel
811 forming the eight ROIs. The ROIs are visually displayed in Figure S2.

812
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813 Agingand ROIstimeseries

814  We contrasted the brain activity of young versus older adults by computing an independent-
815 sample t-test for each ROI, timepoint, and condition. We corrected for multiple comparisons
816 using 1D cluster-based MCS (o = .05, MCS p-value = .001). First, we identified the clusters
817 of the significant values which were continuous in time. Second, we performed 1000
818 permutations, consisting of randomising the significant values obtained from the t-tests. For
819 each permutation, we then extracted the maximum cluster size, and we built their reference
820 distribution. To summarise, we considered significant the original clusters that were larger
821 than the 99.99% of the clusters emerged in the permutations. Additional details on this
822  procedure can be found in previous works by Bonetti and colleagues .
823

824 WM, musical expertise, education level, aging and neural data

825 We computed two additional analyses to assess whether potential confounding variables had
826 an impact on the relationship between aging and the neural responses underlying the
827  recognition of the musical sequences.

828 In the first analysis we computed three independent multivariate analyses of covariance
829 (MANCOVAs), one for each experimental condition (Wilk’s Lambda [A], a = .05). In each
830 MANCOVA the dependent variables were the neural data for the eight ROIs, the independent
831 variable was age, and the covariates were years of formal musical expertise, sex, WM, and
832 years of formal education that participants received. To be noted, the neural data was
833 collapsed into one single value for each ROl and participant. This was computed by
834  averaging the main response (neural peak + 20 ms) to each tone in the M condition. With
835 regardsto the N conditions, we selected the main response (neural peak + 20 ms) to the tone
836 that introduced the variation in the sequence. This analysis was conducted in R .

837 The second analysis consisted of computing analyses of variance (ANOVAS) for each
838 time-point and each ROl and then using the same cluster-based 1D MCS to correct for
839  multiple comparisons that we described in the previous paragraphs.

840 In this case, we computed two independent sets of ANOVAS. In the first one, we used
841 one-way ANOVAs contrasting three age-groups: young (younger than 25), older adults 60-68
842 (age between 60 and 68), and older adults > 68 (older than 68). In the second set, we used
843 two-way ANOVAswith the following levels: WM (high and low performers) and age (young
844  and older adults). This allowed us to further test the changes in the brain activity over
845 different age-groups as well as to better highlight the impact of WM on the ROIs time series.
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Figures 5 and 6 report the ROIs which showed the strongest results, while Tables S6 and
S7 disclosed the complete details of the statistical results.

To be noted, four participants (three young and one older adult) did not complete the WM
assessment. For this reason, the analyses described in this paragraph were computed with a

sample of 72 participants.
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853 Data availability

854  The codes are available at the following links:

855  https://github.com/leonardob92/MEG_Adqing_Bach.git

856  https://github.com/Ieonardob92/L BPD-1.0.git

857 The multimodal neuroimaging data related to the experiment is available upon reasonable
858  request.

859

860
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SUPPLEMENTARY MATERIAL

Supplementary materials related to this study and organised as supplementary figures (i) and
tables (ii). In the cases when the supplementary tables were too large to be reported in the
current document, they have been exported to Excel files that can be found at the following
link:

https://drive.google.com/drive/folders ImCDD1Eghm5W7a9jtjl-
9NczNB457ROQusp=sharing
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903  Figure S1. Temporal sequences used in the experiment.

904  The figure shows all temporal sequences used in the experiment, providing detailed information on how they
905  were created. The M sequences were three and comprised the first five tones of the first three measures of the
906  musical piece. These three sequences were presented nine times each, for a total of 27 trials. The N sequences
907  were created through systematic variations of the three M sequences. This procedure consisted of changing
908  every musical tone of the sequence after the first (NT1) or third (NT3) tone. We created nine variations for each
909  of the original M sequences and each of the four categories of N. This resulted in 27 N sequences for each
910  category, and 54 N in total. To be noted, as shown in this figure, the variations were created according to the
911 following rules: (i) Inverted melodic contours (used twice): the melodic contour of the variation was inverted
912  with respect to the original M sequence (i.e., if the M sequence had the following melodic contour: down-down-
913  up-down, the N sequence would be: up-up-down-up); (i) Same tone scrambled (used three times): the
914  remaining tones of the M sequence were scrambled (e.g., M sequence: C-E-D-E-C, was converted into NT1
915  sequence: C-C-E-E-D); (iii) Same tone (used three times): the same tone was repeatedly used, in some cases
916  varying only the octave (e.g., M sequence: C-E-D-E-C, was transformed into NT1 sequence: C-E® E® Eg Ey);
917  (iv) Scrambling intervals (used once): the intervals between the tones were scrambled (e.g., M sequence: 6™m -
918  2"m-2""m—3"m, was adapted to NT1 sequence: 2"m, 6"m, 3"%m, 2"m).
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923  Figure S2. Brain parcellation.

924  The eight ROIs used in the study: left (i) and right auditory cortex (ii); left (iii) and right hippocampal regions
925  and inferior temporal cortex (iv); medial cingulate gyrus (v), ventromedial prefrontal cortex (vi); left (vii) and
926  right inferior frontal gyrus (viii).

927
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931

932  Figure S3. Impact of aging on the brain activity underlying the recognition of previously memorised musical

L.
L
b
.
.

933  sequences.

934  gSgnificant contrasts between the brain activity of young and older adults during the recognition of previously
935 memorised musical sequences. For each significant cluster, the Ieft plot shows the amplitude of the brain signal
936  recorded for young (red) and older adults (blue). Shaded red and blue areas depict standard errors, while grey
937  areasrefer to the significant time-window for the cluster. The plot refers to the average over the absolute values
938  of the magnetometer channels forming the significant clusters outputted by the MEG sensors MCS. The plot on
939 the right shows the neural sources in the time-window of the significant MEG sensors cluster. The top plot
940  shows the main effect over all participants (the colorbar indicates the reconstructed brain activity standardised
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941  between 0 and 1), while the bottom plot shows the contrast between the brain activity of young versus older
942  adults (the colorbar indicates the t-value of the contrast). The first five clusters refer to the contrasts where the
943  Drain activity was stronger for young versus older adults. The last cluster refers to the contrasts where the brain
944 activity was stronger for older versus young adults. Table 2 reports the key statistics of these analyses, while
945  Table S1 shows the complete results.

946
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Figure $4. Impact of aging on the brain activity underlying the recognition of the varied (novel) musical

Sgnificant contrasts between the brain activity of young and older adults during the recognition of the varied
musical sequences (NT1 and NT3). For each significant cluster, the left plot shows the amplitude of the brain
signal recorded for young (red) and older adults (blue). Shaded red and blue areas depict standard errors,
while grey areas refer to the significant time-window for the cluster. The plot refers to the average over the
absolute values of the magnetometer channels forming the significant clusters outputted by the MEG sensors
MCS. The plot on the right shows the neural sourcesin the time-window of the significant MEG sensors cluster.
The top plot shows the main effect over all participants (the colorbar indicates the recongtructed brain activity
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959  standardised between 0 and 1), while the bottom plot shows the contrast between the brain activity of young
960  versusolder adults (the colorbar indicates the t-value of the contrast). Thefirst two clusters refer to NT1 (on the
961  left the contrasts where the brain activity was stronger for young versus older adults and on the right vice
962  versa). Thelast four clustersrefer to NT3 (the first three clusters relate to tthe contrasts where the brain activity
963  was stronger for older versus young adults, while the last one vice versa). Table 2 reports the key statistics of
964  theseanalyses, while Table S1 shows the complete results.

965
966
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967 SUPPLEMENTARY TABLES

968
969  Table S1. Detailed information on significant clusters for MEG sensor data

970  Sgnificant clusters of MEG sensors emerged from MCS contrasting the brain activity of young versus older
971  adults, independently for the three experimental conditions (M, NT1, NT3). The table illustrates the clusters
972  with regards to significant channels, si zes, maximum t-val ues and time-windows.

973

974  Table S2. Source reconstruction main effect.

975  Main effect for the source reconstruction performed in the time-windows of the significant clusters at MEG
976  sensor level. Results are reported independently for each cluster and contrast, and comprise the brain region,
977  brain hemisphere, standardised neural index and MNI coordinates for each voxel.

978

979  Table S3. Young versus older adultsin MEG source space.

980  gSgnificant MEG source clusters of differential brain activity between young and older adults performed in the
981 time-windows of the significant clusters at MEG sensor level. Results are reported independently for each
982  cluster and contrast, and comprise the brain region, brain hemisphere, t-value and MNI coordinates for each
983  voxel.

984

985  Table $4. ROIscoordinates.

986  MNI coordinates for each of the voxels forming the eight ROIs.
987

988  Table S5. ROIstime series.

989  dgnificant clusters of differential brain activity between young and older adults for the eight ROIs used in the
990  study. Results are reported independently for the eight ROIs and for each experimental condition (M, NT1,
991  NT3), and comprise cluster size, p-value, temporal extent of the clusters and peak t-value within the cluster.
992

993  Tahle S6. ROIstime seriesand WM.

994  dgnificant clusters of differential brain activity observed by contrasting the following four categories of
995  participants: young adults with high WM (i), young adults with low VWM (ii), older adultswith high WM (iii) and
996  older adults with low WM (iv). Results are reported independently for the eight ROIs and for each experimental
997  condition (M, NT1, NT3), and comprise cluster size, p-value, temporal extent of the clusters and peak F-value
998  within the cluster.

999

1000 Table S7. ROIstime seriesand three age groups.

1001  ggnificant clusters of differential brain activity observed by contrasting the following three categories of
1002 participants: young adults (i), older adults aged between 60 and 68 years old (ii) and older adults older than 68
1003  yearsold (iii). Results are reported independently for the eight ROIs and for each experimental condition (M,
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1004  NT1, NT3), and comprise cluster size, p-value, temporal extent of the clusters and peak F-value within the
1005  cluster.
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