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Abstract 21 

Aging is often associated with decline in brain processing power and neural predictive 22 

capabilities. To challenge this notion, we used the excellent temporal resolution of 23 

magnetoencephalography (MEG) to record the whole-brain activity of 39 older adults (over 24 

60 years old) and 37 young adults (aged 18-25 years) during recognition of previously 25 

memorised and novel musical sequences. Our results demonstrate that independent of 26 

behavioural measures, older compared to young adults showed increased rapid auditory 27 

cortex responses (around 100 and 250 ms after each tone of the sequence) and decreased later 28 

responses (around 250 and 350 ms) in hippocampus, ventromedial prefrontal cortex and 29 

inferior frontal gyrus. Working memory abilities were associated with stronger brain activity 30 

for both young and older adults. Our findings unpick the complexity of the healthy aging 31 

brain, showing age-related neural transformations in predictive and memory processes and 32 

challenging simplistic notions that non-pathological aging merely diminishes neural 33 

predictive capabilities. 34 

 35 
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Introduction 39 

Aging is a major omni comprehensive phenomenon which brings new challenges and places 40 

large financial burden on society1, 2. While most studies have investigated the biological 41 

correlates of full-blown disorders such as Alzheimer´s and other types of dementia3, 4, less 42 

research has focused on the neural changes associated with normal, non-pathological aging. 43 

However, this is crucial to understand the modifications of the brain function and structure 44 

across the lifespan and to eventually identify early markers of the age-related neural decline. 45 

 Previous research on the neurophysiology of non-pathological aging has predominantly 46 

examined age-related changes in resting state brain activity 5-8. This research has revealed 47 

differences between the spontaneous brain functioning of young versus older adults. For 48 

instance, in a magnetoencephalography (MEG) study, Tibon and colleagues 5 reported that 49 

decreased occurrence of lower-order and increased occurrence of higher-order brain networks 50 

were linked to aging. Similarly, combining functional connectivity derived from MEG resting 51 

state data with performance in motor learning, Mary and colleagues 6 revealed that young and 52 

older participants presented differently active neural circuits in resting state after being 53 

exposed to motor learning. In another study, Alù and colleagues examined the impact of 54 

aging on brain dynamics using electroencephalography (EEG) data and entropy analysis. The 55 

findings revealed that older participants had overall higher entropy values across brain 56 

regions compared to younger ones 7. In another investigation using resting state EEG, the 57 

authors found a decrease in occipital delta and posterior cortical alpha rhythms associated 58 

with aging 8. 59 

 Moving away from resting state, a few studies have investigated the impact of aging on 60 

automatic brain processes such as the mismatch negativity (MMN), a component of the even-61 

related potential/field (ERP/F) which automatically originates in response to deviant stimuli 9-62 
15. For instance, using MEG, Cheng and colleagues 13 showed a reduction in the fronto-63 

temporo-parietal activity underlying MMN in older compared to young participants. In 64 

another MEG study, the authors revealed that longer peak latencies and smaller amplitudes 65 

were found in the MMN of older versus young adults 14. Similarly, in an EEG study, Kisley 66 

and colleagues showed that older adults presented reduced MMN amplitude at fronto-central 67 

sites and decreased sensory gating efficiency compared to younger adults 15. Taking together, 68 

these findings suggest that aging is associated with declines in automatic central auditory 69 

processing of deviant stimuli and with a mild decline of the cognitive ear, possibly related to 70 

slow brain atrophy typical of aging 16. 71 
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 The neurophysiology of aging has also focused on memory task-based paradigms 17-20. For 72 

instance, a few studies suggested that the brain functioning during long-term recognition is 73 

impaired in older compared to young adults. Gajewski and Falkenstein 17 revealed decreased 74 

and delayed ERP components (e.g. N200, P300a and P300b) in older adults when they 75 

performed a two-back memory task. Along this line, using EEG, Vaden and colleagues 18 76 

showed that in a suppression of visual information task, the correct performances were 77 

associated with a robust modulation of alpha power only in young but not in older adults. 78 

Similarly, Federmeier and colleagues 19 demonstrated that older compared to young adults 79 

had a reduced neural efficiency when recognising familiar words. 80 

 Previous research has also investigated the impact of aging on short-term recognition of 81 

information, showing altered brain functioning in older compared to young adults. In a 82 

classic MEG study, Babiloni and colleagues 20 used two delayed response tasks, reporting 83 

altered alpha event-related desynchronisation (ERD) associated with aging. In a recent EEG 84 

study, Costa and colleagues 21 investigated the age-related differences in the neural activity 85 

during short-term recognition of musical sequences. They showed that older adults reported 86 

decreased slow negative responses associated with auditory processing compared to young 87 

participants. 88 

 Taken together, the largest part of research on the neurophysiology of aging has 89 

concentrated on resting state studies. Still, thorough examinations of the age-related neural 90 

changes of memory have been produced, pointing to an overall impaired brain functioning in 91 

older populations. However, little is known on the impact of aging on the fast-scale brain 92 

dynamics underlying predictive and memory processes of sequences unfolding over time. 93 

Similarly, the age-related neural changes underlying predictions in cognitive tasks remain 94 

elusive. 95 

 To address these intriguing topics, the predictive coding theory (PCT) offers a suitable 96 

framework. Indeed, PCT states that the brain is constantly updating internal models to predict 97 

information and stimuli from the external world 22. In recent years, music has emerged as a 98 

privileged tool to investigate PCT and understand how the brain encodes, recognises and 99 

predicts temporal sequences 23, 24. Along this line, in our previous studies we have combined 100 

recently developed musical memory paradigms with state-of-the-art neuroimaging 101 

techniques, focusing on the brain dynamics of healthy young participants when they encoded 102 

and recognised musical sequences. We discovered that encoding of sounds recruited a large 103 

network of functionally connected brain areas, especially in the right hemisphere, such as 104 
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Heschl’s and superior temporal gyri, frontal operculum, cingulate gyrus, insula, basal ganglia, 105 

and hippocampus 25. Similarly, long-term recognition of short musical sequences recruited 106 

nearly the same brain network. However, in this case, the recruitment was bilateral, and it 107 

showed hierarchical dynamics from lower- to higher-order brain areas in different frequency 108 

bands (e.g. 0.1-1 Hz and 2-8 Hz) 26 and in relation to the recognition of previously 109 

memorised or varied musical sequences 27-30. 110 

 In the current study, we took a new fundamental step by using musical memory paradigms 111 

and advanced neuroimaging techniques to investigate the impact of aging on the fast-scale 112 

brain dynamics underlying predictive and memory processes for musical sequences unfolding 113 

over time. 114 

  115 
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Results 116 

Overview of the experimental design and analysis pipeline 117 

In this study, we investigated the impact of aging on the fast-scale spatiotemporal brain 118 

dynamics underlying recognition of previously memorised musical sequences. In brief, 119 

during magnetoencephalography (MEG) recordings, two groups of participants (39 older 120 

adults [older than 60 years old] and 37 young adults [younger than 25 years old]) listened to 121 

the first musical sentence of the Prelude in C minor, BWV 847 by Johann Sebastian Bach and 122 

were instructed to memorise it to the best of their ability. As shown in Figure 1 and Figure 123 

S1, participants were subsequently presented with five-tone musical excerpts (M) taken from 124 

the music they previously memorised and with carefully matched variations. The variations 125 

consisted of five-tone musical sequences generated by systematically altering the M 126 

sequences after either the first (NT1) or third (NT3) tone. For each musical sequence, 127 

participants were requested to assess whether the sequence was taken from the memorised 128 

musical piece (M) or whether it was new (N). Additional details on the stimuli are available 129 

in the Methods section. Key background information on the two samples of participants is 130 

reported in Table 1. 131 

 The analysis pipeline of this study is partly depicted in Figure 1 and consisted of 132 

contrasting the brain activity of young versus older adults at MEG sensor and source levels. 133 

 First, we used Monte Carlo simulations (MCS) on univariate tests of MEG sensor data. 134 

This was followed by estimating the sources of the brain activity which generated the 135 

differences between young and older adults. Second, we focused on eight key regions of 136 

interest (ROIs) and analysed whether their time series differed between older and young 137 

adults. Third, we assessed the impact of WM, years of general and musical education, sex, 138 

and age groups on the brain activity underlying recognition of the musical sequences. 139 

 Additional details are available in the Methods section, while the codes used for these 140 

analyses are extensively reported at the following links: 141 

https://github.com/leonardob92/MEG_Aging_Bach.git 142 

https://github.com/leonardob92/LBPD-1.0.git 143 

 144 

 145 
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 146 
 147 

Figure 1. Experimental design, stimuli, and analysis pipeline. 148 

a – Thirty-seven young and 39 older adults were invited to participate in the experiment. b – The brain activity 149 

of the participants was collected using magnetoencephalography (MEG), while their structural brain images 150 

were acquired using magnetic resonance imaging (MRI). c – Participants were requested to memorise a short 151 

musical piece (lasting about 30 seconds). Then, we used an old/new auditory recognition task (left). Here, one 152 

at a time, five-tone temporal sequences (i.e., musical melodies) were presented in randomised order and 153 

participants were instructed to respond with button presses whether they were taken from the musical piece they 154 

previously memorised (‘old’ or memorised musical sequences, ‘M’) or they were novel (‘new’ musical 155 

sequences, ‘N’). Three types of temporal sequences (M, NT1, NT3) were used in the study. The figure shows a 156 

graphical depiction of how the novel musical sequences were created with regards to the previously memorised 157 

ones (right). The N sequences were created through systematic variations of the M sequences. For example, in 158 

the middle row, it is depicted a sequence (NT1) where we changed all tones but the first one (indicated by the 159 

red colours). Likewise, the bottom row shows a sequence where we changed only the last two tones (NT3). c – 160 

After pre-processing the MEG data, we co-registered it with the individual anatomical MRI data and 161 

reconstructed its brain sources using a beamforming algorithm. This procedure returned one time series for 162 

each of the 3559 reconstructed brain sources. e – We constrained the source reconstructed data to eight brain 163 

regions of interest (ROIs) which were selected based on previous literature (left). For each of the ROI, we 164 

studied the differences over time between the brain activity of young versus older adults (right). 165 

 166 

 167 

 168 

 169 

 170 

 171 
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Participant groups N Age Sex WM (raw) 

Musical 

training 

(years) 

Education 

(years) 

Young adults (< 25) 37 21.89 ± 2.05 18 F; 19 M 43.00 ± 7.15 3.24 ± 3.72 13.57 ± 2.62 

Older adults (> 60) 39 67.72 ± 5.35 24 F; 15 M 38.42 ± 7.71  3.08 ± 4.31 14.20 ± 4.63 

 172 

Table 1. Background information on the two age samples 173 

Number of participants, age, sex, WM, years of musical training and general education reported independently 174 

for the two age groups. The numbers for age, WM, and years of musical training and general education 175 

correspond to mean and standard deviations. 176 

 177 

 178 

Behavioural results 179 

We calculated the impact of age on response accuracy and reaction times during the musical 180 

recognition task that participants performed in the MEG. 181 

 Regarding the response accuracy, there was a statistically significant difference 182 

between the two age groups in the memory task (F(3, 61) = 7.18, p < .001, Wilks’ Λ = .739, 183 

partial η2 = .26). Follow-up ANCOVAs showed that older adults scored lower than young 184 

adults when correctly identifying NT1 (F(1, 63) = 13.03, p < .001) and NT3 sequences (F(1, 185 

63) = 19.89, p < .001). Years of education (F(3, 61) = 3.37, p = .02, Wilks’ Λ = . 857, partial 186 

η
2 = .14), WM scores (F(3, 61) = 7.07, p < .001, Wilks’ Λ = .742, partial η2 = .26), and years 187 

of musical training (F(3, 61) = 4.61, p = .005, Wilks’ Λ = . 815, partial η2 = .18) were 188 

statistically significant covariates. Specifically, years of education had a statistically 189 

significant effect on correctly identifying M (F(1, 63) = 4.58, p = .03) and NT1 sequences 190 

(F(1, 63) = 6.52, p = .01), meaning that higher number of years of education was associated 191 

to higher number of correct responses. Similarly, WM capacity had a statistically significant 192 

positive effect on correctly identifying NT1 (F(1, 63) = 14.31, p < .001) and NT3 sequences 193 

(F(1, 63) = 19.24, p < .001). Finally, years of musical training had a statistically significant 194 

positive effect on correctly identifying NT1 (F(1, 63) = 5.45, p = .02) and NT3 sequences 195 

(F(1, 63) = 13.80, p < .001). 196 

With respect to the average reaction time during recognition of M, NT1 and NT3 197 

sequences, we found a statistically significant difference between the two age groups on the 198 

reaction times (F(3, 64) = 2.904, p = .04, Wilks’ Λ = .880, partial η2 = .12). However, this 199 

effect was non-significant in follow-up ANCOVAs. Regarding the covariates, only WM 200 
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scores had a significant effect on the dependent variables (F(3, 64) = 5.18, p = .002, Wilks’ Λ 201 

= .804, partial η2 = .20). In particular, we observed that high WM scores were associated with 202 

lower average reaction time when correctly identifying NT1 (F(1, 66) = 10.96, p = .001)  and 203 

NT3 sequences (F(1, 66) = 4.29, p = .04). 204 

 205 

 206 

 207 

 208 

Figure 2. Impact of aging, education, musical training and WM on the recognition of musical sequences. 209 

a – Raincloud plots show the overlapping distributions and normalized data points of both age groups with 210 

regards to the recognition of the previously memorised and novel (NT1 and NT3) musical sequences. Boxplots 211 

show the median and interquartile (IQR, 25 – 75%) range, whiskers depict the 1.5*IQR from the quartile. Each 212 
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dot corresponds to the number of correct responses (top plot) or the mean reaction time (bottom plot) of each 213 

participant. The plot above refers to the number accuracy in the task, while the bottom plot to the reaction 214 

times. b – Correlation matrix between memorised, NT1, NT3 (number of correct responses, top plot, and 215 

reaction times, bottom plot), years of education, WM, years of musical training. Significant correlations are 216 

indicated by the stars (* p < .05; ** p < .01; *** p < .001). 217 

 218 

 219 

Aging and whole-brain activity 220 

To assess the difference between the brain activity of older and young adults while they 221 

recognised the musical sequences, we calculated several independent samples t-tests with 222 

unequal variances and then corrected for multiple comparisons using cluster-based MCS (t-223 

test threshold = .05, MCS threshold = .001, 1000 permutations). As reported in detail in the 224 

Methods section, this procedure was computed independently for the three experimental 225 

conditions (M, NT1, NT3). 226 

 The analyses returned several significant clusters, highlighting overall reduced brain 227 

activity along a wide array of MEG sensors in older participants. In addition, a few 228 

significant clusters showed stronger brain activity in older participants. Table 2 shows the 229 

key information of the larger significant clusters for the three experimental conditions, while 230 

Table S1 provides complete statistical information. 231 

 232 

 233 

Memorised musical sequences – young > older adults 

Cluster # Size MCS p-val Max t-val Time (1) Time (end) 

1 305 < .001 4,05 1,704 1,812 

2 218 < .001 3,85 0,568 0,656 

3 190 < .001 3,34 0,356 0,476 

Memorised musical sequences – older > young adults 

Cluster # Size MCS p-val Max t-val Time (1) Time (end) 

1 292 < .001 -6,08 0,072 0,128 

NT1 musical sequences – young > older adults 

Cluster # Size MCS p-val Max t-val Time (1) Time (end) 

1 415 < .001 4,47 0,272 0,400 

2 215 < .001 4,10 1,760 1,908 

3 175 < .001 4,85 1,916 1,996 

NT1 musical sequences – older > young adults 

Cluster # Size MCS p-val Max t-val Time (1) Time (end) 

1 695 < .001 -7,03 0,048 0,164 

NT3 musical sequences – young > older adults 
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Cluster # Size MCS p-val Max t-val Time (1) Time (end) 

1 154 < .001 4,26 1,292 1,420 

2 88 < .001 4,16 1,056 1,092 

3 75 < .001 4,16 1,068 1,140 

NT3 musical sequences – older > young adults 

Cluster # Size MCS p-val Max t-val Time (1) Time (end) 

1 388 < .001 -5,43 0,076 0,144 

 234 

Table 2. The effect of aging on the whole-brain activity – MEG sensors 235 

Information on the significant clusters emerged at MEG sensors level by contrasting the brain activity 236 

underlying recognition of musical sequences of young versus older adults. The results are reported 237 

independently for each condition (M, NT1, and NT3) and strength of the contrast (young > older and older > 238 

young). The table shows the size of the cluster, the MCS p-value, the maximum t-value within the cluster and the 239 

time extent of the significance of the difference between older and young adults. 240 

 241 

 242 

 After analysing the brain activity at the MEG sensor level, we computed source 243 

reconstruction analyses using a beamforming algorithm to estimate the brain sources that 244 

generated the signal recorded by the MEG sensors. For each of the significant clusters, we 245 

contrasted the source-reconstructed brain activity of older versus young adults and corrected 246 

for multiple comparisons using a three-dimensional (3D) cluster-based MCS (α < .05, MCS 247 

p-value = .001). These analyses returned several significant clusters of brain activity, 248 

revealing that the main brain regions differentiating older from young adults were the 249 

primary and secondary auditory cortices, post-central gyrus, hippocampal regions, inferior 250 

frontal gyrus, and ventromedial prefrontal cortex. These results are depicted in Figures S3 251 

and S4 and reported in detail in Table S2 and S3. 252 

 253 

Aging and functional brain regions of interest (ROIs) 254 

To strengthen the reliability of our results and allow an easier comparison with previous 255 

literature, we computed a complementary analysis by investigating the difference between the 256 

brain activity of older versus young adults in a selected array of functional ROIs that were 257 

previously described by Bonetti and colleagues 28. These areas (described in detail in Table 258 

S4 and shown in Figure S2) were the bilateral medial cingulate gyrus (MC), bilateral 259 

ventromedial prefrontal cortex (VMPFC), left (HITL) and right hippocampal area and 260 

inferior temporal cortex (HITR), left (ACL) and right auditory cortex (ACR), and left (IFGL) 261 

and right inferior frontal gyrus (IFGR). We contrasted the brain activity of young versus 262 
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older adults by computing an independent-sample t-test for each ROI, timepoint, and 263 

condition. We corrected for multiple comparisons using 1D cluster-based MCS (t-value 264 

threshold = .05, MCS p-value = .001).  265 

 This analysis returned several significant clusters showing differences in the brain activity 266 

of older compared to young adults. Of particular interest are the clusters reported in the HITR 267 

(p < .001, k = 25; max t-val = 4.70, time: 640 – 736 ms) and IFGR (cluster 1: p < .001, k = 268 

38; max t-val = -4.59, time: 464 – 612 ms; cluster 2: p < .001, k = 33; max t-val = -5.04, time: 269 

1260 – 1388 ms) showing reduced activity for older versus young adults when recognising 270 

previously memorised musical sequences. In addition, older versus young participants were 271 

characterised by a weaker signal in response to the variation of the original musical 272 

sequences. This was particularly evident for HITR (NT1: p < .001, k = 24; max t-val = -3.53, 273 

time: 1284 – 1376 ms; NT3: p < .001, k = 21; max t-val = -4.01, time: 1320 – 1400 ms), 274 

VMPFC (NT1: p < .001, k = 15; max t-val = -3.57, time: 1320 – 1376 ms; NT3: p < .001, k = 275 

23; max t-val = -3.97, time: 1672 – 1760 ms), and HITL (NT3: p < .001, k = 12; max t-val = -276 

3.31, time: 1324 – 1368 ms).  277 

 Finally, older adults showed a stronger activity in ACL in response to the first tone of the 278 

sequences in all conditions (M: p < .001, k = 14; max t-val = 5.37, time: 84 – 136 ms; NT1: p 279 

< .001, k = 15; max t-val = 5.86, time: 88 – 144 ms; NT3: p < .001, k = 16; max t-val = 6.04, 280 

time: 84 – 144 ms) and in relation to each tone until the variation was introduced (Figure 3, 281 

first row). These results are depicted in Figures 3 and 4 and extensively reported in Table 282 

S5. 283 

 284 

 285 
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Figure 3. Older adults show stronger activity in auditory cortex and reduced responses in medial temporal 288 

lobe during recognition of musical sequences. 289 

a - The results show that the older adults have significantly stronger activity in the left auditory cortex 290 

compared to young adults only when recognising the melodies that were previously memorised. In fact, the top 291 

graphs indicate a component occurring about 300 ms after the onset of each tone that was stronger for the older 292 

adults for all the tones in the M condition and for all the tones before introducing the variations in the N 293 

conditions (i.e. one tone for NT1 and three tones for NT3). In addition, the N100 response to the first tone of the 294 

sequences was significantly stronger for old versus young adults in all conditions. b - Conversely, older adults 295 

showed significantly decreased activity in the hippocampal and inferior temporal regions. This was particularly 296 

evident for conditions NT1 and NT3. Here, as highlighted by the red bottom graphs, the older versus young 297 

adults exhibited reduced prediction error responses when the sequence was varied. This happened especially 298 

for the first tone which introduced the variation in the melodies (i.e. tone two for NT1 and tone four for NT3). 299 

Finally, even if to a smaller extent, reduced activity in older adults was also observed for the M condition, 300 

where positive components of the neural signals were reduced for all the tones except for the first one. 301 

Note that the figure shows the source localised brain activity illustrated for each experimental condition (M, 302 

NT1, NT3) in four ROIs (left and right auditory cortex, left and right hippocampal and inferior temporal 303 

regions). Grey areas show the statistically significant differences of the brain activity between young (solid red 304 

line) and older adults (solid blue, shading indicates standard error in both cases), while red and blue graphs 305 

highlight neural components of particular interest. The sketch of the musical tones represents the onset of the 306 

sounds forming the musical sequences. The brain templates illustrate the spatial extent of the ROIs. 307 

 308 

 309 

 310 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 13, 2023. ; https://doi.org/10.1101/2023.07.13.548815doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.13.548815
http://creativecommons.org/licenses/by-nd/4.0/


 

 

15

 311 

 312 

Figure 4. Impact of aging on the cingulate gyrus, ventromedial prefrontal cortex and inferior frontal gyrus 313 

responses during recognition of musical sequences.  314 
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The red graphs in the second row highlight that the VMPFC produced a weaker activity indexing prediction 315 

error for the older versus young adults for conditions NT1 and NT3, in an analogous manner to the right 316 

hippocampal and inferior temporal regions shown in Figure 3. Notably, while these two brain regions also 317 

showed a decreased activity for the M condition for older versus young adults, this did not happen for the 318 

VMPFC. Finally, the last row of this figure shows a much stronger activity originated in the right inferior 319 

frontal gyrus of the young versus older adults. This was particularly evident for the M sequences and consisted 320 

of a negative component peaking approximately 250 ms after the onset of each musical tone. 321 

Note that the figure shows the source localised brain activity illustrated for each experimental condition (M, 322 

NT1, NT3) in four ROIs (medial cingulate gyrus, ventromedial prefrontal cortex [VMPFC], left and right 323 

inferior frontal gyrus). Grey areas show the statistically significant differences of the brain activity between 324 

young (solid red line) and older adults (solid blue, shading indicates standard error in both cases), while red 325 

and blue graphs highlight neural components of particular interest. The sketch of the musical tones represents 326 

the onset of the sounds forming the musical sequences. The brain templates illustrate the spatial extent of the 327 

ROIs. 328 

 329 

 330 

WM, musical expertise, education level, aging and neural data 331 

Finally, we computed two additional analyses to assess whether potential confounding 332 

variables had an impact on the relationship between aging and the neural mechanisms 333 

underlying recognition of musical sequences. 334 

 In the first analysis we computed three independent multivariate analyses of covariance 335 

(MANCOVAs), one for each experimental condition. In each MANCOVA, the dependent 336 

variables were the highest peaks of the neural data for the eight ROIs, while the independent 337 

variables were age, sex, years of formal musical expertise, WM, and years of formal 338 

education (see Methods for additional details). 339 

 The results of the MANCOVAs showed a significant main effect for age in all 340 

experimental conditions: M (F(8, 59) = 4.62, p = .0002, Wilks’ Λ = .614, partial η2 = .39), 341 

NT1 (F(8, 59) = 3.117, p = .005, Wilks’ Λ = .703, partial η2 = .30), and NT3 (F(8, 59) = 342 

3.575, p = .002, Wilks’ Λ = .674, partial η2 = .33). This confirmed the impact of age on the 343 

neural data. The other variables did not show any significant results, indicating that no 344 

confounding variables affected the relationship between age and the neural data. However, 345 

WM approached the significance in all experimental conditions, showing moderate effect 346 

sizes: M (F(8, 59) = 4.62, p = .09, Wilks’ Λ = .802, partial η2 = .20), NT1 (F(8, 59) = 347 

1.313, p = .25, Wilks’ Λ = .849, partial η2 = .15), and NT3 (F(8, 59) = 1.691, p = .11, Wilks’ 348 
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Λ = .814, partial η2 = .19). This indicated that WM may partially affect the brain dynamics of 349 

musical recognition in relation to aging. 350 

 Following the results of the MANCOVAs, we computed independent analyses of variance 351 

(ANOVAs) for each time-point, ROI and condition and used cluster-based 3D MCS to 352 

correct for multiple comparisons. We used two-way ANOVAs with the following levels: 353 

WM (high and low performers) and age (older and young adults). The analysis returned 354 

significant key clusters for three main ROIs in the NT3 condition: HITR (NT3: p < .001, k = 355 

40; max F-val = 17.66, time: 1308 - 1464 ms), VMPFC (NT3: p < .001, k = 32; max F-val = 356 

13.57, time: 1300 - 1424 ms), HITL (NT3: p < .001, k = 24; max F-val = 9.36, time: 1304 - 357 

1396 ms). Figure 5 show the time series of these ROIs in relation to age and WM, while 358 

detailed statistical results are reported in Table S6. 359 

 360 

 361 

 362 
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 363 

 364 

Figure 5. Impact of WM and aging on the ventromedial prefrontal cortex and medial temporal lobe 365 

responses during recognition of musical sequences. 366 

The black graphs in the NT3 plots (all rows) highlight that the strongest brain prediction error in response to 367 

the variation of the original musical sequences occurred in young adults who performed very well in the WM 368 

tasks. The strength of the prediction error was lower and very similar for young adults with low WM and older 369 

adults with high WM. Finally, older adults with low WM presented the most reduced prediction error signal in 370 

the brain. This was particularly evident for the right hippocampal and inferior temporal regions as well as for 371 

the VMPFC. A similar, but less pronounced, effect was observed in the VMPFC for M and NT1. 372 

 373 

 374 
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Note that the figure shows the source localised brain activity illustrated for each experimental condition (M, 375 

NT1, NT3) in three (ventromedial prefrontal cortex [VMPFC], left and right hippocampal and inferior temporal 376 

regions). Graphs indicates the key event of interest in the brain responses, while the grey areas show the 377 

statistically significant differences of the brain activity between the participants grouped in the following four 378 

groups: young adults - high WM (i), young adults - low WM, older adults - high WM, older adults - low WM. 379 

Solid line indicates the average over participants, independently for the four groups, while the shaded area the 380 

standard errors. The sketch of the musical tones represents the onset of the sounds forming the musical 381 

sequences. The brain templates illustrate the spatial extent of the ROIs. 382 

 383 

 384 

 385 

 Finally, we computed an additional sub-analysis to assess whether we could distinguish a 386 

sub-sample of the older participants based on their brain activity. To this aim, we used one-387 

way ANOVAs contrasting three age-groups: young (younger than 25), older adults 60-68 388 

(age between 60 and 68, n = 23) and older adults > 68 (older than 68, n = 16). Then, we 389 

corrected for multiple comparisons with cluster-based 3D MCS. The results highlighted that 390 

the oldest group within the older adults was characterised by overall reduced brain activity, 391 

especially in response to the variation of the original sequences. This was particularly evident 392 

for HITR (NT3: p < .001, k = 22; max F-val = 7.92, time: 1312 - 1396 ms), VMPFC (NT3: p 393 

< .001, k = 15; max F-val = 7.73, time: 1320 - 1376 ms), HITL (NT3: p < .001, k = 13; max 394 

F-val = 10.01, time: 1316 - 1364 ms). Figure 6 shows the time series of these ROIs in 395 

relation to the three age groups, while detailed statistical results are reported in Table S7. 396 

 397 

 398 

 399 

 400 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 13, 2023. ; https://doi.org/10.1101/2023.07.13.548815doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.13.548815
http://creativecommons.org/licenses/by-nd/4.0/


 

 

20

 401 

 402 

Figure 6. Ventromedial prefrontal cortex and medial temporal lobe responses during recognition of musical 403 

sequences for three age groups (young adults, adults between 60 and 68 years of age, adults older than 68). 404 

The black graphs in the NT1 and NT3 plots (all rows) highlight that the strength of the brain prediction error in 405 

response to the variation of the original musical sequences was modulated by age. In fact, the strongest signal 406 

was recorded for the young adults. A reduced prediction error was observed for the adults aged between 60 and 407 

68, while the weakest signal occurred for the adults older than 68 years. As observed for the WM in Figure 5, 408 

this effect was particularly evident for the VMPFC and right hippocampal and inferior temporal regions. 409 

Note that the figure shows the source localised brain activity illustrated for each experimental condition (M, 410 

NT1, NT3) in three (ventromedial prefrontal cortex [VMPFC], left and right hippocampal and inferior temporal 411 

regions). Graphs indicates the key event of interest in the brain responses, while the grey areas show the 412 

statistically significant differences of the brain activity between the participants grouped in the following three 413 
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groups: young adults (i), adults between 60 and 68 years of age (ii), adults older than 68 years (iii). Solid line 414 

indicates the average over participants, independently for the four groups, while the shaded area the standard 415 

errors. The sketch of the musical tones represents the onset of the sounds forming the musical sequences. The 416 

brain templates illustrate the spatial extent of the ROIs. 417 

 418 

 419 

 420 

 421 

 422 

  423 
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Discussion 424 

In this study, we have combined fast neuroimaging with the recognition of previously 425 

memorised and novel musical sequences to unpick the complexity of the healthy aging brain. 426 

Our findings challenge simplistic notions that non-pathological aging merely diminishes 427 

neural predictive capabilities by showing age-related neural transformations in predictive and 428 

memory processes. 429 

 During the recognition of the previously memorised melodies, the left auditory cortex 430 

exhibited stronger activity in response to each sound of the sequence for the older compared 431 

to young adults. Conversely, other brain regions of key importance for memory and 432 

predictive processes such as the hippocampus, inferior temporal cortex and inferior frontal 433 

gyrus showed an overall decreased activity for the older adults. In response to the varied 434 

musical sequences, the left auditory cortex did not exhibit any difference between older and 435 

young adults after the musical sequence was altered. Conversely, a much-reduced activity 436 

was observed for the older adults after the sequence was changed. This effect was particularly 437 

strong for the condition NT3 where the sequence was altered after the fourth tone, and it 438 

primarily regarded hippocampus, inferior temporal cortex and ventromedial prefrontal cortex. 439 

 Working memory (WM) abilities also affected the brain responses, especially for the 440 

condition NT3, both in older and young individuals. The brain activity after varying the 441 

original musical sequence was reduced for participants with lower WM skills. 442 

 In relation to the behavioural responses, no differences between older and young adults 443 

were found when inspecting the accuracy and reaction times associated with the recognition 444 

of the previously memorised sequences. Conversely, older adults reported lower accuracy 445 

when recognising the varied musical sequences (both NT1 and NT3). No differences were 446 

observed for the reaction times. 447 

 As expected, the results of this study are consistent with our previous research on the brain 448 

dynamics underlying the encoding and recognition of musical sequences in healthy young 449 

individuals, which showed that the recognition of the previously memorised and varied 450 

musical sequence is built over time through a rapid hierarchical pathway of components 451 

originated in the auditory cortex and progressing to the hippocampus, ventromedial prefrontal 452 

cortex and inferior temporal cortex 25-30. Beyond this, the most notable finding of our study is 453 

the altered brain functioning observed in older compared to young adults. On the one hand, 454 

this occurred through an overall reduction of the brain activity generated in memory brain 455 

regions, supporting previous findings which reported diminished brain responses in aging 456 
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populations in a variety of different contexts, spanning from resting state to automatic neural 457 

responses and conscious tasks 5, 6, 8, 13, 14, 17, 20, 31. On the other hand, only for the recognition 458 

of the previously memorised sequences, older adults showed increased activity in the left 459 

auditory cortex. This altered brain functioning supports the hypothesis that neural predictive 460 

processes in non-pathological aging are not simply reduced, but qualitatively transformed 32. 461 

 Overall, our results can be very well interpreted within the large framework of the PCT, 462 

providing a relevant contribution to the age-related changes of its neural underpinnings. PCT 463 

posits that the brain is constantly updating internal models to predict information and stimuli 464 

from the external world 22. Recently, it has been successfully linked to complex cognitive 465 

processes, finding a notable example in the neuroscience of music. Vuust and colleagues 23, 24 466 

suggested that, while processing music, the brain repeatedly generates hypotheses and 467 

predictions about the upcoming unfolding of musical sequences. When the prediction 468 

matches the incoming sounds, the brain recognises the music. Conversely, when the 469 

expectation is violated by different sounds, predictions errors arise. Our findings point to 470 

impaired conscious predictive coding processes in healthy older adults, as evidenced by 471 

reduced brain activity during the prediction and recognition of both original and varied 472 

musical sequences. As such, they provide novel insights into the brain dynamics of PCT 473 

across the lifespan of healthy adults. These results are also coherent with previous studies 474 

which showed an age-related reduction of automatic predictive processes such as MMN 13-15. 475 

Notably, our study largely expands on their significance by showing age-related changes of 476 

conscious predictive processes and novelty detection and not only automatic responses to 477 

subtle environmental irregularities as typically done in MMN studies. 478 

 Along this line, we revealed decreased activity in older adults during the recognition of the 479 

previously memorised musical sequences in brain regions particularly relevant for memory 480 

and predictive processes, such as the hippocampus (especially in the right hemisphere) 33, 34. 481 

Numerous studies have shown the detrimental effects of aging on the hippocampus and 482 

memory performance. For instance, it has been shown that aging is associated with reduced 483 

hippocampal size 35, 36 and that it affects the long-term potentiation (LTP) and long-term 484 

depression (LTD) occurring in the hippocampal neurons 37. The altered size and functionality 485 

of LTP and LTD in the hippocampus occurring with aging might be reflected in the reduction 486 

of hippocampal activity that we observed in older adults in our study during the recognition 487 

of the previously learned musical sequences. The stronger involvement of the hippocampus 488 
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in the right hemisphere is coherent with the plethora of findings which reported the right-489 

hemispheric dominance in music processing 38. 490 

 Another essential brain region for understanding, predicting and producing language and 491 

music is the inferior frontal gyrus 39, 40, which also showed a sharp decreased activity in older 492 

adults in our study. This is a rather interesting result since there is scarce evidence showing 493 

impaired functionality in the inferior frontal gyrus in aging populations, suggesting that this 494 

effect may be specifically linked to the age-related changes underlying the prediction and 495 

recognition of musical sequences. Moreover, the inferior frontal gyrus does not normally play 496 

a pivotal role in the recognition of memorised musical sequences. However, our results 497 

suggest that it may provide an additional, relevant contribution to this memory process, 498 

which is instead largely attenuated in aging populations, as clearly shown by the contrast 499 

between the brain activity of young and older adults. This evidence might also point to a 500 

general reduced functionality of the inferior frontal gyrus in older adults, potentially 501 

contributing to explain the challenges older adults often face in linguistic, predictive and 502 

memory tasks 41-43. 503 

 On a related note, our findings revealed an intriguing pattern of increased activity in the 504 

left auditory cortex of older adults during the recognition of musical sequences. This 505 

increased activity was observed for the N100 component to the first sound, as well as for the 506 

positive component peaking around 350-400 ms after each sound of the sequence. Coherently 507 

with PCT, it is plausible that the increased activity in the left auditory cortex is a result of 508 

top-down influences from the hippocampus and ventromedial prefrontal and inferior temporal 509 

cortices , which are supposed to actively monitor the unfolding musical sequence 24. In this 510 

case, when they successfully predict the sequence, they require less effort from the left 511 

auditory cortex. In a young and more effective brain, the more refined prediction and higher 512 

control exerted by those brain regions would result in a reduced activity in the auditory 513 

cortex, exactly as we observed in our study. 514 

 Interestingly, no significant differences were found between older and young adults in 515 

terms of accuracy and reaction times when recognising previously memorised sequences. 516 

This finding suggests that brain activity may undergo alterations before behavioural 517 

manifestations become apparent. This observation raises exciting possibilities for using brain 518 

activity as a potential biomarker for the early detection of cognitive decline, which should be 519 

further explored by future studies. 520 
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 We also examined the impact of aging on the recognition of varied musical sequences and 521 

the prediction error arising when the original sequences were altered. We identified the key 522 

involvement of the left and, especially, right hippocampus and bilateral ventromedial 523 

prefrontal cortex. The hippocampus is a central brain region for prediction error 34, 44 and its 524 

reduced activity in older adults suggests that aging is associated with decreased ability to 525 

consciously process errors and deviations from previously learned sequences.  526 

 Similarly, the ventromedial prefrontal cortex, a brain region implicated in reasoning and 527 

evaluation processes 45, exhibited reduced activity in older adults. In accordance with our 528 

findings, studies have shown that age-related changes in the ventromedial prefrontal cortex 529 

are associated with decline in cognitive control and decision-making abilities 46, 47. For 530 

instance, O’Callaghan and colleagues 46 found that individuals with ventromedial prefrontal 531 

cortex damage and healthy older adults reported reduced awareness of the presented stimuli 532 

during learning tasks. This relates to our results, suggesting that the reduced activity in the 533 

ventromedial prefrontal cortex observed in older adults might represent the neural signature 534 

of the decreased conscious prediction error and awareness of the musical novelty in aging. 535 

 To be noted, splitting the older adult participants into two age groups further strengthens 536 

the reliability of our previously described results, as it reveals a more pronounced reduction 537 

in brain activity in participants older than 68 compared to those aged 60-68. This highlights 538 

the progressive nature of age-related changes in brain functioning. 539 

 Lastly, we showed a relationship between the participants’ WM abilities and the brain 540 

activity. Participants with higher WM exhibited stronger brain activity, particularly when 541 

recognising the varied musical sequences. This finding underscores the potential of using 542 

WM as a predictor of preserved brain activity in older adults. In fact, older adults with high 543 

WM capacity showed brain activity levels similar to those of young adults with lower WM 544 

capacity. This finding is strongly in line with previous research on cognitive reserve, 545 

suggesting that higher cognitive abilities in older populations represent a protective factor 546 

against mild cognitive impairment and dementia 48-50. 547 

 In summary, the present study provides valuable novel insights into the impact of aging on 548 

the brain function and shows how age is not always related to decline but rather to a 549 

comprehensive transformation of brain regions, including the hippocampus, inferior frontal 550 

gyrus, and ventromedial prefrontal and auditory cortices. The results provide an important 551 

contribution to understanding age-related neural changes and reveal the potential of our 552 
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methods to identify possible biomarkers for healthy aging and early detection of 553 

transformative changes in brain function.  554 

  555 
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Materials and methods 556 

 557 

Participants 558 

After removing one participant due to technical issues with the MEG signal, the sample 559 

consisted of 76 participants (34 males, 42 females), divided into two age groups: young and 560 

older adults. The older adult group consisted of 39 participants (24 females, 15 males) aged 561 

60 to 81 years old (mean age: 67.72 ± 5.35 years). The young group included 37 participants 562 

(18 females, 19 males) aged 18 to 25 years old (mean age: 21.89 ± 2.05 years). The 563 

nationality of all participants was Danish. The inclusion criteria for the participants were the 564 

following: (i) normal health (no reported neurological nor psychiatric illness), (ii) age 565 

between 18 and 25 years old (young adults’ group) and older than 60 years (older adults’ 566 

group), (iii) normal hearing according to the age group of each participant, (iv) normal sight 567 

or corrected to normal sight (e.g., contact lenses), and (v) understanding and acceptance of 568 

participant information. The exclusion criteria that we applied were: (i) use of prescribed 569 

medication that could affect the central nervous system, (ii) neurological or psychiatric 570 

illness, (iii) lack of cooperation or verbal agreement for participating in the study, (iv) 571 

magnetic resonance imaging (MRI) contraindications, (v) age between 26 and 59 years old, 572 

and impaired hearing (vi). 573 

 The project was approved by the Institutional Review Board of Aarhus University (case 574 

number: DNC-IRB-2021-012). The experimental procedures complied with the Declaration 575 

of Helsinki – Ethical Principles for Medical Research. Participants’ informed consent was 576 

obtained before the beginning of the experiment. 577 

 578 

Experimental stimuli and design 579 

In this study, we presented participants with an auditory recognition task based on the 580 

old/new paradigm that we developed in our previous works 26-30. At the same time, we 581 

recorded their brain activity using magnetoencephalography (MEG). The participants were 582 

required to listen to a brief musical piece (roughly 25 seconds) twice and were instructed to 583 

memorise it as best as they could. The musical piece comprised the initial four measures of 584 

Johann Sebastian Bach’s Prelude No. 2 in C Minor, BWV 847. The wave audio file that we 585 

used in the experiment was generated using Finale (MakeMusic, Boulder, CO). The volume 586 

of the musical stimuli was set to 60 dB for 67 participants and to 70 dB on average for nine of 587 

our participants older than 70 years who presented a very mild hearing impairment, as 588 
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typically occurring with aging. To limit the adjustment of the volume across participants to 589 

only a few of them, we used sounds that almost always fell in the range 125 - 650 Hz, which 590 

is only marginally affected by the typical hearing loss occurring with aging 51. Each tone 591 

within the piece had the same duration of around 350 ms. In the second phase of the task, 592 

participants were presented with 81 musical sequences consisting of five tones and lasting 593 

1750 ms. They were then asked to identify whether each sequence was part of the original 594 

musical piece (old or memorised sequence [M]) or if it was a different musical sequence 595 

(new or novel sequence [N]) (see Figure 1). For the purpose of this study, we presented 596 

participants with 27 sequences from the original musical piece and created 54 variations of 597 

the original melodies. The musical sequences used in the study are depicted in Figure S1. 598 

The two types of stimuli used in the study were created as follows. The M sequences were 599 

comprised of the first five tones from the first three measures of the musical piece. These 600 

sequences were presented a total of 27 times, nine times for each sequence. The N sequences 601 

were generated by systematically altering the three M sequences (see Figure 1). This 602 

involved changing every musical tone of the sequence while keeping the first tone (NT1) or 603 

the first three tones (NT3) the same as the M sequences. Nine variations were created for 604 

each of the original M sequences and each of the two categories of N. As a result, there were 605 

27 N sequences for each category and 54 N sequences in total. The variations were created 606 

following specific rules: 607 

• Inverted melodic contour (used twice): this involved creating a variation with a 608 

melodic contour that was inverted relative to the original M sequence. (i.e., if the 609 

melodic contour of the M sequence was down-down-up-down, the N sequence would 610 

be up-up-down-up). 611 

• Same tone scrambled (used three times): this involved scrambling the remaining tones 612 

of the M sequence (e.g., M sequence C-E-D-E-C, was changed into NT1 sequence C-613 

C-E-E-D). 614 

• Same tone (used three times): this involved using the same tone repeatedly, sometimes 615 

varying only the octave (e.g., M sequence C-E-D-E-C, became NT1 sequence C-E8- 616 

E8- E8
- E8). 617 

• Scrambling intervals (used once): this involved scrambling the intervals between the 618 

tones (e.g., M sequence 6thm - 2ndm – 2ndm – 3rdm, was changed to NT1 sequence 619 

2ndm, 6thm, 3rdm, 2ndm). 620 
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We adopted this procedure to study the difference between young and older adults with 621 

regards to their brain dynamics underlying (i) the recognition of previously memorised 622 

auditory sequences and (ii) their conscious detection of the varied sequences. 623 

 624 

Neural data acquisition 625 

During this study, MEG recordings were conducted at Aarhus University Hospital (AUH), 626 

Aarhus, Denmark, using an Elekta Neuromag TRIUX MEG scanner with 306 channels. The 627 

data was recorded with an analogue filtering of 0.1 – 330 Hz at a sampling rate of 1000 Hz. 628 

To ensure accurate co-registration with the MRI anatomical scans, the head shape of 629 

participants and the position of four Head Position Indicator (HPI) coils were registered using 630 

a 3D digitizer (Polhemus Fastrak, Colchester, VT, USA). During the MEG recordings, two 631 

sets of bipolar electrodes were also used to record cardiac rhythm and eye movements, 632 

allowing for removal of electrocardiography (ECG) and electro-oculography (EOG) artifacts 633 

in a later stage of the analysis. 634 

 The MRI scans were recorded on a CE-approved 3T Siemens MRI-scanner at AUH using 635 

the following structural T1 sequence parameters: echo time (TE) = 2.61 ms, repetition time 636 

(TR) = 2300 ms, reconstructed matrix size = 256 x 256, echo spacing = 7.6 ms, and 637 

bandwidth = 290 Hz/Px. 638 

 The MEG and MRI recordings were conducted on separate days. 639 

 640 

Working memory, musical expertise and background data 641 

We evaluated domain-general working memory (WM) abilities using the Digit Span and 642 

Arithmetic subtests from the Wechsler Adult Intelligence Scale IV’s Working Memory index. 643 

The Digit Span subtest required participants to listen and repeat sequences of numbers in the 644 

same, inverse, or ascending order. The Arithmetic subtest involved solving mathematical 645 

operations provided orally by the experimenters without external aids. We combined the raw 646 

scores from both subtests to calculate individual WM abilities, with scores ranging from five 647 

to 70. Additionally, we assessed formal musical training using the Goldsmiths Musical 648 

Sophistication Index (Gold-MSI) questionnaire, which includes 39 questions on musical 649 

skills, experience, and habits. We used the Musical Training facet, which estimates an 650 

individual’s history of formal musical training, and scores range from seven to 49. 651 

 In addition, we collected general background data such as the years of education. These 652 

data were then used as covariates in later stages of the analysis to assess whether they had an 653 
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impact on the relationship between age and neural data during recognition of auditory 654 

sequences. 655 

 656 

Behavioural data during MEG recording 657 

During the auditory recognition task, we recorded participants’ responses and reaction times. 658 

We then used this data to estimate differences in response accuracy and average reaction time 659 

between young and older participants, and to calculate the impact of sex, years of education, 660 

WM abilities, and years of musical training on the behavioural data. 661 

 We computed two independent multivariate analysis of variance (MANCOVA, Wilk’s 662 

Lambda [Λ], α = .05) 52 using group as the independent variable (young vs older) and years 663 

of education, WM scores, years of musical training, and sex as covariates. In one 664 

MANCOVA, number of correct responses (divided into M, NT1 and NT3) were used as the 665 

three dependent variables. In the other MANCOVA, average reaction time during correct 666 

responses (divided into M, NT1, and NT3) were used as the three dependent variables. The 667 

effect size was calculated using partial eta squared (i.e., partial η2). 668 

 To determine the effects of the independent variable and covariate, univariate analyses of 669 

covariance (ANCOVA) were computed individually for each of the dependent variables and 670 

statistically significant covariates. 671 

 672 

MEG data pre-processing 673 

The MEG data obtained from 204 planar gradiometers and 102 magnetometers was initially 674 

subjected to pre-processing with MaxFilter 53, which helped to reduce external interferences. 675 

We applied signal space separation and the following MaxFilter parameters: spatiotemporal 676 

signal space separation [SSS], down-sample from 1000Hz to 250Hz, correlation limit 677 

between inner and outer subspaces used to reject overlapping intersecting inner/outer signals 678 

during spatiotemporal SSS: 0.98, movement compensation using cHPI coils (default step 679 

size: 10 ms). 680 

 After conversion to Statistical Parametric Mapping (SPM) format, the data was pre-681 

processed and analysed in MATLAB using both in-house-built codes (LBPD, 682 

https://github.com/leonardob92/LBPD-1.0.git) and the freely available Oxford Centre for 683 

Human Brain Activity (OHBA) Software Library (OSL) 54 (https://ohba-684 

analysis.github.io/osl-docs/), which utilises Fieldtrip 55, FSL 56, and SPM 57 toolboxes. We 685 

visually inspected the filtered MEG data using OSLview to remove large artifacts, which 686 
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accounted for less than 0.1% of the total data. We employed independent component analysis 687 

(ICA) to separate and remove eyeblink and heartbeat interference from the brain data 58. This 688 

involved decomposing the original signal into independent components, discarding the 689 

components that detected eyeblink and heartbeat activities, and reconstructing the signal 690 

using the remaining components. We then epoched the signal into 81 trials and baseline-691 

corrected it by subtracting the mean signal recorded in the baseline from the post-stimulus 692 

brain signal. The trials lasted 3500 ms (3400 ms after the onset of the first tone of the musical 693 

sequence plus 100 ms of baseline time) and were categorised into three groups (M, NT1, 694 

NT3) with 27 trials each. 695 

 696 

MEG sensor level and aging 697 

To assess the difference between the brain activity of young and older adults while they 698 

recognised the musical sequences, we calculated several independent samples t-tests with 699 

unequal variances and then corrected for multiple comparisons using cluster-based Monte-700 

Carlo simulations (MCS). As it is common in MEG and EEG task studies 59, 60, we computed 701 

the average over trials in each condition before performing t-tests, which resulted in three 702 

mean trials (M, NT1, NT3). For each condition separately, we computed a t-test for each 703 

MEG magnetometer channel and each time-point between 0 and 2000 ms, contrasting the 704 

brain activity of young and older adults. We then reshaped the matrix to obtain a two-705 

dimensional (2D) approximation of the MEG channels layout for each time-point, binarising 706 

it based on the p-values obtained from the previous t-tests (threshold = .05) and the sign of t-707 

values. The resulting 3D matrix (MX, 2D x time) consisted of 0s when the t-test was not 708 

significant and 1s when it was. To correct for multiple comparisons, we identified clusters of 709 

1s and assessed their significance using MCS. Specifically, we performed 1000 permutations 710 

of the elements of the original binary matrix MX, identified the maximum cluster size of 1s, 711 

and built the distribution of the 1000 maximum cluster sizes. We considered clusters that had 712 

a size bigger than the 99.9% maximum cluster sizes of the permuted data to be significant. 713 

We applied the MCS procedure to the absolute values of magnetometer MEG channels for 714 

both young versus older adults and vice versa. 715 

 716 

Source reconstruction 717 

MEG provides excellent temporal resolution, but to fully understand the brain activity 718 

underlying complex cognitive tasks, the spatial component of the brain activity must also be 719 
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identified. To estimate the sources of the brain that generated the signal recorded by the MEG 720 

sensors, we computed a source reconstruction protocol using a combination of in-house-built 721 

codes and codes available in OSL, SPM, and FieldTrip. 722 

 The source reconstruction analysis consists of designing a forward model and computing 723 

the inverse solution. The forward model considers each brain source as an active dipole and 724 

describes how the unitary strength of each dipole is reflected over all MEG sensors. We used 725 

magnetometer channels and an 8-mm grid to obtain 3559 dipole locations within the whole 726 

brain (voxels). After co-registering the individual structural T1 data with the fiducial points 727 

(i.e., information about head landmarks such as the nasion and the left and right pre-auricular 728 

points), we computed the forward model using the widely used “Single Shell” method, which 729 

resulted in a leadfield model stored in matrix L (sources x MEG channels) 61. In cases where 730 

structural T1 was unavailable, we used a template (MNI152-T1 with 8-mm spatial resolution) 731 

for the leadfield computation. 732 

 Afterwards, we calculated the inverse solution, using the established beamforming 733 

method, which is a popular and effective algorithm available in the field of neuroscience. The 734 

process involves utilising a distinct series of weights that are applied successively to the 735 

source positions, enabling the separation of the impact of each source on the activity detected 736 

by the MEG channels. This is carried out for every instance of the brain data captured. The 737 

beamforming inverse solution is comprised of several key stages, which can be outlined as 738 

follows. 739 

 The data measured by the MEG sensors (B) at time t, can be described by the following 740 

equation (1): 741 

 742 

 ���� � � � �
���,��

�   (1) 

 743 

where L is the leadfield model, Q is the dipole matrix which carries the activity of each active 744 

dipole (q) over time, and � is noise (see Huang and colleagues for details 62). In order to 745 

resolve the inverse problem, Q has to be computed. In the beamforming algorithm, to 746 

calculated Q, a series of weights have to be computed and applied to the MEG sensors at each 747 

timepoint. This is done for each single dipole q and shown in equation (2): 748 

 749 

 ���� � 	� � ���� (2) 

 750 
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To obtain q, the weights W have to be computed (here, the subscript T indicates the transpose 751 

matrix). The beamforming method relies on the matrix multiplication between L and the 752 

covariance matrix between MEG sensors (C). This matrix is calculated on the concatenated 753 

experimental trials. More specifically, for each brain source n, the weights Wn are calculated 754 

as shown in equation (3): 755 

 756 

 	��� �  
����
�

�  ��� � �����
�� �  ����

�
�  ��� (3) 

 757 

The calculation of the leadfield model was performed for the three main orientations of each 758 

brain source (dipole), as done in the field (see, for example, Nolte 61). Then, prior to 759 

computing the weights, the orientations were reduced (from three to one) by using the 760 

singular value decomposition algorithm on the matrix multiplication reported in equation (4). 761 

This procedure is widely adopted and used to simplify the beamforming output 63, 64. 762 

 763 

 � �  
��
�� �  ��� � ���� (4) 

 764 

In this context, l denotes the leadfield model with the three orientations, while L is the 765 

resolved one-orientation model that was used in the estimation of the brain sources in 766 

equation (3). The weights were then applied to each brain source and timepoint, with the 767 

covariance matrix � being computed based on the continuous signal that resulted from 768 

concatenating the trials across all experimental conditions. To counterbalance the source 769 

reconstruction bias towards the head’s centre, the weights were normalised according to 770 

Luckhoo and colleagues 64. Since we worked on evoked responses, the weights were applied 771 

to the neural activity averaged over trials.  772 

 This procedure allowed us to obtain a time series for each of the 3559 brain sources and 773 

each experimental condition. To adjust the sign ambiguity of the evoked responses time 774 

series for each brain source, the sign was matched with the N100 response to the first tone of 775 

the auditory sequences 26-30. 776 

 777 

MEG source level and aging 778 

For each of the significant clusters emerged from the previous analysis at the MEG sensor 779 

level, we contrasted the brain activity of young versus older adults. We averaged the time 780 

series of all brain sources over the time-window of each significant cluster and computed 781 
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independent-sample t-tests contrasting the brain activity of young versus older adults. This 782 

procedure was computed independently for the three experimental conditions (M, NT1, 783 

NT3). Finally, we corrected for multiple comparisons using a 3D cluster-based MCS (α = 784 

.005 [older vs young adults], α = .05 [young vs older adults], p-value = .001). Here, we used 785 

a stricter α level for older vs young adults since the difference in their brain activity was 786 

particularly strong and we wanted to highlight the main focus of such differences. For this 787 

procedure, we first determined the sizes of significant clusters consisting of neighbouring 788 

brain voxels. Subsequently, we generated 1000 permutations of the initial data and estimated 789 

the sizes of significant clusters formed by neighbouring brain voxels in each permutation. 790 

This process yielded a reference distribution of the largest cluster sizes observed in the 791 

permutated data. Finally, we identified original clusters as significant if their size was larger 792 

than 99.99% of the clusters in the reference distribution. Further details on the MCS 793 

algorithm can be found in previous works by Bonetti and colleagues 26-30. 794 

 795 

Functional regions of interests (ROIs) 796 

We computed a complementary analysis by investigating the difference between the brain 797 

activity of young versus older adults in a selected array of functional ROIs, previously 798 

described by Bonetti, Fernández Rubio, Carlomagno, Pantazis, Vuust and Kringelbach 28. 799 

These were derived from the whole-brain analysis of the active brain regions of young adults 800 

during recognition of the same musical sequences used in the current study. These areas 801 

roughly corresponded to the bilateral medial cingulate gyrus (MC), bilateral ventromedial 802 

prefrontal cortex (VMPFC), left (HITL) and right hippocampal area and inferior temporal 803 

cortex (HITR), and left (ACL) and right auditory cortex (ACR). In addition, we incorporated 804 

the left (IFGL) and right inferior frontal gyrus (IFGR) because these regions displayed 805 

marked differences between young and older adults. 806 

 This additional analysis allowed us to reconstruct with greater precision the time series of 807 

each brain region that played a central role in auditory sequence recognition. Thus, while it 808 

did not provide additional information to the previous analysis, it refined its significance. In 809 

Table S4, we reported the Montreal Neurological Institute (MNI) coordinates of each voxel 810 

forming the eight ROIs. The ROIs are visually displayed in Figure S2. 811 

 812 
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Aging and ROIs time series  813 

We contrasted the brain activity of young versus older adults by computing an independent-814 

sample t-test for each ROI, timepoint, and condition. We corrected for multiple comparisons 815 

using 1D cluster-based MCS (α = .05, MCS p-value = .001). First, we identified the clusters 816 

of the significant values which were continuous in time. Second, we performed 1000 817 

permutations, consisting of randomising the significant values obtained from the t-tests. For 818 

each permutation, we then extracted the maximum cluster size, and we built their reference 819 

distribution. To summarise, we considered significant the original clusters that were larger 820 

than the 99.99% of the clusters emerged in the permutations. Additional details on this 821 

procedure can be found in previous works by Bonetti and colleagues 26-30. 822 

 823 

WM, musical expertise, education level, aging and neural data 824 

We computed two additional analyses to assess whether potential confounding variables had 825 

an impact on the relationship between aging and the neural responses underlying the 826 

recognition of the musical sequences. 827 

 In the first analysis we computed three independent multivariate analyses of covariance 828 

(MANCOVAs), one for each experimental condition (Wilk’s Lambda [Λ], α = .05). In each 829 

MANCOVA the dependent variables were the neural data for the eight ROIs, the independent 830 

variable was age, and the covariates were years of formal musical expertise, sex, WM, and 831 

years of formal education that participants received. To be noted, the neural data was 832 

collapsed into one single value for each ROI and participant. This was computed by 833 

averaging the main response (neural peak ± 20 ms) to each tone in the M condition. With 834 

regards to the N conditions, we selected the main response (neural peak ± 20 ms) to the tone 835 

that introduced the variation in the sequence. This analysis was conducted in R 65. 836 

 The second analysis consisted of computing analyses of variance (ANOVAs) for each 837 

time-point and each ROI and then using the same cluster-based 1D MCS to correct for 838 

multiple comparisons that we described in the previous paragraphs. 839 

 In this case, we computed two independent sets of ANOVAs. In the first one, we used 840 

one-way ANOVAs contrasting three age-groups: young (younger than 25), older adults 60-68 841 

(age between 60 and 68), and older adults > 68 (older than 68). In the second set, we used 842 

two-way ANOVAs with the following levels: WM (high and low performers) and age (young 843 

and older adults). This allowed us to further test the changes in the brain activity over 844 

different age-groups as well as to better highlight the impact of WM on the ROIs time series. 845 
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 Figures 5 and 6 report the ROIs which showed the strongest results, while Tables S6 and 846 

S7 disclosed the complete details of the statistical results.  847 

 To be noted, four participants (three young and one older adult) did not complete the WM 848 

assessment. For this reason, the analyses described in this paragraph were computed with a 849 

sample of 72 participants. 850 

 851 

  852 
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Data availability 853 

The codes are available at the following links:  854 

https://github.com/leonardob92/MEG_Aging_Bach.git 855 

https://github.com/leonardob92/LBPD-1.0.git 856 

The multimodal neuroimaging data related to the experiment is available upon reasonable 857 

request. 858 

 859 

  860 
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SUPPLEMENTARY MATERIAL 884 

 885 

Supplementary materials related to this study and organised as supplementary figures (i) and 886 

tables (ii). In the cases when the supplementary tables were too large to be reported in the 887 

current document, they have been exported to Excel files that can be found at the following 888 

link: 889 

https://drive.google.com/drive/folders/1mCDD1Eghm5W7aJ9jtjl-890 

9NczNB457ROQ?usp=sharing 891 

 892 
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SUPPLEMENTARY FIGURES 894 

 895 

 896 
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Figure S1. Temporal sequences used in the experiment. 903 

The figure shows all temporal sequences used in the experiment, providing detailed information on how they 904 

were created. The M sequences were three and comprised the first five tones of the first three measures of the 905 

musical piece. These three sequences were presented nine times each, for a total of 27 trials. The N sequences 906 

were created through systematic variations of the three M sequences. This procedure consisted of changing 907 

every musical tone of the sequence after the first (NT1) or third (NT3) tone. We created nine variations for each 908 

of the original M sequences and each of the four categories of N. This resulted in 27 N sequences for each 909 

category, and 54 N in total. To be noted, as shown in this figure, the variations were created according to the 910 

following rules: (i) Inverted melodic contours (used twice): the melodic contour of the variation was inverted 911 

with respect to the original M sequence (i.e., if the M sequence had the following melodic contour: down-down-912 

up-down, the N sequence would be: up-up-down-up); (ii) Same tone scrambled (used three times): the 913 

remaining tones of the M sequence were scrambled (e.g., M sequence: C-E-D-E-C, was converted into NT1 914 

sequence: C-C-E-E-D); (iii) Same tone (used three times): the same tone was repeatedly used, in some cases 915 

varying only the octave (e.g., M sequence: C-E-D-E-C, was transformed into NT1 sequence: C-E8- E8- E8
- E8); 916 

(iv) Scrambling intervals (used once): the intervals between the tones were scrambled (e.g., M sequence: 6thm - 917 

2ndm – 2ndm – 3rdm, was adapted to NT1 sequence: 2ndm, 6thm, 3rdm, 2ndm). 918 

  919 
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 920 

 921 

 922 

Figure S2. Brain parcellation. 923 

The eight ROIs used in the study: left (i) and right auditory cortex (ii); left (iii) and right hippocampal regions 924 

and inferior temporal cortex (iv); medial cingulate gyrus (v), ventromedial prefrontal cortex (vi); left (vii) and 925 

right inferior frontal gyrus (viii). 926 

 927 

  928 
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 929 

 930 

 931 

Figure S3. Impact of aging on the brain activity underlying the recognition of previously memorised musical 932 

sequences. 933 

Significant contrasts between the brain activity of young and older adults during the recognition of previously 934 

memorised musical sequences. For each significant cluster, the left plot shows the amplitude of the brain signal 935 

recorded for young (red) and older adults (blue). Shaded red and blue areas depict standard errors, while grey 936 

areas refer to the significant time-window for the cluster. The plot refers to the average over the absolute values 937 

of the magnetometer channels forming the significant clusters outputted by the MEG sensors MCS. The plot on 938 

the right shows the neural sources in the time-window of the significant MEG sensors cluster. The top plot 939 

shows the main effect over all participants (the colorbar indicates the reconstructed brain activity standardised 940 
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between 0 and 1), while the bottom plot shows the contrast between the brain activity of young versus older 941 

adults (the colorbar indicates the t-value of the contrast). The first five clusters refer to the contrasts where the 942 

brain activity was stronger for young versus older adults. The last cluster refers to the contrasts where the brain 943 

activity was stronger for older versus young adults. Table 2 reports the key statistics of these analyses, while 944 

Table S1 shows the complete results. 945 
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 949 

Figure S4. Impact of aging on the brain activity underlying the recognition of the varied (novel) musical 950 

sequences. 951 

Significant contrasts between the brain activity of young and older adults during the recognition of the varied 952 

musical sequences (NT1 and NT3). For each significant cluster, the left plot shows the amplitude of the brain 953 

signal recorded for young (red) and older adults (blue). Shaded red and blue areas depict standard errors, 954 

while grey areas refer to the significant time-window for the cluster. The plot refers to the average over the 955 

absolute values of the magnetometer channels forming the significant clusters outputted by the MEG sensors 956 

MCS. The plot on the right shows the neural sources in the time-window of the significant MEG sensors cluster. 957 

The top plot shows the main effect over all participants (the colorbar indicates the reconstructed brain activity 958 
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standardised between 0 and 1), while the bottom plot shows the contrast between the brain activity of young 959 

versus older adults (the colorbar indicates the t-value of the contrast). The first two clusters refer to NT1 (on the 960 

left the contrasts where the brain activity was stronger for young versus older adults and on the right vice 961 

versa). The last four clusters refer to NT3 (the first three clusters relate to tthe contrasts where the brain activity 962 

was stronger for older versus young adults, while the last one vice versa). Table 2 reports the key statistics of 963 

these analyses, while Table S1 shows the complete results. 964 

 965 
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SUPPLEMENTARY TABLES 967 

 968 

Table S1. Detailed information on significant clusters for MEG sensor data 969 

Significant clusters of MEG sensors emerged from MCS contrasting the brain activity of young versus older 970 

adults, independently for the three experimental conditions (M, NT1, NT3). The table illustrates the clusters 971 

with regards to significant channels, sizes, maximum t-values and time-windows. 972 

 973 

Table S2. Source reconstruction main effect. 974 

Main effect for the source reconstruction performed in the time-windows of the significant clusters at MEG 975 

sensor level. Results are reported independently for each cluster and contrast, and comprise the brain region, 976 

brain hemisphere, standardised neural index and MNI coordinates for each voxel. 977 

 978 

Table S3. Young versus older adults in MEG source space. 979 

Significant MEG source clusters of differential brain activity between young and older adults performed in the 980 

time-windows of the significant clusters at MEG sensor level. Results are reported independently for each 981 

cluster and contrast, and comprise the brain region, brain hemisphere, t-value and MNI coordinates for each 982 

voxel. 983 

 984 

Table S4. ROIs coordinates. 985 

MNI coordinates for each of the voxels forming the eight ROIs. 986 

 987 

Table S5. ROIs time series. 988 

Significant clusters of differential brain activity between young and older adults for the eight ROIs used in the 989 

study. Results are reported independently for the eight ROIs and for each experimental condition (M, NT1, 990 

NT3), and comprise cluster size, p-value, temporal extent of the clusters and peak t-value within the cluster. 991 

 992 

Table S6. ROIs time series and WM. 993 

Significant clusters of differential brain activity observed by contrasting the following four categories of 994 

participants: young adults with high WM (i), young adults with low WM (ii), older adults with high WM (iii) and 995 

older adults with low WM (iv). Results are reported independently for the eight ROIs and for each experimental 996 

condition (M, NT1, NT3), and comprise cluster size, p-value, temporal extent of the clusters and peak F-value 997 

within the cluster. 998 

 999 

Table S7. ROIs time series and three age groups. 1000 

Significant clusters of differential brain activity observed by contrasting the following three categories of 1001 

participants: young adults (i), older adults aged between 60 and 68 years old (ii) and older adults older than 68 1002 

years old (iii). Results are reported independently for the eight ROIs and for each experimental condition (M, 1003 
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NT1, NT3), and comprise cluster size, p-value, temporal extent of the clusters and peak F-value within the 1004 

cluster. 1005 
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