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Abstract

Omics technologies are powerful tools for detecting dysregulated and altered signaling
components in various contexts, encompassing disease states, patients, and drug-
perturbations. Network inference or reconstruction algorithms play an integra role in the
successful analysis and identification of causal relationships between omics hits. However,
accurate representation of signaling networks and identification of context-specific
interactions within sparse omics datasets in complex interactomes pose significant challenges
in integrative approaches. To address these challenges, we present pyPARAGON
(PAgeRANK-flux on Graphlet-guided network for multi-Omic data integratioN), a novel tool
that combines network propagation with graphlets. By leveraging network motifs instead of
pairwise connections among proteins, pyPARAGON offers improved accuracy and reduces
the inclusion of nonspecific interactions in signaling networks. Through comprehensive
evaluations on benchmark cancer signaling pathways, we demonstrate that pyPARAGON
outperforms state-of-the-art approaches in node propagation and edge inference.
Furthermore, pyPARAGON exhibits promising performance in discovering cancer driver
networks. Notably, we demonstrate its utility in network-based stratification of patient tumors
by integrating phosphoproteomic data from 105 breast cancer tumors with the interactome,
leading to the discovery of tumor-specific signaling pathways. Overall, the development and
evaluation of pyPARAGON significantly contributes to the field as an effective tool for the
analysis and integration of multi-omic data in the context of signaling networks.
pyPARAGON is available at https://github.com/metunetlab/pyPARAGON.
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I ntroduction

Omics technologies provide a multidimensional view of the cell’s functional mechanism,
context-specific alterations, such as in diseases or drug perturbations, and biological
processes 2. As the omics data accumulate, integrating them accurately and translating them
into interpretable knowledge remains challenging due to data sparsity, missing data points,

35

and computational complexity “°. Omic hits are sparsely connected in a reference

interactome and carry noise from high-throughput outcomes ®”.

Recent methods utilizing learning- and network-based algorithms are on the rise to overcome
these challenges and decode causal relations between omic entities ®™. Learning based
methods efficiently integrate multi-omic data to extract interpretable annotations such as
pathways, reactions, and processes >, Also, network-based algorithms, including shortest
paths *°, Steiner trees/forests **’, and random walk '**° have been frequently used to
construct specific networks by propagating omic hits ?**. Network-based methods can
uncover the most relevant interactions between a given set of proteinsg/genes by either
inferring from a reference protein-protein interaction (PPIl) network or reconstructing them
12223 These methods eventually obtain a network model which may represent the alterations
in disease models or drug treatments with the help of topological and statistical features ?*2°,
The benefit of using global and local network features (e.g. degree distribution, clustering

coefficients) for propagation or inference **%

is limited when this type of sparse data is
elaborated %>, Therefore, the frequency of motifs (repeating subgraphs) can be more
explanatory for deciphering complex cellular networks **°. Small connected, non-
isomorphic subgraphs, called graphlets, are over-represented in the reference interactome and
associated with specific functions . Graphlet statistics solve several complex problems in
this context, such as the comparison of biological networks, delineating the functional
organization of networks, discovering functionally related genes, regulatory interactions, and
parameter tuning for network-based approaches *2%33"4° Another challenge is the presence
of highly connected and multifunctional proteins, particularly hub proteins, which can bring
nonspecific interactions to the resulting network models because of the small-world property
of reference interactomes. Therefore, using network motifs, graphlets, or revealing modules

can improve the context-specific aspects of the models %%,
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In this study, we hypothesize that the utilization of network motifs, in lieu of pairwise
connections among proteins, may provide a more accurate representation of signaling
networks and mitigate the inclusion of nonspecific interactions. Therefore, we present
pyPARAGON (PAgeRANk-flux on Graphlet-guided network for multi-Omic data
integratioN) as a new tool that combines network propagation with graphlets to construct
context-specific networks. We demonstrated that graphlets reduce the dimensionality of
complex reference interactomes by filtering out non-specific and highly connected proteins
and their interactions. pyPARAGON performed better in node propagation and edge
inference than selected state-of-the-art approaches, including Omics Integrator 2 (O12) and
PathLinker (PL) on the benchmark set of cancer signaling pathways. pyPARAGON also
showed promising results in the discovery of cancer driver networks. Finally, we showed the
network-based stratification of patient tumors as a use case of pyPARAGON and found
tumor-specific signaling pathways when phosphoproteomic data from 105 breast cancer

tumors were integrated with the interactome.

Results

Overview of pyPARAGON as a hybrid network inference framewor k

Recent studies have shown that when integrating different types of biological data (such as
genomic, proteomic, and transcriptomic data) to reconstruct signaling networks, using hybrid
approaches can be more effective than relying on a single method alone *°. The accuracy of
reconstructed networks is also highly dependent on the quality of the reference interactome
424 However, there are tradeoffs involved in increasing the number of interactions in the
reference interactome. On the one hand, including interactions with low confidence scores
may lead to the identification of false positive proteins and interactions. On the other hand,
highly connected proteins (i.e., hubs) may dominate the final network and obscure context-
specific relationships between proteins or genes. Graphlets are small, connected subgraphs
with a specific pattern of edges and are similar to network motifs in that they represent
recurring patterns *°°. Here, in pyPARAGON, we present a new hybrid approach that
combines graphlets with network propagation via the personalized PageRank algorithm,
followed by interaction selection based on edge flux calculation, to address these challenges
in network modeling. pyPARAGON has three steps (Figure 1A): i. Graphlet-guided network
(GGN) construction; ii. Propagation and edge scoring via the Personalized PageRank (PPR)
algorithm and flux calculation; iii. Subnetwork construction with highly scored edges on
GGN. pyPARAGON takes a list of seed genes/proteins (initia nodes) as input, which are
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specific to the biological context of interest. Seeds can be obtained from but not limited to
omics experiments, drug perturbation analysis, or disease-associated proteins. Graphlets help
in reducing the load of possible false positives, while network propagation via PPR scores all
other proteins in the reference interactome by orienting them from the given seed list. This
hybrid approach, on one hand, trims the reference interactome to the most relevant
interactions by constructing a GGN, on the other hand, it quantifies the importance of other
proteins based on a given seed list.

In general, state-of-the-art methods use an immediate edge between two nodes in the
reference network and node-based features (e.g. degree, betweenness, closeness, and
eigenvector centralities). GGN construction step of pyPARAGON goes beyond this and
follows an unsupervised approach to identify a core region in the reference interactome by
combining significantly frequent graphlets composed of 2-, 3-, and 4-nodes (Figure 1B). In
omics-based network construction, direct connections between the genes/proteins of interest
are often sparse, and intermediate nodes are required to connect them and form a coherent
network structure. Thus, we constrained that graphlets having more than two nodes may have
an intermediate node. Intermediate nodes are the ones that have the highest connections to the

seed nodes in the corresponding graphlet.

In addition to GGN construction, the personalized PageRank algorithm propagates signals
from seed nodes across the reference interactome. Node weights after propagation together
with their degrees and edge confidence scores are combined in a single function to calculate
edge fluxes (see Methods) *. In this function, the degree component penalizes highly
connected proteins that are non-specifically present in the resulting subnetworks. Finally, we
map edges with high flux to GGN to obtain a context-specific network (Figure 1C).
pyPARAGON also uncovers communities functioning in specific biological processes or
pathways (Figure 1D). Based on network topology, the Louvain community detection
method divides inferred subnetworks into small modules “°. Then, using a hypergeometric
test, pyPARAGON discovers context-specific annotations “°. In this way, we reveal not only

hidden connections between initial nodes but also significant context-specific pathways.

Network Trimming via GraphletsImproves the Network I nference
Benchmark datasets for assessing the performance of network methods are usually curated
biological pathways. In general, the performance of the methods is evaluated based on
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topological features, coverage of predicted nodes, and edges. We used NetPath *’ as the
benchmark dataset to reconstruct curated cancer signaling pathways and assess the
performance of pyPARAGON. As a result of screening all graphlets across the reference
interactomes, we found G, Gs, G, G7, and Gg to be the most frequent graphlets
(Supplementary Figure 1A). The frequency of direct interactions between input nodes
(represented with Go) is not significant in the reference interactome; however, the presence of
these direct interactions in a graphlet with at least three nodes is significant. For example, the
direct interaction of seed nodes in G; is more significant in the presence of an intermediate
node interacting with Go. As to our observation, significant graphlets having at least one
intermediate node to connect seeds provide more precision compared to including direct
interactions between two seeds (i.e. Gg) in GGN.

Each available interactome has a specific evaluation and scoring scheme to integrate PPIs
from different resources *2 In this study, we used ConsensusPathDB, HIPPIE v2.2, and
HIPPIE v2.3 which have different topological features (Supplementary Table 1). The
constructed GGN by pyPARAGON is a subnetwork of the reference interactome. When we
compared the origina interactomes and trimmed interactome via GGN construction
separately, we observed that the similarity across them significantly increases when GGNs
are used (Supplementary Figure 1B). Another advantage of GGN construction is
attenuating the dominance of the highly connected nodes. Notably, highly connected proteins
have numerous functions in the cellular processes known from prior knowledge *. We
identified 1812 highly connected proteins in HIPPIE v2.3 (nodes having more than 200
interactions). With the help of graphlets, GGN construction step in pyPARAGON
successfully trimmed many interactions and decreased the number of highly connected nodes
significantly (Figure 2A). Protein interactomes are scale-free networks intrinsically
following a power law (Supplementary Figure 1C) *. The resulting GGNs in
pyPARAGON preserve this property of scale-free networks.

We conducted a comparative evaluation of pyPARAGON against PathLinker (PL) and
Omics Integrator 2 (OI2) to infer curated signaling pathways in NetPath. Since there is no
definitive benchmark or ground truth for assessing tool performance, we relied on propagated
nodes and predicted edges as evaluation criteria. We measured performance using the area
under the precision-recall (AUCPR) curve to demonstrate how well each pathway's nodes and
edges were recovered in the predicted networks. Our analysis showed that pyPARAGON
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outperformed PL and OI2 at both the node and edge levels for inferring signaling pathways in
all pathways of NetPath (Figure 2B).

Performance comparison of pyPARAGON with others was done in two directions: i. node
propagation, ii. edge inference. We used the F1 score to compare them because it
simultaneously represents precision and recall in one metric. The overall results show that
PyPARAGON and PL are better at propagation, while pyPARAGON and OI2 are better at
network inference (Figure 2C). Highly connected reference networks decreased the
propagation ability of OI2 while providing more robust interactions than PL. On the other
hand, PL propagated the seed node set more robustly due to the consideration of multiple
short paths but introduced many false positive interactions. Many seed nodes have a tendency
to be connected by hub nodes as shortcuts due to biological networks being scale-free. Thus,
the shortest path and random walk-based approaches may lead to including false positive
interactions 2. However, penalizing highly connected nodes, e.g. calculation of PageRank
flux normalized the score in pyPARAGON or degree-dependent negative prizing in OI2,

reduces false positive edges and improves F1-score in edge prediction

Next, we used pyPARAGON to predict cancer driver pathways and compared its
performance with other selected tools. Here, we labeled 300 genes with the most prevalent
mutations in eight cancer types as seed nodes. Known driver genes in IntOGen were used as
an independent test set for performance evaluation based on their presence in the
reconstructed networks. Because we use 5-fold cross-validation, for each fold we filtered out
the common proteins between the seed list and known drivers and then reconstructed cancer
type-specific networks with pyPARAGON, PL and OI2.

Our results show that the reconstructed network by pyPARAGON covers more known driver
genes compared to other methods and achieves higher recall and precision compared to other
methods in al cancer types (Figure 2D). Termination of propagation at the seed nodes by the
prize-collecting Steiner tree algorithm is the reason for recovering fewer driver genes in
networks inferred by OI2. In large reference networks, highly connected nodes generate
network shortcuts instead of using signal cascades or motifs. In PL-generated networks, when
recruiting the shortest paths, intermediate nodes corresponded more to highly connected
genes than specific driver genes. In pyPARAGON, we use the PageRank agorithm to

propagate seed nodes to the neighbors in the reference interactome, which helps in obtaining
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more candidate drivers. Additionally, GGN construction filters out possible “frequent flyers’
with the help of graphlets, which enable us to predict driver genes more precisely. Overall,
pyPARAGON performs significantly better in cancer driver network prediction and can be
further elaborated for tumor- or patient-specific network construction and network similarity-

based comparisons.

Patient-Specific Network | nference Unveil Hidden Commonalities across Tumors

We used pyPARAGON to construct the specific networks for 105 breast cancer patients
tumors where the seed nodes are significantly atered phosphoproteins. The reference
interactome is HIPPIE v2.3 For each tumor-specific network, we detected the modules -i.e.
communities- with Louvain's algorithm. We consider the modules as functional subunits of
networks that individually or in cooperation take part in context-specific molecular processes.
PpyPARAGON uses hypergeometric tests to identify these active modules that are
significantly over-represented in specific biological processes (Supplementary Figure 2).
Figure 3 shows an example patient-specific network composed of active modules that is
organized based on the cellular localization of nodes. Modules have cross-talk between each
other (inter-module edges). Many modules have proteins from different cellular
compartments and are enriched in multiple biological processes. We calculated patient
similarities using cosine similarity scores based on significant biological processes. Thisis a
data reduction approach where we first translated a given list of proteins to a context-specific
network, then divided it into modules and find the significant processes and finally these
biological processes are used for similarity calculation across the tumors. t-SNE algorithm is
used to represent tumor similarities based on two components. Eventually tumors are
clustered into four groups (Figure 4A). Supplementary Table 2 lists the 20 most frequently
identified biological functions for each cluster. We uncovered significant biological
processes that are present in at least two clusters (Figure 4B). In patient cluster-1, the most
frequently associated biological process is the ubiquitin-dependent protein catabolic process,
where severa transcription factors and enzymes are present. Ubiquitination (one of the post-
translational modifications) is a multistep enzymatic process involved in the regulation of
cancer metabolism, such as the cell cycle, DNA damage repair, chromatin remodeling, and
several signaling pathways . Ubiquitin-specific peptidases (USP) are regarded as potential
therapeutic targets. However, any USP inhibitor is not in the clinical trial stage despite having
promising potential in breast cancer ***. The patients in cluster-2 frequently share the mitotic

cytokinesis process. Cytokinesis defects increase chromosomal instability, vast genomic
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dteration, and point mutations, and so provoke intratumoral heterogeneity >*°. As shown in
the patient similarity network (Supplementary Figure 3), only five patients have high
similarity due to heterogeneity. Interestingly, we found that the nervous system development
(NSD) process was the most frequent biological process in cluster-3. Breast cancer is the
second most common cause of central nervous system (CNS) metastasis after lung cancer *°.
In our datasets, just two patients had metastases. We found both patients with the NSD
process in cluster-3. In cluster-4, we frequently found the regulation process of actin
cytoskeleton organization, which is critically involved in cancer initiation, metastasis, and
therapeutic responses. Rho GTPases, afamily of the Ras GTPase superfamily, play a key role
in this regulation *'. We also performed a Kaplan-Meier survival analysis across four patient
clusters and did not find any significant differences (Supplementary Figure 4). However, in
a pairwise comparison, we found that patients in cluster-4 have a significantly worse survival
probability than cluster-1 (Figure 4C). Followingly, we identified active modules with
KEGG pathway information to figure out over-represented pathways in these clusters
(Figure 4D) 8. Cell cycle, oocyte meiosis, and PI3K/Akt signaling pathways are the most
frequent and common pathways in clusters, except for cluster-2, while more frequent in
cluster-1 than cluster-4. On the other hand, focal adhesion and Ras signaling pathways are
significantly more frequent in cluster-4. The Ras signaling pathway is one of the key
pathways for drug resistance owing to the bypassing of drug action mechanisms in the
signaling network *“°. In Figure 4E, we demonstrated the module associated with the Ras-
signaling pathway, where pyPARAGON linked phosphoproteins with intermediate nodes
including KRAS, NRAS, HRAS, RHOA, and RHOD. Next, we incorporated drugs targeting
the active modules in the network. We collected drug-target interactions from the Therapeutic
Target Database into modules . We extracted 8297 drugs, 330 drug targets, and active
modules associated with 161 pathways for 105 breast cancer patients (Supplementary Table
3). An example of context-specific drugs for the active modules of patient A2-A0YD is
shown in Figure 5. Adagrasib (MRTX849) and Sotorasib specifically target the Ras
signaling-associated module. Both drugs are novel KRAS®™C inhibitors approved by the
FDA *%,

Discussion

In this work, we present pyPARAGON as a network-based multi-omic data integrator.
pyPARAGON simultaneously utilizes the most frequent graphlets covering omic hits and
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network propagation to construct context-specific networks. Network inference algorithms
encounter challenges arising from sparse data and the complexity associated with the growing
number of interactions within reference networks. In our study, we address these issues by
reducing reference networks to less complex networks composed of significantly frequent
graphlets. By employing pyPARAGON, we mitigated the impact of noise generated by
highly connected nodes in the reference networks. While reducing the noise, pyPARAGON
preserves scale-free properties inherent in biological networks in the constructed GGNs.
Additionally, we leveraged the PageRank flux calculation for edge prioritization and
integrated GGNs with PageRank flux to successfully construct context-specific networks. By
predicting driver genes, we extended the missing value problem in cancer-specific network
construction. pyPARAGON inferred networks that encompassed a more precise and higher
number of cancer drivers. Additionally, after inferring context-specific networks from
phosphoproteomics, pyPARAGON can integrate modules and different types of annotations,
such as hiological processes, pathways, and drug knowledge. These findings indicate that
pYPARAGON can predict cancer biomarkers, drivers, drugs, and therapeutic targets.

Different molecular aberrations, particularly in cancer, might result in identical disease
manifestations ®~°, We used omics data of breast cancer tumors in CPTAC ® as a case study
to infer context-specific networks where interacting protein modules govern various
biological processes and pathways. Patients were clustered based on the biological processes
that were overrepresented in functional communities. We show that functional communities
with the same driver genes mediate various biological processes according to the recruited
proteins. Therefore, pyPARAGON is a powerful tool to identify disease-related molecular

dlterations and driver networks.

Despite the success of integrative approaches, including pyPARAGON, there are still issues
in network-based omic data integration that must be addressed in the long-term. First,
reference interactomes are incomplete . Notably, network-based methods strongly depend
on features and coverage of reference networks %. As a result of incomplete knowledge in
large reference interactomes, protein complexes tend to form more topological modules than
metabolic pathways ®. Thus, generic biological processes, such as transcription, replication,
can be found more frequent in inferred networks. Thus, biological interpretations of context
specific networks are challenging through causal relations, modules, and biological

processes. Additionally, network-based methods do not assess the alternative copies of
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individual hits while various protein isoforms, post-translational modifications are within the
proteome. Despite delivering more specific functions, this information is generalized and
potentially lost in the network.

As a result of extended integrations in reference networks, missing interactions and highly

connected nodes have become a prominent challenge in recent network inference tools based

68,69 17,71,72

on belief propagation %, random walks ****™, the prize-collecting Steiner Forest :
heat diffusion >™, and shortest path algorithms . Here, graphlets were deployed in our
approaches for network trimming. In pathway reconstruction and the inference of context-
specific networks, we compared our method with two popular tools: PL and OI2. Hub
proteins may dominate the inferred network with unrelated interactions. The prize-collecting
Steiner Forest algorithm penalizes hubs based on the number of interactions. Similarly, the
flux calculation in pyPARAGON is a countermeasure against the curse of hubs beyond
scoring interactions. OI2 and pyPARAGON work better at predicting interactions. In terms of
the identification of associated genes, our tool outperformed the other tools. In the PL
algorithm, highly connected nodes further diminish the shortest paths between seed nodes.
Ol2 early terminates the propagation of the seed nodes in a large reference network.
However, the PageRank algorithm in pyPARAGON propagates the seed nodes before
network inference, independent of GGN. Thus, pyPARAGON optimizes the inference of

interactions and the propagation of seed nodes in the network.

Here, we only utilized graphlets composed of interactions among 3 and 4 nodes rather than
interactions between 2 nodes. However, various graphlet information in reference networks,
such as graphlet degree distribution, graphlet frequencies, and probabilistic graphlets, can be
embedded in network inference agorithms or biological interpretations ****>*4 However,
the use of graphlet features will come with a high computational cost. To enhance context
specificity, permutation-based methods can be additionally applied in downstream analysis
where hypergeometric tests on communities are only used *®. The placement of community
members in subcellular locations shows that inferred networks are composed of several
signaling cascades from cell receptors to regulatory proteins. These communities can be

detailed with mechanistic and causal relations for downstream analysis.

In conclusion, we released a novel tool, pyPARAGON, which infers context-specific
networks by using graphlets and network propagation. It mitigates noise generated by highly
connected nodes, preserves scale-free properties, and integrates network modules and
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biologica annotations. Through its inferred network, we can predict context-specific
biomarkers, drugs, and therapeutic targets. For downstream analysis, communities in the
network can potentially be used to identify mechanistic molecular relations in complex and
rare diseases. Here, pyPARAGAON integrated bulk omic data for static patient-specific
network models. The next version of pyPARAGON will be an extension to integrate omic

data at the single cell level to elucidate cell-type specific interactions.

Methods

| nteractome and Datasets

We separately used interactomes as references; HIPPIE v2.2 (15 861 nodes, 345 770 edges),
HIPPIE v2.3 (19 437 nodes, 774 449 edges), and ConsensusPathDB v35 (18 178 nodes, 516
211) ®”". As a benchmark, we utilized 18 cancer signaling pathways in NetPath that are
composed of more than 50 proteins */. We prepared the seed node set for 8 cancer types;
bladder urothelial carcinoma (BLCA), breast invasive carcinoma (BRCA), esophagesal
carcinoma (ESCA), head and neck sgquamous cell carcinoma (HNSC), lung sgquamous cell
carcinoma (LUSC), pancreatic adenocarcinoma (PAAD), prostate adenocarcinoma (PRAD),
and uterine corpus endometrial carcinoma (UCEC). We selected the 300 genes with the most
frequent mutations among 1,289,655 mutations belonging to 3759 patients. The mutation
dataset covers various cancer genomics projects, including TCGA and GENIE %, We
retrieved the 3333 driver mutations from IntOGen, harbored on 568 genes .

We retrieved phosphoproteomic data from 105 breast cancer patients and three healthy
samples . We selected phosphosites that were at least identified in 50% of samples and had
a standard deviation larger than 0.5 across all normalized samples. Phosphoproteins were
categorized based on two criteria. (1) a higher log-2-fold-change (LFC) than 2, and (2) highly
or less phosphorylated in the Gaussian Mixture Model (GMM) ®. In GMM, we split
phosphoproteomics into three divisions: highly, less, or normally phosphorylated proteins.
We ran the model 100 times at random for each phosphoproteomics and chose highly or less
phosphorylated proteins in 95% of the models. Using the unit-variance scaling method on
LFC, we gave differential phosphoproteins scores between 0.5 and 1 ®. We utilized
biological processes retrieved from gene ontology, pathways from KEGG, subcellular
localization from the human proteome atlas, and drug information from the therapeutic target
database 19,58,82,83.
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Network | nference Methods
PageRank-flux on Graphlet-Guided Networ k

We used 2-, 3-, and 4-node-graphlets (Go, G1, Gy, ..., Gg, shown in Figure 1B), which are
small non-isomorphic subgraphs. An isomorphism of graphlets between two subgraphs,
X(Vx, Ex) and Y(Vy, Ey), is defined with bijections between Vx and Vy *. We searched the
graphlets for an intermediate node in one of the highest-degree orbits and seed nodes in the
remaining orbits. The reference network is R(Vg, Eg, c(€)), where Vg, Eg, and c(e) are nodes,
undirected edges, and the confidence score of an edge, respectively. Smilarly, we calculated
the frequencies of graphlets in 100 permuted networks, recruiting the same seed node set. We
compared the targeting graphlet frequencies in the reference and permuted networks with a z-
test (p<0.05, z-score > 1.65). The union of graphlet motifs, a significantly high number of
graphlets, constructs the graphlet-guided network (GGN), G(Ve, Eg), where G €R.

The Personalized PageRank (PPR) algorithm calculates the probability of being at the nodey,
p(y), at a particular time step (t), in the reference interactome according to formula 1, where

the damping factor (1) defines the possibility of walking from neighbor nodes (x;) toy, and N

is the number of nodes #°.

XN
_1-2 pe(x;)

y=Xxi

We calculated the directional flux scores for both directions (f,_ and f;_,) by using formulas
2 and 3, where u, t €V and e is the edge between u and t, and deg(u), deg(t) are the number
of neighbors of nodes, u and t, respectively **. The negative logarithm of minimum flux

scoresis used as afinal edge (f(e)) score defined in formula 4.

_ p) xc(e)
fust@, t) = “deg (1) (2)
_ p®) xc(e)
frou(tu) = deg O 3)

f(e) = —log (min(fume(w, ), fiu(tW)) (4

We weighted the edge set of GGN, G(Vg, Eg), with f(e) where ey, e, €, ..., §,...6, EEg, 1 <
j <nand f(g.1)> f(g)>f(g+1). The total flux scores (F) in GGN are calculated as formulated

in formulas.
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F=)fe
i=1

Let 7 (0 <7 <1) represent the scaling factor describing the threshold percentage of F. We
selected the edges by summing flux scores up to 7xF (formula 6). In this way, we infer the

context-specific network C(Vc, Ec), where EcE (Eg ,>) and Vc € Ve.

™xF > Z{zlf(ei), 1<j<n (6)

Performance Assessment of Network | nference

We compare pyPARAGON with Omics Integrator 2 (Ol2) and PathLinker 1.4.3 (PL) by

reconstructing pathways in NetPath and inferring specific cancer networks.

Ol2 implements the prize-collecting Steiner Forest algorithm . The objective function of
OI2 combines confidence scores of edges (c(e)) and penalties of edges calculated with node
degrees and the scale parameter, 1. The following function finds an optimum forest, F(V, E),

by minimizing the objective function, the formula 7,

f'(F) =2B-p(w) —y.deg(v)) + Xc(e) +.k (7)

where k is the number of connected components, # controls the relative weight of the node
prizes, u affects the penalty for the degree of a node represented by deg(v), and @ controls the

cost of adding a tree to the solution network.

PL computes the k-highest scoring short paths between seed nodes without a loop in the
reference network. The path score, W, is the product of the edge weights aong the path %
PL calculates the cost of a path with the formula 8:

—log(W_uv) if u,veV\({s, t}} ®)

C“”:{ Oifu =sorv=t

where sand t are, respectively, a source and a target for each node, x € S. The cost of a path

is the sum of the costs of the edges in the path.
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Each pathway in NetPath was independently shuffled, and their nodes were split into two
equal parts, five times. We reconstructed the pathways, recruiting one part as a seed nodeset
and HIPPIE v2.2 as areference.

The driver genes were randomly divided for each cancer type into five equal portions. Each
portion was removed from the most frequently mutated genes. Then, we utilized the
remaining frequently mutated genes as a seed nodeset and HIPPIE v2.2 as areference so as to

infer cancer specific networks.

We separately calculated precision, recall, F1 scores, and area under the precision-recall
curve (AUPRC) for each pathway and each cancer specific network 2. We created grid
search parameter sets for tools. In OI2, parameter sets were ranged as following; dummy
edge weight (w), edge reliability (#) between 0 and 5 with 0.5 increments, and degree penalty
(L)) between 0 and 10 with increment 1. Similarly, we measured the performance of PL by
atering k, the number of shortest paths, between 50-1000 with increments of 50, while the
performance of pyPARAGON by ranging the damping factor () and flux threshold (t)
between 0.05 and 1 with 0.05 increments.

To evaluate the performance of GGN, we quantified the alteration of highly connected
proteins between the given reference network and GGN. We defined the highly connected
proteins Hg with more than 200 interactions, (hy, h, ..., hy) € Hg for a reference network, the
highly connected proteins (hy, ha, ..., hm) € Hg in GNN, and the highly connected proteins
(s, hy, ..., hy) €Hp in the given pathway, Hp € Hg € Hr € Vr. The reduction ratio (RR) of
the remaining highly connected proteins in GGN was separately calculated using the formula
o

degp(hy
10910 2= 170g 5y

RR =

9)

m

where deg(h) is the number of interactions of h and m is the number of highly connected
nodes in GGN. We separately calculated the reduction ratio of highly connected proteins for
each signaling pathway.

Patient-Specific Network Construction

15


https://doi.org/10.1101/2023.07.13.547583
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.13.547583; this version posted July 15, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

pyPARAGON constructed the patient-specific networks for 105 BRCA patients by recruiting
differential phosphoproteins as seed nodes and HIPPIE v2.3 as a reference network ® Inthe
construction of GGN, we directly parsed graphlets that had been determined in pathway

reconstruction.

We ran the Louvain method, a fast and heuristic method composed of two iterative steps. (1)
Assigning each node to its community; and (2) Interchanging neighbor nodes to find the

maximum modularity until no positive gain is achieved ®.

We investigated the over-represented biological processes, KEGG pathways in the inferred
networks. We utilized the hypergeometric distribution, which describes the probabilities of
communities associated with the target pool, such as pathways or biological processes. We
calculated the p-value using the formula 10 .

(10)

We define M as the population size, the number of genes in the reference network; N as the
number of genes in the target pool; n as the number of genes in the community; and k as the
number of successfully identified genes in the target process. We only selected the most
significant community for each biological process, or KEGG pathway since multiple
communities pointed out the same process. Then, we eliminated insignificant communities

and their associated biological processes and pathways.

For each patient, we constituted the vector of biological processes, which was only composed
of significant biological processes. We computed a similarity matrix that measured the
pairwise cosine similarities between all pared patients. We applied the t-distributed
stochastic neighbor embedding (t-SNE) algorithm to transform the similarity matrix into two-
dimensional data, component-1, and component-2 ®. The patient groups were determined

with agglomerative clustering through the euclidean distance.
We used "survminer”, an R library, for the Kaplan-Meier survival curve, indicating the
percentage of alive patients in the group over time ®. The log-rank test computes the chi-

square (x?) for each group at each event time and gathers their outputs in the result table. The
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final chi-square score and p-value are calculated by comparing the curves of each group. The

log-rank p-value implies the ability of the model to differentiate two risk groups.

Figure Legends

Figure 1. The overview of pyPARAGON a. pyPARAGON has three steps: i. GGN
construction (light red boxes); ii. Edge scoring with personalized PageRank flux calculation
(yellow boxes); iii. Subnetwork inference using edge scores and GGN (green boxes). b. We
investigated nine non-isomorphic graphlets (Go-Gg) composed of 2, 3, and 4 nodes for GGN.
Except for Go, each graphlet covers at least two seed nodes (red circles) and one intermediate
node (white circles) that connects the seeds in the center of the orbit. To find significant
motifs, we screened the presence of each graphlet in 100 randomly generated reference
interactomes using the same seed nodes. We tested the significance of each graphlet’'s
presence in rea interactomes compared to random interactomes with the z-test (p < 0.05, z-
score > 1.65). Significant graphlets were merged to construct GGN. c. By random walking
from weighted initial nodes in the reference network, the Personalized PageRank algorithm
assigns a weight to each node. Computed edge fluxes were used as the edge scores in the
reference interactome. High scoring edges in GGN formed the final subnetwork. d. The
network analysis module of pyPARAGON employs Louvain community detection methods,
based on network topology, to divide the inferred network into functional units. Significant

biological processes and pathways in each community were found by hypergeometric test.

Figure 2. Graphlet-guided network trims reference interactome by removing some highly
connected nodes and their non-specific interactions. a. Highly connected proteins are defined
as the ones having more than 200 interactions in HIPPIE interactome (blue dots). Presence of
these nodes in GNNs and NetPath pathways are shown for each signaling pathway (red and
green dots, respectively). In the reference interactome, 1812 highly connected nodes are
present. GGN selects a subset of these nodes that are highly specific to the pathways. The
change in node degrees of remaining highly connected proteinsin GGN was calculated as the
reduction ratio and shown with a blue color scale. Highly connected nodes in the reference
interactome that are present in pathways are included during reconstruction with a low
reduction ratio in GGN while the rest have a higher reduction ratio. b. AUPRC of each tool
(blue= OI2, orange=PL, and green=pyPARAGON) in each pathway reconstruction is shown
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in barplot. In al signaling pathways, pyPARAGON performed better than others in both node
and edge predictions. c. Distribution of F1-scores for each tool across 18 pathways is shown
for node (blue) and edge (orange) predictions d. We inferred cancer-specific networks for
eight distinct cancer types by using the most commonly mutated genes as initial node sets.
Marker size represents precision, while recall and network sizes are shown on the x-axis and
y-axis. The recall score represents the ratio of correctly predicted cancer driver genes in
cancer-specific networks to total number of drivers. pyPARAGON achieved better recall

scores for each cancer type without having a decrease in precision scores.

Figure 3. An example patient-specific network that is constructed by pyPARAGON (TCGA-
A2-A0YD). Significantly phosphorylated proteins were used as the initial (seed) node set
(colored red), and intermediate nodes predicted by pyPARAGON are green. Active modules
that are associated with at least one significantly overrepresented biological process are
shown in this patient-specific network. Each vertically aligned node set represents one active

module. Nodes in each active module are layered based on their subcellular localization.

Figure 4. Stratification of tumors and associated biological processes with patient clusters. a.
105 breast cancer tumors are stratified into four clusters based on their similarity of
significant biological processes in their network modules: cluster-1 (32 patients), cluster-2
(22 patients), cluster-3 (19 patients), and cluster-4 (32 patients). b. Heatmap of patient
coverage ratio for each cluster and significant process pairs. A biological process is included
in the heatmap if it is enriched in at least two clusters. The patient coverage ratio represents
the ratio of patients having the enriched biological process in the corresponding clusters. The
ubiquitin-dependent protein catabolic process and protein targeting were predominantly
present in cluster-1 while mitotic cytokinesis in cluster-2, nervous system development in
cluster-3, and actin cytoskeleton organization in cluster-4. c. Kaplan-Meier analysis shows
the survival probabilities of cluster-1 (red) and cluster-4 (purple). Patients in cluster-4 have
significantly worse survival in cluster-1. d. Heatmap shows significantly enriched KEGG
pathways in active modules. The cell cycle, oocyte meiosis, PI3K/Akt, and Hippo signaling
pathways were mostly observed in clusters-1, -3, and -4 while focal adhesion and Ras
signaling pathways were prominent in cluster-4. e. The example module of A2-A0YD
network corresponding to the Ras signaling pathway is shown where seed nodes are red and

intermediate nodes are green.
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Figure 5. Drug-module interaction network of a patient (TCGA-A2-A9YD). Drugs are
shown in three colors corresponding to three categories: drugs in phase 3, 4, or preclinical
stage, and authorized drugs in green; drugs in phase 2 or 3 in purple and patented and
investigational drugs are in pink. Drugs are connected to their immediate targets (light red
circles) and active modules having these targets (blue rectangles) in the network. One
example is the drugs Adagrasib (MRTX849) and Sotorasib which targets Module_34. This
module is enriched in the Ras signaling pathway has the immediate target protein KRAS of

these drugs.
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