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Abstract  

Omics technologies are powerful tools for detecting dysregulated and altered signaling 

components in various contexts, encompassing disease states, patients, and drug-

perturbations. Network inference or reconstruction algorithms play an integral role in the 

successful analysis and identification of causal relationships between omics hits. However, 

accurate representation of signaling networks and identification of context-specific 

interactions within sparse omics datasets in complex interactomes pose significant challenges 

in integrative approaches. To address these challenges, we present pyPARAGON 

(PAgeRAnk-flux on Graphlet-guided network for multi-Omic data integratioN), a novel tool 

that combines network propagation with graphlets. By leveraging network motifs instead of 

pairwise connections among proteins, pyPARAGON offers improved accuracy and reduces 

the inclusion of nonspecific interactions in signaling networks. Through comprehensive 

evaluations on benchmark cancer signaling pathways, we demonstrate that pyPARAGON 

outperforms state-of-the-art approaches in node propagation and edge inference. 

Furthermore, pyPARAGON exhibits promising performance in discovering cancer driver 

networks. Notably, we demonstrate its utility in network-based stratification of patient tumors 

by integrating phosphoproteomic data from 105 breast cancer tumors with the interactome, 

leading to the discovery of tumor-specific signaling pathways. Overall, the development and 

evaluation of pyPARAGON significantly contributes to the field as an effective tool for the 

analysis and integration of multi-omic data in the context of signaling networks. 

pyPARAGON is available at https://github.com/metunetlab/pyPARAGON.  
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Introduction 

Omics technologies provide a multidimensional view of the cell’s functional mechanism, 

context-specific alterations, such as in diseases or drug perturbations, and biological 

processes 1,2. As the omics data accumulate, integrating them accurately and translating them 

into interpretable knowledge remains challenging due to data sparsity, missing data points, 

and computational complexity 3–5. Omic hits are sparsely connected in a reference 

interactome and carry noise from high-throughput outcomes 6,7. 

  

Recent methods utilizing learning- and network-based algorithms are on the rise to overcome 

these challenges and decode causal relations between omic entities 8–11. Learning based 

methods efficiently integrate multi-omic data to extract interpretable annotations such as 

pathways, reactions, and processes 12–14. Also, network-based algorithms, including shortest 

paths 15, Steiner trees/forests 16,17, and random walk 18,19 have been frequently used to 

construct specific networks by propagating omic hits 20,21. Network-based methods can 

uncover the most relevant interactions between a given set of proteins/genes by either 

inferring from a reference protein-protein interaction (PPI) network or reconstructing them 
1,22,23. These methods eventually obtain a network model which may represent the alterations 

in disease models or drug treatments with the help of topological and statistical features 24–29. 

The benefit of using global and local network features (e.g. degree distribution, clustering 

coefficients) for propagation or inference 30,31 is limited when this type of sparse data is 

elaborated 32,33. Therefore, the frequency of motifs (repeating subgraphs) can be more 

explanatory for deciphering complex cellular networks 34,35. Small connected, non-

isomorphic subgraphs, called graphlets, are over-represented in the reference interactome and 

associated with specific functions 35,36. Graphlet statistics solve several complex problems in 

this context, such as the comparison of biological networks, delineating the functional 

organization of networks, discovering functionally related genes, regulatory interactions, and 

parameter tuning for network-based approaches 12,32,33,37–40. Another challenge is the presence 

of highly connected and multifunctional proteins, particularly hub proteins, which can bring 

nonspecific interactions to the resulting network models because of the small-world property 

of reference interactomes.  Therefore, using network motifs, graphlets, or revealing modules 

can improve the context-specific aspects of the models 1,25,41.  
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In this study, we hypothesize that the utilization of network motifs, in lieu of pairwise 

connections among proteins, may provide a more accurate representation of signaling 

networks and mitigate the inclusion of nonspecific interactions. Therefore, we present 

pyPARAGON (PAgeRAnk-flux on Graphlet-guided network for multi-Omic data 

integratioN) as a new tool that combines network propagation with graphlets to construct 

context-specific networks. We demonstrated that graphlets reduce the dimensionality of 

complex reference interactomes by filtering out non-specific and highly connected proteins 

and their interactions. pyPARAGON performed better in node propagation and edge 

inference than selected state-of-the-art approaches, including Omics Integrator 2 (OI2) and 

PathLinker (PL) on the benchmark set of cancer signaling pathways. pyPARAGON also 

showed promising results in the discovery of cancer driver networks. Finally, we showed the 

network-based stratification of patient tumors as a use case of pyPARAGON and found 

tumor-specific signaling pathways when phosphoproteomic data from 105 breast cancer 

tumors were integrated with the interactome.   

Results 

Overview of pyPARAGON as a hybrid network inference framework  

Recent studies have shown that when integrating different types of biological data (such as 

genomic, proteomic, and transcriptomic data) to reconstruct signaling networks, using hybrid 

approaches can be more effective than relying on a single method alone 16. The accuracy of 

reconstructed networks is also highly dependent on the quality of the reference interactome 
42,43. However, there are tradeoffs involved in increasing the number of interactions in the 

reference interactome. On the one hand, including interactions with low confidence scores 

may lead to the identification of false positive proteins and interactions. On the other hand, 

highly connected proteins (i.e., hubs) may dominate the final network and obscure context-

specific relationships between proteins or genes. Graphlets are small, connected subgraphs 

with a specific pattern of edges and are similar to network motifs in that they represent 

recurring patterns 35,36. Here, in pyPARAGON, we present a new hybrid approach that 

combines graphlets with network propagation via the personalized PageRank algorithm, 

followed by interaction selection based on edge flux calculation, to address these challenges 

in network modeling. pyPARAGON has three steps (Figure 1A): i. Graphlet-guided network 

(GGN) construction; ii. Propagation and edge scoring via the Personalized PageRank (PPR) 

algorithm and flux calculation; iii. Subnetwork construction with highly scored edges on 

GGN.  pyPARAGON takes a list of seed genes/proteins (initial nodes) as input, which are 
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specific to the biological context of interest. Seeds can be obtained from but not limited to 

omics experiments, drug perturbation analysis, or disease-associated proteins. Graphlets help 

in reducing the load of possible false positives, while network propagation via PPR scores all 

other proteins in the reference interactome by orienting them from the given seed list. This 

hybrid approach, on one hand, trims the reference interactome to the most relevant 

interactions by constructing a GGN, on the other hand, it quantifies the importance of other 

proteins based on a given seed list.  

 

In general, state-of-the-art methods use an immediate edge between two nodes in the 

reference network and node-based features (e.g. degree, betweenness, closeness, and 

eigenvector centralities). GGN construction step of pyPARAGON goes beyond this and 

follows an unsupervised approach to identify a core region in the reference interactome by 

combining significantly frequent graphlets composed of 2-, 3-, and 4-nodes (Figure 1B). In 

omics-based network construction, direct connections between the genes/proteins of interest 

are often sparse, and intermediate nodes are required to connect them and form a coherent 

network structure. Thus, we constrained that graphlets having more than two nodes may have 

an intermediate node. Intermediate nodes are the ones that have the highest connections to the 

seed nodes in the corresponding graphlet.   

 

In addition to GGN construction, the personalized PageRank algorithm propagates signals 

from seed nodes across the reference interactome.  Node weights after propagation together 

with their degrees and edge confidence scores are combined in a single function to calculate 

edge fluxes (see Methods) 44. In this function, the degree component penalizes highly 

connected proteins that are non-specifically present in the resulting subnetworks. Finally, we 

map edges with high flux to GGN to obtain a context-specific network (Figure 1C). 

pyPARAGON also uncovers communities functioning in specific biological processes or 

pathways (Figure 1D). Based on network topology, the Louvain community detection 

method divides inferred subnetworks into small modules 45. Then, using a hypergeometric 

test, pyPARAGON discovers context-specific annotations 46. In this way, we reveal not only 

hidden connections between initial nodes but also significant context-specific pathways.   

 

Network Trimming via Graphlets Improves the Network Inference  

Benchmark datasets for assessing the performance of network methods are usually curated 

biological pathways. In general, the performance of the methods is evaluated based on 
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topological features, coverage of predicted nodes, and edges. We used NetPath 47 as the 

benchmark dataset to reconstruct curated cancer signaling pathways and assess the 

performance of pyPARAGON.  As a result of screening all graphlets across the reference 

interactomes, we found G2, G5, G6, G7, and G8 to be the most frequent graphlets 

(Supplementary Figure 1A). The frequency of direct interactions between input nodes 

(represented with G0) is not significant in the reference interactome; however, the presence of 

these direct interactions in a graphlet with at least three nodes is significant. For example, the 

direct interaction of seed nodes in G2 is more significant in the presence of an intermediate 

node interacting with G0. As to our observation, significant graphlets having at least one 

intermediate node to connect seeds provide more precision compared to including direct 

interactions between two seeds (i.e. G0) in GGN.  

 

Each available interactome has a specific evaluation and scoring scheme to integrate PPIs 

from different resources 42. In this study, we used ConsensusPathDB, HIPPIE v2.2, and 

HIPPIE v2.3 which have different topological features (Supplementary Table 1). The 

constructed GGN by pyPARAGON is a subnetwork of the reference interactome. When we 

compared the original interactomes and trimmed interactome via GGN construction 

separately, we observed that the similarity across them significantly increases when GGNs 

are used (Supplementary Figure 1B). Another advantage of GGN construction is 

attenuating the dominance of the highly connected nodes. Notably, highly connected proteins 

have numerous functions in the cellular processes known from prior knowledge 48. We 

identified 1812 highly connected proteins in HIPPIE v2.3 (nodes having more than 200 

interactions). With the help of graphlets, GGN construction step in pyPARAGON 

successfully trimmed many interactions and decreased the number of highly connected nodes 

significantly (Figure 2A). Protein interactomes are scale-free networks intrinsically 

following a power law (Supplementary Figure 1C) 49. The resulting GGNs in 

pyPARAGON preserve this property of scale-free networks.  

 

We conducted a comparative evaluation of pyPARAGON against PathLinker (PL) and 

Omics Integrator 2 (OI2) to infer curated signaling pathways in NetPath. Since there is no 

definitive benchmark or ground truth for assessing tool performance, we relied on propagated 

nodes and predicted edges as evaluation criteria. We measured performance using the area 

under the precision-recall (AUCPR) curve to demonstrate how well each pathway's nodes and 

edges were recovered in the predicted networks. Our analysis showed that pyPARAGON 
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outperformed PL and OI2 at both the node and edge levels for inferring signaling pathways in 

all pathways of NetPath (Figure 2B). 

 

Performance comparison of pyPARAGON with others was done in two directions: i. node 

propagation, ii. edge inference. We used the F1 score to compare them because it 

simultaneously represents precision and recall in one metric. The overall results show that 

pyPARAGON and PL are better at propagation, while pyPARAGON and OI2 are better at 

network inference (Figure 2C). Highly connected reference networks decreased the 

propagation ability of OI2 while providing more robust interactions than PL. On the other 

hand, PL propagated the seed node set more robustly due to the consideration of multiple 

short paths but introduced many false positive interactions. Many seed nodes have a tendency 

to be connected by hub nodes as shortcuts due to biological networks being scale-free. Thus, 

the shortest path and random walk-based approaches may lead to including false positive 

interactions 20,50. However, penalizing highly connected nodes, e.g. calculation of PageRank 

flux normalized the score in pyPARAGON or degree-dependent negative prizing in OI2, 

reduces false positive edges and improves F1-score in edge prediction 

 

Next, we used pyPARAGON to predict cancer driver pathways and compared its 

performance with other selected tools. Here, we labeled 300 genes with the most prevalent 

mutations in eight cancer types as seed nodes. Known driver genes in IntOGen were used as 

an independent test set for performance evaluation based on their presence in the 

reconstructed networks. Because we use 5-fold cross-validation, for each fold we filtered out 

the common proteins between the seed list and known drivers and then reconstructed cancer 

type-specific networks with pyPARAGON, PL and OI2.  

 

Our results show that the reconstructed network by pyPARAGON covers more known driver 

genes compared to other methods and achieves higher recall and precision compared to other 

methods in all cancer types (Figure 2D). Termination of propagation at the seed nodes by the 

prize-collecting Steiner tree algorithm is the reason for recovering fewer driver genes in 

networks inferred by OI2. In large reference networks, highly connected nodes generate 

network shortcuts instead of using signal cascades or motifs. In PL-generated networks, when 

recruiting the shortest paths, intermediate nodes corresponded more to highly connected 

genes than specific driver genes. In pyPARAGON, we use the PageRank algorithm to 

propagate seed nodes to the neighbors in the reference interactome, which helps in obtaining 
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more candidate drivers. Additionally, GGN construction filters out possible “frequent flyers” 

with the help of graphlets, which enable us to predict driver genes more precisely. Overall, 

pyPARAGON performs significantly better in cancer driver network prediction and can be 

further elaborated for tumor- or patient-specific network construction and network similarity-

based comparisons.   

 

Patient-Specific Network Inference Unveil Hidden Commonalities across Tumors 

We used pyPARAGON to construct the specific networks for 105 breast cancer patients’ 

tumors where the seed nodes are significantly altered phosphoproteins. The reference 

interactome is HIPPIE v2.3 For each tumor-specific network, we detected the modules -i.e. 

communities- with Louvain's algorithm. We consider the modules as functional subunits of 

networks that individually or in cooperation take part in context-specific molecular processes. 

pyPARAGON uses hypergeometric tests to identify these active modules that are 

significantly over-represented in specific biological processes (Supplementary Figure 2). 

Figure 3 shows an example patient-specific network composed of active modules that is 

organized based on the cellular localization of nodes. Modules have cross-talk between each 

other (inter-module edges). Many modules have proteins from different cellular 

compartments and are enriched in multiple biological processes. We calculated patient 

similarities using cosine similarity scores based on significant biological processes. This is a 

data reduction approach where we first translated a given list of proteins to a context-specific 

network, then divided it into modules and find the significant processes and finally these 

biological processes are used for similarity calculation across the tumors. t-SNE algorithm is 

used to represent tumor similarities based on two components. Eventually tumors are 

clustered into four groups (Figure 4A). Supplementary Table 2 lists the 20 most frequently 

identified biological functions for each cluster.  We uncovered significant biological 

processes that are present in at least two clusters (Figure 4B). In patient cluster-1, the most 

frequently associated biological process is the ubiquitin-dependent protein catabolic process, 

where several transcription factors and enzymes are present. Ubiquitination (one of the post-

translational modifications) is a multistep enzymatic process involved in the regulation of 

cancer metabolism, such as the cell cycle, DNA damage repair, chromatin remodeling, and 

several signaling pathways 51. Ubiquitin-specific peptidases (USP) are regarded as potential 

therapeutic targets. However, any USP inhibitor is not in the clinical trial stage despite having 

promising potential in breast cancer 52,53. The patients in cluster-2 frequently share the mitotic 

cytokinesis process. Cytokinesis defects increase chromosomal instability, vast genomic 
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alteration, and point mutations, and so provoke intratumoral heterogeneity 54,55. As shown in 

the patient similarity network (Supplementary Figure 3), only five patients have high 

similarity due to heterogeneity. Interestingly, we found that the nervous system development 

(NSD) process was the most frequent biological process in cluster-3. Breast cancer is the 

second most common cause of central nervous system (CNS) metastasis after lung cancer 56. 

In our datasets, just two patients had metastases. We found both patients with the NSD 

process in cluster-3. In cluster-4, we frequently found the regulation process of actin 

cytoskeleton organization, which is critically involved in cancer initiation, metastasis, and 

therapeutic responses. Rho GTPases, a family of the Ras GTPase superfamily, play a key role 

in this regulation 57.  We also performed a Kaplan-Meier survival analysis across four patient 

clusters and did not find any significant differences (Supplementary Figure 4). However, in 

a pairwise comparison, we found that patients in cluster-4 have a significantly worse survival 

probability than cluster-1 (Figure 4C). Followingly, we identified active modules with 

KEGG pathway information to figure out over-represented pathways in these clusters 

(Figure 4D) 58. Cell cycle, oocyte meiosis, and PI3K/Akt signaling pathways are the most 

frequent and common pathways in clusters, except for cluster-2, while more frequent in 

cluster-1 than cluster-4. On the other hand, focal adhesion and Ras signaling pathways are 

significantly more frequent in cluster-4. The Ras signaling pathway is one of the key 

pathways for drug resistance owing to the bypassing of drug action mechanisms in the 

signaling network 48,49. In Figure 4E, we demonstrated the module associated with the Ras-

signaling pathway, where pyPARAGON linked phosphoproteins with intermediate nodes 

including KRAS, NRAS, HRAS, RHOA, and RHOD.  Next, we incorporated drugs targeting 

the active modules in the network. We collected drug-target interactions from the Therapeutic 

Target Database  into modules 50. We extracted 8297 drugs, 330 drug targets, and active 

modules associated with 161 pathways for 105 breast cancer patients (Supplementary Table 

3).  An example of context-specific drugs for the active modules of patient A2-A0YD is 

shown in Figure 5. Adagrasib (MRTX849) and Sotorasib specifically target the Ras 

signaling-associated module. Both drugs are novel KRASG12C inhibitors approved by the 

FDA 59,60.  

Discussion 

In this work, we present pyPARAGON as a network-based multi-omic data integrator.  

pyPARAGON simultaneously utilizes the most frequent graphlets covering omic hits and 
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network propagation to construct context-specific networks. Network inference algorithms 

encounter challenges arising from sparse data and the complexity associated with the growing 

number of interactions within reference networks.  In our study, we address these issues by 

reducing reference networks to less complex networks composed of significantly frequent 

graphlets. By employing pyPARAGON, we mitigated the impact of noise generated by 

highly connected nodes in the reference networks.  While reducing the noise, pyPARAGON 

preserves scale-free properties inherent in biological networks in the constructed GGNs. 

Additionally, we leveraged the PageRank flux calculation for edge prioritization and 

integrated GGNs with PageRank flux to successfully construct context-specific networks. By 

predicting driver genes, we extended the missing value problem in cancer-specific network 

construction. pyPARAGON inferred networks that encompassed a more precise and higher 

number of cancer drivers. Additionally, after inferring context-specific networks from 

phosphoproteomics, pyPARAGON can integrate modules and different types of annotations, 

such as biological processes, pathways, and drug knowledge. These findings indicate that 

pyPARAGON can predict cancer biomarkers, drivers, drugs, and therapeutic targets. 

 

Different molecular aberrations, particularly in cancer, might result in identical disease 

manifestations 61–63. We used omics data of breast cancer tumors in CPTAC 64 as a case study 

to infer context-specific networks where interacting protein modules govern various 

biological processes and pathways. Patients were clustered based on the biological processes 

that were overrepresented in functional communities. We show that functional communities 

with the same driver genes mediate various biological processes according to the recruited 

proteins. Therefore, pyPARAGON is a powerful tool to identify disease-related molecular 

alterations and driver networks.  

 

Despite the success of integrative approaches, including pyPARAGON, there are still issues 

in network-based omic data integration that must be addressed in the long-term.  First, 

reference interactomes are incomplete 65. Notably, network-based methods strongly depend 

on features and coverage of reference networks 66. As a result of incomplete knowledge in 

large reference interactomes, protein complexes tend to form more topological modules than 

metabolic pathways 67. Thus, generic biological processes, such as transcription, replication, 

can be found more frequent in inferred networks. Thus, biological interpretations of context 

specific networks are challenging through causal relations, modules, and biological 

processes. Additionally, network-based methods do not assess the alternative copies of 
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individual hits while various protein isoforms, post-translational modifications are within the 

proteome. Despite delivering more specific functions, this information is generalized and 

potentially lost in the network.  

As a result of extended integrations in reference networks, missing interactions and highly 

connected nodes have become a prominent challenge in recent network inference tools based 

on belief propagation 68,69, random walks 18,19,70, the prize-collecting Steiner Forest 17,71,72, 

heat diffusion 73,74, and shortest path algorithms 15,75. Here, graphlets were deployed in our 

approaches for network trimming. In pathway reconstruction and the inference of context-

specific networks, we compared our method with two popular tools: PL and OI2.  Hub 

proteins may dominate the inferred network with unrelated interactions. The prize-collecting 

Steiner Forest algorithm penalizes hubs based on the number of interactions. Similarly, the 

flux calculation in pyPARAGON is a countermeasure against the curse of hubs beyond 

scoring interactions. OI2 and pyPARAGON work better at predicting interactions. In terms of 

the identification of associated genes, our tool outperformed the other tools.  In the PL 

algorithm, highly connected nodes further diminish the shortest paths between seed nodes. 

OI2 early terminates the propagation of the seed nodes in a large reference network. 

However, the PageRank algorithm in pyPARAGON propagates the seed nodes before 

network inference, independent of GGN. Thus, pyPARAGON optimizes the inference of 

interactions and the propagation of seed nodes in the network.  

 
Here, we only utilized graphlets composed of interactions among 3 and 4 nodes rather than 

interactions between 2 nodes. However, various graphlet information in reference networks, 

such as graphlet degree distribution, graphlet frequencies, and probabilistic graphlets, can be 

embedded in network inference algorithms or biological interpretations 32,34,35,39,40. However, 

the use of graphlet features will come with a high computational cost. To enhance context 

specificity, permutation-based methods can be additionally applied in downstream analysis 

where hypergeometric tests on communities are only used 16. The placement of community 

members in subcellular locations shows that inferred networks are composed of several 

signaling cascades from cell receptors to regulatory proteins. These communities can be 

detailed with mechanistic and causal relations for downstream analysis. 

 

In conclusion, we released a novel tool, pyPARAGON, which infers context-specific 

networks by using graphlets and network propagation. It mitigates noise generated by highly 

connected nodes, preserves scale-free properties, and integrates network modules and 
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biological annotations. Through its inferred network, we can predict context-specific 

biomarkers, drugs, and therapeutic targets. For downstream analysis, communities in the 

network can potentially be used to identify mechanistic molecular relations in complex and 

rare diseases. Here, pyPARAGAON integrated bulk omic data for static patient-specific 

network models. The next version of pyPARAGON will be an extension to integrate omic 

data at the single cell level to elucidate cell-type specific interactions.  

Methods 

Interactome and Datasets 

We separately used interactomes as references; HIPPIE v2.2 (15 861 nodes, 345 770 edges), 

HIPPIE v2.3  (19 437 nodes, 774 449 edges), and ConsensusPathDB v35 (18 178 nodes, 516 

211) 76,77. As a benchmark, we utilized 18 cancer signaling pathways in NetPath that are 

composed of more than 50 proteins 47. We prepared the seed node set for 8 cancer types; 

bladder urothelial carcinoma (BLCA), breast invasive carcinoma (BRCA), esophageal 

carcinoma (ESCA), head and neck squamous cell carcinoma (HNSC), lung squamous cell 

carcinoma (LUSC), pancreatic adenocarcinoma (PAAD), prostate adenocarcinoma (PRAD), 

and uterine corpus endometrial carcinoma (UCEC). We selected the 300 genes with the most 

frequent mutations among 1,289,655 mutations belonging to 3759 patients. The mutation 

dataset covers various cancer genomics projects, including TCGA and GENIE  78. We 

retrieved the 3333 driver mutations from IntOGen, harbored on 568 genes 79. 

 

We retrieved phosphoproteomic data from 105 breast cancer patients and three healthy 

samples 64. We selected phosphosites that were at least identified in 50% of samples and had 

a standard deviation larger than 0.5 across all normalized samples. Phosphoproteins were 

categorized based on two criteria. (1) a higher log-2-fold-change (LFC) than 2, and (2) highly 

or less phosphorylated in the Gaussian Mixture Model (GMM) 80. In GMM, we split 

phosphoproteomics into three divisions: highly, less, or normally phosphorylated proteins. 

We ran the model 100 times at random for each phosphoproteomics and chose highly or less 

phosphorylated proteins in 95% of the models. Using the unit-variance scaling method on 

LFC, we gave differential phosphoproteins scores between 0.5 and 1 81. We utilized 

biological processes retrieved from gene ontology, pathways from KEGG, subcellular 

localization from the human proteome atlas, and drug information from the therapeutic target 

database 19,58,82,83.  
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Network Inference Methods 

PageRank-flux on Graphlet-Guided Network 

We used 2-, 3-, and 4-node-graphlets (G0, G1, G2, …, G8, shown in Figure 1B), which are 

small non-isomorphic subgraphs.  An isomorphism of graphlets between two subgraphs, 

X(VX, EX) and Y(VY, EY), is defined with bijections between  VX and  VY  36. We searched the 

graphlets for an intermediate node in one of the highest-degree orbits and seed nodes in the 

remaining orbits. The reference network is R(VR, ER, c(e)), where VR, ER, and c(e) are nodes, 

undirected edges, and the confidence score of an edge, respectively. Similarly, we calculated 

the frequencies of graphlets in 100 permuted networks, recruiting the same seed node set. We 

compared the targeting graphlet frequencies in the reference and permuted networks with a z-

test (p<0.05, z-score > 1.65). The union of graphlet motifs, a significantly high number of 

graphlets, constructs the graphlet-guided network (GGN), G(VG, EG), where G ⊆ R. 

 

The Personalized PageRank (PPR) algorithm calculates the probability of being at the node y, 

p(y), at a particular time step (t), in the reference interactome according to formula 1, where 

the damping factor (λ) defines the possibility of walking from neighbor nodes (xi) to y, and N 

is the number of nodes 84,85. 

��������� �  1 � 	

  �  	 � ���
��

deg�
��
��

�	��
          �1� 

We calculated the directional flux scores for both directions (fu→t and ft→u) by using formulas 

2 and 3, where u, t ∈ VR and e is the edge between u and t, and deg(u), deg(t) are the number 

of neighbors of nodes, u and t, respectively 44. The negative logarithm of minimum flux 

scores is used as a final edge (f(e)) score defined in formula 4. 

�
����, �� �  ���� 
 ����
��� ���             �2� 

���
��, �� �  ���� 
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��� ���             �3� 
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��, ��"#           �4� 

We weighted the edge set of GGN, G(VG, EG), with f(e) where e1, e2, e3, …, ej,...en ∈ EG, 1 ≤ 

j ≤ n and  f(ej-1)> f(ej)>f(ej+1). The total flux scores (F) in GGN are calculated as formulated 

in formula 5. 
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Let τ (0 ≤ τ ≤ 1) represent the scaling factor describing the threshold percentage of F.  We 

selected the edges by summing flux scores up to τxF (formula 6). In this way, we infer the 

context-specific network C(VC, EC), where EC⊆  (EG ,>) and VC⊆ VG. 

 '
%  (  ∑ �����

�	� ,     1 * + *              �6�  

Performance Assessment of Network Inference 

We compare pyPARAGON with Omics Integrator 2 (OI2) and PathLinker 1.4.3 (PL) by 

reconstructing pathways in NetPath and inferring specific cancer networks.  

 

OI2 implements the prize-collecting Steiner Forest algorithm 86. The objective function of 

OI2 combines confidence scores of edges (c(e)) and penalties of edges calculated with node 

degrees and the scale parameter, �. The following function finds an optimum forest, F(V, E), 

by minimizing the objective function, the formula 7,  

�-�%�  � ∑�.. ��0�  � 1. ����0��  �  ∑����  �  . 2            (7) 

where κ is the number of connected components, β controls the relative weight of the node 

prizes, μ affects the penalty for the degree of a node represented by deg(v), and ω controls the 

cost of adding a tree to the solution network. 

 

PL computes the k-highest scoring short paths between seed nodes without a loop in the 

reference network. The path score, W, is the product of the edge weights along the path 15,87. 

PL calculates the cost of a path with the formula 8: 

3
� � 4�����5_�0� �� �, 0 7 8 \ :;, �<
0 �� � �  ; �> 0 � � ?                   (8) 

where s and t are, respectively, a source and a target for each node, x ∈ S. The cost of a path 

is the sum of the costs of the edges in the path. 
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Each pathway in NetPath was independently shuffled, and their nodes were split into two 

equal parts, five times. We reconstructed the pathways, recruiting one part as a seed nodeset 

and HIPPIE v2.2 as a reference.  

 

The driver genes were randomly divided for each cancer type into five equal portions. Each 

portion was removed from the most frequently mutated genes. Then, we utilized the 

remaining frequently mutated genes as a seed nodeset and HIPPIE v2.2 as a reference so as to 

infer cancer specific networks.  

 

We separately calculated precision, recall, F1 scores, and area under the precision-recall 

curve (AUPRC) for each pathway and each cancer specific network 42. We created grid 

search parameter sets for tools. In OI2, parameter sets were ranged as following; dummy 

edge weight (ω), edge reliability (β) between 0 and 5 with 0.5 increments, and degree penalty 

(�) between 0 and 10 with increment 1. Similarly, we measured the performance of PL by 

altering k, the number of shortest paths, between 50-1000 with increments of 50, while the 

performance of pyPARAGON by ranging the damping factor (λ) and flux threshold (τ) 

between 0.05 and 1 with 0.05 increments.   

 

To evaluate the performance of GGN, we quantified the alteration of highly connected 

proteins between the given reference network and GGN. We defined the highly connected 

proteins HR with more than 200 interactions, (h1, h2, ..., hn) ∈ HR for a reference network, the 

highly connected proteins (h1, h2, ..., hm) ∈ HG in GNN, and the highly connected proteins 

(h1, h2, ..., hp) ∈ HP in the given pathway, HP ⊆ HG ⊆ HR ⊆ VR. The reduction ratio (RR) of 

the remaining highly connected proteins in GGN was separately calculated using the formula 

9:   

@@ �  �����∑ ����	
��

����	
��


���   

�              (9) 

where deg(h) is the number of interactions of h and m is the number of highly connected 

nodes in GGN. We separately calculated the reduction ratio of highly connected proteins for 

each signaling pathway. 

 

Patient-Specific Network Construction  
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pyPARAGON constructed the patient-specific networks for 105 BRCA patients by recruiting 

differential phosphoproteins as seed nodes and HIPPIE v2.3 as a reference network 64. In the 

construction of GGN, we directly parsed graphlets that had been determined in pathway 

reconstruction. 

 

We ran the Louvain method, a fast and heuristic method composed of two iterative steps. (1) 

Assigning each node to its community; and (2) Interchanging neighbor nodes to find the 

maximum modularity until no positive gain is achieved 85.  

 

We investigated the over-represented biological processes, KEGG pathways in the inferred 

networks. We utilized the hypergeometric distribution, which describes the probabilities of 

communities associated with the target pool, such as pathways or biological processes. We 

calculated the p-value using the formula 10 46.  

� �  1 � ∑ ��
�

�����
���

�
��
�

�
���
�	�             (10) 

We define M as the population size, the number of genes in the reference network; N as the 

number of genes in the target pool; n as the number of genes in the community; and k as the 

number of successfully identified genes in the target process. We only selected the most 

significant community for each biological process, or KEGG pathway since multiple 

communities pointed out the same process. Then, we eliminated insignificant communities 

and their associated biological processes and pathways.  

 

For each patient, we constituted the vector of biological processes, which was only composed 

of significant biological processes. We computed a similarity matrix that measured the 

pairwise cosine similarities between all paired patients. We applied the t-distributed 

stochastic neighbor embedding (t-SNE) algorithm to transform the similarity matrix into two-

dimensional data, component-1, and component-2 88. The patient groups were determined 

with agglomerative clustering through the euclidean distance.  

 

We used "survminer", an R library, for the Kaplan-Meier survival curve, indicating the 

percentage of alive patients in the group over time 89. The log-rank test computes the chi-

square (χ2) for each group at each event time and gathers their outputs in the result table. The 
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final chi-square score and p-value are calculated by comparing the curves of each group. The 

log-rank p-value implies the ability of the model to differentiate two risk groups.  

 

 

 

Figure Legends 

Figure 1. The overview of pyPARAGON a. pyPARAGON has three steps:  i. GGN 

construction (light red boxes); ii. Edge scoring with personalized PageRank flux calculation 

(yellow boxes); iii. Subnetwork inference using edge scores and GGN (green boxes). b. We 

investigated nine non-isomorphic graphlets (G0-G8) composed of 2, 3, and 4 nodes for GGN. 

Except for G0, each graphlet covers at least two seed nodes (red circles) and one intermediate 

node (white circles) that connects the seeds in the center of the orbit. To find significant 

motifs, we screened the presence of each graphlet in 100 randomly generated reference 

interactomes using the same seed nodes. We tested the significance of each graphlet’s 

presence in real interactomes compared to random interactomes with the z-test (p < 0.05, z-

score > 1.65). Significant graphlets were merged to construct GGN. c. By random walking 

from weighted initial nodes in the reference network, the Personalized PageRank algorithm 

assigns a weight to each node. Computed edge fluxes were used as the edge scores in the 

reference interactome. High scoring edges in GGN formed the final subnetwork. d. The 

network analysis module of pyPARAGON employs Louvain community detection methods, 

based on network topology, to divide the inferred network into functional units. Significant 

biological processes and pathways in each community were found by hypergeometric test.    

 

Figure 2. Graphlet-guided network trims reference interactome by removing some highly 

connected nodes and their non-specific interactions. a. Highly connected proteins are defined 

as the ones having more than 200 interactions in HIPPIE interactome (blue dots). Presence of 

these nodes in GNNs and NetPath pathways are shown for each signaling pathway (red and 

green dots, respectively). In the reference interactome, 1812 highly connected nodes are 

present. GGN selects a subset of these nodes that are highly specific to the pathways.  The 

change in node degrees of remaining highly connected proteins in GGN was calculated as the 

reduction ratio and shown with a blue color scale. Highly connected nodes in the reference 

interactome that are present in pathways are included during reconstruction with a low 

reduction ratio in GGN while the rest have a higher reduction ratio. b. AUPRC of each tool 

(blue= OI2, orange=PL, and green=pyPARAGON) in each pathway reconstruction is shown 
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in barplot. In all signaling pathways, pyPARAGON performed better than others in both node 

and edge predictions. c. Distribution of F1-scores for each tool across 18 pathways is shown 

for node (blue) and edge (orange) predictions d. We inferred cancer-specific networks for 

eight distinct cancer types by using the most commonly mutated genes as initial node sets. 

Marker size represents precision, while recall and network sizes are shown on the x-axis and 

y-axis. The recall score represents the ratio of correctly predicted cancer driver genes in 

cancer-specific networks to total number of drivers. pyPARAGON achieved better recall 

scores for each cancer type without having a decrease in precision scores.  

 

Figure 3. An example patient-specific network that is constructed by pyPARAGON (TCGA-

A2-A0YD). Significantly phosphorylated proteins were used as the initial (seed) node set 

(colored red), and intermediate nodes predicted by pyPARAGON are green.  Active modules 

that are associated with at least one significantly overrepresented biological process are 

shown in this patient-specific network.  Each vertically aligned node set represents one active 

module. Nodes in each active module are layered based on their subcellular localization.  

 

Figure 4. Stratification of tumors and associated biological processes with patient clusters. a. 

105 breast cancer tumors are stratified into four clusters based on their similarity of 

significant biological processes in their network modules: cluster-1 (32 patients), cluster-2 

(22 patients), cluster-3 (19 patients), and cluster-4 (32 patients).  b. Heatmap of patient 

coverage ratio for each cluster and significant process pairs. A biological process is included 

in the heatmap if it is enriched in at least two clusters. The patient coverage ratio represents 

the ratio of patients having the enriched biological process in the corresponding clusters. The 

ubiquitin-dependent protein catabolic process and protein targeting were predominantly 

present in cluster-1 while mitotic cytokinesis in cluster-2, nervous system development in 

cluster-3, and actin cytoskeleton organization in cluster-4. c. Kaplan-Meier analysis shows 

the survival probabilities of cluster-1 (red) and cluster-4 (purple). Patients in cluster-4 have 

significantly worse survival in cluster-1. d. Heatmap shows significantly enriched KEGG 

pathways in active modules. The cell cycle, oocyte meiosis, PI3K/Akt, and Hippo signaling 

pathways were mostly observed in clusters-1, -3, and -4 while focal adhesion and Ras 

signaling pathways were prominent in cluster-4. e. The example module of A2-A0YD 

network corresponding to the Ras signaling pathway is shown where seed nodes are red and 

intermediate nodes are green. 
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Figure 5. Drug-module interaction network of a patient (TCGA-A2-A9YD). Drugs are 

shown in three colors corresponding to three categories: drugs in phase 3, 4, or preclinical 

stage, and authorized drugs in green; drugs in phase 2 or 3 in purple and patented and 

investigational drugs are in pink. Drugs are connected to their immediate targets (light red 

circles) and active modules having these targets (blue rectangles) in the network. One 

example is the drugs Adagrasib (MRTX849) and Sotorasib which targets Module_34. This 

module is enriched in the Ras signaling pathway has the immediate target protein KRAS of 

these drugs. 

Declarations 

Ethics approval and consent to participate 

Not applicable. 

 

Consent for publication 

Not applicable. 

 

Data availability 

The results shown here are in part based upon data generated by the TCGA Research 

Network: https://www.cancer.gov/tcga. Open-source datasets were utilized in this paper. As 

reference networks, we retrieved HIPPIE v2.2 and v2.3 from  http://cbdm-01.zdv.uni-

mainz.de/~mschaefer/hippie/,  ConsensusPathDB v35 from http://cpdb.molgen.mpg.de/. The 

signaling pathways were downloaded from NetPath, http://www.netpath.org/. Mutation 

frequencies for eight cancer types were available in 75. Cancer driver genes were retrieved 

from IntOGen, https://www.intogen.org.  Phosphoproteomic data from 105 breast cancer 

patients was generated by Berliner 56. Biological process and pathway information were 

downloaded from http://geneontology.org/ and https://www.genome.jp/kegg/pathway.html, 

respectively. Drug information were retrieved from the therapeutic target database, 

https://db.idrblab.net/ttd/   

 

Competing interests 

The authors declare that they have no competing interests. 

 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 15, 2023. ; https://doi.org/10.1101/2023.07.13.547583doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.13.547583
http://creativecommons.org/licenses/by-nc/4.0/


20 

Acknowledgments 

NT has received support from the 2247-A National Outstanding Researchers Program of 

TUBITAK under the project number 121C292. MKA has been financially supported by 

TUBITAK-2211 fellowship.  

  

Authors' contributions 

Conceptualization: MKA, NT 

Data curation: MKA 

Methodology: MKA, NT 

Project administration: NT 

Supervision: NT 

Visualization: MKA, NT 

References 

1. Liu, A. et al. From expression footprints to causal pathways: contextualizing large 

signaling networks with CARNIVAL. NPJ Syst Biol Appl 5, 40 (2019). 

2. Ross, K. E. et al. iPTMnet: Integrative Bioinformatics for Studying PTM Networks. 

Methods Mol. Biol. 1558, 333–353 (2017). 

3. Heumos, L. et al. Best practices for single-cell analysis across modalities. Nat. Rev. 

Genet. 1–23 (2023). 

4. Boehm, K. M., Khosravi, P., Vanguri, R., Gao, J. & Shah, S. P. Harnessing multimodal 

data integration to advance precision oncology. Nat. Rev. Cancer 22, 114–126 (2022). 

5. Rautenstrauch, P., Vlot, A. H. C., Saran, S. & Ohler, U. Intricacies of single-cell multi-

omics data integration. Trends Genet. 38, 128–139 (2022). 

6. Aalto, A., Viitasaari, L., Ilmonen, P., Mombaerts, L. & Gonçalves, J. Gene regulatory 

network inference from sparsely sampled noisy data. Nat. Commun. 11, 3493 (2020). 

7. Ren, M., Pokrovsky, A., Yang, B. & Urtasun, R. SBNet: Sparse Blocks Network for 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 15, 2023. ; https://doi.org/10.1101/2023.07.13.547583doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.13.547583
http://creativecommons.org/licenses/by-nc/4.0/


21 

Fast Inference. in Proceedings of the IEEE Conference on Computer Vision and Pattern 

Recognition, 8711–8720 (2018). 

8. Demirel, H. C., Arici, M. K. & Tuncbag, N. Computational approaches leveraging 

integrated connections of multi-omic data toward clinical applications. Mol Omics 18, 

7–18 (2022). 

9. Tong, L., Mitchel, J., Chatlin, K. & Wang, M. D. Deep learning based feature-level 

integration of multi-omics data for breast cancer patients survival analysis. BMC Med. 

Inform. Decis. Mak. 20, 225 (2020). 

10. Kim, S. Y., Jeong, H.-H., Kim, J., Moon, J.-H. & Sohn, K.-A. Robust pathway-based 

multi-omics data integration using directed random walks for survival prediction in 

multiple cancer studies. Biol. Direct 14, 8 (2019). 

11. Duan, R. et al. Evaluation and comparison of multi-omics data integration methods for 

cancer subtyping. PLoS Comput. Biol. 17, e1009224 (2021). 

12. Malod-Dognin, N. et al. Towards a data-integrated cell. Nat. Commun. 10, (2019). 

13. Shah, H. A., Liu, J., Yang, Z., Zhang, X. & Feng, J. DeepRF: A deep learning method 

for predicting metabolic pathways in organisms based on annotated genomes. Comput. 

Biol. Med. 147, 105756 (2022). 

14. Costello, Z. & Martin, H. G. A machine learning approach to predict metabolic pathway 

dynamics from time-series multiomics data. NPJ Syst Biol Appl 4, 19 (2018). 

15. Ritz, A. et al. Pathways on demand: Automated reconstruction of human signaling 

networks. npj Systems Biology and Applications 2, 1–9 (2016). 

16. Levi, H., Elkon, R. & Shamir, R. DOMINO: a network-based active module 

identification algorithm with reduced rate of false calls. Mol. Syst. Biol. 17, e9593 

(2021). 

17. Tuncbag, N. et al. Network-Based Interpretation of Diverse High-Throughput Datasets 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 15, 2023. ; https://doi.org/10.1101/2023.07.13.547583doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.13.547583
http://creativecommons.org/licenses/by-nc/4.0/


22 

through the Omics Integrator Software Package. PLoS Comput. Biol. 12, (2016). 

18. Jagtap, S. et al. BraneMF: integration of biological networks for functional analysis of 

proteins. Bioinformatics 38, 5383–5389 (2022). 

19. Zhou, Y. et al. Therapeutic target database update 2022: facilitating drug discovery with 

enriched comparative data of targeted agents. Nucleic Acids Res. 50, D1398–D1407 

(2022). 

20. Cowen, L., Ideker, T., Raphael, B. J. & Sharan, R. Network propagation: A universal 

amplifier of genetic associations. Nature Reviews Genetics vol. 18, 551–562 Preprint at 

https://doi.org/10.1038/nrg.2017.38 (2017). 

21. Di Nanni, N., Bersanelli, M., Milanesi, L. & Mosca, E. Network Diffusion Promotes the 

Integrative Analysis of Multiple Omics. Frontiers in Genetics10.3389/fgene.2020.00106 

(2020). 

22. Reyna, M. A., Leiserson, M. D. M. & Raphael, B. J. Hierarchical HotNet: identifying 

hierarchies of altered subnetworks. Bioinformatics 34, i972–i980 (2018). 

23. Silverman, E. K. et al. Molecular networks in Network Medicine: Development and 

applications. Wiley Interdisciplinary Reviews: Systems Biology and Medicine vol. 12 

1489 Preprint at https://doi.org/10.1002/wsbm.1489 (2020). 

24. Luna, A. et al. Analyzing causal relationships in proteomic profiles using CausalPath. 

STAR Protoc 2, 100955 (2021). 

25. Dugourd, A. et al. Causal integration of multi�omics data with prior knowledge to 

generate mechanistic hypotheses. Mol. Syst. Biol. 17, e9730 (2021). 

26. Levitsky, L. I. et al. IdentiPy: An Extensible Search Engine for Protein Identification in 

Shotgun Proteomics. J. Proteome Res. 17, 2249–2255 (2018). 

27. Unsal-Beyge, S. & Tuncbag, N. Functional stratification of cancer drugs through 

integrated network similarity. NPJ Syst Biol Appl 8, 11 (2022). 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 15, 2023. ; https://doi.org/10.1101/2023.07.13.547583doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.13.547583
http://creativecommons.org/licenses/by-nc/4.0/


23 

28. Nussinov, R. et al. Mechanism of activation and the rewired network: New drug design 

concepts. Med. Res. Rev. 42, 770–799 (2022). 

29. Dincer, C., Kaya, T., Keskin, O., Gursoy, A. & Tuncbag, N. 3D spatial organization and 

network-guided comparison of mutation profiles in Glioblastoma reveals similarities 

across patients. PLoS Comput. Biol. 15, e1006789 (2019). 

30. Hristov, B. H., Chazelle, B. & Singh, M. uKIN Combines New and Prior Information 

with Guided Network Propagation to Accurately Identify Disease Genes. Cell Systems 

10, 470–479.e3 (2020). 

31. Ogris, C., Hu, Y., Arloth, J. & Müller, N. S. Versatile knowledge guided network 

inference method for prioritizing key regulatory factors in multi-omics data. Sci. Rep. 

11, 6806 (2021). 

32. Yaveroğlu, Ö. N. et al. Revealing the hidden language of complex networks. Sci. Rep. 4, 

4547 (2014). 

33. Wong, S. W. H., Cercone, N. & Jurisica, I. Comparative network analysis via 

differential graphlet communities. Proteomics 15, 608–617 (2015). 

34. Sarajlić, A., Malod-Dognin, N., Yaveroğlu, Ö. N. & Pržulj, N. Graphlet-based 

Characterization of Directed Networks. Sci. Rep. 6, 35098 (2016). 

35. Martin, A. J. M., Dominguez, C., Contreras-Riquelme, S., Holmes, D. S. & Perez-Acle, 

T. Graphlet Based Metrics for the Comparison of Gene Regulatory Networks. PLoS One 

11, e0163497 (2016). 

36. Przulj, N. Biological network comparison using graphlet degree distribution. 

Bioinformatics 23, e177–83 (2007). 

37. Windels, S. F. L., Malod-Dognin, N. & Pržulj, N. Graphlet Laplacians for topology-

function and topology-disease relationships. Bioinformatics 35, 5226–5234 (2019). 

38. Li, Q. & Milenkovic, T. Supervised Prediction of Aging-Related Genes From a Context-

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 15, 2023. ; https://doi.org/10.1101/2023.07.13.547583doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.13.547583
http://creativecommons.org/licenses/by-nc/4.0/


24 

Specific Protein Interaction Subnetwork. IEEE/ACM Trans. Comput. Biol. Bioinform. 

19, 2484–2498 (2022). 

39. Zhang, L., Liu, T., Chen, H., Zhao, Q. & Liu, H. Predicting lncRNA-miRNA 

interactions based on interactome network and graphlet interaction. Genomics 113, 874–

880 (2021). 

40. Magnano, C. S. & Gitter, A. Automating parameter selection to avoid implausible 

biological pathway models.  npj Syst Biol Appl 7, 12 (2021)  

41. Babur, Ö. et al. Causal interactions from proteomic profiles: Molecular data meets 

pathway knowledge.  Patterns 2,  (2021). 

42. Arici, M. K. & Tuncbag, N. Performance Assessment of the Network Reconstruction 

Approaches on Various Interactomes. Front. Mol. Biosci. 8, 666705 (2021). 

43. Huang, J. K. et al. Systematic Evaluation of Molecular Networks for Discovery of 

Disease Genes. Cell Syst 6, 484–495.e5 (2018). 

44. Rubel, T. & Ritz, A. Augmenting signaling pathway reconstructions. in Proceedings of 

the 11th ACM International Conference on Bioinformatics, Computational Biology and 

Health Informatics 1, 1-10 (2020).   

45. Blondel, V. D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. Fast unfolding of 

communities in large networks. J. Stat. Mech. 2008, P10008 (2008). 

46. Boyle, E. I. et al. GO::TermFinder--open source software for accessing Gene Ontology 

information and finding significantly enriched Gene Ontology terms associated with a 

list of genes. Bioinformatics 20, 3710–3715 (2004). 

47. Kandasamy, K. et al. NetPath: A public resource of curated signal transduction 

pathways. Genome Biol. 11, (2010). 

48. Hu, G., Wu, Z., Uversky, V. N. & Kurgan, L. Functional Analysis of Human Hub 

Proteins and Their Interactors Involved in the Intrinsic Disorder-Enriched Interactions. 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 15, 2023. ; https://doi.org/10.1101/2023.07.13.547583doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.13.547583
http://creativecommons.org/licenses/by-nc/4.0/


25 

Int. J. Mol. Sci. 18, (2017). 

49. Vidal, M., Cusick, M. E. & Szló Barabá Si, A.-L. Leading Edge Review Interactome 

Networks and Human Disease. Cell 144, 986–998 (2011). 

50. Charmpi, K., Chokkalingam, M., Johnen, R. & Beyer, A. Optimizing network 

propagation for multi-omics data integration. PLoS Comput. Biol. 17, e1009161 (2021). 

51. Cruz, L., Soares, P. & Correia, M. Ubiquitin-Specific Proteases: Players in Cancer 

Cellular Processes. Pharmaceuticals  14, (2021). 

52. Shi, D. & Grossman, S. R. Ubiquitin becomes ubiquitous in cancer: emerging roles of 

ubiquitin ligases and deubiquitinases in tumorigenesis and as therapeutic targets. Cancer 

Biol. Ther. 10, 737–747 (2010). 

53. Huang, M.-L., Shen, G.-T. & Li, N.-L. Emerging potential of ubiquitin-specific 

proteases and ubiquitin-specific proteases inhibitors in breast cancer treatment. World J 

Clin Cases 10, 11690–11701 (2022). 

54. Lens, S. M. A. & Medema, R. H. Cytokinesis defects and cancer. Nat. Rev. Cancer 19, 

32–45 (2019). 

55. Li, J., Dallmayer, M., Kirchner, T., Musa, J. & Grünewald, T. G. P. PRC1: Linking 

Cytokinesis, Chromosomal Instability, and Cancer Evolution. Trends Cancer Res. 4, 59–

73 (2018). 

56. Ben-Zion Berliner, M. et al. Central nervous system metastases in breast cancer: the 

impact of age on patterns of development and outcome. Breast Cancer Res. Treat. 185, 

423–432 (2021). 

57. Haga, R. B. & Ridley, A. J. Rho GTPases: Regulation and roles in cancer cell biology. 

Small GTPases 7, 207–221 (2016). 

58. Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-Watanabe, M. 

KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 51, 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 15, 2023. ; https://doi.org/10.1101/2023.07.13.547583doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.13.547583
http://creativecommons.org/licenses/by-nc/4.0/


26 

D587–D592 (2023). 

59. Hallin, J. et al. The KRAS Inhibitor MRTX849 Provides Insight toward Therapeutic 

Susceptibility of KRAS-Mutant Cancers in Mouse Models and Patients. Cancer Discov. 

10, 54–71 (2020). 

60. Zhang, S. S. & Nagasaka, M. Spotlight on Sotorasib (AMG 510) for Positive Non-Small 

Cell Lung Cancer. Lung Cancer 12, 115–122 (2021). 

61. Peng, J., Zhou, Y. & Wang, K. Multiplex gene and phenotype network to characterize 

shared genetic pathways of epilepsy and autism. Sci. Rep. 11, 952 (2021). 

62. Riller, Q. & Rieux-Laucat, F. RASopathies: From germline mutations to somatic and 

multigenic diseases. Biomed. J. 44, 422–432 (2021). 

63. Muñoz-Maldonado, C., Zimmer, Y. & Medová, M. A Comparative Analysis of 

Individual RAS Mutations in Cancer Biology. Front. Oncol. 9, 1088 (2019). 

64. Mertins, P. et al. Proteogenomics connects somatic mutations to signalling in breast 

cancer. Nature 534, 55–62 (2016). 

65. Cheng, F. et al. Comprehensive characterization of protein-protein interactions 

perturbed by disease mutations. Nat. Genet. 53, 342–353 (2021). 

66. Kang, Y. et al. HN-PPISP: a hybrid network based on MLP-Mixer for protein-protein 

interaction site prediction. Brief. Bioinform. 24, (2023). 

67. Mosca, E. et al. Characterization and comparison of gene-centered human interactomes. 

Brief. Bioinform. 22, (2021). 

68. Kirkley, A., Cantwell, G. T. & Newman, M. E. J. Belief propagation for networks with 

loops. Sci Adv 7, (2021). 

69. Korkut, A. et al. Perturbation biology nominates upstream-downstream drug 

combinations in RAF inhibitor resistant melanoma cells. Elife 4, (2015). 

70. Ietswaart, R., Gyori, B. M., Bachman, J. A., Sorger, P. K. & Churchman, L. S. 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 15, 2023. ; https://doi.org/10.1101/2023.07.13.547583doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.13.547583
http://creativecommons.org/licenses/by-nc/4.0/


27 

GeneWalk identifies relevant gene functions for a biological context using network 

representation learning. Genome Biol. 22, 55 (2021). 

71. Sychev, Z. E. et al. Integrated systems biology analysis of KSHV latent infection reveals 

viral induction and reliance on peroxisome mediated lipid metabolism. PLoS Pathog. 13, 

e1006256 (2017). 

72. Dinstag, G. & Shamir, R. PRODIGY: personalized prioritization of driver genes. 

Bioinformatics 36, 1831–1839 (2020). 

73. Kuenzi, B. M. & Ideker, T. A census of pathway maps in cancer systems biology. Nat. 

Rev. Cancer 20, 233–246 (2020). 

74. Leiserson, M. D. M. et al. Pan-cancer network analysis identifies combinations of rare 

somatic mutations across pathways and protein complexes. Nat. Genet. 47, 106–114 

(2015). 

75. Licata, L. et al. SIGNOR 2.0, the SIGnaling Network Open Resource 2.0: 2019 update. 

Nucleic Acids Res. 48, D504–D510 (2020). 

76. Alanis-Lobato, G., Andrade-Navarro, M. A. & Schaefer, M. H. HIPPIE v2.0: enhancing 

meaningfulness and reliability of protein-protein interaction networks. Nucleic Acids 

Res. 45, (2017). 

77. Kamburov, A. & Herwig, R. ConsensusPathDB 2022: molecular interactions update as a 

resource for network biology. Nucleic Acids Res. 50, D587–D595 (2022). 

78. Ellrott, K. et al. Scalable Open Science Approach for Mutation Calling of Tumor 

Exomes Using Multiple Genomic Pipelines. Cell Syst 6, 271–281.e7 (2018). 

79. Martamp, F. et al. A compendium of mutational cancer driver genes. Nat. Rev. Cancer 

20, 555–572 (2020). 

80. Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: Clustering, 

Classification and Density Estimation Using Gaussian Finite Mixture Models. R J. 8, 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 15, 2023. ; https://doi.org/10.1101/2023.07.13.547583doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.13.547583
http://creativecommons.org/licenses/by-nc/4.0/


28 

289–317 (2016). 

81. Raschka, S., Liu, Y., Mirjalili, V. & Dzhulgakov, D. Machine Learning with PyTorch 

and Scikit-Learn: Develop machine learning and deep learning models with Python. 

(Packt Publishing Ltd, 2022). 

82. Carbon, S. & Mungall, C. Gene Ontology Data Reference. Zenodo (2018). 

83. Chapple, C. E. et al. Extreme multifunctional proteins identified from a human protein 

interaction network. Nat. Commun. 6, 7412 (2015). 

84. Langville, A. N. & Meyer, C. D. A Survey of Eigenvector Methods for Web Information 

Retrieval. Society for Industrial and Applied Mathematics 47, 135–161 (2005). 

85. Page, L., Brin. S., Motwani, R. & Winograd T. The PageRank Citation Ranking: 

Bringing Order to the Web. (1998). 

86. Tuncbag, N. et al. Simultaneous reconstruction of multiple signaling pathways via the 

prize-collecting steiner forest problem. Journal of Computational Biology 20, 124–136 

(2013). 

87. Gil, D. P., Law, J. N. & Murali, T. M. The PathLinker app: Connect the dots in protein 

interaction networks. F1000Res. 6, 58 (2017). 

88. Cieslak, M. C., Castelfranco, A. M., Roncalli, V., Lenz, P. H. & Hartline, D. K. t-

Distributed Stochastic Neighbor Embedding (t-SNE): A tool for eco-physiological 

transcriptomic analysis. Mar. Genomics 51, 100723 (2020). 

89. Scrucca, L., Santucci, A. & Aversa, F. Competing risk analysis using R: an easy guide 

for clinicians. Bone Marrow Transplant. 40, 381–387 (2007). 

 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 15, 2023. ; https://doi.org/10.1101/2023.07.13.547583doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.13.547583
http://creativecommons.org/licenses/by-nc/4.0/


.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 15, 2023. ; https://doi.org/10.1101/2023.07.13.547583doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.13.547583
http://creativecommons.org/licenses/by-nc/4.0/


.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 15, 2023. ; https://doi.org/10.1101/2023.07.13.547583doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.13.547583
http://creativecommons.org/licenses/by-nc/4.0/


.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 15, 2023. ; https://doi.org/10.1101/2023.07.13.547583doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.13.547583
http://creativecommons.org/licenses/by-nc/4.0/


.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 15, 2023. ; https://doi.org/10.1101/2023.07.13.547583doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.13.547583
http://creativecommons.org/licenses/by-nc/4.0/


.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 15, 2023. ; https://doi.org/10.1101/2023.07.13.547583doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.13.547583
http://creativecommons.org/licenses/by-nc/4.0/

