bioRxiv preprint doi: https://doi.org/10.1101/2023.07.12.548777; this version posted July 14, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

1 DeepETPicker: Fast and accurate 3D particle picking for cryo-

2 electron tomography using weakly supervised deep learning

3

4 Guole Liu"?3 ", Tongxin Niu*? *, Mengxuan Qiu"?3, Yun Zhu>%, Fei Sun*>%7", and Ge

5 Yang!?3"

6

7 1. State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of

8 Automation, Chinese Academy of Sciences, Beijing, 100190, China

9 2. National Laboratory of Pattern Recognition, Institute of Automation, Chinese
10 Academy of Sciences, Beijing, 100190, China

11 3. School of Artificial Intelligence, University of Chinese Academy of Sciences,
12 Beijing, 100049, China

13 4. Center for Biological Imaging, Institute of Biophysics, Chinese Academy of
14 Sciences, Beijing, 100101, China

15 5. National Key Laboratory of Biomacromolecules, CAS Center for Excellence in
16 Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing,
17 100101, China.

18 6. School of Life Sciences, University of Chinese Academy of Sciences, Beijing,
19 100049, China

20 7. Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong

21 Laboratory), Guangzhou, Guangdong, 510005, China.
22

23 * These authors contributed equally.

24

25 " Corresponding authors:

26 Ge Yang, Email: yangge@ucas.edu.cn

27 Fei Sun, Email: feisun@ibp.ac.cn

28


https://doi.org/10.1101/2023.07.12.548777
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.12.548777; this version posted July 14, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

1  ABSTRACT

2 Picking particles of biological macromolecules from their cryo-electron tomograms
3 iscritical to solving their 3D structures in sifu. To reach sub-nanometre resolution, large
4 numbers of particles often need to be picked, a laborious and time-consuming task if
5 performed manually. To date, however, the adoption of automated particle-picking
6  methods remains limited because of the limitations in their accuracy, processing speed
7 and, for those based on learning models, manual annotation cost. To overcome the

limitations, we develop DeepETPicker, a deep learning model for fast and accurate

9  picking of 3D particles from cryo-electron tomograms. The training of DeepETPicker
10 requires only weak supervision with low numbers of simplified Gaussian-type labels,
11 reducing the burden of manual annotation of tomograms under very low signal-to-noise
12 ratios. The simplified labels combined with the customized and lightweight model
13 architecture of DeepETPicker as well as GPU-accelerated pooling enable substantially
14 improved accuracy and accelerated processing speed. When tested on simulated as well
15  as real tomograms, DeepETPicker outperforms the competing state-of-the-art methods
16 by achieving the highest overall accuracy and speed, which translate into better quality
17 of picked particles and higher resolutions of final reconstruction maps. DeepETPicker
18  is provided in open source with a user-friendly interface to support automated particle
19  picking for high-resolution cryo-electron tomography in situ.
20
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1  INTRODUCTION

2 Structural biologists have traditionally followed a reductionist approach to handle
3 cellular complexity, in which the molecular components of cells are isolated, purified,
4 and then studied individually. Although this approach has been tremendously successful,
5 it is also crucial to study the structures and functions of biological macromolecules in
6 their native cellular environments'. Cryo-electron tomography (cryo-ET) provides a
7 powerful tool for visualizing macromolecular complexes under native conformations at

subnanometre resolutions and for revealing their spatial and organizational
9  relationships®. This provides new mechanistic insights into key cellular processes and
10 new possibilities for applications such as drug discovery. As biological samples are very
11 sensitive to radiation damage, the native resolution of cryo-ET is limited to ~2-5 nm
12 given the dose of imaging electrons that can be tolerated®. This resolution is insufficient
13 for studying the structures and functions of macromolecular complexes. Subtomogram
14 averaging (STA) is commonly used to obtain higher-resolution structures by aligning
15  and averaging large numbers of particles of the same macromolecular complexes®.
16  However, the manual picking of large numbers of particles is laborious and time-
17 consuming. Automated tools for picking 3D particles from cryo-electron tomograms
18  with high accuracy and efficiency are critically needed for high-resolution in situ
19  structural biology.
20 In addition to the intrinsically crowded cellular environment, at least two additional
21 technical challenges are encountered when performing 3D particle localization and
22 identification in cryo-electron tomograms. First, the total electron dose used in cryo-ET
23 experiments is limited to minimize radiation damage, resulting in very low signal-to-
24 noise ratios (SNRs) for the reconstructed tomograms>. Second, the tilt ranges of cryo-
25 ET experiments are often restricted to £60 degrees due to electron penetration depth
26  limitations, which result in missing wedges in the reconstructed tomograms, causing
27 structural distortions of macromolecular complexes in different orientations®. Overall,
28  picking 3D particles from noisy and distorted tomograms of crowded cellular contents
29 is substantially more challenging than picking 2D particles from cryo-electron

30  micrographs for single-particle analyses.


https://doi.org/10.1101/2023.07.12.548777
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.12.548777; this version posted July 14, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

1 To pick 3D particles for cryo-ET, both conventional and deep neural network
2 (DNN)-based methods have been developed’®. Among the conventional methods,
3 template matching (TM)’ and difference of Gaussians (DoG)!? are widely adopted. In
4 TM, the position and orientation of a predefined template that best matches the
5 tomogram to be processed are determined by maximizing their cross-correlation.
6  However, TM has several limitations, including its strong dependence on the quality of
7 the predefined template, its requirement of manual threshold tuning for cross-correlation,

and its high false-positive rates under low SNRs. DoG picks particles using a bandpass

9 filter that removes high- and low-frequency components. However, it picks particles

10 regardless of their classes, and its performance depends heavily on the tuning of its
11 Gaussian filters for different datasets.

12 In recent years, DNN-based methods have become the state-of-the-art 3D particle

T’811-13 For example, Faster-RCNN has been used to

13 picking approaches for cryo-E
14 automatically locate and identify different structures of interest in tomograms in a slice-
15  by-slice manner, but the 3D information between adjacent slices is not fully utilized!?.
16  To promote the development of 3D particle picking algorithms, the SHREC Challenge
17 developed datasets of simulated cryo-electron tomograms to benchmark different
18  particle picking methods”®!>. The results showed that deep learning-based methods
19  achieved much faster processing speed and much better localization and classification
20 performance than conventional methods such as TM. In the SHREC2019 Challenge,
21 DeepFinder achieved the best overall localization performance!®. It uses a 3D-UNet to
22 generate a segmentation voxel map and determines the positions of particles using a
23 mean-shift clustering algorithm. In the SHREC2020 and SHREC2021 challenges, MC-
24 DS-Net achieved the best overall classification performance by using a denoising and
25 segmentation architecture. However, its model contains many parameters, imposing
26 high hardware performance requirements. Moreover, MC-DS-Net is trained by real full
27 masks of macromolecular particles, which are usually unavailable in real-world cryo-
28  ET studies. In contrast, DeepFinder uses spherical masks for approximation's. These
29  masks provide good performance for medium- and large-sized macromolecules but

30  worse performance than real masks for small particles. Considering that real cryo-
4
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1  electron tomograms contain more complex intracellular environments than the simulated

2 data used in the SHREC Challenges, the performances of those methods tested in the
3 SHREC Challenges must be further validated on real experimental cryo-ET data.

4 Overall, despite the various automated particle picking methods developed for cryo-
5  ET, their adoption in practice remains limited. This is mainly due to the limitations in
6  their picking accuracy, processing speed and, for learning-based methods, manual
7 annotation cost. In this study, to address the limitations, we develop a new deep learning-

based method named DeepETPicker, which accurately and rapidly picks 3D particles

9  from cryo-electron tomograms with a low training cost. It utilizes a 3D-ResUNet
10 segmentation model as its backbone to distinguish biological macromolecules from their
11 backgrounds in tomograms. The model training process of DeepETPicker requires only
12 weak supervision using simplified labels and fewer training labels to attain performance
13 comparable to that of competing methods, which reduce the cost of manual annotation.
14 Fast postprocessing is performed on the generated segmentation masks to obtain the
15  centroids of individual particles. To enhance the localization performance of
16  DeepETPicker on small macromolecular particles, coordinated convolution and
17 multiscale image pyramid inputs are incorporated into the architecture of the 3D-
18  ResUNet model. To address the usual lack of real full masks of macromolecular particles
19  in practice, different types of simplified weak labels are tested as replacements. To
20 eliminate the negative influence of poor segmentation accuracy in edge voxels, a spatial
21 overlap-based strategy is developed. Finally, to maximize the speed of particle picking,
22 acustomized lightweight model and GPU-accelerated pooling-based postprocessing are

23 utilized.

24 When tested on simulated datasets from the SHREC2020 and SHREC2021
25 challenges, DeepETPicker achieves the highest overall processing speed and the best
26  performance in both localization and classification. The performance of DeepETPicker
27 is further verified on four real experimental cryo-ET datasets (EMPIAR-10045,
28  EMPAIR-10651, EMPIAR-10499 and EMPIAR-11125). The results show that it

29  outperforms the competing state-of-the-art methods by achieving higher picking

5
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1  accuracy and yielding better quality in picked particles and better resolution in final
reconstructions. DeepETPicker is provided as open-source software with an easy-to-use

graphical user interface (GUI). It will serve as a fast and accurate tool to support

>~ W DN

automated 3D particle picking for high-resolution in situ cryo-ET studies.

METHODS

Overview of DeepETPicker

© o0 N O O

The overall workflow of using DeepETPicker to pick 3D particles from tomograms
10 (Fig. 1) consists of a training stage (Figs. 1a-d) and an inference stage (Figs. le-i). A
11 tomogram is usually too large to be directly loaded into the DNN segmentation model
12 for training because of memory constraints. Instead, it is partitioned into cubic volumes,
13 which are often called subtomograms (Figs. 1a, ¢, e). During the training stage, given
14  an input subtomogram, the parameters of the DNN segmentation model of
15  DeepETPicker are adjusted to minimize the difference between its output and the ground
16  truth, as defined by voxel-level annotation labels for the input subtomogram. Typically,
17 more than 90% of the voxels are background voxels in experimental tomograms, and
18  the proportion of macromolecular particles in volume is very small. To better segment
19  particles of interest and to avoid oversegmenting the background, subtomograms centred
20 on individual particles are extracted in the training stage. This strategy ensures that all
21  annotated particles are used and that each volume contains at least one particle. During
22 the inference stage, every tomogram is scanned with a specific stride s and a
23  subtomogram size of N X N X N (Fig. 1e). The trained DeepETPicker is used to
24 process unseen subtomograms to produce voxel-level masks for individual particles. A
25 GPU-accelerated pooling-based postprocessing operation is then performed to directly
26 and rapidly identify particle centres (see below). In this study, training and inference of
27  DeepETPicker is performed on a single Nvidia GeForce GTX 2080Ti GPU.

28 DeepETPicker is provided as open-source software in Python with a friendly GUI
29  (Supplementary Fig. 1) that integrates multiple functions, including preprocessing

30  input tomograms, manually annotating particles, visualizing labelled particles,

6
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1  generating weak labels, and configuring parameters for particle picking. The

2 visualization results can be adjusted via filtering and histogram equalization operations.
3 Users can conveniently label particle centres or delete false labels. Different classes of
4 particles in the same tomogram can be labelled simultaneously. The coordinates of
5 labelled particles can be exported to files with different formats that are compatible with
6  commonly used subtomogram averaging software.

7

Particle annotation using simplified labels
9 The supervised training of the DNN model of DeepETPicker requires pairs of

10 subtomograms and their corresponding voxel-level masks/labels (Figs. 1a, ¢). Limited
11 by the low SNRs and reconstruction distortion of tomograms, the manual voxel-level
12 annotation of macromolecular particles is challenging and time-consuming. In this
13 study, our goal is to identify particles rather than to obtain their full masks. To this end,
14 we simplify the manual annotation process by only labelling the centres of particles,
15 which is simple and efficient. Based on the annotations, three types of simplified masks
16 centred on the labelled particles are generated as replacements for the real full masks,
17 including Gaussian masks (Gau-M), cubic masks (Cub-M) and ball masks (Bal-M).
18 Specifically, taking the centre of each particle as the origin, the corresponding

19  simplified masks with sizes of [2r 4+ 1,2r + 1,2r + 1] are generated as follows:

20 M={(xy2)|xyz€[-rr|nZ} (1)
21
22 maskcyupic(x,y, Z)l(x,y,z)EM =c (2)
23
24 maskpqu(x,y, Z)I(x,y,z)eM = {C if yx* +y* 428 < 3)
0 otherwise
25
_x%4y%+z?
1 2
26 maskgaussian(x, Yy, Z)I(x,y,z)EM = {c if e 2r > t, (4)
0 otherwise

27 where c is the class index and t; = 0.368 is a hyperparameter to ensure that the
28  generated Gau-M is sufficiently different from Bal-M and Cub-M (See Supplementary

29  Methods A.3 for further information). The diameter of each generated mask is denoted

7


https://doi.org/10.1101/2023.07.12.548777
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.12.548777; this version posted July 14, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

1 as d = 2r + 1, which should be no larger than the particle diameter. To ensure good

2 particle picking performance, the diameter of the particles in the given tomogram should
3 preferably be between 7-25 voxels. If the particle diameter is much larger than 25 voxels,
4 proper binning operations can be used to keep the particle diameter within the
5 recommended range. Examples of the three types of masks are shown in Fig. 1b and
6  Supplementary Fig. 2a.

7 Compared to the real full masks of biological particles, these simplified masks can

8  be seen as a class of weak supervision labels!®!7. Subsequent experiments show that

©

DNN segmentation models trained by these simplified labels can effectively
10 segment/detect particles of interest in tomograms.

11

12 Architecture of the 3D segmentation model

13 The DNN segmentation model of DeepETPicker, called 3D-ResUNet, adopts an
14 encoder-decoder architecture (Supplementary Fig. 2b). Specifically, the residual
15 connection idea from 2D-ResNet!® is incorporated into 3D-UNet!” to better extract
16 features from tomograms. The 3D-ResUNet architecture has 3 downsampling layers in
17 its encoder and 3 upsampling layers in its decoder. Three-dimensional transpose
18 convolution is used in the decoder to upsample feature maps. An ELU?? is used as the
19 activation function to accelerate the convergence of the training process. To improve
20 the localization of particles, coordinated convolution?! and image pyramid inputs?? are
21 incorporated into 3D-ResUNet, which takes the voxel of each subtomogram as input
22 and outputs n probability scores for (n — 1) classes of structures of interest and the
23 background, respectively, for each voxel. Coordinated convolution incorporate the
24 spatial context of input images into the convolutional filters, while image pyramid

25 inputs preserve features of input images at different resolution levels.
26

27  Configuration for model training and validation
28 To improve the generalization capability of the segmentation model, data
29  augmentation is used in the training stage. Specifically, the following transformations

30  are performed on the training datasets: random cropping, mirror transformation, elastic

8
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1 deformation less than 5%, scaling in the range of [0.95, 1.05], and random rotation at
angles within [-15°, +15°]. Training is performed using an AdamW optimizer?* with an

initial learning rate of 10~ and a weight decay of 0.01. The Dice loss** is used to calculate

>~ W DN

the difference between the predicted labels and ground-truth labels:

2 ZI'V—30 pigi + &
5 LD = 1 - = (5)
“ ?fo piz + Zliv=30 giz +e

6  where p; € RV*N*N denotes the labels predicted by the segmentation model, g; €
7 RN*NXN denotes the ground truth, and & = 1078 is a small value added for numerical

8  stability.
9 A generalized form of the Fl-score, F1, = %, is used as a metric for model

10 validation to place greater emphasis on model recall, where a is a hyperparameter.
11 When a=1, F1, becomes the Fl-score. When a > 1, the model with higher
12 recall R obtains a higher F1,. In this study, the hyperparameter a« = 3 1is used.

13

14 Postprocessing using mean-pooling nonmaximum suppression (MP-NMS) and

15  overlap-tile (OT)

16 The value of each voxel in the score map generated by 3D-ResUNet denotes its
17 probability of belonging to a certain class, which is in the range of [0, 1]. A specific
18 threshold tg,, is selected to transform a score map into a binary map. A voxel whose
19 value is below the threshold is labelled as 0 and otherwise as 1 so that a binary map is
20 generated. Then, the proposed MP-NMS operation, consisting of multiple iterations of
21 mean pooling (MP) and one iteration of nonmaximum suppression, is performed on the
22 binary map as the initial input. An example of MP-NMS applied on a 2D binary image
23 with asize of 40 X 40 pixels is shown in Fig. 1h. The first row shows the outputs of
24 different iterations of MP operations performed on the binary image. After each MP
25 operation, the voxels at mask edges are pulled closer to the voxel value of the
26 background. As the number of MP iterations increases, all voxels of the mask are
27 updated. Eventually, the binary mask is converted into a soft mask. The further a voxel

28 in the mask is from the background, the larger its value. Each local maximum can be

9
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1 considered a candidate particle centre. The larger the local maximum, the higher the

2 probability that it is a particle centre. MP-NMS can distinguish between the centres of
3 multiple particles that partially overlap, as long as they have distinguishable features
4 (Fig. 1h). Compared to clustering algorithms such as the mean-shift used in
o DeepFinder!3, the MP-NMS operation is substantially faster when accelerated using a
6  GPU (Supplementary Table 6).
7 For an MP operation with a kernel size of k X k X k and a stride of 1, the
receptive field of each voxel after the i™ iterations of MP operations is
9 RF, =14+ (k—1)*i (6)
10
11 To obtain the centroid of a particle with a diameter of (2r + 1), the receptive field

12 RF; should be no smaller than the particle diameter. Thus, the minimum number of
13 iterations of MP operations is [%], where [-] denotes the round-up operation.

14 To eliminate the negative influence of the poor segmentation accuracy achieved
15 for edge voxels in subtomograms, an OT strategy is used in the inference stage. Taking
16 the 2D segmentation case in Fig. 1h as an example and assuming that the image marked
17 by the green box is the output of the 3D-ResUNet model, only the centre region marked
18 by the red box is considered during the inference stage to eliminate the poor
19 segmentation of edge pixels. The size of the red box is determined using a
20 hyperparameter termed ‘pad_size’. Each tomogram is scanned with a specific stride s
21 and a subtomogram size of N X N X N in the inference stage, where s =N — 2 -
22 padg;,.. Only the local maximum in the region of [pads;ze.: N — padsize, Padsize: N —
23 padgize, padgize: N — padg;,.] is retained.

24 To reduce background interference and avoid repetition during particle detection,
25 two further postprocessing operations are performed. First, the local maxima below a
26 threshold t;,,, are removed. Second, if the minimal Euclidean distance between two
27 local maxima is lower than a specific threshold t,;s, the smaller local maximum is
28  discarded.

29

30

10
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1

2 Quality metrics for picked particles

3 To compare the performance of DeepETPicker with that of other competing state-
4 of-the-art methods, three performance metrics are used: precision P, recall R, and the

5  F;j-score F13%°, which are defined as follows:
TP

6 - 7
P TP + FP ™
TP
7 - 8
R TP + FN (®)
P-R

8 F,=2—— 9
1 P+R )

9 where TP, FP and FN stand for true positives, false positives, and false negatives,
10 respectively. For a particle with a radius of r, its predicted label is considered positive
11 ifthe Euclidean distance from its predicted particle centre to the ground truth is less than
12 r.Otherwise, it is considered negative. To measure the localization accuracies of particle
13 picking algorithms, the average Euclidean distance (AD) from the predicted particle
14 centre to the ground truth is calculated in voxels.

15 For real experimental datasets without ground truths, we used the B-factor, global
16 resolution, local resolution, and log-likelihood distribution to evaluate and compare the
17 quality of the particles picked by DeepETPicker and the competing state-of-the-art
18  methods.

19 The B-factor of a set of particles is computed by the Rosenthal-Henderson plot
20 (RH plot)?®, which shows the inverse of the resolution squared against the logarithm of
21 the number of particles. A higher B-factor means that a lower inclination and a larger
22 number of particles are needed to reach the same reconstruction resolution, therefore
23 indicating that the picked particles have lower quality.

24 Another common metric for evaluating the quality of picked particles is the global
25 3D reconstruction resolution. By refining two models independently (one for each half
26  of the data), the gold-standard Fourier shell correlation (FSC) curve is calculated?®?7-3¢

27  using the following formula:

11
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] FSC(k, AK) = Real(Zqeao Fl(K)FZ(K))l k= |K]| (10)

(Z(k,Ak)|F1(K)|2 |F2(K)|2)E

where K is the spatial frequency vector and k is its magnitude. F;(K), F,(K) are the

Fourier transforms of the reconstructions for the two independent halves of the datasets.
The FSCo.143 cut-off criteria®’ are used to calculate the global resolution.

In addition to the global resolution, the local resolution is another commonly used
metric for evaluating the quality of the reconstruction map?!, which can be calculated in
different ways by ResMap?!, MonoRes*?, DeepRes*’, etc. In this study, we use the
ResMap algorithm implemented in RELION>* to analyse the local resolution. Overall,

O© 0 N O O =~ w1

in comparing different particle picking methods, when other conditions are kept the

Ju—
(e

same, if particles picked by a certain method achieves higher resolution in reconstruction

—_
—_

maps than competing methods, we consider the particles picked by this method to be of

Ju—
N}

higher quality overall.

13 In addition to the metrics described above, we propose new metrics to quantify the
14 quality of the picked particles based on the Bayesian theory of subtomogram averaging
15  implemented in RELION*. Our approach aims to find the model that has the highest
16  probability of being the correct one based on both the observed data and the available
17 prior information. The optimization of a posterior distribution is called maximum a
18  posteriori or regularized likelihood optimization. For a given dataset of picked particles,
19  after a posteriori maximization, each particle is assigned two estimated parameters: one
20 s called the log-likelihood contribution to quantify its contribution to the final model,
21 and the other is called the maximum value probability to quantify the accuracy of the
22 particle parameter estimations (e.g., the orientation and the shift). The distribution
23 statistics of the number of particles versus the log-likelihood contribution and the
24 cumulative statistics of the number of particles versus the maximum value probability
25 are used in this study to evaluate and compare the quality of picked particles. A larger
26  number of particles with higher log-likelihood and higher probability values indicates
27 better quality.

28

29  Comparison among the particles picked by different methods

12
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1 To compare the sets of particles picked by two different methods, a duplication
2 removal operation is performed to calculate their intersection and difference sets.
3 Specifically, if the minimal Euclidean distance between two particles is lower than a
4 specific threshold t,;;, Which is normally set to half of the diameter of the particle, the
5  two particles are considered the same. The intersection set contains particles picked by
6  both methods, whereas the two difference sets contain particles picked by one but not
7 the other method. For example, if we denote the set of particles picked by method 4

simply as A4 and the set of particles picked by method B simply as B, the particles in the
9 intersection set A N B are picked by both method 4 and method B. The particles in the
10  difference set A — B are picked by A but not by B, whereas the particles in the
11 difference set B — A are picked by B but not by A. Further explanations and
12 illustrations of the intersection and difference sets are given in Supplementary Fig. 3.
13

14  Datasets used for performance benchmarking

15 The performance of DeepETPicker is benchmarked on both simulated and real
16  cryo-ET tomograms from six datasets: SHREC2020, SHREC2021, EMPIAR-10045,
17  EMPIAR-10651, EMPIAR-10499, and EMPIAR-11125. The DeepETPicker
18  hyperparameters used for these datasets are summarized in Supplementary Table 1.
19 For each of the four experimental EMPIAR datasets, the overall workflow is to manually
20 label the selected particles, use the labelled particles for model training and, finally, use
21 the trained model to pick particles from all testing tomograms. Detailed information on
22 how each dataset is partitioned for training, validation, and testing is provided in the
23 Supplementary Methods.

24 SHREC2020 is a dataset of simulated cryo-ET tomograms®. It consists of 10
25 tomograms of cell scale volumes. Each tomogram contains 12 classes of protein particles
26  that vary in size, structure, and function. Ranked by their molecular weights from small
27  to large, the Protein Data Bank (PDB) codes of the 12 classes of protein particles are
28  1s3x,3qml, 3gll, 3h84, 2cg9, 3d2f, 1ubg, 3cf3, 1bxn, 1qvr, 4cr2 and 4d8q. Tomograms

29 0 to 7 are used for training, tomogram 8 is used for validation and hyperparameter

13
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1  optimization, and tomogram 9 is used for testing. DeepETPicker takes tomogram voxels

2 as its inputs. For each voxel, it outputs 13 probability scores that correspond to the 12
3 protein classes and the background, respectively.

4 SHREC2021 is another dataset of simulated cryo-ET tomograms'>. Compared to
5 SHREC2020, some major updates were made to the simulation process. Gold fiducial
6  markers and vesicles were added to provide realistic additional challenges. SHREC2021
7 consists of 10 tomograms of cell scale volumes. Each tomogram contains 12 classes of

protein particles that vary in size, structure, and function. Ranked by their molecular
9  weights from small to large, the PDB codes of the 12 classes of protein particles are
10 1s3x,3qml, 3gll, 3h84, 2cg9, 3d2f, 1ubg, 3cf3, 1bxn, 1qvr, 4cr2 and Smrc. Tomograms
11 0 to 7 are used for training, tomogram 8 is used for validation and hyperparameter
12 optimization, and tomogram 9 is used for testing. DeepETPicker takes tomogram voxels
13 as its inputs. For each voxel, it outputs 15 probability scores that correspond to the 12
14 protein classes plus vesicles, gold fiducial markers, and the background, respectively.
15 EMPAIR-10045 is a real experimental cryo-ET dataset. It contains 7 tomograms of
16  purified S. cerevisiae 80S ribosomes®*. Each tomogram contains an average of 445
17  manually picked particles. The original tomogram and manually picked particle
18  coordinates are contained in the subdirectory of the EMPIAR entry. Based on the aligned
19  tilt series, ICON?¢ is used to reconstruct tomograms with better contrast for particle
20 picking (Supplementary Fig. 4a). To reduce the computational cost and to increase the
21 SNR, the tilt series are downsampled 4x before performing ICON reconstruction so that
22 the diameter of the 80S ribosome in the final tomogram is ~23-24 voxels. For particle
23 picking and performance comparisons, four different methods are chosen, including
24 DeepETPicker, crYOLO??, DeepFinder!'3, and TM®. TM is performed by Dynamo?® with
25  areference map from EMDB entry EMD-0732 low-pass filtered to 60 A (see also the
26 tutorial'). A total of 150 manually labelled particles are used for training and validation

27  of DeepETPicker, crYOLO and DeepFinder (See Supplementary Methods A.8). The

" http://wiki.dynamo.biozentrum.unibas.ch/w/index.php/Walkthrough for template matching
14


https://doi.org/10.1101/2023.07.12.548777
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.12.548777; this version posted July 14, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

1 tutorials?>? provided for crYOLO and DeepFinder are followed for model training and

2 particle picking. Based on the obtained coordinates of ribosome particles, subtomograms
3 are directly extracted from the original tomograms. Subtomogram averaging is
4 performed (Supplementary Fig. 4a) by following the reported protocol using the same
5  parameters*4, including CTF estimation, particle extraction, 3D classification (with one
6 class only) and 3D autorefinement. The CTF model of each particle is generated using
7 RELION scripts.

EMPAIR-10651 is a real experimental cryo-ET dataset of cylindrical T20S
9  proteasomes from Thermoplasma acidophilum®. It contains 3 tomograms of purified
10 T20S proteasomes. Based on the aligned tilt series contained in the subdirectory of the
11 EMPIAR entry, tomo3d is used to reconstruct the tomograms (Supplementary Fig. 4b).
12 To reduce the computational cost and increase the SNR, the tilt series are downsampled
13 4x before performing tomo3d reconstruction so that the diameter of the T20S
14 proteasome in the final tomogram is ~21 voxels. Similar to EMPAIR-10045,
15  DeepETPicker, crYOLO?’, DeepFinder!3, and TM? are chosen for particle picking and
16  performance comparisons. TM is performed by Dynamo?® with a reference map from
17 EMDB entry EMD-12531 low-pass filtered to 60 A. A total of 142 manually labelled
18  particles are used for training and validation of DeepETPicker, crYOLO and DeepFinder
19 (See Supplementary Methods A.8). Similar to EMPAIR-10045, the model training and
20 particle picking processes of crYOLO and DeepFinder are performed following the
21 respective tutorials provided. Based on the obtained coordinates, subtomograms are
22 extracted from the original tomograms. Then, subtomogram averaging is performed in
23 RELION 2.1.0 (Supplementary Fig. 4b), including CTF estimation, particle extraction,
24 3D classification (with one class only) and 3D autorefinement. The CTF model of each
25 particle is generated using RELION scripts.
26 EMPIAR-10499 is a real experimental cryo-ET dataset of native M. pneumoniae
27 cells treated with chloramphenicol*. In this study, we focus on picking 70S ribosome

28  particles from these in situ tomograms. Ten tomograms (TS 77, TS 78, TS 79, TS 80,

* http://cryolo.readthedocs.io/en/stable/tutorials/tutorial _overview.html#tutorial-5-pick-particles-in-tomograms-beta
’ https://deepfinder.readthedocs.io/en/latest/tutorial html
15
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1 TS 81, TS 82, TS 84, TS 85, TS 87 and TS 88) from this dataset are selected for

2 particle picking and verification purposes (Supplementary Fig. 4c). CTF estimation
3 and motion correction are performed on the original movie stacks using Warp 1.0.9%!,
4 and the tilt series as well as the tilt angle files are imported into IMOD 4.9.124? for tilt
5 alignment and tomogram reconstruction using the weighted back-projection algorithm
6  with aradial filter cut-off of 0.35 and a fall-off of 0.05. To reduce the computational cost
7 and increase the SNR, the reconstructions are downsampled 4x so that the diameter of

the 70S ribosome in the final tomogram is ~23-24 voxels. Again, DeepETPicker,
9  ¢crYOLOY, DeepFinder'?, and TM? are chosen for particle picking and performance
10 comparisons. TM is performed by Dynamo with a reference map from EMDB entry
11 EMD-21562 low-pass filtered to 60 A. A total of 117 manually labelled particles are
12 used for training and validation of crYOLO and DeepETPicker, and 703 particles are
13 used for training and validation of DeepFinder (See Supplementary Methods A.8).
14 Finally, RELION 2.1.0 (Supplementary Fig. 4¢) is used to perform subtomogram
15  averaging, including CTF estimation, particle extraction, 3D classification (with one
16  class only) and 3D autorefinement. The CTF model of each particle is generated using
17 RELION scripts. The local resolution is directly calculated using RELION 2.1.0.
18 EMPIAR-11125 is an experimental cryo-ET dataset of H. neapolitanus alpha-
19  carboxysomes*. Three stacks (CB_02, CB 29, CB_59) are available from its EMPIAR
20 entry for particle picking and verification purposes (Supplementary Fig. 4d). CTF
21 estimation and motion correction are performed on the original movie stacks using Warp
22 1.0.9*!. Tilt alignment is performed using Dynamo*. To reduce the computational cost
23  and increase the SNR, the reconstructions produced by Warp are downsampled 8x and
24 then used for particle picking so that the diameter of the alpha-carboxysome in the final
25 tomogram is ~13 voxels. Again, DeepETPicker, crYOLO?’, DeepFinder!?, and TM” are
26 chosen for particle picking and performance comparison purposes. TM is performed by
27  Dynamo with a reference map from EMDB entry EMD-27654 low-pass filtered to 60

28  A. A total of 571 manually labelled particles are used for training and validation of

* https://, github.com/alisterburt/autoalign _dynamo

16
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1 crYOLO, DeepETPicker and DeepFinder (See Supplementary Methods A.8). Due to

2 memory constraints, the final reconstructions are performed using 2% downsampled
3 datain Warp. Then, RELION 3.1 beta is used for the subsequent subtomogram averaging
4 step, including 3D classification (with one class only) and autorefinement
5  (Supplementary Fig. 4d).

6

7 RESULTS

8  DeepETPicker achieves the best overall performance in picking particles from

9  simulated tomograms

10 Under the very low SNRs of tomograms, it is difficult to generate full segmentation
11 masks for macromolecular particles via manual annotation. To simplify the manual
12 annotation process, three types of simplified masks (Bal-M, Gau-M and Cub-M) centred
13 on manually labelled particle centres are generated (Supplementary Fig. 2a). For each
14 type of simplified masks, their diameters can be set in different ways (Figs. 2b-¢c and
15  Supplementary Table 2). Specifically, for the SHREC2021 dataset of simulated
16  tomograms, the diameters of the simplified masks can be set to be proportional to the
17  sizes of their corresponding real masks or as a constant value of 7 or 9. Utilizing
18  simplified masks with constant diameters as training labels avoids the problem of class

19  imbalance and simplifies the selection of the loss functions (Supplementary Methods).
20 Compared to Cub-M and Bal-M masks, Gau-M masks provide more stable and
21 better localization and classification performance regardless of which diameter setting
22 method is chosen (Fig. 2d and Supplementary Table 3). In addition, the 3D-RestUNet
23 model trained by Gau-M achieves a mean Fl-score that is 2% higher in absolute
24 magnitude than that trained by real masks. This is likely because Gau-M may serve as
25 noisy labels to replace real full masks, and the introduced label noise improves the
26  generalization capability of the trained model on unseen datasets. Interestingly, Gau-M
27 masks whose diameters are set in different ways have nearly the same localization and
28  classification performance (Supplementary Table 3). Because simplified masks with a
29  constant diameter are more convenient to set up in practice, the results in the remainder

30  of this study are obtained using Gau-M masks with a constant diameter d = 7.

17
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1 Precise particle centre localization is important for subtomogram averaging.
2 Compared to other methods reported in the SHREC2021 challenge!®, such as URFinder,
3 DeepFinder, U-CLSTM, MC-DS-Net, YOPO, TM-F and TM, DeepETPicker achieves
4 the best overall localization performance in terms of the TP, FP, FN, AD, precision, recall,
5 and Fl-score metrics (Supplementary Table 4). Specifically, compared to the best
6  results obtained in the SHREC2021 challenge, DeepETPicker achieves a precision level
7 0f0.958 (an increase of 8.9% in absolute magnitude), a recall value of 0.921 (an increase
8  0f2.0%), an Fl-score of 0.939 (an increase of 7.1%), and an AD of 1.15 (a decrease of
9  24.3%). For tomograms that contain a variety of macromolecular particles, accurate
10 classification of these particles is critical, especially for different particles with similar
11 molecular weights or similar geometries. DeepETPicker achieves the highest F1-scores
12 on 10 types of macromolecular particles out of all 12 classes (Fig. 2e and
13 Supplementary Table 5). The best mean Fl-score among the competing methods is
14 0.801. DeepETPicker improves this mean Fl-score by 3.75% in absolute magnitude.
15  Overall, the classification Fl-scores increase with increasing molecular weights,
16  indicating that macromolecular particles with larger molecular weights are easier to pick,
17 presumably because more voxels are occupied by larger particles in the same tomogram.
18 In the SHREC2021 challenge, the Multi-Cascade DS network (MC-DS-Net)
19  achieved the best classification F1-score and the shortest inference time!>. Compared to
20 MC-DS-Net, DeepETPicker takes approximately 1/10 of its inference time and achieves
21 better picking performance (Fig. 2f and Supplementary Table 6). DeepETPicker
22 achieves similar performance improvements over the methods in the SHREC2020
23 challenge® (Supplementary Figs. 5a-b). The customized lightweight and efficient
24 architecture of 3D-ResUNet as well as the GPU-accelerated pooling-based
25 postprocessing method, namely MP-NMP, are key factors that contribute to the
26  performance of DeepETPicker.
27 The amount of annotated data used for training has significant impacts on the
28  picking performance of DNN-based models!®>. Compared to DeepFinder',
29  DeepETPicker requires less training data to achieve the same level of performance on
30  the SHREC2020 dataset (Fig. 2g). Specifically, the mean classification F1-score of
31  DeepETPicker trained by 3 tomograms surpasses that of DeepFinder trained by 8
32 tomograms. When the classification F1l-scores of particles with different sizes are
33 plotted against the number of utilized training tomograms (Supplementary Fig. Sc),

18
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1 DeepETPicker shows a more pronounced classification performance advantage than
2 DeepFinder for small particles.
3 We also examine the particle picking performance under different particle sizes
4 combined with different tomogram noise levels. Specifically, we add different levels of
5  Gaussian noise to the SHREC2021 dataset (Supplementary Table 7) and examine the
6  influence of the noise level on the picking performance achieved under different particle
7 sizes. As the SNR decreases, the classification performance of DeepETPicker, measured
8 by the Fl-score, decreases (Fig. 2h). Moreover, the smaller the particle size is, the
9  greater the decrease in the classification F1-score at lower SNR levels.
10 Manually labelling the particle centres in tomograms with extremely low SNRs
11 inevitably introduces bias. For example, we calculate the Euclidean distance between
12 the particle coordinates derived from manual picking and those obtained after refinement
13 for EMPIAR-10499 (Supplementary Fig. 6). We find that 80% of the particles are less
14 than 0.52r from the centre, where r is the particle radius, and 90% of the particles are
15  less than 0.625 r from the centre. To better examine the impact of manual labelling
16  bias on the particle picking results of DeepETPicker, we randomly add a shift between
17 0.5r and 0.7r to the particle centres of the SHREC2021 dataset. We find that the
18  random shift has little impact on the picking performance of DeepETPicker for all
19  complexes with different sizes (Fig. 2i). This indicates that DeepETPicker has good
20 robustness against the localization bias induced by manual labelling.
21 We perform ablation studies on DeepETPicker and take 3D-UNet!” as the baseline
22 to examine the contributions of the different customizations made to the 3D-RestUNet
23 architecture in terms of improving picking performance (Supplementary Table 8). We
24 find that adding residual connections (RCs) improves the mean Fl-score of particle
25 classification by 2%. Adding coordinate convolution (CC) and the image pyramid (IP)
26  effectively improves the classification F1-scores obtained for small particles such as
27 1s3x and 3qm1 (Supplementary Methods). Data augmentation (DA) improves both the
28  localization and classification performance of the model by substantial margins. The
29  deduplication (DD) operation of removing the smaller particles among adjacent local
30  maxima improves the localization Fl-score by 1%. Finally, the overlap-tile (OT)
31  strategy improves the F1-scores of both localization and classification by 5% and 4%,
32 respectively, indicating its importance in the inference stage of DeepETPicker.
33

19
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1  DeepETPicker achieves the best overall performance in picking purified particles

2  from real tomograms

We compare the performance of DeepETPicker with that of competing state-of-the-
art methods in picking purified particles from two experimental datasets. The first
dataset, EMPAIR-10045, consists of tomograms of purified S. cerevisiae 80S ribosomes.
It is widely used in the development of image processing algorithms for electron
tomography **. The second dataset, EMPIAR-10651, consists of tomograms of purified
T20S proteasomes from Thermoplasma acidophilum.

For EMPIAR-10045, we pick 80S ribosome particles using DeepETPicker,
10 crYOLO??, DeepFinder'® and TM® and examine the same and different particles picked

© o0 N O O =~ W

11 by these methods in a pairwise fashion by calculating the intersection and difference sets
12 of the picked particles (Fig. 3a, Supplementary Table 9 and Supplementary Video
13 1). Based on the diameter of the 80S ribosomes, we set t;;; = 12 to calculate the
14 intersection and difference sets. We find that DeepETPicker picks true-positive particles
15  that are missed by the method reported in [34] as well as crYOLO and DeepFinder.
16  Although TM picks many particles that are not selected by DeepETPicker, most of these
17 particles are false positives (Fig. 3a).

18 Manual annotations are used to assess how closely an automated particle picking
19  method matches the manual particle picking by an expert. A comparison among the
20 particles picked by the four selected methods (DeepETPicker, crYOLO, DeepFinder and
21 TM) and manual annotation is carried out via the precision and recall metrics. At a fixed
22 recall, DeepETPicker achieves the highest precision, followed by TM, DeepFinder and
23 crYOLO (Fig. 3b), indicating that the highest consistency with manual annotation is
24 achieved by DeepETPicker. Furthermore, the maximal recall values of DeepETPicker
25 and TM are substantially higher than those of DeepFinder and crYOLO (Fig. 3b),
26  indicating that more manually labelled particles are picked by DeepETPicker and TM.
27 When the recall of TM reaches its maximum value, its precision decreases sharply,
28  indicating that more false-positive particles are picked.

29 The quality of the particles picked by these different methods is further examined
30  based on the results of subsequent subtomogram averaging (Figs. 3¢-g). For an objective
31 comparison, no particle screening is performed during the subsequent alignment and
32 classification processes because otherwise the quality measurements of the picked

33  particles could be affected by the screening protocols used. We only set one class in the

20
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1 3D classification step and perform 3D autorefinement based on the shift and orientation
2 parameters of the 3D classification method in RELION. Then, we plot the number of
3 particles versus the corresponding calculated log-likelihood contribution (Fig. 3c). We
4 find that the overall range of the log-likelihood contribution provided by the particles
5 picked by DeepETPicker is consistently higher than those of the particles picked by
6 crYOLO, DeepFinder and TM. The same observation holds for the intersection and
7 difference sets of the particles (Supplementary Fig. 7). Furthermore, we calculate the
8  cumulative ratio of particles with the maximum probability higher than a threshold and
9 plot the ratio versus the threshold (Fig. 3d). The cumulative ratio curves of
10 DeepETPicker and crYOLO are close to each other but substantially better than those
11 of DeepFinder and TM. Overall, the higher log-likelihood contribution and the better
12 cumulative statistics of the maximum value probability indicate that the particles picked
13 by DeepETPicker have better quality.
14 The quality assessment of the picked particles based on global resolution, local
15  resolution and B-factor measurements agrees with the assessment based on the log-
16  likelihood distribution and the cumulative statistics of the maximum value probability
17 (Figs. 3e-g). Specifically, the global resolutions of the reconstruction maps derived from
18  the particles picked by DeepETPicker and TM are both 15.0 A, which are slightly higher
19  than those of the reported coordinates (15.1 A), as well as those of DeepFinder and
20 crYOLO (15.5 A). Importantly, the map generated by particles picked by DeepETPicker
21 exhibits the highest local resolution in comparison with those of crYOLO, DeepFinder,
22 and TM (Fig. 3g). Based on the RH plots?¢ (Fig. 3e), we observe that the set of particles
23 picked by crYOLO gives the smallest slope, indicating that it has the highest B-factor.
24 Although the slopes of the sets of particles picked by DeepETPicker, DeepFinder, and
25 TM are similar, with the same number of particles, DeepETPicker achieves better global
26 resolution than TM and DeepFinder.
27 The maps constructed from different particle datasets have similar global
28  resolutions but different local resolutions and RH plots (Figs. 3e-g). We hypothesize
29  that this is because of the quality differences among the different particles picked by
30  different methods. To test this hypothesis, we perform subtomogram averaging on the
31  particles in the difference sets and then compute their global resolutions. We find that
32 particles picked by DeepETPicker but not by the other methods (crYOLO, DeepFinder,
33 and TM) yield correct reconstruction maps (Supplementary Fig. 8) with global
34 resolutions that are consistent with the RH resolution (Supplementary Fig. 9 and

21
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1 Supplementary Table 9), indicating that particles picked by DeepETPicker but missed
2 by the other methods are true positives with quality similar to that of the true positives
3 picked by these methods. The RH resolution is the theoretical resolution estimated based
4 on the RH plot. However, the particles picked by DeepFinder and TM but not
5  DeepETPicker yield incorrect reconstruction maps (Supplementary Fig. 8) with global
6  resolutions that are much worse than the RH resolution (Supplementary Fig. 9 and
7 Supplementary Table 9), indicating that these particles are mostly false positives with
8  poor quality. Therefore, although the additional particles picked by DeepFinder and TM
9  improve the SNRs of the half maps, i.e., reconstruction maps of the two independent
10 halves of the datasets, and contribute positively to the FSC curve with an improved
11 global resolution, they do not make a positive contribution to the RH plot and the local
12 resolution.
13 To further examine the performance of different methods in picking particles with
14 different shapes, we choose the T20S proteasome from EMPAIR-10651, which has a
15  cylindrical shape. Following the same protocol as that of the analysis used above, we
16  pick T20S proteasomes using DeepETPicker, crYOLOY, DeepFinder'® and TM® and
17 calculate the same and different particles picked by these methods (Supplementary Fig.
18  10). According to the diameter of T20S proteasomes, we set t;;s; = 11 for calculating
19  the intersection and difference sets of the picked particles. Again, we find that
20 DeepETPicker picks true-positive particles missed by crYOLO and DeepFinder
21 (Supplementary Fig. 10a).
22 To further check whether this observation is true, a comparison between the particle
23 picking results of different methods (DeepETPicker, crYOLO, DeepFinder and TM) and
24 manual annotation is carried out via the precision and recall metrics. Overall,
25 DeepETPicker and TM achieve comparable performance metrics, which are slightly
26  better than those of DeepFinder and much better than those of crYOLO
27 (Supplementary Fig. 10b). Furthermore, subtomogram averaging is performed to
28  further check the quality of the picked particles (Supplementary Figs. 10c-d). The
29  global resolutions of the maps reconstructed from the particles picked by DeepETPicker,
30  crYOLO, DeepFinder and TM are approximately 14.0 A, 15.4 A, 17.1 A and 16.2 A,
31 respectively (Supplementary Fig. 10c¢). In agreement with the global resolution
32 measurement, the map reconstructed from the particles picked by DeepETPicker shows
33 more structural details and better local resolutions (Supplementary Fig. 10d).
34
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1 DeepETPicker achieves the best overall performance in picking particles in situ

2  from real tomograms

Automated particle picking from real cryo-electron tomograms of cellular structures
is critically needed for in situ structural biology. The crowded cellular environment
poses a complex and challenging background for particle localization and identification,
which is further compounded by the low SNRs of tomograms. Here, we first use the
public cryo-ET dataset of native M. pneumoniae cells (EMPIAR-10499) to test the

performance of DeepETPicker in picking ribosome particles in situ.

© o0 N O O =~ W

Following the same analysis protocol used above for the purified 80S ribosomes of
10  EMPIAR-10045, we pick 70S ribosome particles using DeepETPicker, crYOLO?,
11 DeepFinder'® and TM? and calculate the same and different particles picked by these
12 methods (Fig. 4a, Supplementary Table 10 and Supplementary Video 2). According
13 to the diameter of the 70S ribosome, we set tg;;; = 12 for calculating the intersection
14 and difference sets of the particles. Again, we find that DeepETPicker can pick true-
15  positive particles missed by crYOLO and DeepFinder (Fig. 4a). Although DeepFinder
16  and TM can pick particles not selected by DeepETPicker, these particles do not appear
17 to be true positives upon initial visual inspection.

18 To further check whether this observation is true, a comparison between the particle
19  picking results of different methods (DeepETPicker, crYOLO, DeepFinder and TM) and
20 manual annotation is carried out. Overall, DeepETPicker achieves substantially higher
21 precision than the other three methods under the same recall rate (Fig. 4b), indicating
22 that the highest consistency with manual annotation is achieved by DeepETPicker.
23 Subtomogram averaging is performed to further check the quality of the picked particles
24 (Figs. 4c-g). After calculating the log-likelihood contribution of each particle, the
25 number of particles is plotted against the corresponding log-likelihood contribution (Fig.
26 4c). The range of the overall log-likelihood contributions of the particles picked by
27  DeepETPicker again is substantially better than that of particles picked by crYOLO,
28  DeepFinder and TM. These conclusions also hold for their intersection and difference
29  particle sets (Supplementary Fig. 11). Furthermore, the cumulative curves of the
30  particle ratios are plotted against the maximum value probability (Fig. 4d). The
31 cumulative ratio curve of DeepETPicker is consistently higher than that of crYOLO, TM
32 and DeepFinder. Therefore, the best log-likelihood contribution and cumulative

33 statistics of the maximum value probability indicate that DeepETPicker picks particles
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1 in situ from tomograms more effectively and accurately than the other tested methods.
2 This conclusion is further verified by the global resolution, local resolution, and B-factor
3 measurements (Figs. 4e-g). The global resolutions of the maps reconstructed from the
4 vparticles picked by DeepETPicker, crYOLO, DeepFinder and TM are 17.2 A, 19.2 A,
5 272 A and 19.2 A, respectively (Fig. 4f). In agreement with the global resolution
6  measurement, the map reconstructed from the particles picked by DeepETPicker shows
7 more structural details and better local resolutions (Fig. 4g). Although DeepFinder picks
8  more particles, the final refinement step cannot converge into a correct map. Based on
9  the RH plots (Fig. 4e), DeepETPicker achieves the highest global resolution using the
10 same number of particles.
11 Following the same analysis protocol applied for the tomograms of purified 80S
12 ribosomes in EMPIAR-10045, we further analyse the same and different particles picked
13 by DeepETPicker versus the other three methods by subtomogram averaging. We find
14 that the particles picked only by DeepETPicker but not by the other methods (crYOLO,
15 DeepFinder and TM) yield correct and plausible reconstruction maps (Supplementary
16  Fig. 12) with global resolutions that are mostly consistent with the RH resolutions
17 (Supplementary Fig. 13 and Supplementary Table 10). This indicates that the
18  particles picked only by DeepETPicker are true positives with quality similar to that of
19  common particles. However, all the different particles picked by the other methods and
20 not by DeepETPicker yield incorrect reconstruction maps (Supplementary Fig. 12),
21 with global resolutions that are substantially worse than the RH resolutions
22 (Supplementary Fig. 13 and Supplementary Table 10). This indicates that the
23 different particles picked by the other methods are mostly false positives. Furthermore,
24 we inspect the particle distribution of the centre shifts for the same particles picked by
25 DeepETPicker versus the other three methods. The shift range of the particles picked by
26 DeepETPicker is smaller than that of other methods (Supplementary Fig. 14),
27  indicating that the highest localization precision is achieved by DeepETPicker.
28

29  DeepETPicker achieves the best overall performance in picking smaller particles

30  in situ from real tomograms

31 The 80S and 70S ribosomes as well as the T20S proteasome studied above have
32 molecular weights greater than 1 MDa. Particles with smaller molecular weights
33 generally exhibit lower SNRs in tomograms, making particle picking more difficult. To

24
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1 test the performance of DeepETPicker in picking smaller particles in situ, we select a
2 public cryo-ET dataset of H. neapolitanus alpha-carboxysomes (EMPIAR-11125)%,
3 whose molecular weight is 562 kDa.
4 Following the same analysis protocol used above for EMPIAR-10045, we pick
5  alpha-carboxysome particles using DeepETPicker, crYOLO?’, DeepFinder!'® and TM’
6 and calculate the same and different particles picked by these methods (Fig. 5).
7 According to the diameter of H. neapolitanus alpha-carboxysomes, we set t;; = 7 for
8  calculating the intersection and difference sets of the picked particles. Again, we find
9  that DeepETPicker can pick true-positive particles that are missed by crYOLO and TM
10 (Fig. 5a). Although crYOLO also picks particles not selected by DeepETPicker, these
11 particles do not appear to be true positives upon initial visual inspection.
12 To further check whether this observation is true, a comparison between the particle
13 picking results of different methods (DeepETPicker, crYOLO, DeepFinder and TM) and
14 manual annotation is carried out via the precision and recall metrics. At a fixed recall
15  rate, DeepETPicker achieves the highest precision, followed by DeepFinder, TM and
16  crYOLO (Fig. 5b), indicating that the highest consistency with manual annotation is
17 achieved by DeepETPicker. DeepETPicker also achieves the highest recall, indicating
18  that more manually labelled particles are successfully picked by DeepETPicker.
19 Furthermore, we perform subtomogram averaging to further check the quality of the
20 picked particles (Figs. Sc-d). The global resolutions of the maps reconstructed from the
21 particles picked by DeepETPicker, DeepFinder and TM are similar at ~7 A (Fig. 5c¢).
22 However, the particles picked by crYOLO fail to yield a correct reconstruction. In
23 agreement with the global resolution measurement, the map reconstructed from the
24 particles picked by DeepETPicker shows more structural details and better local
25 resolutions (Fig. 5d). We also inspect the particle distribution of the centre shifts of the
26  same particles picked by DeepETPicker versus the other three methods. The shift range
27 of the DeepETPicker-picked particles is smaller than that of crYOLO and TM and is at
28  the same level as that of DeepFinder (Supplementary Fig. 15), indicating that higher
29  localization precision is achieved by DeepETPicker and DeepFinder.
30

31  DISCUSSION

32 Studying the high-resolution structures of macromolecular complexes in situ in their

33 native cellular environments is at the forefront of contemporary structural biology. Cryo-
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1  electron tomography provides a powerful tool to achieve this goal. However, its
2 application is limited by various technical bottlenecks, including the need to pick large
3 numbers of macromolecular particles from tomograms at very low SNRs. In this study,
4 we developed a new deep learning-based method, DeepETPicker, for automatic picking
5  of 3D particles from tomograms with high accuracy and efficiency.
6 To address the lack of full segmentation masks for particles in real experimental
7 tomograms, we designed three simplified masks, examined their performances, and
8  found that the masks of Gau-M yielded the best and most stable results. We incorporated
9 an overlap-tile strategy into the inference stage to avoid the negative influence caused
10 by the poor segmentation accuracy achieved for edge voxels, which substantially
11 improved the performance of both localization and classification (measured in F1-
12 scores). We also proposed the MP-NMS operation for postprocessing to replace the
13 clustering algorithms used previously, which substantially improved the resulting
14 inference speed. To help users pick particles from unlabelled tomograms and train DNN-
15  based models, we developed a friendly graphical interface for DeepETPicker. Users can
16  use this graphical interface to complete particle labelling, model training, and automatic
17 particle picking with simple procedures.
18 We tested the performance of DeepETPicker and compared it with other state-of-
19  the-art methods on two simulated datasets (SHREC2020 and SHREC2021) and four
20 experimental datasets (EMPIAR-10045, EMPIAR-10651, EMPIAR-10499, and
21 EMPIAR-11125). On the simulated datasets of SHREC2020 and SHREC2021,
22 DeepETPicker outperformed the competing methods with the highest average F1-score
23 and the lowest computational time. On the four experimental datasets, we developed
24 multiple particle quality metrics to compare the performance of DeepETPicker with that
25 of other methods. We found that the particles picked by DeepETPicker consistently
26  showed the best quality with the highest log-likelihood contributions and the highest
27  cumulative ratio of particles versus the maximum value probability, which was
28  consistent with the observation that the particles picked by DeepETPicker produced
29  reconstruction maps with the best global resolution, the best local resolution and the
30  smallest B-factors. When comparing DeepETPicker with other methods such as
31 crYOLO?Y, DeepFinder!® and TM, the particles not picked by DeepETPicker but
32 selected by other methods generally failed to produce correct reconstructions. The
33  extensive analyses suggested that the accuracy and precision of the particles picked by
34 DeepETPicker were substantially better than those of the other methods.
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1 Overall, our study showed that DeepETPicker outperformed competing state-of-
2 the-art methods on both simulated and real cryo-ET datasets. The results demonstrate
3 the potential of DeepETPicker for applications in high-resolution cryo-ET studies in situ.
4 In follow-up studies, we plan to incorporate particle orientation parameters into the
5  framework of DeepETPicker, which will provide valuable information for the
6  subsequent subtomogram averaging step. Furthermore, we plan to further optimize the
7 classification performance of DeepETPicker on small particles.
8 DATA AVAILABILITY
9 The simulated tomogram dataset SHREC2020 is available from the website of the
10 SHREC2020 challenge (https://www.shrec.net/cryo-et/2020/). The simulated tomogram
11 dataset SHREC2021 is available from the website of the SHREC2021 challenge
12 (https://www?2.projects.science.uu.nl/shrec/cryo-et/). The experimental tomogram
13 dataset of purified S. cerevisiae 80S ribosomes is available from EMPIAR under
14  accession number EMPIAR-10045 (https://www.ebi.ac.uk/empiar/EMPIAR-10045).
15  The experimental tomogram dataset of purified T20S proteasomes is available from
16  EMPIAR under accession number EMPIAR-10651
17 (https://www.ebi.ac.uk/empiar/EMPIAR-10651). The experimental tomogram dataset
18  of M. pneumoniae cells is available from EMPIAR under accession number EMPIAR-
19 10499 (https://www.ebi.ac.uk/empiar/EMPIAR-10499). The experimental tomogram
20  dataset of H. neapolitanus alpha-carboxysomes in situ is available from EMPIAR under
21 accession number EMPIAR-11125 (https://www.ebi.ac.uk/empiar/EMPIAR-11125).
22
23  CODE AVAILABILITY
24 The code and user documentation for DeepETPicker are openly accessible at
25 https://github.com/cbmi-group/DeepETPicker. Detailed tutorials are provided on each
26 step of particle picking for single-class and multi-class examples.
27
28
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Fig. 1| Overall workflow of using DeepETPicker to pick particles from cryo-ET tomograms.
It consists of a training stage (a-d) and an inference stage (e-i). a Training tomogram: a
reconstructed tomogram is partitioned into individual cubic volumes, referred to as
subtomograms. b Weak labels: different types of simplified particle masks are generated to

centre on manually annotated particle coordinates. ¢ Training labels: the weak labels are
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1 assigned to their corresponding subtomograms. d Untrained model: a 3D-ResUNet model

2 composed of a convolutional neural network with untrained parameters. e Testing tomogram:
3 subtomograms partitioned from a new tomogram are used to test whether the trained model can
4 accurately pick particles from unseen data. f Trained model. g Predicted labels: the trained model
5 s used to predict voxel-level labels of the testing tomogram. h Postprocessing: mean pooling
6  and nonmaximum suppression (MP-NMS) and overlap-tile (OT) operations are performed on
7 the predicted labels. Specifically, an example of performing the MP-NMS operation on a 2D

image with a size of 40 X 40 pixels is shown. i The positions of the picked particles are

9  extracted after postprocessing.

10
11
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Fig. 2| Performance of DeepETPicker in comparison with that of competing methods on

the SHREC2020 and SHREC2021 simulated datasets. a Real full masks of macromolecular

particles. Different colours are used to denote different classes of molecules. b Simplified Gau-

M masks with diameters proportional to the sizes of their corresponding full masks. ¢ Simplified
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1  Gau-M masks with a constant diameter d = 7. d Classification Fl-scores achieved by

2 DeepETPicker using real and different simplified/weak labels on the SHREC2021 dataset. Size-
3 based: the diameter of each generated mask is proportional to the size of its corresponding real
4 mask; Const 7 and Const 9: the diameters of the generated masks are fixed at 7 and 9,
5  respectively. The dashed line shows the cumulative F1-score achieved by DeepETPicker when
6  trained on real full masks. e Classification performance (measured in F1-scores) achieved on
7 particles of different molecular weights (small: <200 kDa, medium: 200-600 kDa, large: >600

kDa): DeepETPicker versus other particle picking methods reported in the SHREC2021
9  challenge. f DeepETPicker runs substantially faster and achieves substantially higher
10 classification F1-scores than the competing particle picking methods on the SHREC2021 dataset.
11 g Classification performance (measured in Fl-scores) under different numbers of training
12 tomograms: DeepETPicker versus DeepFinder on the SHREC2020 dataset. The dashed line
13 shows the average Fl-scores of DeepETPicker when trained by three tomograms. h The
14 influence of the SNR level on the classification performance of DeepETPicker for particles with
15  different molecular weights from the SHREC2021 dataset. The noise levels under different
16  Gaussian kernel ¢ are 0.127~0.587 for =0, 0.101~0.463 for o=1.1, 0.056~0.254 for 0=2,
17  and 0.026~0.110 for o=5. i The influences of different particle centre shifts (biases) on the

18  classification performance of DeepETPicker.
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Fig. 3| Particle picking performance of DeepETPicker compared to that of the competing
methods on the EMPIAR-10045 experimental dataset. a Comparison between the particles
picked by DeepETPicker and the three competing methods (crYOLO, DeepFinder, and TM).

The original image is a result of performing Gaussian denoising and histogram equalization on
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1 the raw tomogram. Different colours are used to differentiate the same and different particles

2 picked. The same particles picked by DeepETPicker and the competing method, i.e., those in
3 the intersection sets of their picked particles, are shown in blue. The different particles picked
4 by DeepETPicker and the other competing methods, i.e., those in the difference sets of their
5  picked particles, are shown in red and cyan, respectively. b Precision-recall curves produced by
6  different methods using manually picked particles as the reference. ¢ Histogram of the log-
7 likelihood contributions calculated by the RELION 3D autorefinement method. Horizontal axis:

log-likelihood contribution. Vertical axis: number of particles. d Particle ratio with a maximum

9  value probability above a specific threshold calculated by the RELION 3D autorefinement
10 method. Horizontal axis: threshold of the maximum value probability. Vertical axis: ratio of the
11 number of particles. e Rosenthal and Henderson B-Factor plot, which shows the relationship
12 between the number of particles and the global resolution of the 3D reconstruction results. f FSC
13 curves obtained by different particle picking methods after performing direct alignment and
14 averaging. g Comparison of the local resolutions of the subtomogram averages obtained for
15  budding yeast 80S ribosomes using the particles picked by different methods (DeepETPicker,

16 crYOLO, DeepFinder and TM).
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1

2 Fig. 4| Particle picking performance of DeepETPicker compared to that of the competing
3 methods on the EMPIAR-10499 experimental dataset. a Comparison between the particles
4 picked by DeepETPicker and the other three competing methods (crYOLO, DeepFinder, and
5 TM). The original image is a result of performing Gaussian denoising and histogram

6  equalization on the raw tomogram. Different colours are used to differentiate the same and
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1 different particles picked. The same particles picked by DeepETPicker and the other competing

2 methods, i.e., those in the intersection sets of their picked particles, are shown in blue. The
3 different particles picked by DeepETPicker and the other competing methods, i.e., those in the
4 difference sets of their picked particles, are shown in red and cyan, respectively. b Precision-
5  recall curves produced by different methods using manual particles as the reference. ¢ Histogram
6  of the log-likelihood contributions calculated by the RELION 3D autorefinement method.
7 Horizontal axis: log-likelihood contribution. Vertical axis: number of particles. d Particle ratio

with a maximum value probability above a specific threshold calculated by the RELION 3D

9  autorefinement method. Horizontal axis: threshold of the maximum value probability. Vertical
10 axis: ratio of the number of particles. e Rosenthal and Henderson B-Factor plot, which shows
11 the relationship between the number of particles and the global resolution of the 3D
12 reconstruction results. f FSC curves obtained by different particle picking methods after
13 performing direct alignment and averaging. g Comparison of the local resolutions of
14  subtomogram averages obtained for M. pneumoniae 70S ribosomes using particles picked by

15  different methods (DeepETPicker, crYOLO, DeepFinder and TM).
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Fig. 5 | Particle picking performance of DeepETPicker compared to that of the competing

methods on the EMPIAR-11125 experimental dataset. a Comparison between the particles

B~ W N

picked by DeepETPicker and the other three competing methods (crYOLO, DeepFinder, and
TM). The original image is a result of performing Gaussian denoising and histogram
equalization on the raw tomogram. Different colours are used to differentiate the same and
different particles picked. The same particles picked by DeepETPicker and the other competing
method, i.e., those in the intersection sets of their picked particles, are shown in blue. The

different particles picked by DeepETPicker and the other competing method, i.e., those in the

S O 0 NN o Ol

difference sets of their picked particles, are shown in red and cyan, respectively. b Precision-

11 recall curves produced by different methods using manual particles as the reference. ¢ FSC
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1 curves obtained by different particle picking methods after performing direct alignment and
2 averaging. d Comparison of the local resolutions of the subtomogram averages obtained using

3 particles picked by different methods (DeepETPicker, crYOLO, DeepFinder and TM).
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