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ABSTRACT 1 

Picking particles of biological macromolecules from their cryo-electron tomograms 2 

is critical to solving their 3D structures in situ. To reach sub-nanometre resolution, large 3 

numbers of particles often need to be picked, a laborious and time-consuming task if 4 

performed manually. To date, however, the adoption of automated particle-picking 5 

methods remains limited because of the limitations in their accuracy, processing speed 6 

and, for those based on learning models, manual annotation cost. To overcome the 7 

limitations, we develop DeepETPicker, a deep learning model for fast and accurate 8 

picking of 3D particles from cryo-electron tomograms. The training of DeepETPicker 9 

requires only weak supervision with low numbers of simplified Gaussian-type labels, 10 

reducing the burden of manual annotation of tomograms under very low signal-to-noise 11 

ratios. The simplified labels combined with the customized and lightweight model 12 

architecture of DeepETPicker as well as GPU-accelerated pooling enable substantially 13 

improved accuracy and accelerated processing speed. When tested on simulated as well 14 

as real tomograms, DeepETPicker outperforms the competing state-of-the-art methods 15 

by achieving the highest overall accuracy and speed, which translate into better quality 16 

of picked particles and higher resolutions of final reconstruction maps. DeepETPicker 17 

is provided in open source with a user-friendly interface to support automated particle 18 

picking for high-resolution cryo-electron tomography in situ. 19 
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INTRODUCTION 1 

Structural biologists have traditionally followed a reductionist approach to handle 2 

cellular complexity, in which the molecular components of cells are isolated, purified, 3 

and then studied individually. Although this approach has been tremendously successful, 4 

it is also crucial to study the structures and functions of biological macromolecules in 5 

their native cellular environments1. Cryo-electron tomography (cryo-ET) provides a 6 

powerful tool for visualizing macromolecular complexes under native conformations at 7 

subnanometre resolutions and for revealing their spatial and organizational 8 

relationships2. This provides new mechanistic insights into key cellular processes and 9 

new possibilities for applications such as drug discovery. As biological samples are very 10 

sensitive to radiation damage, the native resolution of cryo-ET is limited to ~2-5 nm 11 

given the dose of imaging electrons that can be tolerated3. This resolution is insufficient 12 

for studying the structures and functions of macromolecular complexes. Subtomogram 13 

averaging (STA) is commonly used to obtain higher-resolution structures by aligning 14 

and averaging large numbers of particles of the same macromolecular complexes4. 15 

However, the manual picking of large numbers of particles is laborious and time-16 

consuming. Automated tools for picking 3D particles from cryo-electron tomograms 17 

with high accuracy and efficiency are critically needed for high-resolution in situ 18 

structural biology. 19 

In addition to the intrinsically crowded cellular environment, at least two additional 20 

technical challenges are encountered when performing 3D particle localization and 21 

identification in cryo-electron tomograms. First, the total electron dose used in cryo-ET 22 

experiments is limited to minimize radiation damage, resulting in very low signal-to-23 

noise ratios (SNRs) for the reconstructed tomograms5. Second, the tilt ranges of cryo-24 

ET experiments are often restricted to ±60 degrees due to electron penetration depth 25 

limitations, which result in missing wedges in the reconstructed tomograms, causing 26 

structural distortions of macromolecular complexes in different orientations6. Overall, 27 

picking 3D particles from noisy and distorted tomograms of crowded cellular contents 28 

is substantially more challenging than picking 2D particles from cryo-electron 29 

micrographs for single-particle analyses. 30 
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To pick 3D particles for cryo-ET, both conventional and deep neural network 1 

(DNN)-based methods have been developed7,8. Among the conventional methods, 2 

template matching (TM)9 and difference of Gaussians (DoG)10 are widely adopted. In 3 

TM, the position and orientation of a predefined template that best matches the 4 

tomogram to be processed are determined by maximizing their cross-correlation. 5 

However, TM has several limitations, including its strong dependence on the quality of 6 

the predefined template, its requirement of manual threshold tuning for cross-correlation, 7 

and its high false-positive rates under low SNRs. DoG picks particles using a bandpass 8 

filter that removes high- and low-frequency components. However, it picks particles 9 

regardless of their classes, and its performance depends heavily on the tuning of its 10 

Gaussian filters for different datasets. 11 

In recent years, DNN-based methods have become the state-of-the-art 3D particle 12 

picking approaches for cryo-ET7,8,11-13. For example, Faster-RCNN has been used to 13 

automatically locate and identify different structures of interest in tomograms in a slice-14 

by-slice manner, but the 3D information between adjacent slices is not fully utilized14. 15 

To promote the development of 3D particle picking algorithms, the SHREC Challenge 16 

developed datasets of simulated cryo-electron tomograms to benchmark different 17 

particle picking methods7,8,15. The results showed that deep learning-based methods 18 

achieved much faster processing speed and much better localization and classification 19 

performance than conventional methods such as TM. In the SHREC2019 Challenge, 20 

DeepFinder achieved the best overall localization performance13. It uses a 3D-UNet to 21 

generate a segmentation voxel map and determines the positions of particles using a 22 

mean-shift clustering algorithm. In the SHREC2020 and SHREC2021 challenges, MC-23 

DS-Net achieved the best overall classification performance by using a denoising and 24 

segmentation architecture. However, its model contains many parameters, imposing 25 

high hardware performance requirements. Moreover, MC-DS-Net is trained by real full 26 

masks of macromolecular particles, which are usually unavailable in real-world cryo-27 

ET studies. In contrast, DeepFinder uses spherical masks for approximation13. These 28 

masks provide good performance for medium- and large-sized macromolecules but 29 

worse performance than real masks for small particles. Considering that real cryo-30 
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electron tomograms contain more complex intracellular environments than the simulated 1 

data used in the SHREC Challenges, the performances of those methods tested in the 2 

SHREC Challenges must be further validated on real experimental cryo-ET data. 3 

Overall, despite the various automated particle picking methods developed for cryo-4 

ET, their adoption in practice remains limited. This is mainly due to the limitations in 5 

their picking accuracy, processing speed and, for learning-based methods, manual 6 

annotation cost. In this study, to address the limitations, we develop a new deep learning-7 

based method named DeepETPicker, which accurately and rapidly picks 3D particles 8 

from cryo-electron tomograms with a low training cost. It utilizes a 3D-ResUNet 9 

segmentation model as its backbone to distinguish biological macromolecules from their 10 

backgrounds in tomograms. The model training process of DeepETPicker requires only 11 

weak supervision using simplified labels and fewer training labels to attain performance 12 

comparable to that of competing methods, which reduce the cost of manual annotation. 13 

Fast postprocessing is performed on the generated segmentation masks to obtain the 14 

centroids of individual particles. To enhance the localization performance of 15 

DeepETPicker on small macromolecular particles, coordinated convolution and 16 

multiscale image pyramid inputs are incorporated into the architecture of the 3D-17 

ResUNet model. To address the usual lack of real full masks of macromolecular particles 18 

in practice, different types of simplified weak labels are tested as replacements. To 19 

eliminate the negative influence of poor segmentation accuracy in edge voxels, a spatial 20 

overlap-based strategy is developed. Finally, to maximize the speed of particle picking, 21 

a customized lightweight model and GPU-accelerated pooling-based postprocessing are 22 

utilized. 23 

When tested on simulated datasets from the SHREC2020 and SHREC2021 24 

challenges, DeepETPicker achieves the highest overall processing speed and the best 25 

performance in both localization and classification. The performance of DeepETPicker 26 

is further verified on four real experimental cryo-ET datasets (EMPIAR-10045, 27 

EMPAIR-10651, EMPIAR-10499 and EMPIAR-11125). The results show that it 28 

outperforms the competing state-of-the-art methods by achieving higher picking 29 
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accuracy and yielding better quality in picked particles and better resolution in final 1 

reconstructions. DeepETPicker is provided as open-source software with an easy-to-use 2 

graphical user interface (GUI). It will serve as a fast and accurate tool to support 3 

automated 3D particle picking for high-resolution in situ cryo-ET studies. 4 

 5 

METHODS 6 

 7 

Overview of DeepETPicker 8 

The overall workflow of using DeepETPicker to pick 3D particles from tomograms 9 

(Fig. 1) consists of a training stage (Figs. 1a-d) and an inference stage (Figs. 1e-i). A 10 

tomogram is usually too large to be directly loaded into the DNN segmentation model 11 

for training because of memory constraints. Instead, it is partitioned into cubic volumes, 12 

which are often called subtomograms (Figs. 1a, c, e). During the training stage, given 13 

an input subtomogram, the parameters of the DNN segmentation model of 14 

DeepETPicker are adjusted to minimize the difference between its output and the ground 15 

truth, as defined by voxel-level annotation labels for the input subtomogram. Typically, 16 

more than 90% of the voxels are background voxels in experimental tomograms, and 17 

the proportion of macromolecular particles in volume is very small. To better segment 18 

particles of interest and to avoid oversegmenting the background, subtomograms centred 19 

on individual particles are extracted in the training stage. This strategy ensures that all 20 

annotated particles are used and that each volume contains at least one particle. During 21 

the inference stage, every tomogram is scanned with a specific stride 𝑠  and a 22 

subtomogram size of 𝑁 × 𝑁 × 𝑁  (Fig. 1e). The trained DeepETPicker is used to 23 

process unseen subtomograms to produce voxel-level masks for individual particles. A 24 

GPU-accelerated pooling-based postprocessing operation is then performed to directly 25 

and rapidly identify particle centres (see below). In this study, training and inference of 26 

DeepETPicker is performed on a single Nvidia GeForce GTX 2080Ti GPU. 27 

DeepETPicker is provided as open-source software in Python with a friendly GUI 28 

(Supplementary Fig. 1) that integrates multiple functions, including preprocessing 29 

input tomograms, manually annotating particles, visualizing labelled particles, 30 
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generating weak labels, and configuring parameters for particle picking. The 1 

visualization results can be adjusted via filtering and histogram equalization operations. 2 

Users can conveniently label particle centres or delete false labels. Different classes of 3 

particles in the same tomogram can be labelled simultaneously. The coordinates of 4 

labelled particles can be exported to files with different formats that are compatible with 5 

commonly used subtomogram averaging software. 6 

 7 

Particle annotation using simplified labels 8 

The supervised training of the DNN model of DeepETPicker requires pairs of 9 

subtomograms and their corresponding voxel-level masks/labels (Figs. 1a, c). Limited 10 

by the low SNRs and reconstruction distortion of tomograms, the manual voxel-level 11 

annotation of macromolecular particles is challenging and time-consuming. In this 12 

study, our goal is to identify particles rather than to obtain their full masks. To this end, 13 

we simplify the manual annotation process by only labelling the centres of particles, 14 

which is simple and efficient. Based on the annotations, three types of simplified masks 15 

centred on the labelled particles are generated as replacements for the real full masks, 16 

including Gaussian masks (Gau-M), cubic masks (Cub-M) and ball masks (Bal-M). 17 

Specifically, taking the centre of each particle as the origin, the corresponding 18 

simplified masks with sizes of [2𝑟 + 1, 2𝑟 + 1, 2𝑟 + 1] are generated as follows: 19 

𝑀 = {(𝑥, 𝑦, 𝑧)	|	𝑥, 𝑦, 𝑧 ∈ [−𝑟, 𝑟] ∩ 𝑍} (1) 20 

 21 

𝑚𝑎𝑠𝑘!"#$!(𝑥, 𝑦, 𝑧)|(&,(,))∈, = 𝑐 (2) 22 

 23 

𝑚𝑎𝑠𝑘#-..(𝑥, 𝑦, 𝑧)|(&,(,))∈, = >𝑐			𝑖𝑓	A𝑥
/ + 𝑦/ + 𝑧/ < 𝑟

0			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																					
(3) 24 

 25 

𝑚𝑎𝑠𝑘0-"11$-2(𝑥, 𝑦, 𝑧)|(&,(,))∈, = J𝑐			𝑖𝑓	𝑒
3&

!4(!4)!
/5! > 𝑡0

0		𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒															
(4) 26 

where c is the class index and 𝑡0 = 0.368  is a hyperparameter to ensure that the 27 

generated Gau-M is sufficiently different from Bal-M and Cub-M (See Supplementary 28 

Methods A.3 for further information). The diameter of each generated mask is denoted 29 
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as 𝑑 = 2𝑟 + 1, which should be no larger than the particle diameter. To ensure good 1 

particle picking performance, the diameter of the particles in the given tomogram should 2 

preferably be between 7-25 voxels. If the particle diameter is much larger than 25 voxels, 3 

proper binning operations can be used to keep the particle diameter within the 4 

recommended range. Examples of the three types of masks are shown in Fig. 1b and 5 

Supplementary Fig. 2a. 6 

Compared to the real full masks of biological particles, these simplified masks can 7 

be seen as a class of weak supervision labels16,17. Subsequent experiments show that 8 

DNN segmentation models trained by these simplified labels can effectively 9 

segment/detect particles of interest in tomograms. 10 

 11 

Architecture of the 3D segmentation model 12 

The DNN segmentation model of DeepETPicker, called 3D-ResUNet, adopts an 13 

encoder-decoder architecture (Supplementary Fig. 2b). Specifically, the residual 14 

connection idea from 2D-ResNet18 is incorporated into 3D-UNet19 to better extract 15 

features from tomograms. The 3D-ResUNet architecture has 3 downsampling layers in 16 

its encoder and 3 upsampling layers in its decoder. Three-dimensional transpose 17 

convolution is used in the decoder to upsample feature maps. An ELU20 is used as the 18 

activation function to accelerate the convergence of the training process. To improve 19 

the localization of particles, coordinated convolution21 and image pyramid inputs22 are 20 

incorporated into 3D-ResUNet, which takes the voxel of each subtomogram as input 21 

and outputs 𝑛 probability scores for (𝑛 − 1) classes of structures of interest and the 22 

background, respectively, for each voxel. Coordinated convolution incorporate the 23 

spatial context of input images into the convolutional filters, while image pyramid 24 

inputs preserve features of input images at different resolution levels.  25 

 26 

Configuration for model training and validation 27 

To improve the generalization capability of the segmentation model, data 28 

augmentation is used in the training stage. Specifically, the following transformations 29 

are performed on the training datasets: random cropping, mirror transformation, elastic 30 
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deformation less than 5%, scaling in the range of [0.95, 1.05], and random rotation at 1 

angles within [-15°, +15°]. Training is performed using an AdamW optimizer23 with an 2 

initial learning rate of 10-3 and a weight decay of 0.01. The Dice loss24 is used to calculate 3 

the difference between the predicted labels and ground-truth labels: 4 

𝐿6$!7 = 1 −
2∑ 𝑝$𝑔$8"

$9: + 𝜀
∑ 𝑝$/8"
$9: +∑ 𝑔$/8"

$9: + 𝜀
	 (5) 5 

where 𝑝$ ∈ ℝ8×8×8  denotes the labels predicted by the segmentation model, 𝑔$ ∈6 

ℝ8×8×8 denotes the ground truth, and 𝜀 = 103< is a small value added for numerical 7 

stability. 8 

A generalized form of the F1-score, F1= =
/>∙@#

>4@#
, is used as a metric for model 9 

validation to place greater emphasis on model recall, where 𝛼 is a hyperparameter. 10 

When 𝛼 = 1 , F1=  becomes the F1-score. When 𝛼 > 1 , the model with higher 11 

𝑟𝑒𝑐𝑎𝑙𝑙	𝑅 obtains a higher F1=. In this study, the hyperparameter 𝛼 = 3 is used. 12 

 13 

Postprocessing using mean-pooling nonmaximum suppression (MP-NMS) and 14 

overlap-tile (OT) 15 

The value of each voxel in the score map generated by 3D-ResUNet denotes its 16 

probability of belonging to a certain class, which is in the range of [0, 1]. A specific 17 

threshold 𝑡170 is selected to transform a score map into a binary map. A voxel whose 18 

value is below the threshold is labelled as 0 and otherwise as 1 so that a binary map is 19 

generated. Then, the proposed MP-NMS operation, consisting of multiple iterations of 20 

mean pooling (MP) and one iteration of nonmaximum suppression, is performed on the 21 

binary map as the initial input. An example of MP-NMS applied on a 2D binary image 22 

with a size of 40 × 40 pixels is shown in Fig. 1h. The first row shows the outputs of 23 

different iterations of MP operations performed on the binary image. After each MP 24 

operation, the voxels at mask edges are pulled closer to the voxel value of the 25 

background. As the number of MP iterations increases, all voxels of the mask are 26 

updated. Eventually, the binary mask is converted into a soft mask. The further a voxel 27 

in the mask is from the background, the larger its value. Each local maximum can be 28 
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considered a candidate particle centre. The larger the local maximum, the higher the 1 

probability that it is a particle centre. MP-NMS can distinguish between the centres of 2 

multiple particles that partially overlap, as long as they have distinguishable features 3 

(Fig. 1h). Compared to clustering algorithms such as the mean-shift used in 4 

DeepFinder13, the MP-NMS operation is substantially faster when accelerated using a 5 

GPU (Supplementary Table 6). 6 

For an MP operation with a kernel size of 𝑘 × 𝑘 × 𝑘  and a stride of 1, the 7 

receptive field of each voxel after the 𝑖th iterations of MP operations is 8 

																																																						𝑅𝐹$ = 1 + (𝑘 − 1) ∗ 𝑖																																																																(6) 9 

 10 

To obtain the centroid of a particle with a diameter of (2𝑟 + 1), the receptive field 11 

𝑅𝐹$ should be no smaller than the particle diameter. Thus, the minimum number of 12 

iterations of MP operations is ` /5
A3B

a, where ⌈∙⌉ denotes the round-up operation. 13 

To eliminate the negative influence of the poor segmentation accuracy achieved 14 

for edge voxels in subtomograms, an OT strategy is used in the inference stage. Taking 15 

the 2D segmentation case in Fig. 1h as an example and assuming that the image marked 16 

by the green box is the output of the 3D-ResUNet model, only the centre region marked 17 

by the red box is considered during the inference stage to eliminate the poor 18 

segmentation of edge pixels. The size of the red box is determined using a 19 

hyperparameter termed ‘pad_size’. Each tomogram is scanned with a specific stride 𝑠 20 

and a subtomogram size of 𝑁 × 𝑁 × 𝑁  in the inference stage, where 𝑠 = 𝑁 − 2 ∙21 

𝑝𝑎𝑑1$)7. Only the local maximum in the region of [𝑝𝑎𝑑1$)7: 𝑁 − 𝑝𝑎𝑑1$)7 , 𝑝𝑎𝑑1$)7: 𝑁 −22 

𝑝𝑎𝑑1$)7 , 𝑝𝑎𝑑1$)7: 𝑁 − 𝑝𝑎𝑑1$)7] is retained. 23 

To reduce background interference and avoid repetition during particle detection, 24 

two further postprocessing operations are performed. First, the local maxima below a 25 

threshold 𝑡.C are removed. Second, if the minimal Euclidean distance between two 26 

local maxima is lower than a specific threshold 𝑡D$1E, the smaller local maximum is 27 

discarded. 28 

 29 

 30 
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 1 

Quality metrics for picked particles 2 

To compare the performance of DeepETPicker with that of other competing state-3 

of-the-art methods, three performance metrics are used: precision P, recall R, and the 4 

𝐹B-score F18,25, which are defined as follows: 5 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃	
(7) 6 

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁	
(8) 7 

𝐹B = 2 ∙
P ∙ R
P + R	

(9) 8 

where TP, FP and FN stand for true positives, false positives, and false negatives, 9 

respectively. For a particle with a radius of 𝑟, its predicted label is considered positive 10 

if the Euclidean distance from its predicted particle centre to the ground truth is less than 11 

𝑟. Otherwise, it is considered negative. To measure the localization accuracies of particle 12 

picking algorithms, the average Euclidean distance (AD) from the predicted particle 13 

centre to the ground truth is calculated in voxels. 14 

For real experimental datasets without ground truths, we used the B-factor, global 15 

resolution, local resolution, and log-likelihood distribution to evaluate and compare the 16 

quality of the particles picked by DeepETPicker and the competing state-of-the-art 17 

methods. 18 

The B-factor of a set of particles is computed by the Rosenthal-Henderson plot 19 

(RH plot)26, which shows the inverse of the resolution squared against the logarithm of 20 

the number of particles. A higher B-factor means that a lower inclination and a larger 21 

number of particles are needed to reach the same reconstruction resolution, therefore 22 

indicating that the picked particles have lower quality. 23 

Another common metric for evaluating the quality of picked particles is the global 24 

3D reconstruction resolution. By refining two models independently (one for each half 25 

of the data), the gold-standard Fourier shell correlation (FSC) curve is calculated25,27-30 26 

using the following formula: 27 
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FSC(k, ∆k) =
𝑅𝑒𝑎𝑙p∑ 𝐹B(𝑲)𝐹/(𝑲)	

(G,∆G) r

p∑ |𝐹B(𝑲)|/(G,∆G) |𝐹/(𝑲)|/r
B
/
	 , k = |𝐊|	 (10) 1 

where 𝑲 is the spatial frequency vector and 𝑘 is its magnitude. 𝐹B(𝑲), 𝐹/(𝑲) are the 2 

Fourier transforms of the reconstructions for the two independent halves of the datasets. 3 

The FSC0.143 cut-off criteria27 are used to calculate the global resolution.  4 

In addition to the global resolution, the local resolution is another commonly used 5 

metric for evaluating the quality of the reconstruction map31, which can be calculated in 6 

different ways by ResMap31, MonoRes32, DeepRes33, etc. In this study, we use the 7 

ResMap algorithm implemented in RELION34 to analyse the local resolution. Overall, 8 

in comparing different particle picking methods, when other conditions are kept the 9 

same, if particles picked by a certain method achieves higher resolution in reconstruction 10 

maps than competing methods, we consider the particles picked by this method to be of 11 

higher quality overall.  12 

 In addition to the metrics described above, we propose new metrics to quantify the 13 

quality of the picked particles based on the Bayesian theory of subtomogram averaging 14 

implemented in RELION35. Our approach aims to find the model that has the highest 15 

probability of being the correct one based on both the observed data and the available 16 

prior information. The optimization of a posterior distribution is called maximum a 17 

posteriori or regularized likelihood optimization. For a given dataset of picked particles, 18 

after a posteriori maximization, each particle is assigned two estimated parameters: one 19 

is called the log-likelihood contribution to quantify its contribution to the final model, 20 

and the other is called the maximum value probability to quantify the accuracy of the 21 

particle parameter estimations (e.g., the orientation and the shift). The distribution 22 

statistics of the number of particles versus the log-likelihood contribution and the 23 

cumulative statistics of the number of particles versus the maximum value probability 24 

are used in this study to evaluate and compare the quality of picked particles. A larger 25 

number of particles with higher log-likelihood and higher probability values indicates 26 

better quality. 27 

 28 

Comparison among the particles picked by different methods 29 
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To compare the sets of particles picked by two different methods, a duplication 1 

removal operation is performed to calculate their intersection and difference sets. 2 

Specifically, if the minimal Euclidean distance between two particles is lower than a 3 

specific threshold 𝑡D$1E, which is normally set to half of the diameter of the particle, the 4 

two particles are considered the same. The intersection set contains particles picked by 5 

both methods, whereas the two difference sets contain particles picked by one but not 6 

the other method. For example, if we denote the set of particles picked by method A 7 

simply as A and the set of particles picked by method B simply as B, the particles in the 8 

intersection set 𝐴 ∩ 𝐵 are picked by both method A and method B. The particles in the 9 

difference set 𝐴 − 𝐵  are picked by A but not by B, whereas the particles in the 10 

difference set 𝐵 − 𝐴  are picked by B but not by A. Further explanations and 11 

illustrations of the intersection and difference sets are given in Supplementary Fig. 3. 12 

 13 

Datasets used for performance benchmarking 14 

The performance of DeepETPicker is benchmarked on both simulated and real 15 

cryo-ET tomograms from six datasets: SHREC2020, SHREC2021, EMPIAR-10045, 16 

EMPIAR-10651, EMPIAR-10499, and EMPIAR-11125. The DeepETPicker 17 

hyperparameters used for these datasets are summarized in Supplementary Table 1. 18 

For each of the four experimental EMPIAR datasets, the overall workflow is to manually 19 

label the selected particles, use the labelled particles for model training and, finally, use 20 

the trained model to pick particles from all testing tomograms. Detailed information on 21 

how each dataset is partitioned for training, validation, and testing is provided in the 22 

Supplementary Methods. 23 

SHREC2020 is a dataset of simulated cryo-ET tomograms8. It consists of 10 24 

tomograms of cell scale volumes. Each tomogram contains 12 classes of protein particles 25 

that vary in size, structure, and function. Ranked by their molecular weights from small 26 

to large, the Protein Data Bank (PDB) codes of the 12 classes of protein particles are 27 

1s3x, 3qm1, 3gl1, 3h84, 2cg9, 3d2f, 1u6g, 3cf3, 1bxn, 1qvr, 4cr2 and 4d8q. Tomograms 28 

0 to 7 are used for training, tomogram 8 is used for validation and hyperparameter 29 
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optimization, and tomogram 9 is used for testing. DeepETPicker takes tomogram voxels 1 

as its inputs. For each voxel, it outputs 13 probability scores that correspond to the 12 2 

protein classes and the background, respectively. 3 

SHREC2021 is another dataset of simulated cryo-ET tomograms15. Compared to 4 

SHREC2020, some major updates were made to the simulation process. Gold fiducial 5 

markers and vesicles were added to provide realistic additional challenges. SHREC2021 6 

consists of 10 tomograms of cell scale volumes. Each tomogram contains 12 classes of 7 

protein particles that vary in size, structure, and function. Ranked by their molecular 8 

weights from small to large, the PDB codes of the 12 classes of protein particles are 9 

1s3x, 3qm1, 3gl1, 3h84, 2cg9, 3d2f, 1u6g, 3cf3, 1bxn, 1qvr, 4cr2 and 5mrc. Tomograms 10 

0 to 7 are used for training, tomogram 8 is used for validation and hyperparameter 11 

optimization, and tomogram 9 is used for testing. DeepETPicker takes tomogram voxels 12 

as its inputs. For each voxel, it outputs 15 probability scores that correspond to the 12 13 

protein classes plus vesicles, gold fiducial markers, and the background, respectively. 14 

EMPAIR-10045 is a real experimental cryo-ET dataset. It contains 7 tomograms of 15 

purified S. cerevisiae 80S ribosomes34. Each tomogram contains an average of 445 16 

manually picked particles. The original tomogram and manually picked particle 17 

coordinates are contained in the subdirectory of the EMPIAR entry. Based on the aligned 18 

tilt series, ICON36 is used to reconstruct tomograms with better contrast for particle 19 

picking (Supplementary Fig. 4a). To reduce the computational cost and to increase the 20 

SNR, the tilt series are downsampled 4× before performing ICON reconstruction so that 21 

the diameter of the 80S ribosome in the final tomogram is ~23-24 voxels. For particle 22 

picking and performance comparisons, four different methods are chosen, including 23 

DeepETPicker, crYOLO37, DeepFinder13, and TM9. TM is performed by Dynamo38 with 24 

a reference map from EMDB entry EMD-0732 low-pass filtered to 60 Å (see also the 25 

tutorial1). A total of 150 manually labelled particles are used for training and validation 26 

of DeepETPicker, crYOLO and DeepFinder (See Supplementary Methods A.8). The 27 

 
1 http://wiki.dynamo.biozentrum.unibas.ch/w/index.php/Walkthrough_for_template_matching 
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tutorials2,3 provided for crYOLO and DeepFinder are followed for model training and 1 

particle picking. Based on the obtained coordinates of ribosome particles, subtomograms 2 

are directly extracted from the original tomograms. Subtomogram averaging is 3 

performed (Supplementary Fig. 4a) by following the reported protocol using the same 4 

parameters34, including CTF estimation, particle extraction, 3D classification (with one 5 

class only) and 3D autorefinement. The CTF model of each particle is generated using 6 

RELION scripts. 7 

EMPAIR-10651 is a real experimental cryo-ET dataset of cylindrical T20S 8 

proteasomes from Thermoplasma acidophilum39. It contains 3 tomograms of purified 9 

T20S proteasomes. Based on the aligned tilt series contained in the subdirectory of the 10 

EMPIAR entry, tomo3d is used to reconstruct the tomograms (Supplementary Fig. 4b). 11 

To reduce the computational cost and increase the SNR, the tilt series are downsampled 12 

4× before performing tomo3d reconstruction so that the diameter of the T20S 13 

proteasome in the final tomogram is ~21 voxels. Similar to EMPAIR-10045, 14 

DeepETPicker, crYOLO37, DeepFinder13, and TM9 are chosen for particle picking and 15 

performance comparisons. TM is performed by Dynamo38 with a reference map from 16 

EMDB entry EMD-12531 low-pass filtered to 60 Å. A total of 142 manually labelled 17 

particles are used for training and validation of DeepETPicker, crYOLO and DeepFinder 18 

(See Supplementary Methods A.8). Similar to EMPAIR-10045, the model training and 19 

particle picking processes of crYOLO and DeepFinder are performed following the 20 

respective tutorials provided. Based on the obtained coordinates, subtomograms are 21 

extracted from the original tomograms. Then, subtomogram averaging is performed in 22 

RELION 2.1.0 (Supplementary Fig. 4b), including CTF estimation, particle extraction, 23 

3D classification (with one class only) and 3D autorefinement. The CTF model of each 24 

particle is generated using RELION scripts. 25 

EMPIAR-10499 is a real experimental cryo-ET dataset of native M. pneumoniae 26 

cells treated with chloramphenicol40. In this study, we focus on picking 70S ribosome 27 

particles from these in situ tomograms. Ten tomograms (TS_77, TS_78, TS_79, TS_80, 28 

 
2 http://cryolo.readthedocs.io/en/stable/tutorials/tutorial_overview.html#tutorial-5-pick-particles-in-tomograms-beta 
3 https://deepfinder.readthedocs.io/en/latest/tutorial.html 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 14, 2023. ; https://doi.org/10.1101/2023.07.12.548777doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.12.548777
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

16 

TS_81, TS_82, TS_84, TS_85, TS_87 and TS_88) from this dataset are selected for 1 

particle picking and verification purposes (Supplementary Fig. 4c). CTF estimation 2 

and motion correction are performed on the original movie stacks using Warp 1.0.941, 3 

and the tilt series as well as the tilt angle files are imported into IMOD 4.9.1242 for tilt 4 

alignment and tomogram reconstruction using the weighted back-projection algorithm 5 

with a radial filter cut-off of 0.35 and a fall-off of 0.05. To reduce the computational cost 6 

and increase the SNR, the reconstructions are downsampled 4× so that the diameter of 7 

the 70S ribosome in the final tomogram is ~23-24 voxels. Again, DeepETPicker, 8 

crYOLO37, DeepFinder13, and TM9 are chosen for particle picking and performance 9 

comparisons. TM is performed by Dynamo with a reference map from EMDB entry 10 

EMD-21562 low-pass filtered to 60 Å. A total of 117 manually labelled particles are 11 

used for training and validation of crYOLO and DeepETPicker, and 703 particles are 12 

used for training and validation of DeepFinder (See Supplementary Methods A.8). 13 

Finally, RELION 2.1.0 (Supplementary Fig. 4c) is used to perform subtomogram 14 

averaging, including CTF estimation, particle extraction, 3D classification (with one 15 

class only) and 3D autorefinement. The CTF model of each particle is generated using 16 

RELION scripts. The local resolution is directly calculated using RELION 2.1.0. 17 

EMPIAR-11125 is an experimental cryo-ET dataset of H. neapolitanus alpha-18 

carboxysomes43. Three stacks (CB_02, CB_29, CB_59) are available from its EMPIAR 19 

entry for particle picking and verification purposes (Supplementary Fig. 4d). CTF 20 

estimation and motion correction are performed on the original movie stacks using Warp 21 

1.0.941. Tilt alignment is performed using Dynamo4. To reduce the computational cost 22 

and increase the SNR, the reconstructions produced by Warp are downsampled 8× and 23 

then used for particle picking so that the diameter of the alpha-carboxysome in the final 24 

tomogram is ~13 voxels. Again, DeepETPicker, crYOLO37, DeepFinder13, and TM9 are 25 

chosen for particle picking and performance comparison purposes. TM is performed by 26 

Dynamo with a reference map from EMDB entry EMD-27654 low-pass filtered to 60 27 

Å. A total of 571 manually labelled particles are used for training and validation of 28 

 
4 https://github.com/alisterburt/autoalign_dynamo 
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crYOLO, DeepETPicker and DeepFinder (See Supplementary Methods A.8). Due to 1 

memory constraints, the final reconstructions are performed using 2× downsampled 2 

data in Warp. Then, RELION 3.1 beta is used for the subsequent subtomogram averaging 3 

step, including 3D classification (with one class only) and autorefinement 4 

(Supplementary Fig. 4d). 5 

 6 

RESULTS 7 

DeepETPicker achieves the best overall performance in picking particles from 8 

simulated tomograms 9 

Under the very low SNRs of tomograms, it is difficult to generate full segmentation 10 

masks for macromolecular particles via manual annotation. To simplify the manual 11 

annotation process, three types of simplified masks (Bal-M, Gau-M and Cub-M) centred 12 

on manually labelled particle centres are generated (Supplementary Fig. 2a). For each 13 

type of simplified masks, their diameters can be set in different ways (Figs. 2b-c and 14 

Supplementary Table 2). Specifically, for the SHREC2021 dataset of simulated 15 

tomograms, the diameters of the simplified masks can be set to be proportional to the 16 

sizes of their corresponding real masks or as a constant value of 7 or 9. Utilizing 17 

simplified masks with constant diameters as training labels avoids the problem of class 18 

imbalance and simplifies the selection of the loss functions (Supplementary Methods). 19 

Compared to Cub-M and Bal-M masks, Gau-M masks provide more stable and 20 

better localization and classification performance regardless of which diameter setting 21 

method is chosen (Fig. 2d and Supplementary Table 3). In addition, the 3D-RestUNet 22 

model trained by Gau-M achieves a mean F1-score that is 2% higher in absolute 23 

magnitude than that trained by real masks. This is likely because Gau-M may serve as 24 

noisy labels to replace real full masks, and the introduced label noise improves the 25 

generalization capability of the trained model on unseen datasets. Interestingly, Gau-M 26 

masks whose diameters are set in different ways have nearly the same localization and 27 

classification performance (Supplementary Table 3). Because simplified masks with a 28 

constant diameter are more convenient to set up in practice, the results in the remainder 29 

of this study are obtained using Gau-M masks with a constant diameter 𝑑 = 7. 30 
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Precise particle centre localization is important for subtomogram averaging. 1 

Compared to other methods reported in the SHREC2021 challenge15, such as URFinder, 2 

DeepFinder, U-CLSTM, MC-DS-Net, YOPO, TM-F and TM, DeepETPicker achieves 3 

the best overall localization performance in terms of the TP, FP, FN, AD, precision, recall, 4 

and F1-score metrics (Supplementary Table 4). Specifically, compared to the best 5 

results obtained in the SHREC2021 challenge, DeepETPicker achieves a precision level 6 

of 0.958 (an increase of 8.9% in absolute magnitude), a recall value of 0.921 (an increase 7 

of 2.0%), an F1-score of 0.939 (an increase of 7.1%), and an AD of 1.15 (a decrease of 8 

24.3%). For tomograms that contain a variety of macromolecular particles, accurate 9 

classification of these particles is critical, especially for different particles with similar 10 

molecular weights or similar geometries. DeepETPicker achieves the highest F1-scores 11 

on 10 types of macromolecular particles out of all 12 classes (Fig. 2e and 12 

Supplementary Table 5). The best mean F1-score among the competing methods is 13 

0.801. DeepETPicker improves this mean F1-score by 3.75% in absolute magnitude. 14 

Overall, the classification F1-scores increase with increasing molecular weights, 15 

indicating that macromolecular particles with larger molecular weights are easier to pick, 16 

presumably because more voxels are occupied by larger particles in the same tomogram. 17 

In the SHREC2021 challenge, the Multi-Cascade DS network (MC-DS-Net) 18 

achieved the best classification F1-score and the shortest inference time15. Compared to 19 

MC-DS-Net, DeepETPicker takes approximately 1/10 of its inference time and achieves 20 

better picking performance (Fig. 2f and Supplementary Table 6). DeepETPicker 21 

achieves similar performance improvements over the methods in the SHREC2020 22 

challenge8 (Supplementary Figs. 5a-b). The customized lightweight and efficient 23 

architecture of 3D-ResUNet as well as the GPU-accelerated pooling-based 24 

postprocessing method, namely MP-NMP, are key factors that contribute to the 25 

performance of DeepETPicker. 26 

The amount of annotated data used for training has significant impacts on the 27 

picking performance of DNN-based models13. Compared to DeepFinder13, 28 

DeepETPicker requires less training data to achieve the same level of performance on 29 

the SHREC2020 dataset (Fig. 2g). Specifically, the mean classification F1-score of 30 

DeepETPicker trained by 3 tomograms surpasses that of DeepFinder trained by 8 31 

tomograms. When the classification F1-scores of particles with different sizes are 32 

plotted against the number of utilized training tomograms (Supplementary Fig. 5c), 33 
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DeepETPicker shows a more pronounced classification performance advantage than 1 

DeepFinder for small particles. 2 

We also examine the particle picking performance under different particle sizes 3 

combined with different tomogram noise levels. Specifically, we add different levels of 4 

Gaussian noise to the SHREC2021 dataset (Supplementary Table 7) and examine the 5 

influence of the noise level on the picking performance achieved under different particle 6 

sizes. As the SNR decreases, the classification performance of DeepETPicker, measured 7 

by the F1-score, decreases (Fig. 2h). Moreover, the smaller the particle size is, the 8 

greater the decrease in the classification F1-score at lower SNR levels. 9 

Manually labelling the particle centres in tomograms with extremely low SNRs 10 

inevitably introduces bias. For example, we calculate the Euclidean distance between 11 

the particle coordinates derived from manual picking and those obtained after refinement 12 

for EMPIAR-10499 (Supplementary Fig. 6). We find that 80% of the particles are less 13 

than 0.52𝑟 from the centre, where 𝑟 is the particle radius, and 90% of the particles are 14 

less than 0.625	 𝑟 from the centre. To better examine the impact of manual labelling 15 

bias on the particle picking results of DeepETPicker, we randomly add a shift between 16 

0.5𝑟 and 0.7𝑟 to the particle centres of the SHREC2021 dataset. We find that the 17 

random shift has little impact on the picking performance of DeepETPicker for all 18 

complexes with different sizes (Fig. 2i). This indicates that DeepETPicker has good 19 

robustness against the localization bias induced by manual labelling. 20 

We perform ablation studies on DeepETPicker and take 3D-UNet19 as the baseline 21 

to examine the contributions of the different customizations made to the 3D-RestUNet 22 

architecture in terms of improving picking performance (Supplementary Table 8). We 23 

find that adding residual connections (RCs) improves the mean F1-score of particle 24 

classification by 2%. Adding coordinate convolution (CC) and the image pyramid (IP) 25 

effectively improves the classification F1-scores obtained for small particles such as 26 

1s3x and 3qm1 (Supplementary Methods). Data augmentation (DA) improves both the 27 

localization and classification performance of the model by substantial margins. The 28 

deduplication (DD) operation of removing the smaller particles among adjacent local 29 

maxima improves the localization F1-score by 1%. Finally, the overlap-tile (OT) 30 

strategy improves the F1-scores of both localization and classification by 5% and 4%, 31 

respectively, indicating its importance in the inference stage of DeepETPicker. 32 

 33 
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DeepETPicker achieves the best overall performance in picking purified particles 1 

from real tomograms 2 

We compare the performance of DeepETPicker with that of competing state-of-the-3 

art methods in picking purified particles from two experimental datasets. The first 4 

dataset, EMPAIR-10045, consists of tomograms of purified S. cerevisiae 80S ribosomes. 5 

It is widely used in the development of image processing algorithms for electron 6 

tomography 34. The second dataset, EMPIAR-10651, consists of tomograms of purified 7 

T20S proteasomes from Thermoplasma acidophilum. 8 

For EMPIAR-10045, we pick 80S ribosome particles using DeepETPicker, 9 

crYOLO37, DeepFinder13 and TM9 and examine the same and different particles picked 10 

by these methods in a pairwise fashion by calculating the intersection and difference sets 11 

of the picked particles (Fig. 3a, Supplementary Table 9 and Supplementary Video 12 

1). Based on the diameter of the 80S ribosomes, we set 𝑡D$1E = 12 to calculate the 13 

intersection and difference sets. We find that DeepETPicker picks true-positive particles 14 

that are missed by the method reported in [34] as well as crYOLO and DeepFinder. 15 

Although TM picks many particles that are not selected by DeepETPicker, most of these 16 

particles are false positives (Fig. 3a). 17 

Manual annotations are used to assess how closely an automated particle picking 18 

method matches the manual particle picking by an expert. A comparison among the 19 

particles picked by the four selected methods (DeepETPicker, crYOLO, DeepFinder and 20 

TM) and manual annotation is carried out via the precision and recall metrics. At a fixed 21 

recall, DeepETPicker achieves the highest precision, followed by TM, DeepFinder and 22 

crYOLO (Fig. 3b), indicating that the highest consistency with manual annotation is 23 

achieved by DeepETPicker. Furthermore, the maximal recall values of DeepETPicker 24 

and TM are substantially higher than those of DeepFinder and crYOLO (Fig. 3b), 25 

indicating that more manually labelled particles are picked by DeepETPicker and TM. 26 

When the recall of TM reaches its maximum value, its precision decreases sharply, 27 

indicating that more false-positive particles are picked. 28 

The quality of the particles picked by these different methods is further examined 29 

based on the results of subsequent subtomogram averaging (Figs. 3c-g). For an objective 30 

comparison, no particle screening is performed during the subsequent alignment and 31 

classification processes because otherwise the quality measurements of the picked 32 

particles could be affected by the screening protocols used. We only set one class in the 33 
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3D classification step and perform 3D autorefinement based on the shift and orientation 1 

parameters of the 3D classification method in RELION. Then, we plot the number of 2 

particles versus the corresponding calculated log-likelihood contribution (Fig. 3c). We 3 

find that the overall range of the log-likelihood contribution provided by the particles 4 

picked by DeepETPicker is consistently higher than those of the particles picked by 5 

crYOLO, DeepFinder and TM. The same observation holds for the intersection and 6 

difference sets of the particles (Supplementary Fig. 7). Furthermore, we calculate the 7 

cumulative ratio of particles with the maximum probability higher than a threshold and 8 

plot the ratio versus the threshold (Fig. 3d). The cumulative ratio curves of 9 

DeepETPicker and crYOLO are close to each other but substantially better than those 10 

of DeepFinder and TM. Overall, the higher log-likelihood contribution and the better 11 

cumulative statistics of the maximum value probability indicate that the particles picked 12 

by DeepETPicker have better quality. 13 

The quality assessment of the picked particles based on global resolution, local 14 

resolution and B-factor measurements agrees with the assessment based on the log-15 

likelihood distribution and the cumulative statistics of the maximum value probability 16 

(Figs. 3e-g). Specifically, the global resolutions of the reconstruction maps derived from 17 

the particles picked by DeepETPicker and TM are both 15.0 Å, which are slightly higher 18 

than those of the reported coordinates (15.1 Å), as well as those of DeepFinder and 19 

crYOLO (15.5 Å). Importantly, the map generated by particles picked by DeepETPicker 20 

exhibits the highest local resolution in comparison with those of crYOLO, DeepFinder, 21 

and TM (Fig. 3g). Based on the RH plots26 (Fig. 3e), we observe that the set of particles 22 

picked by crYOLO gives the smallest slope, indicating that it has the highest B-factor. 23 

Although the slopes of the sets of particles picked by DeepETPicker, DeepFinder, and 24 

TM are similar, with the same number of particles, DeepETPicker achieves better global 25 

resolution than TM and DeepFinder. 26 

The maps constructed from different particle datasets have similar global 27 

resolutions but different local resolutions and RH plots (Figs. 3e-g). We hypothesize 28 

that this is because of the quality differences among the different particles picked by 29 

different methods. To test this hypothesis, we perform subtomogram averaging on the 30 

particles in the difference sets and then compute their global resolutions. We find that 31 

particles picked by DeepETPicker but not by the other methods (crYOLO, DeepFinder, 32 

and TM) yield correct reconstruction maps (Supplementary Fig. 8) with global 33 

resolutions that are consistent with the RH resolution (Supplementary Fig. 9 and 34 
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Supplementary Table 9), indicating that particles picked by DeepETPicker but missed 1 

by the other methods are true positives with quality similar to that of the true positives 2 

picked by these methods. The RH resolution is the theoretical resolution estimated based 3 

on the RH plot. However, the particles picked by DeepFinder and TM but not 4 

DeepETPicker yield incorrect reconstruction maps (Supplementary Fig. 8) with global 5 

resolutions that are much worse than the RH resolution (Supplementary Fig. 9 and 6 

Supplementary Table 9), indicating that these particles are mostly false positives with 7 

poor quality. Therefore, although the additional particles picked by DeepFinder and TM 8 

improve the SNRs of the half maps, i.e., reconstruction maps of the two independent 9 

halves of the datasets, and contribute positively to the FSC curve with an improved 10 

global resolution, they do not make a positive contribution to the RH plot and the local 11 

resolution. 12 

To further examine the performance of different methods in picking particles with 13 

different shapes, we choose the T20S proteasome from EMPAIR-10651, which has a 14 

cylindrical shape. Following the same protocol as that of the analysis used above, we 15 

pick T20S proteasomes using DeepETPicker, crYOLO37, DeepFinder13 and TM9 and 16 

calculate the same and different particles picked by these methods (Supplementary Fig. 17 

10). According to the diameter of T20S proteasomes, we set 𝑡D$1E = 11 for calculating 18 

the intersection and difference sets of the picked particles. Again, we find that 19 

DeepETPicker picks true-positive particles missed by crYOLO and DeepFinder 20 

(Supplementary Fig. 10a). 21 

To further check whether this observation is true, a comparison between the particle 22 

picking results of different methods (DeepETPicker, crYOLO, DeepFinder and TM) and 23 

manual annotation is carried out via the precision and recall metrics. Overall, 24 

DeepETPicker and TM achieve comparable performance metrics, which are slightly 25 

better than those of DeepFinder and much better than those of crYOLO 26 

(Supplementary Fig. 10b). Furthermore, subtomogram averaging is performed to 27 

further check the quality of the picked particles (Supplementary Figs. 10c-d). The 28 

global resolutions of the maps reconstructed from the particles picked by DeepETPicker, 29 

crYOLO, DeepFinder and TM are approximately 14.0 Å, 15.4 Å, 17.1 Å and 16.2 Å, 30 

respectively (Supplementary Fig. 10c). In agreement with the global resolution 31 

measurement, the map reconstructed from the particles picked by DeepETPicker shows 32 

more structural details and better local resolutions (Supplementary Fig. 10d). 33 

 34 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 14, 2023. ; https://doi.org/10.1101/2023.07.12.548777doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.12.548777
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

23 

DeepETPicker achieves the best overall performance in picking particles in situ 1 

from real tomograms 2 

Automated particle picking from real cryo-electron tomograms of cellular structures 3 

is critically needed for in situ structural biology. The crowded cellular environment 4 

poses a complex and challenging background for particle localization and identification, 5 

which is further compounded by the low SNRs of tomograms. Here, we first use the 6 

public cryo-ET dataset of native M. pneumoniae cells (EMPIAR-10499) to test the 7 

performance of DeepETPicker in picking ribosome particles in situ. 8 

Following the same analysis protocol used above for the purified 80S ribosomes of 9 

EMPIAR-10045, we pick 70S ribosome particles using DeepETPicker, crYOLO37, 10 

DeepFinder13 and TM9 and calculate the same and different particles picked by these 11 

methods (Fig. 4a, Supplementary Table 10 and Supplementary Video 2). According 12 

to the diameter of the 70S ribosome, we set 𝑡D$1E = 12 for calculating the intersection 13 

and difference sets of the particles. Again, we find that DeepETPicker can pick true-14 

positive particles missed by crYOLO and DeepFinder (Fig. 4a). Although DeepFinder 15 

and TM can pick particles not selected by DeepETPicker, these particles do not appear 16 

to be true positives upon initial visual inspection. 17 

To further check whether this observation is true, a comparison between the particle 18 

picking results of different methods (DeepETPicker, crYOLO, DeepFinder and TM) and 19 

manual annotation is carried out. Overall, DeepETPicker achieves substantially higher 20 

precision than the other three methods under the same recall rate (Fig. 4b), indicating 21 

that the highest consistency with manual annotation is achieved by DeepETPicker. 22 

Subtomogram averaging is performed to further check the quality of the picked particles 23 

(Figs. 4c-g). After calculating the log-likelihood contribution of each particle, the 24 

number of particles is plotted against the corresponding log-likelihood contribution (Fig. 25 

4c). The range of the overall log-likelihood contributions of the particles picked by 26 

DeepETPicker again is substantially better than that of particles picked by crYOLO, 27 

DeepFinder and TM. These conclusions also hold for their intersection and difference 28 

particle sets (Supplementary Fig. 11). Furthermore, the cumulative curves of the 29 

particle ratios are plotted against the maximum value probability (Fig. 4d). The 30 

cumulative ratio curve of DeepETPicker is consistently higher than that of crYOLO, TM 31 

and DeepFinder. Therefore, the best log-likelihood contribution and cumulative 32 

statistics of the maximum value probability indicate that DeepETPicker picks particles 33 
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in situ from tomograms more effectively and accurately than the other tested methods. 1 

This conclusion is further verified by the global resolution, local resolution, and B-factor 2 

measurements (Figs. 4e-g). The global resolutions of the maps reconstructed from the 3 

particles picked by DeepETPicker, crYOLO, DeepFinder and TM are 17.2 Å, 19.2 Å, 4 

27.2 Å and 19.2 Å, respectively (Fig. 4f). In agreement with the global resolution 5 

measurement, the map reconstructed from the particles picked by DeepETPicker shows 6 

more structural details and better local resolutions (Fig. 4g). Although DeepFinder picks 7 

more particles, the final refinement step cannot converge into a correct map. Based on 8 

the RH plots (Fig. 4e), DeepETPicker achieves the highest global resolution using the 9 

same number of particles. 10 

Following the same analysis protocol applied for the tomograms of purified 80S 11 

ribosomes in EMPIAR-10045, we further analyse the same and different particles picked 12 

by DeepETPicker versus the other three methods by subtomogram averaging. We find 13 

that the particles picked only by DeepETPicker but not by the other methods (crYOLO, 14 

DeepFinder and TM) yield correct and plausible reconstruction maps (Supplementary 15 

Fig. 12) with global resolutions that are mostly consistent with the RH resolutions 16 

(Supplementary Fig. 13 and Supplementary Table 10). This indicates that the 17 

particles picked only by DeepETPicker are true positives with quality similar to that of 18 

common particles. However, all the different particles picked by the other methods and 19 

not by DeepETPicker yield incorrect reconstruction maps (Supplementary Fig. 12), 20 

with global resolutions that are substantially worse than the RH resolutions 21 

(Supplementary Fig. 13 and Supplementary Table 10). This indicates that the 22 

different particles picked by the other methods are mostly false positives. Furthermore, 23 

we inspect the particle distribution of the centre shifts for the same particles picked by 24 

DeepETPicker versus the other three methods. The shift range of the particles picked by 25 

DeepETPicker is smaller than that of other methods (Supplementary Fig. 14), 26 

indicating that the highest localization precision is achieved by DeepETPicker. 27 

 28 

DeepETPicker achieves the best overall performance in picking smaller particles 29 

in situ from real tomograms 30 

The 80S and 70S ribosomes as well as the T20S proteasome studied above have 31 

molecular weights greater than 1 MDa. Particles with smaller molecular weights 32 

generally exhibit lower SNRs in tomograms, making particle picking more difficult. To 33 
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test the performance of DeepETPicker in picking smaller particles in situ, we select a 1 

public cryo-ET dataset of H. neapolitanus alpha-carboxysomes (EMPIAR-11125)43, 2 

whose molecular weight is 562 kDa. 3 

Following the same analysis protocol used above for EMPIAR-10045, we pick 4 

alpha-carboxysome particles using DeepETPicker, crYOLO37, DeepFinder13 and TM9 5 

and calculate the same and different particles picked by these methods (Fig. 5). 6 

According to the diameter of H. neapolitanus alpha-carboxysomes, we set 𝑡D$1E = 7 for 7 

calculating the intersection and difference sets of the picked particles. Again, we find 8 

that DeepETPicker can pick true-positive particles that are missed by crYOLO and TM 9 

(Fig. 5a). Although crYOLO also picks particles not selected by DeepETPicker, these 10 

particles do not appear to be true positives upon initial visual inspection. 11 

To further check whether this observation is true, a comparison between the particle 12 

picking results of different methods (DeepETPicker, crYOLO, DeepFinder and TM) and 13 

manual annotation is carried out via the precision and recall metrics. At a fixed recall 14 

rate, DeepETPicker achieves the highest precision, followed by DeepFinder, TM and 15 

crYOLO (Fig. 5b), indicating that the highest consistency with manual annotation is 16 

achieved by DeepETPicker. DeepETPicker also achieves the highest recall, indicating 17 

that more manually labelled particles are successfully picked by DeepETPicker. 18 

Furthermore, we perform subtomogram averaging to further check the quality of the 19 

picked particles (Figs. 5c-d). The global resolutions of the maps reconstructed from the 20 

particles picked by DeepETPicker, DeepFinder and TM are similar at ~7 Å (Fig. 5c). 21 

However, the particles picked by crYOLO fail to yield a correct reconstruction. In 22 

agreement with the global resolution measurement, the map reconstructed from the 23 

particles picked by DeepETPicker shows more structural details and better local 24 

resolutions (Fig. 5d). We also inspect the particle distribution of the centre shifts of the 25 

same particles picked by DeepETPicker versus the other three methods. The shift range 26 

of the DeepETPicker-picked particles is smaller than that of crYOLO and TM and is at 27 

the same level as that of DeepFinder (Supplementary Fig. 15), indicating that higher 28 

localization precision is achieved by DeepETPicker and DeepFinder. 29 

 30 

DISCUSSION 31 

Studying the high-resolution structures of macromolecular complexes in situ in their 32 

native cellular environments is at the forefront of contemporary structural biology. Cryo-33 
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electron tomography provides a powerful tool to achieve this goal. However, its 1 

application is limited by various technical bottlenecks, including the need to pick large 2 

numbers of macromolecular particles from tomograms at very low SNRs. In this study, 3 

we developed a new deep learning-based method, DeepETPicker, for automatic picking 4 

of 3D particles from tomograms with high accuracy and efficiency. 5 

To address the lack of full segmentation masks for particles in real experimental 6 

tomograms, we designed three simplified masks, examined their performances, and 7 

found that the masks of Gau-M yielded the best and most stable results. We incorporated 8 

an overlap-tile strategy into the inference stage to avoid the negative influence caused 9 

by the poor segmentation accuracy achieved for edge voxels, which substantially 10 

improved the performance of both localization and classification (measured in F1-11 

scores). We also proposed the MP-NMS operation for postprocessing to replace the 12 

clustering algorithms used previously, which substantially improved the resulting 13 

inference speed. To help users pick particles from unlabelled tomograms and train DNN-14 

based models, we developed a friendly graphical interface for DeepETPicker. Users can 15 

use this graphical interface to complete particle labelling, model training, and automatic 16 

particle picking with simple procedures. 17 

We tested the performance of DeepETPicker and compared it with other state-of-18 

the-art methods on two simulated datasets (SHREC2020 and SHREC2021) and four 19 

experimental datasets (EMPIAR-10045, EMPIAR-10651, EMPIAR-10499, and 20 

EMPIAR-11125). On the simulated datasets of SHREC2020 and SHREC2021, 21 

DeepETPicker outperformed the competing methods with the highest average F1-score 22 

and the lowest computational time. On the four experimental datasets, we developed 23 

multiple particle quality metrics to compare the performance of DeepETPicker with that 24 

of other methods. We found that the particles picked by DeepETPicker consistently 25 

showed the best quality with the highest log-likelihood contributions and the highest 26 

cumulative ratio of particles versus the maximum value probability, which was 27 

consistent with the observation that the particles picked by DeepETPicker produced 28 

reconstruction maps with the best global resolution, the best local resolution and the 29 

smallest B-factors. When comparing DeepETPicker with other methods such as 30 

crYOLO37, DeepFinder13 and TM, the particles not picked by DeepETPicker but 31 

selected by other methods generally failed to produce correct reconstructions. The 32 

extensive analyses suggested that the accuracy and precision of the particles picked by 33 

DeepETPicker were substantially better than those of the other methods. 34 
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Overall, our study showed that DeepETPicker outperformed competing state-of-1 

the-art methods on both simulated and real cryo-ET datasets. The results demonstrate 2 

the potential of DeepETPicker for applications in high-resolution cryo-ET studies in situ. 3 

In follow-up studies, we plan to incorporate particle orientation parameters into the 4 

framework of DeepETPicker, which will provide valuable information for the 5 

subsequent subtomogram averaging step. Furthermore, we plan to further optimize the 6 

classification performance of DeepETPicker on small particles.  7 

DATA AVAILABILITY 8 

The simulated tomogram dataset SHREC2020 is available from the website of the 9 

SHREC2020 challenge (https://www.shrec.net/cryo-et/2020/). The simulated tomogram 10 

dataset SHREC2021 is available from the website of the SHREC2021 challenge 11 

(https://www2.projects.science.uu.nl/shrec/cryo-et/). The experimental tomogram 12 

dataset of purified S. cerevisiae 80S ribosomes is available from EMPIAR under 13 

accession number EMPIAR-10045 (https://www.ebi.ac.uk/empiar/EMPIAR-10045). 14 

The experimental tomogram dataset of purified T20S proteasomes is available from 15 

EMPIAR under accession number EMPIAR-10651 16 

(https://www.ebi.ac.uk/empiar/EMPIAR-10651). The experimental tomogram dataset 17 

of M. pneumoniae cells is available from EMPIAR under accession number EMPIAR-18 

10499 (https://www.ebi.ac.uk/empiar/EMPIAR-10499). The experimental tomogram 19 

dataset of H. neapolitanus alpha-carboxysomes in situ is available from EMPIAR under 20 

accession number EMPIAR-11125 (https://www.ebi.ac.uk/empiar/EMPIAR-11125). 21 

 22 

CODE AVAILABILITY 23 

The code and user documentation for DeepETPicker are openly accessible at 24 

https://github.com/cbmi-group/DeepETPicker. Detailed tutorials are provided on each 25 

step of particle picking for single-class and multi-class examples.  26 

 27 
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Figures 1 

 2 

 3 

Fig. 1| Overall workflow of using DeepETPicker to pick particles from cryo-ET tomograms. 4 

It consists of a training stage (a-d) and an inference stage (e-i). a Training tomogram: a 5 

reconstructed tomogram is partitioned into individual cubic volumes, referred to as 6 

subtomograms. b Weak labels: different types of simplified particle masks are generated to 7 

centre on manually annotated particle coordinates. c Training labels: the weak labels are 8 
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assigned to their corresponding subtomograms. d Untrained model: a 3D-ResUNet model 1 

composed of a convolutional neural network with untrained parameters. e Testing tomogram: 2 

subtomograms partitioned from a new tomogram are used to test whether the trained model can 3 

accurately pick particles from unseen data. f Trained model. g Predicted labels: the trained model 4 

is used to predict voxel-level labels of the testing tomogram. h Postprocessing: mean pooling 5 

and nonmaximum suppression (MP-NMS) and overlap-tile (OT) operations are performed on 6 

the predicted labels. Specifically, an example of performing the MP-NMS operation on a 2D 7 

image with a size of 40 × 40 pixels is shown. i The positions of the picked particles are 8 

extracted after postprocessing. 9 

 10 
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 1 

Fig. 2| Performance of DeepETPicker in comparison with that of competing methods on 2 

the SHREC2020 and SHREC2021 simulated datasets. a Real full masks of macromolecular 3 

particles. Different colours are used to denote different classes of molecules. b Simplified Gau-4 

M masks with diameters proportional to the sizes of their corresponding full masks. c Simplified 5 
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Gau-M masks with a constant diameter 𝑑 = 7 . d Classification F1-scores achieved by 1 

DeepETPicker using real and different simplified/weak labels on the SHREC2021 dataset. Size-2 

based: the diameter of each generated mask is proportional to the size of its corresponding real 3 

mask; Const 7 and Const 9: the diameters of the generated masks are fixed at 7 and 9, 4 

respectively. The dashed line shows the cumulative F1-score achieved by DeepETPicker when 5 

trained on real full masks. e Classification performance (measured in F1-scores) achieved on 6 

particles of different molecular weights (small: < 200 kDa, medium: 200-600 kDa, large: >600 7 

kDa): DeepETPicker versus other particle picking methods reported in the SHREC2021 8 

challenge. f DeepETPicker runs substantially faster and achieves substantially higher 9 

classification F1-scores than the competing particle picking methods on the SHREC2021 dataset.  10 

g Classification performance (measured in F1-scores) under different numbers of training 11 

tomograms: DeepETPicker versus DeepFinder on the SHREC2020 dataset. The dashed line 12 

shows the average F1-scores of DeepETPicker when trained by three tomograms. h The 13 

influence of the SNR level on the classification performance of DeepETPicker for particles with 14 

different molecular weights from the SHREC2021 dataset. The noise levels under different 15 

Gaussian kernel 𝜎 are 0.127~0.587 for 𝜎=0, 0.101~0.463 for 𝜎=1.1, 0.056~0.254 for 𝜎=2, 16 

and 0.026~0.110 for 𝜎=5. i The influences of different particle centre shifts (biases) on the 17 

classification performance of DeepETPicker. 18 

19 
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 1 

 2 

Fig. 3| Particle picking performance of DeepETPicker compared to that of the competing 3 

methods on the EMPIAR-10045 experimental dataset. a Comparison between the particles 4 

picked by DeepETPicker and the three competing methods (crYOLO, DeepFinder, and TM). 5 

The original image is a result of performing Gaussian denoising and histogram equalization on 6 
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the raw tomogram. Different colours are used to differentiate the same and different particles 1 

picked. The same particles picked by DeepETPicker and the competing method, i.e., those in 2 

the intersection sets of their picked particles, are shown in blue. The different particles picked 3 

by DeepETPicker and the other competing methods, i.e., those in the difference sets of their 4 

picked particles, are shown in red and cyan, respectively. b Precision-recall curves produced by 5 

different methods using manually picked particles as the reference. c Histogram of the log-6 

likelihood contributions calculated by the RELION 3D autorefinement method. Horizontal axis: 7 

log-likelihood contribution. Vertical axis: number of particles. d Particle ratio with a maximum 8 

value probability above a specific threshold calculated by the RELION 3D autorefinement 9 

method. Horizontal axis: threshold of the maximum value probability. Vertical axis: ratio of the 10 

number of particles. e Rosenthal and Henderson B-Factor plot, which shows the relationship 11 

between the number of particles and the global resolution of the 3D reconstruction results. f FSC 12 

curves obtained by different particle picking methods after performing direct alignment and 13 

averaging. g Comparison of the local resolutions of the subtomogram averages obtained for 14 

budding yeast 80S ribosomes using the particles picked by different methods (DeepETPicker, 15 

crYOLO, DeepFinder and TM). 16 
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 1 

Fig. 4 | Particle picking performance of DeepETPicker compared to that of the competing 2 

methods on the EMPIAR-10499 experimental dataset. a Comparison between the particles 3 

picked by DeepETPicker and the other three competing methods (crYOLO, DeepFinder, and 4 

TM). The original image is a result of performing Gaussian denoising and histogram 5 

equalization on the raw tomogram. Different colours are used to differentiate the same and 6 
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different particles picked. The same particles picked by DeepETPicker and the other competing 1 

methods, i.e., those in the intersection sets of their picked particles, are shown in blue. The 2 

different particles picked by DeepETPicker and the other competing methods, i.e., those in the 3 

difference sets of their picked particles, are shown in red and cyan, respectively. b Precision-4 

recall curves produced by different methods using manual particles as the reference. c Histogram 5 

of the log-likelihood contributions calculated by the RELION 3D autorefinement method. 6 

Horizontal axis: log-likelihood contribution. Vertical axis: number of particles. d Particle ratio 7 

with a maximum value probability above a specific threshold calculated by the RELION 3D 8 

autorefinement method. Horizontal axis: threshold of the maximum value probability. Vertical 9 

axis: ratio of the number of particles. e Rosenthal and Henderson B-Factor plot, which shows 10 

the relationship between the number of particles and the global resolution of the 3D 11 

reconstruction results. f FSC curves obtained by different particle picking methods after 12 

performing direct alignment and averaging. g Comparison of the local resolutions of 13 

subtomogram averages obtained for M. pneumoniae 70S ribosomes using particles picked by 14 

different methods (DeepETPicker, crYOLO, DeepFinder and TM). 15 

 16 
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 1 

Fig. 5 | Particle picking performance of DeepETPicker compared to that of the competing 2 

methods on the EMPIAR-11125 experimental dataset. a Comparison between the particles 3 

picked by DeepETPicker and the other three competing methods (crYOLO, DeepFinder, and 4 

TM). The original image is a result of performing Gaussian denoising and histogram 5 

equalization on the raw tomogram. Different colours are used to differentiate the same and 6 

different particles picked. The same particles picked by DeepETPicker and the other competing 7 

method, i.e., those in the intersection sets of their picked particles, are shown in blue. The 8 

different particles picked by DeepETPicker and the other competing method, i.e., those in the 9 

difference sets of their picked particles, are shown in red and cyan, respectively. b Precision-10 

recall curves produced by different methods using manual particles as the reference. c FSC 11 
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curves obtained by different particle picking methods after performing direct alignment and 1 

averaging. d Comparison of the local resolutions of the subtomogram averages obtained using 2 

particles picked by different methods (DeepETPicker, crYOLO, DeepFinder and TM). 3 
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