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Abstract 8 

In silico functional annotation of proteins is crucial to narrowing the sequencing-9 

accelerated gap in our understanding of protein activities. Numerous function 10 

annotation methods exist, and their ranks have been growing, particularly so with the 11 

recent deep learning-based developments. However, it is unclear if these tools are 12 

truly predictive. As we are not aware of any methods that can identify new terms in 13 

functional ontologies, we ask if they can, at least, identify molecular functions of new 14 

protein sequences that are non-homologous to or far-removed from known protein 15 

families.  16 

Here, we explore the potential and limitations of the existing methods in predicting 17 

molecular functions of thousands of such orphan proteins. Lacking the ground truth 18 

functional annotations, we transformed the assessment of function prediction into 19 

evaluation of functional similarity of orphan siblings, i.e. pairs of proteins that likely 20 

share function, but that are unlike any of the currently functionally annotated 21 

sequences. Notably, our approach transcends the limitations of functional annotation 22 

vocabularies and provides a platform to compare different methods without the need 23 

for mapping terms across ontologies. We find that most existing methods are limited 24 

to identifying functional similarity of homologous sequences and are thus descriptive, 25 

rather than predictive of function. Curiously, despite their seemingly unlimited by-26 

homology scope, novel deep learning methods also remain far from capturing 27 

functional signal encoded in protein sequence. We believe that our work will inspire 28 

the development of a new generation of methods that push our knowledge boundaries 29 

and promote exploration and discovery in the molecular function domain.  30 
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2 

Introduction 1 

A typical cell contains about 0.2 g/ml proteins, which translates to up to a billion 2 

molecules per cell1, 2. However, the corresponding number of distinct protein 3 

sequences varies from only a few hundred in some bacteria to tens of thousands in 4 

many eukaryotes. Characterizing these vital biomolecular nanomachines, i.e. 5 

identifying their cellular functions, associated pathways, localization, interaction 6 

partners, and catalytic activities, is crucial for understanding their role in cellular 7 

biology. Experimental annotation of protein function remains significantly limited by its 8 

cost and speed. For example, among the 94.5 million protein sequences that have 9 

been deposited in UniProt in the last three years, only 6,974 (<0.01%) were manually 10 

curated. Thus, the growing influx of sequencing data has necessitated accurate 11 

computational annotation of protein function for diverse downstream analyses.  12 

Over the last two decades, the number of bioinformatics tools developed for in silico 13 

protein annotation has grown and algorithms diversified. Historically, the most common 14 

and reliable techniques for annotation relied on the transfer of function by homology, 15 

i.e. shared ancestry resulting in sequence similarity. To characterize a given query 16 

protein, various alignment and domain profiling tools such as BLAST, PSI-BLAST, and 17 

HMMER3-7 were used to search annotated protein databases8-11. More recently, faster 18 

algorithms have been developed to process and annotate large sequence datasets, 19 

including sequence reads and genes/proteins extracted from (meta)genome 20 

assemblies12-16. The challenges associated with protein functional annotation are 21 

multi-fold and have been discussed at length in earlier studies17-20. To summarize the 22 

state of the art: aside from defining what exactly the word “function” means in reference 23 

to proteins, there are three bottlenecks in producing accurate annotations – 24 

evolutionary caveats that limit function transfer by homology, lack of existing 25 

experimental annotations, and limitations of functional ontologies. 26 

The first bottleneck arises as life evolves and adapts and divergent evolutionary 27 

processes result in homologous genes of different functions. These could end up as 28 

false positive functional annotations of sequence- and structurally- similar proteins21. 29 

One such example among many is the enzymatically inactive duck  crystallin I that 30 
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shares >90% sequence identity with the active  crystallin II21, 22. At the same time, 1 

different genes converging to perform the putatively same function may have minimal 2 

homology – a false negative23, 24. For example, human (PDB:1PL8) and Rhodobacter 3 

sphaeroides (PDB:1K2W) sorbitol dehydrogenases are sequence different. Of course, 4 

we note that whether the human sorbitol dehydrogenase is functionally the same as 5 

its bacterial version is up for discussion. In general, diverged genes found in different 6 

species, i.e. orthologs, that do participate in the same molecular mechanisms, may not 7 

operate at the same rate or efficiency given the specific species’ environmental 8 

constraints – a functional difference that is often ignored. We argue that context in 9 

which the function is carried out should be thought of as part of the definition of 10 

function. However, this discussion is beyond the scope of this manuscript. 11 

Second, by definition, the general dearth of experimental annotations is limiting for 12 

function transfer by homology. Furthermore, existing annotations are biased towards 13 

proteins from large families and to species of interest. For example, experimental 14 

evidence for GO annotations only exists for less than 15% of proteins in SwissProt25. 15 

The effects of these biases are compounded by the computational annotation of newly 16 

accumulated genomic data – a process that fosters annotation error propagation. Note 17 

that the existing functional annotations can, by default, only cover the observed part of 18 

the protein universe, i.e. annotation of new sequences may be flawed simply by our 19 

limited knowledge of biotic functional capacity (Figure 1). In short, the classical 20 

approach of transferring protein function by homology is complicated by 21 

convergent/divergent evolution, lack of experimental annotations, and errors in 22 

available computational annotations; it is also limited to existing classes of proteins, 23 

reducing chances of discovery of novel functions.  24 

The third bottleneck is more technical in nature. The task of representing the 25 

ambiguous, environment-dependent, hierarchical role of a given protein with a set of 26 

human-understandable ontology terms is exceedingly difficult11, 26-32. Depending on the 27 

level of granularity and environmental conditions, a protein’s function could vary widely. 28 

For example, all kinases are phosphotransferases that catalyze the transfer of 29 

phosphate from ATP to carbohydrates, lipids, or proteins. However, kinases are part 30 
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of almost every cellular process and many metabolic pathways, i.e. they can be 1 

assigned a wide range of biological functions. On the other hand, proteins involved in 2 

the same biological pathway have different catalytic (molecular) functions almost by 3 

definition; e.g. glycolysis (map00010;27, 33) involves kinases and dehydrogenases. That 4 

is, different molecular functions can contribute to the same biological role, while 5 

proteins of the same molecular function may have different biological roles – all across 6 

numerous environments and cellular compartments. An ideal protein function ontology 7 

should be robust to this variability, but also precise, widely applicable, expandable, 8 

and, lately, machine-readable. This ontology does not yet exist. 9 

A significant amount of research has gone into targeting these challenges to 10 

computational function prediction. For examples, Critical Assessment of Functional 11 

Annotation algorithms (CAFA) is a community experiment that provides an even 12 

ground for the assessment of existing methods34, 35. CAFA employs a time-delayed 13 

evaluation where predictions of functions of a large set of yet-to-be-annotated 14 

genes/proteins are collected and assessed over a period of time through wet-lab 15 

experiments. CAFA results have documented the continuous emergence of new, 16 

better-performing prediction methods. Research has moved beyond sequence 17 

comparison, introducing new computational techniques, and incorporating additional 18 

biological data such as the protein-protein interactions, expression, phenotypic 19 

changes due to mutation, etc.  20 

A key recent methodological development has been the ability to represent protein 21 

sequences as embeddings, i.e. projections of proteins into the latent space. 22 

Embeddings are interpretations of deep neural networks, learnt in the process of 23 

addressing a predefined objective function36, 37. Protein sequence embeddings have 24 

been successful in annotating various protein features, but most obviously protein 25 

structure38-40. Recently, deep learning methods have been developed to annotate 26 

protein function. For example, Littmann et al. have explored the application of protein 27 

embeddings to function annotation, reporting performance on par with CAFA ‘s top 10 28 

best performers41, 42. Note that besides these representations capturing protein 29 
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structural aspects and thus informing function, it remains unclear exactly which (or 1 

whether) aspects of functionality are reported by embeddings. 2 

One important inference from the CAFA experience is the challenge of establishing 3 

metrics for the assessment of methods. That is, what is to be considered a correct 4 

annotation for a given protein? Given a protein P1 that carries out functions f1, f2, and 5 

f3 defined by a relevant ontology, if a method M1 predicts the protein to be of function 6 

f1 only, is this a correct annotation? How does this method perform in comparison to 7 

M2, which predicts the protein to carry out f3, f4, and f5? While for an individual 8 

annotation, say f1 vs. f2, ontology distance metrics can be established43-46, evaluating 9 

multiple annotations per protein is harder. Adding to the problem is the incomplete 10 

“ground truth” annotation, i.e. how would one take into account the protein’s unknown 11 

molecular functions?  12 

Here, we provide a method and ontology-blind assessment approach for comparison 13 

of function annotation tools. We evaluate the predictions of computational methods for 14 

a set of proteins, sharing little sequence similarity with proteins in available databases. 15 

We ask, what is a correct annotation for a protein with no known sequence-similar 16 

homologs (i.e. an orphan)? To answer this question, we use structural similarity and a 17 

deep learning-based technique to establish whether a protein pair in our set shares 18 

functionality (i.e. are they siblings?), regardless of what specifically each protein does. 19 

We then evaluate other methods’ ability to recall shared functions for these pairs. 20 

METHODS 21 

Extracting the test dataset. From the ESM Metagenomic Atlas47, i.e. proteins 22 

translated from metagenome records of the MGnify database48, we collected 23 

53,501,759 protein sequences, translated from metagenome-assembled genes, and 24 

having high-confidence predicted 3D structures, i.e. predicted local distance difference 25 

test (pLDDT) and predicted TM-score (pTM) greater than 0.938, 49, 50. Note that our 26 

selected sequences make up less than a tenth of all structures in ESM and represent 27 

a significantly smaller fraction still of all metagenome-derived proteins MGnify collected 28 

over the years. Thus, the evaluation reported here is limited to a subset of ordered 29 
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proteins, whose structure is well predicted and, thus, likely biased to reflect that of 1 

available, experimentally studied proteins.  2 

These 53.5M sequences were aligned against UniRef10051 (using mmseqs213 at 3 

default sensitivity =5.7). Sequences in UniRef are often used as reference for function 4 

transfer and as the training set for prediction models9, 51. To avoid using training data 5 

in our method testing, we focused on orphan sequences, i.e. those that do not share 6 

homology with proteins in UniRef. We identified 54,359 orphans with less than 30% 7 

sequence identity to UniRef100.  8 

To further simplify the evaluation task, we filtered out longer proteins (over 400 9 

residues) that are likely to contain multiple domains, as well as proteins whose 10 

sequences are truncated in the corresponding MGnify contigs, to retain 11,484 11 

sequences. To avoid excess focus on sequence similarity, we further sequence-12 

reduced this set at 90% identity using CD-HIT52. The final dataset of orphan proteins 13 

contained 11,444 proteins with ESM predicted structures and corresponding MGnify 14 

cDNA sequences.  15 

SNN + TM: annotating test set protein pairs as functionally similar (siblings). In 16 

our earlier work53, we used structural similarity (TM-score54≥0.7) and functional 17 

similarity (SNN-score≥0.98, https://bitbucket.org/bromberglab/fusion-snn/), i.e. our 18 

SNN+TM approach (Figure 2a), to identify functionally identical enzyme pairs with 19 

90% precision vs. the experimentally-determined Enzyme Commission32(EC) number 20 

annotations. SNN is a Siamese Neural Network, trained to identify functionally similar 21 

genes irrespective of sequence similarity53. The SNN architecture consist of a) 22 

pretrained embedding layer from LookingGlass55, b) a LSTM layer and c) computation 23 

of distance between embeddings (Figure S1). TM-scores for protein structure 24 

alignments were computed using Foldseek54.  25 

Note that in our original SNN+TM evaluation we used the available protein PDB 26 

structures53. Here, we planned to use ESMFold39-predicted structures of the orphan 27 

proteins instead. To evaluate the validity of using predicted structures, we identified 28 

siblings among a set of 1,869 enzymes with experimentally defined EC numbers and 29 
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high-confidence ESM predicted structures (pLDDT and pTM greater than 0.9). Trivially, 1 

due to the slow pace of deposition of experimentally curated sequences into 2 

repositories, this enzyme dataset significantly overlaps with the set of proteins used 3 

for the original evaluation of SNN+TM method53. To build this enzyme set, we extracted 4 

from UniProt9 5,697 enzymes of length ≤400 residues, annotated with a single, 5 

experimentally-evidenced EC number. Of these, only 33% (1,869) had high confidence 6 

ESMFold predicted structures.  7 

We compared sibling annotations to EC pairings. The identified sibling pair was 8 

deemed correct if the corresponding EC annotations (at third level) were the same. We 9 

found that using structure predictions instead of experimental data did not significantly 10 

reduce our SNN+TM method’s ability to identify proteins of the same enzymatic 11 

functionality (precision = 87.8% here vs ~90% in the original estimate). Note that we 12 

also used this dataset to estimate the performance of an ideal function predictor. 13 

We further extracted functionally similar pairs, orphan siblings, from our set of 11.4K 14 

orphan proteins. We ran Foldseek (with TM threshold=0) to compare the predicted 15 

structures of all 11.4K proteins in our set amongst themselves. Only 309,549 of these 16 

protein pairs (0.5% of ~65M possible ones) were structurally similar enough for a 17 

complete alignment. We then annotated functional similarity (SNN) scores for these 18 

309K pairs (Figure 2).  19 

Only 6K (6,219, 2% of 309K) pairs attained the pre-set cutoffs (TM score≥0.7, SNN 20 

score≥0.98) for shared function and were thus labelled orphan siblings. Note that at 21 

these cutoffs, proteins that are not identified as being of the same function can still be 22 

functionally identical (recall = 2.4%). Thus, we primarily assessed the performance of 23 

function annotation tools based on their capacity to find all test set orphan siblings, 24 

rather than on their precision of labelling pairs as functionally similar. Note that as our 25 

method for identifying shared function is subject to selected thresholds, we also 26 

explored the performance of the selected prediction methods by varying the TM score 27 

and SNN score cut-offs (Figures 4, S5 and SI Table 5).  28 
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Translating predicted annotations into functional similarity. We reformulated the 1 

molecular function prediction challenge to overcome the limitations of evaluating and 2 

comparing methods that target different functional vocabularies, i.e. tools predicting 3 

Gene Ontology (GO) molecular function (MF) terms or Enzyme Commission (EC) 4 

numbers. We also included tools that identify protein Pfam domains and assign 5 

sequences to KO and COG ortholog groups11, 56, 57. Note that while GO and EC aim to 6 

explicitly describe the function of the protein, Pfam and Ortholog methods capture 7 

protein families and evolutionary relationships, which are related to, but not necessary 8 

directly reflective of function. If a protein was annotated with multiple Pfam domains, 9 

EC numbers, or orthologous groups, we retained all labels. We selected 13 protein 10 

annotation tools for our assessment based on the availability of a standalone version 11 

or a web server that can process multiple sequences. These 13 methods were grouped 12 

based on the type of protein annotation into four categories: GO – DeepFri58, 13 

DeepGOPlus59, GoPredSim42, GOProFormer60, and NetGO61, Pfam – HMMER62, 14 

InterProScan63, ProtENN &  ProtCNN64 and ProteInfer65, Orthologs – GhostKOALA66, 15 

KofamKOALA67 and E.C. – ECPred68 and Mantis69. Methods such as Mantis6, 69 and 16 

ProteInfer65 were included in more than one category since they provide multiple types 17 

of protein annotations (Table 1). We also evaluated using pairwise DNA/Protein 18 

embedding similarities from unsupervised models such as Bepler70, CPCProt71, ESM-19 

239, LookingGlass Encoder55, ProtTrans37, SeqVec72 and Word2Vec73. In addition, we 20 

used SwiftOrtho74, a method that identifies orthologous pairs in a given set of 21 

proteins75, 76, as an upper bound of homology-based evaluation of our test set. 22 

We scored the similarity between predicted annotations of proteins in each pair. 23 

Consider a protein pair P1 and P2 predicted by method M1 to carry out sets of functions 24 

Fu1 and Fu2, respectively. Fu1 (and Fu2) consist of several annotation terms from GO, 25 

EC, Pfam, or ortholog groups as assigned by M1; each term is associated with a 26 

prediction score (or E-value) and is accepted or rejected at a prediction score threshold 27 

(𝜏p). Increasing p increases the precision of predicted annotations (Fu1 and Fu2) but 28 

could also reduce the number of predictions. All performance values reported in this 29 

study were computed by varying 𝜏p for methods that provide such prediction scores 30 
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(Table 1). Note that, at a selected p, different methods were only able to make 1 

predictions for subsets of our SNN+TM test set. Thus, all values reported here, unless 2 

explicitly specified, were computed on different sets of protein pairs. 3 

The similarity (S) between Fu1 and Fu2 is defined by the Jaccard similarity coefficient, 4 

i.e. the ratio of the intersection set of terms to the union set (Eqn. 1). In case of GO 5 

annotations, we used the information accretion term43, 77 (Ia, Eqn. 2,3) to weigh the GO 6 

term assignment according to term frequency of appearance among UniProt GO 7 

annotations with experimental evidence78, 79; information accretion of a child GO term 8 

𝑣, Ia(𝑣), is the information gained by adding 𝑣 to its parent term(s).  9 

𝑆(𝑃1(𝜏𝑝),  𝑃2(𝜏𝑝)) =  
|𝐹𝑢1 ∩𝐹𝑢2|

|𝐹𝑢1 ∪𝐹𝑢2|
           (Eqn. 1) 10 

𝑆𝐺𝑂(𝑃1(𝜏𝑝),  𝑃2(𝜏𝑝)) =
∑  𝐼𝑎(𝑣)𝑣 ∈𝐹𝑢1 ∩𝐹𝑢2

∑ 𝐼𝑎(𝑣)𝑣 ∈𝐹𝑢1 ∪𝐹𝑢2 
      (Eqn. 2) 11 

𝐼𝑎 = −log ( Pr( 𝑣 | 𝑃𝑎𝑟𝑒𝑛𝑡(𝑣)  )        (Eqn. 3) 12 

Additionally, the similarity score for a protein pair (P1 and P2) given their embeddings 13 

(E1 and E2) of length l, was derived from the Euclidean and cosine distances (Eqn. 4 14 

and 5). 15 

𝑆𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛(𝑃1,  𝑃2) =  
0.5

0.5+ √∑ (𝐸1
𝑖− 𝐸2

𝑖)2𝑙
𝑖=1

2
   (Eqn. 4) 16 

𝑆𝐶𝑜𝑠𝑖𝑛𝑒(𝑃1,  𝑃2) =  
𝐸1.𝐸2+1

2
     (Eqn. 5) 17 

The performance of a given method in identifying orphan siblings was measured first 18 

by computing the Area under the Precision-Recall curve (PR AUC), area under the 19 

Receiver Operating Characteristic curve (ROC-AUC), and F1max by varying the 20 

method-specific (Eqn. 1, 2, 4 & 5) similarity score threshold (𝜏𝑠) for calling a protein 21 

pair functionally identical. To balance the number of sibling (positives) vs. unlabeled 22 

(mostly non-sibling) pairs, we under-sampled the latter to match the number of sibling 23 

pairs; we repeated the under-sampling 100 times and computed the average and 24 

standard deviation of all measures.  25 
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The F1 score, as the harmonic mean of Recall and Precision, provides an overall 1 

prediction performance in identifying siblings (Eqn. 6). We chose the optimum method 2 

prediction score threshold (𝜏𝑜𝑝𝑡
p) and an optimum similarity score threshold (𝜏𝑜𝑝𝑡

s) 3 

corresponding to the maximum F1 (F1max); we then reported Precision and Recall at 4 

these thresholds (Eqn. 7-8) for all methods. Note that for methods that predict EC 5 

numbers, PFAM domains and ortholog annotations, two proteins were considered to 6 

be functionally similar if they shared even one common annotation at a given prediction 7 

threshold (𝜏p).    8 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  
2 ( 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙 )

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
  (Eqn. 6) 9 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
# 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑠𝑖𝑏𝑙𝑖𝑛𝑔𝑠

# 𝑜𝑓 𝑎𝑐𝑢𝑡𝑎𝑙 𝑠𝑖𝑏𝑙𝑖𝑛𝑔𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡
   (𝐄𝐪𝐧. 𝟕) 10 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
# 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑠𝑖𝑏𝑙𝑖𝑛𝑔𝑠

# 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑠𝑖𝑏𝑙𝑖𝑛𝑔𝑠
  (Eqn. 8) 11 

As described above, our SNN+TM approach has high precision, but a very low recall 12 

of functionally similar protein pairs. To compensate for the limitations of thus created 13 

test set, we report two additional performance measures: (1) the difference in similarity 14 

scores (∆S, Eqn. 9) and (2) the maximum recall while restricting the total predicted 15 

positives to fewer than 50% of the data (𝑅𝑒𝑐𝑎𝑙𝑙𝑚𝑎𝑥
𝑃𝑃𝑓50

). 16 

ΔS(𝜏𝑝) =  𝑅𝑒𝑐𝑎𝑙𝑙 ∗ (  〈𝑆(𝑃1, 𝑃2) 𝜖 𝑠𝑖𝑏𝑖𝑛𝑔𝑠(𝑃1,  𝑃2)〉 − 〈𝑆(𝑃1, 𝑃2) 𝜖 𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑙𝑒𝑑(𝑃1,  𝑃2)〉  )    (Eqn. 9) 17 

(1) The difference in similarity scores (∆S) between orphan sibling and unlabeled pairs 18 

indicates the distance between their score distributions. That is the difference in 19 

scores of functionally similar and unlabeled, most frequently not functionally similar, 20 

pairs (Eqn. 9). We weighted ∆S by corresponding methods’ Recall values to 21 

penalize methods for failing to identify test set siblings. ∆S varies in range [-1,1], 22 

where a positive value indicates higher similarity scores for sibling vs. non-sibling 23 

pairs.  24 

Note that ∆S reflects the distance between siblings and unlabeled pairs in the linear 25 

space of similarity scores. As a result, ∆S is comparable only among methods with 26 

similar similarity-score distributions. Despite its limitations, however, ∆S serves as 27 
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a useful threshold-independent performance measure. Here, we report 𝛥𝑆𝑚𝑎𝑥 , the 1 

highest ∆S for each method over the range of prediction score thresholds (𝜏p). 2 

𝛥𝑆𝑚𝑎𝑥  = max
𝜏𝑝

ΔS(𝜏𝑝)  (Eqn. 10) 3 

(2) We also report the maximum Recall (𝑅𝑒𝑐𝑎𝑙𝑙𝑚𝑎𝑥
𝑃𝑃𝑓50

) of each method over the 4 

thresholds (p and s) while restricting the total predicted positives to fewer than 5 

50% of the method-specific dataset. This measure reflects the best possible recall 6 

for each method, without encouraging trivial, i.e. “all pairs are siblings” positive 7 

overprediction. 8 

We also compared the method prediction performances to two empirical random 9 

estimates: a random classifier and a random annotator. A random classifier samples 10 

the similarity scores (S) of protein pairs from a random uniform distribution. The 11 

random annotator is the result of shuffling sibling/unlabeled labels for all protein pairs 12 

in the test sets of each method in our assessment. Each simulation was repeated 100 13 

times.  14 

Further, the statistical significance of the performance differences between the tools in 15 

terms of ∆S, F1max, PR-AUC and ROC-AUC were assessed through the Wilcoxon rank-16 

sum test and Student's t-test using SciPy80.  17 

RESULTS AND DISCUSSION 18 

 19 

 20 

 21 

Figure 1: The limits of protein function 22 

annotation. Of the complete set of proteins 23 

(entire circle), containing known/previously 24 

observed proteins (blue/black dashed circle 25 

outline) and unknown/not-yet-seen proteins, 26 

some fraction carries out unknown functions 27 

(fraction of circle in red) rather than known 28 

ones (fraction in white). Existing experimental 29 

and homology-based protein function 30 

annotations (blue oval) cover a small part of 31 

the complete protein sequence space. The 32 

number of orphan proteins, i.e. those lacking 33 

annotation and having no known homologs, is 34 

growing as we explore our world with better 35 

and faster gene/protein capture tools. Note 36 

that circle sizes are not to scale.37 
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Assessing test set and evaluation metrics. We first aimed to evaluate our proposed 1 

strategy for assessing protein function annotation methods (Figure 2). Our protein 2 

structure alignment (Foldseek54) plus shared-function prediction (SNN53; Figure S1) 3 

based approach (SNN+TM; Methods) captures functional identity of a protein pair, 4 

labelling them siblings. Structural similarity is often used as a proxy of functional 5 

similarity81, 82. By filtering SNN predictions to structurally similar proteins, we assured 6 

high precision of our method. 7 

To evaluate SNN+TM predictions, we annotated as siblings 1,927 (0.11%) of 8 

1,745,646 protein pairs among 1,869 enzymes experimentally labelled with an Enzyme 9 

Commission32 (EC) numbers. For this set, all protein structures were predicted using 10 

ESMFold39 and only high-confidence structures were retained (Methods).  11 

Note that our definition of siblings does not specifically reflect protein sequence 12 

similarity. The TM score component of our method is derived from alignment of the 13 

predicted protein structures. The SNN similarity score is predicted by a model that was 14 

trained to identify gene pairs encoding proteins from same fusion function clusters53. 15 

Proteins in different fusion clusters are often sequence similar (homologous), while 16 

proteins within the same cluster can be sequence dissimilar. To support our view that 17 

SNN predictions are not homology-driven, we observe that for our set of 1.7M enzyme 18 

pairs there was no correlation (-0.036) between the SNN score and sequence identity 19 

(Figure S2). 20 

For this annotated enzyme set, we computed the performance of the “ground truth 21 

predictor” (Table S1), by under-sampling unlabeled pairs to generate siblings-to-22 

unlabeled ratio of 1-to-1 over 100 iterations. In building our SNN+TM method, we 23 

selected the TM and SNN score thresholds (≥0.7 and ≥0.98, respectively) to attain 24 

~90% precision in capturing functionally similar proteins of our original labelled 25 

dataset53. That is, these cutoffs ensured that most protein pairs labelled as siblings are 26 

correctly labelled, but only a small fraction of all siblings is identified. Thus, for any set 27 

of proteins, our approach generates a dataset of positive (sibling) vs. unlabeled protein 28 

pairs, where the latter may contain siblings but, trivially, significantly fewer of them than 29 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 12, 2024. ; https://doi.org/10.1101/2023.07.12.548726doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.12.548726
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

non-siblings. Here, only 4% (69,042) of the unlabeled set (1,743,719 pairs total) were 1 

same EC pair proteins. At the same time, 88% (1,693) of the positive (sibling) set (of 2 

1,927 pairs) had same EC numbers. 3 

For this type of test sets (positive vs. unlabeled) the recall of assessed methods, i.e. 4 

their ability to identify positives/siblings, is justifiably the primary choice of performance 5 

measure. However, to avoid overestimating performance of methods that tend to 6 

overpredict positives, we needed to factor in the total number of positives labelled – a 7 

measure well captured by precision, i.e. the number of siblings predicted positive vs. 8 

all positive predictions. We note, however, that reported method precision values may 9 

be underestimated for some methods that correctly identify siblings from the unlabeled 10 

set. We thus use precision here only to illustrate the total number of positive predictions 11 

necessary for each method to recall known siblings.  12 

A random classifier (Methods) can be expected to attain both recall and precision of 13 

50% for a balanced (1:1) dataset. On the other hand, as expected, the recall and 14 

precision of our “ground truth predictor” were much higher – 88% and 96%, 15 

respectively (Table S1 & S2). Note that unlike with real function prediction methods 16 

that provide a confidence score with their prediction, for these experimental 17 

annotations we used binary, i.e. same function vs not, labels inferred from third digit 18 

EC number identity between protein pairs (Methods). 19 

Orphan siblings as a test dataset. From the MGnify48 collection of metagenomic 20 

data, we collected a set of 11,444 proteins having no homology (<30% identity) to any 21 

of the UniRef100 sequences (orphans) and paired them by expected SNN+TM 22 

functional identity (orphan siblings, Methods; Figure 2). As all supervised function 23 

prediction methods have been directly or indirectly trained on protein sequences found 24 

in UniProt, our approach eliminated any overlap between the training dataset of the 25 

prediction methods and our test dataset. Thus, our evaluation is an unbiased estimate 26 

of functional prediction method performance on any novel proteins. 27 

Of the ~65M possible protein pairs made from this set, only ~309K attained a TM-28 

scoreable structural alignment and 6,219 pairs (~2%; Methods) were labelled 29 
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functionally similar orphan siblings by our SNN+TM approach. This annotated dataset 1 

was used to assess the performance of protein function prediction tools.  2 

 3 

 4 

Figure 2: Evaluating function prediction through functional similarity. The performance of function 5 

prediction methods is evaluated based on the ability to predict functional similarity between proteins in 6 

a pair. (A) Putative functionally similar orphan protein pairs, i.e. a test set of orphan siblings, is built 7 

using the SNN+TM method. This SNN+TM test set of orphan siblings consists of protein pairs precisely 8 

labelled as siblings (pairs with high structure similarity [TM-score ≥ 0.7] and functional similarity [SNN 9 

score ≥ 0.98]) among unlabeled protein pairs. The performance of function prediction methods was 10 

evaluated by computing true positives, false negatives, and putative false positives (Methods). All 11 

assessments were conducted by varying thresholds for annotation prediction score (p) and annotation 12 

set similarity (s). (B) The number of orphan pairs considered as siblings at each threshold of TM score 13 

(x-axis) and SNN score (y-axis) in the plot is highlighted according to a log-scale gradient scheme from 14 

few proteins (blue) to many proteins (green). In (C) each dot represents a protein-pair and is colored by 15 

sequence identity from very low (< 40%; gray) to very high (80-90%; dark blue). Note that no pairs over 16 

90% identity were included in our set. The dashed lines indicate the TM and SNN score cut-offs (0.7 17 

and 0.98) chosen for this work. 18 
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 1 

Figure 3: Comparing method performance in each annotation category. The bar plots show the 2 

highest (max) per-method (A) S and (B) 𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑃𝑓50 metrics for the SNN+TM test set of protein pairs 3 

(see Methods). The evaluated methods in this study predict: Enzyme Commission numbers (EC1 – first 4 

digit, EC3 – up to third digit), Gene Ontology Molecular Function terms, Pfam domains, and Ortholog 5 

groups. Language model embedding distances were also considered. Smax score was computed for 6 

each method by varying the prediction score threshold (p) whereas 𝑅𝑒𝑐𝑎𝑙𝑙𝑚𝑎𝑥
𝑃𝑃𝑓50

 was computed by 7 

varying both the prediction and the similarity score thresholds (p and s). The double line separates 8 

explicit functional annotations (EC and GO) from implicit functional annotations via Pfam and Ortholog 9 

definitions and embedding similarities. The gray and blue lines indicate the average performance of 100 10 

random baseline classifiers and the expected performance of the “ground-truth” annotation (Table S1), 11 

respectively. The white squares with standard error bars indicate the average performance of the 12 

method-specific random annotators over 100 iterations. 13 

  14 

Among the 309K protein pairs, 99.3% (307,434) shared <40% sequence identity, while 15 

0.08% (240) were ≥80% identical (Figure 2C). Of the 6,219 orphan siblings, 5,576 16 

(89.7%) had <40% identity and 95 (1.53%) were ≥80% identical, i.e. a slight enrichment 17 

for sequence similarity among orphan siblings as compared to the complete set of 18 

orphans. Despite this enrichment, however, siblings were largely composed of 19 

sequence dissimilar protein pairs.  20 

No one method is best for function annotation. We measured the ability of existing 21 

molecular functional annotation methods to assign identical functions to each protein 22 

in an orphan sibling pair (Figure 3, S3 & Table 1; Methods). Note that methods 23 

differed in the number and kinds of proteins they could annotate, resulting in different 24 

test sets.  25 
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The top performers in this evaluation were not restricted to any one class of annotation; 1 

i.e. ECPred, GOPredSim, Pfam HMMER, and GhostKOALA attained similar 2 

performance using the ∆S, ∆Smax, F1max, etc. metrics (Table 1 & Figure 3). Curiously, 3 

except for GOPredSim, which uses ProtT5 embeddings37, the deep-learning models 4 

built to predict GO terms did not top the list. While NetGO attained solid performance, 5 

though still lower than the best method, other deep-learning methods (DeepFRI, 6 

DeepGOPlus, GOProFormer, and ProteInfer) were significantly lower (Wilcoxon rank-7 

sum test, all p-values < 1E-8). Note that GOProFormer was developed on yeast 8 

proteins60 and using it to predict microbial protein function may have been beyond its 9 

scope of work.  10 

Comparing performance measures derived at fixed thresholds (p
opt and s

opt) may not 11 

accurately depict the landscape of method performance. For a more stable measure, 12 

we computed the maximum of performance metrics (Figure S3) over a range of both 13 

prediction score and similarity score thresholds (p and s). We also computed ∆Smax, 14 

i.e. the linear distance between the distributions of sibling (positives) and non-sibling 15 

(negatives) similarity scores – a measure independent of any thresholds (Figure 3A). 16 

Using these metrics, ECPred, GOPredSim, Pfam HMMER, and GhostKOALA retained 17 

their position as top performers; additionally, Mantis Pfam predictions attained similar 18 

performance to the top scorers. Interestingly, performance of all methods was 19 

somewhat closer to the respective estimates of random than to the expected 20 

performance of the ideal ground truth predictor, highlighting the scope for improvement 21 

in function annotation.  22 

We also computed the maximum recall (𝑅𝑒𝑐𝑎𝑙𝑙𝑚𝑎𝑥
𝑃𝑃𝑓50) of all methods across thresholds 23 

(p and s) while limiting the number of predicted positives to ≤50% of the dataset 24 

(Figure 3B). This constraint restricts the inclusion of low confidence predictions and 25 

trivial overprediction of positives. GOPredSim and NetGO outperformed all the other 26 

annotation methods in this analysis. However, due to the differences in the number of 27 

proteins that could be annotated by each method, NetGO did so for a much larger 28 

number of sibling pairs. We thus note that though GOPredSim consistently performed 29 
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well in all our analyses, the fraction of siblings it identified is significantly lower than 1 

other methods (Figure 3B).  2 

Language models ESM, LookingGlass, and ProtT5 had similar, 𝑅𝑒𝑐𝑎𝑙𝑙𝑚𝑎𝑥
𝑃𝑃𝑓50 as other 3 

methods (Figure 3B & S4). However, the respective performances of the method-4 

specific random annotators (Figure 3B) for these three models were even higher. We 5 

are limited to speculating whether this results from the multi-dimensional and non-6 

discrete nature of embeddings that encapsulate multiple protein characteristics, 7 

including structure similarity, homology, sequence length, etc., instead of function 8 

alone.  9 

Protein embedding distances are not directly informative of functional similarity. 10 

We further computed similarity between protein pairs based on cosine and Euclidean 11 

distances between embedding vectors of all 309K protein pairs (Eqn. 4, 5). 12 

Surprisingly, none of these distances captured the functional similarity between protein 13 

pairs well. Using our measures of performance (S and 𝑅𝑒𝑐𝑎𝑙𝑙𝑚𝑎𝑥
𝑃𝑃𝑓50), none of the 14 

language models did better than random. We note that when evaluation uses other 15 

metrics, specifically those relying on prediction precision, ESM-2, ProtT5, and 16 

LookingGlass embeddings achieve performance similar to some of the better 17 

predictors (Figure S4). However, as mentioned earlier, precision is not a reliable metric 18 

for our type of positive/unlabeled test data. Further, note that the generic choice of 19 

architecture did not drastically differentiate performance — among the top three 20 

embeddings, ESM-2 and ProtT5 are transformer-based protein language models37, 39, 
21 

83 whereas LookingGlass is a bi-directional LSTM model trained on short DNA reads55. 22 

The other four embeddings were SeqVec (LSTM) and Word2Vec (neural network) 23 

inspired by Natural Language Processing72, 73, Bepler is also a bi-directional LSTM 24 

trained on amino acid sequences70 and CPCProt is a convolution encoder trained 25 

through contrastive learning to identify subsequent fragments of protein against 26 

random protein fragments71. 27 

We also note that given that ESM embeddings could predict protein structures, we 28 

expected these to capture functional similarity as defined, in part, by structural 29 

alignments. However, interpretation of language models is complicated and the 30 
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extraction of average representation from multiple layers or a representation of any 1 

particular layer is bound to lead to loss of information84, 85. Our results thus highlight 2 

limitations of cross-domain application of unsupervised deep learning models without 3 

extensive analysis and fine-tuning. 4 

 5 

Figure 4: Variations in performance over TM-score cut-offs. The highest (A-D) Similarity (y-axis) 6 

of top performing methods vary based on the type of predicted annotations. Note that all scores were 7 

computed at SNN cutoff =0.98 and at different TM-score cutoffs (bottom x-axis), resulting in a different 8 

number of orphan sibling pairs (top x-axis). The average performance of 100 random baseline classifiers 9 

is plotted for comparison in each panel (dotted black line). See Figure S3 for trends of F1max and AUC 10 

PRmax. 11 

 12 

Function prediction strongly linked to protein structure. Our definition of siblings 13 

is dictated by structural similarity (TM alignment) and functional similarity (SNN). By 14 

using a high SNN cut-off (0.98), we have negotiated significant reduction in false 15 

positives at a loss of true positives. In other words, our approach to identifying 16 

functional siblings, while being very accurate (87.8% precision), is known to miss many 17 

protein pairs annotated to be of the same function (2.4% recall). While our structural 18 

similarity cutoff of TM score≥0.7 is an accepted value86 and the SNN cut-off of 19 

score≥0.98 was confirmed by our earlier experiments53, we aimed to explore method 20 

behaviour across the complete range of protein similarities. We thus computed the 21 
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prediction performance of methods by varying the TM (Figure 4) and SNN score 1 

(Figures S5) cut-offs and, thus, redefining the protein pairs considered siblings. Note 2 

that in evaluating structural similarity we focused on pairs identified by Foldseek as 3 

possibly alignable (Methods), i.e. 309K protein pairs of 65M possibilities, but for these 4 

we varied the TM-score in the [0,1] range. The SNN method was trained to recognize 5 

pairs as functionally similar above the 0.5 cutoff, so we explored the SNN scores in the 6 

[0.5,1] range.  7 

 8 

The top-performing methods (ECPred, GOPredSim, HMMER and GhostKOALA) 9 

showed consistently better performance than other methods across different TM and 10 

SNN score cut-offs. As expected, we observed a steep rise in performance of all 11 

methods at TM-score≥0.7 confirming that structural similarity above that threshold 12 

plays a significant role in functional similarity. At the same time, restricting the SNN 13 

score cutoff to 0.98 increased the performance (AUC under Precision-Recall curve and 14 

F1-score) of ECPred, ProteInfer, ProtCNN and DeepGOPlus by at least 20% (Figure 15 

S6) but reduced the performance of GhostKOALA. SNN captures functional similarity 16 

independent of either sequence or structural similarity53. We thus expect that tightening 17 

the SNN threshold reduces the performance of methods with strong dependency on 18 

sequence similarity, such as GhostKOALA.  19 

Similarly, we repeated our assessment by varying the test dataset. We restricted our 20 

analysis to a subset of the test dataset consists of 4,376 protein pairs (including 1,700 21 

siblings) made up of 3,506 proteins with no more than 150 residues to strictly restrict 22 

to single domain proteins (Table S4, Figure S6 & S7). Overall, we observed a slight 23 

in increase in performance of all GO and EC prediction methods except for 24 

GOPredSlim. Performance of GOPredSim significantly increased as measured by all 25 

the performance metrics, especially S which nearly tripled. In contrast, methods 26 

predicting PFAM domain and orthologs should a slight decrease in performance. To 27 

our surprise, performance of GhostKOALA reduced drastically as observed in the 28 

previous observation.  29 
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 1 

Figure 5: Different annotations capture different functional spaces. Orphan siblings predicted by 2 

the top-performing methods (A-E) and SwiftOrtho (F) occupy different spaces in the TM score (x-axis) 3 

vs SNN score (y-axis) space depending on the type of annotation (EC, GO, Pfam and orthologs). Each 4 

dot in the plot represents a protein-pair and is colored based on the sequence identity. The dashed lines 5 

indicate the TM and SNN score cut-offs (0.7 and 0.98) chosen for the defining the SNN+TM test set of 6 

labelled siblings (red dashed lines).  7 

 8 

What do the best performing methods capture? To answer this question, we 9 

evaluated contributions of known functionally relevant factors, i.e. sequence and 10 

structure, to method functional annotations.  11 

We first clustered our orphan proteins, by sequence identity at different cut-offs 12 

between 0.9 to 0.4 using CD-HIT52 and explored their shared functionality (Table 2,  13 

S5, S6 & Figure 5). We found that less than a tenth of a percent of protein pairs in our 14 
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orphan dataset set (240 pairs) were highly sequence-similar (80-90% seq.id), while the 1 

vast majority were not; i.e. more than 99% of protein pairs shared less than 40% 2 

sequence identity. Among all method predictions we observed significant enrichment 3 

of sequence similar protein pairs (≥40% seq. id.) and a depletion of dissimilar pairs. 4 

Note that this observation is unrelated to the putative correctness of their functional 5 

annotations.  6 

We further observed that the enrichment of GOPredSim and ECPred predictions was 7 

limited only to pairs of higher similarity (≥60%). GhostKOALA’s predictions, on the 8 

other hand, were not significantly enriched in highly sequence similar pairs (80-90%). 9 

Note that the small number of these highly sequence similar pairs complicates 10 

inference. That is, of the 240 such pairs, GOPredSim and ECPred identified ten and 11 

two, respectively – a small, but significant number – while GhostKOALA, which is built 12 

to annotate proteins using ortholog information, identified only one. We expect that the 13 

latter result is due to our test set being made up of orphan proteins, i.e. those without 14 

homologs in the predictor’s reference database. These observations suggest that, as 15 

expected, sequence information is important in driving function annotation by all 16 

methods, but GOPredSim and ECPred are more reliant than others on high sequence 17 

similarity. 18 

The enrichment in the number of siblings predicted by each method within sequence-19 

similar bins did not correlate with higher function prediction accuracy across these bins. 20 

For example, ECPred precision was worse for high similarity pairs than for lower ones, 21 

i.e. the opposite of the enrichment trend (Table 2 and S6). On the other hand, 22 

GOPredSim precision was similar for all sequence identity bins. HMMER which 23 

showed significant enrichment in the 40-80% sequence identity bin, had the highest 24 

precision of 63% in the 80-90% identity space. To summarize, while the predictions of 25 

the methods in this study are biased towards identifying sequence similar proteins as 26 

siblings, the accuracy of such predictions in terms of the functional similarity of the two 27 

does not agree with this assessment.  28 

We also explored this homology-based functional annotations using SwiftOrtho74 – a 29 

method that identifies orthologous pairs in a given set of proteins based on sequence 30 
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similarity75, 76. As expected, SwiftOrtho correctly identified 239 of 240 of the highly-1 

sequence similar (80-90% sequence identity) pairs; it’s predictions were also enriched 2 

in pairs of sequence similar proteins at all levels of similarity ≥40% (Table 2 & S5). 3 

These results highlight the success achievable by homology-based methods in the 4 

presence of the relevant reference sets and further emphasize their deficiency in the 5 

absence of such reference. We note, however, that distinguishing orthologs from 6 

paralogs is hard87, 88 and even harder without the taxonomic and/or genomic context. 7 

In fact, SwiftOrtho also (putatively) incorrectly labelled 144 protein pairs as siblings. 8 

 9 

We further analysed our data by binning predicted siblings based on structural (TM-10 

score) and putatively functional similarities (SNN score). Predicted siblings from all 11 

methods, except ECPred were enriched in high structurally similar pairs (TM-score 12 

=[0.7,1.0]) vs. the low similarity range (TM-score =[0,0.5], Table 2). In other words, 13 

while most methods capture functional similarity driven by structural similarity, ECpred 14 

identified similar enzymatic activity in remotely structurally similar protein pairs as well. 15 

Note that ECPred predictions were significantly enriched in the high SNN score space 16 

([0.98,1]). This is not unexpected given that functional convergence is more probable 17 

than sequence or even structural convergence89, 90 and ECPred relies on 18 

(sub)sequence and physiochemical feature similarity to predict EC numbers68.  19 

Different patterns yet were observed in bins reflecting moderate levels of structural 20 

similarity (0.5-0.7) and sequence identity (40-60%). GhostKOALA showed a five-fold 21 

enrichment in protein pairs with moderate levels of sequence identity and a 14-fold 22 

depletion in protein pairs with moderate levels of structural similarity; a similar trend 23 

was observed for HMMER. Note that protein pairs with a TM-score over 0.5 are highly 24 

likely to share fold-level similarity86 – a feature that can be expected to reflect function, 25 

but does not appear to be useful to the methods reported here.  26 

To summarize, sequence similarity is widely recognized as a key determinant in 27 

assessing functional similarity, particularly due to many functional evolution events 28 

resulting from gene duplication91. However, we hypothesize that existing protein 29 

sequence and domain recognition-based methods are biased towards capturing 30 
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sequence similarity over functional signatures, thus failing to capture analogous 1 

evolution, reflect on function diverged between sequence-similar homologs, and 2 

identify conserved function among highly diverged siblings24, 92, 93.  3 

Even considering the incomplete and erroneous functional annotations, everything we 4 

currently know about specific proteins and their functions is only a minor fraction of the 5 

entire protein universe94. However, annotating new proteins based on available data 6 

seems to be an inherently flawed proposition. Of the 53 million high-quality predicted 7 

ESM structures of microbial proteins extracted from MGnify only 54K (0.1%) had less 8 

than 30% sequence identity with UniRef. In turn, the overlap between all of UniProtKB 9 

and MGnify is estimated to be less than 1%48. That is, quality structure predictions, 10 

even with the aid of protein Language Models (pLMs), are limited to known protein 11 

families restrained by homology. For orphan proteins, this could explain the lacking 12 

performance when using embeddings (Figure 3, S3 & S4). Nevertheless, GoPredSim 13 

which leverages function-transfer based on embedding similarity through k-nearest 14 

neighbors, is one of our four top performers, underscoring the potential of adapting 15 

current deep learning techniques to identify functional similarity among proteins.  16 

Summarizing the findings. With the growing stockpile of sequences, development of 17 

accurate functional annotation tools is more essential than ever. A major limitation to 18 

the assessment is the lack of large and diverse “ground truth” annotations. In this 19 

review, we assess some of the top protein annotation tools on a set of “orphan” 20 

proteins. To assess the quality of annotations, we translate the challenge of function 21 

prediction into a task of identifying functionally similar protein pairs in the dataset. 22 

Careful evaluation across a range of metrics reveals that even the performance of the 23 

top methods (ECPred, GOPredSim, HMMER and GhostKOALA) on this data is 24 

lacklustre. We note that even though the methods considered herein use different 25 

annotation vocabularies, our approach of deriving protein similarity scores enables 26 

their comparison. 27 

In this review, we also explored the definition of protein functional similarity in terms of 28 

sequence and structure. Machine learning-based models such as ECPred, NetGO and 29 

GOPredSim capture more than sequence similarity from input sequences, unlike the 30 
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more sequence homology-based algorithms. However, functional similarity is not only 1 

a function of sequence or structural similarity. The robustness of protein conformations 2 

paves way for diverse or similar sequences fold into diverse or similar structures to 3 

carry out the same or different functions as the environment dictates. 4 

Another key observation from our work is that there is a lot of room for improvement in 5 

training deep learning models for protein functional annotation. Neither specifically 6 

trained methods, nor the cross-domain application of protein embeddings to identify 7 

functionally similar pairs showed promising results, highlighting the need for fine-tuning 8 

and analysis. While a huge advance has been made in protein structure determination 9 

in recent years, similar improvement in function annotation is limited by the lack of 10 

ground-truth annotation. However, alternate approaches to evaluation, such as the one 11 

we put forward, could pave the way for better models.  12 

Data availability 13 

All data used in this study are listed in the main text or deposited in a permanent online 14 

data repository. The dataset of orphan proteins and the function similarity scores are 15 

available at 10.6084/m9.figshare.c.6737127. The code used to compute siblings is 16 

available openly at https://bitbucket.org/bromberglab/siblings-detector/. 17 
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Figure captions 1 

Fig. 1: The limits of protein function annotations.  2 

Of the complete set of proteins (entire circle), containing known/previously observed proteins (blue/black dashed 3 

circle outline) and unknown/not-yet-seen proteins, some fraction carries out unknown functions (fraction of circle 4 

in red) rather than known (fraction in white) ones. Existing experimental and homology-based protein function 5 

annotations (blue oval) cover a small part of the complete protein sequence space. The number of orphan 6 

proteins, i.e. those lacking annotation and having no known homologs, is growing as we explore our world with 7 

better and faster gene/protein capture tools. Note that circle sizes are not to scale.  8 

 9 

Fig. 2: Evaluating function prediction through functional similarity.  10 

The performances of function prediction methods are evaluated based on the ability to predict functional similarity 11 

between protein pairs. (A) Putative functionally similar orphan protein pairs, i.e. a test set of orphan siblings, are 12 

built using the SNN+TM method. This SNN+TM test set of orphan siblings consists of protein pairs precisely labelled 13 

as siblings (pairs with high structure similarity [TM-score ≥ 0.7] and functional similarity [SNN score ≥ 0.98]) among 14 

unlabeled protein pairs. The performance of function prediction methods was evaluated by computing true positives, 15 

false negatives, and putative false positives (Methods). All assessments were conducted by varying thresholds for 16 

annotation prediction score (p) and annotation set similarity (s). (B) The number of orphan pairs considered as 17 

siblings at each threshold of TM score (x-axis) and SNN score (y-axis) on the plot is highlighted according to a log-18 

scale gradient scheme from few proteins (blue) to many proteins (green). In (C) each dot represents a protein pair 19 

and is colored by sequence identity from very low (< 40%; gray) to very high (80-90%; dark blue). Note that no pairs 20 

over 90% identity were included in our set. The dashed lines indicate the TM and SNN score cut-offs (0.7 and 0.98) 21 

chosen for this work. 22 

 23 

Fig. 3: Comparison of prediction performance in each annotation category. 24 

The bar plots show the highest (max) per-method (A) S and (B) 𝑹𝒆𝒄𝒂𝒍𝒍
𝑷𝑷𝒇𝟓𝟎

 metrics for the SNN+TM test set of 25 

protein pairs (see Methods). The evaluated methods in this study predict: Enzyme Commission numbers (EC1 – 26 

first digit, EC3 – up to third digit), Gene Ontology Molecular Function terms, Pfam domains, and Ortholog groups 27 

(as indicated in (A). Language model embedding distances were also considered. Max scores were selected for 28 

each method by varying the prediction score threshold (p). The double line separates explicit functional annotations 29 

(EC and GO) from implicit functional annotations via Pfam and Ortholog definitions and embedding similarities. The 30 

gray and blue lines indicate the average performance of 100 random baseline classifiers and the expected 31 

performance of the “ground-truth” annotation (Table S1), respectively. The white squares along standard error 32 

bars indicate the average performance of the method-specific random annotators over 100 iterations. 33 

 34 

Fig. 4: Variations in performance over TM-score cut-offs.  35 

The highest (A-D) Similarity (y-axis) of top performing methods vary based on predicted protein annotations. All 36 

scores were computed at SNN cutoff =0.98 and at different TM-score cutoffs (bottom x-axis), resulting in a different 37 

number of orphan sibling pairs (top x-axis). The average performance of 100 random baseline classifiers is plotted 38 

for comparison in each panel (dotted black line). See Figure S3 for trends of F1max and AUC PRmax.  39 

 40 

Fig. 5: Different annotations capture different functional spaces. 41 

Orphan siblings predicted by the top-performing methods (A-E) and SwiftOrtho (F) occupy different spaces in the 42 

TM score (x-axis) vs SNN score (y-axis) space depending on the type of annotation (EC, GO, Pfam and orthologs). 43 

Each dot in the plot represents a protein-pair and is colored based on the sequence identity. The dashed lines 44 

indicate the TM and SNN score cut-offs (0.7 and 0.98) chosen for the defining the SNN+TM test set of labelled 45 

siblings (red dashed lines).  46 
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Tables 1 

 2 

Table 1: Protein function prediction performance  3 

 4 

Tool Term 
# of 
Annotated 
proteins1 

% of 
annotatable 
protein 
pairs1 

% of 
annotatable 
sibling pair1  

p
opt at F1max

2 

s
opt 

at 
F1max

2 

S F1max PR AUC 
ROC 
AUC 

Prec Rec 

ECPred EC1 9,402 60.1 73.3 0.800 0.01 0.18 0.67 0.72 0.60 0.57 0.87 
ECPred EC3 9,402 60.1 73.3 0.890 0.01 0.25 0.68 0.70 0.67 0.65 0.75 
Mantis EC1 1,910 8.5 6.3 - 0.19 0.04 0.64 0.71 0.52 0.51 0.90 
Mantis EC3 1,910 8.5 6.3 - 0.19 0.05 0.61 0.65 0.53 0.52 0.76 
DeepFRI GO 11,328 97.1 98.3 0.214 0.01 0.06 0.47 0.59 0.60 0.62 0.44 
DeepGOPlus GO 11,444 100.0 100.0 0.100 0.02 0.01 0.23 0.40 0.55 0.65 0.15 
GOPredSim GO 11,444 100.0 100.0 0.384 0.05 0.14 0.63 0.66 0.61 0.57 0.72 
Mantis GO 2,895 11.8 12.6 - 0.38 0.10 0.59 0.60 0.58 0.56 0.64 
NetGO GO 11,444 100.0 100.0 0.087 0.48 0.07 0.53 0.67 0.68 0.62 0.66 
ProteInfer GO 9,495 81.3 71.6   0.04 0.02 0.33 0.44 0.56 0.63 0.25 

GhostKOALA KO 3,551 7.3 9.7 0.696 0.01 0.11 0.65 0.70 0.57 0.55 0.85 
Mantis COG 5,784 59.9 47.2 - 0.10 0.04 0.60 0.64 0.53 0.52 0.75 
HMMER Pfam 8,661 83.5 76.3 4.400 0.64 0.22 0.69 0.76 0.66 0.58 0.89 
Mantis Pfam 4,874 15.0 26.9 - 0.37 0.16 0.62 0.65 0.64 0.62 0.65 
ProtCNN Pfam 11,444 100.0 100.0 - 0.01 0.00 0.13 0.42 0.52 0.77 0.08 

ESM Emb 11,444 100.0 100.0 - 0.05 0.00 0.19 0.72 0.70 0.25 0.07 
LookingGlass Emb 11,444 100.0 100.0 - 0.18 0.01 0.35 0.63 0.60 0.62 0.38 
ProtT5 Emb 11,444 100.0 100.0 - 0.08 0.00 0.22 0.72 0.71 0.35 0.12 

 5 
1Unless explicitly specified, all our performance metrics of each method were computed within the respective subsets of the SNN+TM test set. 6 
 2Performance measures at F1 optimal thresholds are computed over 100 iterations of under sampling. Performance of the selected, top-7 

performing methods is identified in bold. Precision and Recall were computed at the F1 optimum prediction score threshold (p
opt) and optimum 8 

similarity score threshold (s
opt). Other performance metrics: S, F1max, PR AUC and ROC AUC are independent of the similarity score threshold 9 

(s) by definition and thus were calculated at the F1 optimum prediction score threshold (p
opt). 10 
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Table 2: Characteristics of protein pairs predicted as siblings. 1 

 2 

  Range 

Total 

Orphan 

pairs 

Siblings ECPred GOPredSim NetGO HMMER GhostKOALA SwiftOrtho 

S
eq

u
en

ce
 I

d
en

ti
ty

 <40% 
307,434 

(99.3%) 

5,576— 

(89.7%) 
219-- 3,724-- 200,223-- 10,696-- 456-- 2,150-- 

40-60% 
1,155 
(0.4%) 

314++ 

(5.0%) 
1 11 1,131++ 88++ 9++ 1,019++ 

60-80% 
720 

(0.2%) 

234++ 

(3.7%) 
5++ 32++ 714++ 58++ 6++ 717++ 

80-90% 
240 

(0.1%) 

95++ 

(1.5%) 
2+ 10+ 237++ 19+ 1 239+ 

T
M

-s
co

re
 0-0.5 

39,675 

(14.5%) 
0-- 22- 301-- 25,666-- 891-- 10-- 118+ 

0.5-0.7 
133,206 

(45.0%) 
0-- 111 1,547-- 88,625-- 4,039-- 15-- 249-- 

0.7-1.0 
136,668 
(40.4%) 

6,219++ 94 1,929++ 88,014++ 5,931++ 447++ 3,758++ 

S
N

N
 s

co
re

 0-0.5 
102,620 

(50.1%) 
0-- 88-- 1,970+ 98,533-- 5,726++ 298++ 1,436+ 

0.5-0.98 
181,495 

(45.8%) 
0-- 120+ 1,644- 93,997++ 4,584-- 167-- 1,841 

0.98-1.0 
25,434 

(4.1%) 
6,219++ 

 19+ 163 9,775++ 551++ 7- 848++ 

Values indicate the number of siblings predicted by each method in the given range of sequence identity, 3 

TM-score, or SNN score. The values were compared against the corresponding counts in the entire 4 

dataset of orphan pairs via the two-sided Fischer’s exact test. +/- denotes a significant 5 

increase/decrease with p-value in [0.001, 0.05] range, while ++/-- denotes p-value of <0.001. 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 
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