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Abstract

In silico functional annotation of proteins is crucial to narrowing the sequencing-
accelerated gap in our understanding of protein activities. Numerous function
annotation methods exist, and their ranks have been growing, particularly so with the
recent deep learning-based developments. However, it is unclear if these tools are
truly predictive. As we are not aware of any methods that can identify new terms in
functional ontologies, we ask if they can, at least, identify molecular functions of new
protein sequences that are non-homologous to or far-removed from known protein
families.

Here, we explore the potential and limitations of the existing methods in predicting
molecular functions of thousands of such orphan proteins. Lacking the ground truth
functional annotations, we transformed the assessment of function prediction into
evaluation of functional similarity of orphan siblings, i.e. pairs of proteins that likely
share function, but that are unlike any of the currently functionally annotated
sequences. Notably, our approach transcends the limitations of functional annotation
vocabularies and provides a platform to compare different methods without the need
for mapping terms across ontologies. We find that most existing methods are limited
to identifying functional similarity of homologous sequences and are thus descriptive,
rather than predictive of function. Curiously, despite their seemingly unlimited by-
homology scope, novel deep learning methods also remain far from capturing
functional signal encoded in protein sequence. We believe that our work will inspire
the development of a new generation of methods that push our knowledge boundaries
and promote exploration and discovery in the molecular function domain.
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Introduction

A typical cell contains about 0.2 g/ml proteins, which translates to up to a billion
molecules per cell> 2, However, the corresponding number of distinct protein
sequences varies from only a few hundred in some bacteria to tens of thousands in
many eukaryotes. Characterizing these vital biomolecular nanomachines, i.e.
identifying their cellular functions, associated pathways, localization, interaction
partners, and catalytic activities, is crucial for understanding their role in cellular
biology. Experimental annotation of protein function remains significantly limited by its
cost and speed. For example, among the 94.5 million protein sequences that have
been deposited in UniProt in the last three years, only 6,974 (<0.01%) were manually
curated. Thus, the growing influx of sequencing data has necessitated accurate

computational annotation of protein function for diverse downstream analyses.

Over the last two decades, the number of bioinformatics tools developed for in silico
protein annotation has grown and algorithms diversified. Historically, the most common
and reliable techniques for annotation relied on the transfer of function by homology,
l.e. shared ancestry resulting in sequence similarity. To characterize a given query
protein, various alignment and domain profiling tools such as BLAST, PSI-BLAST, and
HMMER?3’ were used to search annotated protein databases®!. More recently, faster
algorithms have been developed to process and annotate large sequence datasets,
including sequence reads and genes/proteins extracted from (meta)genome
assemblies?>®, The challenges associated with protein functional annotation are
multi-fold and have been discussed at length in earlier studies?’2°. To summarize the
state of the art: aside from defining what exactly the word “function” means in reference
to proteins, there are three bottlenecks in producing accurate annotations —
evolutionary caveats that limit function transfer by homology, lack of existing

experimental annotations, and limitations of functional ontologies.

The first bottleneck arises as life evolves and adapts and divergent evolutionary
processes result in homologous genes of different functions. These could end up as
false positive functional annotations of sequence- and structurally- similar proteins?:.

One such example among many is the enzymatically inactive duck 6 crystallin | that
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shares >90% sequence identity with the active § crystallin 112% 22, At the same time,
different genes converging to perform the putatively same function may have minimal
homology — a false negative?® 24, For example, human (PDB:1PL8) and Rhodobacter
sphaeroides (PDB:1K2W) sorbitol dehydrogenases are sequence different. Of course,
we note that whether the human sorbitol dehydrogenase is functionally the same as
its bacterial version is up for discussion. In general, diverged genes found in different
species, i.e. orthologs, that do participate in the same molecular mechanisms, may not
operate at the same rate or efficiency given the specific species’ environmental
constraints — a functional difference that is often ignored. We argue that context in
which the function is carried out should be thought of as part of the definition of

function. However, this discussion is beyond the scope of this manuscript.

Second, by definition, the general dearth of experimental annotations is limiting for
function transfer by homology. Furthermore, existing annotations are biased towards
proteins from large families and to species of interest. For example, experimental
evidence for GO annotations only exists for less than 15% of proteins in SwissProt?°.
The effects of these biases are compounded by the computational annotation of newly
accumulated genomic data — a process that fosters annotation error propagation. Note
that the existing functional annotations can, by default, only cover the observed part of
the protein universe, i.e. annotation of new sequences may be flawed simply by our
limited knowledge of biotic functional capacity (Figure 1). In short, the classical
approach of transferring protein function by homology is complicated by
convergent/divergent evolution, lack of experimental annotations, and errors in
available computational annotations; it is also limited to existing classes of proteins,

reducing chances of discovery of novel functions.

The third bottleneck is more technical in nature. The task of representing the
ambiguous, environment-dependent, hierarchical role of a given protein with a set of
human-understandable ontology terms is exceedingly difficult'! 26-32, Depending on the
level of granularity and environmental conditions, a protein’s function could vary widely.
For example, all kinases are phosphotransferases that catalyze the transfer of

phosphate from ATP to carbohydrates, lipids, or proteins. However, kinases are part


https://doi.org/10.1101/2023.07.12.548726
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.12.548726; this version posted April 12, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

of almost every cellular process and many metabolic pathways, i.e. they can be
assigned a wide range of biological functions. On the other hand, proteins involved in
the same biological pathway have different catalytic (molecular) functions almost by
definition; e.g. glycolysis (map00010;27:33) involves kinases and dehydrogenases. That
Is, different molecular functions can contribute to the same biological role, while
proteins of the same molecular function may have different biological roles — all across
numerous environments and cellular compartments. An ideal protein function ontology
should be robust to this variability, but also precise, widely applicable, expandable,

and, lately, machine-readable. This ontology does not yet exist.

A significant amount of research has gone into targeting these challenges to
computational function prediction. For examples, Critical Assessment of Functional
Annotation algorithms (CAFA) is a community experiment that provides an even
ground for the assessment of existing methods3* 35, CAFA employs a time-delayed
evaluation where predictions of functions of a large set of yet-to-be-annotated
genes/proteins are collected and assessed over a period of time through wet-lab
experiments. CAFA results have documented the continuous emergence of new,
better-performing prediction methods. Research has moved beyond sequence
comparison, introducing new computational techniques, and incorporating additional
biological data such as the protein-protein interactions, expression, phenotypic

changes due to mutation, etc.

A key recent methodological development has been the ability to represent protein
sequences as embeddings, i.e. projections of proteins into the latent space.
Embeddings are interpretations of deep neural networks, learnt in the process of
addressing a predefined objective function3® 37, Protein sequence embeddings have
been successful in annotating various protein features, but most obviously protein
structure®®40, Recently, deep learning methods have been developed to annotate
protein function. For example, Littmann et al. have explored the application of protein
embeddings to function annotation, reporting performance on par with CAFA ‘s top 10

best performers*: 42, Note that besides these representations capturing protein
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structural aspects and thus informing function, it remains unclear exactly which (or

whether) aspects of functionality are reported by embeddings.

One important inference from the CAFA experience is the challenge of establishing
metrics for the assessment of methods. That is, what is to be considered a correct
annotation for a given protein? Given a protein P1 that carries out functions fi, f2, and
f3 defined by a relevant ontology, if a method Ma predicts the protein to be of function
f1 only, is this a correct annotation? How does this method perform in comparison to
M2, which predicts the protein to carry out fs, fa, and fs? While for an individual
annotation, say f1 vs. f2, ontology distance metrics can be established*3-4%, evaluating
multiple annotations per protein is harder. Adding to the problem is the incomplete
“ground truth” annotation, i.e. how would one take into account the protein’s unknown

molecular functions?

Here, we provide a method and ontology-blind assessment approach for comparison
of function annotation tools. We evaluate the predictions of computational methods for
a set of proteins, sharing little sequence similarity with proteins in available databases.
We ask, what is a correct annotation for a protein with no known sequence-similar
homologs (i.e. an orphan)? To answer this question, we use structural similarity and a
deep learning-based technique to establish whether a protein pair in our set shares
functionality (i.e. are they siblings?), regardless of what specifically each protein does.

We then evaluate other methods’ ability to recall shared functions for these pairs.

METHODS

Extracting the test dataset. From the ESM Metagenomic Atlas*’, i.e. proteins
translated from metagenome records of the MGnify database*®, we -collected
53,501,759 protein sequences, translated from metagenome-assembled genes, and
having high-confidence predicted 3D structures, i.e. predicted local distance difference
test (pLDDT) and predicted TM-score (pTM) greater than 0.9%8 4% 50 Note that our
selected sequences make up less than a tenth of all structures in ESM and represent
a significantly smaller fraction still of all metagenome-derived proteins MGnify collected

over the years. Thus, the evaluation reported here is limited to a subset of ordered
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proteins, whose structure is well predicted and, thus, likely biased to reflect that of

available, experimentally studied proteins.

These 53.5M sequences were aligned against UniRef100°! (using mmseqs2!® at
default sensitivity =5.7). Sequences in UniRef are often used as reference for function
transfer and as the training set for prediction models® 51, To avoid using training data
in our method testing, we focused on orphan sequences, i.e. those that do not share
homology with proteins in UniRef. We identified 54,359 orphans with less than 30%
sequence identity to UniRef100.

To further simplify the evaluation task, we filtered out longer proteins (over 400
residues) that are likely to contain multiple domains, as well as proteins whose
sequences are truncated in the corresponding MGnify contigs, to retain 11,484
sequences. To avoid excess focus on sequence similarity, we further sequence-
reduced this set at 90% identity using CD-HIT®2, The final dataset of orphan proteins
contained 11,444 proteins with ESM predicted structures and corresponding MGnify

cDNA sequences.

SNN + TM: annotating test set protein pairs as functionally similar (siblings). In

our earlier work®, we used structural similarity (TM-score®#20.7) and functional

similarity (SNN-score=0.98, https://bitbucket.org/bromberglab/fusion-snn/), i.e. our
SNN+TM approach (Figure 2a), to identify functionally identical enzyme pairs with
90% precision vs. the experimentally-determined Enzyme Commission3?(EC) number
annotations. SNN is a Siamese Neural Network, trained to identify functionally similar
genes irrespective of sequence similarity®®. The SNN architecture consist of a)
pretrained embedding layer from LookingGlass®®, b) a LSTM layer and c) computation
of distance between embeddings (Figure S1). TM-scores for protein structure

alignments were computed using Foldseek®*.

Note that in our original SNN+TM evaluation we used the available protein PDB
structures®3. Here, we planned to use ESMFold3-predicted structures of the orphan
proteins instead. To evaluate the validity of using predicted structures, we identified

siblings among a set of 1,869 enzymes with experimentally defined EC numbers and
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high-confidence ESM predicted structures (pLDDT and pTM greater than 0.9). Trivially,
due to the slow pace of deposition of experimentally curated sequences into
repositories, this enzyme dataset significantly overlaps with the set of proteins used
for the original evaluation of SNN+TM method®3. To build this enzyme set, we extracted
from UniProt® 5,697 enzymes of length <400 residues, annotated with a single,
experimentally-evidenced EC number. Of these, only 33% (1,869) had high confidence
ESMFold predicted structures.

We compared sibling annotations to EC pairings. The identified sibling pair was
deemed correct if the corresponding EC annotations (at third level) were the same. We
found that using structure predictions instead of experimental data did not significantly
reduce our SNN+TM method’s ability to identify proteins of the same enzymatic
functionality (precision = 87.8% here vs ~90% in the original estimate). Note that we

also used this dataset to estimate the performance of an ideal function predictor.

We further extracted functionally similar pairs, orphan siblings, from our set of 11.4K
orphan proteins. We ran Foldseek (with TM threshold=0) to compare the predicted
structures of all 11.4K proteins in our set amongst themselves. Only 309,549 of these
protein pairs (0.5% of ~65M possible ones) were structurally similar enough for a
complete alignment. We then annotated functional similarity (SNN) scores for these
309K pairs (Figure 2).

Only 6K (6,219, 2% of 309K) pairs attained the pre-set cutoffs (TM score=0.7, SNN
score=0.98) for shared function and were thus labelled orphan siblings. Note that at
these cutoffs, proteins that are not identified as being of the same function can still be
functionally identical (recall = 2.4%). Thus, we primarily assessed the performance of
function annotation tools based on their capacity to find all test set orphan siblings,
rather than on their precision of labelling pairs as functionally similar. Note that as our
method for identifying shared function is subject to selected thresholds, we also
explored the performance of the selected prediction methods by varying the TM score
and SNN score cut-offs (Figures 4, S5 and Sl Table 5).
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Translating predicted annotations into functional similarity. We reformulated the
molecular function prediction challenge to overcome the limitations of evaluating and
comparing methods that target different functional vocabularies, i.e. tools predicting
Gene Ontology (GO) molecular function (MF) terms or Enzyme Commission (EC)
numbers. We also included tools that identify protein Pfam domains and assign
sequences to KO and COG ortholog groups!?: %6 57, Note that while GO and EC aim to
explicitly describe the function of the protein, Pfam and Ortholog methods capture
protein families and evolutionary relationships, which are related to, but not necessary
directly reflective of function. If a protein was annotated with multiple Pfam domains,
EC numbers, or orthologous groups, we retained all labels. We selected 13 protein
annotation tools for our assessment based on the availability of a standalone version
or aweb server that can process multiple sequences. These 13 methods were grouped
based on the type of protein annotation into four categories: GO — DeepFri®8,
DeepGOPIlus®®, GoPredSim*2, GOProFormer®®, and NetGO®!, Pfam — HMMER®?,
InterProScan®3, ProtENN & ProtCNN®* and Protelnfer®®, Orthologs — GhostK OALA®®,
KofamKOALA®” and E.C. — ECPred® and Mantis®®. Methods such as Mantis® 6° and
Protelnfer®® were included in more than one category since they provide multiple types
of protein annotations (Table 1). We also evaluated using pairwise DNA/Protein
embedding similarities from unsupervised models such as Bepler’®, CPCProt’t, ESM-
239, LookingGlass Encoder®®, ProtTrans®/, SeqVec’? and Word2Vec’s. In addition, we
used SwiftOrtho’#, a method that identifies orthologous pairs in a given set of

proteins’ 78, as an upper bound of homology-based evaluation of our test set.

We scored the similarity between predicted annotations of proteins in each pair.
Consider a protein pair P1 and P2z predicted by method Mz to carry out sets of functions
Fui and Fuz, respectively. Fui (and Fuz) consist of several annotation terms from GO,
EC, Pfam, or ortholog groups as assigned by Mi; each term is associated with a
prediction score (or E-value) and is accepted or rejected at a prediction score threshold
(zp). Increasing tp increases the precision of predicted annotations (Fui and Fuz) but
could also reduce the number of predictions. All performance values reported in this

study were computed by varying tp for methods that provide such prediction scores
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(Table 1). Note that, at a selected tp, different methods were only able to make
predictions for subsets of our SNN+TM test set. Thus, all values reported here, unless

explicitly specified, were computed on different sets of protein pairs.

The similarity (S) between Fui and Fuz is defined by the Jaccard similarity coefficient,
l.e. the ratio of the intersection set of terms to the union set (Egn. 1). In case of GO
annotations, we used the information accretion term*3 77 (o, Eqn. 2,3) to weigh the GO
term assignment according to term frequency of appearance among UniProt GO
annotations with experimental evidence’® 7°; information accretion of a child GO term
v, la(v), is the information gained by adding v to its parent term(s).

|Ful NnFu2|

S(P1(z,), P2(z,)) = o Orz] (Eqn. 1)
_ YveFuinFuz la®@)

Seo(P1(x,), P2(x,)) = 52 e e ) (Ean. 2)

I, = —log ( Pr(v|Parent(v) ) (Eqgn. 3)

Additionally, the similarity score for a protein pair (P1 and P2) given their embeddings

(E1 and E2) of length |, was derived from the Euclidean and cosine distances (Eqn. 4

and 5).
0.5
Sguctidean(P1, P2) = 2 _ - (Eqn. 4)
0.5+ /2%21(511— E;b)?
Ei.E>+1
Scosine(P1, P2) = AR (Eqn. 5)

The performance of a given method in identifying orphan siblings was measured first
by computing the Area under the Precision-Recall curve (PR AUC), area under the
Receiver Operating Characteristic curve (ROC-AUC), and Flmax by varying the
method-specific (Egn. 1, 2, 4 & 5) similarity score threshold (z,) for calling a protein
pair functionally identical. To balance the number of sibling (positives) vs. unlabeled
(mostly non-sibling) pairs, we under-sampled the latter to match the number of sibling
pairs; we repeated the under-sampling 100 times and computed the average and

standard deviation of all measures.
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The F1 score, as the harmonic mean of Recall and Precision, provides an overall
prediction performance in identifying siblings (Egn. 6). We chose the optimum method
prediction score threshold (:°?*;) and an optimum similarity score threshold (z°P%s)
corresponding to the maximum F1 (Flmax); we then reported Precision and Recall at
these thresholds (Eqn. 7-8) for all methods. Note that for methods that predict EC
numbers, PFAM domains and ortholog annotations, two proteins were considered to
be functionally similar if they shared even one common annotation at a given prediction
threshold (zp).

2 (Precision X Recall) (E n 6)
Precision + Recall an.

F, score =

# of correctly identified siblings
# of acutal siblings in the dataset

Recall = (Eqn.7)

.. # of correctly identified siblings
Precision = ! 24 A g

(Egn. 8)

# of predicted siblings

As described above, our SNN+TM approach has high precision, but a very low recall
of functionally similar protein pairs. To compensate for the limitations of thus created
test set, we report two additional performance measures: (1) the difference in similarity

scores (AS, Egn. 9) and (2) the maximum recall while restricting the total predicted

PPf50

positives to fewer than 50% of the data (Recall,,

AS(t,) = Recall * ( {S(p, p) e sivings (P P2)) = (Stpy, p,) euntavenea (P, P2)) ) (EQN. 9)

(1) The difference in similarity scores (AS) between orphan sibling and unlabeled pairs
indicates the distance between their score distributions. That is the difference in
scores of functionally similar and unlabeled, most frequently not functionally similar,
pairs (Egn. 9). We weighted AS by corresponding methods’ Recall values to
penalize methods for failing to identify test set siblings. AS varies in range [-1,1],
where a positive value indicates higher similarity scores for sibling vs. non-sibling

pairs.

Note that AS reflects the distance between siblings and unlabeled pairs in the linear
space of similarity scores. As a result, AS is comparable only among methods with

similar similarity-score distributions. Despite its limitations, however, AS serves as

10
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a useful threshold-independent performance measure. Here, we report AS,, .., the

highest AS for each method over the range of prediction score thresholds (zy).
ASax = maxAS(rp) (Eqgn. 10)
Tp

(2) We also report the maximum Recall (Recall,fgfo) of each method over the

thresholds (tp and ts) while restricting the total predicted positives to fewer than
50% of the method-specific dataset. This measure reflects the best possible recall
for each method, without encouraging ftrivial, i.e. “all pairs are siblings” positive
overprediction.

We also compared the method prediction performances to two empirical random
estimates: a random classifier and a random annotator. A random classifier samples
the similarity scores (S) of protein pairs from a random uniform distribution. The
random annotator is the result of shuffling sibling/unlabeled labels for all protein pairs
in the test sets of each method in our assessment. Each simulation was repeated 100

times.

Further, the statistical significance of the performance differences between the tools in
terms of AS, Fimax, PR-AUC and ROC-AUC were assessed through the Wilcoxon rank-
sum test and Student's t-test using SciPy®°.

RESULTS AND DISCUSSION

Figure 1: The limits of protein function

Protein Sequence Space
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and homologs
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annotation. Of the complete set of proteins
(entire circle), containing known/previously
observed proteins (blue/black dashed circle
outline) and unknown/not-yet-seen proteins,
some fraction carries out unknown functions
(fraction of circle in red) rather than known
ones (fraction in white). Existing experimental
and homology-based protein  function
annotations (blue oval) cover a small part of
the complete protein sequence space. The
number of orphan proteins, i.e. those lacking
annotation and having no known homologs, is
growing as we explore our world with better
and faster gene/protein capture tools. Note
that circle sizes are not to scale.
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Assessing test set and evaluation metrics. We first aimed to evaluate our proposed
strategy for assessing protein function annotation methods (Figure 2). Our protein
structure alignment (Foldseek®) plus shared-function prediction (SNN®3; Figure S1)
based approach (SNN+TM; Methods) captures functional identity of a protein pair,
labelling them siblings. Structural similarity is often used as a proxy of functional
similarity® 82, By filtering SNN predictions to structurally similar proteins, we assured

high precision of our method.

To evaluate SNN+TM predictions, we annotated as siblings 1,927 (0.11%) of
1,745,646 protein pairs among 1,869 enzymes experimentally labelled with an Enzyme
Commission®? (EC) numbers. For this set, all protein structures were predicted using

ESMFold®® and only high-confidence structures were retained (Methods).

Note that our definition of siblings does not specifically reflect protein sequence
similarity. The TM score component of our method is derived from alignment of the
predicted protein structures. The SNN similarity score is predicted by a model that was
trained to identify gene pairs encoding proteins from same fusion function clusters®3.
Proteins in different fusion clusters are often sequence similar (homologous), while
proteins within the same cluster can be sequence dissimilar. To support our view that
SNN predictions are not homology-driven, we observe that for our set of 1.7M enzyme
pairs there was no correlation (-0.036) between the SNN score and sequence identity
(Figure S2).

For this annotated enzyme set, we computed the performance of the “ground truth
predictor’ (Table S1), by under-sampling unlabeled pairs to generate siblings-to-
unlabeled ratio of 1-to-1 over 100 iterations. In building our SNN+TM method, we
selected the TM and SNN score thresholds (=0.7 and =20.98, respectively) to attain
~90% precision in capturing functionally similar proteins of our original labelled
dataset®3. That is, these cutoffs ensured that most protein pairs labelled as siblings are
correctly labelled, but only a small fraction of all siblings is identified. Thus, for any set
of proteins, our approach generates a dataset of positive (sibling) vs. unlabeled protein

pairs, where the latter may contain siblings but, trivially, significantly fewer of them than

12
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non-siblings. Here, only 4% (69,042) of the unlabeled set (1,743,719 pairs total) were
same EC pair proteins. At the same time, 88% (1,693) of the positive (sibling) set (of
1,927 pairs) had same EC numbers.

For this type of test sets (positive vs. unlabeled) the recall of assessed methods, i.e.
their ability to identify positives/siblings, is justifiably the primary choice of performance
measure. However, to avoid overestimating performance of methods that tend to
overpredict positives, we needed to factor in the total number of positives labelled — a
measure well captured by precision, i.e. the number of siblings predicted positive vs.
all positive predictions. We note, however, that reported method precision values may
be underestimated for some methods that correctly identify siblings from the unlabeled
set. We thus use precision here only to illustrate the total number of positive predictions

necessary for each method to recall known siblings.

A random classifier (Methods) can be expected to attain both recall and precision of
50% for a balanced (1:1) dataset. On the other hand, as expected, the recall and
precision of our “ground truth predictor” were much higher — 88% and 96%,
respectively (Table S1 & S2). Note that unlike with real function prediction methods
that provide a confidence score with their prediction, for these experimental
annotations we used binary, i.e. same function vs not, labels inferred from third digit

EC number identity between protein pairs (Methods).

Orphan siblings as a test dataset. From the MGnify*® collection of metagenomic
data, we collected a set of 11,444 proteins having no homology (<30% identity) to any
of the UniRefl00 sequences (orphans) and paired them by expected SNN+TM
functional identity (orphan siblings, Methods; Figure 2). As all supervised function
prediction methods have been directly or indirectly trained on protein sequences found
in UniProt, our approach eliminated any overlap between the training dataset of the
prediction methods and our test dataset. Thus, our evaluation is an unbiased estimate

of functional prediction method performance on any novel proteins.

Of the ~65M possible protein pairs made from this set, only ~309K attained a TM-

scoreable structural alignment and 6,219 pairs (~2%; Methods) were labelled
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1 functionally similar orphan siblings by our SNN+TM approach. This annotated dataset

> was used to assess the performance of protein function prediction tools.
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5 Figure 2: Evaluating function prediction through functional similarity. The performance of function
6 prediction methods is evaluated based on the ability to predict functional similarity between proteins in
7 a pair. (A) Putative functionally similar orphan protein pairs, i.e. a test set of orphan siblings, is built
8 using the SNN+TM method. This SNN+TM test set of orphan siblings consists of protein pairs precisely
9 labelled as siblings (pairs with high structure similarity [TM-score = 0.7] and functional similarity [SNN

10 score = 0.98]) among unlabeled protein pairs. The performance of function prediction methods was
11 evaluated by computing true positives, false negatives, and putative false positives (Methods). All
12 assessments were conducted by varying thresholds for annotation prediction score (tp) and annotation
13 set similarity (ts). (B) The number of orphan pairs considered as siblings at each threshold of TM score
14 (x-axis) and SNN score (y-axis) in the plot is highlighted according to a log-scale gradient scheme from
15 few proteins (blue) to many proteins (green). In (C) each dot represents a protein-pair and is colored by
16 sequence identity from very low (< 40%; gray) to very high (80-90%; dark blue). Note that no pairs over
17 90% identity were included in our set. The dashed lines indicate the TM and SNN score cut-offs (0.7
18 and 0.98) chosen for this work.
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Figure 3: Comparing method performance in each annotation category. The bar plots show the
highest (max) per-method (A) AS and (B) Recall?/5° metrics for the SNN+TM test set of protein pairs
(see Methods). The evaluated methods in this study predict: Enzyme Commission numbers (EC1 — first
digit, EC3 — up to third digit), Gene Ontology Molecular Function terms, Pfam domains, and Ortholog
groups. Language model embedding distances were also considered. ASmax score was computed for
each method by varying the prediction score threshold (tp) whereas Recall,g,,"""*° was computed by
varying both the prediction and the similarity score thresholds (tp and ts). The double line separates
explicit functional annotations (EC and GO) from implicit functional annotations via Pfam and Ortholog
definitions and embedding similarities. The gray and blue lines indicate the average performance of 100
random baseline classifiers and the expected performance of the “ground-truth” annotation (Table S1),
respectively. The white squares with standard error bars indicate the average performance of the
method-specific random annotators over 100 iterations.

Among the 309K protein pairs, 99.3% (307,434) shared <40% sequence identity, while
0.08% (240) were 280% identical (Figure 2C). Of the 6,219 orphan siblings, 5,576
(89.7%) had <40% identity and 95 (1.53%) were 280% identical, i.e. a slight enrichment
for sequence similarity among orphan siblings as compared to the complete set of
orphans. Despite this enrichment, however, siblings were largely composed of

sequence dissimilar protein pairs.

No one method is best for function annotation. We measured the ability of existing
molecular functional annotation methods to assign identical functions to each protein
in an orphan sibling pair (Figure 3, S3 & Table 1; Methods). Note that methods
differed in the number and kinds of proteins they could annotate, resulting in different
test sets.
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The top performers in this evaluation were not restricted to any one class of annotation;
i.e. ECPred, GOPredSim, Pfam HMMER, and GhostKOALA attained similar
performance using the AS, ASmax, Flmax, etc. metrics (Table 1 & Figure 3). Curiously,
except for GOPredSim, which uses ProtT5 embeddings®’, the deep-learning models
built to predict GO terms did not top the list. While NetGO attained solid performance,
though still lower than the best method, other deep-learning methods (DeepFRl,
DeepGOPIlus, GOProFormer, and Protelnfer) were significantly lower (Wilcoxon rank-
sum test, all p-values < 1E®). Note that GOProFormer was developed on yeast
proteins® and using it to predict microbial protein function may have been beyond its

scope of work.

Comparing performance measures derived at fixed thresholds (tp°P* and ts°*') may not
accurately depict the landscape of method performance. For a more stable measure,
we computed the maximum of performance metrics (Figure S3) over a range of both
prediction score and similarity score thresholds (tp and ts). We also computed ASmax,
i.e. the linear distance between the distributions of sibling (positives) and non-sibling
(negatives) similarity scores — a measure independent of any thresholds (Figure 3A).
Using these metrics, ECPred, GOPredSim, Pfam HMMER, and GhostKOALA retained
their position as top performers; additionally, Mantis Pfam predictions attained similar
performance to the top scorers. Interestingly, performance of all methods was
somewhat closer to the respective estimates of random than to the expected
performance of the ideal ground truth predictor, highlighting the scope for improvement

in function annotation.

We also computed the maximum recall (Recall,,.,."""*°) of all methods across thresholds
(tp and 1s) while limiting the number of predicted positives to <50% of the dataset
(Figure 3B). This constraint restricts the inclusion of low confidence predictions and
trivial overprediction of positives. GOPredSim and NetGO outperformed all the other
annotation methods in this analysis. However, due to the differences in the number of
proteins that could be annotated by each method, NetGO did so for a much larger

number of sibling pairs. We thus note that though GOPredSim consistently performed
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well in all our analyses, the fraction of siblings it identified is significantly lower than
other methods (Figure 3B).

Language models ESM, LookingGlass, and ProtT5 had similar, Recall,,,,"*"*° as other
methods (Figure 3B & S4). However, the respective performances of the method-
specific random annotators (Figure 3B) for these three models were even higher. We
are limited to speculating whether this results from the multi-dimensional and non-
discrete nature of embeddings that encapsulate multiple protein characteristics,
including structure similarity, homology, sequence length, etc., instead of function

alone.

Protein embedding distances are not directly informative of functional similarity.
We further computed similarity between protein pairs based on cosine and Euclidean
distances between embedding vectors of all 309K protein pairs (Eqn. 4, 5).
Surprisingly, none of these distances captured the functional similarity between protein
pairs well. Using our measures of performance (AS and Recall,,..”*"*°), none of the
language models did better than random. We note that when evaluation uses other
metrics, specifically those relying on prediction precision, ESM-2, ProtT5, and
LookingGlass embeddings achieve performance similar to some of the better
predictors (Figure S4). However, as mentioned earlier, precision is not a reliable metric
for our type of positive/unlabeled test data. Further, note that the generic choice of
architecture did not drastically differentiate performance — among the top three
embeddings, ESM-2 and ProtT5 are transformer-based protein language models3”: 39
83 whereas LookingGlass is a bi-directional LSTM model trained on short DNA reads®®.
The other four embeddings were SeqVec (LSTM) and Word2Vec (neural network)
inspired by Natural Language Processing’? 73, Bepler is also a bi-directional LSTM
trained on amino acid sequences’™ and CPCProt is a convolution encoder trained
through contrastive learning to identify subsequent fragments of protein against

random protein fragments’?.

We also note that given that ESM embeddings could predict protein structures, we
expected these to capture functional similarity as defined, in part, by structural

alignments. However, interpretation of language models is complicated and the
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extraction of average representation from multiple layers or a representation of any
particular layer is bound to lead to loss of information®* 85, Our results thus highlight
limitations of cross-domain application of unsupervised deep learning models without
extensive analysis and fine-tuning.

Number of Orphan Siblings ©

O o ® B P O P 5
O 0 g o O P o @ gt et o o o @ N
| | | | | 1

(A) EC i

S = >

. ——e———e
1 1 I I I I

(C) PFAM

)
:\‘\'\q’ g’be’% Q)’L\Q’ Qﬁb‘\‘\ PN

(B) GO i

0.6

0.4

A-Smax

0.2

| I T R

l

0.0

0.6

0.4

ASmaX
| T BT R
Lo 1o 11

0.2

P o P o e e e e = e = e e - — —— )

T T T T T T T T T
0% oM o o2 ob 0% o ol o o2 o° - - : -
TM score cut-off TM score cut-off

0.0

DeepFRI GhostKOALA ProtENN O EC1 e Other
- DeepGOPIlus - HMMER - Protelnfer O EC3
— ECPred — Mantis —e-- Random Baseline

GOPredSim —— NetGO

Figure 4: Variations in performance over TM-score cut-offs. The highest (A-D) ASimilarity (y-axis)
of top performing methods vary based on the type of predicted annotations. Note that all scores were
computed at SNN cutoff =0.98 and at different TM-score cutoffs (bottom x-axis), resulting in a different
number of orphan sibling pairs (top x-axis). The average performance of 100 random baseline classifiers
is plotted for comparison in each panel (dotted black line). See Figure S3 for trends of F1lmax and AUC
PRmax.

Function prediction strongly linked to protein structure. Our definition of siblings
Is dictated by structural similarity (TM alignment) and functional similarity (SNN). By
using a high SNN cut-off (0.98), we have negotiated significant reduction in false
positives at a loss of true positives. In other words, our approach to identifying
functional siblings, while being very accurate (87.8% precision), is known to miss many
protein pairs annotated to be of the same function (2.4% recall). While our structural
similarity cutoff of TM score=0.7 is an accepted value® and the SNN cut-off of
score=0.98 was confirmed by our earlier experiments®3, we aimed to explore method

behaviour across the complete range of protein similarities. We thus computed the
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prediction performance of methods by varying the TM (Figure 4) and SNN score
(Figures Sb5) cut-offs and, thus, redefining the protein pairs considered siblings. Note
that in evaluating structural similarity we focused on pairs identified by Foldseek as
possibly alignable (Methods), i.e. 309K protein pairs of 65M possibilities, but for these
we varied the TM-score in the [0,1] range. The SNN method was trained to recognize
pairs as functionally similar above the 0.5 cutoff, so we explored the SNN scores in the
[0.5,1] range.

The top-performing methods (ECPred, GOPredSim, HMMER and GhostKOALA)
showed consistently better performance than other methods across different TM and
SNN score cut-offs. As expected, we observed a steep rise in performance of all
methods at TM-score=0.7 confirming that structural similarity above that threshold
plays a significant role in functional similarity. At the same time, restricting the SNN
score cutoff to 0.98 increased the performance (AUC under Precision-Recall curve and
F1-score) of ECPred, Proteinfer, ProtCNN and DeepGOPIlus by at least 20% (Figure
S6) but reduced the performance of GhostKOALA. SNN captures functional similarity
independent of either sequence or structural similarity®3. We thus expect that tightening
the SNN threshold reduces the performance of methods with strong dependency on

sequence similarity, such as GhostKOALA.

Similarly, we repeated our assessment by varying the test dataset. We restricted our
analysis to a subset of the test dataset consists of 4,376 protein pairs (including 1,700
siblings) made up of 3,506 proteins with no more than 150 residues to strictly restrict
to single domain proteins (Table S4, Figure S6 & S7). Overall, we observed a slight
in increase in performance of all GO and EC prediction methods except for
GOPredSlim. Performance of GOPredSim significantly increased as measured by all
the performance metrics, especially AS which nearly tripled. In contrast, methods
predicting PFAM domain and orthologs should a slight decrease in performance. To
our surprise, performance of GhostKOALA reduced drastically as observed in the

previous observation.
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Figure 5: Different annotations capture different functional spaces. Orphan siblings predicted by
the top-performing methods (A-E) and SwiftOrtho (F) occupy different spaces in the TM score (x-axis)
vs SNN score (y-axis) space depending on the type of annotation (EC, GO, Pfam and orthologs). Each
dot in the plot represents a protein-pair and is colored based on the sequence identity. The dashed lines
indicate the TM and SNN score cut-offs (0.7 and 0.98) chosen for the defining the SNN+TM test set of
labelled siblings (red dashed lines).

What do the best performing methods capture? To answer this question, we
evaluated contributions of known functionally relevant factors, i.e. sequence and

structure, to method functional annotations.

We first clustered our orphan proteins, by sequence identity at different cut-offs
between 0.9 to 0.4 using CD-HIT>? and explored their shared functionality (Table 2,
S5, S6 & Figure 5). We found that less than a tenth of a percent of protein pairs in our
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orphan dataset set (240 pairs) were highly sequence-similar (80-90% seq.id), while the
vast majority were not; i.e. more than 99% of protein pairs shared less than 40%
sequence identity. Among all method predictions we observed significant enrichment
of sequence similar protein pairs (240% seq. id.) and a depletion of dissimilar pairs.
Note that this observation is unrelated to the putative correctness of their functional

annotations.

We further observed that the enrichment of GOPredSim and ECPred predictions was
limited only to pairs of higher similarity (260%). GhostKOALA'’s predictions, on the
other hand, were not significantly enriched in highly sequence similar pairs (80-90%).
Note that the small number of these highly sequence similar pairs complicates
inference. That is, of the 240 such pairs, GOPredSim and ECPred identified ten and
two, respectively — a small, but significant number — while GhostKOALA, which is built
to annotate proteins using ortholog information, identified only one. We expect that the
latter result is due to our test set being made up of orphan proteins, i.e. those without
homologs in the predictor’s reference database. These observations suggest that, as
expected, sequence information is important in driving function annotation by all
methods, but GOPredSim and ECPred are more reliant than others on high sequence

similarity.

The enrichment in the number of siblings predicted by each method within sequence-
similar bins did not correlate with higher function prediction accuracy across these bins.
For example, ECPred precision was worse for high similarity pairs than for lower ones,
l.e. the opposite of the enrichment trend (Table 2 and S6). On the other hand,
GOPredSim precision was similar for all sequence identity bins. HMMER which
showed significant enrichment in the 40-80% sequence identity bin, had the highest
precision of 63% in the 80-90% identity space. To summarize, while the predictions of
the methods in this study are biased towards identifying sequence similar proteins as
siblings, the accuracy of such predictions in terms of the functional similarity of the two

does not agree with this assessment.

We also explored this homology-based functional annotations using SwiftOrtho’™* — a

method that identifies orthologous pairs in a given set of proteins based on sequence
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similarity”> 6. As expected, SwiftOrtho correctly identified 239 of 240 of the highly-
sequence similar (80-90% sequence identity) pairs; it's predictions were also enriched
in pairs of sequence similar proteins at all levels of similarity 240% (Table 2 & S5).
These results highlight the success achievable by homology-based methods in the
presence of the relevant reference sets and further emphasize their deficiency in the
absence of such reference. We note, however, that distinguishing orthologs from
paralogs is hard®” 8 and even harder without the taxonomic and/or genomic context.

In fact, SwiftOrtho also (putatively) incorrectly labelled 144 protein pairs as siblings.

We further analysed our data by binning predicted siblings based on structural (TM-
score) and putatively functional similarities (SNN score). Predicted siblings from all
methods, except ECPred were enriched in high structurally similar pairs (TM-score
=[0.7,1.0]) vs. the low similarity range (TM-score =[0,0.5], Table 2). In other words,
while most methods capture functional similarity driven by structural similarity, ECpred
identified similar enzymatic activity in remotely structurally similar protein pairs as well.
Note that ECPred predictions were significantly enriched in the high SNN score space
([0.98,1]). This is not unexpected given that functional convergence is more probable
than sequence or even structural convergence® ° and ECPred relies on

(sub)sequence and physiochemical feature similarity to predict EC numbers®8.

Different patterns yet were observed in bins reflecting moderate levels of structural
similarity (0.5-0.7) and sequence identity (40-60%). GhostKOALA showed a five-fold
enrichment in protein pairs with moderate levels of sequence identity and a 14-fold
depletion in protein pairs with moderate levels of structural similarity; a similar trend
was observed for HMMER. Note that protein pairs with a TM-score over 0.5 are highly
likely to share fold-level similarity®® — a feature that can be expected to reflect function,

but does not appear to be useful to the methods reported here.

To summarize, sequence similarity is widely recognized as a key determinant in
assessing functional similarity, particularly due to many functional evolution events
resulting from gene duplication®'. However, we hypothesize that existing protein

sequence and domain recognition-based methods are biased towards capturing
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sequence similarity over functional signatures, thus failing to capture analogous
evolution, reflect on function diverged between sequence-similar homologs, and

identify conserved function among highly diverged siblings?# 92 93,

Even considering the incomplete and erroneous functional annotations, everything we
currently know about specific proteins and their functions is only a minor fraction of the
entire protein universe®. However, annotating new proteins based on available data
seems to be an inherently flawed proposition. Of the 53 million high-quality predicted
ESM structures of microbial proteins extracted from MGnify only 54K (0.1%) had less
than 30% sequence identity with UniRef. In turn, the overlap between all of UniProtkB
and MGnify is estimated to be less than 1%“8. That is, quality structure predictions,
even with the aid of protein Language Models (pLMs), are limited to known protein
families restrained by homology. For orphan proteins, this could explain the lacking
performance when using embeddings (Figure 3, S3 & S4). Nevertheless, GoPredSim
which leverages function-transfer based on embedding similarity through k-nearest
neighbors, is one of our four top performers, underscoring the potential of adapting

current deep learning techniques to identify functional similarity among proteins.

Summarizing the findings. With the growing stockpile of sequences, development of
accurate functional annotation tools is more essential than ever. A major limitation to
the assessment is the lack of large and diverse “ground truth” annotations. In this
review, we assess some of the top protein annotation tools on a set of “orphan”
proteins. To assess the quality of annotations, we translate the challenge of function
prediction into a task of identifying functionally similar protein pairs in the dataset.
Careful evaluation across a range of metrics reveals that even the performance of the
top methods (ECPred, GOPredSim, HMMER and GhostKOALA) on this data is
lacklustre. We note that even though the methods considered herein use different
annotation vocabularies, our approach of deriving protein similarity scores enables

their comparison.

In this review, we also explored the definition of protein functional similarity in terms of
sequence and structure. Machine learning-based models such as ECPred, NetGO and

GOPredSim capture more than sequence similarity from input sequences, unlike the
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more sequence homology-based algorithms. However, functional similarity is not only
a function of sequence or structural similarity. The robustness of protein conformations
paves way for diverse or similar sequences fold into diverse or similar structures to

carry out the same or different functions as the environment dictates.

Another key observation from our work is that there is a lot of room for improvement in
training deep learning models for protein functional annotation. Neither specifically
trained methods, nor the cross-domain application of protein embeddings to identify
functionally similar pairs showed promising results, highlighting the need for fine-tuning
and analysis. While a huge advance has been made in protein structure determination
In recent years, similar improvement in function annotation is limited by the lack of
ground-truth annotation. However, alternate approaches to evaluation, such as the one

we put forward, could pave the way for better models.
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Figure captions

Fig. 1: The limits of protein function annotations.

Of the complete set of proteins (entire circle), containing known/previously observed proteins (blue/black dashed
circle outline) and unknown/not-yet-seen proteins, some fraction carries out unknown functions (fraction of circle
in red) rather than known (fraction in white) ones. Existing experimental and homology-based protein function
annotations (blue oval) cover a small part of the complete protein sequence space. The number of orphan
proteins, i.e. those lacking annotation and having no known homologs, is growing as we explore our world with
better and faster gene/protein capture tools. Note that circle sizes are not to scale.

Fig. 2: Evaluating function prediction through functional similarity.

The performances of function prediction methods are evaluated based on the ability to predict functional similarity
between protein pairs. (A) Putative functionally similar orphan protein pairs, i.e. a test set of orphan siblings, are
built using the SNN+TM method. This SNN+TM test set of orphan siblings consists of protein pairs precisely labelled
as siblings (pairs with high structure similarity [TM-score = 0.7] and functional similarity [SNN score = 0.98]) among
unlabeled protein pairs. The performance of function prediction methods was evaluated by computing true positives,
false negatives, and putative false positives (Methods). All assessments were conducted by varying thresholds for
annotation prediction score (tp) and annotation set similarity (ts). (B) The number of orphan pairs considered as
siblings at each threshold of TM score (x-axis) and SNN score (y-axis) on the plot is highlighted according to a log-
scale gradient scheme from few proteins (blue) to many proteins (green). In (C) each dot represents a protein pair
and is colored by sequence identity from very low (< 40%; gray) to very high (80-90%; dark blue). Note that no pairs
over 90% identity were included in our set. The dashed lines indicate the TM and SNN score cut-offs (0.7 and 0.98)
chosen for this work.

Fig. 3: Comparison of prediction performance in each annotation category.

The bar plots show the highest (max) per-method (A) AS and (B) Recall”?>® metrics for the SNN+TM test set of
protein pairs (see Methods). The evaluated methods in this study predict: Enzyme Commission numbers (EC1 —
first digit, EC3 — up to third digit), Gene Ontology Molecular Function terms, Pfam domains, and Ortholog groups
(as indicated in (A). Language model embedding distances were also considered. Max scores were selected for
each method by varying the prediction score threshold (tp). The double line separates explicit functional annotations
(EC and GO) from implicit functional annotations via Pfam and Ortholog definitions and embedding similarities. The
gray and blue lines indicate the average performance of 100 random baseline classifiers and the expected

performance of the “ground-truth” annotation (Table S1), respectively. The white squares along standard error
bars indicate the average performance of the method-specific random annotators over 100 iterations.

Fig. 4: Variations in performance over TM-score cut-offs.

The highest (A-D) ASimilarity (y-axis) of top performing methods vary based on predicted protein annotations. All
scores were computed at SNN cutoff =0.98 and at different TM-score cutoffs (bottom x-axis), resulting in a different
number of orphan sibling pairs (top x-axis). The average performance of 100 random baseline classifiers is plotted
for comparison in each panel (dotted black line). See Figure S3 for trends of F1lmax and AUC PRmax.

Fig. 5: Different annotations capture different functional spaces.

Orphan siblings predicted by the top-performing methods (A-E) and SwiftOrtho (F) occupy different spaces in the
TM score (x-axis) vs SNN score (y-axis) space depending on the type of annotation (EC, GO, Pfam and orthologs).
Each dot in the plot represents a protein-pair and is colored based on the sequence identity. The dashed lines
indicate the TM and SNN score cut-offs (0.7 and 0.98) chosen for the defining the SNN+TM test set of labelled
siblings (red dashed lines).
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Tables

Table 1: Protein function prediction performance

% of
# of % of TPt
Tool Term | Annotated annot_atable annotatable | 1p°P! at Flmax? at AS Flmax PRAUC ROC Prec Rec
Sl protein - .1 ) AUC
proteins pairst sibling pair Flmax
ECPred EC1 9,402 60.1 73.3 0.800 0.01 0.18 0.67 0.72 060 0.57 0.87
ECPred EC3 9,402 60.1 73.3 0.890 0.01 0.25 0.68 0.70 0.67 0.65 0.75
Mantis EC1 1,910 8.5 6.3 - 0.19 0.04 0.64 0.71 052 0.51 0.90
Mantis EC3 1,910 8.5 6.3 - 0.19 0.05 0.61 0.65 053 052 0.76
DeepFRI GO 11,328 97.1 98.3 0.214 0.01 0.06 047 059 060 0.62 0.44
DeepGOPIlus GO 11,444 100.0 100.0 0.100 0.02 0.01 0.23 0.40 055 0.65 0.15
GOPredSim GO 11,444 100.0 100.0 0.384 0.05 0.14 0.63 0.66 061 057 0.72
Mantis GO 2,895 11.8 12.6 - 0.38 0.10 0.59 0.60 0.58 0.56 0.64
NetGO GO 11,444 100.0 100.0 0.087 048 0.07 0.53 0.67 0.68 0.62 0.66
Protelnfer GO 9,495 81.3 71.6 0.04 0.02 0.33 0.44 056 0.63 0.25
GhostKOALA KO 3,551 7.3 9.7 0.696 0.01 011 0.65 0.70 057 055 0.85
Mantis COG 5,784 59.9 47.2 - 0.10 0.04 0.60 0.64 053 052 0.75
HMMER Pfam 8,661 83.5 76.3 4.400 0.64 022 0.69 0.76 0.66 0.58 0.89
Mantis Pfam 4,874 15.0 26.9 - 0.37 0.16 0.62 0.65 0.64 0.62 0.65
ProtCNN Pfam 11,444 100.0 100.0 - 0.01 0.00 0.13 0.42 052 0.77 0.08
ESM Emb 11,444 100.0 100.0 - 0.05 0.00 0.19 0.72 0.70 0.25 0.07
LookingGlass Emb 11,444 100.0 100.0 - 0.18 0.01 0.35 0.63 0.60 0.62 0.38
ProtT5 Emb 11,444 100.0 100.0 - 0.08 0.00 0.22 072 0.71 035 0.12

IUnless explicitly specified, all our performance metrics of each method were computed within the respective subsets of the SNN+TM test set.
’Performance measures at F1 optimal thresholds are computed over 100 iterations of under sampling. Performance of the selected, top-
performing methods is identified in bold. Precision and Recall were computed at the F1 optimum prediction score threshold (1,°"") and optimum
similarity score threshold (ts°"). Other performance metrics: AS, Flmax, PR AUC and ROC AUC are independent of the similarity score threshold
(ts) by definition and thus were calculated at the F1 optimum prediction score threshold (tp).
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Table 2: Characteristics of protein pairs predicted as siblings.

Total
Range Orphan  Siblings | ECPred GOPredSim NetGO HMMER  GhostKOALA | SwiftOrtho
pairs
307,434 5,576~
-:? <40% (99.3%) (89.79%) 219 3,724 200,223 10,696 456 2,150
S 1,155 314"
(<5} -AN0, 1 ++ ++ ++ ++
E 40-60% (0.4%) (5.0%) 1 11 1,131 88 9 1,019
2 720 234"
oy -20N0, ++ ++ ++ ++ ++ ++
% 60-80% (0.2%) (3.7%) 5 32 714 58 6 717
i ++
S | 8o-90% (02‘1"& ) (192% ) 2 10° 237+ 19+ 1 239+
39,675 . . - - - -
o 0-0.5 (14.5%) 0 22 301 25,666 891 10 118+
8 133,206 . . . . . .
EI 0.5-0.7 (45.0%) 0 111 1,547 88,625 4,039 15 249
= 1361668 ++ ++ ++ ++ ++ ++
0.7-1.0 (40.4%) 6,219 94 1,929 88,014 5,931 447 3,758
102,620 " - " - . "
g 0-0.5 (50.1%) 0 88 1,970 98,533 5,726 298 1,436+
3 181,495 - " B + = -
% 0.5-0.98 (45.8%) 0 120 1,644 93,997 4,584 167 1,841
2 251434 ++ + ++ ++ - ++
0.98-1.0 (4.1%) 6,219 19 163 9,775 551 7 848

Values indicate the number of siblings predicted by each method in the given range of sequence identity,
TM-score, or SNN score. The values were compared against the corresponding counts in the entire
dataset of orphan pairs via the two-sided Fischer's exact test. +/- denotes a significant

increase/decrease with p-value in [0.001, 0.05] range, while ++/-- denotes p-value of <0.001.
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