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Abstract 175 

Telomere length genome-wide association studies (GWAS) have become well-powered to 176 

detect novel genes in telomere length regulation. However, no prior work has validated these 177 

putative novel genes to confirm the contribution of GWAS loci to telomere length regulation. We 178 

conducted a trans-ancestry meta-analysis of 211,369 individuals. Through enrichment analyses 179 

of chromatin state and cell-type heritability we identified blood and immune cells as the most 180 

relevant cell type to examine telomere length association signals. We validated specific GWAS 181 

associations by overexpressing KBTBD6, a component of an E3 ubiquitin ligase complex, and 182 

POP5, a component of the Ribonuclease P/MRP complex, and demonstrating that both 183 

lengthened telomeres as predicted by our statistical analyses. CRISPR/Cas9 deletion of the 184 

predicted causal regions of these association peaks in K562 immortalized blood cells reduced 185 

expression of these genes, demonstrating that these loci are related to transcriptional regulation 186 

of KBTBD6 and POP5, respectively. Together our results demonstrate the utility of telomere 187 

length GWAS in the identification of novel telomere length regulation mechanisms and highlight 188 

the importance of the proteasome-ubiquitin pathway in telomere length regulation. 189 

Introduction 190 

Telomeres shorten with age and short telomeres are associated with several age-related 191 

diseases including bone marrow failure and immunodeficiency (Stanley and Armanios 2015). 192 

Individuals with these Short Telomere Syndromes have rare variants with large effects on 193 

telomere length regulation genes. Identification of causal variants in short telomere syndrome 194 

patients has led to the discovery of several genes we now appreciate as core telomere length 195 

regulation genes including DKC1, NAF1, PARN, and ZCCHC8 (Alder et al. 2013; Stuart et al. 196 

2015; Gable et al. 2019). Rare and common variants highlight the same set of core genes for 197 

many complex traits (Weiner et al. 2023), therefore a genome-wide association study (GWAS) 198 

on telomere length could feasibly be used to discover additional critical telomere length 199 

regulation genes. Despite the fact that 19 GWAS on leukocyte telomere length have been 200 

published (M. Mangino et al. 2009; Codd et al. 2010; Levy et al. 2010; Gu et al. 2011; Prescott 201 

et al. 2011; Massimo Mangino et al. 2012; Codd et al. 2013; J. H. Lee et al. 2013; Pooley et al. 202 

2013; Liu et al. 2014; Saxena et al. 2014; Walsh et al. 2014; Massimo Mangino et al. 2015; 203 

Delgado et al. 2018; Zeiger et al. 2018; Dorajoo et al. 2019; C. Li et al. 2020; Codd et al. 2021; 204 

Taub et al. 2022), identifying 143 loci associated with telomere length, very little has been done 205 

to validate these signals representing new facets of telomere length regulation. 206 

 207 

A key challenge facing interpretation of telomere length GWAS signals is accurately identifying 208 

causal genes driving the association signals. The vast majority of GWAS signals, including 209 
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telomere length GWAS loci, are in non-coding regions, making it difficult to determine the likely 210 

causal gene (Maurano et al. 2012). Some telomere length GWAS have used colocalization 211 

analysis, statistically comparing GWAS signal to quantitative trait locus (QTL) data, to support 212 

shared causal signal with putative target genes (C. Li et al. 2020; Codd et al. 2021; Taub et al. 213 

2022). Each of these were limited to expression QTLs (eQTLs) highlighting transcriptional 214 

regulatory genetic effects, but additional mechanisms may be involved, including alternative 215 

splicing revealed by splicing QTLs (sQTLs) (Y. I. Li et al. 2016). Furthermore, colocalization 216 

evidence does not confirm causal genes or relevant cell types. Such conclusions require 217 

functional validation of genetic regulatory and gene mechanism impacting telomere length, 218 

which were not explored in prior telomere length GWAS. 219 

 220 

A second barrier to capitalizing on telomere length GWAS associated loci is that many of the 221 

associated loci are often in or near genes with no prior known direct effect on telomere length, 222 

making it difficult to understand the value in characterizing the underlying molecular 223 

mechanisms. Indeed, many of these association signals likely represent peripheral genes with 224 

indirect mechanisms on telomere length regulation (Boyle, Li, and Pritchard 2017). This is 225 

consistent with observations from screens assaying the effect of knock-out libraries in 226 

Saccharomyces cerevisiae (S. cerevisiae) on telomere length which identified genes involved in 227 

diverse pathways either lengthening or shortening telomeres (Askree et al. 2004; Gatbonton et 228 

al. 2006). Similarly, immunoprecipitation followed by mass spectrometry of S. cerevisiae 229 

telomerase components identified interactions with proteins with diverse functions (Askree et al. 230 

2004; Gatbonton et al. 2006; Lin et al. 2015). In both types of experiments, the majority of the 231 

results were interpreted to indirect mechanisms on telomere length regulation. However, 232 

validation of genes identified in these studies has also identified direct effects on telomerase 233 

(Maicher et al. 2017; Laterreur et al. 2018). 234 

 235 

Here, we leveraged four telomere length GWAS that used non-overlapping cohorts in a random-236 

effects trans-ancestry meta-analysis on 211,369 individuals to identify 56 loci associated with 237 

human telomere length. Using stratified linkage disequilibrium score regression (S-LDSC) 238 

(Finucane et al. 2015) and enrichment analysis of Roadmap Epigenomics chromatin data 239 

(Roadmap Epigenomics Consortium et al. 2015) we determined that blood and immune cells 240 

were the most relevant cell type for telomere length association signals. We validated some of 241 

our colocalization analysis results in cultured cells and demonstrated that overexpression of 242 

KBTBD6 and POP5 increased telomere length as predicted by our statistical analyses. 243 

CRISPR/Cas9 deletion of the predicted causal regions for signals attributed to these genes in 244 

immortalized blood cells reduced expression of both genes, further supporting the conclusion 245 

that KBTBD6 and POP5 are the causal genes at these telomere length association signals. 246 

Together this work shows the utility of human telomere length GWAS in identifying new aspects 247 

of telomere biology. 248 
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Results 249 

Trans-ancestry meta-analysis of leukocyte telomere length 250 

identifies 7 novel signals 251 

We leveraged four GWAS with non-overlapping cohorts in a trans-ancestry meta-analysis of 252 

211,379 individuals. Three studies were homogenous ancestries of European (C. Li et al. 2020), 253 

Singaporean Chinese (Dorajoo et al. 2019), or Bangladeshi (Delgado et al. 2018) individuals. 254 

The fourth study used HARE (Fang et al. 2019) to broadly categorize individuals as European, 255 

African, Asian, or Hispanic/Latino and generated ancestry-specific summary statistics (Taub et 256 

al. 2022)(Supplementary Table 1). We meta-analyzed these seven sets of summary statistics 257 

and broadly refer to the Asian, Singaporean Chinese, and Bangladeshi individuals as Asian in 258 

this manuscript (Figure 1). Across the four studies telomere length was estimated from blood 259 

leukocytes computationally from whole genome sequencing data using TelSeq (Taub et al. 260 

2022) or experimentally using qPCR or a Luminex-based platform (Delgado et al. 2018; Dorajoo 261 

et al. 2019; C. Li et al. 2020). These studies previously demonstrated that all three assays are 262 

well correlated with telomere Southern blots. We used a random-effects model to identify 56 263 

genome-wide significant loci (p-value < 5x10-8) including seven novel signals (Figure 1, 264 

Supplementary Table 2, Methods). Loci were considered novel if there were no other reported 265 

sentinels within 1 Mb of the lead single nucleotide polymorphism (SNP) at the locus.  266 

Fine-mapping analyses nominate putative causal variants and 267 

genes affecting telomere length 268 

Colocalization analysis suggests genes underlying association signals 269 

We used colocalization analysis (Giambartolomei et al. 2014) to determine whether each of our 270 

GWAS signals overlapped a signal from an independent quantitative trait locus (QTL) dataset 271 

(Methods), indicating causal genetic variants shared between telomere length and gene 272 

regulation. We began by examining large-scale expression quantitative trait locus (eQTL) and 273 

splicing quantitative trait locus (sQTL) datasets from diverse cellular contexts. Each GWAS 274 

included in our meta-analysis estimated telomere length from leukocytes extracted from whole 275 

blood. However, strong QTLs are often shared across cellular contexts (GTEx Consortium 276 

2020) and telomere length is correlated across GTEx tissues (Demanelis et al. 2020); therefore, 277 

we included all 49 GTEx v8 tissues in our colocalization analysis. We found that 32 of 56 meta-278 

analysis signals strongly colocalized (PPH4 > 0.7) with at least one eQTL or sQTL in at least 279 

one tissue (Supplementary Figure 1A,B,E). 12 signals colocalized (PPH4 > 0.7) with an eQTL or 280 

sQTL across more than five tissues and there was colocalization (PPH4 > 0.7) of at least one 281 

meta-analysis signal with at least one eQTL or sQTL in 45 out of 49 GTEx tissues 282 

(Supplementary Tables 3-4). We also conducted colocalization analysis using eQTLGen eQTLs 283 

(Võsa et al. 2021) and DICE eQTLs (Schmiedel et al. 2018; Võsa et al. 2021) (Supplementary 284 

Tables 5-6). eQTLGen increases power, with 31,685 individuals compared to GTEx whole blood 285 
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with 755 individuals. DICE introduces cell type specificity, with eQTLs called from RNA-seq on 286 

13 sorted blood and immune cell types, in 91 individuals. 11 of our signals colocalized (PPH4 > 287 

0.7) with eQTLGen eQTLs (Supplementary Figure 1C) and 9 signals colocalized with DICE 288 

eQTLs in at least one cell type (Supplementary Figure 1D). Together, we found colocalization 289 

data to suggest putative target genes for 33 of our 56 signals (Figure 2A). Only 4 signals 290 

colocalized in all four QTL datasets and 19 of the signals with supporting colocalization data 291 

only colocalized in one dataset (Figure 2B).  292 

 293 

To identify putative molecular mechanisms underlying each signal, we synthesized the available 294 

data to converge on a high likelihood candidate gene, where possible (Methods, Supplemental 295 

Note). 28 meta-analysis signals colocalized with QTLs for one gene but in multiple cellular 296 

contexts (Supplementary Tables 3-4). For example, the signal led by rs10111287 colocalized 297 

best with a VIRMA eQTL in thyroid (Figure 2C), but also significantly colocalized with VIRMA 298 

eQTLs in stomach and whole blood. Across genes, this signal only significantly colocalized with 299 

VIRMA eQTLs which made it straightforward to conclude this signal is likely linked to regulating 300 

VIRMA gene expression. Importantly, these results are not sufficient to make conclusions about 301 

the relevance of specific cellular contexts. Observed colocalization tends to correlate with the 302 

strength of the QTL, exemplified by the trend across the VIRMA eQTLs in thyroid (eQTL min 303 

p=3.79x10-9, PPH4=0.922), stomach (eQTL min p=5.94x10-7, PPH4=0.758), and whole blood 304 

(eQTL min p=2.13x10-5, PPH4=0.567). Variable power in eQTL data across tissues or cohorts is 305 

one reason that colocalization analysis is limited to suggesting candidate causal genes but not 306 

relevant cellular contexts (Urbut et al. 2019; Arvanitis et al. 2022). 307 

Interpreting sQTL colocalization results 308 

13 meta-analysis signals colocalized (PPH4 > 0.7) with a GTEx sQTL (Figure 2A-B), of which 4 309 

also colocalized with an eQTL for the same gene (Supplementary Figure 1E). sQTLs are called 310 

based on exon read depth relative to other exons in the splicing cluster; a reduction in the 311 

expression levels of just one exon can result in the locus also being reported as an eQTL due to 312 

fewer total reads mapping to the gene. Therefore, it is possible for a signal regulating splicing to 313 

have colocalization results with an sQTL and an eQTL. This was the case for the signal led by 314 

rs7193541 (Figure 2D) which colocalized with an RFWD3 sQTL in cultured fibroblasts 315 

(PPH4=1.000) and an RFWD3 eQTL in skeletal muscle (Supplemental Note, PPH4=0.993). 316 

This meta-analysis signal also colocalized (PPH4 > 0.7) with an RFWD3 sQTL in two other 317 

GTEx tissues (EBV-transformed lymphocytes and brain cerebellar hemisphere) and an RFWD3 318 

eQTL in seven other GTEx tissues (adipose visceral omentum, adrenal gland, breast mammary 319 

tissue, liver, prostate, minor salivary gland, and transverse colon). We can be confident that 320 

splicing is the likely molecular mechanism if the splicing cluster is clear and supported by effects 321 

on expression over affected exons. A LeafCutter (Y. I. Li et al. 2018) plot of this splicing cluster 322 

demonstrated that individuals with more copies of the lead SNP at this locus increasingly 323 

excluded the fourteenth exon in RFWD3 (Figure 2D). This was further supported by examining 324 

the RNA expression alignment which showed decreased expression of only the fourteenth exon 325 

in individuals with one or two copies of rs7193541 (Supplementary Figure 1F). This exon is 326 

excluded in observed RFWD3 protein isoforms (NP_001357465.1). These results lend strong 327 

support to the conclusion that this meta-analysis signal is driven by the association of telomere 328 
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length with the regulation of RFWD3 splicing and is it possible that this isoform may have 329 

distinct molecular effects on telomere length. 330 

Interpreting conflicting colocalization analysis results 331 

While colocalization analysis is an excellent tool for identifying potential causal genes for a 332 

meta-analysis signal, comparison across diverse cellular contexts and between datasets at 333 

times led to multiple putative causal genes. There were 6 meta-analysis signal-gene QTL 334 

colocalization pairs that were replicated between datasets (Supplementary Figure 1E). In 19 335 

cases there was only colocalization evidence from one QTL dataset (Figure 2B) and in 14 cases 336 

there was conflicting colocalization results for a meta-analysis signal (Supplemental Note). For 337 

example, the signal led by rs59922886 colocalized strongly with a CTC1 eQTL in GTEx sun 338 

exposed skin (PPH4 = 0.861). But in eQTLGen the same meta-analysis signal best colocalized 339 

with an AURKB eQTL (PPH4=0.919). Colocalization analysis from DICE further supported 340 

attribution to CTC1 where the signal colocalized with a CTC1 eQTL in M2 cells (PPH4=0.641). 341 

In this case, known biology allowed us to confidently attribute the signal to CTC1 because CTC1 342 

functions as part of the CST complex to regulate telomere length (Miyake et al. 2009; 343 

Surovtseva et al. 2009).  344 

 345 

Recently there has been discussion about whether assigning genes to GWAS or meta-analysis 346 

signals should rely upon colocalization analysis as opposed to the proximal gene (Mostafavi et 347 

al. 2022). 20 of our 56 meta-analysis signals best colocalized with the proximal gene. We 348 

assigned a gene to each meta-analysis signal based on known biology of proximal genes 349 

(proximity-plus-knowledge) (Okamoto et al. 2023), colocalization analysis results, or the 350 

proximal gene where no other information was available. We discuss these situations and our 351 

rationale for putative causal gene assignment in the Supplemental Note. 352 

Credible set analysis suggests that some loci consist of multiple 353 

independent causal variants which regulate the same gene in different 354 

contexts 355 

To identify putative causal SNPs at each locus we applied fine-mapping using SuSiE (Zou et al. 356 

2022) to estimate 95% credible sets. This analysis results in a set of SNPs estimated to contain 357 

a casual SNP with 95% confidence based on GWAS summary statistics and accounting for 358 

linkage disequilibrium estimates. We were able to identify 95% credible sets at 38 of 56 loci 359 

(Supplemental Table 7, Methods).  360 

 361 

SuSiE identified two credible sets for the signal led by rs35510081 (Figure 2E). We did not 362 

observe any significant colocalization results for this locus. It is not unusual for a considerable 363 

proportion of GWAS signals to not colocalize with QTLs (Chun et al. 2017; Umans, Battle, and 364 

Gilad 2021; Connally et al. 2022; Mostafavi et al. 2022) and in such cases, prior knowledge and 365 

proximity to nearby genes is considered. In this case TERC, the RNA component of telomerase, 366 

is not the immediate proximal gene but is nearby (4.5 kb). Given the a priori information we 367 

have about TERC as a component of telomerase (Feng et al. 1995), we can be confident 368 
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attributing this signal to TERC. In this and similar cases known biological information 369 

superseded the proximal gene or colocalization analysis results in assigning the peak 370 

(Supplemental Note). 371 

 372 

16 of the 38 loci where credible set estimation was possible are predicted to have multiple 373 

causal SNPs. The number of predicted causal SNPs at each locus is consistent with conditional 374 

analysis on the pooled ancestry GWAS (Taub et al. 2022) (Supplementary Figure 1G). Many of 375 

these signals also have stronger association with telomere length and the detection of multiple 376 

causal SNPs is likely due to increased power. The exceptions to this trend are the TERF1 locus, 377 

which is a telomere binding protein (Zhong et al. 1992), and the DCLRE1B (aka APOLLO) 378 

locus, which is important for telomere end processing (Lenain et al. 2006; van Overbeek and de 379 

Lange 2006; Wu et al. 2010). The association signals at these loci were not as strong 380 

(p=2.04x10-12 and p=3.26x10-8, respectively) yet are estimated to have 6 and 3 causal SNPs at 381 

the signals, respectively. We previously demonstrated that the multiple signals at the OBFC1 382 

(aka STN1) locus colocalize strongly with OBFC1 eQTLs in distinct tissues (Taub et al. 2022). 383 

This is also true for NAF1 (Supplementary Figure 1H). Both NAF1 and OBFC1 could be 384 

considered core telomere length regulation genes as they have direct mechanisms on 385 

biosynthesis and regulation of telomerase (Stanley et al. 2016; Miyake et al. 2009; Surovtseva 386 

et al. 2009) and their independent signals could reflect distinct regulatory mechanisms across 387 

cellular contexts. However, as discussed above, QTL detection can be influenced by technical 388 

factors, and from this work alone we are unable to eliminate the possibility that there may be 389 

undetected QTLs in these cellular contexts that would colocalize with one another. But the 390 

prevalence of multiple causal SNPs at many association signals reiterates the importance of 391 

these core genes in telomere length regulation across cellular contexts.  392 

Genes suggested by colocalization analysis highlight nucleotide 393 

synthesis and ubiquitination  394 

We looked for GO biological process pathway enrichment using PANTHER (Mi et al. 2019; 395 

Thomas et al. 2022) and observed very strong enrichment of telomere regulation and DNA 396 

damage response pathways, as expected (Supplementary Table 8). We observed similar GO 397 

process enrichment using proximal genes and colocalization analysis-supported genes 398 

(Supplementary Figure 2). We also observed significant enrichment of nucleotide synthesis 399 

processes (e.g. cellular aromatic compound metabolic process, nucleic acid metabolic process). 400 

The importance of dNTP pools in regulating telomerase has been well documented (Hammond 401 

and Cech 1997; Gupta et al. 2013; Maicher et al. 2017; van Mourik et al. 2018) and one of the 402 

GWAS included in our meta-analysis also highlighted the importance of nucleotide metabolism 403 

in telomere length regulation (C. Li et al. 2020). Though we did not observe enrichment of any 404 

protein degradation biological processes, we attributed several of our meta-analysis signals to 405 

genes involved in proteasomal degradation including UBE2D2, KBTBD6, PSMB4, and RFWD3. 406 

UBE2D2 is proximal to the rs56099285 signal and is an E2 ubiquitin conjugating enzyme 407 

(Saville et al. 2004). The signal near rs1411041 colocalized strongly with both KBTBD6 and 408 

KBTBD7; these neighboring genes function as part of an E3-ubiquitin ligase complex (Genau et 409 

al. 2015). Additionally, we observed a signal near rs12044242 which we attributed to PSMB4, a 410 
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non-catalytic component of the 20S proteasome (Nothwang et al. 1994), and a signal near 411 

rs7193541 which we and others attributed to RFWD3, an E3 ubiquitin ligase (Fu et al. 2010). 412 

Together this collection of genes highlights an unappreciated role of ubiqutination regulation in 413 

telomere length regulation dynamics.  414 

Meta-analysis signals are enriched for transcription factor binding 415 

sites of transcription factors with roles in telomere length 416 

regulation 417 

Several transcription factors are known to regulate core telomere genes and disruption or 418 

creation of their transcription factor binding sites can result in dysregulation of telomerase and 419 

telomere length regulation (Huang et al. 2013). We examined whether the 95% credible set 420 

SNPs for our meta-analysis signals were enriched for transcription factor binding sites of any 421 

transcription factors with known consensus sequence using ENCODE ChIP-seq data (Figure 422 

3A)(ENCODE Project Consortium 2012; Luo et al. 2020) or ReMap consensus sequences 423 

(Supplementary Figure 3A, Methods)(Hammal et al. 2022). We also analyzed the enrichment of 424 

the lead SNP alone at each meta-analysis signal (Supplementary Figure 3B-C). Many 425 

transcription factors involved in telomere length regulation had binding sites that were enriched 426 

in our meta-analysis using both analyses (Figure 3A, Supplementary Figure 3A, Supplementary 427 

Table 9). The transcription factor binding site enrichment calculated using ENCODE data was 428 

correlated with that of ReMap (95% credible set analysis R2 =0.336, lead SNP analysis R2 = 429 

0.589)(Supplementary Figure 3D-E).  430 

 431 

Previous work demonstrated that PAX5 increases TERT expression in B cells and fibroblasts 432 

(Bougel et al. 2010; Qin et al. 2021). We observed that there is a PAX5 transcription factor 433 

binding site overlapping the signal led by rs12044242, which we assigned to PSMB4 434 

(Supplemental Note). This SNP ablates a highly weighted cytosine in the consensus sequence 435 

and overlaps ChIP-seq peaks for activating histone marks (H3K4me3, H3K1me1, H3K27ac) 436 

and binding sites for transcriptional regulators (POL2, CTCF, HDAC1, HDAC2) (Figure 3B). 437 

Lead SNPs at signals we attributed to OBFC1 and TINF2, both of which produce key telomere 438 

binding proteins, overlap binding sites for SOX2 and KLF4, respectively. In addition, one of our 439 

novel signals, which we attributed to the proximal gene RRP12, overlaps a MYC binding site. 440 

Furthermore, MYC is a well established regulator of TERT expression (Greider 1999). SOX2, 441 

KLF4, and MYC are pluripotency factors (Takahashi and Yamanaka 2006) and the presence of 442 

their binding sites at these telomere length association signals suggests regulatory roles for 443 

these genes in pluripotent cells. Our meta-analysis lead SNPs also overlapped transcription 444 

factor binding sites for FOXE1, GABPA, and HMBOX1 (Supplementary Table 10) which have all 445 

been reported to regulate expression of TERT, the protein component of telomerase (Bullock et 446 

al. 2016; Helbig et al. 2017; S. Zhou et al. 2017). Present literature on this topic has been 447 

focused on transcription factors regulating telomerase; these results demonstrate that these 448 

transcription factors may regulate other key telomere length regulation genes. 449 
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TCL1A 95% credible set SNPs are more strongly associated with 450 

telomere length in older individuals 451 

Because age accounts for a significant amount of telomere length variation (Demanelis et al. 452 

2020), we ran a GWAS with an interaction term between age and genotype. Five signals had a 453 

genotype x age p-value that was below genome-wide significance (p-value < 5.39x10-9) and 454 

another 48 signals had genotype x age p-values that cleared suggestive thresholds (p-value < 455 

5x10-5) (Supplementary Table 11). None of the genome-wide significant interaction signals were 456 

within 2 Mb of a meta-analysis signal, therefore we ran a GWAS stratified by age as an 457 

orthogonal approach (Supplementary Table 12). This analysis required individual-level data, 458 

therefore it was limited to the 109,122 individuals from TOPMed. We divided these individuals 459 

into three age groups ([0, 43], (43, 61], and (61, 98]) such that there were a similar number of 460 

individuals in all three groups. Expanding the analysis to more granular age groups was not 461 

possible with this sample size without singularity issues in the GWAS analysis. Although the 462 

ratio of males to females was similar between groups (Supplementary Figure 4A), the 463 

distribution of ancestries varied such that the proportion of European individuals increased over 464 

age (Supplementary Figure 4B). We filtered candidate regions to identify loci with similar minor 465 

allele counts between groups, but with non-overlapping effect size estimate confidence 466 

intervals. We also required that the locus have a minimum SNP x age interaction p-value < 467 

5x10-5 and that the locus have a genome-wide significant association signal (p < 5x10-8) in the 468 

meta-analysis (Methods). The rs2296312 locus was the single locus that met the filtering 469 

pipeline criteria with a SNP x age interaction p-value = 2.599x10-6 (Figure 4A). The effect size 470 

estimate increased over age (Figure 4B) and this trend was independent of ancestry as the 471 

effect estimate for rs2296312 was similar between all examined ancestries (Figure 4C). The 472 

association signal increased in significance over age, mirroring the effect size estimate trend 473 

(Figure 4D-F). In the meta-analysis, rs2296312 was part of a peak that colocalized best with a 474 

TCL1A eQTL from GTEx whole blood (PPH4 = 0.714). SuSiE credible set analysis identified 14 475 

SNPs in the credible set for this peak all of which have a similar trend in their effect estimates 476 

over age. Together these data demonstrate that putative causal SNPs regulating TCL1A 477 

expression are associated with age and telomere length. TCL1A activates the AKT signaling 478 

pathway increasing cellular proliferation (Pekarsky et al. 2000) and TCL1A expression was 479 

previously reported to decrease in whole blood as age increases (Demanelis et al. 2020). 480 

Furthermore, rs2296312 has been reported to act through TCL1A to be protective against loss 481 

of the Y chromosome and clonal hemoatopoesis (W. Zhou et al. 2016; Weinstock et al. 2023). 482 

Our data are concordant with previous findings and suggest that these protective phenomena 483 

reduce proliferation, leading to longer telomere length.  484 

Blood and immune cells are a key cell type for telomere length 485 

To understand the biology of our associated loci and to support validation of our findings, we 486 

first had to determine the most relevant cellular context to examine telomere length associated 487 

signals. Telomere length was estimated from blood leukocytes in all samples, however, 488 

telomere length regulation is relevant in many different cell types, to differing extents (Armanios 489 

2013). In relevant cellular contexts, causal SNPs are expected to be in genomic regions with 490 
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active chromatin states. We tested for enrichment of the meta-analysis lead SNPs across 491 

Roadmap Epigenomics samples (Supplementary Table 13) and the 25 state chromHMM model 492 

(Figure 5A) (Roadmap Epigenomics Consortium et al. 2015). The strongest enrichment of 493 

several active chromatin states was observed in blood and T-cell samples. Because the 494 

chromHMM model is a predicted state, we also examined whether there was enrichment when 495 

looking at the primary data for specific chromatin marks. Consistent with the chromHMM model 496 

results, we saw that the strongest enrichment of lead SNPs in H3K4me1 and H3K27ac peaks 497 

was in blood and T-cell samples (Supplementary Figure 5). 498 

 499 

As an orthogonal approach we ran stratified linkage disequilibrium score regression (S-LDSC) 500 

on the meta-analyzed European individuals in our study (Methods). S-LDSC uses the meta-501 

analysis summary statistics to examine whether, given linkage disequilibrium, a category of 502 

SNPs has increased association with telomere length compared to SNPs not in that category. In 503 

this case, we used categories based on previously reported cell type specific annotations based 504 

on gene expression or chromatin marks (Finucane et al. 2015). Using both gene expression and 505 

chromatin marks we observed that the blood/immune cell category was the only category that 506 

was significantly enriched (Figure 5B-C). Together with the Roadmap Epigenomics enrichment 507 

analysis, these data suggest that blood and immune cells are the most relevant cell type for 508 

genetic regulation of leukocyte telomere length. 509 

Overexpression of POP5 and KBTBD6 increases telomere length 510 

in HeLa-FRT cells 511 

We began our validation experiments by screening candidate genes for an effect on telomere 512 

length. It has been well documented that shRNAs with loss of function effects often become 513 

epigenetically silenced over time in cell culture (Goff 2021). Therefore, we identified candidate 514 

genes where the lead SNP was predicted to increase gene expression. Of those we chose five 515 

genes that had one known protein coding sequence isoform, had strong colocalization analysis 516 

results, and had some known biology: OBFC1, PSMB4, CBX1, KBTBD6, and POP5 (Methods). 517 

To generate constitutive overexpression cell lines we used the Flp-in system (Thermo Fisher 518 

Scientific) to incorporate the FLAG-tagged gene of interest under the control of a CMV promoter 519 

into HeLa-FRT cells (Methods). HeLa cells are not derived from blood or immune cells but are 520 

highly tractable for this screening stage of the validation experiments. Three independent 521 

transfection clones were passaged and the effect of gene overexpression on telomere length 522 

was observed by Southern blot.  523 

 524 

The lead SNPs for each meta-analysis signal that we attributed to these genes was estimated to 525 

have a positive effect on telomere length in our meta-analysis (Supplementary Table 2), 526 

therefore we predicted that overexpression of these genes should increase telomere length. As 527 

a control we also overexpressed GFP, which had no effect on telomere length, as expected 528 

(Figure 6). Overexpression of OBFC1 or PSMB4 also had no effect on telomere length 529 

(Supplementary Figure 6A). Overexpression of CBX1 slightly increased telomere length 530 

(Supplementary Figure 6A) while overexpression of KBTBD6 or POP5 showed a clear telomere 531 

length increase over increased cell division, concordant with the expectation from our meta-532 
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analysis (Figure 6). The median, minimum, and maximum telomere lengths were estimated for 533 

each lane in the Southern blots using ImageQuant TL (Methods, Supplementary Figure 7). 534 

Protein expression was assayed by western blot analysis. Western blot comparison of early 535 

population doubling timepoints to late population doubling timepoints showed that POP5 536 

overexpression was maintained through the duration of the experiment while KBTBD6 537 

overexpression was suppressed in clones 6 and 7 (Supplementary Figure 6B). This likely 538 

accounts for the plateau in telomere lengthening in KBTBD6 overexpression clone 7 (Figure 6A-539 

B).  540 

CRISPR removal of KBTBD6 and POP5 regulatory regions 541 

reduced expression of each gene 542 

We next sought to examine whether high likelihood causal elements in the respective meta-543 

analysis signals affect the expression of these genes. SuSiE was unable to predict a 95% 544 

credible set analysis for the POP5 locus, likely because the association signal is below genome-545 

wide significance in the summary statistics used for fine-mapping (Methods). We utilized a 546 

second credible set estimation algorithm, CAVIAR (Hormozdiari et al. 2014), with a single 547 

assumed causal SNP, however, the 95% credible set included 3,041 SNPs and did not reduce 548 

the position range of the region (Supplementary Figure 8A). In the absence of useful 95% 549 

credible set estimation, we considered the genome region spanning the lead SNP and SNPs 550 

with r2 > 0.9 and p-value < 1x10-6 (Supplementary Figure 8B). To prioritize a subset of this 124 551 

kb region, we intersected these top SNPs with ATAC-seq, Hi-C, and chromatin ChIP-seq data 552 

from blood samples, but were unable to form a consensus (not shown). We removed the 124 kb 553 

region upstream of POP5 using CRISPR/Cas9 in K562 cells (Supplementary Figure 8C) and 554 

identified 24 clones where the region had been successfully deleted at one allele, generating 555 

heterozygous deletions (Methods). qPCR analysis (primer sequences in Supplementary Table 556 

14) of these clones showed significantly reduced POP5 expression compared to controls 557 

(p=0.047) demonstrating that this region contains critical SNPs for regulating POP5 expression 558 

in blood cells (Figure 7A).  559 

 560 

KBTBD6 functions as a component of an E3 ubiquitin ligase complex along with CUL3 and 561 

KBTBD7 (Genau et al. 2015). KBTBD7 is a neighboring gene and we observed colocalization 562 

with the signal led by rs1411041 with both KBTBD6 and KBTBD7 eQTLs in GTEx 563 

(Supplementary Table 3). We were interested in determining whether CRISPR editing of high 564 

likelihood SNPs in this meta-analysis signal would affect the expression of KBTBD6, KBTBD7, 565 

or both. We intersected the position of the 99% credible set SNPs (Figure 7B) with ATAC-seq 566 

peaks in blood samples (Figure 7C). Only one SNP, rs9525462, was located in a region where 567 

the ATAC-seq peaks were shared across blood samples. rs9525462 was predicted to be in the 568 

99% credible set by both SuSiE and a second credible set analysis software, CAVIAR. This 569 

region overlaps promoter and enhancer chromatin marks (H3K27ac and H3K4me3, 570 

respectively) in Roadmap Epigenomics blood samples (Figure 7D), further supporting that this 571 

region is in an active state in blood samples. We used CRISPR/Cas9 to remove the 938 bp 572 

ATAC-seq peak region in K562 cells (Supplementary Figure 8D) and identified 31 clones where 573 

this region had been successfully removed at least at one allele, generating heterozygous 574 
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deletions (Methods). Clones with the ATAC-seq peak region knocked-out had significantly 575 

decreased KBTBD6 (p=0.003037) and KBTBD7 (p=2.093e-05) expression relative to controls, 576 

demonstrating that this region is critical in regulating the expression of both genes. Together 577 

these data demonstrate that our meta-analysis signals are driven by POP5 and 578 

KBTBD6/KBTBD7, and we identify them as novel telomere length regulation genes. 579 

Discussion  580 

Our results demonstrate the utility of telomere length GWAS in the identification of novel 581 

telomere length regulatory mechanisms. Our fine-mapping of telomere length associated loci 582 

and discussion of relevant cell types in which to validate these signals is a useful platform for 583 

further experimental validation. We determined that blood and immune cells are the most 584 

relevant cellular context to examine leukocyte telomere length association signals based on 585 

chromatin accessibility and S-LDSC. Telomere length was estimated from blood leukocytes in 586 

all samples; it is possible that this boosted the strength of blood and immune cell enrichment in 587 

our analyses. However, telomere length regulation is relevant in many different cell types, to 588 

differing extents (Armanios 2013). We propose that blood and immune cells are the most 589 

relevant cell type for leukocyte telomere length GWAS validation experiments, but that these 590 

genes contribute to telomere length regulation across cellular contexts. This idea is further 591 

supported by our observation that independent association signals at the OBFC1 (Taub et al. 592 

2022) and NAF1 loci colocalize with eQTLs for their respective genes in different cellular 593 

contexts.  594 

 595 

While prior telomere length GWAS (C. Li et al. 2020; Codd et al. 2021) have used colocalization 596 

to support putative causal genes for their association signals, we extended this work to include 597 

multiple QTL datasets across tissues and to include splicing in addition to expression QTLs. 598 

This made it possible to uncover splicing mechanisms that may be associated with telomere 599 

length, as we saw with RFWD3, and increased the confidence of our putative causal gene 600 

assignment. 601 

 602 

Experimental validation of putative causal genes identified novel genes involved in telomere 603 

length regulation. POP5 is a subunit of the Ribonuclease P/MRP complex (van Eenennaam et 604 

al. 2001). Previous work in S. cerevisiae demonstrated a role for specific components of the 605 

homologous complex in telomerase holoenzyme complex regulation (Laterreur et al. 2018). In 606 

addition, POP1, another subunit of the Ribonuclease P/MRP complex, was recently shown to 607 

interact with human telomerase RNA (Zhu et al. 2023). Together, these results suggest that the 608 

role of the POP proteins also play a role in human telomerase regulation. KBTBD6 and KBTBD7 609 

are members of an E3 ubiquitin ligase complex (Genau et al. 2015). CRISPR/Cas9 deletion of 610 

the high-likelihood causal region affected expression of both genes, but overexpression of 611 

KBTBD6 alone affected telomere length. Our results suggest that increased expression of the 612 

KBTBD6-KBTBD7-Cul3 complex or altered complex stoichiometry affect telomere length.  613 

 614 

In addition to the KBTBD6/KBTBD7 signal, we observed association signals that we attribute to 615 

RFWD3, another E3 ubiquitin ligase, PSMB4, a component of the core proteasome, and 616 
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UBE2D2, an E2 ubiquitin conjugating enzyme. ATM and ATR are kinases that contribute to the 617 

DNA damage response and telomere length regulation, though phosphorylation targets with 618 

strong effects on telomere length regulation have remained elusive (S. S. Lee et al. 2015; Tong 619 

et al. 2015; de Lange 2018; Keener, Connelly, and Greider 2019). Prior proteome analysis 620 

demonstrated that ATM/ATR regulate the ubiquitin-proteasome pathway in response to DNA 621 

damage and validated RFWD3 as an ATM/ATR substrate (Mu et al. 2007; Fu et al. 2010). Our 622 

results underscore the importance of ubiquitination in telomere length regulation; future work 623 

examining whether ATM/ATR substrates regulating the ubiquitination-proteasome pathway 624 

affect telomere length may identify ATM/ATR substrates with important roles in telomere length 625 

regulation. Furthermore, identification of the ubiquitination targets by these E3 ubiquitin ligases 626 

may reveal novel telomere length regulation mechanisms. Together, this work demonstrates the 627 

potential contribution of telomere length GWAS to understanding mechanisms underlying 628 

telomere length regulation. Future work extending the findings reported here and validating 629 

additional loci will increase our understanding of both the genetics and molecular mechanisms 630 

underlying telomere length regulation. 631 
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Methods 673 

Studies and telomere length estimation 674 

We incorporated four telomere length GWAS with non-overlapping cohorts. (Delgado et al. 675 

2018) had 5,075 samples from Bangladeshi individuals and telomere length was estimated 676 

using qPCR or Luminex-based assay. (Dorajoo et al. 2019) had 23,096 samples from 677 

Singaporean Chinese individuals and telomere length was estimated using qPCR. (C. Li et al. 678 

2020) had 78,592 samples from European individuals and telomere length was estimated using 679 

qPCR. (Taub et al. 2022) had 51,654 individuals of European ancestry, 5,683 individuals of 680 

Asian ancestry, 29,260 individuals of African ancestry, and 18,019 individuals of Hispanic/Latino 681 

ethnicity. In this study telomere length was estimated bioinformatically from whole genome 682 

sequencing data (Taliun et al. 2021) using TelSeq (Ding et al. 2014).  683 

Meta-analysis 684 

One concern with a meta-analysis approach was whether it is reasonable to compare summary 685 

statistics from GWAS where telomere length was estimated using different methods. Previous 686 

work determined that each method produces telomere length estimates that are highly 687 

correlated with Southern blot analysis (Aviv et al. 2011; Pierce et al. 2016; Taub et al. 2022) and 688 

in each study telomere length estimates were standardized prior to running the GWAS. We 689 

used GWAMA (Mägi and Morris 2010) to conduct a random effect meta-analysis that represents 690 
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a total of 211,379 individuals. Taub et al. stratified individuals from the Trans-Omics for 691 

Precision Medicine (TOPMed) program cohorts by ancestry group where individuals were 692 

broadly categorized as European, African, Asian, or Hispanic/Latino using HARE and we 693 

maintain language used from that study here for clarity. That study also defined an “Other” 694 

group which was not included in our analysis. We provide a list of TOPMed cohorts whose data 695 

are represented in the meta-analysis and the broad ancestral groups individuals were 696 

categorized as (Supplementary Table 1). A detailed enumeration of individuals over ancestry by 697 

TOPMed cohort was previously published in Supplementary Table 1 of Taub et al. SNP 698 

positions were converted to hg38 using LiftOver (Hinrichs et al. 2006) prior to meta-analysis. 699 

The Delgado et al. summary statistics were harmonized to the forward strand and palindromic 700 

SNPs were removed from this dataset. Loci were considered novel if there were no other 701 

reported sentinels within 1 Mb of the lead SNP in the signal. 702 

 703 

Lead SNPs were identified by minimum p-value within a 2 Mb window. We examined all loci 704 

with at least one variant that was genome-wide significant (p-value < 5x10-8) and had a minor 705 

allele frequency > 0.0001. This excluded loci where the lead SNPs were rs903494390, 706 

rs976923370, rs990671169, rs982808930, rs992178597, rs961617801, and rs1324702094. 707 

The signal led by rs3131064 is near the HLA locus and due to the extensive linkage 708 

disequilibrium in this region, we expanded the width of this signal to 4.2 Mb. 709 

Colocalization analysis 710 

All colocalization analysis was conducted using the coloc package (Giambartolomei et al. 2014) 711 

using the coloc.abf() command with the prior probability that the SNP is shared between the two 712 

traits (p12) set to 1e-6 and that there was at least 1,000 shared variants between the two 713 

datasets. For GTEx_v8 (GTEx Consortium 2020) colocalization we evaluated all genes for 714 

which the lead SNP was a significant QTL in any of the 49 GTEx_v8 tissues. For colocalization 715 

with eQTLGen cis-eQTLs (version available 2019-12-11)(Võsa et al. 2021) and DICE cis-eQTLs 716 

(version available 2019-06-07)(Schmiedel et al. 2018) we evaluated all genes within a 2 Mb 717 

window centered on the lead SNP and the meta-analysis summary statistics were lifted down to 718 

hg19 using LiftOver (Hinrichs et al. 2006) to compare SNPs based on chromosome and 719 

position. The X-chromsome signals could not be evaluated for colocalization with eQTLGen 720 

data as that dataset is limited to autosomes. Colocalization was conducted using minor allele 721 

frequency, p-value, and the number of samples for eQTLGen. Minor allele frequency was 722 

estimated from TOPMed pooled across ancestries. For all other colocalization analyses effect 723 

size estimates and their standard errors were used. We report the posterior probability that 724 

there are two signals but they do not share a causal signal (PPH3) and the posterior probability 725 

that there are two signals and they do share a causal signal (PPH4) within the text, figures, and 726 

figure legends. Posterior probabilities for the cases that there is no signal in one or either of the 727 

datasets (PPH0, PPH1, and PPH2) are reported in the appropriate Supplementary Tables (3-6). 728 

We considered cases where PPH4 > 0.7 to be colocalized except for colocalization analysis 729 

with DICE cis-eQTLs where we reduced this threshold to PPH4 > 0.5 to account for the reduced 730 

power in the dataset. For Manhattan plots colored by linkage disequilibrium, r2 was calculated 731 

using a trans-ancestry group of all TOPMed individuals included in the meta-analysis. 732 
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Visualizing sQTLs 733 

RNA alignment information for each individual was extracted using SAMtools (version 1.16) 734 

(Danecek et al. 2021) in the GTEx_v8 cultured fibroblast samples on AnVIL (Schatz et al. 2022). 735 

We extracted genotype information from GTEx_v8 for the corresponding individuals and plotted 736 

the average alignment depth at each base position (hg38) stratified by genotype using 737 

Matplotlib (Hunter 2007). Visualization of LeafCutter (Y. I. Li et al. 2018) splicing clusters was 738 

produced using LeafCutter exon-exon junction quantifications generated by GTEx_v8 (GTEx 739 

Consortium 2020).  740 

Variant fine-mapping 741 

Due to the trans-ancestry nature of our meta-analysis we used individual-level data from 742 

TOPMed individuals spanning all four ancestries represented in our meta-analysis (European, 743 

Asian, African, and Hispanic/Latino) as our linkage disequilibrium reference. Despite the fact 744 

that TOPMed individuals represent the largest group in the meta-analysis, the mismatch 745 

between the linkage disequilibrium reference and meta-analysis summary statistics was 746 

problematic for SuSiE (susieR_0.12.16) (G. Wang et al. 2020; Zou et al. 2022). Therefore, we 747 

used summary statistics from the pooled TOPMed GWAS ((Taub et al. 2022) to estimate 748 

credible sets for all meta-analysis signals (Supplementary Table 7) and generated a genotype 749 

correlation matrix using a random subset, preserving the proportion of ancestries, of 15,000 750 

TOPMed individuals to manage SNP density. We did not use a minor allele frequency threshold 751 

for SNP inclusion. At 2 loci the signal was over 1 Mb wide and calculating the genetic correlation 752 

matrix exceeded the ability of computational resources on the premises. At 16 loci there was not 753 

sufficient signal in the TOPMed GWAS to predict a credible set. CAVIAR (Hormozdiari et al. 754 

2014) requires specification of the assumed number of causal signals whereas SuSiE jointly 755 

models the likelihood of varying numbers of causal signals and converges on the highest 756 

likelihood case. Due to this assumption and the computational burden of running CAVIAR, we 757 

only ran CAVIAR on the POP5 and KBTBD6/KBTBD7 loci. 758 

 759 

For the signal led by rs1411041, which we attributed to KBTBD6 and targeted for CRISPR/Cas9 760 

editing, we further fine-mapped the locus by intersecting the credible set SNPs with ATAC-seq 761 

peaks and with ChIP-seq data from Roadmap Epigenomics. ATAC-seq data were downloaded 762 

from ENCODE (ENCODE Project Consortium 2012; Luo et al. 2020)(identifiers: 763 

ENCFF058UYY, ENCFF333TAT, ENCFF421XIL, ENCFF470YYO, ENCFF558BLC, 764 

ENCFF748UZH, ENCFF751CLW, ENCFF788BUI, and ENCFF867TMP) or from ATACdb (F. 765 

Wang et al. 2021) (Sample_1195, Sample_1194, Sample_1175, Sample_1171, Sample_1020, 766 

Sample_1021, Sample_1209, and Sample_1208). BEDTools (Quinlan and Hall 2010) was used 767 

to identify intersecting regions. Roadmap Epigenomic ChIP-seq data was visualized using the 768 

WashU Epigenome browser (D. Li et al. 2019). 769 
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GO enrichment analysis 770 

All gene ontology (GO) enrichment analysis was conducted using PANTHER (Thomas et al. 771 

2022; Mi et al. 2019) overrepresentation test with the GO Ontology database (released on 2022-772 

07-01) with the all Homo sapiens gene set list as the reference list. PANTHER GO biological 773 

process complete terms were tested for enrichment using a Fisher’s exact test with false 774 

discovery rate correction. Proximal genes were assigned as the gene with minimal distance to 775 

the gene body in the UCSC genome browser (Kent et al. 2002).  776 

Transcription factor binding site analyses 777 

To assess the enrichment of 95% credible set SNPs with transcription factor and chromatin 778 

regulator DNA binding sites, we downloaded the ENCODE regulation track transcription factor 779 

binding site cluster ChIP-seq index file to report data for 330 DNA binding proteins spanning 780 

129 cell types (ENCODE Project Consortium et al. 2020). The intersection of variants with 781 

transcription factor binding sites was performed by BEDTools v2.29.2 (Quinlan and Hall 2010). 782 

We computed the enrichment of 95% credible set SNPs in transcription factor binding sites 783 

using a GREGOR Perl based pipeline (Schmidt et al. 2015). Briefly, this pipeline sums 784 

independent binomial random variables for the number of index SNPs falling in a single feature 785 

and calculates the enrichment p-value using a saddlepoint approximation method. The SNPs 786 

are considered to have a positional overlap if the input SNP, or variants in high linkage 787 

disequilibrium with the input SNP (r2 > 0.7, linkage disequilibrium window size = 1 Mb), fall 788 

within the regulatory features or overlap by ≥ 1 bp. The pairwise linkage disequilibrium (r2) was 789 

computed using the 1000 Genomes European reference panel (1000 Genomes Project 790 

Consortium et al. 2015). Transcription factor binding site fold enrichment is measured as the 791 

fraction of index SNPs (or SNPs in linkage disequilibrium) overlapping the feature (as observed) 792 

over the mean number of overlaps with the control set of SNPs (as expected). Control SNPs are 793 

matched based on the number of variants in linkage disequilibrium, minor allele frequency, and 794 

distance to the nearest gene of the index SNPs. We also performed the enrichment analysis of 795 

95% credible set SNPs with 1,210 DNA-associated factors spanning across 737 cell-tissue 796 

types using the peak bed files downloaded from the ReMap 2022 database (Hammal et al. 797 

2022) using the same pipeline. In addition, we performed both the ENCODE and ReMap 798 

enrichment analyses using only the lead SNP at each signal (Supplementary Figure 3B-C). In 799 

addition to the enrichment analysis, we identified transcription factor binding sites overlapping 800 

the lead SNP for each meta-analysis association signal by searching the rsID on the UCSC 801 

genome browser (Kent et al. 2002; Hinrichs et al. 2006) and identified overlapping binding sites 802 

using the JASPAR 2022 track with default settings (Castro-Mondragon et al. 2022). We 803 

identified transcription factors with known roles in telomere length regulation by searching 804 

PubMed. Publication references supporting known roles for these transcription factors are 805 

indicated in Supplementary Table 9. 806 
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Telomere length GWAS with an age x genotype interaction term 807 

We repeated the pooled analysis from Taub et al. 2022 using all 109,122 TOPMed individuals 808 

with telomere length estimates. We ran the GWAS including an interaction term for genotype 809 

and age in addition to cohort, sequencing center, sex, age at sample collection, and 11 810 

genotype PCs as covariates on Analysis Commons (Brody et al. 2017).  811 

Age-stratified GWAS 812 

We divided the 109,122 TOPMed individuals with telomere length estimates into three age bins: 813 

ages 0 - 43 years old, ages 43.1 - 61 years old, and 61.1 - 98 years old. We ran the GWAS 814 

including cohort, sequencing center, sex, age at sample collection, and 11 genotype PCs as 815 

covariates on Analysis Commons (Brody et al. 2017). TOPMed cohorts included in this analysis 816 

are indicated in Supplementary Table 1. There were 36,980 individuals in the [0,43] group, 817 

37,470 individuals in the (43,61] group, and 34,671 individuals in the (61,98] group. Any peak 818 

that cleared genome-wide significance (p<5x10-8) in at least one age group was considered. We 819 

then required that the lead SNP in the signal was evaluated in all three age groups. To ensure a 820 

reasonable comparison between groups, we required that the minor allele count for the SNP 821 

was at least half of the maximum group minor allele count in each group. Then we identified loci 822 

where the effect size estimate confidence interval was non-overlapping in at least one age 823 

group. Finally, we examined loci that had a genotype x age interaction p-value < 5x10-5 and had 824 

a meta-analysis association p-value < 5x10-8.  825 

Enrichment of meta-analysis signals in chromatin states 826 

We estimated the enrichment of lead meta-analysis signal SNPs across each state of the 25-827 

state chromatin state model from Roadmap Epigenomics (Roadmap Epigenomics Consortium 828 

et al. 2015) across all 127 Roadmap Epigenomics samples (Supplementary Table 13). Similarly, 829 

Roadmap Epigenomics consolidated narrowPeak files for H3K4me1 and H3K27ac from 98 and 830 

127 samples, respectively (Supplementary Table 13), were used to compute the enrichment of 831 

lead SNPs in ChIP-seq peak regions for these histone modifications. Control SNPs were 832 

randomly selected from the genome and matched for the number of linkage disequilibrium proxy 833 

SNPs, the minor allele frequency, and the distance to the nearest gene. The same GREGOR 834 

Perl script pipeline (Schmidt et al. 2015) used to evaluate transcription factor binding site 835 

enrichment (above) was used for these analyses. 836 

Partitioned heritability across cell types (S-LDSC) 837 

We limited our analysis to European individuals because the accuracy of this method depends 838 

upon an accurate match with the linkage disequilibrium reference panel. Therefore, we meta-839 

analyzed the European individuals from two studies included in our meta-analysis (Li et al. 840 

2020; Taub et al. 2022) using GWAMA as described above and ran stratified linkage 841 

disequilibrium score regression (S-LDSC, 1.0.1) using the cell-type specific analyses pipeline. 842 

We directly used the 1000 Genomes European baseline files, multi-tissue gene expression 843 
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counts, and multi-tissue chromatin marker data generated as part of the S-LDSC pipeline 844 

(Finucane et al. 2015, 2018).  845 

Molecular Cloning 846 

Gibson assembly primers were designed using Snapgene software (GSL Biotech) and 847 

sequencing primers were identified using the GenScript sequencing primer tool. All primers 848 

were synthesized by IDT. Primer sequence and a brief description of their use are provided in 849 

Supplementary Table 14. Polymerase chain reaction products were amplified using Phusion HS 850 

II DNA polymerase (F549; Thermo Fisher). Gibson Assembly was conducted using Gibson 851 

Assembly Master Mix (E2611; NEB) according to the recommended protocol. Plasmids were 852 

transformed into NEB5α cells (C2987; NEB), prepared using the QIAprep Miniprep Kit (27104; 853 

Qiagen) or the Qiagen Plasmid Midiprep Kit (12143; Qiagen), and sequence verified using the 854 

Sanger method at the Johns Hopkins School of Medicine Synthesis & Sequencing Facility. 855 

Overexpression constructs 856 

Putative causal genes of interest for this experiment were required to fit three conditions: 857 

colocalization between the candidate gene GTEx eQTL and a meta-analysis signal, the lead 858 

variant at the meta-analysis signal was required to be associated with increased gene 859 

expression in the GTEx tissue where colocalization was strongest for that gene, and the gene 860 

was required to have one transcriptional isoform reported in NCBI or a coding sequence less 861 

than 15 kB, allowing it to be expressed from a plasmid. We note that POP5 and CBX1 had 862 

multiple transcriptional isoforms, but their transcripts result in a single, shared coding sequence. 863 

All cDNA sequences were ordered through GenScript (OHu26641, OHu13170, OHu31184, 864 

OHu26125, OHu108607) with the coding sequence subcloned into a pcDNA3.1/C-DYK vector. 865 

We added the FLAG tag to the N- or C-terminus in accordance with precedent in the literature: 866 

CBX1 C-terminus (Rosnoblet et al. 2011), PSMB4 C-terminus (Brehm et al. 2015), POP5 N-867 

terminus (van Eenennaam et al. 2001), OBFC1 N-terminus (Bhattacharjee et al. 2016), and 868 

KBTBD6 N-terminus (Mena et al. 2018). We used Gibson Assembly to add a 3x FLAG tag to 869 

the appropriate end and insert the tagged coding sequence into a pcDNA5/FRT vector (Thermo 870 

Fisher). We note that we overexpressed the propeptide of PSMB4 (removing amino acids 2-45).  871 

Cell Culture 872 

HeLa-FLP cells were generated from HeLa cells using the FLP-in system and were cultured in 873 

1x Dulbecco’s modified Eagle’s medium (11965118; Thermo Fisher). K562 cells were 874 

purchased from ATCC (CCL-243) and were cultured in 1x RPMI medium (11875119; Thermo). 875 

Cells were cultured in the indicated media supplemented with 10% heat-inactivated fetal bovine 876 

serum (16140071; Thermo Fisher) and 1% Penicillin-Streptomycin-Glutamine (10378016; 877 

Thermo Fisher). 878 
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Overexpression experiments and passaging 879 

For overexpression experiments 100 ng of the indicated overexpression construct and 900 ng of 880 

the pOG44 flippase plasmid were co-transfected into HeLa-FLP cells by the use of the FLP-in 881 

system using Lipofectamine 3000 (L3000008; Invitrogen) with the recommended protocol and 882 

hygromycin resistant (550 μg/mL; 30-240-CR; Corning) cells were examined. The GFP 883 

overexpression plasmid (pAMP0605) was previously generated (Pike et al. 2019). For each 884 

construct we used one pool of HeLa-FLP cells to conduct multiple independent transfections, 885 

which we refer to as independent clones. Twice a week cells were treated with 0.05% trypsin-886 

EDTA (25300054; Invitrogen), washed in 1x PBS (10010049; LifeTech), and counted using a 887 

Luna II Automated Cell Counter (Logos Biosystems). The number of population doublings for 888 

each passage was estimated as the number of cells counted divided by the number of cells 889 

seeded for that passage.  890 

Telomere Southern blot analysis 891 

For each time point, 2-4x106 cells were collected, washed in 1x PBS (10010049; LifeTech), and 892 

pellets stored at -80°C. Genomic DNA was isolated using the Promega Wizard gDNA kit 893 

(A1120; Promega) as directed. Genomic DNA was quantified using the broad range double-894 

stranded DNA kit (Q32853; Thermo Fisher) for QuBit 3.0 (Thermo Fisher). Approximately 1 μg 895 

of genomic DNA was restricted with HinfI (R0155M; NEB) and RsaI (R0167L; NEB) and 896 

resolved by 0.8% Tris-acetate-EDTA (TAE) agarose gel electrophoresis. 10 ng of a 1kB Plus 897 

DNA ladder (N3200; NEB) was included on either side of the Southern as a size reference. 898 

Following denaturation (0.5 M NaOH, 1.5M NaCl) and neutralization (1.5 M NaCl, 0.5 M Tris-899 

HCL, pH 7.4), the DNA was transferred in 10x SSC (3M NaCl, 0.35 M NaCitrate) to a Nylon 900 

membrane (RPN303B; GE Healthcare) by vacuum blotting (Boekel Scientific). The membrane 901 

was UV crosslinked (Stratagene), prehybridized in Church buffer (0.5M Na2HP04, pH7.2, 7% 902 

SDS, 1mM EDTA, 1% BSA), and hybridized overnight at 65°C using a radiolabelled telomere 903 

fragment and ladder, as previously described (Morrish and Greider 2009; S. Wang et al. 2017). 904 

The membrane was washed twice with a high salt buffer (2x SSC, 0.1% SDS) and twice with a 905 

low salt buffer (0.5X SSC, 0.1% SDS) at 65°C, exposed to a Storage Phosphor Screen (GE 906 

Healthcare), and scanned on a Storm 825 imager (GE Healthcare). The images were copied 907 

from ImageQuant TL (GE Life Sciences) to Adobe PhotoShop CS6, signal was adjusted across 908 

the image using the curves filter, and the image was saved as a .tif file. Minimum, maximum and 909 

median telomere length was estimated in ImageQuant TL using the original, unedited scan from 910 

the Phosphor Screen and accounted for differences in DNA migration across the gel by 911 

including the 1 kB Plus ladder on either side of the Southern blot. 912 

Western blot analysis 913 

2x106 cells were collected, washed in 1x PBS (10010049; LifeTech), resuspended in 1x sample 914 

buffer (1x NuPAGE loading buffer (NP0008; Thermo Fisher), 50 μM DTT) and stored at -80°C. 915 

Samples were thawed on wet ice, lysed by sonication, and boiled at 65°C for 10 min. Proteins 916 

were resolved using recommended parameters on 4-12% Bis-Tris NuPAGE pre-cast gels 917 
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(NP0321BOX; Invitrogen) and Precision Plus Dual Color protein ladder (161-0374; BioRad) was 918 

run for comparison. Proteins were transferred to a PVDF membrane (170-4273; BioRad) using 919 

a Trans-Blot Turbo Transfer System (BioRad). The membrane was blocked in 5% milk-TBST 920 

(w/v powdered milk (170-6404; BioRad) resuspended in 1x Tris Buffered Saline, pH 7.4 (351-921 

086-101CS; Quality Biological), 0.01% Tween-10 (P1379-100ML; Sigma) for one hour at room 922 

temperature. Primary antibodies were diluted in blocking buffer and incubated at room 923 

temperature for one hour with mild agitation (M2 FLAG 1:2,000 (F1804-5MG; Sigma), tubulin 924 

1:5,000 (ab6046; Abcam)). Blots were washed in 1x TBST with mild agitation before incubation 925 

with horseradish peroxidase-conjugated secondary antibodies diluted in blocking buffer (α-926 

mouse 1:10,000 (170-6516; BioRad), α-rabbit 1:10,000 (170-6515; BioRad)). Blots were 927 

washed in 1x TBST with mild agitation, incubated with Forte horseradish peroxidase substrate 928 

(WBLUF0100; Millipore) for five minutes with agitation, and imaged on an ImageQuant LAS 929 

4000 mini biomolecular imager (GE Healthcare). Image files were copied from ImageQuant TL 930 

software to Adobe PhosShop CS6, the curves filter was applied across the image, and then 931 

saved as a .tif file. To reprobe a membrane with the loading control, the membrane was 932 

incubated with Restore Western Blot Stripping Buffer (21059; Thermo Fisher) for 30 minutes, 933 

washed in 1x TBST, and processed as described above.  934 

CRISPR editing constructs 935 

We sequence verified the CRISPR target regions in our K562 cells and selected gRNA 936 

sequences with a high likelihood of on-target editing (and a low likelihood of off-target editing) 937 

using CRISPOR.org (Concordet and Haeussler 2018). We subcloned the guides into px458 as 938 

previously described (Moyer and Holland 2015). To edit both the POP5 and KBTBD6/KBTBD7 939 

regions we chose one guide to each side of the target region (Supplementary Figure 8C-D). For 940 

guide sequence and genome coordinates (hg38), see Supplementary Table 14. 941 

CRISPR editing experiments 942 

Low-passage K562 cells were cultured to a density of 3x105 cells/mL in media without 943 

antibiotics, but otherwise as described above, two days prior to nucleofection. Cells were 944 

electroporated using the SF Cell Line 4D-Nucleofector X Kit (V4XC-2012; Lonza) with 8 μg of 945 

each guide plasmid and the K562 cell line recommended protocol (FF-120). Cells were cultured 946 

in antibiotic-free media for 24 hours to allow for GFP expression before being single-cell sorted 947 

in a 96 well plate at the Johns Hopkins Ross Flow Cytometry Core. Each sample had 1-10% 948 

GFP positive cells. Plates were expanded clonally using media described above. After 949 

approximately two weeks cell concentration was estimated using the Luna II Automated Cell 950 

Counter (Logos Biosystems), 4x104 cells were collected, and genomic DNA was extracted using 951 

QuickExtract DNA Extraction Solution (QE09050; Epicentre) following the protocol 952 

recommended in the Alt-R genomic editing detection kit (1075931; IDT). Target editing regions 953 

were amplified (primers described in Supplementary Table 14, diagrams in Supplementary 954 

Figure 8) and confirmed by Sanger sequencing. Sequencing reads were aligned in Snapgene 955 

(GSL Biotech) and we considered a clone to at least be heterozygous for editing if the alignment 956 

began on one side of the deletion, failed across the intended deletion, but resumed across the 957 
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deletion. Because the POP5 locus deletion was so extensive, we did two separate PCRs on 958 

each sample: one that would amplify if the deletion was present (RK236+RK231) and one that 959 

would amplify if a wildtype allele was present (RK236+RK234) (Supplementary Figure 8C). All 960 

POP5 edited clones were confirmed to be heterozygous.  961 

RNA extraction and qPCR 962 

2x106 cells were collected, washed in 1x PBS (10010049; LifeTech), and RNA was purified 963 

using a QIAshreddar column (79656; Qiagen) and RNeasy kit (74104; Qiagen) following the 964 

recommended protocols, including DNase digestion of RNA prior to RNA cleanup (79254; 965 

Qiagen). RNA concentration was estimated using a high sensitivity RNA kit (Q32852; Thermo 966 

Fisher) for QuBit 3.0 (Thermo Fisher). cDNA was generated with random hexamers using a 967 

SuperScript IV First Strand Synthesis kit (18091050; Thermo Fisher). qPCR primers were 968 

designed using the GenScript RT-PCR primer design tool and a standard reference plasmid 969 

was generated by amplifying genomic DNA from K562 cells with each primer pair followed by 970 

TA cloning the amplicon into a pCR2.1 vector (Supplementary Table 14) using a TA cloning kit 971 

(451641; Thermo Fisher). TA cloning was conducted using the recommended protocol and 972 

plasmids were transformed into TOP10 cells (C404003; Invitrogen). Each qPCR reaction 973 

included approximately 10 ng of cDNA, 1x iQ SYBER Green Super Mix (1708882; BioRad), and 974 

0.25 μM of each primer; qPCR was conducted on a CFX96 real-time qPCR system (BioRad). 975 

KBTBD6 and KBTBD7 expression was measured in the POP5-edited clones as CRISPR/Cas9-976 

edited controls and POP5 expression was measured in the KBTBD6/KBTBD7-edited clones as 977 

CRISPR/Cas9-edited controls. Samples were analyzed in triplicate and instances where the Cq 978 

range was greater than 1 were excluded from further analysis. Standard plasmids were 979 

analyzed in duplicate on each plate at a range of 0.001 ng - 100 ng as a quality control measure 980 

and plates where the standards Cq had an R2 < 0.98 were excluded from further analysis. 981 

Plates that passed this threshold were used to estimate the efficiency of the qPCR primers 982 

(ACTB = 1.90, KBTBD6 = 1.98, KBTBD7 = 1.92, and POP5 = 1.80). Because the range of 983 

efficiency between measured genes was greater than 10%, we analyzed our qPCR results with 984 

the Pfaffl method (Pfaffl 2001). A one-sided t-test was used to compare experimental to control 985 

samples. 986 

Data and code availability 987 

All cell lines and plasmids are available upon request. Summary statistics, plasmid maps, and 988 

code are available at Zenodo (doi: 10.5281/zenodo.8136834) and are freely available. 989 

Additional code is available here: https://github.com/BennyStrobes/leafcutter_sqtl_viz, 990 

https://github.com/bulik/ldsc, https://github.com/stephenslab/susieR. Any additional information 991 

required to reanalyze the data reported here is available upon request. TOPMed genomic data 992 

and telomere length estimates are available by study in the database of Genotypes and 993 

Phenotypes (dbGaP) (https://www.ncbi.nlm.nih.gov/gap/?term=TOPMed). GTEx_v8 eQTL, 994 

sQTL, and LeafCutter exon-exon junction quantifications are available for download through the 995 

GTEx portal (https://gtexportal.org/home/). eQTLGen cis-eQTL data are available for download 996 
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(https://www.eqtlgen.org/). DICE cis-eQTL data are available for download (https://dice-997 

database.org/landing).  998 

 999 

  1000 
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Supplemental Note  1001 

This supplemental note conveys the rationale for the assigned putative causal gene for each 1002 

signal. For 17 signals no colocalization results were available and there were no known genes 1003 

involved in telomere length in the region (Supplemental Note Table 1, see rows with “Proximal 1004 

gene (no other supporting information)”). In these cases, the proximal gene was assigned. For 1005 

33 signals there was colocalization data in at least one QTL dataset (Figure 2B). However, 1006 

colocalization within and between datasets supported different genes for 14 meta-analysis 1007 

signals (Discussed below). For each signal we show the Manhattan plot for the meta-analysis 1008 

signal and the best colocalization result for each gene in each dataset. For datasets with 1009 

multiple cellular contexts and in cases where the meta-analysis signal colocalized with a QTL 1010 

for the same gene across cellular contexts, we show the QTL that had the highest PPH4. We 1011 

considered PPH4 > 0.7 for GTEx and eQTLGen, PPH4 > 0.5 for DICE to be colocalized, all 1012 

colocalization results are reported in Supplementary Tables 3-6. The meta-analysis Manhattan 1013 

plots were centered on the lead SNP and include the region ± 1 Mb the lead SNP (hg38) and 1014 

the x-axis is matched for each plot. In all plots the meta-analysis lead SNP was shown as a 1015 

black diamond and r2 was calculated with respect to the lead SNP using all TOPMed individuals 1016 

included in the meta-analysis. 1017 

 1018 

Supplemental Note Table 1: 1019 

Lead SNP Novel Signal Attributed gene Supporting evidence for attributed gene 

rs542948485  DCLRE1B Known biology, colocalization 

rs12044242  PSMB4 Colocalization, proximal gene 

rs146042055  PARP1 Known biology 

rs62139251  TSPYL6 Colocalization 

rs11894326  CPS1 Colocalization 

rs35510081  TERC Known biology 

rs3775946  SLC2A9 Colocalization, proximal gene 

rs4691895  NAF1 Known biology, colocalization 

rs33961405  TERT Known biology 

rs56099285  UBE2D2 Proximal gene (no other supporting information) 

rs3131064  * POU5F1 Colocalization, proximal gene 

rs1150748  BAG6 Colocalization 

rs6968500  POT1 Known biology 

rs10954213  IRF5 Colocalization, proximal gene 

rs3008267 * ZNF596 Proximal gene (no other supporting information) 

rs10958468  TMEM68 Proximal gene (no other supporting information) 

rs73687065  TERF1 Known biology, proximal gene 
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rs10111287  VIRMA Colocalization, proximal 

rs62560860  IRL11A Colocalization 

rs958919990 * GRHPR Proximal gene (no other supporting information) 

rs3736462  TASOR2 Proximal gene (no other supporting information) 

rs3758526  NOC3L Proximal gene (no other supporting information) 

rs7923385 * RRP12 Proximal gene (no other supporting information) 

rs11190126  NKX2-3 Proxmal gene (no other supporting information) 

rs112519582 * BTRC Proximal gene (no other supporting information) 

rs2475215  OBFC1 Known biology 

rs12241155 * SORCS1 Proximal gene (no other supporting information) 

rs582297  ATM Known biology, Colocalization, Proximal gene 

rs74892322  POP5 Known biology 

rs28755851  ZCCHC8 Known biology 

rs1411041  KBTBD6/KBTBD7 Colocalization, Proximal gene 

rs532687339  TINF2 Known biology 

rs4902358  MAX Colocalization, proximal 

rs2572  DCAF4 Proximal gene (no other supporting information) 

rs11623533  PPP4R3A Proximal gene (no other supporting information) 

rs2887399  TCL1A Colocalization, proximal gene 

rs113119217  ATP8B4 Colocalization, proximal gene 

rs12934863  DUS2 Colocalization, proximal gene 

rs9939870  TERF2 Known biology, colocalization, proximal gene 

rs12149396  CLEC18C Colocalization 

rs7193541  RFWD3 Colocalization, proximal gene 

rs6564996  MPHOSPH6 Colocalization, proximal gene 

rs11117354  BANP Proximal gene (no other supporting information) 

rs59922886  CTC1 Known biology, colocalization, proximal gene 

rs208011 * SKAP1 Proximal gene (no other supporting information) 

rs144204502  TK1 Colocalization, proximal gene 

rs2124616  TYMSOS Colocalization 

rs28782011  SETBP1 Proximal gene (no other supporting information) 

rs139955496  POLI Proximal gene (no other supporting information) 

rs8105767  ZNF257 Colocalization, proximal gene 
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rs79476302  SAMHD1 Proximal gene (no other supporting information) 

rs114703330  RTEL1 Known biology, colocalization, proximal gene 

rs28663120  GAB4 Colocalization, proximal gene 

rs131784  TYMP Colocalization 

rs12394264  MIR223HG Colocalization, proximal gene 

rs5945232  DKC1 Known biology 

 1020 

rs542948485 (chr1:113917053:G:T) 1021 

 1022 
This meta-analysis signal colocalized with a DCLRE1B eQTL in eQTLGen. DCLRE1B is also 1023 

the proximal gene. In addition, DCLRE1B is known to contribute to telomere length regulation. 1024 

Therefore, we concluded that DCLRE1B was the best supported putative casual gene. 1025 

 1026 

rs12044242 (chr1:151398465:C:T) 1027 

 1028 
This meta-analysis signal colocalized with QTLs for PSMB4, POGZ, and SELENBP1. We 1029 

observed that the PSMB4 eQTL colocalization was replicated in eQTLGen. PSMB4 is also the 1030 

proximal gene for this signal, therefore we concluded that PSMB4 was the best supported 1031 

putative causal gene. 1032 

 1033 

rs62139251 (chr2:54251468:G:T) 1034 

 1035 
This meta-analysis signal only colocalized with a TSPYL6 eQTL. The proximal gene was 1036 

ACYP2. We concluded that TSPYL6 was the best supported putative causal gene. 1037 

 1038 

rs11894326 (chr2:209808365:C:T) 1039 
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 1040 
This meta-analysis signal only colocalized with a CPS1 QTL. The proximal gene was UNC80. 1041 

We concluded that CPS1 was the best supported putative causal gene. 1042 

 1043 

rs3775946 (chr4:9993632:A:G) 1044 

 1045 
The meta-analysis signal colocalized with a SLC2A9 sQTL. The RNA pileup plot shows the 1046 

aligned reads in the indicated GTEx tissue for the indicated exons that were included in the 1047 

LeafCutter splicing cluster. Unlike an eQTL, a subset of exons show differences in the amount 1048 

of reads aligned when stratified by the indicated genotype, supporting that this is a sQTL. 1049 

SLC2A9 was also the proximal gene, therefore we concluded that SLC2A9 was the best 1050 

supported putative causal gene. 1051 

 1052 

rs4691895 (chr4:163127047:G:C) 1053 

 1054 
The only characterized gene QTL this meta-analysis signal colocalized with was a NAF1 sQTL. 1055 

NAF1 is also a known telomere regulation gene and the gene proximal to the signal. The RNA 1056 

pileup plot shows the aligned reads in the indicated GTEx tissue for the indicated exons that 1057 

were included in the LeafCutter splicing cluster. Unlike an eQTL, a subset of exons show 1058 

differences in the amount of reads aligned when stratified by the indicated genotype, supporting 1059 
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that this is a sQTL.Therefore, we concluded that NAF1 was the best supported putative causal 1060 

gene. 1061 

 1062 

rs3131064 (chr6:30796116:T:C) 1063 

 1064 
This meta-analysis signal is near the HLA locus and there may be several independent signals 1065 

within this region. We defined signals based on position alone, therefore we are treating this 1066 

region as a single signal. rs3131064 was considered the lead SNP because lead SNPs were 1067 

chosen by ordering the genome-wide significant SNPs by p-value, selecting the top SNP within 1068 

a 1Mb region, and then removing any other SNPs within 1Mb of that top SNP. The peaks 1069 

adjacent to rs3131064 within panel A are within 1Mb of rs1150748 and were therefore excluded 1070 

from being considered the lead SNP for this signal. One of these adjacent signals, led by 1071 

rs1265156, colocalized with with QTLs for POU5F1 and CCHCR1. The proximal gene was 1072 

HCG20. We concluded that POU5F1 was the best supported putative causal gene for this 1073 

region. 1074 

 1075 

rs1150748 (chr6:31804139:G:C) 1076 

 1077 
This meta-analysis signal is near the HLA locus and there may be several independent signals 1078 

within this region. We defined signals based on position alone, therefore we are treating this 1079 

region as a single signal. rs1150748 was considered the lead SNP because lead SNPs were 1080 

chosen by ordering the genome-wide significant SNPs by p-value, selecting the top SNP within 1081 
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a 1Mb region, and then removing any other SNPs within 1Mb of that top SNP. This signal 1082 

colocalized well with several gene QTLs but the association signal structure was best captured 1083 

by the BAG6 QTL. LSM2 was the proximal gene. We concluded that BAG6 was the best 1084 

supported putative causal gene. 1085 

 1086 

rs6968500 (chr7:124791668:G:C) 1087 

 1088 
This meta-analysis signal colocalized with a QTL for POT1-AS1. The proximal gene was 1089 

C7orf77. POT1, 30 kb away from the lead SNP, has known roles in telomere length regulation. 1090 

Therefore, we concluded that POT1 was the most likely putative causal gene. 1091 

 1092 

rs10954213 (chr7:128949373:A:G) 1093 

 1094 
The only characterized gene QTL this meta-analysis signal colocalized with was IRF5, which is 1095 

also the proximal gene. Therefore, we concluded that IRF5 was the best supported putative 1096 

causal gene. 1097 

 1098 

rs10111287 (chr8:94566198:C:T)1099 

 1100 
This meta-analysis signal best colocalized with VIRMA QTLs. VIRMA is also the proximal gene. 1101 

Therefore, we concluded that VIRMA is the best supported putative causal gene. 1102 

 1103 

 1104 

 1105 

 1106 

rs62560860 (chr9:34077464:G:A) 1107 
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 1108 

This meta-analysis signal only colocalized with an IL11RA sQTL. The proximal gene was 1109 

DCAF12. Note that plot is 1 Mb wide instead of 2 Mb wide to improve visualization of the sQTL 1110 

because there is a nearby SNP, rs11575580, that has a strong association (p=3.04x10 -119) but r2 1111 

with meta-analysis lead SNP = 0.0169 and did not contribute to the colocalization signal. To 1112 

improve clarity, we reduced the plot region to 1 Mb centered on the meta-analysis lead SNP. 1113 

The RNA pileup plot shows the aligned reads in the indicated GTEx tissue for the indicated 1114 

exons that were included in the LeafCutter splicing cluster. Unlike an eQTL, a subset of exons 1115 

show differences in the amount of reads aligned when stratified by the indicated genotype, 1116 

supporting that this is a sQTL.Given the colocalization analysis results we concluded that 1117 

ILR11A was the most supported putative causal gene. 1118 

 1119 

rs2475215 (chr10:103900944:T:C) 1120 

 1121 
This meta-analysis signal best colocalized with an SLK QTL. However, OBFC1 is a known 1122 

telomere length regulation gene located 17 kB away. Given the known biology, we concluded 1123 

that OBFC1 was the most likely putative causal signal.  1124 

 1125 

rs582297 (chr11:108294680:C:G) 1126 

 1127 
This meta-analysis signal colocalized with QTLs for NPAT and ATM. ATM was the proximal 1128 

gene and has known roles in telomere length regulation. Therefore, we concluded that ATM was 1129 

the best supported putative causal gene. 1130 

 1131 

rs74892322 (chr12:120533371:A:T) 1132 
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 1133 
This meta-analysis signal colocalized with QTLs for GATC and POP5. The proximal gene was 1134 

RNF10. This signal colocalized with a POP5 eQTL in GTEx nucleus accumbens basal ganglia, 1135 

but was below the threshold for being included in these plots (Supplementary Table 3). Given 1136 

our results from Figure 6, we concluded that the best supported putative causal gene was 1137 

POP5.  1138 

 1139 

rs28755851 (chr12:123001735:A:T) 1140 

 1141 
This meta-analysis signal colocalized with an ABCB9 eQTL in GTEx and this was replicated in 1142 

DICE. The proximal gene was PITPNM2. However, ZCCHC8 has known roles in telomere 1143 

length regulation and is 530 kB away. We concluded that ZCCHC8 was the most likely putative 1144 

causal gene despite lack of colocalization.  1145 

 1146 

rs1411041 (chr13:41150640:A:T) 1147 

 1148 
This meta-analysis signal colocalized well with KBTBD6 and KBTBD7 QTLs. KBTBD6 is the 1149 

proximal gene (23 kB from the lead SNP whereas KBTBD7 is 39 kB). Particularly considering 1150 

our validation experiments, we are unable to choose a single putative causal gene for this 1151 

signal. We label the Manhattan plot in Figure 1 KBTBD6 for clarity.  1152 

 1153 

 1154 

 1155 

 1156 

 1157 

rs4902358 (chr14:65075759:A:G) 1158 
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 1159 
This meta-analysis signal best colocalized with MAX QTLs. It is also the proximal gene. The 1160 

RNA pileup plot shows the aligned reads in the indicated GTEx tissue for the indicated exons 1161 

that were included in the LeafCutter splicing cluster. Unlike an eQTL, a subset of exons show 1162 

differences in the amount of reads aligned when stratified by the indicated genotype, supporting 1163 

that this is a sQTL.Therefore, we concluded that MAX was the best supported putative causal 1164 

gene.  1165 

 1166 

rs2887399 (chr14:95714358:G:T) 1167 

 1168 
This meta-analysis signal best colocalized with TCL1A QTLs. TCL1A was also the proximal 1169 

gene. Therefore, we concluded that TCL1A was the best supported putative casual gene.  1170 

 1171 

 1172 

 1173 

 1174 

rs113119217 (chr15:50073451:T:A) 1175 
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 1176 
This meta-analysis signal best colocalized with QTLs for ATP8B4 in multiple QTL datasets. 1177 

ATP8B4 is also the proximal gene. Therefore, we concluded that ATP8B4 was the best 1178 

supported putative causal gene. 1179 

 1180 

rs12934863 (chr16:68043168:A:G) 1181 

 1182 
This meta-analysis signal colocalized strongly with QTLs for DUS2, NFATC3, and DPEP2. The 1183 

proximal gene was DUS2. The RNA pileup plot shows the aligned reads in the indicated GTEx 1184 

tissue for the indicated exons that were included in the LeafCutter splicing cluster. Unlike an 1185 

eQTL, a subset of exons show differences in the amount of reads aligned when stratified by the 1186 

indicated genotype, supporting that this is a sQTL. We concluded that the best supported 1187 

putative causal gene was DUS2.  1188 

 1189 

 1190 

 1191 

 1192 

 1193 

 1194 

rs9939870 (chr16:69362682:C:T) 1195 
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 1196 
This meta-analysis signal colocalized strongly with QTLs for TERF2, NIP7, COG8, and PDF. 1197 

The proximal gene was TERF2 and TERF2 has known roles in telomere length regulation. 1198 

Therefore, we concluded that TERF2 is the best supported putative causal gene.  1199 

 1200 

rs12149396 (chr16:70392835:A:C) 1201 

 1202 
This meta-analysis signal colocalized with AARS1 and CLEC18C QTLs. The proximal gene was 1203 

ST3GAL2. Based on the strength of colocalization, we concluded that CLEC18C was the best 1204 

supported putative causal gene. 1205 

 1206 

rs7193541 (chr16:74630845:T:C) 1207 

 1208 
This meta-analysis signal best colocalized with RFWD3 QTLs. RFWD3 was also the proximal 1209 

gene. We note that LeafCutter visualization of the splicing pattern supported an effect of the 1210 

lead SNP at the association signal over different RFWD3 splicing patterns as discussed in 1211 

greater detail in the main text. Based on these results, we concluded that RFWD3 was the best 1212 

supported putative causal gene.  1213 
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 1214 

rs6564996 (chr16:82173937:T:C) 1215 

 1216 
This meta-analysis signal best colocalized with MPHOSPH6 QTLs. MPHOSPH6 was also the 1217 

proximal gene. The RNA pileup plot shows the aligned reads in the indicated GTEx tissue for 1218 

the indicated exons that were included in the LeafCutter splicing cluster. Unlike an eQTL, a 1219 

subset of exons show differences in the amount of reads aligned when stratified by the indicated 1220 

genotype, supporting that this is a sQTL. Therefore, we concluded that MPHOSPH6 was the 1221 

best supported putative causal gene.  1222 

 1223 

 1224 

 1225 

 1226 

 1227 

 1228 

 1229 

 1230 

 1231 

 1232 

 1233 

 1234 

 1235 

 1236 

 1237 

 1238 

rs59922886 (chr17:8236454:A:T) 1239 
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1240 
This meta-analysis signal strongly colocalized with QTLs for CTC1 and AURKB. CTC1 is the 1241 

proximal gene and has known roles in telomere length regulation. The RNA pileup plot shows 1242 

the aligned reads in the indicated GTEx tissue for the indicated exons that were included in the 1243 

LeafCutter splicing cluster. Unlike an eQTL, a subset of exons show differences in the amount 1244 

of reads aligned when stratified by the indicated genotype, supporting that this is a sQTL. 1245 

Therefore, we concluded that CTC1 was the best supported putative causal gene.  1246 

 1247 

rs144204502 (chr17:78187152:C:T) 1248 

 1249 
This meta-analysis signal best colocalized with TK1 QTLs. TK1 was also the proximal gene. 1250 

Therefore, we concluded that TK1 is the best supported putative casual gene.  1251 

 1252 

rs2124616 (chr18:661917:G:A) 1253 

 1254 
This meta-analysis signal best colocalized with a TYMSOS QTL. TYMP was the proximal gene. 1255 

We concluded that TYMSOS was the best supported putative causal gene. 1256 

 1257 

 1258 

rs8105767 (chr19:22032639:A:G) 1259 
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 1260 
This meta-analysis signal colocalized with ZNF257 and ZNF208 QTLs. The colocalization with 1261 

ZNF257 QTLs was replicated in multiple datasets. ZNF257 was also the proximal gene. 1262 

Therefore, we concluded that ZNF257 was the best supported putative causal gene. 1263 

 1264 

rs114703330 (chr20:63678039:T:C) 1265 

 1266 
This meta-analysis signal best colocalized with QTLs for RTEL1, SLC2A4RG, and STMN3. The 1267 

proximal gene was RTEL1 and RTEL1 has known roles in telomere length regulation. 1268 

Therefore, we concluded that RTEL1 was the best supported putative causal gene.  1269 

 1270 

rs28663120 (chr22:16973188:T:C) 1271 

 1272 
This meta-analysis signal colocalized with QTLs for GAB4 and IGKV2OR22-4. GAB4 was the 1273 

proximal gene. Therefore, we concluded that GAB4 is the best supported putative causal gene.  1274 

 1275 

 1276 

 1277 

 1278 

 1279 

 1280 

rs131784 (chr22:50543007:G:A) 1281 
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 1282 
This meta-analysis signal colocalized best with QTLs for TYMP, SCO2, and ODF3B. The 1283 

proximal gene was KLHDC7B. The RNA pileup plot shows the aligned reads in the indicated 1284 

GTEx tissue for the indicated exons that were included in the LeafCutter splicing cluster. Unlike 1285 

an eQTL, a subset of exons show differences in the amount of reads aligned when stratified by 1286 

the indicated genotype, supporting that this is a sQTL. As colocalization was strongest with 1287 

TYMP QTLs, we concluded that TYMP was the best supported putative causal gene.  1288 

 1289 

rs12394264 (chrX:66015290:G:A) 1290 

 1291 
This meta-analysis signal best colocalized with QTLs for MIR223HG. MIR223HG was also the 1292 

proximal gene. Therefore, we concluded that the best supported putative casual gene was 1293 

MIR223HG.  1294 

  1295 
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Supplemental Acknowledgements 1296 

Generation of TOPMed whole genome sequencing data by study 1297 

Whole genome sequencing (WGS) for the Trans-Omics in Precision Medicine (TOPMed) 1298 

program was supported by the National Heart, Lung and Blood Institute (NHLBI). WGS for 1299 

NHLBI TOPMed: AFLMU (phs001543) was performed at Broad Genomics (3UM1HG008895-1300 

01S2; HHSN268201500014C); WGS for NHLBI TOPMed: Amish (phs000956) was performed 1301 

at Broad Genomics (3R01HL121007-01S1); WGS for NHLBI TOPMed: ARIC (phs001211) was 1302 

performed at Baylor (3U54HG003273-12S2 / HHSN268201500015C,3R01HL092577-06S1), 1303 

Broad Genomics (3U54HG003273-12S2 / HHSN268201500015C,3R01HL092577-06S1); WGS 1304 

for NHLBI TOPMed: BioMe (phs001644) was performed at MGI 1305 

(HHSN268201600037I,HHSN268201600033I,3UM1HG008853-01S2), Baylor 1306 

(HHSN268201600037I,HHSN268201600033I,3UM1HG008853-01S2); WGS for NHLBI 1307 

TOPMed: CAMP (phs001726) was performed at NWGC (HHSN268201600032I); WGS for 1308 

NHLBI TOPMed: CARDIA (phs001612) was performed at Baylor (HHSN268201600033I); WGS 1309 

for NHLBI TOPMed: CARE_BADGER (phs001728) was performed at NWGC 1310 

(HHSN268201600032I); WGS for NHLBI TOPMed: CARE_CLIC (phs001729) was performed at 1311 

NWGC (HHSN268201600032I); WGS for NHLBI TOPMed: CARE_PACT (phs001730) was 1312 

performed at NWGC (HHSN268201600032I); WGS for NHLBI TOPMed: CARE_TREXA 1313 

(phs001732) was performed at NWGC (HHSN268201600032I); WGS for NHLBI TOPMed: CFS 1314 

(phs000954) was performed at NWGC (HHSN268201600032I,3R01HL098433-05S1); WGS for 1315 

NHLBI TOPMed: ChildrensHS_GAP (phs001602) was performed at NWGC 1316 

(HHSN268201600032I); WGS for NHLBI TOPMed: ChildrensHS_IGERA (phs001603) was 1317 

performed at NWGC (HHSN268201600032I); WGS for NHLBI TOPMed: ChildrensHS_MetaAir 1318 

(phs001604) was performed at NWGC (HHSN268201600032I); WGS for NHLBI TOPMed: 1319 

CHIRAH (phs001605) was performed at NWGC (HHSN268201600032I); WGS for NHLBI 1320 

TOPMed: CHS (phs001368) was performed at Baylor (HHSN268201600033I,3U54HG003273-1321 

12S2 / HHSN268201500015C); WGS for NHLBI TOPMed: COPDGene (phs000951) was 1322 

performed at NWGC (3R01HL089856-08S1,HHSN268201500014C), Broad Genomics 1323 

(3R01HL089856-08S1,HHSN268201500014C); WGS for NHLBI TOPMed: CRA (phs000988) 1324 

was performed at NWGC (3R37HL066289-13S1,HHSN268201600032I); WGS for NHLBI 1325 

TOPMed: DHS (phs001412) was performed at Broad Genomics (HHSN268201500014C); WGS 1326 

for NHLBI TOPMed: ECLIPSE (phs001472) was performed at MGI (HHSN268201600037I); 1327 

WGS for NHLBI TOPMed: EOCOPD (phs000946) was performed at NWGC (3R01HL089856-1328 

08S1); WGS for NHLBI TOPMed: FHS (phs000974) was performed at Broad Genomics 1329 

(3U54HG003067- 12S2,3R01HL092577-06S1); WGS for NHLBI TOPMed: GALAI (phs001542) 1330 

was performed at NWGC (HHSN268201600032I); WGS for NHLBI TOPMed: GALAII 1331 

(phs000920) was performed at NYGC (3R01HL117004-02S3,HHSN268201600032I), NWGC 1332 

(3R01HL117004-02S3,HHSN268201600032I), NYGC (UM1 HG008901); WGS for NHLBI 1333 

TOPMed: GeneSTAR (phs001218) was performed at Psomagen (3R01HL112064-1334 

04S1,R01HL112064,HHSN268201500014C), Illumina (3R01HL112064- 1335 

04S1,R01HL112064,HHSN268201500014C), Broad Genomics (3R01HL112064- 1336 
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04S1,R01HL112064,HHSN268201500014C); WGS for NHLBI TOPMed: GENOA (phs001345) 1337 

was performed at NWGC (3R01HL055673-18S1,HHSN268201500014C), Broad Genomics 1338 

(3R01HL055673-18S1,HHSN268201500014C); WGS for NHLBI TOPMed: GenSalt 1339 

(phs001217) was performed at Baylor (HHSN268201500015C); WGS for NHLBI TOPMed: 1340 

GOLDN (phs001359) was performed at NWGC (3R01HL104135-04S1); WGS for NHLBI 1341 

TOPMed: HCHS/SOL (phs001395) was performed at Baylor College of Medicine Human 1342 

Genome Sequencing Center (HHSN268201600033I); WGS for NHLBI TOPMed: HVH 1343 

(phs000993) was performed at Broad Genomics (3R01HL092577-06S1,3U54HG003273-12S2 / 1344 

HHSN268201500015C), Baylor (3R01HL092577-06S1,3U54HG003273-12S2 / 1345 

HHSN268201500015C); WGS for NHLBI TOPMed: HyperGEN (phs001293) was performed at 1346 

NWGC (3R01HL055673-18S1); WGS for NHLBI TOPMed: IPF (phs001607) was performed at 1347 

MGI (HHSN268201600037I); WGS for NHLBI TOPMed: JHS (phs000964) was performed at 1348 

NWGC (HHSN268201100037C); WGS for NHLBI TOPMed: LTRC (phs001662) was performed 1349 

at Broad Genomics (HHSN268201600034I); WGS for NHLBI TOPMed: Mayo_VTE 1350 

(phs001402) was performed at Baylor (3U54HG003273-12S2 / HHSN268201500015C); WGS 1351 

for NHLBI TOPMed: MESA (phs001416) was performed at Broad Genomics (3U54HG003067- 1352 

13S1,HHSN268201500014C); WGS for NHLBI TOPMed: MLOF (phs001515) was performed at 1353 

Baylor (HHSN268201600033I,HHSN268201500016C), NYGC 1354 

(HHSN268201600033I,HHSN268201500016C); WGS for NHLBI TOPMed: OMG_SCD 1355 

(phs001608) was performed at Baylor (HHSN268201500015C); WGS for NHLBI TOPMed: 1356 

PCGC_CHD (phs001735) was performed at Broad Genomics (HHSN268201600034I); WGS for 1357 

NHLBI TOPMed: PharmHU (phs001466) was performed at Baylor (HHSN268201500015C); 1358 

WGS for NHLBI TOPMed: PIMA (phs001727) was performed at NWGC 1359 

(HHSN268201600032I); WGS for NHLBI TOPMed: PUSH_SCD (phs001682) was performed at 1360 

Baylor (HHSN268201500015C); WGS for NHLBI TOPMed: REDS-III_Brazil (phs001468) was 1361 

performed at Baylor (HHSN268201500015C); WGS for NHLBI TOPMed: SAFS (phs001215) 1362 

was performed at Illumina (R01HL113322,3R01HL113323-03S1); WGS for NHLBI TOPMed: 1363 

SAGE (phs000921) was performed at NYGC (3R01HL117004- 02S3,HHSN268201600032I), 1364 

NWGC (3R01HL117004-02S3,HHSN268201600032I); WGS for NHLBI TOPMed: 1365 

SAPPHIRE_asthma (phs001467) was performed at NWGC (HHSN268201600032I); WGS for 1366 

NHLBI TOPMed: SARP (phs001446) was performed at NYGC (HHSN268201500016C); NHLBI 1367 

TOPMed: SAS (phs000972) was performed at NWGC 1368 

(HHSN268201100037C,HHSN268201500016C), NYGC 1369 

(HHSN268201100037C,HHSN268201500016C); WGS for NHLBI TOPMed: THRV (phs001387) 1370 

was performed at Baylor (3R01HL111249-04S1 / HHSN26820150015C); WGS for NHLBI 1371 

TOPMed: VAFAR (phs000997) was performed at Broad Genomics (3U54HG003067-12S2 / 1372 

3U54HG003067- 13S1; 3UM1HG008895-01S2; 3UM1HG008895-01S2,3R01HL092577-06S1); 1373 

WGS for NHLBI TOPMed: VU_AF (phs001032) was performed at Broad Genomics 1374 

(3R01HL092577-06S1); WGS for NHLBI TOPMed: walk_PHaSST (phs001514) was performed 1375 

at Baylor (HHSN268201500015C); WGS for NHLBI TOPMed: WGHS (phs001040) was 1376 

performed at Broad Genomics (3R01HL092577-06S1); WGS for NHLBI TOPMed: WHI 1377 

(phs001237) was performed at Broad Genomics (HHSN268201500014C). Core support 1378 

including centralized genomic read mapping and genotype calling, along with variant quality 1379 

metrics and filtering were provided by the TOPMed Informatics Research Center (3R01HL-1380 
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117626-02S1; contract HHSN268201800002I). Core support including phenotype 1381 

harmonization, data management, sample-identity QC, and general program coordination were 1382 

provided by the TOPMed Data Coordinating Center (R01HL-120393; U01HL-120393; contract 1383 

HHSN268201800001I). We gratefully acknowledge the studies and participants who provided 1384 

biological samples and data for TOPMed. NYGC = New York Genome Center; Broad Genomics 1385 

= Broad Institute Genomics Platform; NWGC = University of Washington Northwest Genomics 1386 

Center; Illumina = Illumina Genomic Services; Psomagen = Psomagen Corp.; Baylor = Baylor 1387 

Human Genome Sequencing Center; MGI = McDonnell Genome Institute 1388 

Study-specific acknowledgements 1389 

NHLBI TOPMed: Atrial Fibrillation Biobank LMU (AFLMU) in the context of the 1390 

ArrhythmiaBiobank-LMU  1391 

AFLMU is a repository of AF patients recruited in the context of the German Competence 1392 

Network for Atrial Fibrillation (AFNET) and at the Department of Medicine I of the University 1393 

Hospital Munich. In this context, DNA samples were preferentially sampled if the patient 1394 

developed AF before the age of 60 years. Cases were selected if the diagnosis of atrial 1395 

fibrillation was made on an electrocardiogram analyzed by a trained physician. Patients with 1396 

signs of moderate to severe heart failure, moderate to severe valve disease or with 1397 

hyperthyroidism were excluded from the study. All participants provided written informed 1398 

consent. AFLMU was approved by the Ethics Committee at the Ludwig-Maximilian’s University.  1399 

 1400 

NHLBI TOPMed: Genetics of Cardiometabolic Health in the Amish (Amish)  1401 

The Amish studies upon which these data are based were supported by NIH grants R01 1402 

AG18728, U01 HL072515, R01 HL088119, R01 HL121007, and P30 DK072488. See 1403 

publication: PMID: 18440328  1404 

 1405 

NHLBI TOPMed: Atherosclerosis Risk in Communities (ARIC)  1406 

The Atherosclerosis Risk in Communities study has been funded in whole or in part with Federal 1407 

funds from the National Heart, Lung, and Blood Institute, National Institutes of Health, 1408 

Department of Health and Human Services (contract numbers HHSN268201700001I, 1409 

HHSN268201700002I, HHSN268201700003I, HHSN268201700004I and 1410 

HHSN268201700005I). The authors thank the staff and participants of the ARIC study for their 1411 

important contributions.  1412 

 1413 

NHLBI TOPMed: The Genetics and Epidemiology of Asthma in Barbados (BAGS)  1414 

We gratefully acknowledge the contributions of Pissamai and Trevor Maul, Paul Levett, Anselm 1415 

Hennis, P. Michele Lashley, Raana Naidu, Malcolm Howitt and Timothy Roach, and the 1416 

numerous health care providers, and community clinics and co-investigators who assisted in the 1417 

phenotyping and collection of DNA samples, and the families and patients for generously 1418 

donating DNA samples to the Barbados Asthma Genetics Study (BAGS). The Genetics and 1419 

Epidemiology of Asthma in Barbados is supported by National Institutes of Health (NIH) 1420 

National Heart, Lung, Blood Institute TOPMed (R01 HL104608-S1) and: R01 AI20059, K23 1421 

HL076322, R01HL087699, and RC2 HL101651. For the specific cohort descriptions and 1422 
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descriptions regarding the collection of phenotype data can be found at: 1423 

https://www.nhlbiwgs.org/group/bags-asthma. The authors wish to give special recognition to 1424 

the individual study participants who provided biological samples and or data, without their 1425 

support in research none of this would be possible.  1426 

 1427 

NHLBI TOPMed: BioMe Biobank at Mount Sinai (BioMe)  1428 

The Mount Sinai BioMe Biobank has been supported by The Andrea and Charles Bronfman 1429 

Philanthropies and in part by Federal funds from the NHLBI and NHGRI (U01HG00638001; 1430 

U01HG007417; X01HL134588). We thank all participants in the Mount Sinai Biobank. We also 1431 

thank all our recruiters who have assisted and continue to assist in data collection and 1432 

management and are grateful for the computational resources and staff expertise provided by 1433 

Scientific Computing at the Icahn School of Medicine at Mount Sinai.  1434 

 1435 

NHLBI TOPMed: CAMP  1436 

We thank the clinical centers and the Data Coordinating Center of the Childhood Asthma 1437 

Management Program (CAMP) as well as all of the study participants at the 8 clinical sites. The 1438 

CAMP study was supported by NHLBI P01 HL132825.  1439 

 1440 

NHLBI TOPMed: Coronary Artery Risk Development in Young Adults Study (CARDIA)  1441 

The Coronary Artery Risk Development in Young Adults Study (CARDIA) is conducted and 1442 

supported by the National Heart, Lung, and Blood Institute (NHLBI) in collaboration with the 1443 

University of Alabama at Birmingham (HHSN268201800005I & HHSN268201800007I), 1444 

Northwestern University (HHSN268201800003I), University of Minnesota 1445 

(HHSN268201800006I), and Kaiser Foundation Research Institute (HHSN268201800004I). 1446 

CARDIA was also partially supported by the Intramural Research Program of the National 1447 

Institute on Aging (NIA) and an intra‐agency agreement between NIA and NHLBI (AG0005).  1448 

 1449 

NHLBI TOPMed: CARE_BADGER  1450 

This research was supported by grants from the National Heart, Lung, and Blood Institute 1451 

(NHLBI), ((5U10HL064287, 5U10HL064288, 5U10HL064295, 5U10HL064307, 5U10HL064305, 1452 

5U10HL064313, and HL080083)  1453 

 1454 

NHLBI TOPMed: CARE_CLIC  1455 

This research was supported by grants from the National Heart, Lung, and Blood Institute 1456 

(NHLBI), ((5U10HL064287, 5U10HL064288, 5U10HL064295, 5U10HL064307, 5U10HL064305, 1457 

5U10HL064313, and HL080083)  1458 

 1459 

NHLBI TOPMed: CARE_PACT  1460 

This research was supported by grants from the National Heart, Lung, and Blood Institute 1461 

(NHLBI), ((5U10HL064287, 5U10HL064288, 5U10HL064295, 5U10HL064307, 5U10HL064305, 1462 

5U10HL064313, and HL080083)  1463 

 1464 

NHLBI TOPMed: CARE_TREXA  1465 
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This research was supported by grants from the National Heart, Lung, and Blood Institute 1466 

(NHLBI), ((5U10HL064287, 5U10HL064288, 5U10HL064295, 5U10HL064307, 5U10HL064305, 1467 

5U10HL064313, and HL080083)  1468 

 1469 

NHLBI TOPMed: The Cleveland Family Study (CFS)  1470 

The Cleveland Family Study has been supported in part by National Institutes of Health grants 1471 

[R01- HL046380, KL2-RR024990, R35-HL135818, and R01-HL113338].  1472 

 1473 

NHLBI TOPMed: Children's Health Study: Integrative Genetic Approaches to Gene-Air 1474 

Pollution Interactions in Asthma (ChildrensHS_GAP)  1475 

The Integrative Genetic Approaches to Gene-Air Pollution Interactions in Asthma (GAP) study 1476 

was supported by the National Institute of Environmental Health Sciences (NIEHS) grant # 1477 

R01ES021801. The Children's Health Study (CHS) was supported by the Southern California 1478 

Environmental Health Sciences Center (grant P30ES007048); National Institute of 1479 

Environmental Health Sciences (grants 5P01ES011627, ES021801, ES023262, P01ES009581, 1480 

P01ES011627, P01ES022845, R01 ES016535, R03ES014046, P50 CA180905, R01HL061768, 1481 

R01HL076647, R01HL087680 and RC2HL101651), the Environmental Protection Agency 1482 

(grants RD83544101, R826708, RD831861, and R831845), and the Hastings Foundation.  1483 

 1484 

NHLBI TOPMed: Children's Health Study: Integrative Genomics and Environmental 1485 

Research of Asthma (ChildrensHS_IGERA)  1486 

The Integrative Genomics and Environmental Research of Asthma (IGERA) Study was 1487 

supported by the National Heart, Lung and Blood Institute (grant # RC2HL101543 -The Asthma 1488 

BioRepository for Integrative Genomics Research, PI Gilliland/Raby). The Children's Health 1489 

Study (CHS) was supported by the Southern California Environmental Health Sciences Center 1490 

(grant P30ES007048); National Institute of Environmental Health Sciences (grants 1491 

5P01ES011627, ES021801, ES023262, P01ES009581, P01ES011627, P01ES022845, R01 1492 

ES016535, R03ES014046, P50 CA180905, R01HL061768, R01HL076647, R01HL087680 and 1493 

RC2HL101651), the Environmental Protection Agency (grants RD83544101, R826708, 1494 

RD831861, and R831845), and the Hastings Foundation.  1495 

 1496 

NHLBI TOPMed: Children's Health Study: Effects of Air Pollution on the Development of 1497 

Obesity in Children (ChildrensHS_MetaAir)  1498 

The Effects of Air Pollution on the Development of Obesity in Children (Meta-AIR) study was 1499 

supported by the Southern California Children’s Environmental Health Center funded by the 1500 

National Institute of Environmental Health Sciences (NIEHS) (P01ES022845) and the 1501 

Environmental Protection Agency (EPA) (RD-83544101–0). The Children's Health Study (CHS) 1502 

was supported by the Southern California Environmental Health Sciences Center (grant 1503 

P30ES007048); National Institute of Environmental Health Sciences (grants 5P01ES011627, 1504 

ES021801, ES023262, P01ES009581, P01ES011627, P01ES022845, R01 ES016535, 1505 

R03ES014046, P50 CA180905, R01HL061768, R01HL076647, R01HL087680 and 1506 

RC2HL101651), the Environmental Protection Agency (grants RD83544101, R826708, 1507 

RD831861, and R831845), and the Hastings Foundation.  1508 

 1509 
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NHLBI TOPMed: Genetics Sub-Study of Chicago Initiative to Raise Asthma Health Equity 1510 

(CHIRAH)  1511 

Support for the Genetics Sub-Study of Chicago Initiative to Raise Asthma Health Equity was 1512 

provided by NHLBI grant number UO1 HL072496.  1513 

 1514 

NHLBI TOPMed: Cardiovascular Health Study (CHS)  1515 

This research was supported by contracts HHSN268201200036C, HHSN268200800007C, 1516 

HHSN268201800001C, N01HC55222, N01HC85079, N01HC85080, N01HC85081, 1517 

N01HC85082, N01HC85083, N01HC85086, and 75N92021D00006, and grants U01HL080295 1518 

and U01HL130114 from the National Heart, Lung, and Blood Institute (NHLBI), with additional 1519 

contribution from the National Institute of Neurological Disorders and Stroke (NINDS). Additional 1520 

support was provided by R01AG023629 from the National Institute on Aging (NIA). A full list of 1521 

principal CHS investigators and institutions can be found at CHS-NHLBI.org. The content is 1522 

solely the responsibility of the authors and does not necessarily represent the official views of 1523 

the National Institutes of Health.  1524 

 1525 

NHLBI TOPMed: Genetic Epidemiology of COPD (COPDGene) in the TOPMed Program  1526 

The COPDGene project described was supported by Award Number U01 HL089897 and Award 1527 

Number U01 HL089856 from the National Heart, Lung, and Blood Institute. The content is solely 1528 

the responsibility of the authors and does not necessarily represent the official views of the 1529 

National Heart, Lung, and Blood Institute or the National Institutes of Health. The COPDGene 1530 

project is also supported by the COPD Foundation through contributions made to an Industry 1531 

Advisory Board comprised of AstraZeneca, Boehringer Ingelheim, GlaxoSmithKline, Novartis, 1532 

Pfizer, Siemens and Sunovion. A full listing of COPDGene investigators can be found at: 1533 

http://www.copdgene.org/directory  1534 

 1535 

NHLBI TOPMed: The Genetic Epidemiology of Asthma in Costa Rica (CRA)  1536 

This study was supported by NHLBI grants R37 HL066289 and P01 HL132825. We wish to 1537 

acknowledge the investigators at the Channing Division of Network Medicine at Brigham and 1538 

Women's Hospital, the investigators at the Hospital Nacional de Niños in San José, Costa Rica 1539 

and the study subjects and their extended family members who contributed samples and 1540 

genotypes to the study, and the NIH/NHLBI for its support in making this project possible.  1541 

 1542 

NHLBI TOPMed: Diabetes Heart Study (DHS)  1543 

This work was supported by R01 HL92301, R01 HL67348, R01 NS058700, R01 AR48797, R01 1544 

DK071891, R01 AG058921, the General Clinical Research Center of the Wake Forest 1545 

University School of Medicine (M01 RR07122, F32 HL085989), the American Diabetes 1546 

Association, and a pilot grant from the Claude Pepper Older Americans Independence Center of 1547 

Wake Forest University Health Sciences (P60 AG10484).  1548 

 1549 

NHLBI TOPMed: ECLIPSE  1550 

The ECLIPSE study (NCT00292552) was sponsored by GlaxoSmithKline. The ECLIPSE 1551 

investigators included: ECLIPSE Investigators — Bulgaria: Y. Ivanov, Pleven; K. Kostov, Sofia. 1552 

Canada: J. Bourbeau, Montreal; M. Fitzgerald, Vancouver, BC; P. Hernandez, Halifax, NS; K. 1553 
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Killian, Hamilton, ON; R. Levy, Vancouver, BC; F. Maltais, Montreal; D. O'Donnell, Kingston, 1554 

ON. Czech Republic: J. Krepelka, Prague. Denmark: J. Vestbo, Hvidovre. The Netherlands: E. 1555 

Wouters, Horn-Maastricht. New Zealand: D. Quinn, Wellington. Norway: P. Bakke, Bergen. 1556 

Slovenia: M. Kosnik, Golnik. Spain: A. Agusti, J. Sauleda, P. de Mallorca. Ukraine: Y. 1557 

Feschenko, V. Gavrisyuk, L. Yashina, Kiev; N. Monogarova, Donetsk. United Kingdom: P. 1558 

Calverley, Liverpool; D. Lomas, Cambridge; W. MacNee, Edinburgh; D. Singh, Manchester; J. 1559 

Wedzicha, London. United States: A. Anzueto, San Antonio, TX; S. Braman, Providence, RI; R. 1560 

Casaburi, Torrance CA; B. Celli, Boston; G. Giessel, Richmond, VA; M. Gotfried, Phoenix, AZ; 1561 

G. Greenwald, Rancho Mirage, CA; N. Hanania, Houston; D. Mahler, Lebanon, NH; B. Make, 1562 

Denver; S. Rennard, Omaha, NE; C. Rochester, New Haven, CT; P. Scanlon, Rochester, MN; 1563 

D. Schuller, Omaha, NE; F. Sciurba, Pittsburgh; A. Sharafkhaneh, Houston; T. Siler, St. 1564 

Charles, MO; E. Silverman, Boston; A. Wanner, Miami; R. Wise, Baltimore; R. ZuWallack, 1565 

Hartford, CT. ECLIPSE Steering Committee: H. Coxson (Canada), C. Crim (GlaxoSmithKline, 1566 

USA), L. Edwards (GlaxoSmithKline, USA), D. Lomas (UK), W. MacNee (UK), E. Silverman 1567 

(USA), R. Tal-Singer (Co-chair, GlaxoSmithKline, USA), J. Vestbo (Co-chair, Denmark), J. 1568 

Yates (GlaxoSmithKline, USA). ECLIPSE Scientific Committee: A. Agusti (Spain), P. Calverley 1569 

(UK), B. Celli (USA), C. Crim (GlaxoSmithKline, USA), B. Miller (GlaxoSmithKline, USA), W. 1570 

MacNee (Chair, UK), S. Rennard (USA), R. Tal-Singer (GlaxoSmithKline, USA), E. Wouters 1571 

(The Netherlands), J. Yates (GlaxoSmithKline, USA).  1572 

 1573 

NHLBI TOPMed: Boston Early-Onset COPD Study in the TOPMed Program (EOCOPD)  1574 

The Boston Early-Onset COPD Study was supported by R01 HL113264 and U01 HL089856 1575 

from the National Heart, Lung, and Blood Institute.  1576 

 1577 

NHLBI TOPMed: Whole Genome Sequencing and Related Phenotypes in the Framingham 1578 

Heart Study (FHS)  1579 

The Framingham Heart Study (FHS) acknowledges the support of contracts NO1-HC-25195, 1580 

HHSN268201500001I, and 75N92019D00031 from the National Heart, Lung and Blood Institute 1581 

and grant supplement R01 HL092577-06S1 for this research. We also acknowledge the 1582 

dedication of the FHS study participants without whom this research would not be possible.  1583 

 1584 

NHLBI TOPMed: Genes-environments and Admixture in Latino Asthmatics (GALA I) 1585 

Study  1586 

The Genes-environments and Admixture in Latino Americans (GALA I) Study was supported by 1587 

the National Heart, Lung, and Blood Institute of the National Institute of Health (NIH) grants 1588 

R01HL117004 and X01HL134589; study enrollment supported by Sandler Center for Basic 1589 

Research in Asthma and the Sandler Family Foundation, the American Asthma Foundation, the 1590 

American Lung Association, the NIH grants K23HL04464 and HL07185, the Resource Centers 1591 

for Minority Aging Research from the National Institute on Aging, RCMAR P30-AG15272, the 1592 

National Institute of Nursing Research and the National Center on Minority Health and Health 1593 

Disparities.  1594 

 1595 

NHLBI TOPMed: Genes-environments and Admixture in Latino Asthmatics (GALA II) 1596 

Study  1597 
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The Genes-environments and Admixture in Latino Americans (GALA II) Study was supported by 1598 

the National Heart, Lung, and Blood Institute of the National Institute of Health (NIH) grants 1599 

R01HL117004 and X01HL134589; study enrollment supported by the Sandler Family 1600 

Foundation, the American Asthma Foundation, the RWJF Amos Medical Faculty Development 1601 

Program, Harry Wm. and Diana V. Hind Distinguished Professor in Pharmaceutical Sciences II 1602 

and the National Institute of Environmental Health Sciences grant R01ES015794 . WGS of part 1603 

of GALA II was performed by New York Genome Center under The Centers for Common 1604 

Disease Genomics of the Genome Sequencing Program (GSP) Grant (UM1 HG008901). The 1605 

GSP Coordinating Center (U24 HG008956) contributed to cross-program scientific initiatives 1606 

and provided logistical and general study coordination. GSP is funded by the National Human 1607 

Genome Research Institute, the National Heart, Lung, and Blood Institute, and the National Eye 1608 

Institute. The GALA II study collaborators include Shannon Thyne, UCSF; Harold J. Farber, 1609 

Texas Children's Hospital; Denise Serebrisky, Jacobi Medical Center; Rajesh Kumar, Lurie 1610 

Children's Hospital of Chicago; Emerita Brigino-Buenaventura, Kaiser Permanente; Michael A. 1611 

LeNoir, Bay Area Pediatrics; Kelley Meade, UCSF Benioff Children’s Hospital, Oakland; William 1612 

Rodriguez-Cintron, VA Hospital, Puerto Rico; Pedro C. Avila, Northwestern University; Jose R. 1613 

Rodriguez-Santana, Centro de Neumologia Pediatrica; Luisa N. Borrell, City University of New 1614 

York; Adam Davis, UCSF Benioff Children's Hospital, Oakland; Saunak Sen, University of 1615 

Tennessee and Fred Lurmann, Sonoma Technologies, Inc. The authors acknowledge the 1616 

families and patients for their participation and thank the numerous health care providers and 1617 

community clinics for their support and participation in GALA II. In particular, the authors thank 1618 

study coordinator Sandra Salazar; the recruiters who obtained the data: Duanny Alva, MD, 1619 

Gaby Ayala-Rodriguez, Lisa Caine, Elizabeth Castellanos, Jaime Colon, Denise DeJesus, 1620 

Blanca Lopez, Brenda Lopez, MD, Louis Martos, Vivian Medina, Juana Olivo, Mario Peralta, 1621 

Esther Pomares, MD, Jihan Quraishi, Johanna Rodriguez, Shahdad Saeedi, Dean Soto, Ana 1622 

Taveras; and the lab researcher Celeste Eng who processed the biospecimens.  1623 

 1624 

NHLBI TOPMed: GeneSTAR (Genetic Study of Atherosclerosis Risk)  1625 

The Johns Hopkins Genetic Study of Atherosclerosis Risk (GeneSTAR) was supported by 1626 

grants from the National Institutes of Health through the National Heart, Lung, and Blood 1627 

Institute (U01HL72518, HL087698, HL112064) and by a grant from the National Center for 1628 

Research Resources (M01- RR000052) to the Johns Hopkins General Clinical Research 1629 

Center. We would like to thank the participants and families of GeneSTAR and our dedicated 1630 

staff for all their sacrifices.  1631 

 1632 

NHLBI TOPMed: Genetic Epidemiology Network of Arteriopathy (GENOA)  1633 

Support for GENOA was provided by the National Heart, Lung and Blood Institute (HL054457, 1634 

HL054464, HL054481, HL119443, and HL087660) of the National Institutes of Health.  1635 

 1636 

NHLBI TOPMed: Genetic Epidemiology Network of Salt Sensitivity (GenSalt)  1637 

The Genetic Epidemiology Network of Salt-Sensitivity (GenSalt) was supported by research 1638 

grants (U01HL072507, R01HL087263, and R01HL090682) from the National Heart, Lung and 1639 

Blood Institute, National Institutes of Health, Bethesda, MD.  1640 

 1641 
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NHLBI TOPMed: Genetics of Lipid Lowering Drugs and Diet Network (GOLDN)  1642 

GOLDN biospecimens, baseline phenotype data, and intervention phenotype data were 1643 

collected with funding from National Heart, Lung and Blood Institute (NHLBI) grant U01 1644 

HL072524. Whole-genome sequencing in GOLDN was funded by NHLBI grant R01 HL104135 1645 

and supplement R01 HL104135- 04S1.  1646 

 1647 

NHLBI TOPMed: Hispanic Community Health Study/Study of Latinos (HCHS_SOL)  1648 

The Hispanic Community Health Study/Study of Latinos is a collaborative study supported by 1649 

contracts from the National Heart, Lung, and Blood Institute (NHLBI) to the University of North 1650 

Carolina (HHSN268201300001I / N01-HC-65233), University of Miami (HHSN268201300004I / 1651 

N01-HC65234), Albert Einstein College of Medicine (HHSN268201300002I / N01-HC-65235), 1652 

University of Illinois at Chicago – HHSN268201300003I / N01-HC-65236 Northwestern Univ), 1653 

and San Diego State University (HHSN268201300005I / N01-HC-65237). The following 1654 

Institutes/Centers/Offices have contributed to the HCHS/SOL through a transfer of funds to the 1655 

NHLBI: National Institute on Minority Health and Health Disparities, National Institute on 1656 

Deafness and Other Communication Disorders, National Institute of Dental and Craniofacial 1657 

Research, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute 1658 

of Neurological Disorders and Stroke, NIH Institution-Office of Dietary Supplements. 1659 

 1660 

NHLBI TOPMed: Heart and Vascular Health Study (HVH)  1661 

The Heart and Vascular Health Study was supported by grants HL068986, HL085251, 1662 

HL095080, and HL073410 from the National Heart, Lung, and Blood Institute.  1663 

 1664 

NHLBI TOPMed: Hypertension Genetic Epidemiology Network (HyperGEN)  1665 

The HyperGEN Study is part of the National Heart, Lung, and Blood Institute (NHLBI) Family 1666 

Blood Pressure Program; collection of the data represented here was supported by grants U01 1667 

HL054472 (MN Lab), U01 HL054473 (DCC), U01 HL054495 (AL FC), and U01 HL054509 (NC 1668 
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Figure 1: Trans-ancestry meta-analysis of leukocyte telomere length identifies 7 novel signals.
Manhattan plot showing the results from the meta-analysis. The novel signals are shown in blue. The inset pie 
chart displays the proportion of different ancestries used in the meta-analysis.
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SuSiE results for signal led by rs12637184

Colocalization results across datasets for each meta-analysis signalA B

Figure 2: Fine-mapping analyses nominate putative causal variants and genes affecting telomere length.
A. A barplot showing the number of colocalization events between a meta-analysis signal (labelled by the lead SNP) and a QTL 
for any gene in any cellular context across QTL datasets. All colocalization results for each signal are included in Supplementary 
Tables 3-6. B. Venn diagram showing which meta-analysis signals colocalized with any gene quantitative trait locus (QTL) in any 
cell type across datasets. We considered PPH4 > 0.7 to be colocalized for GTEx and eQTLGen. We considered PPH4 > 0.5 to be 
colocalized for DICE. C. Meta-analysis signal near rs10111287 colored by r2 with the sentinel SNP (black diamond) and VIRMA 
eQTLs in three GTEx tissues: thyroid, stomach, and whole blood. Colocalization results for each eQTL with the meta-analysis 
signal are indicated in the top right corner. PPH3 = posterior probability that the signals do not colocalize, PPH4 = posterior 
probability that the signals colocalize. Colocalization analysis between the eQTLs suggests there are shared causal SNPs: 
thyroid eQTL with stomach eQTL PPH3=0.090 PPH4=0.906, thyroid eQTL with whole blood eQTL PPH3=0.144 PPH4=0.745, 
stomach eQTL with whole blood eQTL PPH3=0.190 PPH4=0.655. D. Meta-analysis signal near rs7193541 colored by r2 with the 
sentinel SNP (black diamond) and RFWD3 splicing QTL. Colocalization results for the QTL with the meta-analysis signal are in 
the top right corner. In the LeafCutter splicing cluster diagram grey boxes represent the RFWD3 exons involved in the splicing 
cluster, the central exon is exon 14 and is located at chr16:74630780-74630957 (hg38). The curved lines represent the average 
number of reads spanning each exon-exon junction across individuals. Thinner, purple curves represent lower expressed exon-
exon junctions and thicker, pink/red curves represent higher expressed exon-exon junctions. The plot is stratified by genotype 
of the lead SNP at the meta-analysis locus. The location of the lead SNP is depicted by the vertical grey line. The line at the 
bottom shows the linear base pair position of each exon and intron depicted in the plots. There were 167 TT individuals, 236 
TC individuals, and 80 CC individuals included in this analysis. E. SuSiE 95% credible set results for the signal led by rs12637184. 
Black diamonds indicate SNPs predicted to be part of the 95% credible set. This signal had two credible sets, one comprised of 
SNPs at the top of the association peak and the second at approximately -log10(p-value) = 12. r2 is calculated with respect to 
the lead SNP at the signal. 
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RNA expression alignment pileups at RFWD3 in cultured fibroblasts

NAF1 primary signal

NAF1 thyroid eQTL

GTEx 
eQTL colocalization
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sQTL colocalization

eQTLGen
eQTL colocalization

Supplementary Figure 1: Fine-mapping analyses nominate putative causal variants and genes affecting telomere length.
A-B. Percent of meta-analysis signals that colocalize (PPH4 > 0.7) with a GTEx cis-eQTL or cis-sQTL for any gene across 
differing numbers of tissues. C. Percent of meta-analysis signals that colocalize (PPH4 > 0.5) with a DICE eQTL for any gene 
in any cell type. The threshold for PPH4 was reduced because the DICE dataset has lower power to detect eQTLs since the 
dataset is derived from 91 individuals. A-C. In some instances one signal may colocalize with one gene in tissue/cell type X 
while colocalizing with a second gene in tissue/cell type Y; this case would be reported as number of tissue/cell type = 2. D. 
Percent of meta-analysis signals that colocalize (PPH4 > 0.7) with an eQTLGen cis-eQTL. eQTLGen cis-eQTLs are derived from 
whole blood only. E. Venn diagram showing in which datasets meta-analysis signals colocalized with the same gene 
quantitative trait locus (QTL) in any cell type across datasets. F. RNA expression pileup plots from GTEx v8 for RFWD3 in 
cultured fibroblasts. The plot is stratified by genotype for the sentinel SNP at the meta-analysis locus. G. Correlation of the 
number of SuSiE predicted credible sets and the number of signals by conditional analysis (Taub et al. 2022). H. NAF1 
primary signal from the TOPMed pooled GWAS analysis colored by r2 with the lead SNP (black diamond). The best 
colocalization result for this signal was the NAF1 eQTL in thyroid. After two rounds of conditional analysis on the lead SNP 
and secondary signal lead SNP at the NAF1 locus, a tertiary signal remained significant (Taub et al. 2022). The tertiary signal 
and NAF1 lung eQTL are colored by r2 with the lead SNP at the tertiary signal (black square). The best colocalization result 
for the tertiary GWAS signal was with the NAF1 eQTL in lung. The NAF1 eQTL in thyroid did not colocalize with the NAF1 
eQTL in lung (PPH3 = 0.721, PPH4 = 0.217).
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Comparison of one GO term from each group across analyses

Supplementary Figure 2: Comparison of GO enrichment analysis results with different gene input datasets. 
Each meta-analysis locus was assigned a gene based on genes indicated by colocalization analysis (red), the proximal 
gene (green), genes indicated by colocalization analysis where possible and proximal genes where not possible 
(blue), or genes indicated by proximity-plus-knowledge, colocalization analysis, or proximal genes where no other 
information was available (purple). In the fourth case (purple) there were five loci where a nearby gene has known 
roles in telomere length regulation but was neither the proximal gene nor the gene indicated by colocalization 
analysis (further explored in the Supplemental Note). Note that there are more genes included in the proximal gene 
list than the colocalized gene only list as every meta-analysis signal has a proximal gene but not all have 
colocalization results. GO terms were manually grouped based on related biology and the GO term with the smallest 
p-value in the Colocalized+Proximal+Bio analysis was chosen as a representative of the group in the plot. Group 
assignments and comparison of enrichment for all GO terms with FDR < 0.05 are reported in Supplementary Table 8. 
A. All GO terms that had FDR < 0.05 in at least one analysis are shown. B. The GO term with the smallest pvalue in 
the Colocalized+Proximal+Bio analysis was chosen for each group and the comparison of pvalues across analyses are 
shown.

Comparison of GO terms across analyses
A B
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Enrichment of meta-analysis 95% credible sets across 
ENCODE transcription factor binding sites 

Histone and DNA binding factor ChIP-seq data near rs12044242 
A B

Figure 3: Meta-analysis signals are enriched for transcription factor binding sites of transcription factors with 
roles in telomere length regulation.
A. The enrichment of 95% credible set SNPs across all transcription factors with ChIP-seq data available from 
ENCODE ChIP-seq data (Methods). Red points represent transcription factors with known roles in regulating 
telomere length regulation genes and blue points represent transcription factors with known roles in the 
alternative telomere lengthening (ALT) pathway. There were 18 transcription factors that fall at the (0,0) 
coordinate that are not plotted for the sake of clarity; one (XRCC3) had known roles in ALT. A complete list of 
transcription factors is provided in Supplementary Table 9. B. ChIP-seq data for the indicated DNA binding factor 
(red) or histone mark (blue) was generated by ENCODE and downloaded as bigwig files from the UCSC genome 
browser. The gene structure and genomic coordinates are depicted below the ChIP-seq data.
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Supplementary Figure 3: Meta-analysis signals are enriched for transcription factor binding sites of transcription 
factors with roles in telomere length regulation.
The red points represent transcription factors with known roles in regulating telomere length regulation genes and the 
blue points represent transcription factors with known roles in the alternative telomere lengthening (ALT) pathway. A. 
The enrichment of 95% credible set SNPs across all transcription factors with data available from ReMap data 
(Methods). There were 176 transcription factors that fell at the (0,0) coordinate and are not shown for clarity; one 
(XRCC3) had known roles in ALT. B. The enrichment of only the lead SNP at each meta-analysis signal across all 
transcription factors with data available from ReMap data (Methods). There were 196 transcription factors that fell at 
the (0,0) coordinate and are not shown for clarity; one (XRCC3) had known roles in ALT. C. The enrichment of only the 
lead SNP at each meta-analysis signal across all transcription factors with data available from ENCODE data (Methods). 
There were 22 transcription factors that fell at the (0,0) coordinate and are not shown for clarity; one (XRCC3) had 
known roles in ALT. D-E. The enrichment of transcription factors included in both the ReMap and ENCODE datasets are 
shown. The grey line represents the regression between these two variables and the R2 is shown in the top right 
corner.
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SNP x Age GWAS for rs2296312 locus Effect size estimate for rs2296312 over age Effect size estimate for rs2296312 over ancestry

rs2296312 signal in [0,43] group rs2296312 signal in (43,61] group rs2296312 signal in (61,98] group

Figure 4: TCL1A 95% credible set SNPs are more strongly associated with telomere length in older individuals.
A. Manhattan plot for the region around rs2296312 (red star) using summary statistics from a GWAS that included a 
covariate for age and genotype interaction. The log10(p-value) for the interaction covariate is plotted on the y-axis. B. 
Forest plot indicating the effect size estimate for rs2296312 across age groups from the age-stratified GWAS. The tested 
allele, C, was the minor allele. [0,43] minor allele count = 15,922; (43,61] minor allele count = 16,315; (61,98] minor allele 
count = 13,547. C. Forest plot indicating the effect size estimate for rs2296312 across ancestry groups from ancestry-
stratified GWAS (Taub et al. 2022). European minor allele count = 16,443; Black/ African American minor allele count = 
19,963; Asian minor allele count = 5,683; Hispanic/Latino minor allele count = 18,019. D-F. Manhattan plots for the 
rs2296312 (black diamond) locus in age-stratified GWAS. Color indicates linkage disequilibrium (r2) calculated with 
respect to rs2296312. 
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Supplementary Figure 4: Demographics for age-stratified telomere length GWAS.
The 109,122 TOPMed individuals with telomere length estimates (Taub et al. 2022) were divided into three age groups 
such that there was a similar number of individuals per group. There were 36,980 individuals in the [0,43] group, 
37,470 individuals in the (43,61] group, and 34,671 individuals in the (61,98] group. A. The proportion of individuals of 
each biological sex in each age group. B. The proportion of individuals of different ancestries in each age group. 
Ancestry was previously determined computationally (Taub et al. 2022). 
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Figure 5: Blood and immune cells are a key cell type for telomere length.
A. Hierarchical clustering of the enrichment of meta-analysis lead SNPs in predicted active states using the Roadmap 
Epigenomics 25 state chromHMM model. B-C. Stratified LDSC was conducted on 130,246 meta-analyzed European 
individuals in our dataset (Li et al. 2020; Taub et al. 2022) using the 1000 Genomes European linkage disequilibrium 
reference panel. 
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Supplementary Figure 5: ChIP-seq signals for specific chromatin marks from Roadmap Epigenomics across cell types.
Enrichment of Roadmap cell types for sentinel SNPs in H3K4me1 (A) or H3K27ac (B) peaks across 127 and 98 cell types, 
respectively. Included samples are listed in Supplementary Table 13. 
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Figure 6: Overexpression of POP5 or KBTBD6 increases telomere length in HeLa-FRT cells.
KBTBD6, POP5, or GFP was constitutively overexpressed from the CMV promoter in HeLa-FRT cells using the FLP-in 
system. A,C. Telomere Southern blots showing the bulk telomere length from a population of cells following an 
approximate normal distribution. Molecular weight standards were run alongside the samples and their size is 
indicated in kilobases (kb). Three time points are shown for each clone and the estimated number of population 
doublings (PD) for each timepoint are indicated below the Southern. Each clone has the opportunity to form a distinct 
starting telomere length distribution which is why the first timepoint for some clones appear to have distinct telomere 
length distributions, for example the starting timepoint for the POP5 clones compared to the GFP clones. All 
transfection experiments began from the same population of HeLa-FRT cells. B,D. The Southern blot densitometry was 
analyzed using ImageQuant TL to generate line plots of the pixel density. The software estimated the median telomere 
length (orange bar) as the pixels with greatest density and estimated a molecular weight for that position taking into 
account the molecular weight standards on both sides of the gel. The ImageQuant TL line plots (Supplementary Figure 
7) were used to estimate the minimum (purple triangle) and maximum (red triangle) telomere lengths in the bulk 
telomere band. A simulated diagram in the bottom left of the plot representing the ImageQuant TL plots is provided as 
a guide for the source of these values. The y-axis is plotted on a log10 scale to better estimate how linear DNA moves 
through an agarose gel at rate inversely proportional to its length.
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Supplementary Figure 6: Control data for overexpression of KBTBD6 and POP5.
A. PSMB4, CBX1, or OBFC1 was constitutively overexpressed from the CMV promoter in HeLa-FRT cells using the FLP-in 
system. Telomere Southern blots showing the bulk telomere length from a population of cells following an approximate 
normal distribution. Molecular weight standards were run alongside the samples and their size is indicated in kilobases 
(kb). Three time points are shown for each clone and the estimated number of population doublings (PD) for each 
timepoint are indicated. All transfection experiments began from the same population of HeLa-FRT cells. B. KBTBD6 
overexpression was maintained in clone 5 over time but was lost in clones 6 and 7 as demonstrated by the end timepoint. 
The early timepoint was passage 8 of the experiment, approximate population doublings were: clone 5 = 51, clone 6 = 33, 
clone 7 = 45. The end timepoint was passage 31, approximate population doublings were: clone 5 = 273, clone 6 = 257, 
clone 7 = 274. C. POP5 overexpression was maintained across all three clones. The early timepoint was passage 8 of the 
experiment, approximate population doublings were: clone 5 = 65, clone 6 = 59, clone 7 = 67. The end timepoint was 
passage 31 of the experiment, approximate population doublings were: clone 5 = 296, clone 6 = 297, clone 7 = 318.
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Supplementary Figure 7: ImageQuant TL estimation of minimum, median, and maximum telomere length.
Unprocessed scans of the telomere Southern blots were imported into ImageQuant TL and median telomere length was 
calculated taking molecular weight markers on either side of the Southern into account. The median telomere length was 
automatically estimated as the maximum value in these line plots for each line. Line plots were generated for the three time 
points (timepoints indicated by line color) for each clone. The grey lines indicate the background signal estimated by 
ImageQuant TL. The Southern blot lanes analyzed in each plot are shown below their respective line plots. The software 
indicates the range of the signal that it takes into account when estimating the median and these boundaries (dotted lines 
on the lanes) were used to represent the minimum and maximum telomere lengths. The vertical lines on the line plot were 
added manually and colored to match the sample they estimate, the values above them represent the estimated minimum 
or maximum. The software does not provide a quantitative estimate of these boundaries and so we inferred them from the 
units on the x-axis. Where the minimum or maximum did not fall close to an automated tick mark, we imputed additional 
tick marks (orange) by anchoring two lines on the available tick marks and adding another three lines in between, then 
distrubted evenly horizontally using Microsoft PowerPoint. A. Line plots from Figure 6A. B. Line plots from Figure 6B. 
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Figure 7: CRISPR removal of KBTBD6 and POP5 regulatory regions reduced expression of each gene.
A. qPCR estimates of POP5 expression were normalized to ACTB using the Pfaffl method (Methods). A one-sided t-test calculated a 
p-value = 0.047. B. 99% SuSiE credible set colored by r2 with the lead SNP. Black diamonds indicate SNPs in the predicted credible 
set. C. ATAC-seq peak regions are represented as boxes for each blood related sample. Points above the plot area represent SNPs in 
the 99% credible set predicted by SuSiE or CAVIAR. The 95% credible set from either SuSiE or CAVIAR did not overlap any regions 
where ATAC-seq peaks were shared across blood cell types and cell lines. The red SNP is rs9525462.  NK cell = natural killer cell. 
Samples were downloaded from ENCODE (ENCODE Project Consortium 2012; Luo et al. 2020) (identifiers: ENCFF058UYY, 
ENCFF333TAT, ENCFF421XIL, ENCFF470YYO, ENCFF558BLC, ENCFF748UZH, ENCFF751CLW, ENCFF788BUI, ENCFF867TMP) or from 
ATACdb (Wang et al. 2021)(sample codes: Sample_1195, Sample_1194, Sample_1175, Sample_1171, Sample_1020, Sample_1021, 
Sample_1209, Sample_1208). D. Roadmap chromatin ChIP-seq for hg19 chr13:41768158-41769095 (yellow highlighted region). 
Samples included were E044, E039, and E047. E-F. qPCR estimates of gene expression were normalized to ACTB using the Pfaffl 
method (Methods). A one-sided t-test calculated a p-value = 0.003037 for KBTBD6 and p-value = 2.093x10-5 for KBTBD7. 
* p-value < 0.05 ** p-value < 0.01 *** p-value < 0.001.
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Supplementary Figure 8: CRISPR/Cas9 targeted regions.
A. Manhattan plot showing the association signal near POP5. Red SNPs were in the CAVIAR 95% credible set. 
CAVIAR was run assuming there was one causal SNP in the signal (c=1). B. Manhattan plot showing the association 
signal near POP5. Color indicates linkage disequilibrium (r2) calculated with respect to the lead SNP. C. 124 kb 
region targeted for CRISPR/Cas9 editing within the POP5 association signal region. The red half arrows indicate 
the position of CRISPR/Cas9 gRNA sequences. The black half arrows indicate the position of primers used to 
genotype CRISPR/Cas9-edited cells (Methods). Primer and guide sequences are reported in Supplementary Table 
14. The position and size of the indicated coding sequences were taken from the UCSC genome browser and are 
to scale. POP5 is indicated in blue. D. 938 bp ATAC-seq peak region targeted for CRISPR/Cas9 editing within the 
KBTBD6/ KBTBD7 association signal region. The red half arrows indicate the position of CRISPR/Cas9 gRNA 
sequences. Primer and guide sequences are reported in Supplementary Table 14. The position and structure of 
the KBTBD7 coding sequence was taken from the UCSC genome browser and is to scale.
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