

1 Title

2 Validation of human telomere length trans-ancestry meta-analysis association signals identifies
3 *POP5* and *KBTBD6* as novel human telomere length regulation genes

4 Authors

5 Rebecca Keener¹, Surya Chhetri¹, Carla J. Connelly², Margaret A. Taub³, Matthew P.
6 Conomos⁴, Joshua Weinstock¹, Bohan Ni⁵, Benjamin Strober⁶, Stella Aslibekyan⁷, Paul L. Auer⁸,
7 Lucas Barwick⁹, Lewis C. Becker¹⁰, John Blangero¹¹, Eugene R. Bleeker^{12,13}, Jennifer A.
8 Brody¹⁴, Brian E. Cade^{15,16}, Juan C. Celedon¹⁷, Yi-Cheng Chang¹⁸, L. Adrienne Cupples^{19,20},
9 Brian Custer^{21,22}, Barry I. Freedman²³, Mark T. Gladwin²⁴, Susan R. Heckbert²⁵, Lifang Hou²⁶,
10 Marguerite R. Irvin²⁷, Carmen R. Isasi²⁸, Jill M. Johnsen²⁹, Eimear E. Kenny^{30,31}, Charles
11 Kooperberg³², Ryan L. Minster³³, Sergei Nekhai³⁴, Nathan Pankratz³⁵, Patricia A. Peyser³⁶,
12 Kent D. Taylor³⁷, Marilyn J. Telen³⁸, Baojun Wu³⁹, Lisa R. Yanek⁴⁰, Ivana V. Yang⁴¹, Christine
13 Albert^{42,43}, Donna K. Arnett⁴⁴, Allison E. Ashley-Koch³⁸, Kathleen C. Barnes⁴⁵, Joshua C. Bis¹⁴,
14 Thomas W. Blackwell^{46,47}, Eric Boerwinkle⁴⁸, Esteban G. Burchard^{49,50}, April P. Carson⁵¹,
15 Zhanghua Chen⁵², Yii-Der Ida Chen³⁷, Dawood Darbar⁵³, Mariza de Andrade⁵⁴, Patrick T.
16 Ellinor⁵⁵, Myriam Fornage⁵⁶, Bruce D. Gelb⁵⁷, Frank D. Gilliland⁵², Jiang He⁵⁸, Talat Islam⁵²,
17 Stefan Kaab⁵⁹, Sharon L.R. Kardia⁶⁰, Shannon Kelly^{21,61}, Barbara A. Konkle⁶², Rajesh
18 Kumar^{63,64}, Ruth J.F. Loos⁶⁵, Fernando D. Martinez⁶⁶, Stephen T. McGarvey⁶⁷, Deborah A.
19 Meyers^{12,13}, Braxton D. Mitchell⁶⁸, Courtney G. Montgomery⁶⁹, Kari E. North⁷⁰, Nicholette D.
20 Palmer⁷¹, Juan M. Peralta¹¹, Benjamin A. Raby^{72,73}, Susan Redline^{15,16}, Stephen S. Rich⁷⁴,
21 Daniel Roden⁷⁵, Jerome I. Rotter³⁷, Ingo Ruczinski³, David Schwartz⁷⁶, Rank Sciurba⁷⁷, M.
22 Benjamin Shoemaker⁷⁸, Edwin K. Silverman¹⁵, Moritz F. Sinner⁵⁹, Nicholas L. Smith⁵⁸, Albert V.
23 Smith⁷⁹, Hemant K. Tiwari⁸⁰, Ramachandran S. Vasan⁸¹, Scott T. Weiss^{15,42}, L. Keoki Williams³⁹,
24 Yingze Zhang⁸², Elad Ziv⁸³, Laura M. Raffield⁸⁴, Alexander P. Reiner³², NHLBI Trans-Omics for
25 Precision Medicine (TOPMed) Consortium[‡], TOPMed Hematology and Hemostasis Working
26 Group[‡], TOPMed Structural Variation Working Group[‡], Marios Arvanitis⁸⁵, Carol W. Greider^{86,87},
27 Rasika A. Mathias^{*40}, and Alexis Battle^{*,1,88,89,90}

28
29 1. Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
30 2. Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, MD,
31 USA
32 3. Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore,
33 MD, USA
34 4. Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA,
35 USA
36 5. Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
37 6. Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA
38 7. University of Alabama at Birmingham, Birmingham, AL, USA

39 8. Division of Biostatistics, Institute for Health & Equity, and Cancer Center, Medical College of
40 Wisconsin, Milwaukee, WI, USA
41 9. LTRC Data Coordinating Center, The Emmes Company, LLC, Rockville, MD, USA
42 10. GeneSTAR Research Program, Department of Medicine, Johns Hopkins School of
43 Medicine, Baltimore, MD, USA
44 11. Department of Human Genetics and South Texas Diabetes and Obesity Institute, University
45 of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
46 12. Department of Medicine, Division of Genetics, Genomics and Precision Medicine, University
47 of Arizona, Tucson, AZ, USA
48 13. Division of Pharmacogenomics, University of Arizona, Tucson, AZ, USA
49 14. Cardiovascular Health Research Unit, Department of Medicine, University of Washington,
50 Seattle, WA, USA
51 15. Channing Division of Network Medicine, Department of Medicine, Brigham and Women's
52 Hospital, Boston, MA, USA
53 16. Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
54 17. Division of Pediatric Pulmonary Medicine, University of Pittsburgh, Pittsburgh, PA, USA
55 18. National Taiwan University, Taipei, Taiwan
56 19. Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
57 20. The National Heart, Lung, and Blood Institute, Boston University's Framingham Heart Study,
58 Framingham, MA, USA
59 21. Vitalant Research Institute, San Francisco, CA, USA
60 22. Department of Laboratory Medicine, University of California San Francisco, San Francisco,
61 CA, USA
62 23. Internal Medicine - Nephrology, Wake Forest University School of Medicine, Winston-Salem,
63 NC, USA
64 24. School of Medicine, University of Maryland, Baltimore, MD, USA
65 25. Department of Epidemiology, University of Washington, Seattle, WA, USA
66 26. Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University,
67 Evanston, IL, USA
68 27. Department of Epidemiology, University of Alabama Birmingham, Birmingham, AL, USA
69 28. Department of Epidemiology and Population Health, Albert Einstein College of Medicine,
70 Bronx, NY, USA
71 29. Department of Medicine and Institute for Stem Cell & Regenerative Medicine, University of
72 Washington, Seattle, WA, USA
73 30. The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at
74 Mount Sinai, New York, NY, USA
75 31. Center for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
76 32. Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
77 33. Department of Human Genetics, University of Pittsburgh Graduate School of Public Health,
78 Pittsburgh, PA, USA
79 34. Center for Sickle Cell Disease and Department of Medicine, College of Medicine, Howard
80 University, Washington DC, USA
81 35. Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis,
82 MN, USA

83 36. Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI,
84 USA

85 37. The Institute for Translational Genomics and Population Sciences, Department of Pediatrics,
86 The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance,
87 CA, USA

88 38. Department of Medicine, Duke University Medical Center, Durham, NC, USA

89 39. Center for Individualized and Genomic Medicine Research (CIGMA), Department of Internal
90 Medicine, Henry Ford Health System, Detroit, MI, USA

91 40. Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA

92 41. Departments of Biomedical Informatics, Medicine, and Epidemiology, University of
93 Colorado, Boulder, CO, USA

94 42. Harvard Medical School, Boston, MA, USA

95 43. Division of Cardiovascular, Brigham and Women's Hospital, Boston, MA, USA

96 44. Department of Epidemiology, University of South Carolina, Columbia, SC, USA

97 45. Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora,
98 CO, USA

99 46. Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI,
100 USA

101 47. Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor,
102 MI, USA

103 48. Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental
104 Sciences, School of Public Health, University of Texas Health Science Center at Houston,
105 Houston, TX, USA

106 49. Department of Medicine, University of California San Francisco, San Francisco, CA, USA

107 50. Department of Bioengineering and Therapeutic Sciences, University of California San
108 Francisco, San Francisco, CA, USA

109 51. Department of Medicine, University of Mississippi Medical Center, Jackson, MI, USA

110 52. Department of Population and Public Health Sciences, University of Southern California, Los
111 Angeles, CA, USA

112 53. Division of Cardiology, University of Illinois at Chicago, Chicago, IL, USA

113 54. Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA

114 55. Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA,
115 USA

116 56. Institute of Molecular Medicine, McGovern Medical School, the University of Texas Health
117 Science Center at Houston, Houston, TX, USA

118 57. Mindich Child Health and Development Institute and Departments of Pediatrics and
119 Genetics and Genomic Sciences, Icahn School of Medicine, New York, NY, USA

120 58. Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA

121 59. Department of Cardiology, University Hospital, LMU Munich, Munich, Germany

122 60. Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI,
123 USA

124 61. University of California San Francisco Benioff Children's Hospital, Oakland, CA, USA

125 62. Department of Medicine, University of Washington, Seattle, WA, USA

126 63. Northwestern University Feinberg School of Medicine, Chicago, IL, USA

127 64. The Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
128 65. The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at
129 Mount Sinai, New York, NY, USA
130 66. Asthma & Airway Disease Research Center, University of Arizona, Tucson, AZ, USA
131 67. Department of Epidemiology & International Health Institute, Brown University School of
132 Public Health, Providence, RI, USA
133 68. Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
134 69. Genes and Human Disease, Oklahoma Medical Research Foundation, Oklahoma City, OK,
135 USA
136 70. Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC,
137 USA
138 71. Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem,
139 NC, USA
140 72. Division of Pulmonary and Critical Care, Brigham and Women's Hospital, Boston, MA, USA
141 73. Division of Pulmonary Medicine, Boston Children's Hospital, Boston, MA, USA
142 74. Center for Public Health Genomics, Department of Public Health Sciences, University of
143 Virginia, Charlottesville, VA, USA
144 75. Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
145 76. Departments of Medicine and Immunology, University of Colorado, Boulder, CO, USA
146 77. Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh,
147 Pittsburgh, PA, USA
148 78. Departments of Medicine, Pharmacology, and Biomedical Informatics, Vanderbilt University
149 Medical Center, Nashville, TN, USA
150 79. Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
151 80. Department of Biostatistics, University of Alabama Birmingham, Birmingham, AL, USA
152 81. Department of Medicine, Boston University School of Medicine, Boston, MA, USA
153 82. Division of Pulmonary Allergy and Critical Care Medicine, University of Pittsburgh,
154 Pittsburgh, PA, USA
155 83. Department of Medicine, University of California San Francisco, San Francisco, CA, USA
156 84. Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
157 85. Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD,
158 USA
159 86. Department of Molecular Cell and Developmental Biology, University of California Santa
160 Cruz, Santa Cruz, CA, USA
161 87. University Professor Johns Hopkins University, Baltimore, MD, USA
162 88. Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
163 89. Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
164 90. Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, MD,
165 USA
166
167 [#]Full member list in supplement
168 *Co-corresponding authors, please address correspondence to these authors.
169
170 Rasika Mathias, Sc.D

171 rmathias@jhmi.edu
172
173 Alexis Battle, PhD
174 ajbattle@jhu.edu

175 Abstract

176 Telomere length genome-wide association studies (GWAS) have become well-powered to
177 detect novel genes in telomere length regulation. However, no prior work has validated these
178 putative novel genes to confirm the contribution of GWAS loci to telomere length regulation. We
179 conducted a trans-ancestry meta-analysis of 211,369 individuals. Through enrichment analyses
180 of chromatin state and cell-type heritability we identified blood and immune cells as the most
181 relevant cell type to examine telomere length association signals. We validated specific GWAS
182 associations by overexpressing *KBTBD6*, a component of an E3 ubiquitin ligase complex, and
183 *POP5*, a component of the Ribonuclease P/MRP complex, and demonstrating that both
184 lengthened telomeres as predicted by our statistical analyses. CRISPR/Cas9 deletion of the
185 predicted causal regions of these association peaks in K562 immortalized blood cells reduced
186 expression of these genes, demonstrating that these loci are related to transcriptional regulation
187 of *KBTBD6* and *POP5*, respectively. Together our results demonstrate the utility of telomere
188 length GWAS in the identification of novel telomere length regulation mechanisms and highlight
189 the importance of the proteasome-ubiquitin pathway in telomere length regulation.

190 Introduction

191 Telomeres shorten with age and short telomeres are associated with several age-related
192 diseases including bone marrow failure and immunodeficiency (Stanley and Armanios 2015).
193 Individuals with these Short Telomere Syndromes have rare variants with large effects on
194 telomere length regulation genes. Identification of causal variants in short telomere syndrome
195 patients has led to the discovery of several genes we now appreciate as core telomere length
196 regulation genes including *DKC1*, *NAF1*, *PARN*, and *ZCCHC8* (Alder et al. 2013; Stuart et al.
197 2015; Gable et al. 2019). Rare and common variants highlight the same set of core genes for
198 many complex traits (Weiner et al. 2023), therefore a genome-wide association study (GWAS)
199 on telomere length could feasibly be used to discover additional critical telomere length
200 regulation genes. Despite the fact that 19 GWAS on leukocyte telomere length have been
201 published (M. Mangino et al. 2009; Codd et al. 2010; Levy et al. 2010; Gu et al. 2011; Prescott
202 et al. 2011; Massimo Mangino et al. 2012; Codd et al. 2013; J. H. Lee et al. 2013; Pooley et al.
203 2013; Liu et al. 2014; Saxena et al. 2014; Walsh et al. 2014; Massimo Mangino et al. 2015;
204 Delgado et al. 2018; Zeiger et al. 2018; Dorajoo et al. 2019; C. Li et al. 2020; Codd et al. 2021;
205 Taub et al. 2022), identifying 143 loci associated with telomere length, very little has been done
206 to validate these signals representing new facets of telomere length regulation.
207
208 A key challenge facing interpretation of telomere length GWAS signals is accurately identifying
209 causal genes driving the association signals. The vast majority of GWAS signals, including

210 telomere length GWAS loci, are in non-coding regions, making it difficult to determine the likely
211 causal gene (Maurano et al. 2012). Some telomere length GWAS have used colocalization
212 analysis, statistically comparing GWAS signal to quantitative trait locus (QTL) data, to support
213 shared causal signal with putative target genes (C. Li et al. 2020; Codd et al. 2021; Taub et al.
214 2022). Each of these were limited to expression QTLs (eQTLs) highlighting transcriptional
215 regulatory genetic effects, but additional mechanisms may be involved, including alternative
216 splicing revealed by splicing QTLs (sQTLs) (Y. I. Li et al. 2016). Furthermore, colocalization
217 evidence does not confirm causal genes or relevant cell types. Such conclusions require
218 functional validation of genetic regulatory and gene mechanism impacting telomere length,
219 which were not explored in prior telomere length GWAS.
220

221 A second barrier to capitalizing on telomere length GWAS associated loci is that many of the
222 associated loci are often in or near genes with no prior known direct effect on telomere length,
223 making it difficult to understand the value in characterizing the underlying molecular
224 mechanisms. Indeed, many of these association signals likely represent peripheral genes with
225 indirect mechanisms on telomere length regulation (Boyle, Li, and Pritchard 2017). This is
226 consistent with observations from screens assaying the effect of knock-out libraries in
227 *Saccharomyces cerevisiae* (*S. cerevisiae*) on telomere length which identified genes involved in
228 diverse pathways either lengthening or shortening telomeres (Askree et al. 2004; Gatbonton et
229 al. 2006). Similarly, immunoprecipitation followed by mass spectrometry of *S. cerevisiae*
230 telomerase components identified interactions with proteins with diverse functions (Askree et al.
231 2004; Gatbonton et al. 2006; Lin et al. 2015). In both types of experiments, the majority of the
232 results were interpreted to indirect mechanisms on telomere length regulation. However,
233 validation of genes identified in these studies has also identified direct effects on telomerase
234 (Maicher et al. 2017; Laterreur et al. 2018).
235

236 Here, we leveraged four telomere length GWAS that used non-overlapping cohorts in a random-
237 effects trans-ancestry meta-analysis on 211,369 individuals to identify 56 loci associated with
238 human telomere length. Using stratified linkage disequilibrium score regression (S-LDSC)
239 (Finucane et al. 2015) and enrichment analysis of Roadmap Epigenomics chromatin data
240 (Roadmap Epigenomics Consortium et al. 2015) we determined that blood and immune cells
241 were the most relevant cell type for telomere length association signals. We validated some of
242 our colocalization analysis results in cultured cells and demonstrated that overexpression of
243 *KBTBD6* and *POP5* increased telomere length as predicted by our statistical analyses.
244 CRISPR/Cas9 deletion of the predicted causal regions for signals attributed to these genes in
245 immortalized blood cells reduced expression of both genes, further supporting the conclusion
246 that *KBTBD6* and *POP5* are the causal genes at these telomere length association signals.
247 Together this work shows the utility of human telomere length GWAS in identifying new aspects
248 of telomere biology.

249 Results

250 Trans-ancestry meta-analysis of leukocyte telomere length 251 identifies 7 novel signals

252 We leveraged four GWAS with non-overlapping cohorts in a trans-ancestry meta-analysis of
253 211,379 individuals. Three studies were homogenous ancestries of European (C. Li et al. 2020),
254 Singaporean Chinese (Dorajoo et al. 2019), or Bangladeshi (Delgado et al. 2018) individuals.
255 The fourth study used HARE (Fang et al. 2019) to broadly categorize individuals as European,
256 African, Asian, or Hispanic/Latino and generated ancestry-specific summary statistics (Taub et
257 al. 2022)(Supplementary Table 1). We meta-analyzed these seven sets of summary statistics
258 and broadly refer to the Asian, Singaporean Chinese, and Bangladeshi individuals as Asian in
259 this manuscript (Figure 1). Across the four studies telomere length was estimated from blood
260 leukocytes computationally from whole genome sequencing data using TelSeq (Taub et al.
261 2022) or experimentally using qPCR or a Luminex-based platform (Delgado et al. 2018; Dorajoo
262 et al. 2019; C. Li et al. 2020). These studies previously demonstrated that all three assays are
263 well correlated with telomere Southern blots. We used a random-effects model to identify 56
264 genome-wide significant loci (p -value $< 5 \times 10^{-8}$) including seven novel signals (Figure 1,
265 Supplementary Table 2, Methods). Loci were considered novel if there were no other reported
266 sentinels within 1 Mb of the lead single nucleotide polymorphism (SNP) at the locus.

267 Fine-mapping analyses nominate putative causal variants and 268 genes affecting telomere length

269 Colocalization analysis suggests genes underlying association signals

270 We used colocalization analysis (Giambartolomei et al. 2014) to determine whether each of our
271 GWAS signals overlapped a signal from an independent quantitative trait locus (QTL) dataset
272 (Methods), indicating causal genetic variants shared between telomere length and gene
273 regulation. We began by examining large-scale expression quantitative trait locus (eQTL) and
274 splicing quantitative trait locus (sQTL) datasets from diverse cellular contexts. Each GWAS
275 included in our meta-analysis estimated telomere length from leukocytes extracted from whole
276 blood. However, strong QTLs are often shared across cellular contexts (GTEx Consortium
277 2020) and telomere length is correlated across GTEx tissues (Demanelis et al. 2020); therefore,
278 we included all 49 GTEx v8 tissues in our colocalization analysis. We found that 32 of 56 meta-
279 analysis signals strongly colocalized ($PPH4 > 0.7$) with at least one eQTL or sQTL in at least
280 one tissue (Supplementary Figure 1A,B,E). 12 signals colocalized ($PPH4 > 0.7$) with an eQTL or
281 sQTL across more than five tissues and there was colocalization ($PPH4 > 0.7$) of at least one
282 meta-analysis signal with at least one eQTL or sQTL in 45 out of 49 GTEx tissues
283 (Supplementary Tables 3-4). We also conducted colocalization analysis using eQTLGen eQTLs
284 (Võsa et al. 2021) and DICE eQTLs (Schmiedel et al. 2018; Võsa et al. 2021) (Supplementary
285 Tables 5-6). eQTLGen increases power, with 31,685 individuals compared to GTEx whole blood

286 with 755 individuals. DICE introduces cell type specificity, with eQTLs called from RNA-seq on
287 13 sorted blood and immune cell types, in 91 individuals. 11 of our signals colocalized ($PPH4 >$
288 0.7) with eQTLGen eQTLs (Supplementary Figure 1C) and 9 signals colocalized with DICE
289 eQTLs in at least one cell type (Supplementary Figure 1D). Together, we found colocalization
290 data to suggest putative target genes for 33 of our 56 signals (Figure 2A). Only 4 signals
291 colocalized in all four QTL datasets and 19 of the signals with supporting colocalization data
292 only colocalized in one dataset (Figure 2B).

293
294 To identify putative molecular mechanisms underlying each signal, we synthesized the available
295 data to converge on a high likelihood candidate gene, where possible (Methods, Supplemental
296 Note). 28 meta-analysis signals colocalized with QTLs for one gene but in multiple cellular
297 contexts (Supplementary Tables 3-4). For example, the signal led by rs10111287 colocalized
298 best with a *VIRMA* eQTL in thyroid (Figure 2C), but also significantly colocalized with *VIRMA*
299 eQTLs in stomach and whole blood. Across genes, this signal only significantly colocalized with
300 *VIRMA* eQTLs which made it straightforward to conclude this signal is likely linked to regulating
301 *VIRMA* gene expression. Importantly, these results are not sufficient to make conclusions about
302 the relevance of specific cellular contexts. Observed colocalization tends to correlate with the
303 strength of the QTL, exemplified by the trend across the *VIRMA* eQTLs in thyroid (eQTL min
304 $p=3.79 \times 10^{-9}$, $PPH4=0.922$), stomach (eQTL min $p=5.94 \times 10^{-7}$, $PPH4=0.758$), and whole blood
305 (eQTL min $p=2.13 \times 10^{-5}$, $PPH4=0.567$). Variable power in eQTL data across tissues or cohorts is
306 one reason that colocalization analysis is limited to suggesting candidate causal genes but not
307 relevant cellular contexts (Urbut et al. 2019; Arvanitis et al. 2022).

308 Interpreting sQTL colocalization results

309 13 meta-analysis signals colocalized ($PPH4 > 0.7$) with a GTEx sQTL (Figure 2A-B), of which 4
310 also colocalized with an eQTL for the same gene (Supplementary Figure 1E). sQTLs are called
311 based on exon read depth relative to other exons in the splicing cluster; a reduction in the
312 expression levels of just one exon can result in the locus also being reported as an eQTL due to
313 fewer total reads mapping to the gene. Therefore, it is possible for a signal regulating splicing to
314 have colocalization results with an sQTL and an eQTL. This was the case for the signal led by
315 rs7193541 (Figure 2D) which colocalized with an *RFWD3* sQTL in cultured fibroblasts
316 ($PPH4=1.000$) and an *RFWD3* eQTL in skeletal muscle (Supplemental Note, $PPH4=0.993$).
317 This meta-analysis signal also colocalized ($PPH4 > 0.7$) with an *RFWD3* sQTL in two other
318 GTEx tissues (EBV-transformed lymphocytes and brain cerebellar hemisphere) and an *RFWD3*
319 eQTL in seven other GTEx tissues (adipose visceral omentum, adrenal gland, breast mammary
320 tissue, liver, prostate, minor salivary gland, and transverse colon). We can be confident that
321 splicing is the likely molecular mechanism if the splicing cluster is clear and supported by effects
322 on expression over affected exons. A LeafCutter (Y. I. Li et al. 2018) plot of this splicing cluster
323 demonstrated that individuals with more copies of the lead SNP at this locus increasingly
324 excluded the fourteenth exon in *RFWD3* (Figure 2D). This was further supported by examining
325 the RNA expression alignment which showed decreased expression of only the fourteenth exon
326 in individuals with one or two copies of rs7193541 (Supplementary Figure 1F). This exon is
327 excluded in observed *RFWD3* protein isoforms (NP_001357465.1). These results lend strong
328 support to the conclusion that this meta-analysis signal is driven by the association of telomere

329 length with the regulation of *RFWD3* splicing and is it possible that this isoform may have
330 distinct molecular effects on telomere length.

331 Interpreting conflicting colocalization analysis results

332 While colocalization analysis is an excellent tool for identifying potential causal genes for a
333 meta-analysis signal, comparison across diverse cellular contexts and between datasets at
334 times led to multiple putative causal genes. There were 6 meta-analysis signal-gene QTL
335 colocalization pairs that were replicated between datasets (Supplementary Figure 1E). In 19
336 cases there was only colocalization evidence from one QTL dataset (Figure 2B) and in 14 cases
337 there was conflicting colocalization results for a meta-analysis signal (Supplemental Note). For
338 example, the signal led by rs59922886 colocalized strongly with a *CTC1* eQTL in GTEx sun
339 exposed skin ($PPH4 = 0.861$). But in eQTLGen the same meta-analysis signal best colocalized
340 with an *AURKB* eQTL ($PPH4=0.919$). Colocalization analysis from DICE further supported
341 attribution to *CTC1* where the signal colocalized with a *CTC1* eQTL in M2 cells ($PPH4=0.641$).
342 In this case, known biology allowed us to confidently attribute the signal to *CTC1* because *CTC1*
343 functions as part of the CST complex to regulate telomere length (Miyake et al. 2009;
344 Surovtseva et al. 2009).

345
346 Recently there has been discussion about whether assigning genes to GWAS or meta-analysis
347 signals should rely upon colocalization analysis as opposed to the proximal gene (Mostafavi et
348 al. 2022). 20 of our 56 meta-analysis signals best colocalized with the proximal gene. We
349 assigned a gene to each meta-analysis signal based on known biology of proximal genes
350 (proximity-plus-knowledge) (Okamoto et al. 2023), colocalization analysis results, or the
351 proximal gene where no other information was available. We discuss these situations and our
352 rationale for putative causal gene assignment in the Supplemental Note.

353 Credible set analysis suggests that some loci consist of multiple
354 independent causal variants which regulate the same gene in different
355 contexts

356 To identify putative causal SNPs at each locus we applied fine-mapping using SuSiE (Zou et al.
357 2022) to estimate 95% credible sets. This analysis results in a set of SNPs estimated to contain
358 a causal SNP with 95% confidence based on GWAS summary statistics and accounting for
359 linkage disequilibrium estimates. We were able to identify 95% credible sets at 38 of 56 loci
360 (Supplemental Table 7, Methods).

361
362 SuSiE identified two credible sets for the signal led by rs35510081 (Figure 2E). We did not
363 observe any significant colocalization results for this locus. It is not unusual for a considerable
364 proportion of GWAS signals to not colocalize with QTLs (Chun et al. 2017; Umans, Battle, and
365 Gilad 2021; Connally et al. 2022; Mostafavi et al. 2022) and in such cases, prior knowledge and
366 proximity to nearby genes is considered. In this case *TERC*, the RNA component of telomerase,
367 is not the immediate proximal gene but is nearby (4.5 kb). Given the *a priori* information we
368 have about *TERC* as a component of telomerase (Feng et al. 1995), we can be confident

369 attributing this signal to *TERC*. In this and similar cases known biological information
370 superseded the proximal gene or colocalization analysis results in assigning the peak
371 (Supplemental Note).
372
373 16 of the 38 loci where credible set estimation was possible are predicted to have multiple
374 causal SNPs. The number of predicted causal SNPs at each locus is consistent with conditional
375 analysis on the pooled ancestry GWAS (Taub et al. 2022) (Supplementary Figure 1G). Many of
376 these signals also have stronger association with telomere length and the detection of multiple
377 causal SNPs is likely due to increased power. The exceptions to this trend are the *TERF1* locus,
378 which is a telomere binding protein (Zhong et al. 1992), and the *DCLRE1B* (aka *APOLLO*)
379 locus, which is important for telomere end processing (Lenain et al. 2006; van Overbeek and de
380 Lange 2006; Wu et al. 2010). The association signals at these loci were not as strong
381 ($p=2.04\times 10^{-12}$ and $p=3.26\times 10^{-8}$, respectively) yet are estimated to have 6 and 3 causal SNPs at
382 the signals, respectively. We previously demonstrated that the multiple signals at the *OBFC1*
383 (aka *STN1*) locus colocalize strongly with *OBFC1* eQTLs in distinct tissues (Taub et al. 2022).
384 This is also true for *NAF1* (Supplementary Figure 1H). Both *NAF1* and *OBFC1* could be
385 considered core telomere length regulation genes as they have direct mechanisms on
386 biosynthesis and regulation of telomerase (Stanley et al. 2016; Miyake et al. 2009; Surovtseva
387 et al. 2009) and their independent signals could reflect distinct regulatory mechanisms across
388 cellular contexts. However, as discussed above, QTL detection can be influenced by technical
389 factors, and from this work alone we are unable to eliminate the possibility that there may be
390 undetected QTLs in these cellular contexts that would colocalize with one another. But the
391 prevalence of multiple causal SNPs at many association signals reiterates the importance of
392 these core genes in telomere length regulation across cellular contexts.

393 **Genes suggested by colocalization analysis highlight nucleotide
394 synthesis and ubiquitination**

395 We looked for GO biological process pathway enrichment using PANTHER (Mi et al. 2019;
396 Thomas et al. 2022) and observed very strong enrichment of telomere regulation and DNA
397 damage response pathways, as expected (Supplementary Table 8). We observed similar GO
398 process enrichment using proximal genes and colocalization analysis-supported genes
399 (Supplementary Figure 2). We also observed significant enrichment of nucleotide synthesis
400 processes (e.g. cellular aromatic compound metabolic process, nucleic acid metabolic process).
401 The importance of dNTP pools in regulating telomerase has been well documented (Hammond
402 and Cech 1997; Gupta et al. 2013; Maicher et al. 2017; van Mourik et al. 2018) and one of the
403 GWAS included in our meta-analysis also highlighted the importance of nucleotide metabolism
404 in telomere length regulation (C. Li et al. 2020). Though we did not observe enrichment of any
405 protein degradation biological processes, we attributed several of our meta-analysis signals to
406 genes involved in proteasomal degradation including *UBE2D2*, *KBTBD6*, *PSMB4*, and *RFWD3*.
407 *UBE2D2* is proximal to the rs56099285 signal and is an E2 ubiquitin conjugating enzyme
408 (Saville et al. 2004). The signal near rs1411041 colocalized strongly with both *KBTBD6* and
409 *KBTBD7*; these neighboring genes function as part of an E3-ubiquitin ligase complex (Genau et
410 al. 2015). Additionally, we observed a signal near rs12044242 which we attributed to *PSMB4*, a

411 non-catalytic component of the 20S proteasome (Nothwang et al. 1994), and a signal near
412 rs7193541 which we and others attributed to *RFWD3*, an E3 ubiquitin ligase (Fu et al. 2010).
413 Together this collection of genes highlights an unappreciated role of ubiquitination regulation in
414 telomere length regulation dynamics.

415 **Meta-analysis signals are enriched for transcription factor binding
416 sites of transcription factors with roles in telomere length
417 regulation**

418 Several transcription factors are known to regulate core telomere genes and disruption or
419 creation of their transcription factor binding sites can result in dysregulation of telomerase and
420 telomere length regulation (Huang et al. 2013). We examined whether the 95% credible set
421 SNPs for our meta-analysis signals were enriched for transcription factor binding sites of any
422 transcription factors with known consensus sequence using ENCODE ChIP-seq data (Figure
423 3A)(ENCODE Project Consortium 2012; Luo et al. 2020) or ReMap consensus sequences
424 (Supplementary Figure 3A, Methods)(Hammal et al. 2022). We also analyzed the enrichment of
425 the lead SNP alone at each meta-analysis signal (Supplementary Figure 3B-C). Many
426 transcription factors involved in telomere length regulation had binding sites that were enriched
427 in our meta-analysis using both analyses (Figure 3A, Supplementary Figure 3A, Supplementary
428 Table 9). The transcription factor binding site enrichment calculated using ENCODE data was
429 correlated with that of ReMap (95% credible set analysis $R^2 = 0.336$, lead SNP analysis $R^2 =$
430 0.589)(Supplementary Figure 3D-E).

431
432 Previous work demonstrated that PAX5 increases *TERT* expression in B cells and fibroblasts
433 (Bougel et al. 2010; Qin et al. 2021). We observed that there is a PAX5 transcription factor
434 binding site overlapping the signal led by rs12044242, which we assigned to *PSMB4*
435 (Supplemental Note). This SNP ablates a highly weighted cytosine in the consensus sequence
436 and overlaps ChIP-seq peaks for activating histone marks (H3K4me3, H3K1me1, H3K27ac)
437 and binding sites for transcriptional regulators (POL2, CTCF, HDAC1, HDAC2) (Figure 3B).
438 Lead SNPs at signals we attributed to *OBFC1* and *TINF2*, both of which produce key telomere
439 binding proteins, overlap binding sites for SOX2 and KLF4, respectively. In addition, one of our
440 novel signals, which we attributed to the proximal gene *RRP12*, overlaps a MYC binding site.
441 Furthermore, MYC is a well established regulator of *TERT* expression (Greider 1999). SOX2,
442 KLF4, and MYC are pluripotency factors (Takahashi and Yamanaka 2006) and the presence of
443 their binding sites at these telomere length association signals suggests regulatory roles for
444 these genes in pluripotent cells. Our meta-analysis lead SNPs also overlapped transcription
445 factor binding sites for FOXE1, GABPA, and HMBOX1 (Supplementary Table 10) which have all
446 been reported to regulate expression of *TERT*, the protein component of telomerase (Bullock et
447 al. 2016; Helbig et al. 2017; S. Zhou et al. 2017). Present literature on this topic has been
448 focused on transcription factors regulating telomerase; these results demonstrate that these
449 transcription factors may regulate other key telomere length regulation genes.

450 **TCL1A 95% credible set SNPs are more strongly associated with**
451 **telomere length in older individuals**

452 Because age accounts for a significant amount of telomere length variation (Demanelis et al.
453 2020), we ran a GWAS with an interaction term between age and genotype. Five signals had a
454 genotype x age p-value that was below genome-wide significance ($p\text{-value} < 5.39 \times 10^{-9}$) and
455 another 48 signals had genotype x age p-values that cleared suggestive thresholds ($p\text{-value} <$
456 5×10^{-5}) (Supplementary Table 11). None of the genome-wide significant interaction signals were
457 within 2 Mb of a meta-analysis signal, therefore we ran a GWAS stratified by age as an
458 orthogonal approach (Supplementary Table 12). This analysis required individual-level data,
459 therefore it was limited to the 109,122 individuals from TOPMed. We divided these individuals
460 into three age groups ([0, 43], (43, 61], and (61, 98]) such that there were a similar number of
461 individuals in all three groups. Expanding the analysis to more granular age groups was not
462 possible with this sample size without singularity issues in the GWAS analysis. Although the
463 ratio of males to females was similar between groups (Supplementary Figure 4A), the
464 distribution of ancestries varied such that the proportion of European individuals increased over
465 age (Supplementary Figure 4B). We filtered candidate regions to identify loci with similar minor
466 allele counts between groups, but with non-overlapping effect size estimate confidence
467 intervals. We also required that the locus have a minimum SNP x age interaction $p\text{-value} <$
468 5×10^{-5} and that the locus have a genome-wide significant association signal ($p < 5 \times 10^{-8}$) in the
469 meta-analysis (Methods). The rs2296312 locus was the single locus that met the filtering
470 pipeline criteria with a SNP x age interaction $p\text{-value} = 2.599 \times 10^{-6}$ (Figure 4A). The effect size
471 estimate increased over age (Figure 4B) and this trend was independent of ancestry as the
472 effect estimate for rs2296312 was similar between all examined ancestries (Figure 4C). The
473 association signal increased in significance over age, mirroring the effect size estimate trend
474 (Figure 4D-F). In the meta-analysis, rs2296312 was part of a peak that colocalized best with a
475 *TCL1A* eQTL from GTEx whole blood ($PPH4 = 0.714$). SuSiE credible set analysis identified 14
476 SNPs in the credible set for this peak all of which have a similar trend in their effect estimates
477 over age. Together these data demonstrate that putative causal SNPs regulating *TCL1A*
478 expression are associated with age and telomere length. *TCL1A* activates the AKT signaling
479 pathway increasing cellular proliferation (Pekarsky et al. 2000) and *TCL1A* expression was
480 previously reported to decrease in whole blood as age increases (Demanelis et al. 2020).
481 Furthermore, rs2296312 has been reported to act through *TCL1A* to be protective against loss
482 of the Y chromosome and clonal hematopoiesis (W. Zhou et al. 2016; Weinstock et al. 2023).
483 Our data are concordant with previous findings and suggest that these protective phenomena
484 reduce proliferation, leading to longer telomere length.

485 **Blood and immune cells are a key cell type for telomere length**

486 To understand the biology of our associated loci and to support validation of our findings, we
487 first had to determine the most relevant cellular context to examine telomere length associated
488 signals. Telomere length was estimated from blood leukocytes in all samples, however,
489 telomere length regulation is relevant in many different cell types, to differing extents (Armanios
490 2013). In relevant cellular contexts, causal SNPs are expected to be in genomic regions with

491 active chromatin states. We tested for enrichment of the meta-analysis lead SNPs across
492 Roadmap Epigenomics samples (Supplementary Table 13) and the 25 state chromHMM model
493 (Figure 5A) (Roadmap Epigenomics Consortium et al. 2015). The strongest enrichment of
494 several active chromatin states was observed in blood and T-cell samples. Because the
495 chromHMM model is a predicted state, we also examined whether there was enrichment when
496 looking at the primary data for specific chromatin marks. Consistent with the chromHMM model
497 results, we saw that the strongest enrichment of lead SNPs in H3K4me1 and H3K27ac peaks
498 was in blood and T-cell samples (Supplementary Figure 5).

499
500 As an orthogonal approach we ran stratified linkage disequilibrium score regression (S-LDSC)
501 on the meta-analyzed European individuals in our study (Methods). S-LDSC uses the meta-
502 analysis summary statistics to examine whether, given linkage disequilibrium, a category of
503 SNPs has increased association with telomere length compared to SNPs not in that category. In
504 this case, we used categories based on previously reported cell type specific annotations based
505 on gene expression or chromatin marks (Finucane et al. 2015). Using both gene expression and
506 chromatin marks we observed that the blood/immune cell category was the only category that
507 was significantly enriched (Figure 5B-C). Together with the Roadmap Epigenomics enrichment
508 analysis, these data suggest that blood and immune cells are the most relevant cell type for
509 genetic regulation of leukocyte telomere length.

510 Overexpression of *POP5* and *KBTBD6* increases telomere length 511 in HeLa-FRT cells

512 We began our validation experiments by screening candidate genes for an effect on telomere
513 length. It has been well documented that shRNAs with loss of function effects often become
514 epigenetically silenced over time in cell culture (Goff 2021). Therefore, we identified candidate
515 genes where the lead SNP was predicted to increase gene expression. Of those we chose five
516 genes that had one known protein coding sequence isoform, had strong colocalization analysis
517 results, and had some known biology: *OBFC1*, *PSMB4*, *CBX1*, *KBTBD6*, and *POP5* (Methods).
518 To generate constitutive overexpression cell lines we used the Flp-in system (Thermo Fisher
519 Scientific) to incorporate the FLAG-tagged gene of interest under the control of a CMV promoter
520 into HeLa-FRT cells (Methods). HeLa cells are not derived from blood or immune cells but are
521 highly tractable for this screening stage of the validation experiments. Three independent
522 transfection clones were passaged and the effect of gene overexpression on telomere length
523 was observed by Southern blot.

524
525 The lead SNPs for each meta-analysis signal that we attributed to these genes was estimated to
526 have a positive effect on telomere length in our meta-analysis (Supplementary Table 2),
527 therefore we predicted that overexpression of these genes should increase telomere length. As
528 a control we also overexpressed *GFP*, which had no effect on telomere length, as expected
529 (Figure 6). Overexpression of *OBFC1* or *PSMB4* also had no effect on telomere length
530 (Supplementary Figure 6A). Overexpression of *CBX1* slightly increased telomere length
531 (Supplementary Figure 6A) while overexpression of *KBTBD6* or *POP5* showed a clear telomere
532 length increase over increased cell division, concordant with the expectation from our meta-

533 analysis (Figure 6). The median, minimum, and maximum telomere lengths were estimated for
534 each lane in the Southern blots using ImageQuant TL (Methods, Supplementary Figure 7).
535 Protein expression was assayed by western blot analysis. Western blot comparison of early
536 population doubling timepoints to late population doubling timepoints showed that *POP5*
537 overexpression was maintained through the duration of the experiment while *KBTBD6*
538 overexpression was suppressed in clones 6 and 7 (Supplementary Figure 6B). This likely
539 accounts for the plateau in telomere lengthening in *KBTBD6* overexpression clone 7 (Figure 6A-
540 B).

541 **CRISPR removal of *KBTBD6* and *POP5* regulatory regions**
542 **reduced expression of each gene**

543 We next sought to examine whether high likelihood causal elements in the respective meta-
544 analysis signals affect the expression of these genes. SuSiE was unable to predict a 95%
545 credible set analysis for the *POP5* locus, likely because the association signal is below genome-
546 wide significance in the summary statistics used for fine-mapping (Methods). We utilized a
547 second credible set estimation algorithm, CAVIAR (Hormozdiari et al. 2014), with a single
548 assumed causal SNP, however, the 95% credible set included 3,041 SNPs and did not reduce
549 the position range of the region (Supplementary Figure 8A). In the absence of useful 95%
550 credible set estimation, we considered the genome region spanning the lead SNP and SNPs
551 with $r^2 > 0.9$ and $p\text{-value} < 1 \times 10^{-6}$ (Supplementary Figure 8B). To prioritize a subset of this 124
552 kb region, we intersected these top SNPs with ATAC-seq, Hi-C, and chromatin ChIP-seq data
553 from blood samples, but were unable to form a consensus (not shown). We removed the 124 kb
554 region upstream of *POP5* using CRISPR/Cas9 in K562 cells (Supplementary Figure 8C) and
555 identified 24 clones where the region had been successfully deleted at one allele, generating
556 heterozygous deletions (Methods). qPCR analysis (primer sequences in Supplementary Table
557 14) of these clones showed significantly reduced *POP5* expression compared to controls
558 ($p=0.047$) demonstrating that this region contains critical SNPs for regulating *POP5* expression
559 in blood cells (Figure 7A).

560
561 KBTBD6 functions as a component of an E3 ubiquitin ligase complex along with CUL3 and
562 KBTBD7 (Genau et al. 2015). *KBTBD7* is a neighboring gene and we observed colocalization
563 with the signal led by rs1411041 with both *KBTBD6* and *KBTBD7* eQTLs in GTEx
564 (Supplementary Table 3). We were interested in determining whether CRISPR editing of high
565 likelihood SNPs in this meta-analysis signal would affect the expression of *KBTBD6*, *KBTBD7*,
566 or both. We intersected the position of the 99% credible set SNPs (Figure 7B) with ATAC-seq
567 peaks in blood samples (Figure 7C). Only one SNP, rs9525462, was located in a region where
568 the ATAC-seq peaks were shared across blood samples. rs9525462 was predicted to be in the
569 99% credible set by both SuSiE and a second credible set analysis software, CAVIAR. This
570 region overlaps promoter and enhancer chromatin marks (H3K27ac and H3K4me3,
571 respectively) in Roadmap Epigenomics blood samples (Figure 7D), further supporting that this
572 region is in an active state in blood samples. We used CRISPR/Cas9 to remove the 938 bp
573 ATAC-seq peak region in K562 cells (Supplementary Figure 8D) and identified 31 clones where
574 this region had been successfully removed at least at one allele, generating heterozygous

575 deletions (Methods). Clones with the ATAC-seq peak region knocked-out had significantly
576 decreased *KBTBD6* ($p=0.003037$) and *KBTBD7* ($p=2.093e-05$) expression relative to controls,
577 demonstrating that this region is critical in regulating the expression of both genes. Together
578 these data demonstrate that our meta-analysis signals are driven by *POP5* and
579 *KBTBD6/KBTBD7*, and we identify them as novel telomere length regulation genes.

580 Discussion

581 Our results demonstrate the utility of telomere length GWAS in the identification of novel
582 telomere length regulatory mechanisms. Our fine-mapping of telomere length associated loci
583 and discussion of relevant cell types in which to validate these signals is a useful platform for
584 further experimental validation. We determined that blood and immune cells are the most
585 relevant cellular context to examine leukocyte telomere length association signals based on
586 chromatin accessibility and S-LDSC. Telomere length was estimated from blood leukocytes in
587 all samples; it is possible that this boosted the strength of blood and immune cell enrichment in
588 our analyses. However, telomere length regulation is relevant in many different cell types, to
589 differing extents (Armanios 2013). We propose that blood and immune cells are the most
590 relevant cell type for leukocyte telomere length GWAS validation experiments, but that these
591 genes contribute to telomere length regulation across cellular contexts. This idea is further
592 supported by our observation that independent association signals at the *OBFC1* (Taub et al.
593 2022) and *NAF1* loci colocalize with eQTLs for their respective genes in different cellular
594 contexts.

595
596 While prior telomere length GWAS (C. Li et al. 2020; Codd et al. 2021) have used colocalization
597 to support putative causal genes for their association signals, we extended this work to include
598 multiple QTL datasets across tissues and to include splicing in addition to expression QTLs.
599 This made it possible to uncover splicing mechanisms that may be associated with telomere
600 length, as we saw with *RFWD3*, and increased the confidence of our putative causal gene
601 assignment.

602
603 Experimental validation of putative causal genes identified novel genes involved in telomere
604 length regulation. *POP5* is a subunit of the Ribonuclease P/MRP complex (van Eenennaam et
605 al. 2001). Previous work in *S. cerevisiae* demonstrated a role for specific components of the
606 homologous complex in telomerase holoenzyme complex regulation (Laterreur et al. 2018). In
607 addition, *POP1*, another subunit of the Ribonuclease P/MRP complex, was recently shown to
608 interact with human telomerase RNA (Zhu et al. 2023). Together, these results suggest that the
609 role of the *POP* proteins also play a role in human telomerase regulation. *KBTBD6* and *KBTBD7*
610 are members of an E3 ubiquitin ligase complex (Genau et al. 2015). CRISPR/Cas9 deletion of
611 the high-likelihood causal region affected expression of both genes, but overexpression of
612 *KBTBD6* alone affected telomere length. Our results suggest that increased expression of the
613 *KBTBD6-KBTBD7-Cul3* complex or altered complex stoichiometry affect telomere length.

614
615 In addition to the *KBTBD6/KBTBD7* signal, we observed association signals that we attribute to
616 *RFWD3*, another E3 ubiquitin ligase, *PSMB4*, a component of the core proteasome, and

617 *UBE2D2*, an E2 ubiquitin conjugating enzyme. ATM and ATR are kinases that contribute to the
618 DNA damage response and telomere length regulation, though phosphorylation targets with
619 strong effects on telomere length regulation have remained elusive (S. S. Lee et al. 2015; Tong
620 et al. 2015; de Lange 2018; Keener, Connelly, and Greider 2019). Prior proteome analysis
621 demonstrated that ATM/ATR regulate the ubiquitin-proteasome pathway in response to DNA
622 damage and validated RFWD3 as an ATM/ATR substrate (Mu et al. 2007; Fu et al. 2010). Our
623 results underscore the importance of ubiquitination in telomere length regulation; future work
624 examining whether ATM/ATR substrates regulating the ubiquitination-proteasome pathway
625 affect telomere length may identify ATM/ATR substrates with important roles in telomere length
626 regulation. Furthermore, identification of the ubiquitination targets by these E3 ubiquitin ligases
627 may reveal novel telomere length regulation mechanisms. Together, this work demonstrates the
628 potential contribution of telomere length GWAS to understanding mechanisms underlying
629 telomere length regulation. Future work extending the findings reported here and validating
630 additional loci will increase our understanding of both the genetics and molecular mechanisms
631 underlying telomere length regulation.

632 Acknowledgements

633 We thank Chen Li, Claudia Langenberg, Veryan Codd, Dayana Delgado, Brandon Pierce, and
634 Rajkumar Dorajoo, in addition to all the individuals who were sampled, for providing summary
635 statistics from their telomere length GWAS that were included in this meta-analysis. The whole-
636 genome sequencing for the Trans-Omics in Precision Medicine (TOPMed) program was
637 supported by the National Heart, Lung, and Blood Institute (NHLBI). Specific funding sources for
638 each study and genomic center are given in the Supplemental Acknowledgements. px458 was a
639 gift from Andrew Holland's lab. We acknowledge the ENCODE Consortium and the following
640 ENCODE production laboratories: Michael Snyder and J. Michael Cherry. We would also like to
641 thank Margaret Strong, Emily DeBoy, the JHU Synthesis & Sequencing Facility, and the JHU
642 Ross Flow Cytometry Core for their technical assistance, Andrew Holland and Emmanouil
643 Tampakakis for helpful discussion about CRISPR/Cas9 editing experiments, and the Mathias,
644 Greider, and Battle labs for helpful discussion throughout the course of this work.

645 Author Contributions

646 R.Keener, C.W.G, R.A.M, and A.B. conceived of and led the study. R.Keener, S.B.C., C.J.C.,
647 M.A.T., J.S.W., L.R.Y., L.M.R., A.P.R., C.W.G., R.A.M., and A.B. drafted the manuscript.
648 R.Keener, S.B.C., C.J.C, M.A.T, M.P.C., J.S.W., B.N., B.J.S., M.A., C.W.G, R.A.M., and A.B.
649 contributed substantive analytical guidance. R.Keener, S.B.C., C.J.C, M.A.T, M.P.C., J.S.W.,
650 B.N., B.J.S., M.A., C.W.G, R.A.M., and A.B. performed and led the analysis. R.Keener, M.A.T.,
651 M.P.C., J.S.W., S.A., P.L.A., L.B., L.C.B., J.B., E.R.B., J.A.B., B.E.C., J.C.C., Y.C., L.A.C., B.C.,
652 B.I.F., M.T.G., S.R.H., L.H., M.R.I., C.R.I., J.M.J., E.E.K., C.K., R.L.M., S.N., N.P., P.A.P., J.I.R.,
653 K.D.T., M.J.T., B.W., L.R.Y., I.V.Y., C.A., D.K.A., A.E.A.K., K.C.B., J.C.B., T.W.B., E.B., E.G.B.,
654 A.P.C., Z.C., Y.I.C., D.D., M.dA., P.T.E., M.F., B.D.G., F.D.G., J.H., T.I., S.Kaab, S.L.R.K.,
655 S.Kelly, B.A.K., R.Kumar, R.J.F.L., F.D.M., S.T.M., D.A.M., B.D.M., C.G.M., K.E.N., N.D.P.,

656 J.M.P., B.A.R., S.R., S.S.R., D.R., I.R., D.S., F.S., M.B.S., E.K.S., M.F.S., N.L.S., A.V.S.,
657 H.K.T., R.S.V., S.T.W., L.K.W., Y.Z., E.Z., L.M.R., A.P.R., M.A., R.A.M., and A.B. were involved
658 in the guidance, collection, and analysis of one or more of the studies that contributed data to
659 this article. All of the authors read and approved the final draft.

660 Disclosures

661 The authors declare the following competing interests: Juan C. Celedon received inhaled
662 steroids from Merck for an NIH-funded study, unrelated to this work. Ivana V. Yang is a
663 consultant for Eleven P15, a company focused on the early diagnosis and treatment of lung
664 fibrosis. Dr. Patrick T. Ellinor receives sponsored research support from Bayer AG, IBM
665 Research, Bristol Myers Squibb and Pfizer; he has also served on advisory boards or consulted
666 for Bayer AG, MyoKardia and Novartis. Dr. David Schwartz is a founder and chief scientific
667 officer of Eleven P15, a company focused on the early diagnosis and treatment of lung fibrosis.
668 Laura M. Raffield is a consultant for the TOPMed Administrative Coordinating Center (through
669 Westat). Alexis Battle is a shareholder in Alphabet, Inc.; consultant for Third Rock Ventures,
670 LLC. The views expressed in this manuscript are those of the authors and do not necessarily
671 represent the views of the National Heart, Lung, and Blood Institute; the National Institutes of
672 Health; or the U.S. Department of Health and Human Services.

673 Methods

674 Studies and telomere length estimation

675 We incorporated four telomere length GWAS with non-overlapping cohorts. (Delgado et al.
676 2018) had 5,075 samples from Bangladeshi individuals and telomere length was estimated
677 using qPCR or Luminex-based assay. (Dorajoo et al. 2019) had 23,096 samples from
678 Singaporean Chinese individuals and telomere length was estimated using qPCR. (C. Li et al.
679 2020) had 78,592 samples from European individuals and telomere length was estimated using
680 qPCR. (Taub et al. 2022) had 51,654 individuals of European ancestry, 5,683 individuals of
681 Asian ancestry, 29,260 individuals of African ancestry, and 18,019 individuals of Hispanic/Latino
682 ethnicity. In this study telomere length was estimated bioinformatically from whole genome
683 sequencing data (Taliun et al. 2021) using TelSeq (Ding et al. 2014).

684 Meta-analysis

685 One concern with a meta-analysis approach was whether it is reasonable to compare summary
686 statistics from GWAS where telomere length was estimated using different methods. Previous
687 work determined that each method produces telomere length estimates that are highly
688 correlated with Southern blot analysis (Aviv et al. 2011; Pierce et al. 2016; Taub et al. 2022) and
689 in each study telomere length estimates were standardized prior to running the GWAS. We
690 used GWAMA (Mägi and Morris 2010) to conduct a random effect meta-analysis that represents

691 a total of 211,379 individuals. Taub et al. stratified individuals from the Trans-Omics for
692 Precision Medicine (TOPMed) program cohorts by ancestry group where individuals were
693 broadly categorized as European, African, Asian, or Hispanic/Latino using HARE and we
694 maintain language used from that study here for clarity. That study also defined an “Other”
695 group which was not included in our analysis. We provide a list of TOPMed cohorts whose data
696 are represented in the meta-analysis and the broad ancestral groups individuals were
697 categorized as (Supplementary Table 1). A detailed enumeration of individuals over ancestry by
698 TOPMed cohort was previously published in Supplementary Table 1 of Taub et al. SNP
699 positions were converted to hg38 using LiftOver (Hinrichs et al. 2006) prior to meta-analysis.
700 The Delgado et al. summary statistics were harmonized to the forward strand and palindromic
701 SNPs were removed from this dataset. Loci were considered novel if there were no other
702 reported sentinels within 1 Mb of the lead SNP in the signal.
703
704 Lead SNPs were identified by minimum p-value within a 2 Mb window. We examined all loci
705 with at least one variant that was genome-wide significant ($p\text{-value} < 5 \times 10^{-8}$) and had a minor
706 allele frequency > 0.0001 . This excluded loci where the lead SNPs were rs903494390,
707 rs976923370, rs990671169, rs982808930, rs992178597, rs961617801, and rs1324702094.
708 The signal led by rs3131064 is near the *HLA* locus and due to the extensive linkage
709 disequilibrium in this region, we expanded the width of this signal to 4.2 Mb.

710 Colocalization analysis

711 All colocalization analysis was conducted using the coloc package (Giambartolomei et al. 2014)
712 using the coloc.abf() command with the prior probability that the SNP is shared between the two
713 traits (p_{12}) set to 1e-6 and that there was at least 1,000 shared variants between the two
714 datasets. For GTEx_v8 (GTEx Consortium 2020) colocalization we evaluated all genes for
715 which the lead SNP was a significant QTL in any of the 49 GTEx_v8 tissues. For colocalization
716 with eQTLGen cis-eQTLs (version available 2019-12-11)(Võsa et al. 2021) and DICE cis-eQTLs
717 (version available 2019-06-07)(Schmiedel et al. 2018) we evaluated all genes within a 2 Mb
718 window centered on the lead SNP and the meta-analysis summary statistics were lifted down to
719 hg19 using LiftOver (Hinrichs et al. 2006) to compare SNPs based on chromosome and
720 position. The X-chromosome signals could not be evaluated for colocalization with eQTLGen
721 data as that dataset is limited to autosomes. Colocalization was conducted using minor allele
722 frequency, p-value, and the number of samples for eQTLGen. Minor allele frequency was
723 estimated from TOPMed pooled across ancestries. For all other colocalization analyses effect
724 size estimates and their standard errors were used. We report the posterior probability that
725 there are two signals but they do not share a causal signal (PPH3) and the posterior probability
726 that there are two signals and they do share a causal signal (PPH4) within the text, figures, and
727 figure legends. Posterior probabilities for the cases that there is no signal in one or either of the
728 datasets (PPH0, PPH1, and PPH2) are reported in the appropriate Supplementary Tables (3-6).
729 We considered cases where PPH4 > 0.7 to be colocalized except for colocalization analysis
730 with DICE cis-eQTLs where we reduced this threshold to PPH4 > 0.5 to account for the reduced
731 power in the dataset. For Manhattan plots colored by linkage disequilibrium, r^2 was calculated
732 using a trans-ancestry group of all TOPMed individuals included in the meta-analysis.

733 Visualizing sQTLs

734 RNA alignment information for each individual was extracted using SAMtools (version 1.16)
735 (Danecek et al. 2021) in the GTEx_v8 cultured fibroblast samples on AnVIL (Schatz et al. 2022).
736 We extracted genotype information from GTEx_v8 for the corresponding individuals and plotted
737 the average alignment depth at each base position (hg38) stratified by genotype using
738 Matplotlib (Hunter 2007). Visualization of LeafCutter (Y. I. Li et al. 2018) splicing clusters was
739 produced using LeafCutter exon-exon junction quantifications generated by GTEx_v8 (GTEx
740 Consortium 2020).

741 Variant fine-mapping

742 Due to the trans-ancestry nature of our meta-analysis we used individual-level data from
743 TOPMed individuals spanning all four ancestries represented in our meta-analysis (European,
744 Asian, African, and Hispanic/Latino) as our linkage disequilibrium reference. Despite the fact
745 that TOPMed individuals represent the largest group in the meta-analysis, the mismatch
746 between the linkage disequilibrium reference and meta-analysis summary statistics was
747 problematic for SuSiE (susieR_0.12.16) (G. Wang et al. 2020; Zou et al. 2022). Therefore, we
748 used summary statistics from the pooled TOPMed GWAS ((Taub et al. 2022) to estimate
749 credible sets for all meta-analysis signals (Supplementary Table 7) and generated a genotype
750 correlation matrix using a random subset, preserving the proportion of ancestries, of 15,000
751 TOPMed individuals to manage SNP density. We did not use a minor allele frequency threshold
752 for SNP inclusion. At 2 loci the signal was over 1 Mb wide and calculating the genetic correlation
753 matrix exceeded the ability of computational resources on the premises. At 16 loci there was not
754 sufficient signal in the TOPMed GWAS to predict a credible set. CAVIAR (Hormozdiari et al.
755 2014) requires specification of the assumed number of causal signals whereas SuSiE jointly
756 models the likelihood of varying numbers of causal signals and converges on the highest
757 likelihood case. Due to this assumption and the computational burden of running CAVIAR, we
758 only ran CAVIAR on the *POP5* and *KBTBD6/KBTBD7* loci.

759
760 For the signal led by rs1411041, which we attributed to *KBTBD6* and targeted for CRISPR/Cas9
761 editing, we further fine-mapped the locus by intersecting the credible set SNPs with ATAC-seq
762 peaks and with ChIP-seq data from Roadmap Epigenomics. ATAC-seq data were downloaded
763 from ENCODE (ENCODE Project Consortium 2012; Luo et al. 2020)(identifiers:
764 ENCFF058UYY, ENCFF333TAT, ENCFF421XIL, ENCFF470YYO, ENCFF558BLC,
765 ENCFF748UZH, ENCFF751CLW, ENCFF788BUI, and ENCFF867TMP) or from ATACdb (F.
766 Wang et al. 2021) (Sample_1195, Sample_1194, Sample_1175, Sample_1171, Sample_1020,
767 Sample_1021, Sample_1209, and Sample_1208). BEDTools (Quinlan and Hall 2010) was used
768 to identify intersecting regions. Roadmap Epigenomic ChIP-seq data was visualized using the
769 WashU Epigenome browser (D. Li et al. 2019).

770 GO enrichment analysis

771 All gene ontology (GO) enrichment analysis was conducted using PANTHER (Thomas et al.
772 2022; Mi et al. 2019) overrepresentation test with the GO Ontology database (released on 2022-
773 07-01) with the all *Homo sapiens* gene set list as the reference list. PANTHER GO biological
774 process complete terms were tested for enrichment using a Fisher's exact test with false
775 discovery rate correction. Proximal genes were assigned as the gene with minimal distance to
776 the gene body in the UCSC genome browser (Kent et al. 2002).

777 Transcription factor binding site analyses

778 To assess the enrichment of 95% credible set SNPs with transcription factor and chromatin
779 regulator DNA binding sites, we downloaded the ENCODE regulation track transcription factor
780 binding site cluster ChIP-seq index file to report data for 330 DNA binding proteins spanning
781 129 cell types (ENCODE Project Consortium et al. 2020). The intersection of variants with
782 transcription factor binding sites was performed by BEDTools v2.29.2 (Quinlan and Hall 2010).
783 We computed the enrichment of 95% credible set SNPs in transcription factor binding sites
784 using a GREGOR Perl based pipeline (Schmidt et al. 2015). Briefly, this pipeline sums
785 independent binomial random variables for the number of index SNPs falling in a single feature
786 and calculates the enrichment p-value using a saddlepoint approximation method. The SNPs
787 are considered to have a positional overlap if the input SNP, or variants in high linkage
788 disequilibrium with the input SNP ($r^2 > 0.7$, linkage disequilibrium window size = 1 Mb), fall
789 within the regulatory features or overlap by ≥ 1 bp. The pairwise linkage disequilibrium (r^2) was
790 computed using the 1000 Genomes European reference panel (1000 Genomes Project
791 Consortium et al. 2015). Transcription factor binding site fold enrichment is measured as the
792 fraction of index SNPs (or SNPs in linkage disequilibrium) overlapping the feature (as observed)
793 over the mean number of overlaps with the control set of SNPs (as expected). Control SNPs are
794 matched based on the number of variants in linkage disequilibrium, minor allele frequency, and
795 distance to the nearest gene of the index SNPs. We also performed the enrichment analysis of
796 95% credible set SNPs with 1,210 DNA-associated factors spanning across 737 cell-tissue
797 types using the peak bed files downloaded from the ReMap 2022 database (Hammal et al.
798 2022) using the same pipeline. In addition, we performed both the ENCODE and ReMap
799 enrichment analyses using only the lead SNP at each signal (Supplementary Figure 3B-C). In
800 addition to the enrichment analysis, we identified transcription factor binding sites overlapping
801 the lead SNP for each meta-analysis association signal by searching the rsID on the UCSC
802 genome browser (Kent et al. 2002; Hinrichs et al. 2006) and identified overlapping binding sites
803 using the JASPAR 2022 track with default settings (Castro-Mondragon et al. 2022). We
804 identified transcription factors with known roles in telomere length regulation by searching
805 PubMed. Publication references supporting known roles for these transcription factors are
806 indicated in Supplementary Table 9.

807 Telomere length GWAS with an age x genotype interaction term

808 We repeated the pooled analysis from Taub et al. 2022 using all 109,122 TOPMed individuals
809 with telomere length estimates. We ran the GWAS including an interaction term for genotype
810 and age in addition to cohort, sequencing center, sex, age at sample collection, and 11
811 genotype PCs as covariates on Analysis Commons (Brody et al. 2017).

812 Age-stratified GWAS

813 We divided the 109,122 TOPMed individuals with telomere length estimates into three age bins:
814 ages 0 - 43 years old, ages 43.1 - 61 years old, and 61.1 - 98 years old. We ran the GWAS
815 including cohort, sequencing center, sex, age at sample collection, and 11 genotype PCs as
816 covariates on Analysis Commons (Brody et al. 2017). TOPMed cohorts included in this analysis
817 are indicated in Supplementary Table 1. There were 36,980 individuals in the [0,43] group,
818 37,470 individuals in the (43,61] group, and 34,671 individuals in the (61,98] group. Any peak
819 that cleared genome-wide significance ($p < 5 \times 10^{-8}$) in at least one age group was considered. We
820 then required that the lead SNP in the signal was evaluated in all three age groups. To ensure a
821 reasonable comparison between groups, we required that the minor allele count for the SNP
822 was at least half of the maximum group minor allele count in each group. Then we identified loci
823 where the effect size estimate confidence interval was non-overlapping in at least one age
824 group. Finally, we examined loci that had a genotype x age interaction p -value $< 5 \times 10^{-5}$ and had
825 a meta-analysis association p -value $< 5 \times 10^{-8}$.

826 Enrichment of meta-analysis signals in chromatin states

827 We estimated the enrichment of lead meta-analysis signal SNPs across each state of the 25-
828 state chromatin state model from Roadmap Epigenomics (Roadmap Epigenomics Consortium
829 et al. 2015) across all 127 Roadmap Epigenomics samples (Supplementary Table 13). Similarly,
830 Roadmap Epigenomics consolidated narrowPeak files for H3K4me1 and H3K27ac from 98 and
831 127 samples, respectively (Supplementary Table 13), were used to compute the enrichment of
832 lead SNPs in ChIP-seq peak regions for these histone modifications. Control SNPs were
833 randomly selected from the genome and matched for the number of linkage disequilibrium proxy
834 SNPs, the minor allele frequency, and the distance to the nearest gene. The same GREGOR
835 Perl script pipeline (Schmidt et al. 2015) used to evaluate transcription factor binding site
836 enrichment (above) was used for these analyses.

837 Partitioned heritability across cell types (S-LDSC)

838 We limited our analysis to European individuals because the accuracy of this method depends
839 upon an accurate match with the linkage disequilibrium reference panel. Therefore, we meta-
840 analyzed the European individuals from two studies included in our meta-analysis (Li et al.
841 2020; Taub et al. 2022) using GWAMA as described above and ran stratified linkage
842 disequilibrium score regression (S-LDSC, 1.0.1) using the cell-type specific analyses pipeline.
843 We directly used the 1000 Genomes European baseline files, multi-tissue gene expression

844 counts, and multi-tissue chromatin marker data generated as part of the S-LDSC pipeline
845 (Finucane et al. 2015, 2018).

846 Molecular Cloning

847 Gibson assembly primers were designed using Snapgene software (GSL Biotech) and
848 sequencing primers were identified using the GenScript sequencing primer tool. All primers
849 were synthesized by IDT. Primer sequence and a brief description of their use are provided in
850 Supplementary Table 14. Polymerase chain reaction products were amplified using Phusion HS
851 II DNA polymerase (F549; Thermo Fisher). Gibson Assembly was conducted using Gibson
852 Assembly Master Mix (E2611; NEB) according to the recommended protocol. Plasmids were
853 transformed into NEB5 α cells (C2987; NEB), prepared using the QIAprep Miniprep Kit (27104;
854 Qiagen) or the Qiagen Plasmid Midiprep Kit (12143; Qiagen), and sequence verified using the
855 Sanger method at the Johns Hopkins School of Medicine Synthesis & Sequencing Facility.

856 Overexpression constructs

857 Putative causal genes of interest for this experiment were required to fit three conditions:
858 colocalization between the candidate gene GTEx eQTL and a meta-analysis signal, the lead
859 variant at the meta-analysis signal was required to be associated with increased gene
860 expression in the GTEx tissue where colocalization was strongest for that gene, and the gene
861 was required to have one transcriptional isoform reported in NCBI or a coding sequence less
862 than 15 kB, allowing it to be expressed from a plasmid. We note that *POP5* and *CBX1* had
863 multiple transcriptional isoforms, but their transcripts result in a single, shared coding sequence.
864 All cDNA sequences were ordered through GenScript (OHu26641, OHu13170, OHu31184,
865 OHu26125, OHu108607) with the coding sequence subcloned into a pcDNA3.1/C-DYK vector.
866 We added the FLAG tag to the N- or C-terminus in accordance with precedent in the literature:
867 CBX1 C-terminus (Rosnoblet et al. 2011), PSMB4 C-terminus (Brehm et al. 2015), POP5 N-
868 terminus (van Eenennaam et al. 2001), OBFC1 N-terminus (Bhattacharjee et al. 2016), and
869 KBTBD6 N-terminus (Mena et al. 2018). We used Gibson Assembly to add a 3x FLAG tag to
870 the appropriate end and insert the tagged coding sequence into a pcDNA5/FRT vector (Thermo
871 Fisher). We note that we overexpressed the propeptide of PSMB4 (removing amino acids 2-45).

872 Cell Culture

873 HeLa-FLP cells were generated from HeLa cells using the FLP-in system and were cultured in
874 1x Dulbecco's modified Eagle's medium (11965118; Thermo Fisher). K562 cells were
875 purchased from ATCC (CCL-243) and were cultured in 1x RPMI medium (11875119; Thermo).
876 Cells were cultured in the indicated media supplemented with 10% heat-inactivated fetal bovine
877 serum (16140071; Thermo Fisher) and 1% Penicillin-Streptomycin-Glutamine (10378016;
878 Thermo Fisher).

879 Overexpression experiments and passaging

880 For overexpression experiments 100 ng of the indicated overexpression construct and 900 ng of
881 the pOG44 flippase plasmid were co-transfected into HeLa-FLP cells by the use of the FLP-in
882 system using Lipofectamine 3000 (L3000008; Invitrogen) with the recommended protocol and
883 hygromycin resistant (550 µg/mL; 30-240-CR; Corning) cells were examined. The GFP
884 overexpression plasmid (pAMP0605) was previously generated (Pike et al. 2019). For each
885 construct we used one pool of HeLa-FLP cells to conduct multiple independent transfections,
886 which we refer to as independent clones. Twice a week cells were treated with 0.05% trypsin-
887 EDTA (25300054; Invitrogen), washed in 1x PBS (10010049; LifeTech), and counted using a
888 Luna II Automated Cell Counter (Logos Biosystems). The number of population doublings for
889 each passage was estimated as the number of cells counted divided by the number of cells
890 seeded for that passage.

891 Telomere Southern blot analysis

892 For each time point, 2-4x10⁶ cells were collected, washed in 1x PBS (10010049; LifeTech), and
893 pellets stored at -80°C. Genomic DNA was isolated using the Promega Wizard gDNA kit
894 (A1120; Promega) as directed. Genomic DNA was quantified using the broad range double-
895 stranded DNA kit (Q32853; Thermo Fisher) for QuBit 3.0 (Thermo Fisher). Approximately 1 µg
896 of genomic DNA was restricted with *Hinf* (R0155M; NEB) and *Rsa*I (R0167L; NEB) and
897 resolved by 0.8% Tris-acetate-EDTA (TAE) agarose gel electrophoresis. 10 ng of a 1kB Plus
898 DNA ladder (N3200; NEB) was included on either side of the Southern as a size reference.
899 Following denaturation (0.5 M NaOH, 1.5M NaCl) and neutralization (1.5 M NaCl, 0.5 M Tris-
900 HCL, pH 7.4), the DNA was transferred in 10x SSC (3M NaCl, 0.35 M NaCitrate) to a Nylon
901 membrane (RPN303B; GE Healthcare) by vacuum blotting (Boekel Scientific). The membrane
902 was UV crosslinked (Stratagene), prehybridized in Church buffer (0.5M Na2HP04, pH7.2, 7%
903 SDS, 1mM EDTA, 1% BSA), and hybridized overnight at 65°C using a radiolabelled telomere
904 fragment and ladder, as previously described (Morrish and Greider 2009; S. Wang et al. 2017).
905 The membrane was washed twice with a high salt buffer (2x SSC, 0.1% SDS) and twice with a
906 low salt buffer (0.5X SSC, 0.1% SDS) at 65°C, exposed to a Storage Phosphor Screen (GE
907 Healthcare), and scanned on a Storm 825 imager (GE Healthcare). The images were copied
908 from ImageQuant TL (GE Life Sciences) to Adobe PhotoShop CS6, signal was adjusted across
909 the image using the curves filter, and the image was saved as a .tif file. Minimum, maximum and
910 median telomere length was estimated in ImageQuant TL using the original, unedited scan from
911 the Phosphor Screen and accounted for differences in DNA migration across the gel by
912 including the 1 kB Plus ladder on either side of the Southern blot.

913 Western blot analysis

914 2x10⁶ cells were collected, washed in 1x PBS (10010049; LifeTech), resuspended in 1x sample
915 buffer (1x NuPAGE loading buffer (NP0008; Thermo Fisher), 50 µM DTT) and stored at -80°C.
916 Samples were thawed on wet ice, lysed by sonication, and boiled at 65°C for 10 min. Proteins
917 were resolved using recommended parameters on 4-12% Bis-Tris NuPAGE pre-cast gels

918 (NP0321BOX; Invitrogen) and Precision Plus Dual Color protein ladder (161-0374; BioRad) was
919 run for comparison. Proteins were transferred to a PVDF membrane (170-4273; BioRad) using
920 a Trans-Blot Turbo Transfer System (BioRad). The membrane was blocked in 5% milk-TBST
921 (w/v powdered milk (170-6404; BioRad) resuspended in 1x Tris Buffered Saline, pH 7.4 (351-
922 086-101CS; Quality Biological), 0.01% Tween-10 (P1379-100ML; Sigma) for one hour at room
923 temperature. Primary antibodies were diluted in blocking buffer and incubated at room
924 temperature for one hour with mild agitation (M2 FLAG 1:2,000 (F1804-5MG; Sigma), tubulin
925 1:5,000 (ab6046; Abcam)). Blots were washed in 1x TBST with mild agitation before incubation
926 with horseradish peroxidase-conjugated secondary antibodies diluted in blocking buffer (α -
927 mouse 1:10,000 (170-6516; BioRad), α -rabbit 1:10,000 (170-6515; BioRad)). Blots were
928 washed in 1x TBST with mild agitation, incubated with Forte horseradish peroxidase substrate
929 (WBLUF0100; Millipore) for five minutes with agitation, and imaged on an ImageQuant LAS
930 4000 mini biomolecular imager (GE Healthcare). Image files were copied from ImageQuant TL
931 software to Adobe PhosShop CS6, the curves filter was applied across the image, and then
932 saved as a .tif file. To reprobe a membrane with the loading control, the membrane was
933 incubated with Restore Western Blot Stripping Buffer (21059; Thermo Fisher) for 30 minutes,
934 washed in 1x TBST, and processed as described above.

935 CRISPR editing constructs

936 We sequence verified the CRISPR target regions in our K562 cells and selected gRNA
937 sequences with a high likelihood of on-target editing (and a low likelihood of off-target editing)
938 using CRISPOR.org (Concordet and Haeussler 2018). We subcloned the guides into px458 as
939 previously described (Moyer and Holland 2015). To edit both the *POP5* and *KBTBD6/KBTBD7*
940 regions we chose one guide to each side of the target region (Supplementary Figure 8C-D). For
941 guide sequence and genome coordinates (hg38), see Supplementary Table 14.

942 CRISPR editing experiments

943 Low-passage K562 cells were cultured to a density of 3×10^5 cells/mL in media without
944 antibiotics, but otherwise as described above, two days prior to nucleofection. Cells were
945 electroporated using the SF Cell Line 4D-Nucleofector X Kit (V4XC-2012; Lonza) with 8 μ g of
946 each guide plasmid and the K562 cell line recommended protocol (FF-120). Cells were cultured
947 in antibiotic-free media for 24 hours to allow for GFP expression before being single-cell sorted
948 in a 96 well plate at the Johns Hopkins Ross Flow Cytometry Core. Each sample had 1-10%
949 GFP positive cells. Plates were expanded clonally using media described above. After
950 approximately two weeks cell concentration was estimated using the Luna II Automated Cell
951 Counter (Logos Biosystems), 4×10^4 cells were collected, and genomic DNA was extracted using
952 QuickExtract DNA Extraction Solution (QE09050; Epicentre) following the protocol
953 recommended in the Alt-R genomic editing detection kit (1075931; IDT). Target editing regions
954 were amplified (primers described in Supplementary Table 14, diagrams in Supplementary
955 Figure 8) and confirmed by Sanger sequencing. Sequencing reads were aligned in Snapgene
956 (GSL Biotech) and we considered a clone to at least be heterozygous for editing if the alignment
957 began on one side of the deletion, failed across the intended deletion, but resumed across the

958 deletion. Because the *POP5* locus deletion was so extensive, we did two separate PCRs on
959 each sample: one that would amplify if the deletion was present (RK236+RK231) and one that
960 would amplify if a wildtype allele was present (RK236+RK234) (Supplementary Figure 8C). All
961 *POP5* edited clones were confirmed to be heterozygous.

962 RNA extraction and qPCR

963 2x10⁶ cells were collected, washed in 1x PBS (10010049; LifeTech), and RNA was purified
964 using a QIAshredder column (79656; Qiagen) and RNeasy kit (74104; Qiagen) following the
965 recommended protocols, including DNase digestion of RNA prior to RNA cleanup (79254;
966 Qiagen). RNA concentration was estimated using a high sensitivity RNA kit (Q32852; Thermo
967 Fisher) for QuBit 3.0 (Thermo Fisher). cDNA was generated with random hexamers using a
968 SuperScript IV First Strand Synthesis kit (18091050; Thermo Fisher). qPCR primers were
969 designed using the GenScript RT-PCR primer design tool and a standard reference plasmid
970 was generated by amplifying genomic DNA from K562 cells with each primer pair followed by
971 TA cloning the amplicon into a pCR2.1 vector (Supplementary Table 14) using a TA cloning kit
972 (451641; Thermo Fisher). TA cloning was conducted using the recommended protocol and
973 plasmids were transformed into TOP10 cells (C404003; Invitrogen). Each qPCR reaction
974 included approximately 10 ng of cDNA, 1x iQ SYBER Green Super Mix (1708882; BioRad), and
975 0.25 μ M of each primer; qPCR was conducted on a CFX96 real-time qPCR system (BioRad).
976 *KBTBD6* and *KBTBD7* expression was measured in the *POP5*-edited clones as CRISPR/Cas9-
977 edited controls and *POP5* expression was measured in the *KBTBD6*/*KBTBD7*-edited clones as
978 CRISPR/Cas9-edited controls. Samples were analyzed in triplicate and instances where the Cq
979 range was greater than 1 were excluded from further analysis. Standard plasmids were
980 analyzed in duplicate on each plate at a range of 0.001 ng - 100 ng as a quality control measure
981 and plates where the standards Cq had an $R^2 < 0.98$ were excluded from further analysis.
982 Plates that passed this threshold were used to estimate the efficiency of the qPCR primers
983 (*ACTB* = 1.90, *KBTBD6* = 1.98, *KBTBD7* = 1.92, and *POP5* = 1.80). Because the range of
984 efficiency between measured genes was greater than 10%, we analyzed our qPCR results with
985 the Pfaffl method (Pfaffl 2001). A one-sided *t*-test was used to compare experimental to control
986 samples.

987 Data and code availability

988 All cell lines and plasmids are available upon request. Summary statistics, plasmid maps, and
989 code are available at Zenodo (doi: 10.5281/zenodo.8136834) and are freely available.
990 Additional code is available here: https://github.com/BennyStrobes/leafcutter_sqtl_viz,
991 <https://github.com/bulik/ldsc>, <https://github.com/stephenslab/susieR>. Any additional information
992 required to reanalyze the data reported here is available upon request. TOPMed genomic data
993 and telomere length estimates are available by study in the database of Genotypes and
994 Phenotypes (dbGaP) (<https://www.ncbi.nlm.nih.gov/gap/?term=TOPMed>). GTEx_v8 eQTL,
995 sQTL, and LeafCutter exon-exon junction quantifications are available for download through the
996 GTEx portal (<https://gtexportal.org/home/>). eQTLGen cis-eQTL data are available for download

997 (<https://www.eqtlgen.org/>). DICE cis-eQTL data are available for download (<https://dice-database.org/landing>).

999

1000

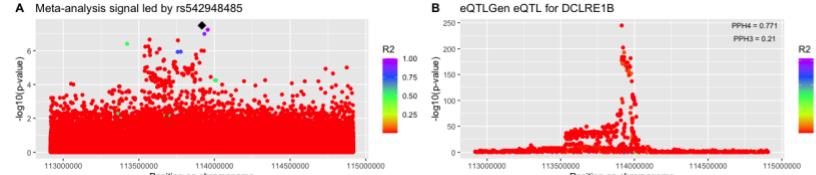
1001 Supplemental Note

1002 This supplemental note conveys the rationale for the assigned putative causal gene for each
1003 signal. For 17 signals no colocalization results were available and there were no known genes
1004 involved in telomere length in the region (Supplemental Note Table 1, see rows with “Proximal
1005 gene (no other supporting information)”). In these cases, the proximal gene was assigned. For
1006 33 signals there was colocalization data in at least one QTL dataset (Figure 2B). However,
1007 colocalization within and between datasets supported different genes for 14 meta-analysis
1008 signals (Discussed below). For each signal we show the Manhattan plot for the meta-analysis
1009 signal and the best colocalization result for each gene in each dataset. For datasets with
1010 multiple cellular contexts and in cases where the meta-analysis signal colocalized with a QTL
1011 for the same gene across cellular contexts, we show the QTL that had the highest PPH4. We
1012 considered PPH4 > 0.7 for GTEx and eQTLGen, PPH4 > 0.5 for DICE to be colocalized, all
1013 colocalization results are reported in Supplementary Tables 3-6. The meta-analysis Manhattan
1014 plots were centered on the lead SNP and include the region \pm 1 Mb the lead SNP (hg38) and
1015 the x-axis is matched for each plot. In all plots the meta-analysis lead SNP was shown as a
1016 black diamond and r^2 was calculated with respect to the lead SNP using all TOPMed individuals
1017 included in the meta-analysis.

1018
1019

Supplemental Note Table 1:

Lead SNP	Novel Signal	Attributed gene	Supporting evidence for attributed gene
rs542948485		DCLRE1B	Known biology, colocalization
rs12044242		PSMB4	Colocalization, proximal gene
rs146042055		PARP1	Known biology
rs62139251		TSPYL6	Colocalization
rs11894326		CPS1	Colocalization
rs35510081		TERC	Known biology
rs3775946		SLC2A9	Colocalization, proximal gene
rs4691895		NAF1	Known biology, colocalization
rs33961405		TERT	Known biology
rs56099285		UBE2D2	Proximal gene (no other supporting information)
rs3131064	*	POU5F1	Colocalization, proximal gene
rs1150748		BAG6	Colocalization
rs6968500		POT1	Known biology
rs10954213		IRF5	Colocalization, proximal gene
rs3008267	*	ZNF596	Proximal gene (no other supporting information)
rs10958468		TMEM68	Proximal gene (no other supporting information)
rs73687065		TERF1	Known biology, proximal gene


rs10111287		VIRMA	Colocalization, proximal
rs62560860		IRL11A	Colocalization
rs958919990	*	GRHPR	Proximal gene (no other supporting information)
rs3736462		TASOR2	Proximal gene (no other supporting information)
rs3758526		NOC3L	Proximal gene (no other supporting information)
rs7923385	*	RRP12	Proximal gene (no other supporting information)
rs11190126		NKX2-3	Proximal gene (no other supporting information)
rs112519582	*	BTRC	Proximal gene (no other supporting information)
rs2475215		OBFC1	Known biology
rs12241155	*	SORCS1	Proximal gene (no other supporting information)
rs582297		ATM	Known biology, Colocalization, Proximal gene
rs74892322		POP5	Known biology
rs28755851		ZCCHC8	Known biology
rs1411041		KBTBD6/KBTBD7	Colocalization, Proximal gene
rs532687339		TINF2	Known biology
rs4902358		MAX	Colocalization, proximal
rs2572		DCAF4	Proximal gene (no other supporting information)
rs11623533		PPP4R3A	Proximal gene (no other supporting information)
rs2887399		TCL1A	Colocalization, proximal gene
rs113119217		ATP8B4	Colocalization, proximal gene
rs12934863		DUS2	Colocalization, proximal gene
rs9939870		TERF2	Known biology, colocalization, proximal gene
rs12149396		CLEC18C	Colocalization
rs7193541		RFWD3	Colocalization, proximal gene
rs6564996		MPHOSPH6	Colocalization, proximal gene
rs11117354		BANP	Proximal gene (no other supporting information)
rs59922886		CTC1	Known biology, colocalization, proximal gene
rs208011	*	SKAP1	Proximal gene (no other supporting information)
rs144204502		TK1	Colocalization, proximal gene
rs2124616		TYMSOS	Colocalization
rs28782011		SETBP1	Proximal gene (no other supporting information)
rs139955496		POLI	Proximal gene (no other supporting information)
rs8105767		ZNF257	Colocalization, proximal gene

rs79476302		SAMHD1	Proximal gene (no other supporting information)
rs114703330		RTEL1	Known biology, colocalization, proximal gene
rs28663120		GAB4	Colocalization, proximal gene
rs131784		TYMP	Colocalization
rs12394264		MIR223HG	Colocalization, proximal gene
rs5945232		DKC1	Known biology

1020

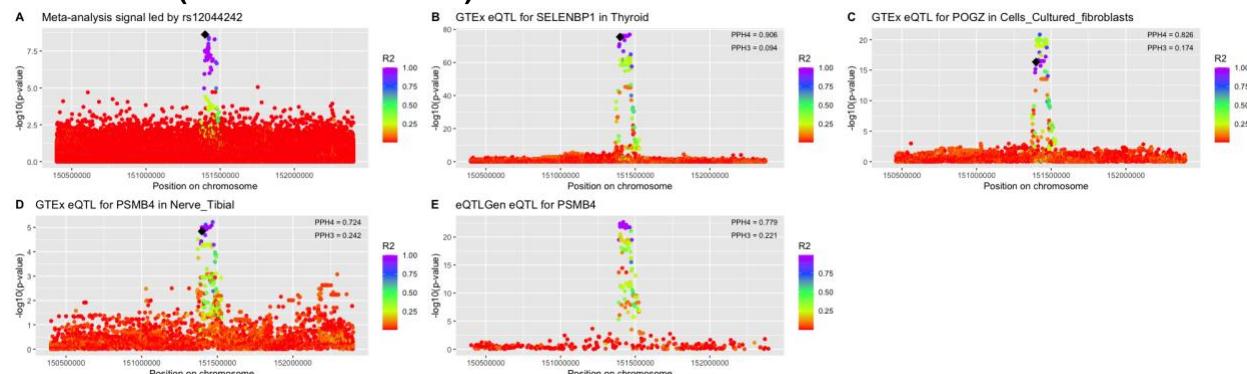
1021

rs542948485 (chr1:113917053:G:T)

1022

1023

This meta-analysis signal colocalized with a *DCLRE1B* eQTL in eQTLGen. *DCLRE1B* is also the proximal gene. In addition, *DCLRE1B* is known to contribute to telomere length regulation. Therefore, we concluded that *DCLRE1B* was the best supported putative causal gene.


1024

1025

1026

1027

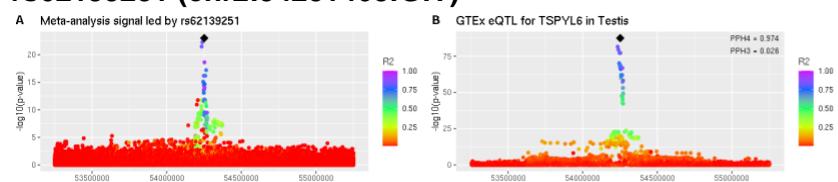
rs12044242 (chr1:151398465:C:T)

1028

1029

This meta-analysis signal colocalized with QTLs for *PSMB4*, *POGZ*, and *SELENBP1*. We observed that the *PSMB4* eQTL colocalization was replicated in eQTLGen. *PSMB4* is also the proximal gene for this signal, therefore we concluded that *PSMB4* was the best supported putative causal gene.

1030


1031

1032

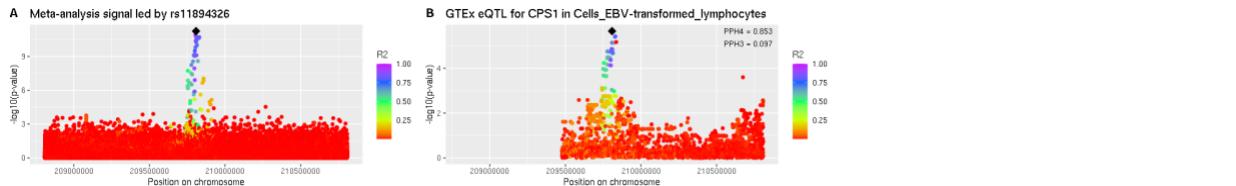
1033

1034

rs62139251 (chr2:54251468:G:T)

1035

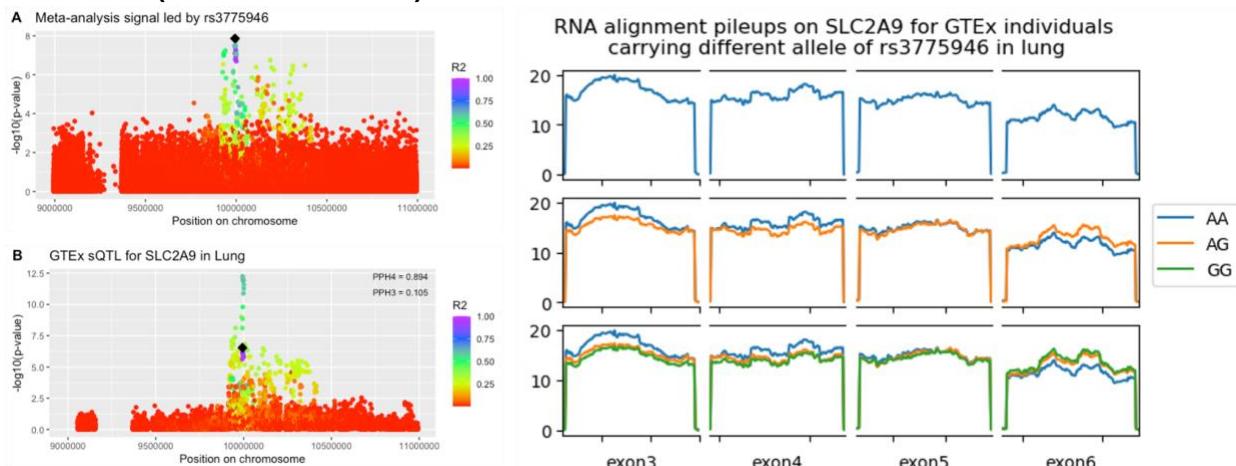
1036


This meta-analysis signal only colocalized with a *TSPYL6* eQTL. The proximal gene was

1037

1038

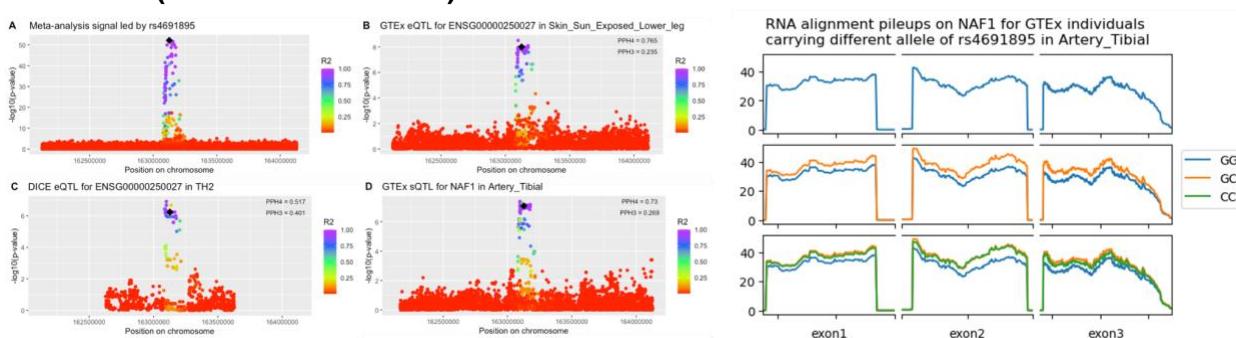
1039


rs11894326 (chr2:209808365:C:T)

1040
1041
1042
1043
1044

This meta-analysis signal only colocalized with a *CPS1* QTL. The proximal gene was *UNC80*.
We concluded that *CPS1* was the best supported putative causal gene.

rs3775946 (chr4:9993632:A:G)

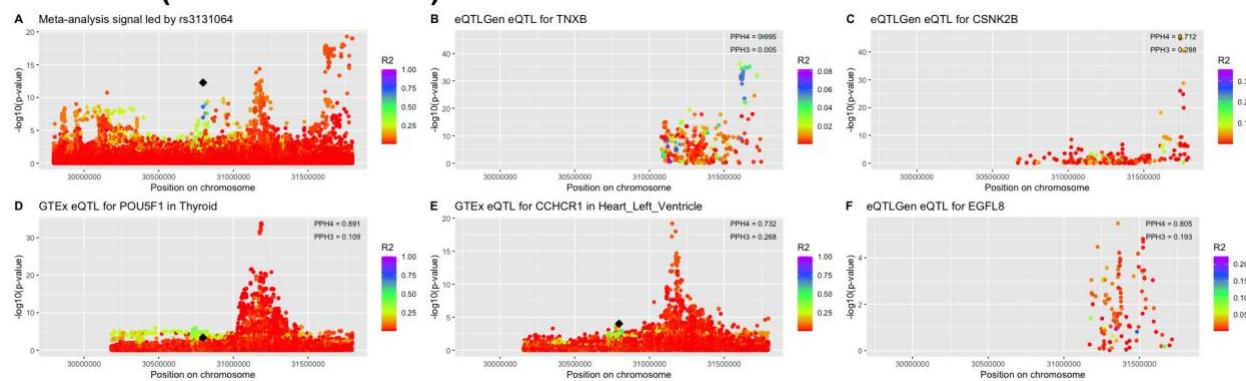


1045
1046
1047
1048
1049
1050
1051
1052

The meta-analysis signal colocalized with a *SLC2A9* sQTL. The RNA pileup plot shows the aligned reads in the indicated GTEx tissue for the indicated exons that were included in the LeafCutter splicing cluster. Unlike an eQTL, a subset of exons show differences in the amount of reads aligned when stratified by the indicated genotype, supporting that this is a sQTL.
SLC2A9 was also the proximal gene, therefore we concluded that *SLC2A9* was the best supported putative causal gene.

1053

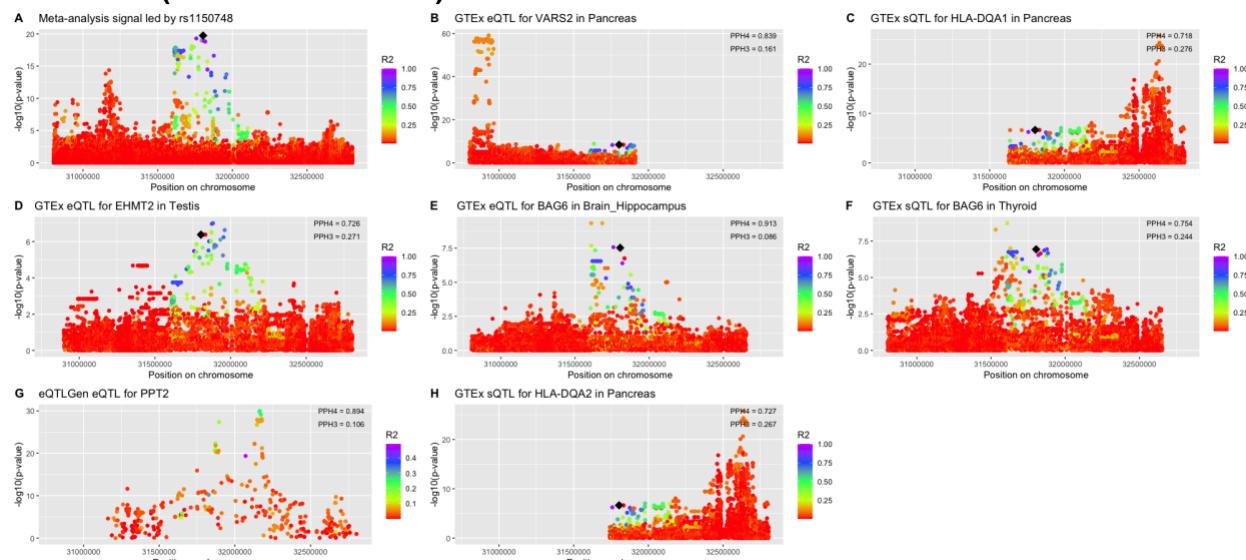
rs4691895 (chr4:163127047:G:C)


1054
1055
1056
1057
1058
1059

The only characterized gene QTL this meta-analysis signal colocalized with was a *NAF1* sQTL.
NAF1 is also a known telomere regulation gene and the gene proximal to the signal. The RNA pileup plot shows the aligned reads in the indicated GTEx tissue for the indicated exons that were included in the LeafCutter splicing cluster. Unlike an eQTL, a subset of exons show differences in the amount of reads aligned when stratified by the indicated genotype, supporting

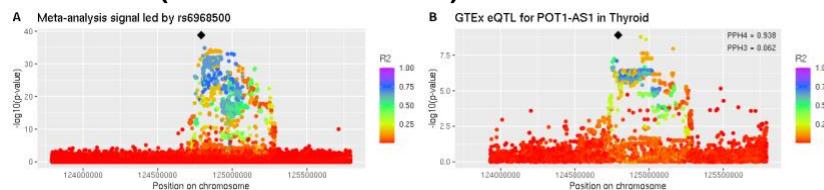
1060 that this is a sQTL. Therefore, we concluded that *NAF1* was the best supported putative causal
1061 gene.

1062

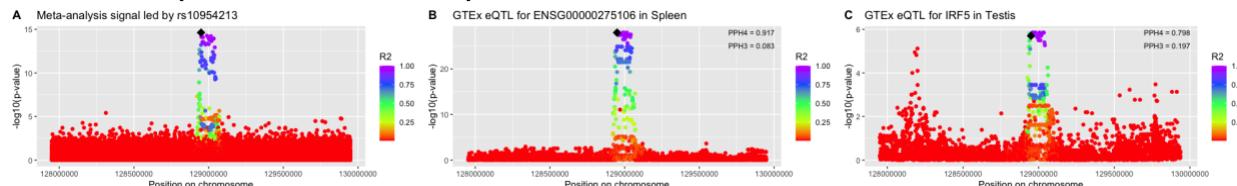

1063 rs3131064 (chr6:30796116:T:C)

1064
1065 This meta-analysis signal is near the *HLA* locus and there may be several independent signals
1066 within this region. We defined signals based on position alone, therefore we are treating this
1067 region as a single signal. rs3131064 was considered the lead SNP because lead SNPs were
1068 chosen by ordering the genome-wide significant SNPs by p-value, selecting the top SNP within
1069 a 1Mb region, and then removing any other SNPs within 1Mb of that top SNP. The peaks
1070 adjacent to rs3131064 within panel A are within 1Mb of rs1150748 and were therefore excluded
1071 from being considered the lead SNP for this signal. One of these adjacent signals, led by
1072 rs1265156, colocalized with QTLs for *POU5F1* and *CCHCR1*. The proximal gene was
1073 *HCG20*. We concluded that *POU5F1* was the best supported putative causal gene for this
1074 region.

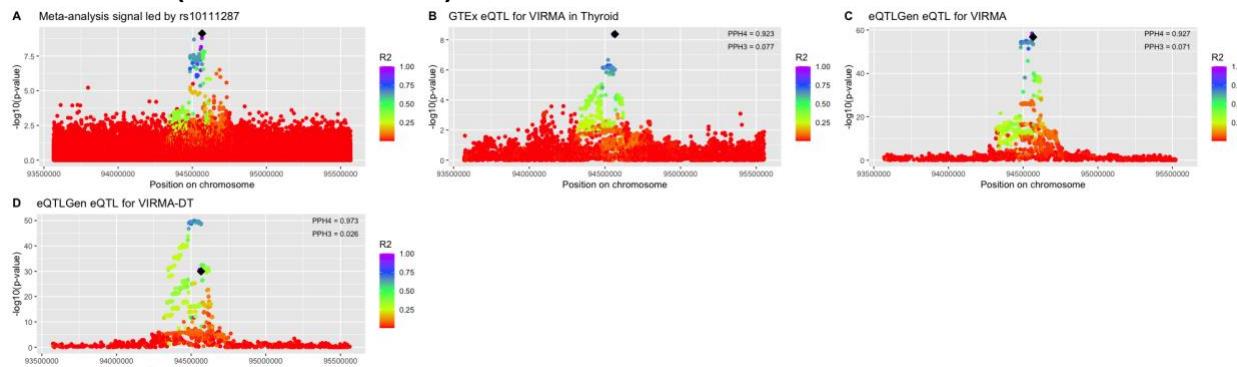
1075


1076 rs1150748 (chr6:31804139:G:C)

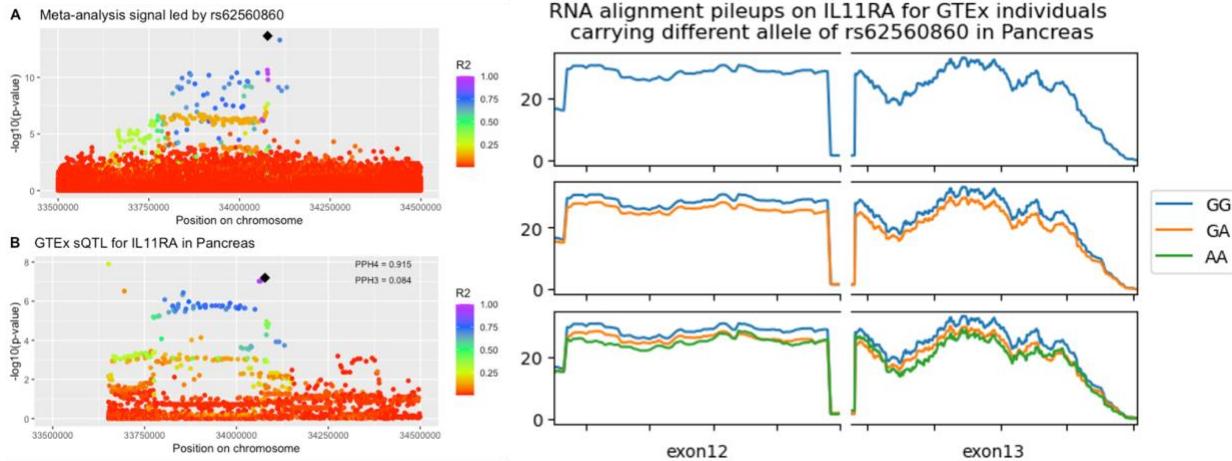
1077
1078 This meta-analysis signal is near the *HLA* locus and there may be several independent signals
1079 within this region. We defined signals based on position alone, therefore we are treating this
1080 region as a single signal. rs1150748 was considered the lead SNP because lead SNPs were
1081 chosen by ordering the genome-wide significant SNPs by p-value, selecting the top SNP within


1082 a 1Mb region, and then removing any other SNPs within 1Mb of that top SNP. This signal
1083 colocalized well with several gene QTLs but the association signal structure was best captured
1084 by the *BAG6* QTL. *LSM2* was the proximal gene. We concluded that *BAG6* was the best
1085 supported putative causal gene.

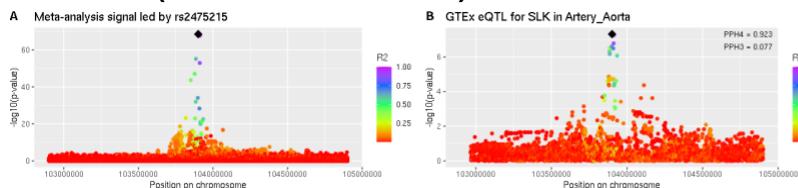
1086
1087 **rs6968500 (chr7:124791668:G:C)**


1088 This meta-analysis signal colocalized with a QTL for *POT1-AS1*. The proximal gene was
1089 *C7orf77*. *POT1*, 30 kb away from the lead SNP, has known roles in telomere length regulation.
1090 Therefore, we concluded that *POT1* was the most likely putative causal gene.
1091
1092

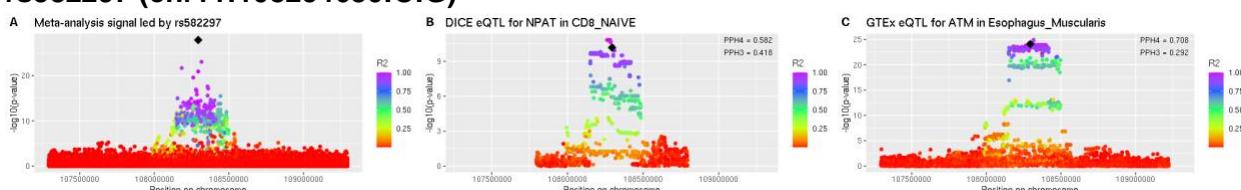
1093 **rs10954213 (chr7:128949373:A:G)**


1094 The only characterized gene QTL this meta-analysis signal colocalized with was *IRF5*, which is
1095 also the proximal gene. Therefore, we concluded that *IRF5* was the best supported putative
1096 causal gene.
1097
1098

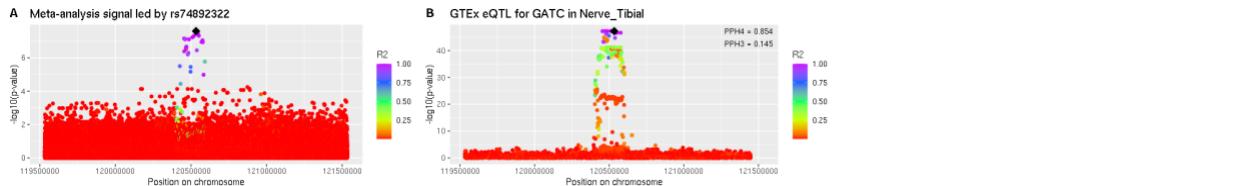
1099 **rs10111287 (chr8:94566198:C:T)**


1100 This meta-analysis signal best colocalized with *VIRMA* QTLs. *VIRMA* is also the proximal gene.
1101 Therefore, we concluded that *VIRMA* is the best supported putative causal gene.
1102
1103
1104
1105
1106
1107

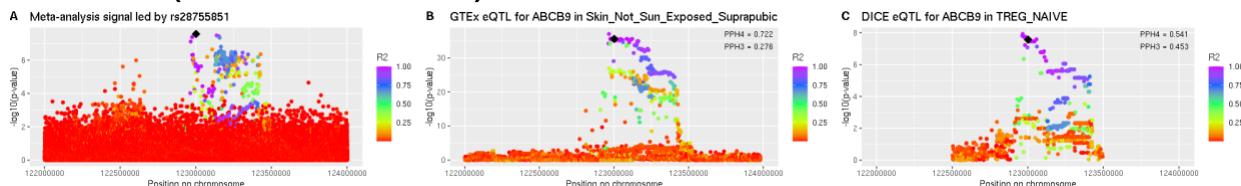
rs62560860 (chr9:34077464:G:A)


1108
1109 This meta-analysis signal only colocalized with an *IL11RA* sQTL. The proximal gene was
1110 *DCAF12*. Note that plot is 1 Mb wide instead of 2 Mb wide to improve visualization of the sQTL
1111 because there is a nearby SNP, rs11575580, that has a strong association ($p=3.04 \times 10^{-119}$) but r^2
1112 with meta-analysis lead SNP = 0.0169 and did not contribute to the colocalization signal. To
1113 improve clarity, we reduced the plot region to 1 Mb centered on the meta-analysis lead SNP.
1114 The RNA pileup plot shows the aligned reads in the indicated GTEx tissue for the indicated
1115 exons that were included in the LeafCutter splicing cluster. Unlike an eQTL, a subset of exons
1116 show differences in the amount of reads aligned when stratified by the indicated genotype,
1117 supporting that this is a sQTL. Given the colocalization analysis results we concluded that
1118 *ILR11A* was the most supported putative causal gene.
1119

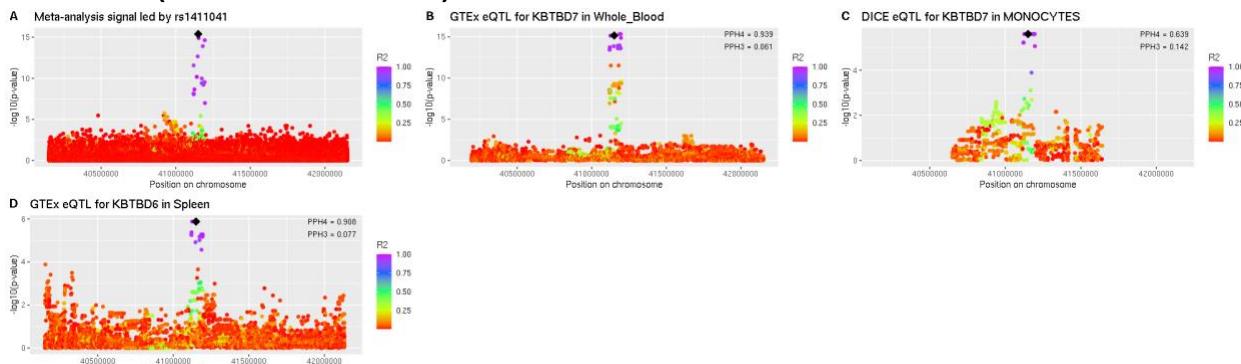
1120 rs2475215 (chr10:103900944:T:C)


1121
1122 This meta-analysis signal best colocalized with an *SLK* QTL. However, *OBFC1* is a known
1123 telomere length regulation gene located 17 kB away. Given the known biology, we concluded
1124 that *OBFC1* was the most likely putative causal signal.
1125

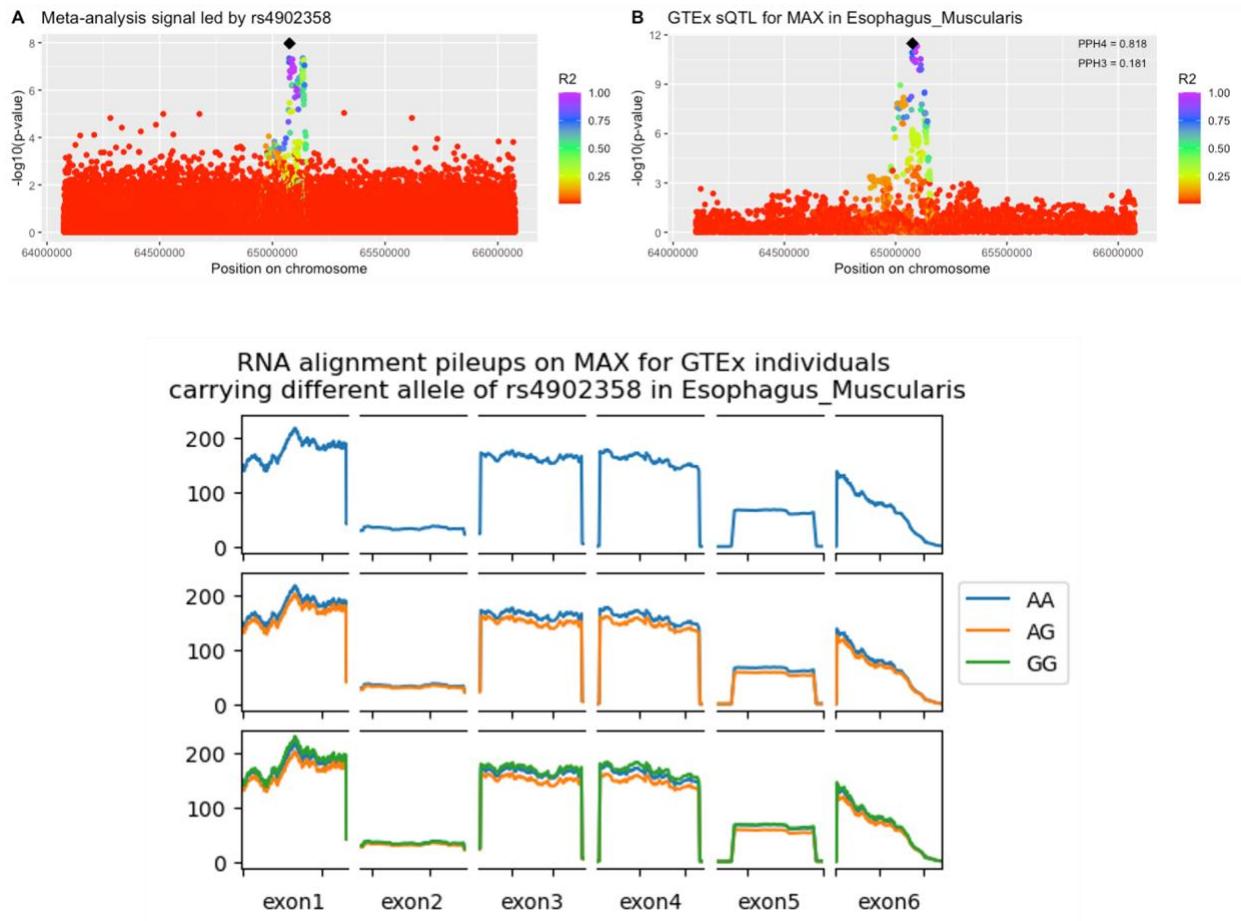
1126 rs582297 (chr11:108294680:C:G)


1127
1128 This meta-analysis signal colocalized with QTLs for *NPAT* and *ATM*. *ATM* was the proximal
1129 gene and has known roles in telomere length regulation. Therefore, we concluded that *ATM* was
1130 the best supported putative causal gene.
1131

1132 rs74892322 (chr12:120533371:A:T)


1133
1134 This meta-analysis signal colocalized with QTLs for *GATC* and *POP5*. The proximal gene was
1135 *RNF10*. This signal colocalized with a *POP5* eQTL in GTEx nucleus accumbens basal ganglia,
1136 but was below the threshold for being included in these plots (Supplementary Table 3). Given
1137 our results from Figure 6, we concluded that the best supported putative causal gene was
1138 *POP5*.
1139

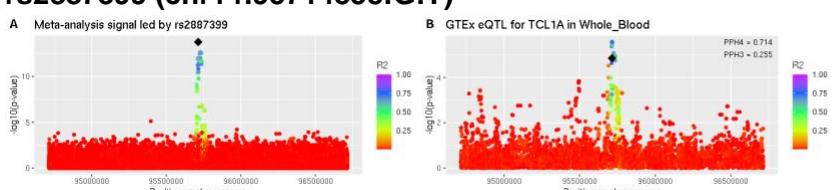
1140 **rs28755851 (chr12:123001735:A:T)**


1141
1142 This meta-analysis signal colocalized with an *ABCB9* eQTL in GTEx and this was replicated in
1143 DICE. The proximal gene was *PITPNM2*. However, *ZCCHC8* has known roles in telomere
1144 length regulation and is 530 kB away. We concluded that *ZCCHC8* was the most likely putative
1145 causal gene despite lack of colocalization.
1146

1147 **rs1411041 (chr13:41150640:A:T)**

1148
1149 This meta-analysis signal colocalized well with *KBTBD6* and *KBTBD7* QTLs. *KBTBD6* is the
1150 proximal gene (23 kB from the lead SNP whereas *KBTBD7* is 39 kB). Particularly considering
1151 our validation experiments, we are unable to choose a single putative causal gene for this
1152 signal. We label the Manhattan plot in Figure 1 *KBTBD6* for clarity.
1153
1154
1155
1156
1157

1158 **rs4902358 (chr14:65075759:A:G)**



1159

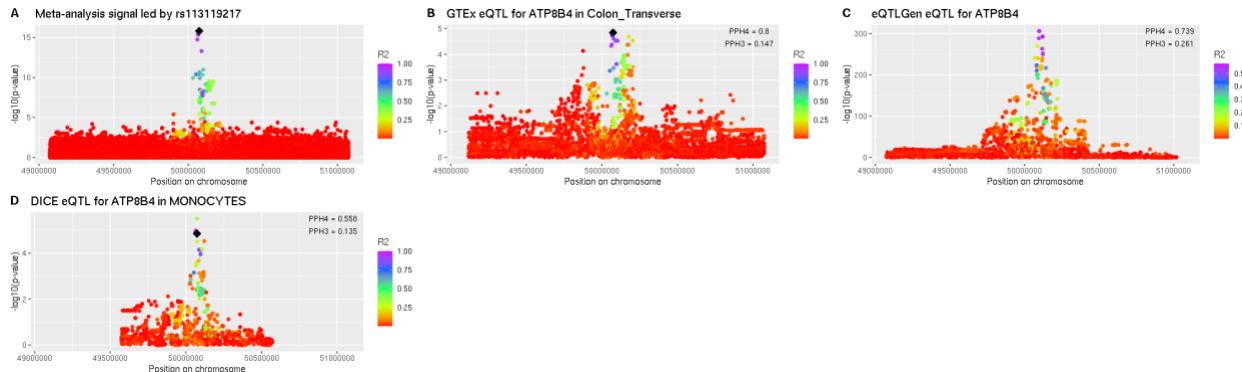
1160 This meta-analysis signal best colocalized with *MAX* QTLs. It is also the proximal gene. The
 1161 RNA pileup plot shows the aligned reads in the indicated GTEx tissue for the indicated exons
 1162 that were included in the LeafCutter splicing cluster. Unlike an eQTL, a subset of exons show
 1163 differences in the amount of reads aligned when stratified by the indicated genotype, supporting
 1164 that this is a sQTL. Therefore, we concluded that *MAX* was the best supported putative causal
 1165 gene.

1166

1167 rs2887399 (chr14:95714358:G:T)

1168

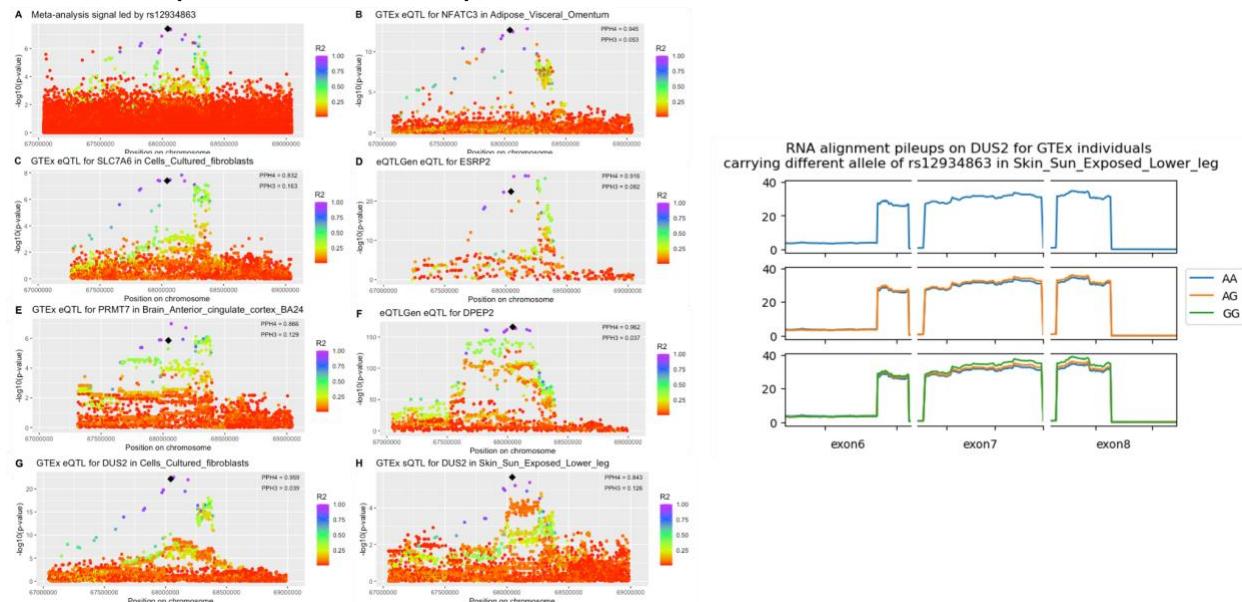
1169 This meta-analysis signal best colocalized with *TCL1A* QTLs. *TCL1A* was also the proximal
 1170 gene. Therefore, we concluded that *TCL1A* was the best supported putative causal gene.


1171

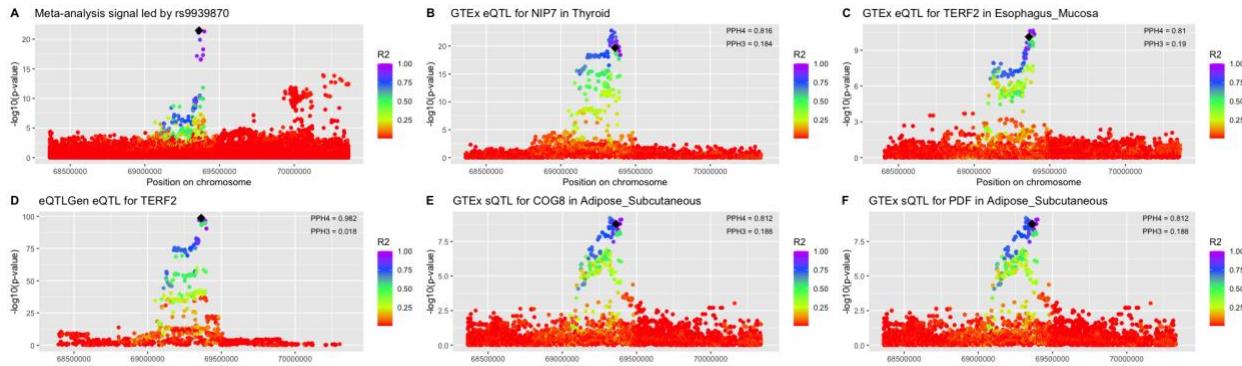
1172

1173

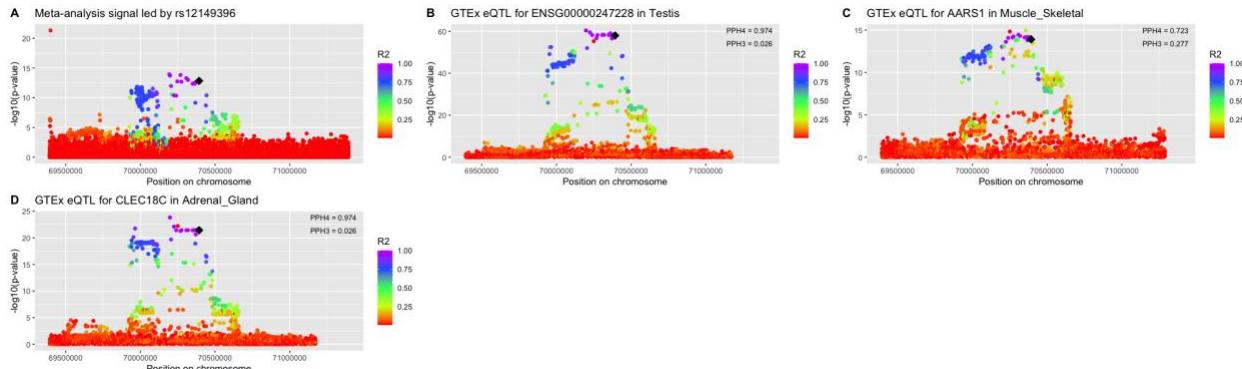
1174


1175 rs113119217 (chr15:50073451:T:A)

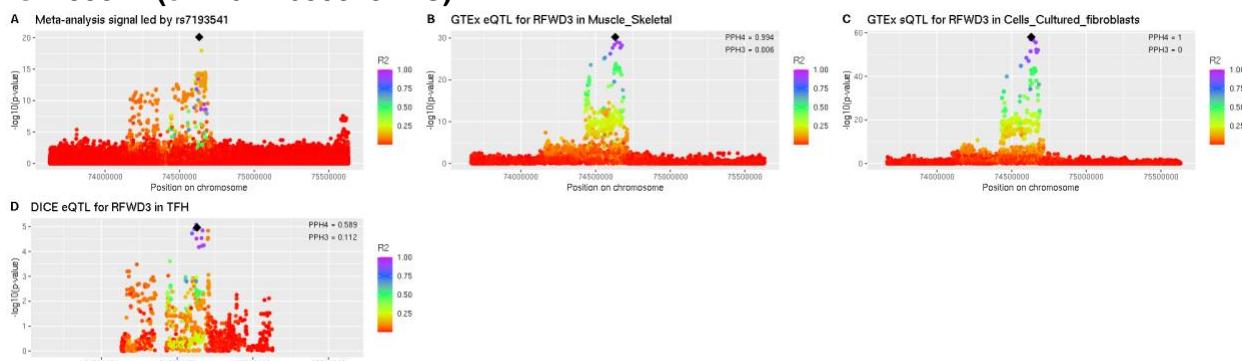
1176
1177
1178
1179
1180
1181


This meta-analysis signal best colocalized with QTLs for *ATP8B4* in multiple QTL datasets. *ATP8B4* is also the proximal gene. Therefore, we concluded that *ATP8B4* was the best supported putative causal gene.

rs12934863 (chr16:68043168:A:G)

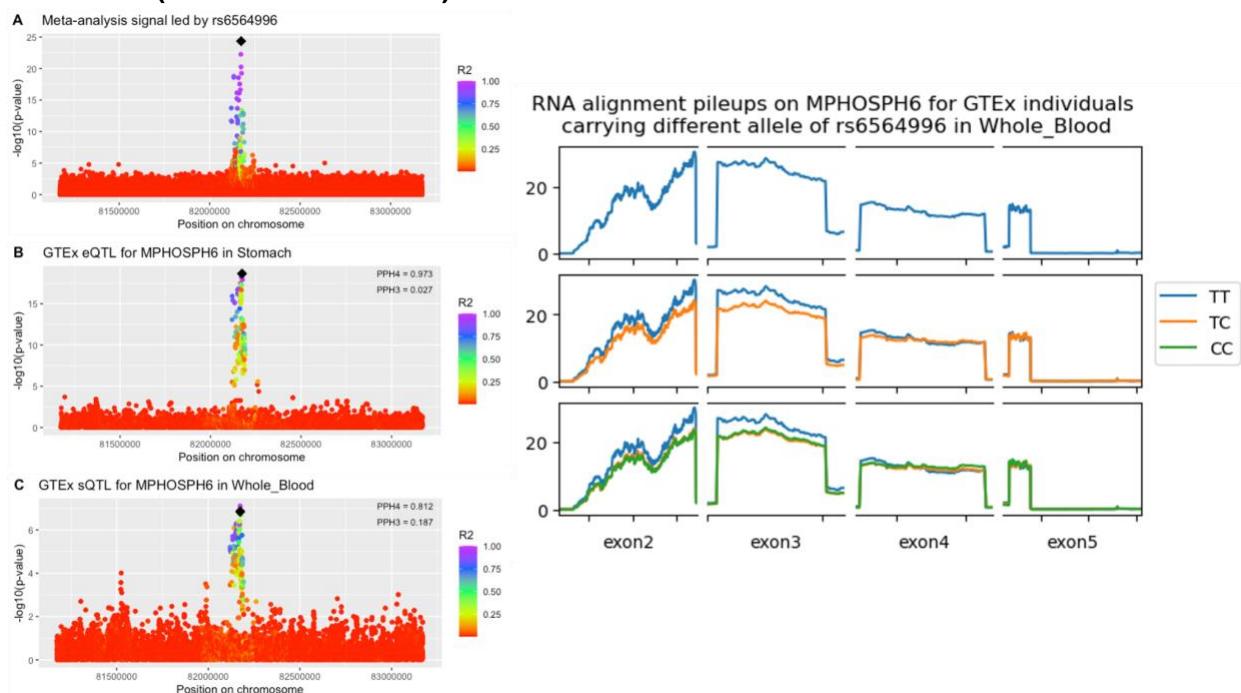

1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195

This meta-analysis signal colocalized strongly with QTLs for *DUS2*, *NFATC3*, and *DPEP2*. The proximal gene was *DUS2*. The RNA pileup plot shows the aligned reads in the indicated GTEx tissue for the indicated exons that were included in the LeafCutter splicing cluster. Unlike an eQTL, a subset of exons show differences in the amount of reads aligned when stratified by the indicated genotype, supporting that this is a sQTL. We concluded that the best supported putative causal gene was *DUS2*.


1196
1197 This meta-analysis signal colocalized strongly with QTLs for *TERF2*, *NIP7*, *COG8*, and *PDF*.
1198 The proximal gene was *TERF2* and *TERF2* has known roles in telomere length regulation.
1199 Therefore, we concluded that *TERF2* is the best supported putative causal gene.
1200

1201 rs12149396 (chr16:70392835:A:C)

1202
1203 This meta-analysis signal colocalized with *AARS1* and *CLEC18C* QTLs. The proximal gene was
1204 *ST3GAL2*. Based on the strength of colocalization, we concluded that *CLEC18C* was the best
1205 supported putative causal gene.
1206


1207 rs7193541 (chr16:74630845:T:C)

1208
1209 This meta-analysis signal best colocalized with *RFWD3* QTLs. *RFWD3* was also the proximal
1210 gene. We note that LeafCutter visualization of the splicing pattern supported an effect of the
1211 lead SNP at the association signal over different *RFWD3* splicing patterns as discussed in
1212 greater detail in the main text. Based on these results, we concluded that *RFWD3* was the best
1213 supported putative causal gene.

1214

1215 **rs6564996 (chr16:82173937:T:C)**

1216

1217 This meta-analysis signal best colocalized with *MPHOSPH6* QTLs. *MPHOSPH6* was also the
1218 proximal gene. The RNA pileup plot shows the aligned reads in the indicated GTEx tissue for
1219 the indicated exons that were included in the LeafCutter splicing cluster. Unlike an eQTL, a
1220 subset of exons show differences in the amount of reads aligned when stratified by the indicated
1221 genotype, supporting that this is a sQTL. Therefore, we concluded that *MPHOSPH6* was the
1222 best supported putative causal gene.

1223

1224

1225

1226

1227

1228

1229

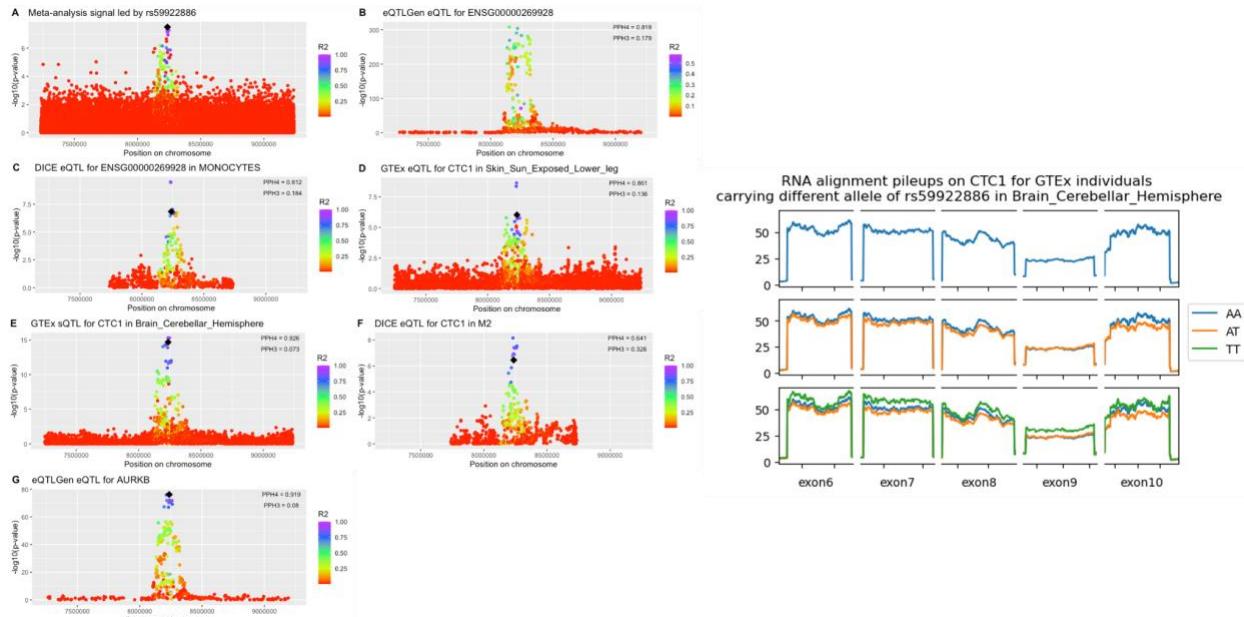
1230

1231

1232

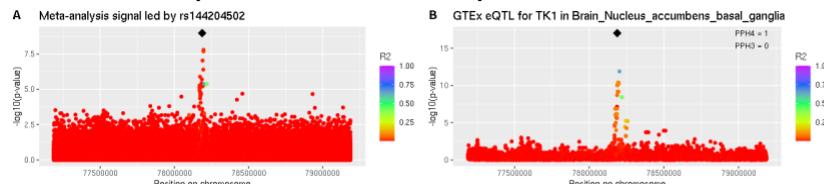
1233

1234

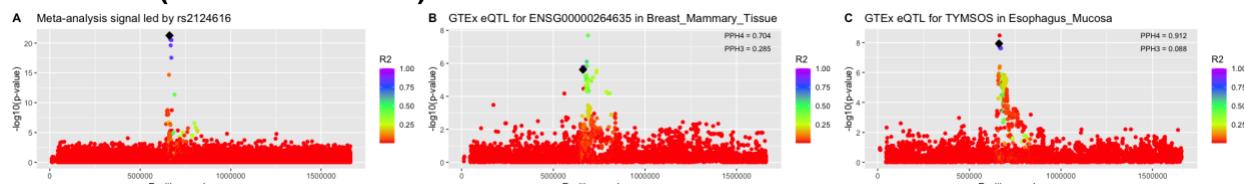

1235

1236

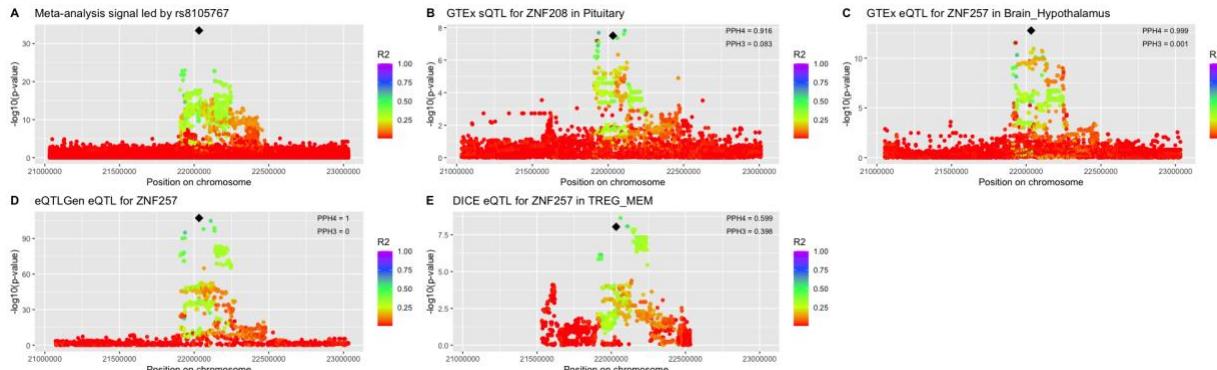
1237


1238

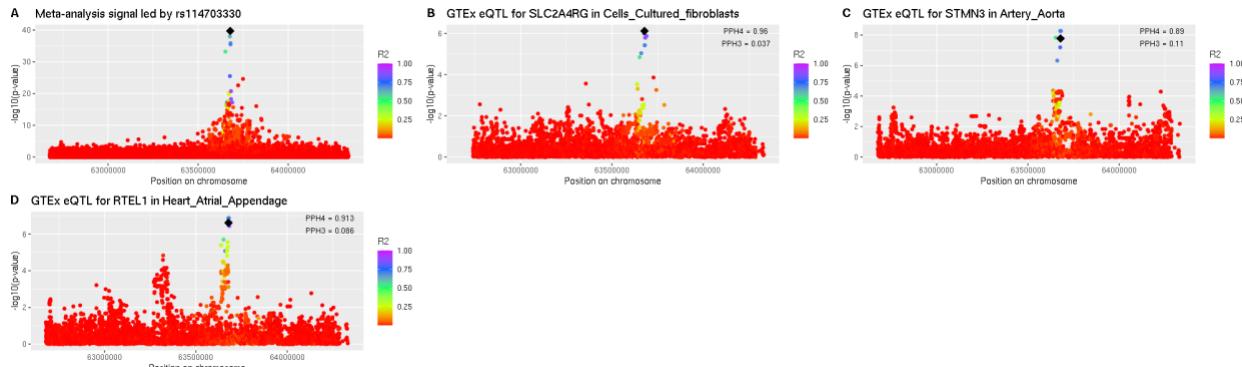
1239 **rs59922886 (chr17:8236454:A:T)**


1240
1241 This meta-analysis signal strongly colocalized with QTLs for *CTC1* and *AURKB*. *CTC1* is the
1242 proximal gene and has known roles in telomere length regulation. The RNA pileup plot shows
1243 the aligned reads in the indicated GTEx tissue for the indicated exons that were included in the
1244 LeafCutter splicing cluster. Unlike an eQTL, a subset of exons show differences in the amount
1245 of reads aligned when stratified by the indicated genotype, supporting that this is a sQTL.
1246 Therefore, we concluded that *CTC1* was the best supported putative causal gene.
1247

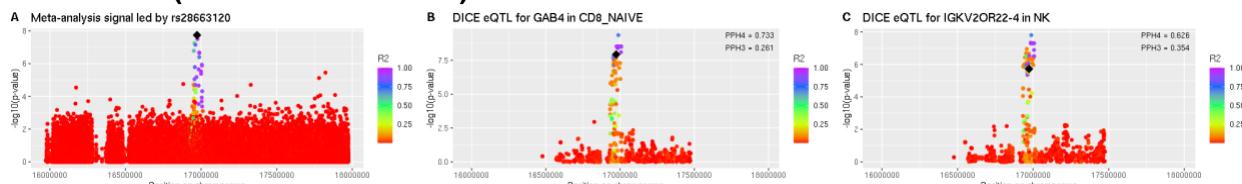
1248 **rs144204502 (chr17:78187152:C:T)**


1249
1250 This meta-analysis signal best colocalized with *TK1* QTLs. *TK1* was also the proximal gene.
1251 Therefore, we concluded that *TK1* is the best supported putative causal gene.
1252

1253 **rs2124616 (chr18:661917:G:A)**

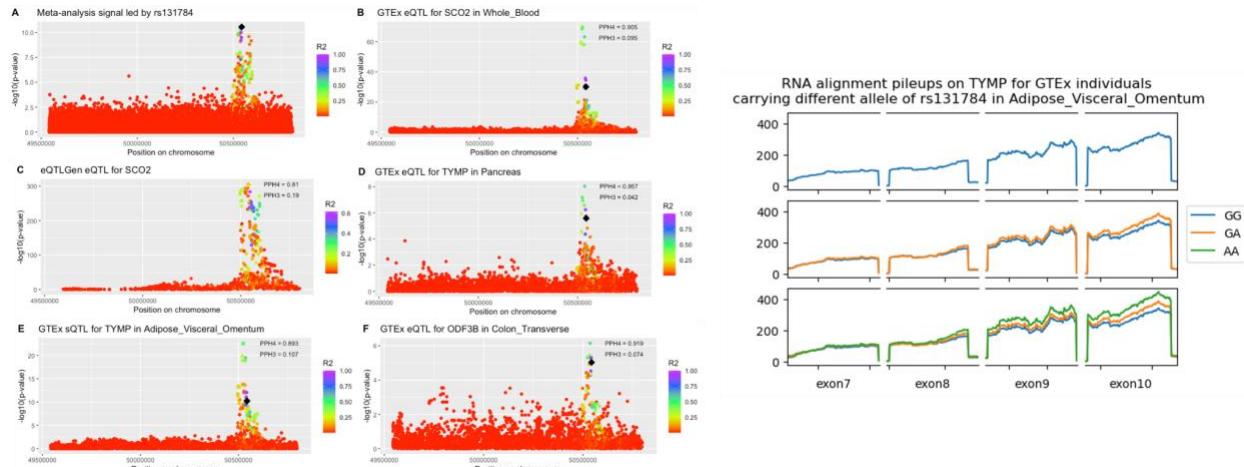

1254
1255 This meta-analysis signal best colocalized with a *TYMSOS* QTL. *TYMP* was the proximal gene.
1256 We concluded that *TYMSOS* was the best supported putative causal gene.
1257
1258

1259 **rs8105767 (chr19:22032639:A:G)**


1260
1261 This meta-analysis signal colocalized with *ZNF257* and *ZNF208* QTLs. The colocalization with
1262 *ZNF257* QTLs was replicated in multiple datasets. *ZNF257* was also the proximal gene.
1263 Therefore, we concluded that *ZNF257* was the best supported putative causal gene.
1264

1265 rs114703330 (chr20:63678039:T:C)

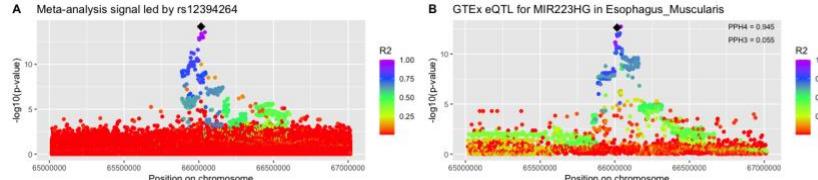
1266
1267 This meta-analysis signal best colocalized with QTLs for *RTEL1*, *SLC2A4RG*, and *STMN3*. The proximal gene was *RTEL1* and *RTEL1* has known roles in telomere length regulation.
1268 Therefore, we concluded that *RTEL1* was the best supported putative causal gene.
1269


1270 rs28663120 (chr22:16973188:T:C)

1272
1273 This meta-analysis signal colocalized with QTLs for *GAB4* and *IGKV2OR22-4*. *GAB4* was the proximal gene. Therefore, we concluded that *GAB4* is the best supported putative causal gene.
1274

1275
1276
1277
1278
1279
1280

1281 rs131784 (chr22:50543007:G:A)



1282
1283
1284
1285
1286
1287
1288
1289
1290

This meta-analysis signal colocalized best with QTLs for *TYMP*, *SCO2*, and *ODF3B*. The proximal gene was *KLHDC7B*. The RNA pileup plot shows the aligned reads in the indicated GTEx tissue for the indicated exons that were included in the LeafCutter splicing cluster. Unlike an eQTL, a subset of exons show differences in the amount of reads aligned when stratified by the indicated genotype, supporting that this is a sQTL. As colocalization was strongest with *TYMP* QTLs, we concluded that *TYMP* was the best supported putative causal gene.

1291
1292
1293
1294

rs12394264 (chrX:66015290:G:A)

1295

1296 Supplemental Acknowledgements

1297 Generation of TOPMed whole genome sequencing data by study

1298 Whole genome sequencing (WGS) for the Trans-Omics in Precision Medicine (TOPMed)
1299 program was supported by the National Heart, Lung and Blood Institute (NHLBI). WGS for
1300 NHLBI TOPMed: AFLMU (phs001543) was performed at Broad Genomics (3UM1HG008895-
1301 01S2; HHSN268201500014C); WGS for NHLBI TOPMed: Amish (phs000956) was performed
1302 at Broad Genomics (3R01HL121007-01S1); WGS for NHLBI TOPMed: ARIC (phs001211) was
1303 performed at Baylor (3U54HG003273-12S2 / HHSN268201500015C,3R01HL092577-06S1),
1304 Broad Genomics (3U54HG003273-12S2 / HHSN268201500015C,3R01HL092577-06S1); WGS
1305 for NHLBI TOPMed: BioMe (phs001644) was performed at MGI
1306 (HHSN268201600037I,HHSN268201600033I,3UM1HG008853-01S2), Baylor
1307 (HHSN268201600037I,HHSN268201600033I,3UM1HG008853-01S2); WGS for NHLBI
1308 TOPMed: CAMP (phs001726) was performed at NWGC (HHSN268201600032I); WGS for
1309 NHLBI TOPMed: CARDIA (phs001612) was performed at Baylor (HHSN268201600033I); WGS
1310 for NHLBI TOPMed: CARE_BADGER (phs001728) was performed at NWGC
1311 (HHSN268201600032I); WGS for NHLBI TOPMed: CARE_CLIC (phs001729) was performed at
1312 NWGC (HHSN268201600032I); WGS for NHLBI TOPMed: CARE_PACT (phs001730) was
1313 performed at NWGC (HHSN268201600032I); WGS for NHLBI TOPMed: CARE_TREXA
1314 (phs001732) was performed at NWGC (HHSN268201600032I); WGS for NHLBI TOPMed: CFS
1315 (phs000954) was performed at NWGC (HHSN268201600032I,3R01HL098433-05S1); WGS for
1316 NHLBI TOPMed: ChildrensHS_GAP (phs001602) was performed at NWGC
1317 (HHSN268201600032I); WGS for NHLBI TOPMed: ChildrensHS_IGERA (phs001603) was
1318 performed at NWGC (HHSN268201600032I); WGS for NHLBI TOPMed: ChildrensHS_MetaAir
1319 (phs001604) was performed at NWGC (HHSN268201600032I); WGS for NHLBI TOPMed:
1320 CHIRAH (phs001605) was performed at NWGC (HHSN268201600032I); WGS for NHLBI
1321 TOPMed: CHS (phs001368) was performed at Baylor (HHSN268201600033I,3U54HG003273-
1322 12S2 / HHSN268201500015C); WGS for NHLBI TOPMed: COPDGene (phs000951) was
1323 performed at NWGC (3R01HL089856-08S1,HHSN268201500014C), Broad Genomics
1324 (3R01HL089856-08S1,HHSN268201500014C); WGS for NHLBI TOPMed: CRA (phs000988)
1325 was performed at NWGC (3R37HL066289-13S1,HHSN268201600032I); WGS for NHLBI
1326 TOPMed: DHS (phs001412) was performed at Broad Genomics (HHSN268201500014C); WGS
1327 for NHLBI TOPMed: ECLIPSE (phs001472) was performed at MGI (HHSN268201600037I);
1328 WGS for NHLBI TOPMed: EOCOPD (phs000946) was performed at NWGC (3R01HL089856-
1329 08S1); WGS for NHLBI TOPMed: FHS (phs000974) was performed at Broad Genomics
1330 (3U54HG003067- 12S2,3R01HL092577-06S1); WGS for NHLBI TOPMed: GALAI (phs001542)
1331 was performed at NWGC (HHSN268201600032I); WGS for NHLBI TOPMed: GALAII
1332 (phs000920) was performed at NYGC (3R01HL117004-02S3,HHSN268201600032I), NWGC
1333 (3R01HL117004-02S3,HHSN268201600032I), NYGC (UM1 HG008901); WGS for NHLBI
1334 TOPMed: GeneSTAR (phs001218) was performed at Psomagen (3R01HL112064-
1335 04S1,R01HL112064,HHSN268201500014C), Illumina (3R01HL112064-
1336 04S1,R01HL112064,HHSN268201500014C), Broad Genomics (3R01HL112064-

1337 04S1,R01HL112064,HHSN268201500014C); WGS for NHLBI TOPMed: GENOA (phs001345)
1338 was performed at NWGC (3R01HL055673-18S1,HHSN268201500014C), Broad Genomics
1339 (3R01HL055673-18S1,HHSN268201500014C); WGS for NHLBI TOPMed: GenSalt
1340 (phs001217) was performed at Baylor (HHSN268201500015C); WGS for NHLBI TOPMed:
1341 GOLDN (phs001359) was performed at NWGC (3R01HL104135-04S1); WGS for NHLBI
1342 TOPMed: HCHS/SOL (phs001395) was performed at Baylor College of Medicine Human
1343 Genome Sequencing Center (HHSN268201600033I); WGS for NHLBI TOPMed: HVH
1344 (phs000993) was performed at Broad Genomics (3R01HL092577-06S1,3U54HG003273-12S2 /
1345 HHSN268201500015C), Baylor (3R01HL092577-06S1,3U54HG003273-12S2 /
1346 HHSN268201500015C); WGS for NHLBI TOPMed: HyperGEN (phs001293) was performed at
1347 NWGC (3R01HL055673-18S1); WGS for NHLBI TOPMed: IPF (phs001607) was performed at
1348 MGI (HHSN268201600037I); WGS for NHLBI TOPMed: JHS (phs000964) was performed at
1349 NWGC (HHSN268201100037C); WGS for NHLBI TOPMed: LTRC (phs001662) was performed
1350 at Broad Genomics (HHSN268201600034I); WGS for NHLBI TOPMed: Mayo_VTE
1351 (phs001402) was performed at Baylor (3U54HG003273-12S2 / HHSN268201500015C); WGS
1352 for NHLBI TOPMed: MESA (phs001416) was performed at Broad Genomics (3U54HG003067-
1353 13S1,HHSN268201500014C); WGS for NHLBI TOPMed: MLOF (phs001515) was performed at
1354 Baylor (HHSN268201600033I,HHSN268201500016C), NYGC
1355 (HHSN268201600033I,HHSN268201500016C); WGS for NHLBI TOPMed: OMG_SCD
1356 (phs001608) was performed at Baylor (HHSN268201500015C); WGS for NHLBI TOPMed:
1357 PCGC_CHD (phs001735) was performed at Broad Genomics (HHSN268201600034I); WGS for
1358 NHLBI TOPMed: PharmHU (phs001466) was performed at Baylor (HHSN268201500015C);
1359 WGS for NHLBI TOPMed: PIMA (phs001727) was performed at NWGC
1360 (HHSN268201600032I); WGS for NHLBI TOPMed: PUSH_SCD (phs001682) was performed at
1361 Baylor (HHSN268201500015C); WGS for NHLBI TOPMed: REDS-III_Brazil (phs001468) was
1362 performed at Baylor (HHSN268201500015C); WGS for NHLBI TOPMed: SAFS (phs001215)
1363 was performed at Illumina (R01HL113322,3R01HL113323-03S1); WGS for NHLBI TOPMed:
1364 SAGE (phs000921) was performed at NYGC (3R01HL117004- 02S3,HHSN268201600032I),
1365 NWGC (3R01HL117004-02S3,HHSN268201600032I); WGS for NHLBI TOPMed:
1366 SAPPHIRE_asthma (phs001467) was performed at NWGC (HHSN268201600032I); WGS for
1367 NHLBI TOPMed: SARP (phs001446) was performed at NYGC (HHSN268201500016C); NHLBI
1368 TOPMed: SAS (phs000972) was performed at NWGC
1369 (HHSN268201100037C,HHSN268201500016C), NYGC
1370 (HHSN268201100037C,HHSN268201500016C); WGS for NHLBI TOPMed: THRV (phs001387)
1371 was performed at Baylor (3R01HL111249-04S1 / HHSN26820150015C); WGS for NHLBI
1372 TOPMed: VAFAR (phs000997) was performed at Broad Genomics (3U54HG003067-12S2 /
1373 3U54HG003067- 13S1; 3UM1HG008895-01S2; 3UM1HG008895-01S2,3R01HL092577-06S1);
1374 WGS for NHLBI TOPMed: VU_AF (phs001032) was performed at Broad Genomics
1375 (3R01HL092577-06S1); WGS for NHLBI TOPMed: walk_PHaSST (phs001514) was performed
1376 at Baylor (HHSN268201500015C); WGS for NHLBI TOPMed: WGHS (phs001040) was
1377 performed at Broad Genomics (3R01HL092577-06S1); WGS for NHLBI TOPMed: WHI
1378 (phs001237) was performed at Broad Genomics (HHSN268201500014C). Core support
1379 including centralized genomic read mapping and genotype calling, along with variant quality
1380 metrics and filtering were provided by the TOPMed Informatics Research Center (3R01HL-

1381 117626-02S1; contract HHSN268201800002I). Core support including phenotype
1382 harmonization, data management, sample-identity QC, and general program coordination were
1383 provided by the TOPMed Data Coordinating Center (R01HL-120393; U01HL-120393; contract
1384 HHSN268201800001I). We gratefully acknowledge the studies and participants who provided
1385 biological samples and data for TOPMed. NYGC = New York Genome Center; Broad Genomics
1386 = Broad Institute Genomics Platform; NWGC = University of Washington Northwest Genomics
1387 Center; Illumina = Illumina Genomic Services; Psomagen = Psomagen Corp.; Baylor = Baylor
1388 Human Genome Sequencing Center; MGI = McDonnell Genome Institute

1389 Study-specific acknowledgements

1390 **NHLBI TOPMed: Atrial Fibrillation Biobank LMU (AFLMU) in the context of the** 1391 **ArrhythmiaBiobank-LMU**

1392 AFLMU is a repository of AF patients recruited in the context of the German Competence
1393 Network for Atrial Fibrillation (AFNET) and at the Department of Medicine I of the University
1394 Hospital Munich. In this context, DNA samples were preferentially sampled if the patient
1395 developed AF before the age of 60 years. Cases were selected if the diagnosis of atrial
1396 fibrillation was made on an electrocardiogram analyzed by a trained physician. Patients with
1397 signs of moderate to severe heart failure, moderate to severe valve disease or with
1398 hyperthyroidism were excluded from the study. All participants provided written informed
1399 consent. AFLMU was approved by the Ethics Committee at the Ludwig-Maximilian's University.
1400

1401 **NHLBI TOPMed: Genetics of Cardiometabolic Health in the Amish (Amish)**

1402 The Amish studies upon which these data are based were supported by NIH grants R01
1403 AG18728, U01 HL072515, R01 HL088119, R01 HL121007, and P30 DK072488. See
1404 publication: PMID: 18440328
1405

1406 **NHLBI TOPMed: Atherosclerosis Risk in Communities (ARIC)**

1407 The Atherosclerosis Risk in Communities study has been funded in whole or in part with Federal
1408 funds from the National Heart, Lung, and Blood Institute, National Institutes of Health,
1409 Department of Health and Human Services (contract numbers HHSN268201700001I,
1410 HHSN268201700002I, HHSN268201700003I, HHSN268201700004I and
1411 HHSN268201700005I). The authors thank the staff and participants of the ARIC study for their
1412 important contributions.
1413

1414 **NHLBI TOPMed: The Genetics and Epidemiology of Asthma in Barbados (BAGS)**

1415 We gratefully acknowledge the contributions of Pissamai and Trevor Maul, Paul Levett, Anselm
1416 Hennis, P. Michele Lashley, Raana Naidu, Malcolm Howitt and Timothy Roach, and the
1417 numerous health care providers, and community clinics and co-investigators who assisted in the
1418 phenotyping and collection of DNA samples, and the families and patients for generously
1419 donating DNA samples to the Barbados Asthma Genetics Study (BAGS). The Genetics and
1420 Epidemiology of Asthma in Barbados is supported by National Institutes of Health (NIH)
1421 National Heart, Lung, Blood Institute TOPMed (R01 HL104608-S1) and: R01 AI20059, K23
1422 HL076322, R01HL087699, and RC2 HL101651. For the specific cohort descriptions and

1423 descriptions regarding the collection of phenotype data can be found at:
1424 <https://www.nhlbiwg.org/group/bags-asthma>. The authors wish to give special recognition to
1425 the individual study participants who provided biological samples and or data, without their
1426 support in research none of this would be possible.

1427

1428 **NHLBI TOPMed: BioMe Biobank at Mount Sinai (BioMe)**

1429 The Mount Sinai BioMe Biobank has been supported by The Andrea and Charles Bronfman
1430 Philanthropies and in part by Federal funds from the NHLBI and NHGRI (U01HG00638001;
1431 U01HG007417; X01HL134588). We thank all participants in the Mount Sinai Biobank. We also
1432 thank all our recruiters who have assisted and continue to assist in data collection and
1433 management and are grateful for the computational resources and staff expertise provided by
1434 Scientific Computing at the Icahn School of Medicine at Mount Sinai.

1435

1436 **NHLBI TOPMed: CAMP**

1437 We thank the clinical centers and the Data Coordinating Center of the Childhood Asthma
1438 Management Program (CAMP) as well as all of the study participants at the 8 clinical sites. The
1439 CAMP study was supported by NHLBI P01 HL132825.

1440

1441 **NHLBI TOPMed: Coronary Artery Risk Development in Young Adults Study (CARDIA)**

1442 The Coronary Artery Risk Development in Young Adults Study (CARDIA) is conducted and
1443 supported by the National Heart, Lung, and Blood Institute (NHLBI) in collaboration with the
1444 University of Alabama at Birmingham (HHSN268201800005I & HHSN268201800007I),
1445 Northwestern University (HHSN268201800003I), University of Minnesota
1446 (HHSN268201800006I), and Kaiser Foundation Research Institute (HHSN268201800004I).
1447 CARDIA was also partially supported by the Intramural Research Program of the National
1448 Institute on Aging (NIA) and an intra-agency agreement between NIA and NHLBI (AG0005).

1449

1450 **NHLBI TOPMed: CARE_BADGER**

1451 This research was supported by grants from the National Heart, Lung, and Blood Institute
1452 (NHLBI), ((5U10HL064287, 5U10HL064288, 5U10HL064295, 5U10HL064307, 5U10HL064305,
1453 5U10HL064313, and HL080083)

1454

1455 **NHLBI TOPMed: CARE_CLIC**

1456 This research was supported by grants from the National Heart, Lung, and Blood Institute
1457 (NHLBI), ((5U10HL064287, 5U10HL064288, 5U10HL064295, 5U10HL064307, 5U10HL064305,
1458 5U10HL064313, and HL080083)

1459

1460 **NHLBI TOPMed: CARE_PACT**

1461 This research was supported by grants from the National Heart, Lung, and Blood Institute
1462 (NHLBI), ((5U10HL064287, 5U10HL064288, 5U10HL064295, 5U10HL064307, 5U10HL064305,
1463 5U10HL064313, and HL080083)

1464

1465 **NHLBI TOPMed: CARE_TREXA**

1466 This research was supported by grants from the National Heart, Lung, and Blood Institute
1467 (NHLBI), ((5U10HL064287, 5U10HL064288, 5U10HL064295, 5U10HL064307, 5U10HL064305,
1468 5U10HL064313, and HL080083)

1469

1470 **NHLBI TOPMed: The Cleveland Family Study (CFS)**

1471 The Cleveland Family Study has been supported in part by National Institutes of Health grants
1472 [R01- HL046380, KL2-RR024990, R35-HL135818, and R01-HL113338].

1473

1474 **NHLBI TOPMed: Children's Health Study: Integrative Genetic Approaches to Gene-Air
1475 Pollution Interactions in Asthma (ChildrensHS_GAP)**

1476 The Integrative Genetic Approaches to Gene-Air Pollution Interactions in Asthma (GAP) study
1477 was supported by the National Institute of Environmental Health Sciences (NIEHS) grant #
1478 R01ES021801. The Children's Health Study (CHS) was supported by the Southern California
1479 Environmental Health Sciences Center (grant P30ES007048); National Institute of
1480 Environmental Health Sciences (grants 5P01ES011627, ES021801, ES023262, P01ES009581,
1481 P01ES011627, P01ES022845, R01 ES016535, R03ES014046, P50 CA180905, R01HL061768,
1482 R01HL076647, R01HL087680 and RC2HL101651), the Environmental Protection Agency
1483 (grants RD83544101, R826708, RD831861, and R831845), and the Hastings Foundation.

1484

1485 **NHLBI TOPMed: Children's Health Study: Integrative Genomics and Environmental
1486 Research of Asthma (ChildrensHS_IGERA)**

1487 The Integrative Genomics and Environmental Research of Asthma (IGERA) Study was
1488 supported by the National Heart, Lung and Blood Institute (grant # RC2HL101543 -The Asthma
1489 BioRepository for Integrative Genomics Research, PI Gilliland/Raby). The Children's Health
1490 Study (CHS) was supported by the Southern California Environmental Health Sciences Center
1491 (grant P30ES007048); National Institute of Environmental Health Sciences (grants
1492 5P01ES011627, ES021801, ES023262, P01ES009581, P01ES011627, P01ES022845, R01
1493 ES016535, R03ES014046, P50 CA180905, R01HL061768, R01HL076647, R01HL087680 and
1494 RC2HL101651), the Environmental Protection Agency (grants RD83544101, R826708,
1495 RD831861, and R831845), and the Hastings Foundation.

1496

1497 **NHLBI TOPMed: Children's Health Study: Effects of Air Pollution on the Development of
1498 Obesity in Children (ChildrensHS_MetaAir)**

1499 The Effects of Air Pollution on the Development of Obesity in Children (Meta-AIR) study was
1500 supported by the Southern California Children's Environmental Health Center funded by the
1501 National Institute of Environmental Health Sciences (NIEHS) (P01ES022845) and the
1502 Environmental Protection Agency (EPA) (RD-83544101-0). The Children's Health Study (CHS)
1503 was supported by the Southern California Environmental Health Sciences Center (grant
1504 P30ES007048); National Institute of Environmental Health Sciences (grants 5P01ES011627,
1505 ES021801, ES023262, P01ES009581, P01ES011627, P01ES022845, R01 ES016535,
1506 R03ES014046, P50 CA180905, R01HL061768, R01HL076647, R01HL087680 and
1507 RC2HL101651), the Environmental Protection Agency (grants RD83544101, R826708,
1508 RD831861, and R831845), and the Hastings Foundation.

1509

1510 **NHLBI TOPMed: Genetics Sub-Study of Chicago Initiative to Raise Asthma Health Equity**
1511 **(CHIRAH)**

1512 Support for the Genetics Sub-Study of Chicago Initiative to Raise Asthma Health Equity was
1513 provided by NHLBI grant number U01 HL072496.

1514

1515 **NHLBI TOPMed: Cardiovascular Health Study (CHS)**

1516 This research was supported by contracts HHSN268201200036C, HHSN268200800007C,
1517 HHSN268201800001C, N01HC55222, N01HC85079, N01HC85080, N01HC85081,
1518 N01HC85082, N01HC85083, N01HC85086, and 75N92021D00006, and grants U01HL080295
1519 and U01HL130114 from the National Heart, Lung, and Blood Institute (NHLBI), with additional
1520 contribution from the National Institute of Neurological Disorders and Stroke (NINDS). Additional
1521 support was provided by R01AG023629 from the National Institute on Aging (NIA). A full list of
1522 principal CHS investigators and institutions can be found at CHS-NHLBI.org. The content is
1523 solely the responsibility of the authors and does not necessarily represent the official views of
1524 the National Institutes of Health.

1525

1526 **NHLBI TOPMed: Genetic Epidemiology of COPD (COPDGene) in the TOPMed Program**

1527 The COPDGene project described was supported by Award Number U01 HL089897 and Award
1528 Number U01 HL089856 from the National Heart, Lung, and Blood Institute. The content is solely
1529 the responsibility of the authors and does not necessarily represent the official views of the
1530 National Heart, Lung, and Blood Institute or the National Institutes of Health. The COPDGene
1531 project is also supported by the COPD Foundation through contributions made to an Industry
1532 Advisory Board comprised of AstraZeneca, Boehringer Ingelheim, GlaxoSmithKline, Novartis,
1533 Pfizer, Siemens and Sunovion. A full listing of COPDGene investigators can be found at:
1534 <http://www.copdgene.org/directory>

1535

1536 **NHLBI TOPMed: The Genetic Epidemiology of Asthma in Costa Rica (CRA)**

1537 This study was supported by NHLBI grants R37 HL066289 and P01 HL132825. We wish to
1538 acknowledge the investigators at the Channing Division of Network Medicine at Brigham and
1539 Women's Hospital, the investigators at the Hospital Nacional de Niños in San José, Costa Rica
1540 and the study subjects and their extended family members who contributed samples and
1541 genotypes to the study, and the NIH/NHLBI for its support in making this project possible.

1542

1543 **NHLBI TOPMed: Diabetes Heart Study (DHS)**

1544 This work was supported by R01 HL92301, R01 HL67348, R01 NS058700, R01 AR48797, R01
1545 DK071891, R01 AG058921, the General Clinical Research Center of the Wake Forest
1546 University School of Medicine (M01 RR07122, F32 HL085989), the American Diabetes
1547 Association, and a pilot grant from the Claude Pepper Older Americans Independence Center of
1548 Wake Forest University Health Sciences (P60 AG10484).

1549

1550 **NHLBI TOPMed: ECLIPSE**

1551 The ECLIPSE study (NCT00292552) was sponsored by GlaxoSmithKline. The ECLIPSE
1552 investigators included: ECLIPSE Investigators — Bulgaria: Y. Ivanov, Plevens; K. Kostov, Sofia.
1553 Canada: J. Bourbeau, Montreal; M. Fitzgerald, Vancouver, BC; P. Hernandez, Halifax, NS; K.

1554 Killian, Hamilton, ON; R. Levy, Vancouver, BC; F. Maltais, Montreal; D. O'Donnell, Kingston,
1555 ON. Czech Republic: J. Krepelka, Prague. Denmark: J. Vestbo, Hvidovre. The Netherlands: E.
1556 Wouters, Horn-Maastricht. New Zealand: D. Quinn, Wellington. Norway: P. Bakke, Bergen.
1557 Slovenia: M. Kosnik, Golnik. Spain: A. Agusti, J. Sauleda, P. de Mallorca. Ukraine: Y.
1558 Feschenko, V. Gavrisyuk, L. Yashina, Kiev; N. Monogarova, Donetsk. United Kingdom: P.
1559 Calverley, Liverpool; D. Lomas, Cambridge; W. MacNee, Edinburgh; D. Singh, Manchester; J.
1560 Wedzicha, London. United States: A. Anzueto, San Antonio, TX; S. Braman, Providence, RI; R.
1561 Casaburi, Torrance CA; B. Celli, Boston; G. Giessel, Richmond, VA; M. Gotfried, Phoenix, AZ;
1562 G. Greenwald, Rancho Mirage, CA; N. Hanania, Houston; D. Mahler, Lebanon, NH; B. Make,
1563 Denver; S. Rennard, Omaha, NE; C. Rochester, New Haven, CT; P. Scanlon, Rochester, MN;
1564 D. Schuller, Omaha, NE; F. Sciurba, Pittsburgh; A. Sharafkhaneh, Houston; T. Siler, St.
1565 Charles, MO; E. Silverman, Boston; A. Wanner, Miami; R. Wise, Baltimore; R. ZuWallack,
1566 Hartford, CT. ECLIPSE Steering Committee: H. Coxson (Canada), C. Crim (GlaxoSmithKline,
1567 USA), L. Edwards (GlaxoSmithKline, USA), D. Lomas (UK), W. MacNee (UK), E. Silverman
1568 (USA), R. Tal-Singer (Co-chair, GlaxoSmithKline, USA), J. Vestbo (Co-chair, Denmark), J.
1569 Yates (GlaxoSmithKline, USA). ECLIPSE Scientific Committee: A. Agusti (Spain), P. Calverley
1570 (UK), B. Celli (USA), C. Crim (GlaxoSmithKline, USA), B. Miller (GlaxoSmithKline, USA), W.
1571 MacNee (Chair, UK), S. Rennard (USA), R. Tal-Singer (GlaxoSmithKline, USA), E. Wouters
1572 (The Netherlands), J. Yates (GlaxoSmithKline, USA).
1573

1574 NHLBI TOPMed: Boston Early-Onset COPD Study in the TOPMed Program (EOCOPD)

1575 The Boston Early-Onset COPD Study was supported by R01 HL113264 and U01 HL089856
1576 from the National Heart, Lung, and Blood Institute.

1577

**1578 NHLBI TOPMed: Whole Genome Sequencing and Related Phenotypes in the Framingham
1579 Heart Study (FHS)**

1580 The Framingham Heart Study (FHS) acknowledges the support of contracts NO1-HC-25195,
1581 HHSN268201500001I, and 75N92019D00031 from the National Heart, Lung and Blood Institute
1582 and grant supplement R01 HL092577-06S1 for this research. We also acknowledge the
1583 dedication of the FHS study participants without whom this research would not be possible.

1584

**1585 NHLBI TOPMed: Genes-environments and Admixture in Latino Asthmatics (GALA I)
1586 Study**

1587 The Genes-environments and Admixture in Latino Americans (GALA I) Study was supported by
1588 the National Heart, Lung, and Blood Institute of the National Institute of Health (NIH) grants
1589 R01HL117004 and X01HL134589; study enrollment supported by Sandler Center for Basic
1590 Research in Asthma and the Sandler Family Foundation, the American Asthma Foundation, the
1591 American Lung Association, the NIH grants K23HL04464 and HL07185, the Resource Centers
1592 for Minority Aging Research from the National Institute on Aging, RCMAR P30-AG15272, the
1593 National Institute of Nursing Research and the National Center on Minority Health and Health
1594 Disparities.

1595

**1596 NHLBI TOPMed: Genes-environments and Admixture in Latino Asthmatics (GALA II)
1597 Study**

1598 The Genes-environments and Admixture in Latino Americans (GALA II) Study was supported by
1599 the National Heart, Lung, and Blood Institute of the National Institute of Health (NIH) grants
1600 R01HL117004 and X01HL134589; study enrollment supported by the Sandler Family
1601 Foundation, the American Asthma Foundation, the RWJF Amos Medical Faculty Development
1602 Program, Harry Wm. and Diana V. Hind Distinguished Professor in Pharmaceutical Sciences II
1603 and the National Institute of Environmental Health Sciences grant R01ES015794 . WGS of part
1604 of GALA II was performed by New York Genome Center under The Centers for Common
1605 Disease Genomics of the Genome Sequencing Program (GSP) Grant (UM1 HG008901). The
1606 GSP Coordinating Center (U24 HG008956) contributed to cross-program scientific initiatives
1607 and provided logistical and general study coordination. GSP is funded by the National Human
1608 Genome Research Institute, the National Heart, Lung, and Blood Institute, and the National Eye
1609 Institute. The GALA II study collaborators include Shannon Thyne, UCSF; Harold J. Farber,
1610 Texas Children's Hospital; Denise Serebriskiy, Jacobi Medical Center; Rajesh Kumar, Lurie
1611 Children's Hospital of Chicago; Emerita Brigino-Buenaventura, Kaiser Permanente; Michael A.
1612 LeNoir, Bay Area Pediatrics; Kelley Meade, UCSF Benioff Children's Hospital, Oakland; William
1613 Rodriguez-Cintron, VA Hospital, Puerto Rico; Pedro C. Avila, Northwestern University; Jose R.
1614 Rodriguez-Santana, Centro de Neumologia Pediatrica; Luisa N. Borrell, City University of New
1615 York; Adam Davis, UCSF Benioff Children's Hospital, Oakland; Saunak Sen, University of
1616 Tennessee and Fred Lurmann, Sonoma Technologies, Inc. The authors acknowledge the
1617 families and patients for their participation and thank the numerous health care providers and
1618 community clinics for their support and participation in GALA II. In particular, the authors thank
1619 study coordinator Sandra Salazar; the recruiters who obtained the data: Duanny Alva, MD,
1620 Gaby Ayala-Rodriguez, Lisa Caine, Elizabeth Castellanos, Jaime Colon, Denise DeJesus,
1621 Blanca Lopez, Brenda Lopez, MD, Louis Martos, Vivian Medina, Juana Olivo, Mario Peralta,
1622 Esther Pomares, MD, Jihan Quraishi, Johanna Rodriguez, Shahdad Saeedi, Dean Soto, Ana
1623 Taveras; and the lab researcher Celeste Eng who processed the biospecimens.
1624

1625 **NHLBI TOPMed: GeneSTAR (Genetic Study of Atherosclerosis Risk)**

1626 The Johns Hopkins Genetic Study of Atherosclerosis Risk (GeneSTAR) was supported by
1627 grants from the National Institutes of Health through the National Heart, Lung, and Blood
1628 Institute (U01HL72518, HL087698, HL112064) and by a grant from the National Center for
1629 Research Resources (M01- RR000052) to the Johns Hopkins General Clinical Research
1630 Center. We would like to thank the participants and families of GeneSTAR and our dedicated
1631 staff for all their sacrifices.
1632

1633 **NHLBI TOPMed: Genetic Epidemiology Network of Arteriopathy (GENOA)**

1634 Support for GENOA was provided by the National Heart, Lung and Blood Institute (HL054457,
1635 HL054464, HL054481, HL119443, and HL087660) of the National Institutes of Health.
1636

1637 **NHLBI TOPMed: Genetic Epidemiology Network of Salt Sensitivity (GenSalt)**

1638 The Genetic Epidemiology Network of Salt-Sensitivity (GenSalt) was supported by research
1639 grants (U01HL072507, R01HL087263, and R01HL090682) from the National Heart, Lung and
1640 Blood Institute, National Institutes of Health, Bethesda, MD.
1641

1642 **NHLBI TOPMed: Genetics of Lipid Lowering Drugs and Diet Network (GOLDN)**
1643 GOLDN biospecimens, baseline phenotype data, and intervention phenotype data were
1644 collected with funding from National Heart, Lung and Blood Institute (NHLBI) grant U01
1645 HL072524. Whole-genome sequencing in GOLDN was funded by NHLBI grant R01 HL104135
1646 and supplement R01 HL104135- 04S1.
1647

1648 **NHLBI TOPMed: Hispanic Community Health Study/Study of Latinos (HCHS_SOL)**
1649 The Hispanic Community Health Study/Study of Latinos is a collaborative study supported by
1650 contracts from the National Heart, Lung, and Blood Institute (NHLBI) to the University of North
1651 Carolina (HHSN268201300001I / N01-HC-65233), University of Miami (HHSN268201300004I /
1652 N01-HC65234), Albert Einstein College of Medicine (HHSN268201300002I / N01-HC-65235),
1653 University of Illinois at Chicago – HHSN268201300003I / N01-HC-65236 Northwestern Univ),
1654 and San Diego State University (HHSN268201300005I / N01-HC-65237). The following
1655 Institutes/Centers/Offices have contributed to the HCHS/SOL through a transfer of funds to the
1656 NHLBI: National Institute on Minority Health and Health Disparities, National Institute on
1657 Deafness and Other Communication Disorders, National Institute of Dental and Craniofacial
1658 Research, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute
1659 of Neurological Disorders and Stroke, NIH Institution-Office of Dietary Supplements.
1660

1661 **NHLBI TOPMed: Heart and Vascular Health Study (HVH)**
1662 The Heart and Vascular Health Study was supported by grants HL068986, HL085251,
1663 HL095080, and HL073410 from the National Heart, Lung, and Blood Institute.
1664

1665 **NHLBI TOPMed: Hypertension Genetic Epidemiology Network (HyperGEN)**
1666 The HyperGEN Study is part of the National Heart, Lung, and Blood Institute (NHLBI) Family
1667 Blood Pressure Program; collection of the data represented here was supported by grants U01
1668 HL054472 (MN Lab), U01 HL054473 (DCC), U01 HL054495 (AL FC), and U01 HL054509 (NC
1669 FC). The HyperGEN: Genetics of Left Ventricular Hypertrophy Study was supported by NHLBI
1670 grant R01 HL055673 with whole-genome sequencing made possible by supplement -18S1.
1671

1672 **NHLBI TOPMed: IPF**
1673 This research was supported by the National Heart, Lung and Blood Institute (R01-HL097163,
1674 P01- HL092870, and UH3-HL123442) and the Department of Defense (W81XWH-17-1-0597).
1675

1676 **NHLBI TOPMed: The Jackson Heart Study (JHS)**
1677 The Jackson Heart Study (JHS) is supported and conducted in collaboration with Jackson State
1678 University (HHSN268201800013I), Tougaloo College (HHSN268201800014I), the Mississippi
1679 State Department of Health (HHSN268201800015I) and the University of Mississippi Medical
1680 Center (HHSN268201800010I, HHSN268201800011I and HHSN268201800012I) contracts
1681 from the National Heart, Lung, and Blood Institute (NHLBI) and the National Institute on Minority
1682 Health and Health Disparities (NIMHD). The authors also wish to thank the staffs and
1683 participants of the JHS.
1684

1685 **NHLBI TOPMed: LTRC**

1686 This study utilized biological specimens and data provided by the Lung Tissue Research
1687 Consortium (LTRC) supported by the National Heart, Lung, and Blood Institute (NHLBI). The
1688 LTRC was sponsored by a contract from the
1689

1690 **NHLBI: HHSN2682016000021 NHLBI TOPMed: Mayo Clinic Venous Thromboembolism
1691 Study (Mayo_VTE)**

1692 Funded, in part, by grants from the National Institutes of Health, National Heart, Lung and Blood
1693 Institute (HL66216 and HL83141), the National Human Genome Research Institute (HG04735,
1694 HG06379), and research support provided by Mayo Foundation.
1695

1696 **NHLBI TOPMed: Multi-Ethnic Study of Atherosclerosis (MESA)**

1697 Whole genome sequencing (WGS) for the Trans-Omics in Precision Medicine (TOPMed)
1698 program was supported by the National Heart, Lung and Blood Institute (NHLBI). WGS for
1699 "NHLBI TOPMed: Multi-Ethnic Study of Atherosclerosis (MESA)" (phs001416.v3.p1) was
1700 performed at the Broad Institute of MIT and Harvard (3U54HG003067-13S1). Centralized read
1701 mapping and genotype calling, along with variant quality metrics and filtering were provided by
1702 the TOPMed Informatics Research Center (3R01HL-117626-02S1). Phenotype harmonization,
1703 data management, sample-identity QC, and general study coordination, were provided by the
1704 TOPMed Data Coordinating Center (3R01HL-120393-02S1), and TOPMed MESA Multi-Omics
1705 (HHSN2682015000031/HSN26800004). The MESA projects are conducted and supported by
1706 the National Heart, Lung, and Blood Institute (NHLBI) in collaboration with MESA investigators.
1707 Support for the Multi-Ethnic Study of Atherosclerosis (MESA) projects are conducted and
1708 supported by the National Heart, Lung, and Blood Institute (NHLBI) in collaboration with MESA
1709 investigators. Support for MESA is provided by contracts 75N92020D00001,
1710 HHSN2682015000031, N01-HC-95159, 75N92020D00005, N01-HC-95160, 75N92020D00002,
1711 N01-HC-95161, 75N92020D00003, N01-HC-95162, 75N92020D00006, N01-HC-95163,
1712 75N92020D00004, N01-HC-95164, 75N92020D00007, N01-HC-95165, N01-HC-95166, N01-
1713 HC-95167, N01-HC-95168, N01-HC-95169, UL1-TR-000040, UL1-TR-001079, UL1-TR-
1714 001420, UL1TR001881, DK063491, and R01HL105756. The authors thank the other
1715 investigators, the staff, and the participants of the MESA study for their valuable contributions.
1716 A full list of participating MESA investigators and institutes can be found at <http://www.mesa-nhlbi.org>.
1717

1718

1719 **NHLBI TOPMed: My Life, Our Future (MLOF)**

1720 The My Life, Our Future samples and data are made possible through the partnership of
1721 Bloodworks Northwest, the American Thrombosis and Hemostasis Network, the National
1722 Hemophilia Foundation, and Bioverativ. We gratefully acknowledge the hemophilia treatment
1723 centers and their patients who provided biological samples and phenotypic data.
1724

1725 **NHLBI TOPMed: Outcome Modifying Genes in Sickle Cell Disease (OMG-SCD)**

1726 The OMG-SCD study was administered by Marilyn J. Telen, M.D. and Allison E. Ashley-Koch,
1727 Ph.D. from Duke University Medical Center, and collection of the data set was supported by
1728 grants HL068959 and HL079915 from the National Heart, Lung, and Blood Institute (NHLBI) of
1729 the National Institute of Health (NIH).

1730

1731 **NHLBI TOPMed: Pediatric Cardiac Genomics Consortium's Congenital Heart Disease**
1732 **Biobank (PCGC-CHD)**

1733 The Pediatric Cardiac Genomics Consortium (PCGC) program is funded by the National Heart,
1734 Lung, and Blood Institute, National Institutes of Health, U.S. Department of Health and Human
1735 Services through grants UM1HL128711, UM1HL098162, UM1HL098147, UM1HL098123,
1736 UM1HL128761, and U01HL131003.

1737

1738 **NHLBI TOPMed: The Pharmacogenomics of Hydroxyurea in Sickle Cell Disease**
1739 **(PharmHU)**

1740 Collection of the PharmHU samples and data were supported in part by the Department of
1741 Pediatrics, Baylor College of Medicine funds, National Institutes of Health (NIH) National
1742 Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) grant 1K08 DK110448-01,
1743 NIH NHLBI R01 HL069234, and U01-HL117721 funded by NHLBI. We are very grateful to the
1744 patients with sickle cell disease for their participation in PharmHU.

1745

1746 **NHLBI TOPMed: PIMA**

1747 This research was supported by grants from the National Heart, Lung, and Blood Institute
1748 (NHLBI), ((5U10HL064287, 5U10HL064288, 5U10HL064295, 5U10HL064307, 5U10HL064305,
1749 5U10HL064313, and HL080083)

1750

1751 **NHLBI TOPMed: PUSH_SCD**

1752 We thank Dr. Victor R Gordeuk and the investigators of the PUSH study and the patients who
1753 participated in the study. We also thank the PUSH clinical site team: Howard University: Victor
1754 R Gordeuk, Sergei Nekhai, Oswaldo Castro, Sohail Rana, Mehdi Nouraie, James G Taylor 6th,
1755 Children National Medical Center: Caterina Minniti, Deepika Darbari, Lori Lutchman-Jones, Nitti
1756 Dham, Craig Sable, NHLBI: Mark Gladwin, Greg Kato. University of Michigan: Andrew
1757 Campbell, Gregory Ensing, Manuel Arteta, Special thanks to the volunteers who participated in
1758 the PUSH study. This project was funded with federal funds from the NHLBI, NIH. Detail
1759 description of the study was published in Haematologica. 2009 Mar;94(3):340-7, Minniti C, et al.
1760 "Elevated tricuspid regurgitant jet velocity in children and adolescents with sickle cell disease:
1761 association with hemolysis and hemoglobin oxygen desaturation."

1762

1763 **NHLBI TOPMed: Recipient Epidemiology and Donor Evaluation Study-III (REDS-III_Brazil)**

1764 The Recipient Epidemiology and Donor Evaluation Study (REDS)-III was funded by NIH NHLBI
1765 contract HHSN268201100007I and conducted under the leadership of Simone Glynn (NHLBI),
1766 and principle investigators Brian Custer and Ester Sabino. We are grateful to the Brazilian sickle
1767 cell disease patients who participated in the REDS-III study and provided blood samples for
1768 whole genome sequencing as well as the REDS-III staff: Vitalant Research Institute (Shannon
1769 Kelly), University of Sao Paulo (Miriam V Flor Park, Ligia Capuani), Hemominas Belo Horizonte
1770 (Anna Barbara Proietti), Hemominas Montes Claros (Rosimere Alfonso), Hemominas Juiz de
1771 Fora (Daniela de O. Werneck Rodrigues), Hemope (Paula Loureiro), Hemorio (Claudia
1772 Maximo).

1773

1774 **NHLBI TOPMed: San Antonio Family Heart Study (SAFS)**

1775 Collection of the San Antonio Family Study data was supported in part by National Institutes of

1776 Health (NIH) grants P01 HL045522, R01 MH078143, R01 MH078111 and R01 MH083824; and

1777 whole genome sequencing of SAFS subjects was supported by U01 DK085524 and R01

1778 HL113323. We are very grateful to the participants of the San Antonio Family Study for their

1779 continued involvement in our research programs.

1780

1781 **NHLBI TOPMed: Study of African Americans, Asthma, Genes and Environment (SAGE)**

1782 The Study of African Americans, Asthma, Genes and Environments (SAGE) was supported by

1783 by the National Heart, Lung, and Blood Institute of the National Institute of Health (NIH) grants

1784 R01HL117004 and X01HL134589; study enrollment supported by the Sandler Family

1785 Foundation, the American Asthma Foundation, the RWJF Amos Medical Faculty Development

1786 Program, Harry Wm. and Diana V. Hind Distinguished Professor in Pharmaceutical Sciences II.

1787 The SAGE study collaborators include Harold J. Farber, Texas Children's Hospital; Emerita

1788 Brigino-Buenaventura, Kaiser Permanente; Michael A. LeNoir, Bay Area Pediatrics; Kelley

1789 Meade, UCSF Benioff Children's Hospital, Oakland; Luisa N. Borrell, City University of New

1790 York; Adam Davis, UCSF Benioff Children's Hospital, Oakland and Fred Lurmann, Sonoma

1791 Technologies, Inc. The authors acknowledge the families and patients for their participation and

1792 thank the numerous health care providers and community clinics for their support and

1793 participation in SAGE. In particular, the authors thank study coordinator Sandra Salazar; the

1794 recruiters who obtained the data: Lisa Caine, Elizabeth Castellanos, Brenda Lopez, MD,

1795 Shahdad Saeedi; and the lab researcher Celeste Eng who processed the biospecimens.

1796

1797 **NHLBI TOPMed: Study of Asthma Phenotypes & Pharmacogenomic Interactions by**

1798 **RaceEthnicity (SAPPHERE_asthma)**

1799 The SAPPHERE cohort was supported by grant funding from the Fund for Henry Ford Hospital,

1800 the American Asthma Foundation, and the following institutes of the National Institutes of

1801 Health: the National Heart Lung and Blood Institute (R01HL141845, R01HL118267,

1802 X01HL134589, R01HL079055), the National Institute of Allergy and Infectious Diseases

1803 (R01AI079139, R01AI061774), and the National Institute of Diabetes and Digestive and Kidney

1804 Diseases (R01DK113003, R01DK064695).

1805

1806 **NHLBI TOPMed: Genetics of Sarcoidosis in African Americans (Sarcoidosis)**

1807 Supported by the National Institutes of Health under Grant R01HL113326-05, P30 GM110766-

1808 01, and U54GM104938-06.

1809

1810 **NHLBI TOPMed: Severe Asthma Research Program (SARP)**

1811 The authors acknowledge the contributions of the study coordinators and staff at each of the

1812 clinical centers and the Data Coordinating Center as well as all the study participants that have

1813 been integral to the success of the NHLBI Severe Asthma Research Program (funded by U10

1814 HL109164, U10 HL109257, U10 HL109146, U10 HL109172, U10 HL109250, U10 HL109250,

1815 U10 HL109250, U10 HL109168, U10 HL109152, U10 HL109086).

1816

1817 **NHLBI TOPMed: Genome-wide Association Study of Adiposity in Samoans (SAS)**

1818 Financial support from the U.S. National Institutes of Health Grants R01-HL093093 and
1819 R01HL133040. We acknowledge the assistance of the Samoa Ministry of Health and the
1820 Samoa Bureau of Statistics for their guidance and support in the conduct of this study. We thank
1821 the local village officials for their help and the participants for their generosity. The following
1822 publication describes the origin of the dataset: Hawley NL, Minster RL, Weeks DE, Viali S,
1823 Reupena MS, Sun G, Cheng H, Deka R, McGarvey ST. Prevalence of Adiposity and Associated
1824 Cardiometabolic Risk Factors in the Samoan Genome-Wide Association Study. Am J Human
1825 Biol 2014. 26: 491-501. DOI: 10.1002/jhb.22553. PMID: 24799123.

1826

1827 **NHLBI TOPMed: Rare Variants for Hypertension in Taiwan Chinese (THRV)**

1828 The Rare Variants for Hypertension in Taiwan Chinese (THRV) is supported by the National
1829 Heart, Lung, and Blood Institute (NHLBI) grant (R01HL111249) and its participation in TOPMed
1830 is supported by an NHLBI supplement (R01HL111249-04S1). THR is a collaborative study
1831 between Washington University in St. Louis, LA BioMed at Harbor UCLA, University of Texas in
1832 Houston, Taichung Veterans General Hospital, Taipei Veterans General Hospital, Tri-Service
1833 General Hospital, National Health Research Institutes, National Taiwan University, and Baylor
1834 University. THR is based (substantially) on the parent SAPPHIRE study, along with additional
1835 population-based and hospital-based cohorts. SAPPHIRE was supported by NHLBI grants
1836 (U01HL54527, U01HL54498) and Taiwan funds, and the other cohorts were supported by
1837 Taiwan funds.

1838

1839 **NHLBI TOPMed: The Vanderbilt AF Ablation Registry (VAFAR)**

1840 The research reported in this article was supported by grants from the American Heart
1841 Association to Dr. Shoemaker (11CRP742009), Dr. Darbar (EIA 0940116N), and grants from
1842 the National Institutes of Health (NIH) to Dr. Darbar (R01 HL092217), and Dr. Roden (U19
1843 HL65962, and UL1 RR024975). The project was also supported by a CTSA award (UL1
1844 TR00045) from the National Center for Advancing Translational Sciences. Its contents are
1845 solely the responsibility of the authors and do not necessarily represent the official views of the
1846 National Center for Advancing Translational Sciences or the NIH.

1847

1848 **NHLBI TOPMed: The Vanderbilt Atrial Fibrillation Registry (VU_AF)**

1849 The research reported in this article was supported by grants from the American Heart
1850 Association to Dr. Darbar (EIA 0940116N), and grants from the National Institutes of Health
1851 (NIH) to Dr. Darbar (HL092217), and Dr. Roden (U19 HL65962, and UL1 RR024975). This
1852 project was also supported by CTSA award (UL1TR000445) from the National Center for
1853 Advancing Translational Sciences. Its contents are solely the responsibility of the authors and
1854 do not necessarily represent the official views of the National Center for Advancing Translational
1855 Sciences of the NIH.

1856

1857 **NHLBI TOPMed: Treatment of Pulmonary Hypertension and Sickle Cell Disease With
1858 Sildenafil Therapy (Walk-PHaSST)**

1859 We thank Dr. Mark Gladwin and the investigators of the Walk-PHaSST study and the patients
1860 who participated in the study. We also thank the walk-PHaSST clinical site team: Albert
1861 Einstein College of Medicine: Jane Little and Verlene Davis; Columbia University: Robyn Barst,

1862 Erika Rosenzweig, Margaret Lee and Daniela Brady; UCSF Benioff Children's Hospital Oakland:
1863 Claudia Morris, Ward Hagar, Lisa Lavrisha, Howard Rosenfeld, and Elliott Vichinsky; Children's
1864 Hospital of Pittsburgh of UPMC: Regina McCollum; Hammersmith Hospital, London: Sally
1865 Davies, Gaia Mahalingam, Sharon Meehan, Ofelia Lebanto, and Ines Cabrita; Howard
1866 University: Victor Gordeuk, Oswaldo Castro, Onyinye Onyekwere,, Alvin Thomas, Gladys
1867 Onojobi, Sharmin Diaz, Margaret Fadojutimi-Akinsiku, and Randa Aladdin; Johns Hopkins
1868 University: Reda Grgis, Sophie Lanzkron and Durrant Barasa; NHLBI: Mark Gladwin, Greg
1869 Kato, James Taylor, Vandana Sachdev, Wynona Coles, Catherine Seamon, Mary Hall, Amy
1870 Chi, Cynthia Brenneman, Wen Li, and Erin Smith; University of Colorado: Kathryn Hassell,
1871 David Badesch, Deb McCollister and Julie McAfee; University of Illinois at Chicago: Dean
1872 Schraufnagel, Robert Molokie, George Kondos, Patricia Cole-Saffold, and Lani Krauz; National
1873 Heart & Lung Institute, Imperial College London: Simon Gibbs. Thanks also to the data
1874 coordination center team from Rho, Inc.: Nancy Yovetich, Rob Woolson, Jamie Spencer,
1875 Christopher Woods, Karen Kesler, Vickie Coble, and Ronald W. Helms. We also thank Dr.
1876 Yingze Zhang for directing the Walk-PHASST repository and Dr. Mehdi Nouraie for maintaining
1877 the Walk-PHASST database and Dr. Jonathan Goldsmith as a NIH program director for this
1878 study. Special thanks to the volunteers who participated in the Walk-PHASST study. This project
1879 was funded with federal funds from the NHLBI, NIH, Department of Health and Human
1880 Services, under contract HHSN268200617182C. This study is registered at
1881 www.clinicaltrials.gov as NCT00492531. Detail description of the study was published in Blood,
1882 2011 118:855-864, Machado et al "Hospitalization for pain in patients with sickle cell disease
1883 treated with sildenafil for elevated TRV and low exercise capacity".
1884

1885 **NHLBI TOPMed: Novel Risk Factors for the Development of Atrial Fibrillation in Women
(WGHS)**

1887 The WGHS is supported by the National Heart, Lung, and Blood Institute (HL043851 and
1888 HL080467) and the National Cancer Institute (CA047988 and UM1CA182913). The most recent
1889 cardiovascular endpoints were supported by ARRA funding HL099355.

1890
1891 **NHLBI TOPMed: Women's Health Initiative (WHI)**

1892 The WHI program is funded by the National Heart, Lung, and Blood Institute, National Institutes
1893 of Health, U.S. Department of Health and Human Services through contracts
1894 HHSN268201600018C, HHSN268201600001C, HHSN268201600002C,
1895 HHSN268201600003C, and HHSN268201600004C. This manuscript was prepared in
1896 collaboration with investigators of the WHI, and has been reviewed and/or approved by the
1897 Women's Health Initiative (WHI). The short list of WHI investigators can be found at
1898 <https://www.whi.org/researchers/Documents%20%20Write%20a%20Paper/WHI%20Investigator%20ShortList.pdf>.
1899

1900 **Other funding acknowledgements**

1901 Rebecca Keener was supported in part by NIH/NIGMS grant 5K12GM123914. This work was
1902 carried out at the Advanced Research Computing at Hopkins (ARCH) core facility
1903 (rockfish.jhu.edu), which is supported by the National Science Foundation (NSF) grant number

1904 OAC1920103. Matthew P. Conomos was supported by R01HL-120393; contract
1905 HHSN268201800001I; U01 HL137162. Brian E. Cade was supported by R01HL153805. Barry I.
1906 Freedman was supported by R01 DK071891. Lifang Hou was supported by R01AG081244,
1907 R01AG069120. Marilyn J. Telen was supported by NHLBI (R01HL68959, R01HL87681 and
1908 R01HL079915) for the collection of the samples. Allison E. Ashley-Koch was supported by
1909 NHLBI (R01HL68959, R01HL87681 and R01HL079915) for the collection of the samples.
1910 Joshua C. Bis was supported by R01HL105756. Zhanghua Chen was supported by
1911 P30ES007048, 5P01ES011627, ES021801, ES023262, P01ES009581, P01ES011627,
1912 P01ES022845, R01 ES016535, R03ES014046, P50 CA180905, R01HL061768, R01HL076647,
1913 R01HL087680, RC2HL101651, RD83544101, R826708, RD831861, R831845, R00ES027870,
1914 and the Hastings Foundation. Dr. Patrick T. Ellinor was supported by grants from the National
1915 Institutes of Health (1R01HL092577, 1R01HL157635, 5R01HL139731), from the American
1916 Heart Association Strategically Focused Research Networks (18SFRN34110082), and from the
1917 European Union (MAESTRIA 965286). Myriam Fornage was supported by U01AG052409,
1918 U01AG058589. Bruce D. Gelb was supported by U01HL153009. Frank D. Gilliland was
1919 supported by P30ES007048, 5P01ES011627, ES021801, ES023262, P01ES009581,
1920 P01ES011627, P01ES022845, R01 ES016535, R03ES014046, P50 CA180905, R01HL061768,
1921 R01HL076647, R01HL087680, RC2HL101651, RD83544101, R826708, RD831861, R831845,
1922 R00ES027870, and the Hastings Foundation. Talat Islam was supported by P30ES007048,
1923 5P01ES011627, ES021801, ES023262, P01ES009581, P01ES011627, P01ES022845, R01
1924 ES016535, R03ES014046, P50 CA180905, R01HL061768, R01HL076647, R01HL087680,
1925 RC2HL101651, RD83544101, R826708, RD831861, R831845, R00ES027870, and the
1926 Hastings Foundation. Rajesh Kumar was supported by UM1AI160040, U01AI160018-01,
1927 UG1HL139125, R01AI153239. Ruth J.F. Looks was supported by R01DK107786;
1928 R01HG010297. Nicholette D. Palmer was supported by R01 AG058921. Susan Redline was
1929 supported by R35HL135818. David Schwartz was supported by P01-HL162607, R01-
1930 HL158668, R01-HL149836, IO1BX005295, UG3/UH3-HL151865, and X01-HL134585.
1931 The Johns Hopkins Genetic Study of Atherosclerosis Risk (GeneSTAR) was supported by
1932 grants from the National Institutes of Health through the National Heart, Lung, and Blood
1933 Institute (U01HL72518, HL087698, HL112064) and by a grant from the National Center for
1934 Research Resources (M01-RR000052) to the Johns Hopkins General Clinical Research Center.
1935 Dr. Rasika Mathias receives support as the Sarah Miller Coulson Scholar in the Johns Hopkins
1936 Center for Innovative Medicine. Carol W. Greider was supported by NIH R35 CA209974. Alexis
1937 Battle was supported by NIH/NIGMS R35GM139580.

1938 TOPMed Consortium members

1939 Namiko Abe, Gonçalo Abecasis, Francois Aguet, Christine Albert, Laura Almasy, Alvaro Alonso,
1940 Seth Ament, Peter Anderson, Pramod Anugu, Deborah Applebaum-Bowden, Kristin Ardlie, Dan
1941 Arking, Donna K Arnett, Allison Ashley-Koch, Stella Aslibekyan, Tim Assimes, Paul Auer,
1942 Dimitrios Avramopoulos, Najib Ayas, Adithya Balasubramanian, John Barnard, Kathleen
1943 Barnes, R. Graham Barr, Emily Barron-Casella, Lucas Barwick, Terri Beaty, Gerald Beck, Diane
1944 Becker, Lewis Becker, Rebecca Beer, Amber Beitelhees, Emelia Benjamin, Takis Benos,
1945 Marcos Bezerra, Larry Bielak, Joshua Bis, Thomas Blackwell, John Blangero, Nathan Blue, Eric

1946 Boerwinkle, Donald W. Bowden, Russell Bowler, Jennifer Brody, Ulrich Broeckel, Jai Broome,
1947 Deborah Brown, Karen Bunting, Esteban Burchard, Carlos Bustamante, Erin Buth, Brian Cade,
1948 Jonathan Cardwell, Vincent Carey, Julie Carrier, April P. Carson, Cara Carty, Richard Casaburi,
1949 Juan P Casas Romero, James Casella, Peter Castaldi, Mark Chaffin, Christy Chang, Yi-Cheng
1950 Chang, Daniel Chasman, Sameer Chavan, Bo-Juen Chen, Wei-Min Chen, Yii-Der Ida Chen,
1951 Michael Cho, Seung Hoan Choi, Lee-Ming Chuang, Mina Chung, Ren-Hua Chung, Clary Clish,
1952 Suzy Comhair, Matthew Conomos, Elaine Cornell, Adolfo Correa, Carolyn Crandall, James
1953 Crapo, L. Adrienne Cupples, Joanne Curran, Jeffrey Curtis, Brian Custer, Coleen Damcott,
1954 Dawood Darbar, Sean David, Colleen Davis, Michelle Daya, Mariza de Andrade, Lisa de las
1955 Fuentes, Paul de Vries, Michael DeBaun, Ranjan Deka, Dawn DeMeo, Scott Devine, Huyen
1956 Dinh, Harsha Doddapaneni, Qing Duan, Shannon Dugan-Perez, Ravi Duggirala, Jon Peter
1957 Durda, Susan K. Dutcher, Charles Eaton, Lynette Ekunwe, Adel El Boueiz, Patrick Ellinor,
1958 Leslie Emery, Serpil Erzurum, Charles Farber, Jesse Farek, Tasha Fingerlin, Matthew
1959 Flickinger, Myriam Fornage, Nora Franceschini, Chris Frazar, Mao Fu, Stephanie M. Fullerton,
1960 Lucinda Fulton, Stacey Gabriel, Weinu Gan, Shanshan Gao, Yan Gao, Margery Gass, Heather
1961 Geiger, Bruce Gelb, Mark Geraci, Soren Germer, Robert Gerszten, Auyon Ghosh, Richard
1962 Gibbs, Chris Gignoux, Mark Gladwin, David Glahn, Stephanie Gogarten, Da-Wei Gong, Harald
1963 Goring, Sharon Graw, Kathryn J. Gray, Daniel Grine, Colin Gross, C. Charles Gu, Yue Guan,
1964 Xiuqing Guo, Namrata Gupta, Jeff Haessler, Michael Hall, Yi Han, Patrick Hanly, Daniel Harris,
1965 Nicola L. Hawley, Jiang He, Ben Heavner, Susan Heckbert, Ryan Hernandez, David Herrington,
1966 Craig Hersh, Bertha Hidalgo, James Hixson, Brian Hobbs, John Hokanson, Elliott Hong, Karin
1967 Hoth, Chao (Agnes) Hsiung, Jianhong Hu, Yi-Jen Hung, Haley Huston, Chii Min Hwu,
1968 Marguerite Ryan Irvin, Rebecca Jackson, Deepti Jain, Cashell Jaquish, Jill Johnsen, Andrew
1969 Johnson, Craig Johnson, Rich Johnston, Kimberly Jones, Hyun Min Kang, Robert Kaplan,
1970 Sharon Kardia, Shannon Kelly, Eimear Kenny, Michael Kessler, Alyna Khan, Ziad Khan, Wonji
1971 Kim, John Kimoff, Greg Kinney, Barbara Konkle, Charles Kooperberg, Holly Kramer, Christoph
1972 Lange, Ethan Lange, Leslie Lange, Cathy Laurie, Cecelia Laurie, Meryl LeBoff, Jiwon Lee,
1973 Sandra Lee, Wen-Jane Lee, Jonathon LeFaive, David Levine, Daniel Levy, Joshua Lewis,
1974 Xiaohui Li, Yun Li, Henry Lin, Honghuang Lin, Xihong Lin, Simin Liu, Yongmei Liu, Yu Liu, Ruth
1975 J.F. Loos, Steven Lubitz, Kathryn Lunetta, James Luo, Ulysses Magalang, Michael Mahaney,
1976 Barry Make, Ani Manichaikul, Alisa Manning, JoAnn Manson, Lisa Martin, Melissa Marton,
1977 Susan Mathai, Rasika Mathias, Susanne May, Patrick McArdle, Merry-Lynn McDonald, Sean
1978 McFarland, Stephen McGarvey, Daniel McGoldrick, Caitlin McHugh, Becky McNeil, Hao Mei,
1979 James Meigs, Vipin Menon, Luisa Mestroni, Ginger Metcalf, Deborah A Meyers, Emmanuel
1980 Mignot, Julie Mikulla, Nancy Min, Mollie Minear, Ryan L Minster, Braxton D. Mitchell, Matt Moll,
1981 Zeineen Momin, May E. Montasser, Courtney Montgomery, Donna Muzny, Josyf C
1982 Mychaleckyj, Girish Nadkarni, Rakhi Naik, Take Naseri, Pradeep Natarajan, Sergei Nekhai,
1983 Sarah C. Nelson, Bonnie Neltner, Caitlin Nessner, Deborah Nickerson, Osuji Nkechinyere, Kari
1984 North, Jeff O'Connell, Tim O'Connor, Heather Ochs-Balcom, Geoffrey Okwuonu, Allan Pack,
1985 David T. Paik, Nicholette Palmer, James Pankow, George Papanicolaou, Cora Parker, Gina
1986 Peloso, Juan Manuel Peralta, Marco Perez, James Perry, Ulrike Peters, Patricia Peyser,
1987 Lawrence S Phillips, Jacob Pleiness, Toni Pollin, Wendy Post, Julia Powers Becker, Meher
1988 Preethi Boorgula, Michael Preuss, Bruce Psaty, Pankaj Qasba, Dandi Qiao, Zhaohui Qin,
1989 Nicholas Rafaels, Laura Raffield, Mahitha Rajendran, Vasan S. Ramachandran, D.C. Rao,

1990 Laura Rasmussen-Torvik, Aakrosh Ratan, Susan Redline, Robert Reed, Catherine Reeves,
1991 Elizabeth Regan, Alex Reiner, Muagututi'a Sefuiva Reupena, Ken Rice, Stephen Rich, Rebecca
1992 Robillard, Nicolas Robin, Dan Roden, Carolina Roselli, Jerome Rotter, Ingo Ruczinski, Alexi
1993 Runnels, Pamela Russell, Sarah Ruuska, Kathleen Ryan, Ester Cerdeira Sabino, Danish
1994 Saleheen, Shabnam Salimi, Sejal Salvi, Steven Salzberg, Kevin Sandow, Vijay G. Sankaran,
1995 Jireh Santibanez, Karen Schwander, David Schwartz, Frank Sciurba, Christine Seidman,
1996 Jonathan Seidman, Frédéric Sériès, Vivien Sheehan, Stephanie L. Sherman, Amol Shetty,
1997 Aniket Shetty, Wayne Hui-Heng Sheu, M. Benjamin Shoemaker, Brian Silver, Edwin Silverman,
1998 Robert Skomro, Albert Vernon Smith, Jennifer Smith, Josh Smith, Nicholas Smith, Tanja Smith,
1999 Sylvia Smoller, Beverly Snively, Michael Snyder, Tamar Sofer, Nona Sotoodehnia, Adrienne M.
2000 Stilp, Garrett Storm, Elizabeth Streeten, Jessica Lasky Su, Yun Ju Sung, Jody Sylvia, Adam
2001 Szapiro, Daniel Taliun, Hua Tang, Margaret Taub, Kent D. Taylor, Matthew Taylor, Simeon
2002 Taylor, Marilyn Telen, Timothy A. Thornton, Machiko Threlkeld, Lesley Tinker, David Tirschwell,
2003 Sarah Tishkoff, Hemant Tiwari, Catherine Tong, Russell Tracy, Michael Tsai, Dhananjay
2004 Vaidya, David Van Den Berg, Peter VandeHaar, Scott Vrieze, Tarik Walker, Robert Wallace,
2005 Avram Walts, Fei Fei Wang, Heming Wang, Jiongming Wang, Karol Watson, Jennifer Watt,
2006 Daniel E. Weeks, Joshua Weinstock, Bruce Weir, Scott T Weiss, Lu-Chen Weng, Jennifer
2007 Wessel, Cristen Willer, Kayleen Williams, L. Keoki Williams, Scott Williams, Carla Wilson,
2008 James Wilson, Lara Winterkorn, Quenna Wong, Baojun Wu, Joseph Wu, Huichun Xu, Lisa
2009 Yanek, Ivana Yang, Ketian Yu, Seyedeh Maryam Zekavat, Yingze Zhang, Snow Xueyan Zhao,
2010 Wei Zhao, Xiaofeng Zhu, Elad Ziv, Michael Zody, Sebastian Zoellner

2011 Hematology and Hemostasis working group members

2012 Laura Almasy, Kurtis Anthony, Dan Arking, Allison Ashley-Koch, Paul Auer, Abraham Aviv,
2013 Andrea Baccarelli, Emily Barron-Casella, Lewis Becker, Romit Bhattacharya, Alexander Bick,
2014 Larry Bielak, Thomas Blackwell, John Blangero, Kelly Bolton, Jennifer Brody, Derek Brown,
2015 Deepika Burkardt, James Casella, Liam Cato, Christy Chang, Nilanjan Chatterjee, Han Chen,
2016 Ming-Huei Chen, Michael Cho, Zeynep Coban Akdemir, Jason Collins, Karen Conneely,
2017 Matthew Conomos, Paul de Vries, Dawn DeMeo, Pinkal Desai, Qing Duan, Connor Emdin,
2018 Nauder Faraday, Annette Fitzpatrick, Travis Fleming, James Floyd, Santhi Ganesh, Brady
2019 Gaynor, LaShaunta Glover, Jacob Graham, Edward Ha, Nadia Hansel, Manjit Hanspal, Ross
2020 Hardison, Ben Heavner, Julian Hecker, Scott Heemann, Craig Hersh, Chani Hodonsky, Michael
2021 Honigberg, Steve Horvath, Yao Hu, Jennifer Huffman, Carmen Isasi, Kruthika Raman Iyer, Sidd
2022 Jaiswal, Cashell Jaquish, Jin Jin, Jill Johnsen, Andrew Johnson, Brian Joyce, Joel Kaufman,
2023 Rebecca Keener, Shannon Kelly, Alyna Khan, Sumeet Khetarpal, Greg Kinney, Małgorzata
2024 Klauzinska, Barbara Konkle, Charles Kooperberg, Mohanraj Krishnan, Ethan Lange, Leslie
2025 Lange, Cathy Laurie, Brandon Lê, Grace Lee, Claire Leiser, Guillaume Lettre, Dan Levy,
2026 Joshua Lewis, Bingshan Li, Yun Li, L. A. Liggett, Amarise Little, Shelly-Ann Love, Megan Lynch,
2027 Mitchell Machiela, Rasika Mathias, Ravi Mathur, Karen Miga, Anna Mikhaylova, Julie Mikulla,
2028 Braxton D. Mitchell, Alanna C Morrison, Rakhi Naik, Drew Nannini, Vivek Naranhai, Pradeep
2029 Natarajan, Jeff O'Connell, Christopher O'Donnell, Nels Olson, Helena Palma Gudiel, Nathan
2030 Pankratz, Benedict Paten, James Perry, James Pirruccello, Linda Polfus, Diddier Prada, Bruce
2031 Psaty, Laura Raffield, Elizabeth Regan, Alex Reiner, Stephen Rich, Shabnam Salimi, Vijay G.

2032 Sankaran, Noah Simon, Nicholas Smith, James Stewart, Adrienne M. Stilp, Shakira Suglia,
2033 Weihong Tang, Hua Tang, Margaret Taub, Kent D. Taylor, Marilyn Telen, Florian Thibord,
2034 Timothy A. Thornton, Russell Tracy, Md Mesbah Uddin, Heming Wang, Lachelle Weeks,
2035 Joshua Weinstock, Ellen Werner, Marsha Wheeler, Eric Whitsel, Kerri L. Wiggins, Lisa Yanek,
2036 Yu-Chung Yang, Kimberley Youkhana, Michael Young, Anthony Zannas, Seyedeh Maryam
2037 Zekavat, Wei Zhao, Yinan Zheng, Ying Zhou

2038 Structural Variation working group members

2039 Paul Auer, Kathleen Barnes, Thomas Blackwell, Harrison Brand, Ulrich Broeckel, Deepika
2040 Burkhardt, Mark Chaisson, Kei Hang Katie Chan, Seung Hoan Choi, Zechen Chong, Bradley
2041 Coe, John Cole, Ryan Collins, Matthew Conomos, Michelle Daya, Scott Devine, Evan Eichler,
2042 Annette Fitzpatrick, C. Charles Gu, Amelia Weber Hall, Ira Hall, Bob Handsaker, Ben Heavner,
2043 Scott Heemann, James Hixson, Jicai Jiang, Jill Johnsen, Michelle Jones, Brian Joyce, Goo Jun,
2044 Hyun Min Kang, Spencer Kelley, Charles Kooperberg, John Lane, Cathy Laurie, Seung-been,
2045 Steven Lee, Dan Levy, Yang Li, Honghuang Lin, Simin Liu, Angel CY Mak, Alisa Manning,
2046 Rasika Mathias, Steve McCarroll, Julie Mikulla, Jean Monlong, Drew Nannini, Giuseppe Narzisi,
2047 Jeff O'Connell, Wanda O'Neal, Grier Page, Nathan Pankratz, Benedict Paten, Alexandre
2048 Pereira, Patricia Peyser, Nathan Pezant, Gloria Quach, Aakrosh Ratan, Alex Reiner, Stephen
2049 Rich, Ingo Ruczinski, Aniko Sabo, Steven Salzberg, Jonathan Seidman, Minseok Seo, Yichen
2050 Si, Nasa Sinnott Armstrong, Albert Vernon Smith, Vinodh Srinivasasainagendra, Arvis Sulovari,
2051 Margaret Taub, Joshua Weinstock, Marsha Wheeler, James Wilson, Huichun Xu, Wei Zhao,
2052 Xuefang Zhao, Yinan Zheng, Degui Zhi, Sebastian Zoellner
2053

2054 References

2055 1000 Genomes Project Consortium, Adam Auton, Lisa D. Brooks, Richard M. Durbin, Erik P.
2056 Garrison, Hyun Min Kang, Jan O. Korbel, et al. 2015. "A Global Reference for Human
2057 Genetic Variation." *Nature* 526 (7571): 68–74.
2058 Alder, Jonathan K., Erin M. Parry, Srinivasan Yegnasubramanian, Christa L. Wagner, Lawrence
2059 M. Lieblich, Robert Auerbach, Arleen D. Auerbach, Sarah J. Wheelan, and Mary Armanios.
2060 2013. "Telomere Phenotypes in Females with Heterozygous Mutations in the Dyskeratosis
2061 Congenita 1 (DKC1) Gene." *Human Mutation* 34 (11): 1481–85.
2062 Armanios, Mary. 2013. "Telomeres and Age-Related Disease: How Telomere Biology Informs
2063 Clinical Paradigms." *The Journal of Clinical Investigation* 123 (3): 996–1002.
2064 Arvanitis, Marios, Karl Tayeb, Benjamin J. Strober, and Alexis Battle. 2022. "Redefining Tissue
2065 Specificity of Genetic Regulation of Gene Expression in the Presence of Allelic
2066 Heterogeneity." *American Journal of Human Genetics* 109 (2): 223–39.
2067 Askree, Syed H., Tal Yehuda, Sarit Smolikov, Raya Gurevich, Joshua Hawk, Carrie Coker, Anat
2068 Krauskopf, Martin Kupiec, and Michael J. McEachern. 2004. "A Genome-Wide Screen for
2069 *Saccharomyces Cerevisiae* Deletion Mutants That Affect Telomere Length." *Proceedings
2070 of the National Academy of Sciences of the United States of America* 101 (23): 8658–63.
2071 Aviv, Abraham, Steven C. Hunt, Jue Lin, Xiaojian Cao, Masayuki Kimura, and Elizabeth
2072 Blackburn. 2011. "Impartial Comparative Analysis of Measurement of Leukocyte Telomere

2073 length/DNA Content by Southern Blots and qPCR." *Nucleic Acids Research* 39 (20): e134.
2074 Bhattacharjee, Anukana, Jason Stewart, Mary Chaiken, and Carolyn M. Price. 2016. "STN1 OB
2075 Fold Mutation Alters DNA Binding and Affects Selective Aspects of CST Function." *PLoS*
2076 *Genetics* 12 (9): e1006342.
2077 Bougel, Stéphanie, Stéphanie Renaud, Richard Braunschweig, Dmitri Loukinov, Herbert C.
2078 Morse 3rd, Fred T. Bosman, Victor Lobanenkov, and Jean Benhattar. 2010. "PAX5
2079 Activates the Transcription of the Human Telomerase Reverse Transcriptase Gene in B
2080 Cells." *The Journal of Pathology* 220 (1): 87–96.
2081 Boyle, Evan A., Yang I. Li, and Jonathan K. Pritchard. 2017. "An Expanded View of Complex
2082 Traits: From Polygenic to Omnipathic." *Cell* 169 (7): 1177–86.
2083 Brehm, Anja, Yin Liu, Afzal Sheikh, Bernadette Marrero, Ebun Omoyinmi, Qing Zhou, Gina
2084 Montealegre, et al. 2015. "Additive Loss-of-Function Proteasome Subunit Mutations in
2085 CANDLE/PRAAS Patients Promote Type I IFN Production." *The Journal of Clinical*
2086 *Investigation* 125 (11): 4196–4211.
2087 Brody, Jennifer A., Alanna C. Morrison, Joshua C. Bis, Jeffrey R. O'Connell, Michael R. Brown,
2088 Jennifer E. Huffman, Darren C. Ames, et al. 2017. "Analysis Commons, a Team Approach
2089 to Discovery in a Big-Data Environment for Genetic Epidemiology." *Nature Genetics* 49
2090 (11): 1560–63.
2091 Bullock, Martyn, Grace Lim, Cheng Li, In Ho Choi, Shivansh Kochhar, Chris Liddle, Lei Zhang,
2092 and Roderick J. Clifton-Bligh. 2016. "Thyroid Transcription Factor FOXE1 Interacts with
2093 ETS Factor ELK1 to Co-Regulate TERT." *Oncotarget* 7 (52): 85948–62.
2094 Castro-Mondragon, Jaime A., Rafael Riudavets-Puig, Ieva Rauluseviciute, Roza Berhanu
2095 Lemma, Laura Turchi, Romain Blanc-Mathieu, Jeremy Lucas, et al. 2022. "JASPAR 2022:
2096 The 9th Release of the Open-Access Database of Transcription Factor Binding Profiles."
2097 *Nucleic Acids Research* 50 (D1): D165–73.
2098 Chun, Sung, Alexandra Casparino, Nikolaos A. Patsopoulos, Damien C. Croteau-Chonka,
2099 Benjamin A. Raby, Philip L. De Jager, Shamil R. Sunyaev, and Chris Cotsapas. 2017.
2100 "Limited Statistical Evidence for Shared Genetic Effects of eQTLs and Autoimmune-
2101 Disease-Associated Loci in Three Major Immune-Cell Types." *Nature Genetics* 49 (4):
2102 600–605.
2103 Codd, Veryan, Massimo Mangino, Pim van der Harst, Peter S. Braund, Michael Kaiser, Alan J.
2104 Beveridge, Suzanne Rafelt, et al. 2010. "Common Variants near TERC Are Associated with
2105 Mean Telomere Length." *Nature Genetics* 42 (3): 197–99.
2106 Codd, Veryan, Christopher P. Nelson, Eva Albrecht, Massimo Mangino, Joris Deelen, Jessica L.
2107 Buxton, Jouke Jan Hottenga, et al. 2013. "Identification of Seven Loci Affecting Mean
2108 Telomere Length and Their Association with Disease." *Nature Genetics* 45 (4): 422–27,
2109 427e1–2.
2110 Codd, Veryan, Qingning Wang, Elias Allara, Crispin Musicha, Stephen Kaptoge, Svetlana
2111 Stoma, Tao Jiang, et al. 2021. "Polygenic Basis and Biomedical Consequences of
2112 Telomere Length Variation." *Nature Genetics* 53 (10): 1425–33.
2113 Conordet, Jean-Paul, and Maximilian Haeussler. 2018. "CRISPOR: Intuitive Guide Selection
2114 for CRISPR/Cas9 Genome Editing Experiments and Screens." *Nucleic Acids Research* 46
2115 (W1): W242–45.
2116 Connally, Noah J., Sumaiya Nazeen, Daniel Lee, Huwenbo Shi, John Stamatoyannopoulos,
2117 Sung Chun, Chris Cotsapas, Christopher A. Cassa, and Shamil R. Sunyaev. 2022. "The
2118 Missing Link between Genetic Association and Regulatory Function." *eLife* 11 (December).
2119 <https://doi.org/10.7554/eLife.74970>.
2120 Danecek, Petr, James K. Bonfield, Jennifer Liddle, John Marshall, Valeriu Ohan, Martin O.
2121 Pollard, Andrew Whitwham, et al. 2021. "Twelve Years of SAMtools and BCFtools."
2122 *GigaScience* 10 (2). <https://doi.org/10.1093/gigascience/giab008>.
2123 Delgado, Dayana A., Chenan Zhang, Lin S. Chen, Jianjun Gao, Shantanu Roy, Justin Shinkle,

2124 Mekala Sabarinathan, et al. 2018. "Genome-Wide Association Study of Telomere Length
2125 among South Asians Identifies a Second RTEL1 Association Signal." *Journal of Medical*
2126 *Genetics* 55 (1): 64–71.

2127 Demanelis, Kathryn, Farzana Jasmine, Lin S. Chen, Meytal Chernoff, Lin Tong, Dayana
2128 Delgado, Chenan Zhang, et al. 2020. "Determinants of Telomere Length across Human
2129 Tissues." *Science* 369 (6509). <https://doi.org/10.1126/science.aaz6876>.

2130 Ding, Zhihao, Massimo Mangino, Abraham Aviv, Tim Spector, Richard Durbin, and UK10K
2131 Consortium. 2014. "Estimating Telomere Length from Whole Genome Sequence Data."
2132 *Nucleic Acids Research* 42 (9): e75.

2133 Dorajoo, Rajkumar, Xuling Chang, Resham Lal Gurung, Zheng Li, Ling Wang, Renwei Wang,
2134 Kenneth B. Beckman, et al. 2019. "Loci for Human Leukocyte Telomere Length in the
2135 Singaporean Chinese Population and Trans-Ethnic Genetic Studies." *Nature*
2136 *Communications* 10 (1): 2491.

2137 Eenennaam, H. van, D. Lugtenberg, J. H. Vogelzangs, W. J. van Venrooij, and G. J. Pruijn.
2138 2001. "hPop5, a Protein Subunit of the Human RNase MRP and RNase P
2139 Endoribonucleases." *The Journal of Biological Chemistry* 276 (34): 31635–41.

2140 ENCODE Project Consortium. 2012. "An Integrated Encyclopedia of DNA Elements in the
2141 Human Genome." *Nature* 489 (7414): 57–74.

2142 ENCODE Project Consortium, Jill E. Moore, Michael J. Purcaro, Henry E. Pratt, Charles B.
2143 Epstein, Noam Shores, Jessika Adrian, et al. 2020. "Expanded Encyclopaedias of DNA
2144 Elements in the Human and Mouse Genomes." *Nature* 583 (7818): 699–710.

2145 Fang, Huaying, Qin Hui, Julie Lynch, Jacqueline Honerlaw, Themistocles L. Assimes, Jie
2146 Huang, Marijana Vujkovic, et al. 2019. "Harmonizing Genetic Ancestry and Self-Identified
2147 Race/Ethnicity in Genome-Wide Association Studies." *American Journal of Human*
2148 *Genetics* 105 (4): 763–72.

2149 Feng, J., W. D. Funk, S. S. Wang, S. L. Weinrich, A. A. Avilion, C. P. Chiu, R. R. Adams, E.
2150 Chang, R. C. Allsopp, and J. Yu. 1995. "The RNA Component of Human Telomerase."
2151 *Science* 269 (5228): 1236–41.

2152 Finucane, Hilary K., Brendan Bulik-Sullivan, Alexander Gusev, Gosia Trynka, Yakir Reshef, Po-
2153 Ru Loh, Verner Anttila, et al. 2015. "Partitioning Heritability by Functional Annotation Using
2154 Genome-Wide Association Summary Statistics." *Nature Genetics* 47 (11): 1228–35.

2155 Finucane, Hilary K., Yakir A. Reshef, Verner Anttila, Kamil Slowikowski, Alexander Gusev,
2156 Andrea Byrnes, Steven Gazal, et al. 2018. "Heritability Enrichment of Specifically
2157 Expressed Genes Identifies Disease-Relevant Tissues and Cell Types." *Nature Genetics*
2158 50 (4): 621–29.

2159 Fu, Xiaoyong, Nur Yucer, Shangfeng Liu, Muyang Li, Ping Yi, Jung-Jung Mu, Tao Yang, et al.
2160 2010. "RFWD3-Mdm2 Ubiquitin Ligase Complex Positively Regulates p53 Stability in
2161 Response to DNA Damage." *Proceedings of the National Academy of Sciences of the*
2162 *United States of America* 107 (10): 4579–84.

2163 Gable, Dustin L., Valeriya Gaysinskaya, Christine C. Atik, C. Conover Talbot, Byunghak Kang,
2164 Susan E. Stanley, Elizabeth W. Pugh, et al. 2019. "ZCCHC8, the Nuclear Exosome
2165 Targeting Component, Is Mutated in Familial Pulmonary Fibrosis and Is Required for
2166 Telomerase RNA Maturation." *Genes & Development* 33 (19-20): 1381–96.

2167 Gatbonton, Tonibelle, Maria Imbesi, Melisa Nelson, Joshua M. Akey, Douglas M. Ruderfer,
2168 Leonid Kruglyak, Julian A. Simon, and Antonio Bedalov. 2006. "Telomere Length as a
2169 Quantitative Trait: Genome-Wide Survey and Genetic Mapping of Telomere Length-Control
2170 Genes in Yeast." *PLoS Genetics* 2 (3): e35.

2171 Genau, Heide Marika, Jessica Huber, Francesco Baschieri, Masato Akutsu, Volker Dötsch,
2172 Hesso Farhan, Vladimir Rogov, and Christian Behrends. 2015. "CUL3-KBTBD6/KBTBD7
2173 Ubiquitin Ligase Cooperates with GABARAP Proteins to Spatially Restrict TIAM1-RAC1
2174 Signaling." *Molecular Cell* 57 (6): 995–1010.

2175 Giambartolomei, Claudia, Damjan Vukcevic, Eric E. Schadt, Lude Franke, Aroon D. Hingorani,
2176 Chris Wallace, and Vincent Plagnol. 2014. "Bayesian Test for Colocalisation between Pairs
2177 of Genetic Association Studies Using Summary Statistics." *PLoS Genetics* 10 (5):
2178 e1004383.

2179 Goff, Stephen P. 2021. "Silencing of Unintegrated Retroviral DNAs." *Viruses* 13 (11).
2180 <https://doi.org/10.3390/v13112248>.

2181 Greider, C. W. 1999. "Telomerase Activation. One Step on the Road to Cancer?" *Trends in
2182 Genetics: TIG* 15 (3): 109–12.

2183 GTEx Consortium. 2020. "The GTEx Consortium Atlas of Genetic Regulatory Effects across
2184 Human Tissues." *Science* 369 (6509): 1318–30.

2185 Gu, Jian, Meng Chen, Sanjay Shete, Christopher I. Amos, Ashish Kamat, Yuanqing Ye, Jie Lin,
2186 Colin P. Dinney, and Xifeng Wu. 2011. "A Genome-Wide Association Study Identifies a
2187 Locus on Chromosome 14q21 as a Predictor of Leukocyte Telomere Length and as a
2188 Marker of Susceptibility for Bladder Cancer." *Cancer Prevention Research* 4 (4): 514–21.

2189 Gupta, Amitabha, Sushma Sharma, Patrick Reichenbach, Lisette Marjavaara, Anna Karin
2190 Nilsson, Joachim Lingner, Andrei Chabes, Rodney Rothstein, and Michael Chang. 2013.
2191 "Telomere Length Homeostasis Responds to Changes in Intracellular dNTP Pools."
2192 *Genetics* 193 (4): 1095–1105.

2193 Hammal, Fayrouz, Pierre de Langen, Aurélie Bergon, Fabrice Lopez, and Benoit Ballester.
2194 2022. "ReMap 2022: A Database of Human, Mouse, Drosophila and Arabidopsis
2195 Regulatory Regions from an Integrative Analysis of DNA-Binding Sequencing
2196 Experiments." *Nucleic Acids Research* 50 (D1): D316–25.

2197 Hammond, P. W., and T. R. Cech. 1997. "dGTP-Dependent Processivity and Possible Template
2198 Switching of Euplotes Telomerase." *Nucleic Acids Research* 25 (18): 3698–3704.

2199 Helbig, Sonja, Leesa Wockner, Annick Bouendeu, Ursula Hille-Betz, Karen McCue, Juliet D.
2200 French, Stacey L. Edwards, et al. 2017. "Functional Dissection of Breast Cancer Risk-
2201 Associated TERT Promoter Variants." *Oncotarget* 8 (40): 67203–17.

2202 Hinrichs, A. S., D. Karolchik, R. Baertsch, G. P. Barber, G. Bejerano, H. Clawson, M. Diekhans,
2203 et al. 2006. "The UCSC Genome Browser Database: Update 2006." *Nucleic Acids
2204 Research* 34 (Database issue): D590–98.

2205 Hormozdiari, Farhad, Emrah Kostem, Eun Yong Kang, Bogdan Pasaniuc, and Eleazar Eskin.
2206 2014. "Identifying Causal Variants at Loci with Multiple Signals of Association." *Genetics*
2207 198 (2): 497–508.

2208 Huang, Franklin W., Eran Hodis, Mary Jue Xu, Gregory V. Kryukov, Lynda Chin, and Levi A.
2209 Garraway. 2013. "Highly Recurrent TERT Promoter Mutations in Human Melanoma."
2210 *Science* 339 (6122): 957–59.

2211 Hunter, John D. 2007. "Matplotlib: A 2D Graphics Environment." *Computing in Science &
2212 Engineering* 9 (3): 90–95.

2213 Keener, Rebecca, Carla J. Connelly, and Carol W. Greider. 2019. "Tel1 Activation by the MRX
2214 Complex Is Sufficient for Telomere Length Regulation but Not for the DNA Damage
2215 Response in *Saccharomyces Cerevisiae*." *Genetics* 213 (4): 1271–88.

2216 Kent, W. James, Charles W. Sugnet, Terrence S. Furey, Krishna M. Roskin, Tom H. Pringle,
2217 Alan M. Zahler, and David Haussler. 2002. "The Human Genome Browser at UCSC."
2218 *Genome Research* 12 (6): 996–1006.

2219 Lange, Titia de. 2018. "Shelterin-Mediated Telomere Protection." *Annual Review of Genetics* 52
2220 (November): 223–47.

2221 Laterre, Nancy, Bruno Lemieux, Hannah Neumann, Jean-Christophe Berger-Dancause,
2222 Daniel Lafontaine, and Raymund J. Wellinger. 2018. "The Yeast Telomerase Module for
2223 Telomere Recruitment Requires a Specific RNA Architecture." *RNA* 24 (8): 1067–79.

2224 Lee, Joseph H., Rong Cheng, Lawrence S. Honig, Mary Feitosa, Candace M. Kammerer, Min S.
2225 Kang, Nicole Schupf, et al. 2013. "Genome Wide Association and Linkage Analyses

2226 Identified Three Loci-4q25, 17q23.2, and 10q11.21-Associated with Variation in Leukocyte
2227 Telomere Length: The Long Life Family Study." *Frontiers in Genetics* 4: 310.

2228 Lee, Stella Suyong, Craig Bohrson, Alexandra Mims Pike, Sarah Jo Wheelan, and Carol
2229 Widney Greider. 2015. "ATM Kinase Is Required for Telomere Elongation in Mouse and
2230 Human Cells." *Cell Reports* 13 (8): 1623–32.

2231 Lenain, Christelle, Serge Bauwens, Simon Amiard, Michele Brunori, Marie-Josèphe Giraud-
2232 Panis, and Eric Gilson. 2006. "The Apollo 5' Exonuclease Functions Together with TRF2 to
2233 Protect Telomeres from DNA Repair." *Current Biology: CB* 16 (13): 1303–10.

2234 Levy, Daniel, Susan L. Neuhausen, Steven C. Hunt, Masayuki Kimura, Shih-Jen Hwang, Wei
2235 Chen, Joshua C. Bis, et al. 2010. "Genome-Wide Association Identifies *OBFC1* as a Locus
2236 Involved in Human Leukocyte Telomere Biology." *Proceedings of the National Academy of
2237 Sciences of the United States of America* 107 (20): 9293–98.

2238 Li, Chen, Svetlana Stoma, Luca A. Lotta, Sophie Warner, Eva Albrecht, Alessandra Allione,
2239 Pascal P. Arp, et al. 2020. "Genome-Wide Association Analysis in Humans Links
2240 Nucleotide Metabolism to Leukocyte Telomere Length." *American Journal of Human
2241 Genetics* 106 (3): 389–404.

2242 Li, Daofeng, Silas Hsu, Deepak Purushotham, Renee L. Sears, and Ting Wang. 2019. "WashU
2243 Epigenome Browser Update 2019." *Nucleic Acids Research* 47 (W1): W158–65.

2244 Lin, Kah-Wai, Karin R. McDonald, Amanda J. Guise, Angela Chan, Ileana M. Cristea, and
2245 Virginia A. Zakian. 2015. "Proteomics of Yeast Telomerase Identified Cdc48-Npl4-Ufd1 and
2246 Ufd4 as Regulators of Est1 and Telomere Length." *Nature Communications* 6 (September):
2247 8290.

2248 Liu, Yun, Lan Cao, Zhiqiang Li, Daizhan Zhou, Wanqing Liu, Qin Shen, Yanting Wu, et al. 2014.
2249 "A Genome-Wide Association Study Identifies a Locus on TERT for Mean Telomere Length
2250 in Han Chinese." *PLoS One* 9 (1): e85043.

2251 Li, Yang I., Bryce van de Geijn, Anil Raj, David A. Knowles, Allegra A. Petti, David Golan, Yoav
2252 Gilad, and Jonathan K. Pritchard. 2016. "RNA Splicing Is a Primary Link between Genetic
2253 Variation and Disease." *Science* 352 (6285): 600–604.

2254 Li, Yang I., David A. Knowles, Jack Humphrey, Alvaro N. Barbeira, Scott P. Dickinson, Hae
2255 Kyung Im, and Jonathan K. Pritchard. 2018. "Annotation-Free Quantification of RNA
2256 Splicing Using LeafCutter." *Nature Genetics* 50 (1): 151–58.

2257 Luo, Yunhai, Benjamin C. Hitz, Idan Gabdank, Jason A. Hilton, Meenakshi S. Kagda, Bonita
2258 Lam, Zachary Myers, et al. 2020. "New Developments on the Encyclopedia of DNA
2259 Elements (ENCODE) Data Portal." *Nucleic Acids Research* 48 (D1): D882–89.

2260 Mägi, Reedik, and Andrew P. Morris. 2010. "GWAMA: Software for Genome-Wide Association
2261 Meta-Analysis." *BMC Bioinformatics* 11 (May): 288.

2262 Maicher, André, Inbal Gazy, Sushma Sharma, Lisette Marjavaara, Gilad Grinberg, Keren
2263 Shemesh, Andrei Chabes, and Martin Kupiec. 2017. "Rnr1, but Not Rnr3, Facilitates the
2264 Sustained Telomerase-Dependent Elongation of Telomeres." *PLoS Genetics* 13 (10):
2265 e1007082.

2266 Mangino, Massimo, Lene Christiansen, Rivka Stone, Steven C. Hunt, Kent Horvath, Dan T. A.
2267 Eisenberg, Masayuki Kimura, et al. 2015. "DCAF4, a Novel Gene Associated with
2268 Leucocyte Telomere Length." *Journal of Medical Genetics* 52 (3): 157–62.

2269 Mangino, Massimo, Shih-Jen Hwang, Timothy D. Spector, Steven C. Hunt, Masayuki Kimura,
2270 Annette L. Fitzpatrick, Lene Christiansen, et al. 2012. "Genome-Wide Meta-Analysis Points
2271 to CTC1 and ZNF676 as Genes Regulating Telomere Homeostasis in Humans." *Human
2272 Molecular Genetics* 21 (24): 5385–94.

2273 Mangino, M., J. B. Richards, N. Soranzo, G. Zhai, A. Aviv, A. M. Valdes, N. J. Samani, P.
2274 Deloukas, and T. D. Spector. 2009. "A Genome-Wide Association Study Identifies a Novel
2275 Locus on Chromosome 18q12.2 Influencing White Cell Telomere Length." *Journal of
2276 Medical Genetics* 46 (7): 451–54.

2277 Maurano, Matthew T., Richard Humbert, Eric Rynes, Robert E. Thurman, Eric Haugen, Hao
2278 Wang, Alex P. Reynolds, et al. 2012. "Systematic Localization of Common Disease-
2279 Associated Variation in Regulatory DNA." *Science* 337 (6099): 1190–95.
2280 Mena, Elijah L., Rachel A. S. Kjolby, Robert A. Saxton, Achim Werner, Brandon G. Lew, John
2281 M. Boyle, Richard Harland, and Michael Rape. 2018. "Dimerization Quality Control Ensures
2282 Neuronal Development and Survival." *Science* 362 (6411).
2283 <https://doi.org/10.1126/science.aap8236>.
2284 Mi, Huaiyu, Anushya Muruganujan, Xiaosong Huang, Dustin Ebert, Caitlin Mills, Xinyu Guo, and
2285 Paul D. Thomas. 2019. "Protocol Update for Large-Scale Genome and Gene Function
2286 Analysis with the PANTHER Classification System (v.14.0)." *Nature Protocols* 14 (3): 703–
2287 21.
2288 Miyake, Yasuyuki, Mirai Nakamura, Akira Nabetani, Shintaro Shimamura, Miki Tamura, Shin
2289 Yonehara, Motoki Saito, and Fuyuki Ishikawa. 2009. "RPA-like Mammalian Ctc1-Stn1-Ten1
2290 Complex Binds to Single-Stranded DNA and Protects Telomeres Independently of the Pot1
2291 Pathway." *Molecular Cell* 36 (2): 193–206.
2292 Morrish, Tammy A., and Carol W. Greider. 2009. "Short Telomeres Initiate Telomere
2293 Recombination in Primary and Tumor Cells." *PLoS Genetics* 5 (1): e1000357.
2294 Mostafavi, Hakhamanesh, Jeffrey P. Spence, Sahin Naqvi, and Jonathan K. Pritchard. 2022.
2295 "Limited Overlap of eQTLs and GWAS Hits due to Systematic Differences in Discovery."
2296 *bioRxiv*. <https://doi.org/10.1101/2022.05.07.491045>.
2297 Mourik, Paula M. van, Jannie de Jong, Sushma Sharma, Alan Kavšek, Andrei Chabes, and
2298 Michael Chang. 2018. "Upregulation of dNTP Levels After Telomerase Inactivation
2299 Influences Telomerase-Independent Telomere Maintenance Pathway Choice in
2300 *Saccharomyces Cerevisiae*." *G3* 8 (8): 2551–58.
2301 Moyer, Tyler C., and Andrew J. Holland. 2015. "Chapter 2 - Generation of a Conditional Analog-
2302 Sensitive Kinase in Human Cells Using CRISPR/Cas9-Mediated Genome Engineering." In
2303 *Methods in Cell Biology*, edited by Renata Basto and Karen Oegema, 129:19–36.
2304 Academic Press.
2305 Mu, Jung-Jung, Yi Wang, Hao Luo, Mei Leng, Jinglan Zhang, Tao Yang, Dario Besusso, Sung
2306 Yun Jung, and Jun Qin. 2007. "A Proteomic Analysis of Ataxia Telangiectasia-Mutated
2307 (ATM)/ATM-Rad3-Related (ATR) Substrates Identifies the Ubiquitin-Proteasome System
2308 as a Regulator for DNA Damage Checkpoints." *The Journal of Biological Chemistry* 282
2309 (24): 17330–34.
2310 Nothwang, H. G., T. Tamura, K. Tanaka, and A. Ichihara. 1994. "Sequence Analyses and Inter-
2311 Species Comparisons of Three Novel Human Proteasomal Subunits, HsN3, HsC7-I and
2312 HsC10-II, Confine Potential Proteolytic Active-Site Residues." *Biochimica et Biophysica
2313 Acta* 1219 (2): 361–68.
2314 Okamoto, Jeffrey, Lijia Wang, Xianyong Yin, Francesca Luca, Roger Pique-Regi, Adam Helms,
2315 Hae Kyung Im, Jean Morrison, and Xiaoquan Wen. 2023. "Probabilistic Integration of
2316 Transcriptome-Wide Association Studies and Colocalization Analysis Identifies Key
2317 Molecular Pathways of Complex Traits." *American Journal of Human Genetics* 110 (1): 44–
2318 57.
2319 Overbeek, Megan van, and Titia de Lange. 2006. "Apollo, an Artemis-Related Nuclease,
2320 Interacts with TRF2 and Protects Human Telomeres in S Phase." *Current Biology: CB* 16
2321 (13): 1295–1302.
2322 Pekarsky, Y., A. Koval, C. Hallas, R. Bichi, M. Tresini, S. Malstrom, G. Russo, P. Tsichlis, and
2323 C. M. Croce. 2000. "Tcl1 Enhances Akt Kinase Activity and Mediates Its Nuclear
2324 Translocation." *Proceedings of the National Academy of Sciences of the United States of
2325 America* 97 (7): 3028–33.
2326 Pfaffl, M. W. 2001. "A New Mathematical Model for Relative Quantification in Real-Time RT-
2327 PCR." *Nucleic Acids Research* 29 (9): e45.

2328 Pierce, B., F. Jasmine, Shantanu Roy, Chenan Zhang, A. Aviv, S. Hunt, H. Ahsan, and M.
2329 Kibriya. 2016. "Telomere Length Measurement by a Novel Luminex-Based Assay: A
2330 Blinded Comparison to Southern Blot." *International Journal of Molecular Epidemiology and*
2331 *Genetics*.
2332 <https://www.semanticscholar.org/paper/1f15e45781f571353cc254b2611225c32516b471>.

2333 Pike, Alexandra M., Margaret A. Strong, John Paul T. Ouyang, and Carol W. Greider. 2019.
2334 "TIN2 Functions with TPP1/POT1 To Stimulate Telomerase Processivity." *Molecular and*
2335 *Cellular Biology* 39 (21). <https://doi.org/10.1128/MCB.00593-18>.

2336 Pooley, Karen A., Stig E. Bojesen, Maren Weischer, Sune F. Nielsen, Deborah Thompson, Ali
2337 Amin Al Olama, Kyriaki Michailidou, et al. 2013. "A Genome-Wide Association Scan
2338 (GWAS) for Mean Telomere Length within the COGS Project: Identified Loci Show Little
2339 Association with Hormone-Related Cancer Risk." *Human Molecular Genetics* 22 (24):
2340 5056–64.

2341 Prescott, Jennifer, Peter Kraft, Daniel I. Chasman, Sharon A. Savage, Lisa Mirabello, Sonja I.
2342 Berndt, Joel L. Weissfeld, et al. 2011. "Genome-Wide Association Study of Relative
2343 Telomere Length." *PLoS One* 6 (5): e19635.

2344 Qin, Gaoping, Yaowen Sun, Yadong Guo, and Yong Song. 2021. "PAX5 Activates Telomerase
2345 Activity and Proliferation in Keloid Fibroblasts by Transcriptional Regulation of SND1, Thus
2346 Promoting Keloid Growth in Burn-Injured Skin." *Inflammation Research*.
2347 <https://doi.org/10.1007/s00011-021-01444-3>.

2348 Quinlan, Aaron R., and Ira M. Hall. 2010. "BEDTools: A Flexible Suite of Utilities for Comparing
2349 Genomic Features." *Bioinformatics* 26 (6): 841–42.

2350 Roadmap Epigenomics Consortium, Anshul Kundaje, Wouter Meuleman, Jason Ernst, Misha
2351 Bilenky, Angela Yen, Alireza Heravi-Moussavi, et al. 2015. "Integrative Analysis of 111
2352 Reference Human Epigenomes." *Nature* 518 (7539): 317–30.

2353 Rosnoblet, Claire, Julien Vandamme, Pamela Völkel, and Pierre-Olivier Angrand. 2011.
2354 "Analysis of the Human HP1 Interactome Reveals Novel Binding Partners." *Biochemical
2355 and Biophysical Research Communications* 413 (2): 206–11.

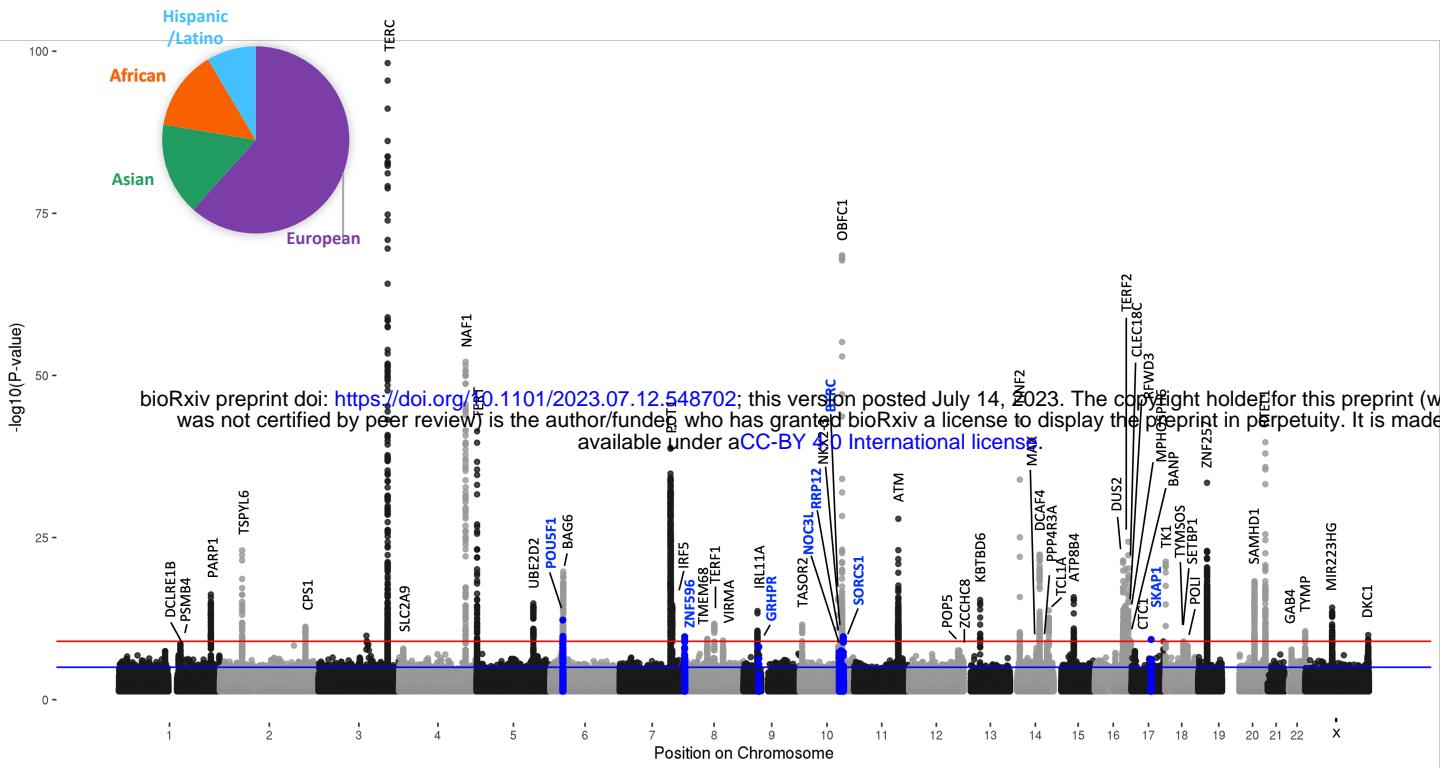
2356 Saville, Mark K., Alison Sparks, Dimitris P. Xirodimas, Julie Wardrop, Lauren F. Stevenson,
2357 Jean-Christophe Bourdon, Yvonne L. Woods, and David P. Lane. 2004. "Regulation of p53
2358 by the Ubiquitin-Conjugating Enzymes UbcH5B/C in Vivo." *The Journal of Biological
2359 Chemistry* 279 (40): 42169–81.

2360 Saxena, Richa, Andrew Bjonnes, Jennifer Prescott, Patrick Dib, Praveen Natt, Jacqueline Lane,
2361 Megan Lerner, et al. 2014. "Genome-Wide Association Study Identifies Variants in Casein
2362 Kinase II (CSNK2A2) to Be Associated with Leukocyte Telomere Length in a Punjabi Sikh
2363 Diabetic Cohort." *Circulation. Cardiovascular Genetics* 7 (3): 287–95.

2364 Schatz, Michael C., Anthony A. Philippakis, Enis Afgan, Eric Banks, Vincent J. Carey, Robert J.
2365 Carroll, Alessandro Culotti, et al. 2022. "Inverting the Model of Genomics Data Sharing with
2366 the NHGRI Genomic Data Science Analysis, Visualization, and Informatics Lab-Space."
2367 *Cell Genomics* 2 (1). <https://doi.org/10.1016/j.xgen.2021.100085>.

2368 Schmidt, Ellen M., Ji Zhang, Wei Zhou, Jin Chen, Karen L. Mohlke, Y. Eugene Chen, and
2369 Cristen J. Willer. 2015. "GREGOR: Evaluating Global Enrichment of Trait-Associated
2370 Variants in Epigenomic Features Using a Systematic, Data-Driven Approach."
2371 *Bioinformatics* 31 (16): 2601–6.

2372 Schmiedel, Benjamin J., Divya Singh, Ariel Madrigal, Alan G. Valdovino-Gonzalez, Brandie M.
2373 White, Jose Zapardiel-Gonzalo, Brendan Ha, et al. 2018. "Impact of Genetic
2374 Polymorphisms on Human Immune Cell Gene Expression." *Cell* 175 (6): 1701–15.e16.


2375 Stanley, Susan E., and Mary Armanios. 2015. "The Short and Long Telomere Syndromes:
2376 Paired Paradigms for Molecular Medicine." *Current Opinion in Genetics & Development* 33
2377 (August): 1–9.

2378 Stanley, Susan E., Dustin L. Gable, Christa L. Wagner, Thomas M. Carlile, Vidya Sagar

2379 Hanumanthu, Joshua D. Podlevsky, Sara E. Khalil, et al. 2016. "Loss-of-Function
2380 Mutations in the RNA Biogenesis Factor NAF1 Predispose to Pulmonary Fibrosis-
2381 Emphysema." *Science Translational Medicine* 8 (351): 351ra107.
2382 Stuart, Bridget D., Jungmin Choi, Samir Zaidi, Chao Xing, Brody Holohan, Rui Chen, Mihwa
2383 Choi, et al. 2015. "Exome Sequencing Links Mutations in PARN and RTEL1 with Familial
2384 Pulmonary Fibrosis and Telomere Shortening." *Nature Genetics* 47 (5): 512–17.
2385 Surovtseva, Yulia V., Dmitri Churikov, Kara A. Boltz, Xiangyu Song, Jonathan C. Lamb, Ross
2386 Warrington, Katherine Leehy, Michelle Heacock, Carolyn M. Price, and Dorothy E.
2387 Shippen. 2009. "Conserved Telomere Maintenance Component 1 Interacts with STN1 and
2388 Maintains Chromosome Ends in Higher Eukaryotes." *Molecular Cell* 36 (2): 207–18.
2389 Takahashi, Kazutoshi, and Shinya Yamanaka. 2006. "Induction of Pluripotent Stem Cells from
2390 Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors." *Cell* 126 (4): 663–76.
2391 Taliun, Daniel, Daniel N. Harris, Michael D. Kessler, Jeddiah Carlson, Zachary A. Szpiech, Raul
2392 Torres, Sarah A. Gagliano Taliun, et al. 2021. "Sequencing of 53,831 Diverse Genomes
2393 from the NHLBI TOPMed Program." *Nature* 590 (7845): 290–99.
2394 Taub, Margaret A., Matthew P. Conomos, Rebecca Keener, Kruthika R. Iyer, Joshua S.
2395 Weinstock, Lisa R. Yanek, John Lane, et al. 2022. "Genetic Determinants of Telomere
2396 Length from 109,122 Ancestrally Diverse Whole-Genome Sequences in TOPMed." *Cell
2397 Genomics* 2 (1): 100084.
2398 Thomas, Paul D., Dustin Ebert, Anushya Muruganujan, Tremayne Mushayahama, Laurent-
2399 Philippe Albou, and Huaiyu Mi. 2022. "PANTHER: Making Genome-Scale Phylogenetics
2400 Accessible to All." *Protein Science: A Publication of the Protein Society* 31 (1): 8–22.
2401 Tong, Adrian S., J. Lewis Stern, Agnel Sfeir, Melissa Kartawinata, Titia de Lange, Xu-Dong Zhu,
2402 and Tracy M. Bryan. 2015. "ATM and ATR Signaling Regulate the Recruitment of Human
2403 Telomerase to Telomeres." *Cell Reports* 13 (8): 1633–46.
2404 Umans, Benjamin D., Alexis Battle, and Yoav Gilad. 2021. "Where Are the Disease-Associated
2405 eQTLs?" *Trends in Genetics: TIG* 37 (2): 109–24.
2406 Urbut, Sarah M., Gao Wang, Peter Carbonetto, and Matthew Stephens. 2019. "Flexible
2407 Statistical Methods for Estimating and Testing Effects in Genomic Studies with Multiple
2408 Conditions." *Nature Genetics* 51 (1): 187–95.
2409 Võsa, Urmo, Annique Claringbould, Harm-Jan Westra, Marc Jan Bonder, Patrick Deelen, Biao
2410 Zeng, Holger Kirsten, et al. 2021. "Large-Scale Cis- and Trans-eQTL Analyses Identify
2411 Thousands of Genetic Loci and Polygenic Scores That Regulate Blood Gene Expression." *Nature
2412 Genetics* 53 (9): 1300–1310.
2413 Walsh, Kyle M., Veryan Codd, Ivan V. Smirnov, Terri Rice, Paul A. Decker, Helen M. Hansen,
2414 Thomas Kollmeyer, et al. 2014. "Variants near TERT and TERC Influencing Telomere
2415 Length Are Associated with High-Grade Glioma Risk." *Nature Genetics* 46 (7): 731–35.
2416 Wang, Fan, Xuefeng Bai, Yuezhu Wang, Yong Jiang, Bo Ai, Yong Zhang, Yuejuan Liu, et al.
2417 2021. "ATACdb: A Comprehensive Human Chromatin Accessibility Database." *Nucleic
2418 Acids Research* 49 (D1): D55–64.
2419 Wang, Gao, Abhishek Sarkar, Peter Carbonetto, and Matthew Stephens. 2020. "A Simple New
2420 Approach to Variable Selection in Regression, with Application to Genetic Fine Mapping." *Journal
2421 of the Royal Statistical Society. Series B, Statistical Methodology* 82 (5): 1273–
2422 1300.
2423 Wang, Steven, Alexandra M. Pike, Stella S. Lee, Margaret A. Strong, Carla J. Connelly, and
2424 Carol W. Greider. 2017. "BRD4 Inhibitors Block Telomere Elongation." *Nucleic Acids
2425 Research* 45 (14): 8403–10.
2426 Weiner, Daniel J., Ajay Nadig, Karthik A. Jagadeesh, Kushal K. Dey, Benjamin M. Neale, Elise
2427 B. Robinson, Konrad J. Karczewski, and Luke J. O'Connor. 2023. "Polygenic Architecture
2428 of Rare Coding Variation across 394,783 Exomes." *Nature*, February, 1–8.
2429 Weinstock, Joshua S., Jayakrishnan Gopakumar, Bala Bharathi Burugula, Md Mesbah Uddin,

2430 Nikolaus Jahn, Julia A. Belk, Hind Bouzid, et al. 2023. "Aberrant Activation of TCL1A
2431 Promotes Stem Cell Expansion in Clonal Haematopoiesis." *Nature* 616 (7958): 755–63.
2432 Wu, Peng, Megan van Overbeek, Sean Rooney, and Titia de Lange. 2010. "Apollo Contributes
2433 to G Overhang Maintenance and Protects Leading-End Telomeres." *Molecular Cell* 39 (4):
2434 606–17.
2435 Zeiger, Andrew M., Marquitta J. White, Celeste Eng, Sam S. Oh, Jonathan Witonsky, Pagé C.
2436 Goddard, Maria G. Contreras, et al. 2018. "Genetic Determinants of Telomere Length in
2437 African American Youth." *Scientific Reports* 8 (1): 13265.
2438 Zhong, Z., L. Shiue, S. Kaplan, and T. de Lange. 1992. "A Mammalian Factor That Binds
2439 Telomeric TTAGGG Repeats in Vitro." *Molecular and Cellular Biology* 12 (11): 4834–43.
2440 Zhou, Shuliang, Youde Xiao, Yafei Zhuang, Yinyin Liu, Hong Zhao, Hui Yang, Conghua Xie,
2441 Fuxiang Zhou, and Yunfeng Zhou. 2017. "Knockdown of Homeobox Containing 1
2442 Increases the Radiosensitivity of Cervical Cancer Cells through Telomere Shortening."
2443 *Oncology Reports* 38 (1): 515–21.
2444 Zhou, Weiyin, Mitchell J. Machiela, Neal D. Freedman, Nathaniel Rothman, Nuria Malats, Casey
2445 Dagnall, Neil Caporaso, et al. 2016. "Mosaic Loss of Chromosome Y Is Associated with
2446 Common Variation near TCL1A." *Nature Genetics* 48 (5): 563–68.
2447 Zhu, Min, Chao Wu, Xuan Wu, Ge Song, Mingyang Li, and Qiong Wang. 2023. "POP1
2448 Promotes the Progression of Breast Cancer through Maintaining Telomere Integrity."
2449 *Carcinogenesis*, April. <https://doi.org/10.1093/carcin/bgad017>.
2450 Zou, Yuxin, Peter Carbonetto, Gao Wang, and Matthew Stephens. 2022. "Fine-Mapping from
2451 Summary Data with the 'Sum of Single Effects' Model." *PLoS Genetics* 18 (7): e1010299.

2452

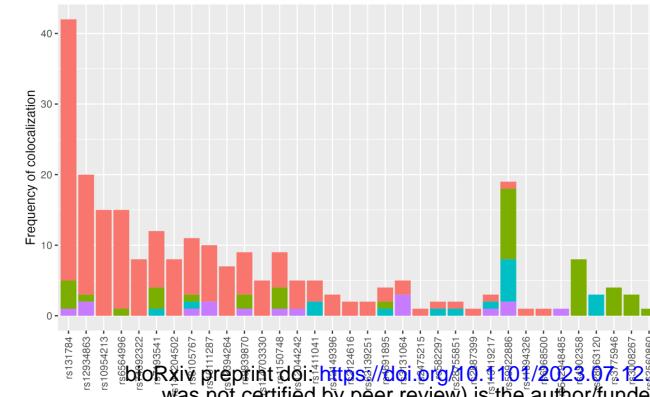
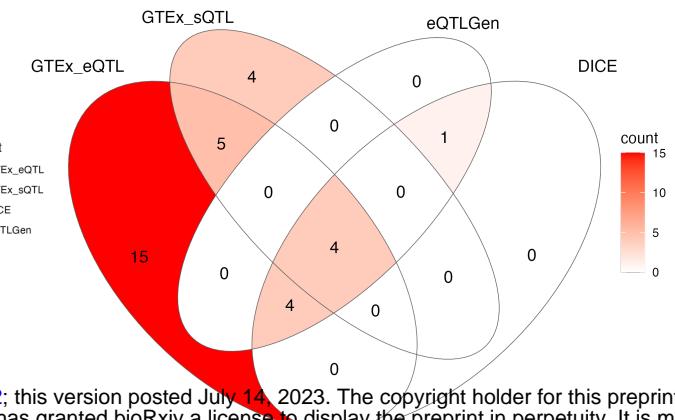


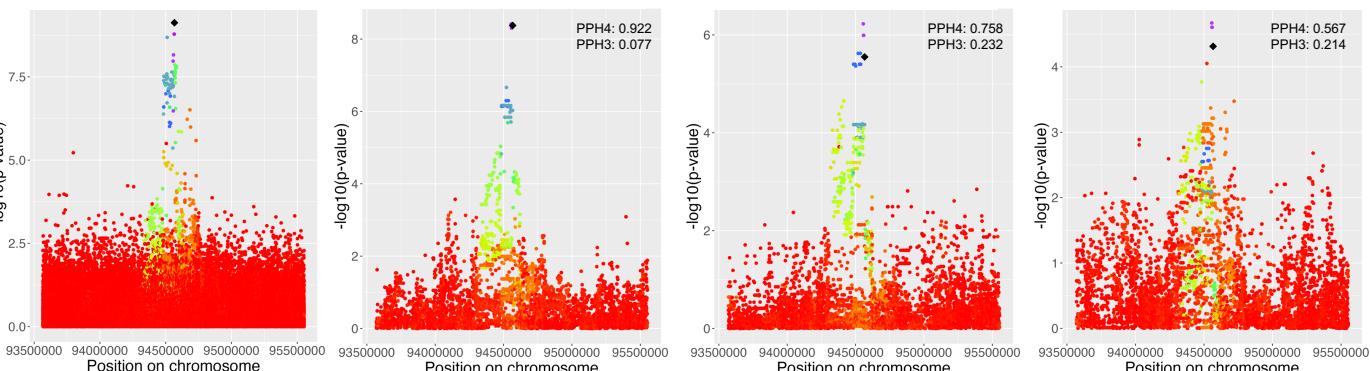
Figure 1: Trans-ancestry meta-analysis of leukocyte telomere length identifies 7 novel signals.


Manhattan plot showing the results from the meta-analysis. The novel signals are shown in blue. The inset pie chart displays the proportion of different ancestries used in the meta-analysis.

A

Colocalization results across datasets for each meta-analysis signal

B

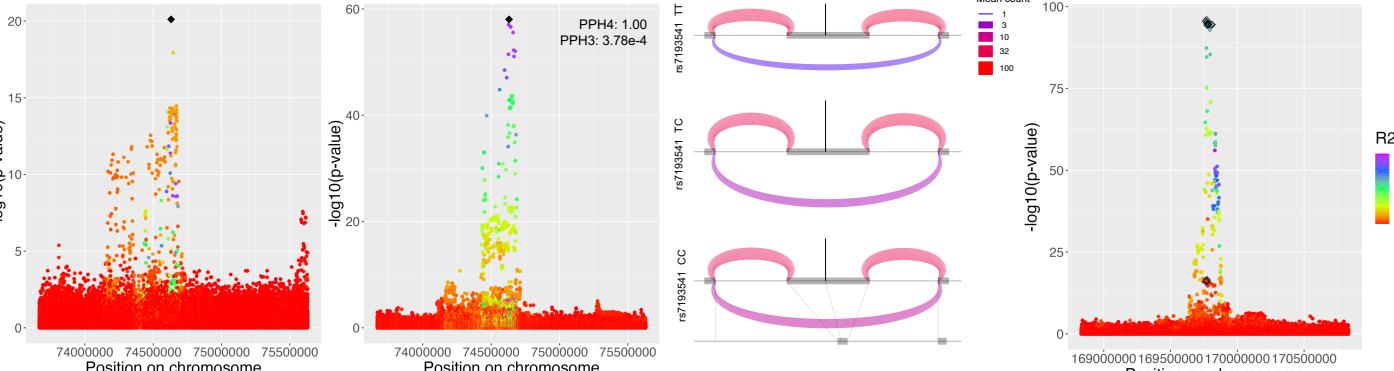

C

Meta-analysis signal led by rs10111287

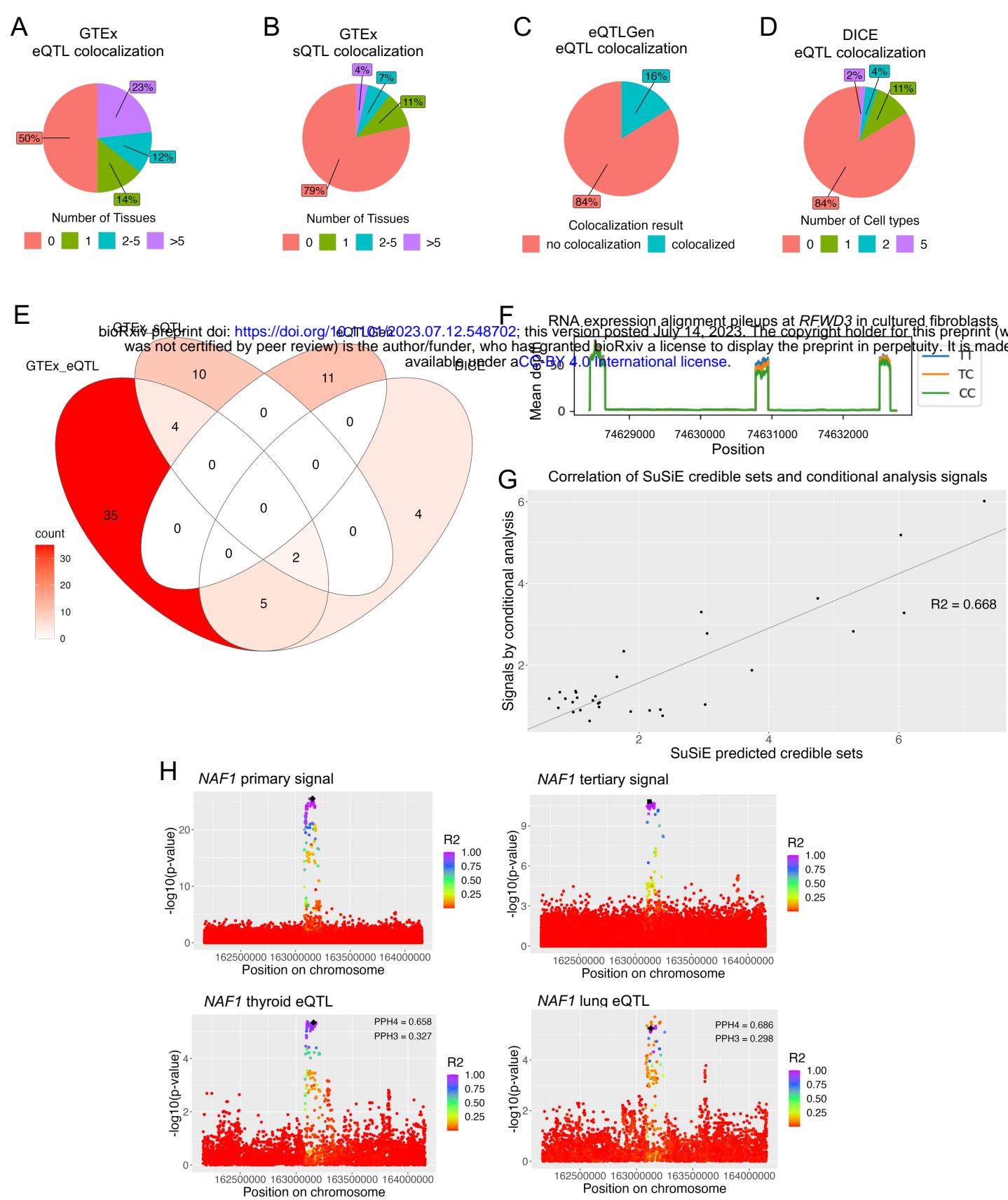
VIRMA eQTL in thyroid

VIRMA eQTL in stomach

VIRMA eQTL in whole blood


D

Meta-analysis signal led by rs7193541


RFWD3 sQTL in cultured fibroblasts

RFWD3 splicing pattern in cultured fibroblasts

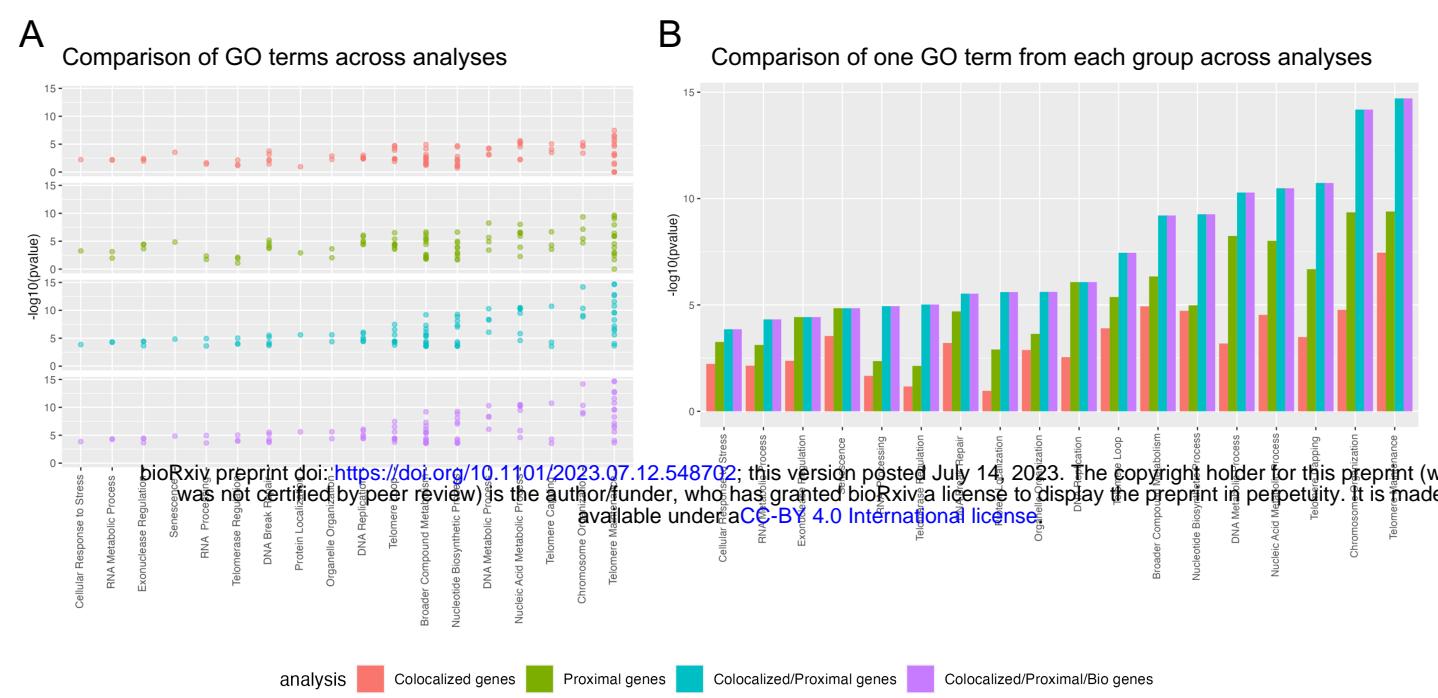
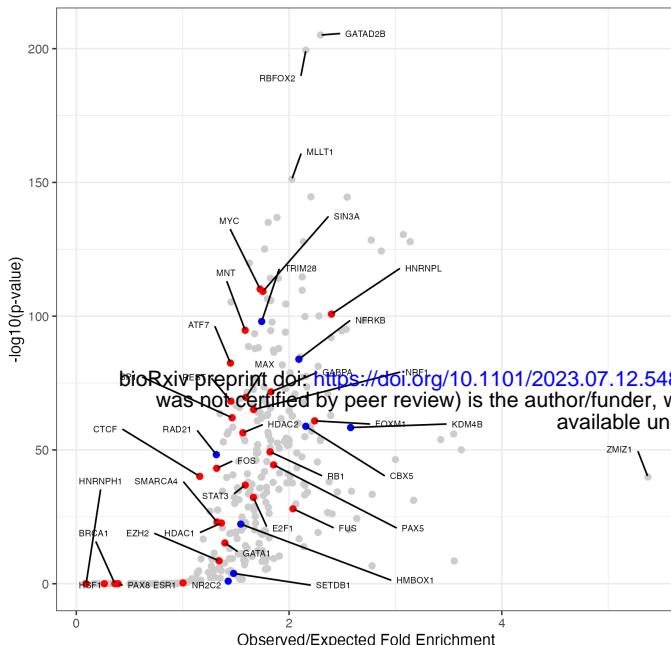

SuSiE results for signal led by rs12637184

Figure 2: Fine-mapping analyses nominate putative causal variants and genes affecting telomere length.

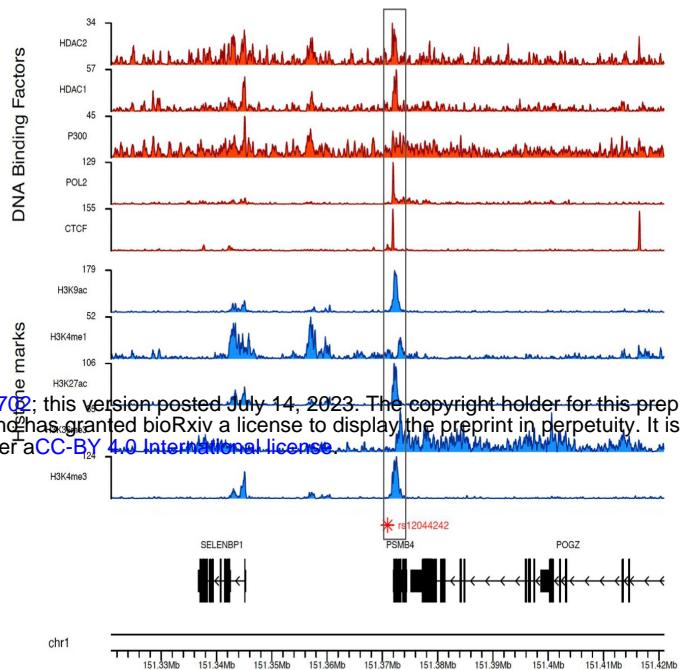
A. A barplot showing the number of colocalization events between a meta-analysis signal (labelled by the lead SNP) and a QTL for any gene in any cellular context across QTL datasets. All colocalization results for each signal are included in Supplementary Tables 3-6. B. Venn diagram showing which meta-analysis signals colocalized with any gene quantitative trait locus (QTL) in any cell type across datasets. We considered $PPH4 > 0.7$ to be colocalized for GTEx and eQTLGen. We considered $PPH4 > 0.5$ to be colocalized for DICE. C. Meta-analysis signal near rs10111287 colored by r^2 with the sentinel SNP (black diamond) and VIRMA eQTLs in three GTEx tissues: thyroid, stomach, and whole blood. Colocalization results for each eQTL with the meta-analysis signal are indicated in the top right corner. PPH3 = posterior probability that the signals do not colocalize, PPH4 = posterior probability that the signals colocalize. Colocalization analysis between the eQTLs suggests there are shared causal SNPs: thyroid eQTL with stomach eQTL $PPH3=0.090$ $PPH4=0.906$, thyroid eQTL with whole blood eQTL $PPH3=0.144$ $PPH4=0.745$, stomach eQTL with whole blood eQTL $PPH3=0.190$ $PPH4=0.655$. D. Meta-analysis signal near rs7193541 colored by r^2 with the sentinel SNP (black diamond) and RFWD3 splicing QTL. Colocalization results for the QTL with the meta-analysis signal are in the top right corner. In the LeafCutter splicing cluster diagram grey boxes represent the RFWD3 exons involved in the splicing cluster, the central exon is exon 14 and is located at chr16:74630780-74630957 (hg38). The curved lines represent the average number of reads spanning each exon-exon junction across individuals. Thinner, purple curves represent lower expressed exon-exon junctions and thicker, pink/red curves represent higher expressed exon-exon junctions. The plot is stratified by genotype of the lead SNP at the meta-analysis locus. The location of the lead SNP is depicted by the vertical grey line. The line at the bottom shows the linear base pair position of each exon and intron depicted in the plots. There were 167 TT individuals, 236 TC individuals, and 80 CC individuals included in this analysis. E. SuSiE 95% credible set results for the signal led by rs12637184. Black diamonds indicate SNPs predicted to be part of the 95% credible set. This signal had two credible sets, one comprised of SNPs at the top of the association peak and the second at approximately $-\log_{10}(p\text{-value}) = 12$. r^2 is calculated with respect to the lead SNP at the signal.

Supplementary Figure 1: Fine-mapping analyses nominate putative causal variants and genes affecting telomere length.
 A-B. Percent of meta-analysis signals that colocalize ($PPH4 > 0.7$) with a GTEx cis-eQTL or cis-sQTL for any gene across differing numbers of tissues. C. Percent of meta-analysis signals that colocalize ($PPH4 > 0.5$) with a DICE eQTL for any gene in any cell type. The threshold for $PPH4$ was reduced because the DICE dataset has lower power to detect eQTLs since the dataset is derived from 91 individuals. A-C. In some instances one signal may colocalize with one gene in tissue/cell type X while colocalizing with a second gene in tissue/cell type Y; this case would be reported as number of tissue/cell type = 2. D. Percent of meta-analysis signals that colocalize ($PPH4 > 0.7$) with an eQTLGen cis-eQTL. eQTLGen cis-eQTLs are derived from whole blood only. E. Venn diagram showing in which datasets meta-analysis signals colocalized with the same gene quantitative trait locus (QTL) in any cell type across datasets. F. RNA expression pileup plots from GTEx v8 for *RFWD3* in cultured fibroblasts. The plot is stratified by genotype for the sentinel SNP at the meta-analysis locus. G. Correlation of the number of SuSiE predicted credible sets and the number of signals by conditional analysis (Taub et al. 2022). H. *NAF1* primary signal from the TOPMed pooled GWAS analysis colored by r^2 with the lead SNP (black diamond). The best colocalization result for this signal was the *NAF1* eQTL in thyroid. After two rounds of conditional analysis on the lead SNP and secondary signal lead SNP at the *NAF1* locus, a tertiary signal remained significant (Taub et al. 2022). The tertiary signal and *NAF1* lung eQTL are colored by r^2 with the lead SNP at the tertiary signal (black square). The best colocalization result for the tertiary GWAS signal was with the *NAF1* eQTL in lung. The *NAF1* eQTL in thyroid did not colocalize with the *NAF1* eQTL in lung ($PPH3 = 0.721$, $PPH4 = 0.217$).

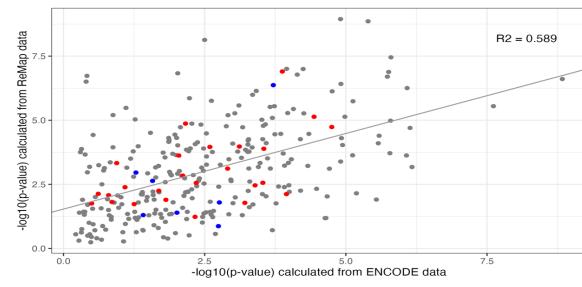
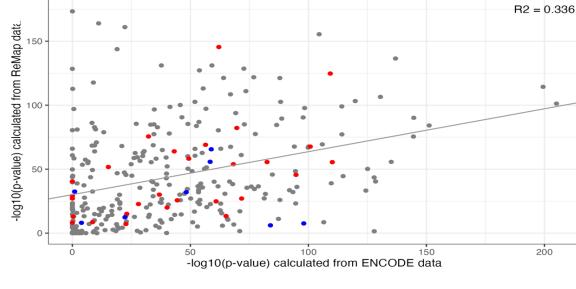
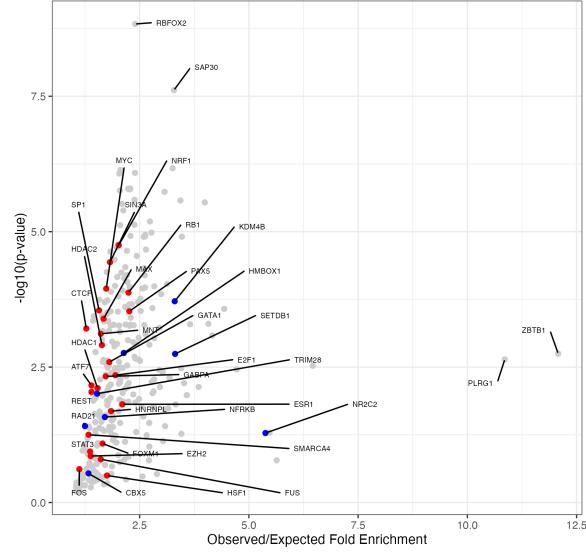
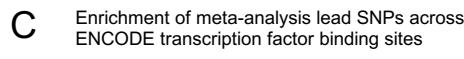
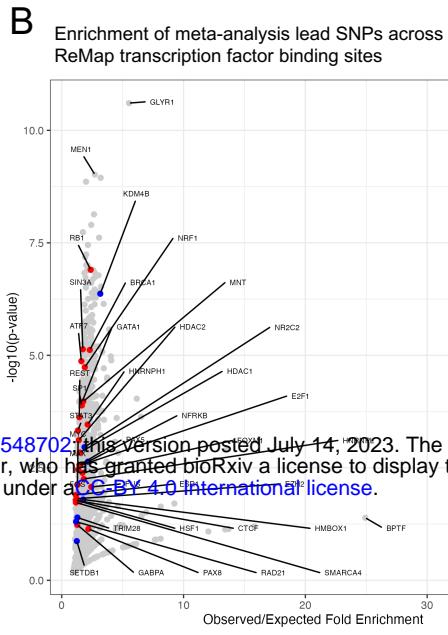
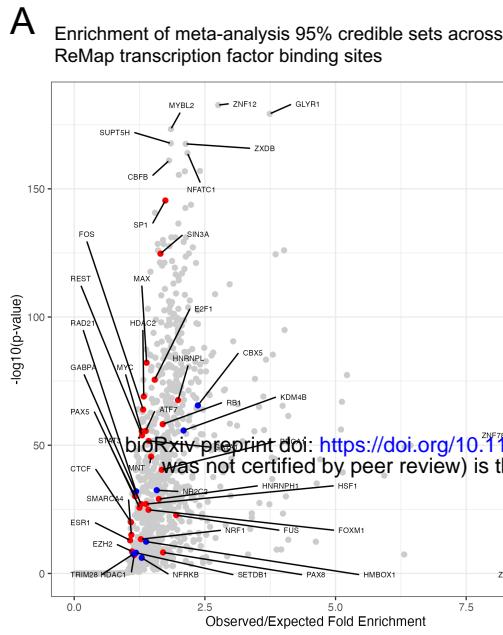


Supplementary Figure 2: Comparison of GO enrichment analysis results with different gene input datasets.

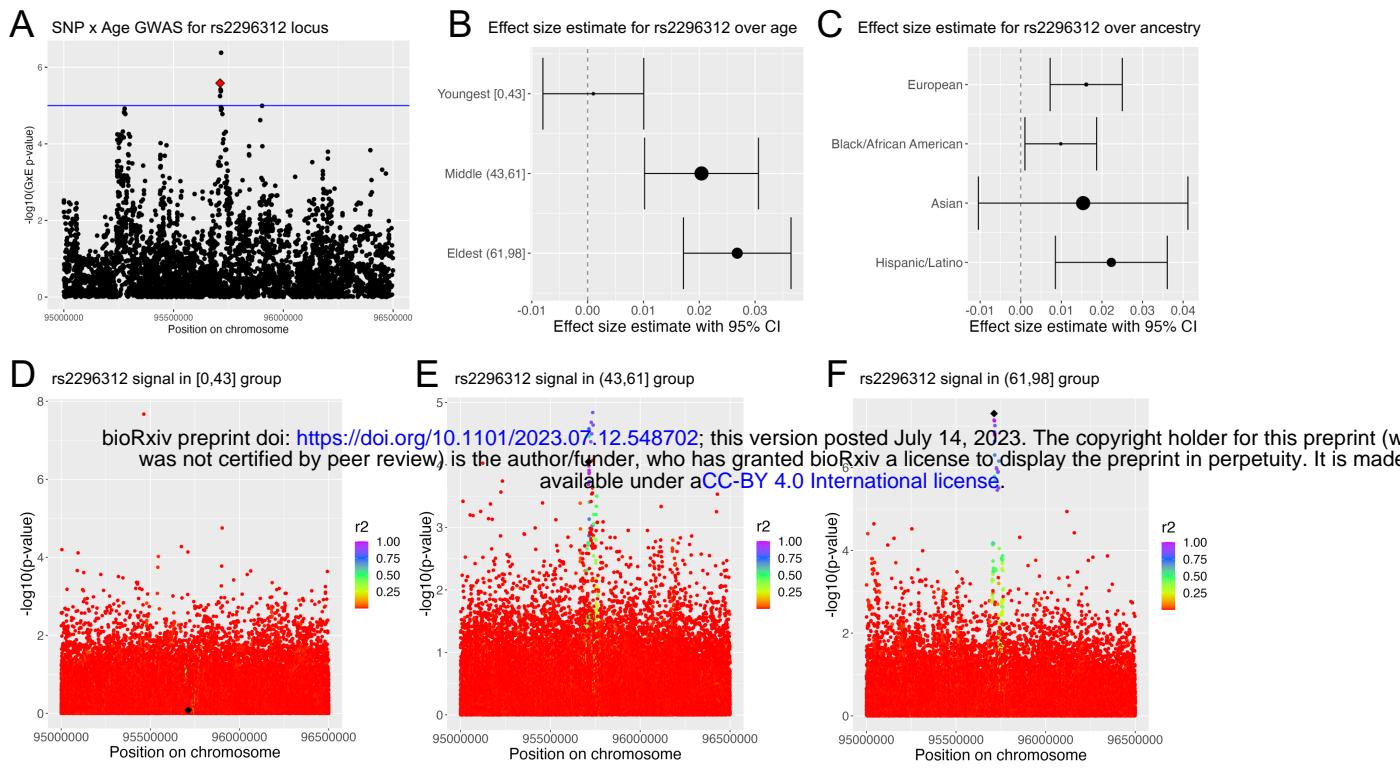
Each meta-analysis locus was assigned a gene based on genes indicated by colocalization analysis (red), the proximal gene (green), genes indicated by colocalization analysis where possible and proximal genes where not possible (blue), or genes indicated by proximity-plus-knowledge, colocalization analysis, or proximal genes where no other information was available (purple). In the fourth case (purple) there were five loci where a nearby gene has known roles in telomere length regulation but was neither the proximal gene nor the gene indicated by colocalization analysis (further explored in the Supplemental Note). Note that there are more genes included in the proximal gene list than the colocalized gene only list as every meta-analysis signal has a proximal gene but not all have colocalization results. GO terms were manually grouped based on related biology and the GO term with the smallest p-value in the Colocalized+Proximal+Bio analysis was chosen as a representative of the group in the plot. Group assignments and comparison of enrichment for all GO terms with FDR < 0.05 are reported in Supplementary Table 8. A. All GO terms that had FDR < 0.05 in at least one analysis are shown. B. The GO term with the smallest pvalue in the Colocalized+Proximal+Bio analysis was chosen for each group and the comparison of pvalues across analyses are shown.


A

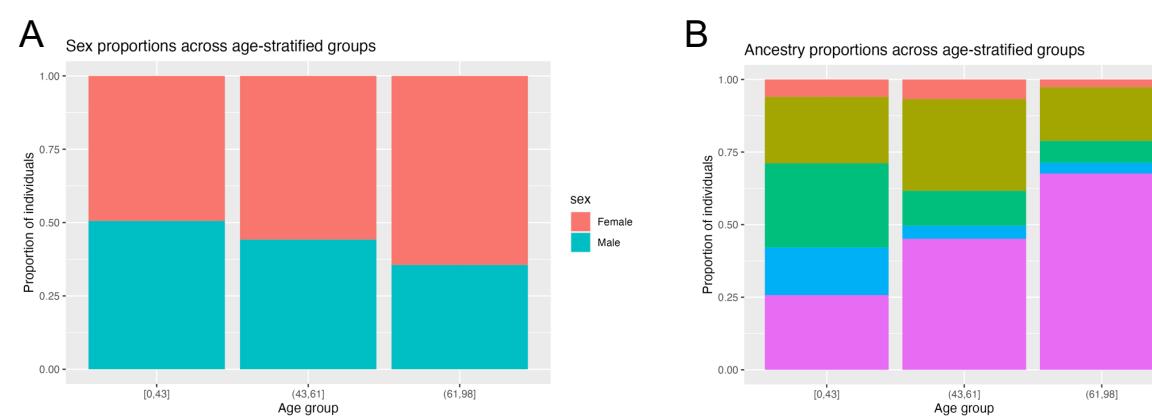
Enrichment of meta-analysis 95% credible sets across
ENCODE transcription factor binding sites







B

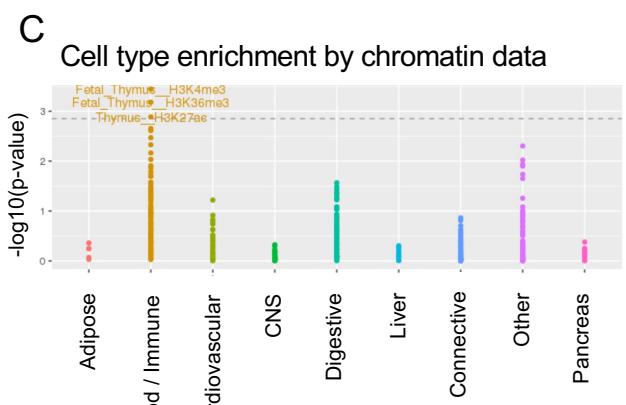
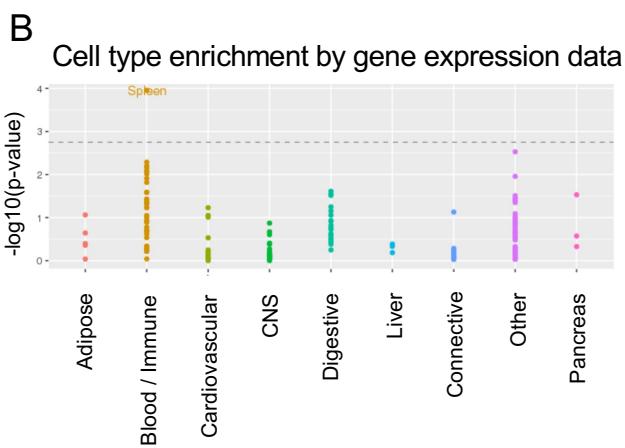
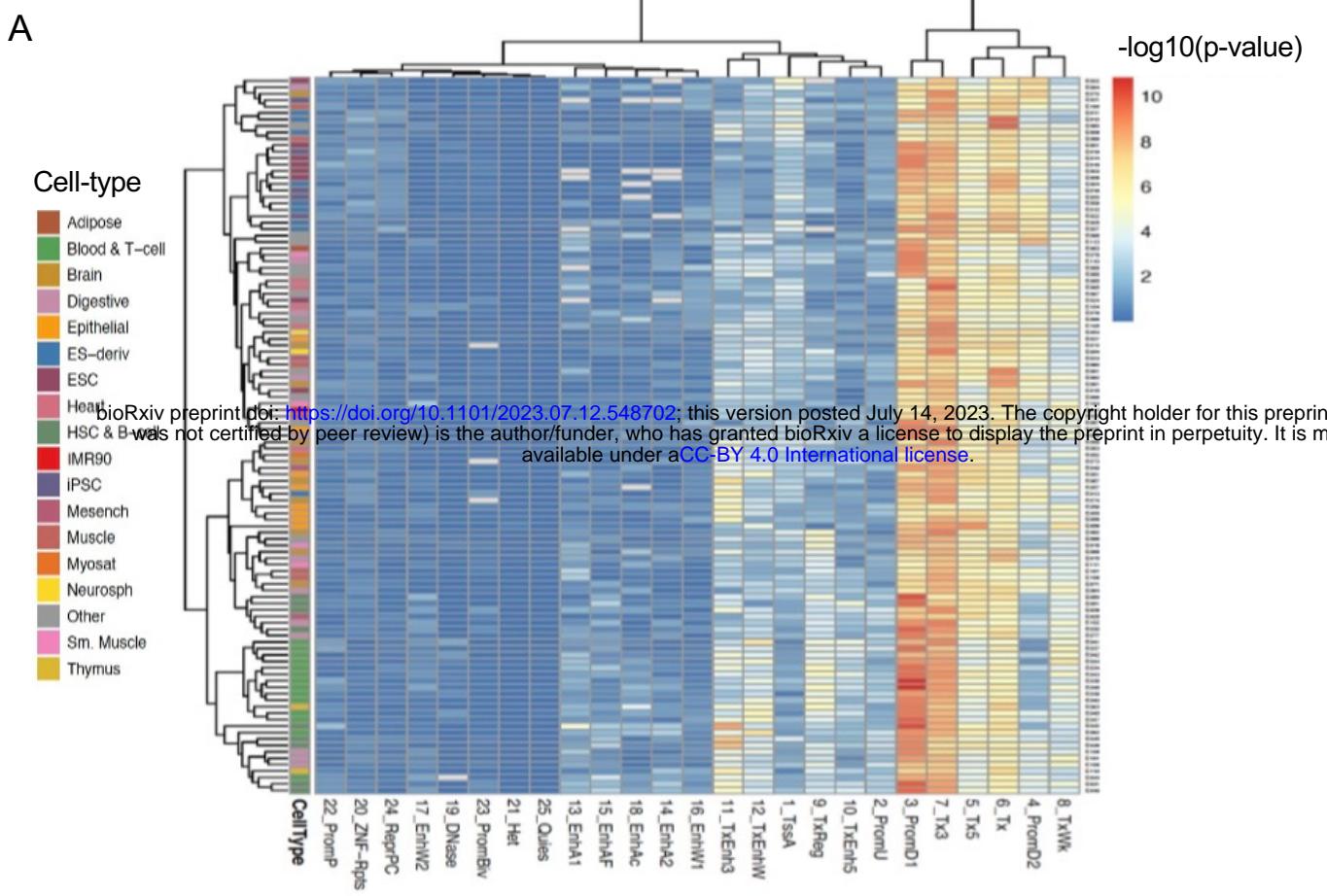
Histone and DNA binding factor ChIP-seq data near rs120444242


Figure 3: Meta-analysis signals are enriched for transcription factor binding sites of transcription factors with roles in telomere length regulation.

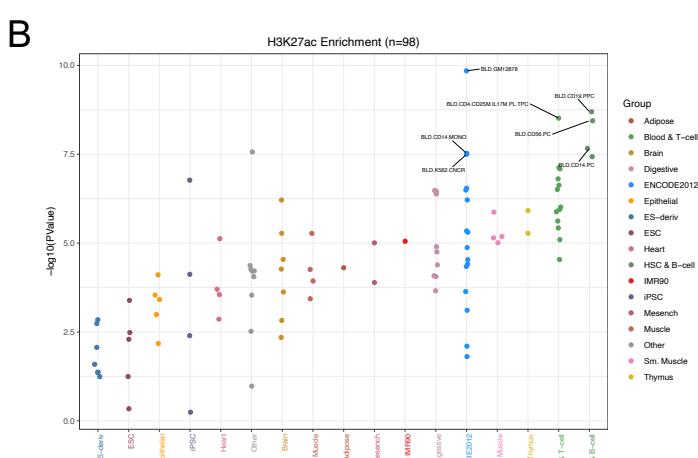
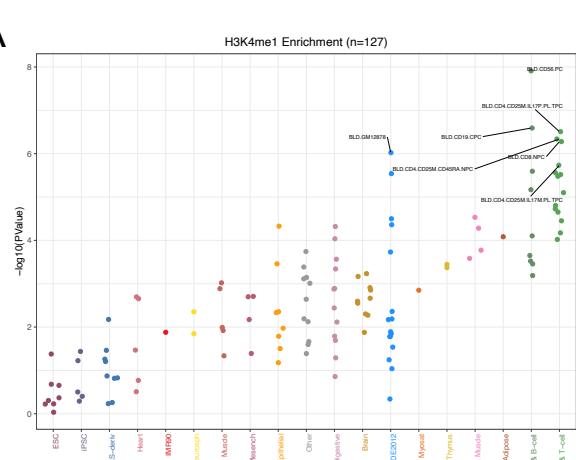
A. The enrichment of 95% credible set SNPs across all transcription factors with ChIP-seq data available from ENCODE ChIP-seq data (Methods). Red points represent transcription factors with known roles in regulating telomere length regulation genes and blue points represent transcription factors with known roles in the alternative telomere lengthening (ALT) pathway. There were 18 transcription factors that fall at the (0,0) coordinate that are not plotted for the sake of clarity; one (XRCC3) had known roles in ALT. A complete list of transcription factors is provided in Supplementary Table 9. B. ChIP-seq data for the indicated DNA binding factor (red) or histone mark (blue) was generated by ENCODE and downloaded as bigwig files from the UCSC genome browser. The gene structure and genomic coordinates are depicted below the ChIP-seq data.


Supplementary Figure 3: Meta-analysis signals are enriched for transcription factor binding sites of transcription factors with roles in telomere length regulation.

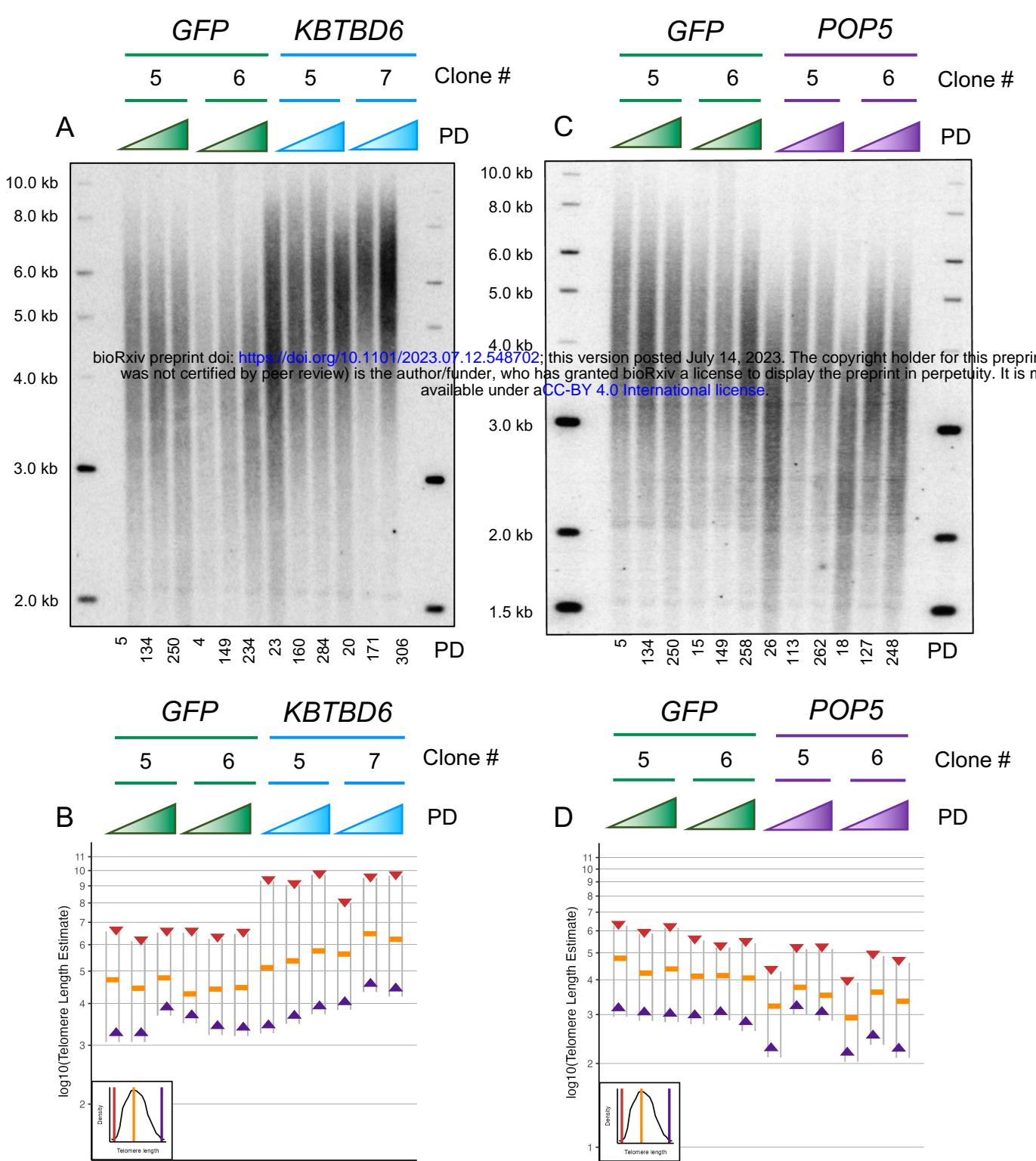
The red points represent transcription factors with known roles in regulating telomere length regulation genes and the blue points represent transcription factors with known roles in the alternative telomere lengthening (ALT) pathway. A. The enrichment of 95% credible set SNPs across all transcription factors with data available from ReMap data (Methods). There were 176 transcription factors that fell at the (0,0) coordinate and are not shown for clarity; one (XRCC3) had known roles in ALT. B. The enrichment of only the lead SNP at each meta-analysis signal across all transcription factors with data available from ReMap data (Methods). There were 196 transcription factors that fell at the (0,0) coordinate and are not shown for clarity; one (XRCC3) had known roles in ALT. C. The enrichment of only the lead SNP at each meta-analysis signal across all transcription factors with data available from ENCODE data (Methods). There were 22 transcription factors that fell at the (0,0) coordinate and are not shown for clarity; one (XRCC3) had known roles in ALT. D-E. The enrichment of transcription factors included in both the ReMap and ENCODE datasets are shown. The grey line represents the regression between these two variables and the R² is shown in the top right corner.




Figure 4: *TCL1A* 95% credible set SNPs are more strongly associated with telomere length in older individuals.

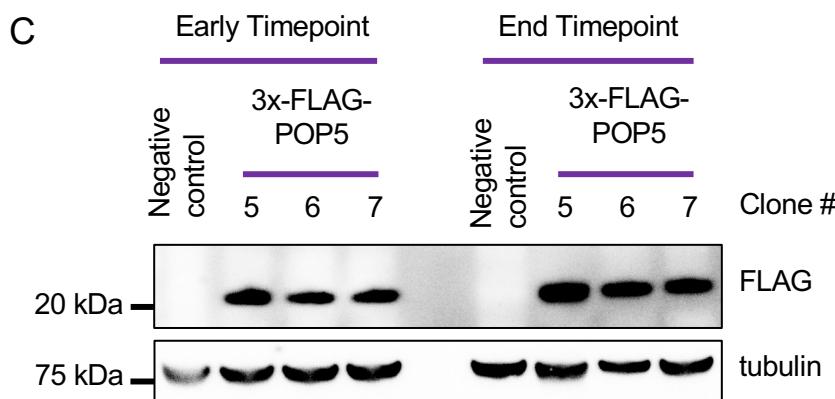
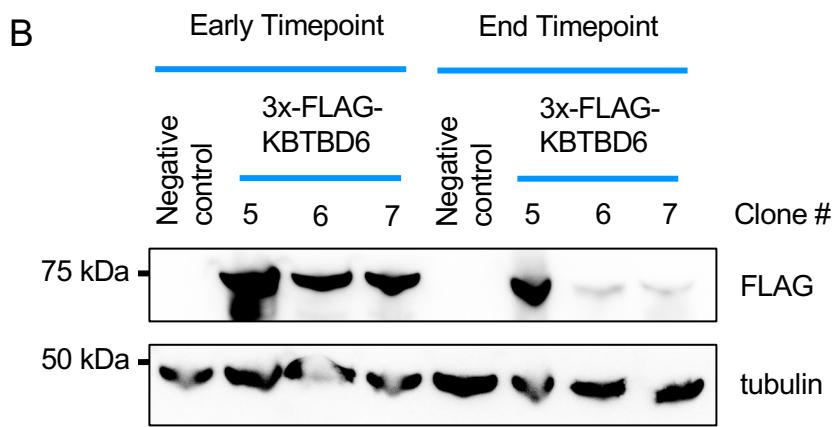
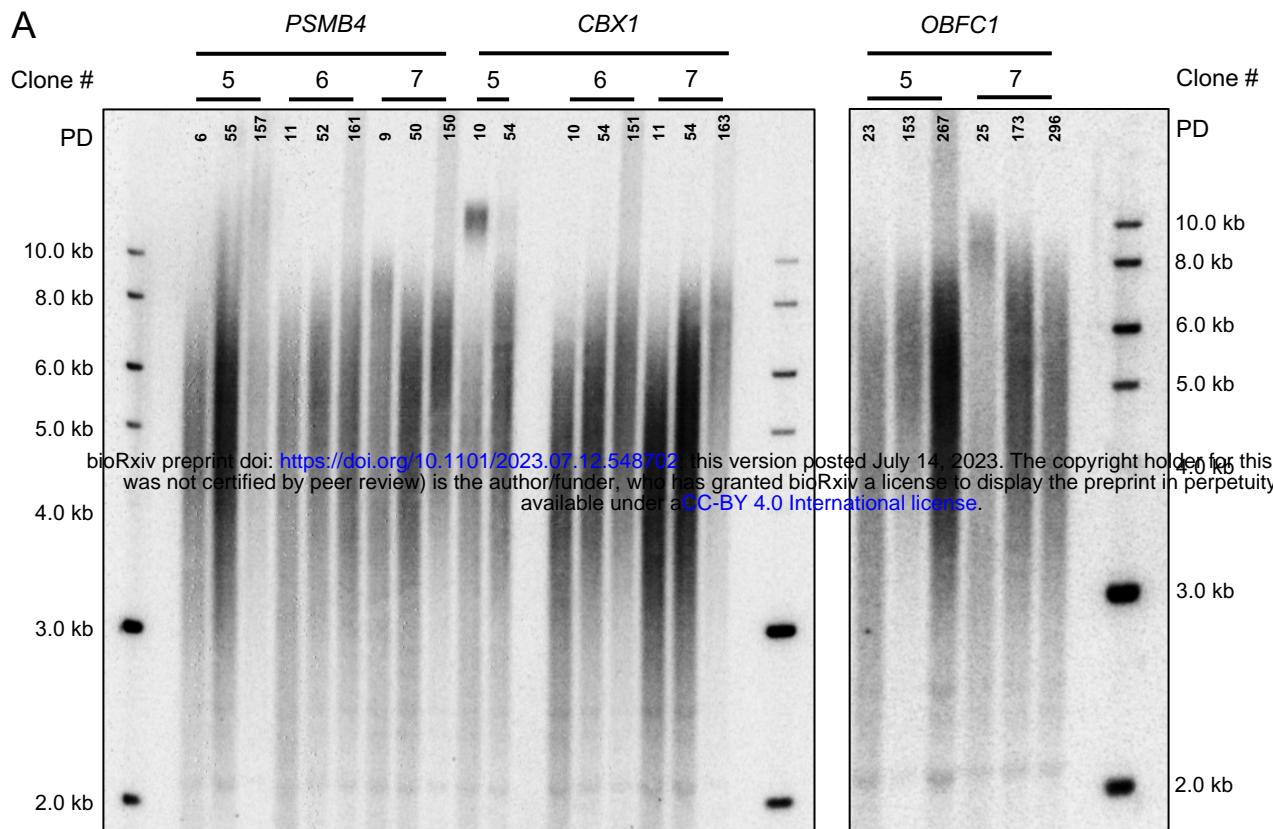
A. Manhattan plot for the region around rs2296312 (red star) using summary statistics from a GWAS that included a covariate for age and genotype interaction. The $\log_{10}(p\text{-value})$ for the interaction covariate is plotted on the y-axis. B. Forest plot indicating the effect size estimate for rs2296312 across age groups from the age-stratified GWAS. The tested allele, C, was the minor allele. [0,43] minor allele count = 15,922; (43,61) minor allele count = 16,315; (61,98) minor allele count = 13,547. C. Forest plot indicating the effect size estimate for rs2296312 across ancestry groups from ancestry-stratified GWAS (Taub et al. 2022). European minor allele count = 16,443; Black/ African American minor allele count = 19,963; Asian minor allele count = 5,683; Hispanic/Latino minor allele count = 18,019. D-F. Manhattan plots for the rs2296312 (black diamond) locus in age-stratified GWAS. Color indicates linkage disequilibrium (r^2) calculated with respect to rs2296312.



Supplementary Figure 4: Demographics for age-stratified telomere length GWAS
bioRxiv preprint doi: <https://doi.org/10.1101/2023.07.12.548702>; this version posted July 12, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a [aCC-BY-ND 4.0 International license](https://creativecommons.org/licenses/by-nd/4.0/).

such that there was a similar number of individuals per group. There were 36,980 individuals in the [0,43] group, 37,470 individuals in the (43,61] group, and 34,671 individuals in the (61,98] group. A. The proportion of individuals of each biological sex in each age group. B. The proportion of individuals of different ancestries in each age group. Ancestry was previously determined computationally (Taub et al. 2022).

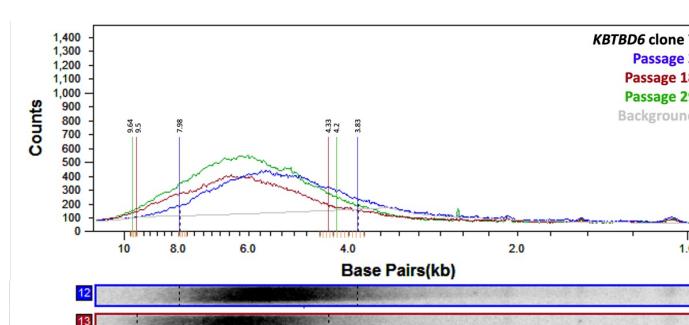
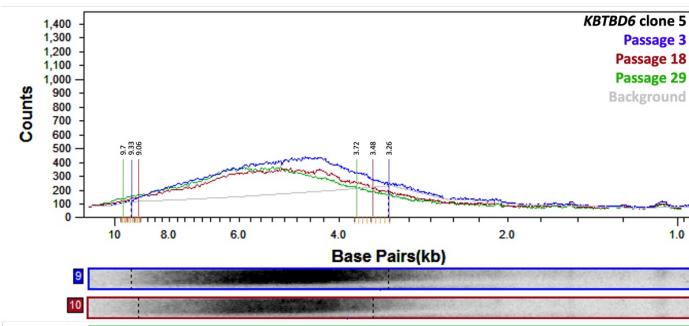
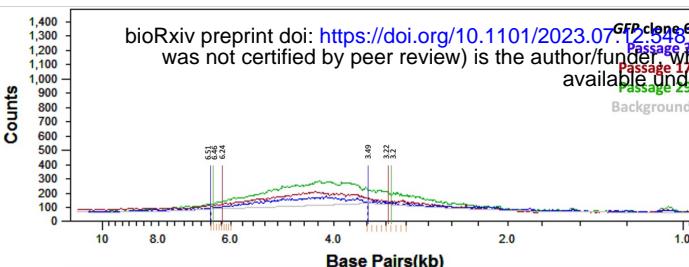
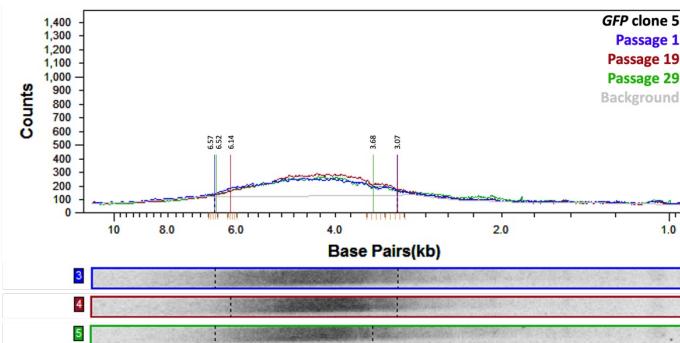

Figure 5: Blood and immune cells are a key cell type for telomere length.

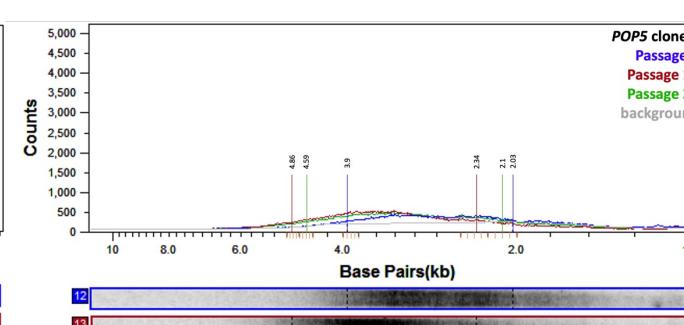
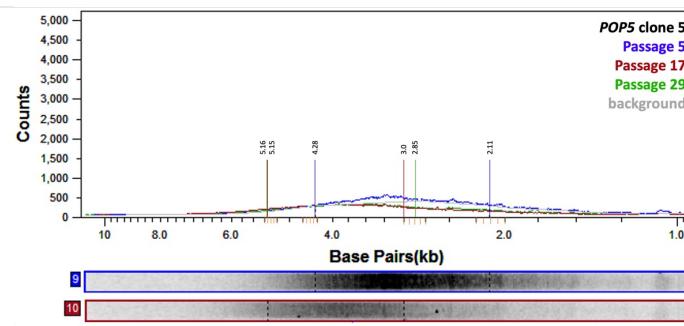
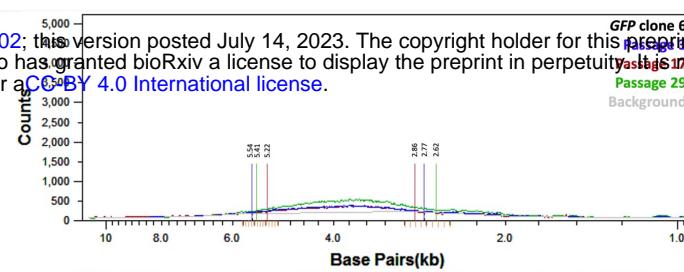
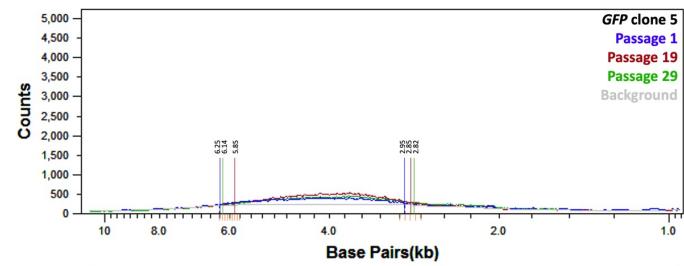
A. Hierarchical clustering of the enrichment of meta-analysis lead SNPs in predicted active states using the Roadmap Epigenomics 25 state chromHMM model. B-C. Stratified LDSC was conducted on 130,246 meta-analyzed European individuals in our dataset (Li et al. 2020; Taub et al. 2022) using the 1000 Genomes European linkage disequilibrium reference panel.




Supplementary Figure 5: ChIP-seq signals for specific chromatin marks from Roadmap Epigenomics across cell types. available under a CC-BY 4.0 International license.

Enrichment of Roadmap cell types for sentinel SNPs in H3K4me1 (A) or H3K27ac (B) peaks across 127 and 98 cell types, respectively. Included samples are listed in Supplementary Table 13.

Figure 6: Overexpression of *POP5* or *KBTBD6* increases telomere length in HeLa-FRT cells.

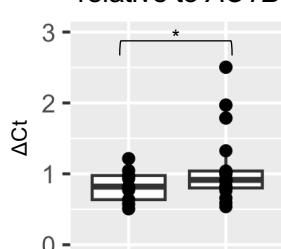




KBTBD6, *POP5*, or *GFP* was constitutively overexpressed from the CMV promoter in HeLa-FRT cells using the FLP-in system. A,C. Telomere Southern blots showing the bulk telomere length from a population of cells following an approximate normal distribution. Molecular weight standards were run alongside the samples and their size is indicated in kilobases (kb). Three time points are shown for each clone and the estimated number of population doublings (PD) for each timepoint are indicated below the Southern. Each clone has the opportunity to form a distinct starting telomere length distribution which is why the first timepoint for some clones appear to have distinct telomere length distributions, for example the starting timepoint for the *POP5* clones compared to the *GFP* clones. All transfection experiments began from the same population of HeLa-FRT cells. B,D. The Southern blot densitometry was analyzed using ImageQuant TL to generate line plots of the pixel density. The software estimated the median telomere length (orange bar) as the pixels with greatest density and estimated a molecular weight for that position taking into account the molecular weight standards on both sides of the gel. The ImageQuant TL line plots (Supplementary Figure 7) were used to estimate the minimum (purple triangle) and maximum (red triangle) telomere lengths in the bulk telomere band. A simulated diagram in the bottom left of the plot representing the ImageQuant TL plots is provided as a guide for the source of these values. The y-axis is plotted on a log₁₀ scale to better estimate how linear DNA moves through an agarose gel at rate inversely proportional to its length.





Supplementary Figure 6: Control data for overexpression of *KBTBD6* and *POP5*.

A. *PSMB4*, *CBX1*, or *OBFC1* was constitutively overexpressed from the CMV promoter in HeLa-FRT cells using the FLP-in system. Telomere Southern blots showing the bulk telomere length from a population of cells following an approximate normal distribution. Molecular weight standards were run alongside the samples and their size is indicated in kilobases (kb). Three time points are shown for each clone and the estimated number of population doublings (PD) for each timepoint are indicated. All transfection experiments began from the same population of HeLa-FRT cells. B. *KBTBD6* overexpression was maintained in clone 5 over time but was lost in clones 6 and 7 as demonstrated by the end timepoint. The early timepoint was passage 8 of the experiment, approximate population doublings were: clone 5 = 51, clone 6 = 33, clone 7 = 45. The end timepoint was passage 31, approximate population doublings were: clone 5 = 273, clone 6 = 257, clone 7 = 274. C. *POP5* overexpression was maintained across all three clones. The early timepoint was passage 8 of the experiment, approximate population doublings were: clone 5 = 65, clone 6 = 59, clone 7 = 67. The end timepoint was passage 31 of the experiment, approximate population doublings were: clone 5 = 296, clone 6 = 297, clone 7 = 318.

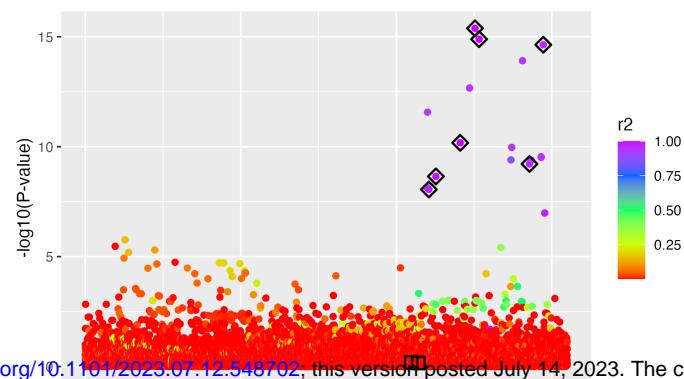
A

B

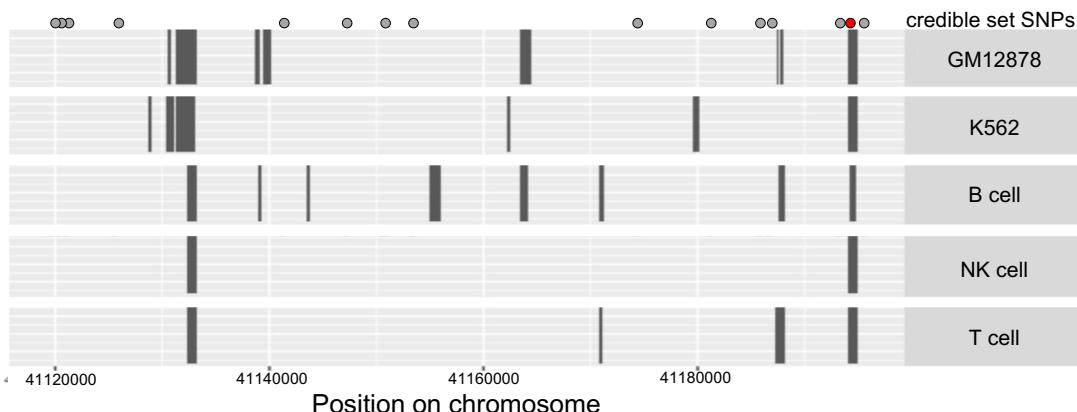


Supplementary Figure 7: ImageQuant TL estimation of minimum, median, and maximum telomere length.

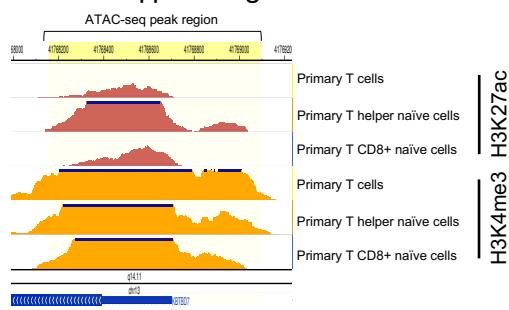
Unprocessed scans of the telomere Southern blots were imported into ImageQuant TL and median telomere length was calculated taking molecular weight markers on either side of the Southern into account. The median telomere length was automatically estimated as the maximum value in these line plots for each line. Line plots were generated for the three time points (timepoints indicated by line color) for each clone. The grey lines indicate the background signal estimated by ImageQuant TL. The Southern blot lanes analyzed in each plot are shown below their respective line plots. The software indicates the range of the signal that it takes into account when estimating the median and these boundaries (dotted lines on the lanes) were used to represent the minimum and maximum telomere lengths. The vertical lines on the line plot were added manually and colored to match the sample they estimate, the values above them represent the estimated minimum or maximum. The software does not provide a quantitative estimate of these boundaries and so we inferred them from the units on the x-axis. Where the minimum or maximum did not fall close to an automated tick mark, we imputed additional tick marks (orange) by anchoring two lines on the available tick marks and adding another three lines in between, then distributed evenly horizontally using Microsoft PowerPoint. A. Line plots from Figure 6A. B. Line plots from Figure 6B.


A

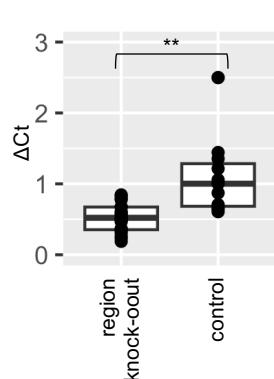
POP5 expression relative to ACTB


bioRxiv preprint doi: <https://doi.org/10.1101/2023.07.12.548702>; this version posted July 14, 2023. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

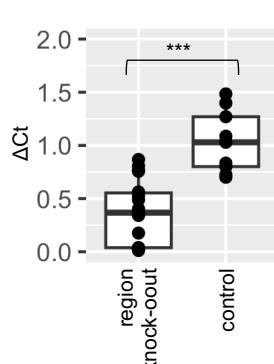
B 99% credible set for signal led by rs1411041


C

99% credible set SNPs location relative to ATAC-seq peak regions across blood samples

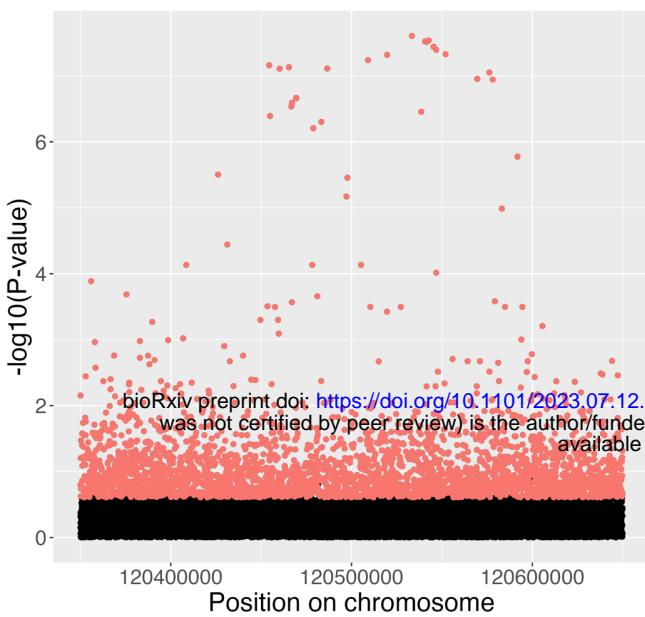

D

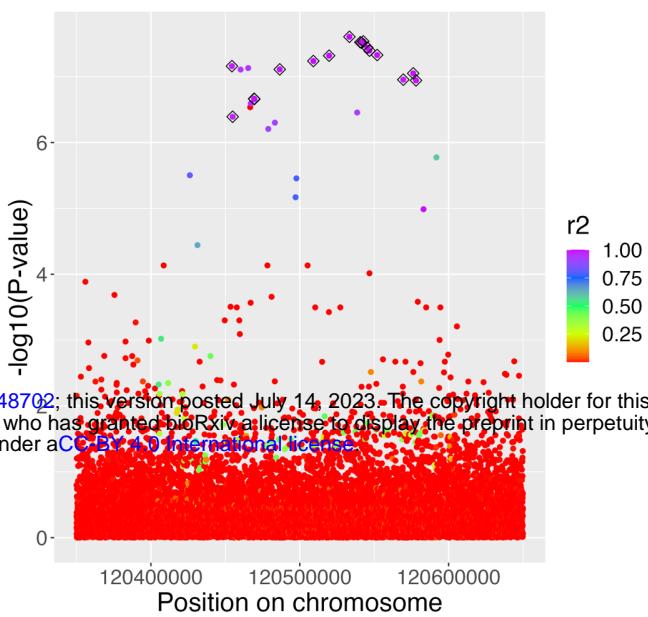
Histone ChIP-seq signals around consistent ATAC-seq peak region


E

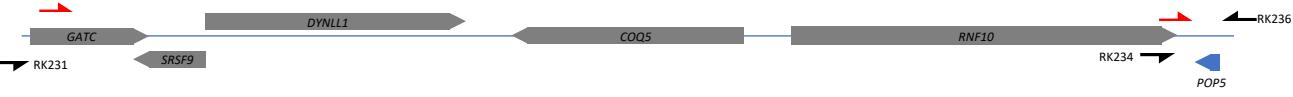
KBTBD6 expression relative to ACTB

F


KBTBD7 expression relative to ACTB


Figure 7: CRISPR removal of *KBTBD6* and *POP5* regulatory regions reduced expression of each gene.

A. qPCR estimates of *POP5* expression were normalized to *ACTB* using the Pfaffl method (Methods). A one-sided *t*-test calculated a *p*-value = 0.047. B. 99% SuSiE credible set colored by *r*² with the lead SNP. Black diamonds indicate SNPs in the predicted credible set. C. ATAC-seq peak regions are represented as boxes for each blood related sample. Points above the plot area represent SNPs in the 99% credible set predicted by SuSiE or CAVIAR. The 95% credible set from either SuSiE or CAVIAR did not overlap any regions where ATAC-seq peaks were shared across blood cell types and cell lines. The red SNP is rs9525462. NK cell = natural killer cell. Samples were downloaded from ENCODE (ENCODE Project Consortium 2012; Luo et al. 2020) (identifiers: ENCFF058UYY, ENCFF333TAT, ENCFF421XIL, ENCFF470YYO, ENCFF558BLC, ENCFF748UZH, ENCFF751CLW, ENCFF788BUI, ENCFF867TMP) or from ATACdb (Wang et al. 2021)(sample codes: Sample_1195, Sample_1194, Sample_1175, Sample_1171, Sample_1020, Sample_1021, Sample_1209, Sample_1208). D. Roadmap chromatin ChIP-seq for hg19 chr13:41768158-41769095 (yellow highlighted region). Samples included were E044, E039, and E047. E-F. qPCR estimates of gene expression were normalized to *ACTB* using the Pfaffl method (Methods). A one-sided *t*-test calculated a *p*-value = 0.003037 for *KBTBD6* and *p*-value = 2.093x10⁻⁵ for *KBTBD7*. * *p*-value < 0.05 ** *p*-value < 0.01 *** *p*-value < 0.001.


A CAVIAR 95% credible set for the *POP5* locus

B Top SNPs at the *POP5* locus

C CRISPR targeting of the *POP5* signal region

D CRISPR targeting of the *KBTBD6/ KBTBD7* signal region

Supplementary Figure 8: CRISPR/Cas9 targeted regions.

A. Manhattan plot showing the association signal near *POP5*. Red SNPs were in the CAVIAR 95% credible set. CAVIAR was run assuming there was one causal SNP in the signal ($c=1$). B. Manhattan plot showing the association signal near *POP5*. Color indicates linkage disequilibrium (r^2) calculated with respect to the lead SNP. C. 124 kb region targeted for CRISPR/Cas9 editing within the *POP5* association signal region. The red half arrows indicate the position of CRISPR/Cas9 gRNA sequences. The black half arrows indicate the position of primers used to genotype CRISPR/Cas9-edited cells (Methods). Primer and guide sequences are reported in Supplementary Table 14. The position and size of the indicated coding sequences were taken from the UCSC genome browser and are to scale. *POP5* is indicated in blue. D. 938 bp ATAC-seq peak region targeted for CRISPR/Cas9 editing within the *KBTBD6/ KBTBD7* association signal region. The red half arrows indicate the position of CRISPR/Cas9 gRNA sequences. Primer and guide sequences are reported in Supplementary Table 14. The position and structure of the *KBTBD7* coding sequence was taken from the UCSC genome browser and is to scale.