

1

2

3 **Determining the importance of the stringent response for**
4 **methicillin-resistant *Staphylococcus aureus* virulence using a**
5 **zebrafish model of infection**

6

7 Naznin R. Choudhury^{1,2}, Lucy Urwin^{1,2}, Bartłomiej Salamaga¹, Lynne R. Prince^{2,3}, Stephen A.
8 Renshaw^{2,3,4} and Rebecca M. Corrigan^{1,2*}

9

10 ¹School of Biosciences, University of Sheffield, Sheffield, United Kingdom

11 ²The Florey Institute, University of Sheffield, Sheffield, United Kingdom

12 ³Division of Clinical Medicine, School of Medicine and Population Health, University of
13 Sheffield, Sheffield, United Kingdom

14 ⁴Bateson Centre, University of Sheffield, Sheffield, United Kingdom

15

16 * Correspondence: Email: r.corrigan@sheffield.ac.uk

17

18 Running title: The stringent response is required for *S. aureus* virulence

19 **Abstract**

20 *Staphylococcus aureus* is a bacterial pathogen that poses a major threat to human health. The
21 ability of this bacterium to adapt to stresses encountered in the host is essential for disease. The
22 stringent response is a signalling pathway utilised by all bacteria to alarm cells when stressed,
23 and has been linked to the virulence of a number of species. This signalling pathway is
24 controlled by the nucleotide alarmones guanosine tetra- (ppGpp) and pentaphosphate (pppGpp:
25 collectively termed (p)ppGpp), produced in *S. aureus* by three synthetase enzymes: Rel, RelP
26 and RelQ. Here, we used a triple (p)ppGpp synthetase mutant ((p)ppGpp⁰) to examine the
27 importance of this signalling network for the survival and virulence of *S. aureus* *in vivo*. Using
28 an established zebrafish larval infection model, we observed that infection with (p)ppGpp⁰
29 resulted in attenuated virulence, which was not due to a reduced ability of the mutant to
30 replicate *in vivo*. Of the three (p)ppGpp synthetases, Rel was established as key during
31 infection, but roles for RelP and RelQ were also observed. Zebrafish myeloid cell depletion
32 restored the virulence of (p)ppGpp⁰ during systemic infection, indicating that (p)ppGpp is
33 important for survival within host phagocytes. Primary macrophages infection studies,
34 followed by *in vitro* tolerance assays to key innate immune effectors, demonstrated that
35 (p)ppGpp⁰ was more susceptible to stressors found within the intracellular macrophage
36 environment, with roles for all three synthetases implicated. Lastly, the absence of CodY, a
37 transcription factor linked to the stringent response, significantly increased the tolerance of *S.*
38 *aureus* to phagolysosomal-like stressors *in vitro*, but had no impact *in vivo*. Taken together,
39 these results define the importance of the stringent response for *S. aureus* infection, revealing
40 that (p)ppGpp produced by all three synthetases is required for bacterial survival within the
41 host environment by mediating adaptation to the phagolysosome.

42 **Introduction**

43 *Staphylococcus aureus* is a highly adaptable pathogen, with a large arsenal of virulence factors
44 that allow it to colonise diverse sites within the human host. Upon infection, bacteria are
45 subjected to harsh conditions due to changes in nutrient availability, pH and temperature, as
46 well as the presence of an immune response. When faced with stresses, bacteria induce a
47 conserved survival pathway termed the stringent response, which is coordinated by the
48 nucleotide alarmones guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate
49 (pppGpp: collectively known as (p)ppGpp) [1]. (p)ppGpp is produced by the RelA/SpoT
50 Homologue (RSH) protein family [2], with *S. aureus* encoding three of these synthetases: the
51 long RSH enzyme Rel, which also has hydrolase activity, and the two monofunctional small
52 alarmone synthetases (SAS) RelP and RelQ (Fig. 1A) [3]. Production of (p)ppGpp by these
53 enzymes results in major changes within the bacterial cell, with alterations to numerous
54 macromolecular activities such as transcription and translation [4-6]. These alterations lead to
55 an inhibition of growth and a concurrent upregulation of stress adaptation and virulence factors,
56 which ultimately allows a switch from active growth to a more stationary phenotype to aid
57 bacterial survival. In *S. aureus*, the three (p)ppGpp synthetases respond to different
58 environmental stresses to increase (p)ppGpp levels, with Rel sensing amino acid starvation via
59 interactions with uncharged tRNA and the ribosome, while RelP and RelQ respond to cell wall
60 and pH stress [4].

61 Activation of the stringent response is reported to contribute to the pathogenicity of a
62 number of bacterial species. For example, a *Salmonella enterica* subspecies Typhimurium
63 (p)ppGpp-null ((p)ppGpp⁰) mutant was unable to replicate in the mouse spleen after five days
64 [7]. Similarly, the numbers of a *Mycobacterium tuberculosis* rel mutant recovered from murine
65 lung and spleen tissues was 2-log lower than the wildtype over a 38-week period, implicating
66 a requirement for Rel for long-term viability and chronic infection [8]. The absence of

67 (p)ppGpp also affected the ability of *Enterococcus faecalis* to form biofilms in murine models
68 of catheter-associated urinary tract infections [9]. For *S. aureus*, a methicillin-resistant *S.*
69 *aureus* (MRSA) *rel* mutant formed cutaneous abscess lesions in mice that were over 13-times
70 smaller than those formed by the wildtype [10]. Rel was also required for maintaining
71 methicillin-sensitive *S. aureus* (MSSA) load in murine renal abscesses and for reducing mouse
72 body weight [11]. This loss of body weight was dependent on the transcription factor CodY,
73 which derepresses amino acid and virulence genes upon induction of the stringent response
74 [12]. Together, these reports indicate that the stringent response is important for the virulence
75 of a number of bacterial pathogens.

76 Zebrafish (*Danio rerio*) are a well-established animal model for various types of disease
77 and infection. Despite being non-mammalian, zebrafish are jawed vertebrates with high genetic
78 homology to humans - more than 80% of disease-associated genes have a human counterpart
79 [13]. Furthermore, advantages over mammalian models include its rapid embryonic
80 development, genetic manipulability and its transparency at the embryonic and larval stages,
81 which allows for live imaging of developing zebrafish [14]. With a functional innate immune
82 system by 30 hours post fertilisation (hpf) [15, 16], zebrafish larvae are also useful for studying
83 host-pathogen interactions, as demonstrated by the numerous infection models that exist [17].
84 For example, we have previously developed systemic infection models to study the
85 pathogenicity of *S. aureus* and *E. faecalis* within zebrafish [18, 19]. Studies such as these
86 highlight how the zebrafish model can be used to further our knowledge of host-pathogen
87 interactions and disease pathogenesis.

88 While reports indicate that the Rel synthetase is important for the survival of *S. aureus*
89 in polymorphonuclear leukocytes (PMNs) [20], as well as in cutaneous abscess lesions and
90 murine renal abscess models [10, 11], the importance of the entire signalling system, and the
91 contribution of the two SAS enzymes, RelP and RelQ, to virulence is much less well

92 understood. Here, we sought to use the versatility of the zebrafish model to establish the
93 importance of (p)ppGpp for *S. aureus* systemic infection, extending previous findings relating
94 to bacterial load in host organs to examine the contribution of the stringent response to host
95 killing. Using the zebrafish model, we have determined that all three synthetases contribute to
96 the virulence of *S. aureus*. The attenuated phenotype of a (p)ppGpp⁰ mutant was determined to
97 be at least partly myeloid cell-dependent, as morpholino-mediated ablation of myeloid cells
98 restored virulence. Moreover, we show a requirement for (p)ppGpp for survival of *S. aureus*
99 within primary macrophages, with *in vitro* studies highlighting its importance for tolerance of
100 phagolysosomal stressors. While the overproduction of (p)ppGpp has been suggested to
101 support chronic and recurrent infections, here we observed that increased (p)ppGpp production
102 led to higher tolerance of *S. aureus* to stressors *in vitro* but actually reduced bacterial virulence.
103 Finally, deletion of the CodY transcription factor restored the survival defect of the (p)ppGpp⁰
104 mutant *in vitro*, but did not restore virulence. Altogether, this work further defines the
105 importance of (p)ppGpp, and each of the three synthetases, for *S. aureus* growth, systemic
106 infection and host death.

107

108 **Materials and methods**

109 **Bacterial strains and culture conditions.** *Escherichia coli* strains were grown in Luria Bertani
110 broth (LB). *S. aureus* strains were grown in tryptic soy broth (TSB) at 37°C with aeration.
111 Strains used in this study are listed in S1 Table and primers used are listed in S2 Table. Plasmids
112 pALC2073-*relQ*, pCL55iTETr862-*rel* and pCL55iTETr862-*relP* were constructed by
113 amplifying the respective genes using the primers listed in S2 Table. The resulting PCR products
114 were digested and cloned into either pALC2073 or pCL55iTETr862 that had been digested with
115 the same enzymes. All plasmids were initially transformed into *E. coli* strain XL1-Blue and
116 sequences of all inserts were verified by fluorescence automated sequencing by Eurofins. The
117 *S. aureus* expression plasmids pALC2073 and pALC2073-*relQ* were first electroporated into
118 RN4220 before isolation and electroporation into JE2. The integrative pCL55iTETr862
119 plasmids were electroporated into RN4220 before being phage transduced into JE2 using Φ85.
120 Φ85 was also used to move the *cody*:Tn transposon mutation into JE2 and JE2 (p)ppGpp⁰.

121

122 **Zebrafish strains and husbandry.** Up to 5 days post fertilization (dpf) zebrafish are not
123 protected under the Animals (Scientific Procedures) Act 1986. However, all work was carried
124 out according to the stipulations set out in Project License P1A4A7A5E. London wildtype
125 (LWT) strains were used for all zebrafish experiments. Adult zebrafish were maintained by staff
126 at the University of Sheffield Bateson Centre Zebrafish Facility according to established
127 standards [21]. Adult fish were kept at 28°C in a 14 hr/10 hr light/dark regime. Embryos/larvae
128 were incubated at 28°C in E3 medium (0.5 mM NaCl, 17 µM KCl, 33 µM CaCl₂, 33 µM
129 MgSO₄, 0.00005% methylene blue).

130

131 **Zebrafish embryo microinjections.** At approximately 30 hpf, LWT zebrafish embryos were
132 dechorionated and anaesthetised by immersion in 0.02% w/v buffered tricaine. The embryos

133 were embedded in 3% w/v methylcellulose on a glass slide. 1 nl of bacterial suspensions were
134 injected into the yolk sac circulation valley of the ≥ 30 embryos per condition using a pneumatic
135 micropump (World Precision Instruments PV820), a micromanipulator (WPI) and a dissecting
136 microscope. Following injection, embryos were recovered in fresh E3 and placed into individual
137 wells of a 96-well plate. After 2 dpf, embryos are referred to as larvae. The larvae were
138 monitored twice a day up to 93 hours post infection (hpi) and the number of dead larvae at each
139 timepoint recorded. To confirm bacterial numbers in each injection, the same volume was
140 ejected into 1 ml of PBS and the viable counts determined on tryptic soy agar (TSA) plates.

141 Survival curves were generated using GraphPad Prism.

142

143 **Measurement of *S. aureus* growth in zebrafish.** *S. aureus* cultures were injected into the yolk
144 sac circulation valley of zebrafish embryos at 30 hpf. At each timepoint until 5.2 dpf, five live
145 larvae and any dead larvae, as well as 200 μ l of E3 medium were transferred to 0.5 ml
146 microcentrifuge tubes containing 1.4 mm ceramic beads. Each larva was homogenised using a
147 FastPrep-24TM 5G Homogeniser and homogenates were serially diluted and plated to determine
148 bacterial load.

149

150 **Microinjection of morpholino-modified antisense oligonucleotides.** One pmol of a
151 morpholino-modified antisense oligonucleotide against the Pu.1 transcription factor [22] was
152 injected into the yolk of one-cell stage zebrafish embryos, which were subsequently incubated
153 at 28°C until injection with *S. aureus*. *S. aureus* cultures were injected into zebrafish embryos
154 at 30 hpf. Larvae were maintained at 28°C, monitored twice a day up to 93 hpi (5.2 dpf) and
155 the number of dead larvae at each timepoint recorded.

156

157 **Preparation of frozen stocks for macrophage infection.** Bacterial strains were cultured
158 overnight in TSB and diluted to an OD₆₀₀ of 0.05. Diluted cultures were grown until mid-
159 stationary phase (approx. 9 hrs), supplemented with 15% glycerol and stored at -80°C. Prior to
160 infection, aliquots were thawed on ice, washed once with PBS and resuspended in RPMI 1640
161 containing no additional supplements. CFU/ml values of frozen stocks were routinely
162 confirmed by plating and multiplicity of infection (MoI) values adjusted accordingly.

163

164 **Isolation and culture of human monocyte-derived macrophages (MDMs).** Leukocyte
165 cones (supplied by NHS Blood and Transplant Service (NHSBT, UK) as anonymized samples
166 from consenting donors) were used to isolate peripheral blood mononuclear cells (PBMCs)
167 from human blood (day 0). Briefly, whole blood was separated by density centrifugation using
168 Ficoll Paque Plus and the buffy layer (containing PBMCs) was extracted for further processing.
169 Platelets were removed by low-speed centrifugation and Ammonium-Chloride-Potassium
170 (ACK – Thermo Fisher) lysis buffer was used to lyse red blood cells. Isolated PBMCs were
171 resuspended in RPMI 1640 medium containing 10% new-born calf serum, 1% L-Glutamine
172 and 1% antibiotic-antimycotic solution. A cell count was performed and PBMCs were seeded
173 into tissue culture plates at 2 x 10⁶ cells/ml - this seeding density is estimated to provide 2 x 10⁵
174 cells/ml MDMs. After 24-48 hrs, the seeding medium was removed and replaced with RPMI
175 1640 containing 10% foetal bovine serum, 1% L-Glutamine and 1% antibiotic-antimycotic
176 solution. This media was replaced every 3-4 days to promote the differentiation of MDMs.
177 MDMs were used in experiments between 12- and 14-days post isolation and the supplemented
178 RPMI 1640 media was replaced with RPMI 1640 that did not contain antibiotic-antimycotic
179 solution at least 24 hrs prior to infection.

180

181 **Macrophage infection assays.** PBMCs were seeded into 6-well tissue culture plates at 2×10^6
182 cells/ml. On day 12, MDMs were washed once with Hanks balanced salt solution (HBSS) and
183 cells were dissociated by 20 min incubation with accutase at 37°C, followed by gentle cell
184 scraping. Dissociated cells were pooled, centrifuged at $400 \times g$ for 5 mins and resuspended in
185 RPMI 1640 medium for cell counting. MDMs were seeded into 12-well tissue culture plates at
186 2×10^5 cells/ml and returned to tissue culture incubators prior to infection. On days 13-14,
187 MDMs were washed once with HBSS and infected using frozen bacterial stocks at MoI 10.
188 Plates were centrifuged at $277 \times g$ for 2 min to synchronise infection and then incubated for 30
189 min at 37°C. After 30 min, cells were washed twice with ice-cold PBS to remove non-adherent
190 bacteria and halt bacterial internalisation. Gentamicin was prepared in RPMI 1640 containing
191 no additional supplements at 100 $\mu\text{g}/\text{ml}$ and added to infected MDMs for 30 min at 37°C to
192 kill extracellular bacteria. To measure bacterial killing, high-dose gentamicin (100 $\mu\text{g}/\text{ml}$) was
193 replaced with RPMI 1640 containing 4 $\mu\text{g}/\text{ml}$ gentamicin and 0.8 $\mu\text{g}/\text{ml}$ lysostaphin. Infected
194 MDMs were incubated at 37°C until 6 hpi and low-dose gentamicin/lysostaphin was removed.
195 Cells were washed twice with PBS and intracellular bacteria enumerated.

196
197 **Tolerance assays.** *S. aureus* overnight cultures were diluted to OD₆₀₀ of 0.05 and grown to
198 mid-exponential at 37°C with aeration at 200 rpm with antibiotics if required, including 50
199 ng/ml anhydrotetracycline (Atet) for the iTET-inducible strains. Once the desired optical
200 density (approximately OD₆₀₀ 0.35) was reached, the cultures were centrifuged at $4000 \times g$ for
201 10 min and washed twice in sterile PBS. Antimicrobial compounds (20 mM itaconic acid, 100
202 mM H₂O₂ (from a 30% w/w stock) or 32 μM sodium hypochlorite/HOCl (from a stock
203 containing 10-15% available chlorine) were added to OD₆₀₀ 0.35 cultures (including antibiotics
204 and Atet if required) and incubated at 37°C with aeration at 200 rpm. CFU were determined

205 at 0.5 or 1 hr after addition of each antimicrobial compound. Experiments were repeated up to
206 ten times due to variation in survival between biological replicates.

207

208 **Statistics.** Statistical analyses were performed using GraphPad Prism 9.0 software. Statistical
209 differences between zebrafish larval survival experiments were evaluated using the Kaplan–
210 Meier method and pairwise comparisons between survival curves were made using the log–
211 rank (Mantel-Cox) test. For tolerance assays the normality of data sets were determined using
212 the Shapiro-Wilk test. Differences in tolerance were then assessed using either Mann-Whitney
213 test, or one-way ANOVA followed by Tukey's multiple comparisons test or Kruskal-Wallis
214 multiple comparison test, as indicated in the figure legends. Macrophage assays were analysed
215 by one-way ANOVA with Dunnett's multiple comparisons test.

216 **Results**

217 **(p)ppGpp is important for *S. aureus* virulence in a zebrafish model**

218 To determine the requirement of a functional stringent response for *S. aureus* virulence,
219 zebrafish embryos were infected with either the community-acquired MRSA strain JE2, or a
220 JE2 (p)ppGpp⁰ mutant [23]. Bacteria were injected into the bloodstream via the yolk sac
221 circulation valley (Fig. 1A). Bacteria injected here enter the heart before more widespread
222 dissemination throughout the bloodstream, culminating in bacteraemia [18]. A dose of
223 approximately 3000 - 4000 CFU of wildtype JE2 led to 50% zebrafish mortality (Fig. 1). In
224 contrast, the (p)ppGpp⁰ mutant killed significantly fewer larvae, which occurred with both
225 exponentially-grown (Fig. 1B: $P < 0.0001$) or stationary phase (Fig. 1C: $P = 0.0048$) bacterial
226 cultures. This approach confirms the usefulness of zebrafish larvae for studying *S. aureus*
227 infection dynamics and establishes a role for (p)ppGpp in the virulence of *S. aureus*.

228 The JE2 (p)ppGpp⁰ strain grows similarly to wildtype under non-stressed conditions *in*
229 *vitro* [23], however the mutant may have a replication defect *in vivo* explaining its decreased
230 ability to cause death. To examine this, the *in vivo* bacterial growth kinetics for both the
231 wildtype and the (p)ppGpp⁰ strain were elucidated by enumerating the bacterial CFUs over the
232 course of the infection. Both strains were injected into zebrafish embryos and at each timepoint
233 five live larvae, and any dead larvae, were homogenised and the CFU/larva determined (Fig.
234 2A, 2B). At 21 hpi, bacterial loads had increased from the initial inoculum of 10^3 to between
235 10^5 - 10^7 for both JE2 and the (p)ppGpp⁰ mutant. This demonstrates that both were able to
236 replicate within the larvae, although there were more dead larvae in the JE2-infected
237 population. The (p)ppGpp⁰ mutant was isolated from larvae at numbers higher than 10^3 from
238 timepoints up to 69 hpi, suggesting that the (p)ppGpp⁰ mutant is also able to replicate later on
239 during infection (Fig. 2B). Altogether, this suggests that while the (p)ppGpp⁰ mutant strain has
240 attenuated virulence *in vivo*, it is still able to replicate in the host.

241

242 **Rel, RelP and RelQ all contribute to virulence of *S. aureus***

243 In *S. aureus*, (p)ppGpp is produced by the long bifunctional RSH enzyme Rel, as well as from
244 the two SAS enzymes RelP and RelQ in response to different stresses [3]. To understand the
245 contribution of the RSH versus the SAS enzymes to *S. aureus* infections, the virulence of JE2
246 and the (p)ppGpp⁰ mutant were first compared to JE2 $\Delta relQP$, a strain with in-frame deletions
247 of both SAS enzymes. Survival curves revealed that the $\Delta relQP$ mutant was able to kill larvae
248 similarly to JE2 (Fig. 3A, 3E), suggesting that the presence of Rel is sufficient for virulence in
249 this model. To confirm this, the (p)ppGpp⁰ mutant was complemented with full-length *rel* from
250 the Atet-inducible integrative vector pCL55iTETr862 (iTET). Expression of Rel restored
251 killing of the larvae to wildtype levels (Fig. 3B, 3E), while complementation with the single
252 SAS enzyme *relP* did not (Fig. 3C, 3E). This confirms the importance of the Rel synthetase *in*
253 *vivo*, as has been reported previously [10, 11].

254 While the above data indicate that the presence of Rel alone is sufficient for *S. aureus*
255 virulence, we wanted to determine whether a strain containing the two SAS enzymes alone in
256 the absence of Rel had a virulence defect. To establish this, we used a Rel mutant strain in
257 which three conserved amino acids in the synthetase domain (Y308, Q309 and S310) are
258 deleted, rendering it unable to produce (p)ppGpp. This leaves the hydrolase function intact,
259 which is essential in strains encoding RelP and RelQ to prevent toxic accumulation of (p)ppGpp
260 [11, 24]. This mutant was available in the LAC* background, a strain identical to JE2, except
261 JE2 has been cured of the cryptic plasmid p01 [25]. A comparison of the virulence of this
262 mutant to the wildtype LAC* revealed no difference in killing (Fig. 3D, 3E). This would
263 suggest that while the presence of Rel alone is sufficient for infection with *S. aureus*, the
264 combined level of (p)ppGpp produced by RelP and RelQ in LAC* *relsyn* is enough to

265 compensate for the lack of the Rel synthetase activity. Altogether this indicates a role for all
266 three enzymes, and not just Rel, in the virulence of *S. aureus*.

267

268 **The attenuated virulence of the (p)ppGpp⁰ mutant is myeloid cell-dependent**

269 In the early stages of development, zebrafish larvae use myeloid cells to protect against
270 infection [26]. To determine the contribution of myeloid cells to controlling the virulence of
271 the JE2 (p)ppGpp⁰ mutant, both the wildtype and mutant strains were injected into embryos
272 where myeloid cell depletion was induced. Here, a morpholino-modified antisense
273 oligonucleotide was employed to transiently knockdown *pu.1*, encoding a transcription factor
274 that is an integral component in the differentiation of pluripotent haematopoietic stem cells into
275 cells of the myeloid lineage [27]. A knockdown of *pu.1* results in the delayed appearance of
276 macrophages and neutrophils from 25 hpf to 48 hpf, and from 30 hpf to 36 hpf, respectively
277 [15, 16, 28, 29]. At the one-cell stage of embryonic development, 1 pmol of the *pu.1*
278 morpholino was injected into the yolk sac of the embryos, followed by injection of either JE2
279 or the (p)ppGpp⁰ mutant at 30 hpf into the circulation valley. Depletion of myeloid cells
280 resulted in 100% killing of the larvae within 24 hpi and crucially, restored the virulence of the
281 (p)ppGpp⁰ mutant to the same level as the wildtype (Fig. 4A). This indicates that myeloid cells
282 are necessary for controlling *S. aureus* bloodstream infections, and that (p)ppGpp is required
283 for the survival of *S. aureus* within these cells.

284

285 **(p)ppGpp is required for the survival of *S. aureus* within primary macrophages**

286 Previous work has demonstrated the importance of the (p)ppGpp synthetase Rel for survival of
287 *S. aureus* within PMNs [20]. With our work showing that all three synthetases contribute to the
288 virulence of *S. aureus* *in vivo*, we wished to understand more about the contribution of each to
289 the survival of *S. aureus* within professional phagocytes. To this end, we monitored the ability

290 of the (p)ppGpp⁰ mutant to survive within macrophages. Following internalisation, infected
291 macrophages were incubated at 37°C for a further 6 hrs before surviving numbers were
292 determined. In comparison to the wildtype, the (p)ppGpp⁰ mutant was significantly less able
293 to survive the intracellular environment within macrophages (Fig. 4B).

294 To understand more about the individual contribution of Rel versus the SAS enzymes
295 to this phenotype, we monitored the survival of both the *ΔrelQP* and the *rel_{syn}* mutants. A strain
296 lacking RelP and RelQ survived just as well as the wildtype, indicating that Rel alone is
297 sufficient to promote bacterial survival (Fig. 4B). This complements the zebrafish data, where
298 Rel alone is sufficient for virulence (Fig. 3). The LAC* *rel_{syn}* mutant, where the synthetase
299 domain of Rel is inactivated, had a lower, but not statistically significant, survival rate than the
300 wildtype, and was not killed as efficiently as the (p)ppGpp⁰ mutant, suggesting that while Rel
301 plays a key role in this niche, RelP and RelQ also aid survival in its absence (Fig. 4C).
302 Altogether, these data show that the reduced virulence observed in zebrafish is likely due to
303 the inability of stringent response mutants to survive within macrophages and highlights a role
304 for both the long RSH enzyme Rel and the SAS enzymes RelP and RelQ for responding to
305 stress signals and producing sufficient (p)ppGpp to allow survival within these cells.

306

307 **The (p)ppGpp⁰ mutant is more susceptible to stress conditions found within a
308 macrophage**

309 Upon infection, *S. aureus* cells are phagocytosed by macrophages and incorporated into a
310 phagolysosome. Here they encounter various insults including, but not limited to, low pH,
311 reactive oxygen/nitrogen (ROS/RNS) species and antimicrobial peptides [30]. The main
312 contributor to low pH is the proton-pumping v-ATPase, present on the membrane of
313 phagolysosomes, though metabolites such as itaconic acid also contribute to this. Itaconic acid

314 is produced in phagocyte mitochondria by aconitate decarboxylase, an enzyme that converts
315 aconitic acid, a by-product of the Krebs cycle, to itaconic acid [31].

316 Previously, a methicillin sensitive *S. aureus* (MSSA) (p)ppGpp⁰ mutant exhibited
317 susceptibility to H₂O₂ [5], while an MRSA (p)ppGpp⁰ mutant displayed reduced tolerance to
318 HOCl [32]. These studies suggest that the stringent response is important for surviving stresses
319 within the phagolysosome. To confirm this, JE2 and the (p)ppGpp⁰ mutant were exposed to
320 HOCl, H₂O₂ and itaconic acid, and tolerance quantified (Fig. 5A-C). In keeping with previous
321 observations, the (p)ppGpp⁰ mutant was 1-2 log more susceptible to HOCl and H₂O₂, and
322 additionally showed a 1-log decreased tolerance to itaconic acid. To examine roles for each
323 synthetase in combatting external stressors, the (p)ppGpp⁰ mutant was complemented with
324 either the RSH enzyme Rel or the SAS enzyme RelP. Expression of RelP, while alone was
325 unable to restore virulence in zebrafish (Fig. 3C), was sufficient to restore tolerance to both
326 ROS stress and pH stress *in vitro* (Fig. 5D, 5E), while expression of Rel conferred tolerance to
327 ROS stress only (Fig. 5D). These data are in keeping with previous reports suggesting roles for
328 SAS enzymes in responding to pH stress [3, 33], as well as work indicating that expression of
329 Rel is sufficient to combat ROS stress [32]. They also support the idea that the different classes
330 of synthetase produce (p)ppGpp in response to different environmental stresses.

331

332 **Overproduction of (p)ppGpp confers tolerance to stress conditions *in vitro* but reduces
333 virulence**

334 The overproduction of (p)ppGpp in a clinical *S. aureus* strain has been associated with a
335 persistent infection that did not respond well to antibiotic therapy [34, 35]. As (p)ppGpp acts
336 to aid bacteria in surviving stresses, excess (p)ppGpp may serve to provide enhanced
337 protection. Thus, we investigated how (p)ppGpp overproduction affects the survival of *S.*
338 *aureus* in the presence of H₂O₂, HOCl and itaconic acid. Here, we introduced the Atet-inducible

339 multi-copy plasmid pALC2073-*relQ* into JE2 and measured bacterial survival upon
340 overproduction of (p)ppGpp. In the presence of all three stressors, excess (p)ppGpp led to an
341 increase in survival in comparison to the JE2 empty vector strain (Fig. 6A-C). These results
342 indicate that surplus (p)ppGpp has a protective effect *in vitro* and could contribute to the
343 survival of *S. aureus* in stress conditions found within a macrophage.

344 Following this, we were curious to examine how overproduction of (p)ppGpp would
345 impact the virulence of *S. aureus*. The (p)ppGpp overproduction strain JE2 iTET-*rel*, where a
346 second copy of *rel* is integrated into the *S. aureus* genome, was injected into zebrafish embryos
347 alongside the empty vector-containing controls. Here, overproduction of (p)ppGpp killed fewer
348 larvae compared to the wildtype (Fig. 6D, 6E). While the *in vitro* data show that excess
349 (p)ppGpp increases bacterial survival in macrophage-like conditions, *in vivo* assays suggest
350 that (p)ppGpp overproduction does not improve virulence.

351

352 **Deletion of *codY* restores the survival defect of the (p)ppGpp⁰ mutant *in vitro* but does not
353 impact virulence**

354 Under nutrient-rich conditions, the CodY transcription factor represses genes related to nutrient
355 acquisition and stress, including those involved in nitrogen and amino acid metabolism, as well
356 as some virulence-associated genes [12]. In *S. aureus*, this repression requires GTP and
357 branched-chain amino acids as CodY cofactors. During the stringent response, (p)ppGpp levels
358 rise and cellular GTP levels fall. This is due to the consumption of GTP during the production
359 of (p)ppGpp, in addition to the active inhibition of enzymes in the GTP synthesis pathway by
360 (p)ppGpp [4]. This leads to the derepression of CodY and thus, the expression of stress-related
361 genes in order to cope with the change in environment. As GTP levels in *S. aureus* are increased
362 in strains lacking (p)ppGpp [23], we hypothesised that the continued repression of the CodY

363 regulon by GTP-bound CodY in the (p)ppGpp⁰ mutant could be responsible for the decreased
364 virulence phenotype observed in zebrafish larvae.

365 To investigate this, a *codY* mutant was introduced into both the wildtype and (p)ppGpp⁰
366 backgrounds, and the strains first exposed to itaconic acid and H₂O₂. In both the wildtype and
367 the (p)ppGpp⁰ backgrounds, deleting *codY* rendered cells considerably more tolerant to stress
368 (Fig. 7A, 7B), suggesting that the expression of genes previously repressed by CodY are
369 beneficial for the survival of *S. aureus* *in vitro*. To examine the importance of CodY during
370 systemic infection, zebrafish embryos were injected with the JE2 *codY*::Tn and (p)ppGpp⁰
371 *codY*::Tn mutants. In contrast to the *in vitro* results however, deleting *codY* did not rescue the
372 attenuated virulence phenotype of the (p)ppGpp⁰ strain (Fig. 7C). This suggests that while
373 inducing the CodY regulon is sufficient for enabling bacterial stress survival *in vitro*, it is not
374 enough to restore virulence *in vivo* in a systemic infection model and suggests that processes
375 regulated by (p)ppGpp independent of its connection with the CodY regulon are important for
376 virulence of *S. aureus*.

377 **Discussion**

378 Upon infection environmental conditions become adverse, requiring stress responses such as
379 the stringent response to modify cellular behaviour to maximise the chances of bacterial
380 survival. Multiple studies have demonstrated the contribution of the staphylococcal stringent
381 response to survival, including potential roles in: persistence [36, 37]; antibiotic resistance [35,
382 38, 39]; antibiotic tolerance [3]; immune evasion [20]; biofilm formation [40]; tolerance to
383 oxidative stress [5, 32] and the development of murine pyelonephritis [11]. Thus, this study
384 sought to systematically examine the importance of the stringent response, and each (p)ppGpp
385 synthetase, for *S. aureus* virulence.

386 Our data shows that (p)ppGpp is required during systemic staphylococcal infection, as
387 demonstrated by the attenuation of virulence for the (p)ppGpp⁰ strain (Fig. 1). During nutrient
388 starvation, (p)ppGpp production and subsequent GTP depletion are required for the
389 derepression of amino acid transport and synthesis genes via the transcription factor CodY [12].
390 This led us to hypothesise that the absence of (p)ppGpp could lead to a lack of nutrient
391 acquisition and a subsequent growth defect *in vivo*. However, this was not the case, as both the
392 wildtype and the (p)ppGpp⁰ mutant were able to replicate *in vivo* (Fig. 2). In agreement with
393 this, cutaneous abscess formation by an *S. aureus* *rel* mutant was previously observed to be
394 diminished, however the CFU per abscess was similar to the wildtype [10]. This is in contrast
395 to the lower bacterial load of an MSSA *rel_{syn}* mutant recovered from murine kidneys [11],
396 indicating that differences in bacterial load may occur at specific tissue sites.

397 The ability of the *S. aureus* (p)ppGpp⁰ mutant to replicate *in vivo* (Fig. 2), coupled with
398 the observation that deleting the CodY repressor does not restore killing (Fig. 7), suggests that
399 the absence of (p)ppGpp result in a survival or virulence defect, rather than a growth defect
400 due to a lack of nutrient acquisition. This hypothesis is supported by multiple studies
401 demonstrating an impact of the stringent response on virulence [9, 41-43]. By transiently

402 depleting zebrafish embryos of myeloid cells, we demonstrated that the virulence of the
403 (p)ppGpp⁰ mutant could be restored (Fig. 4A), supporting the idea that phagocytes are required
404 for controlling *S. aureus* infection. As neutrophils are the most abundant circulating phagocyte
405 [44], and thus are often the first immune cells to infiltrate a site of infection, further studies
406 using this cell type are needed to examine the broader importance of the stringent response for
407 infection.

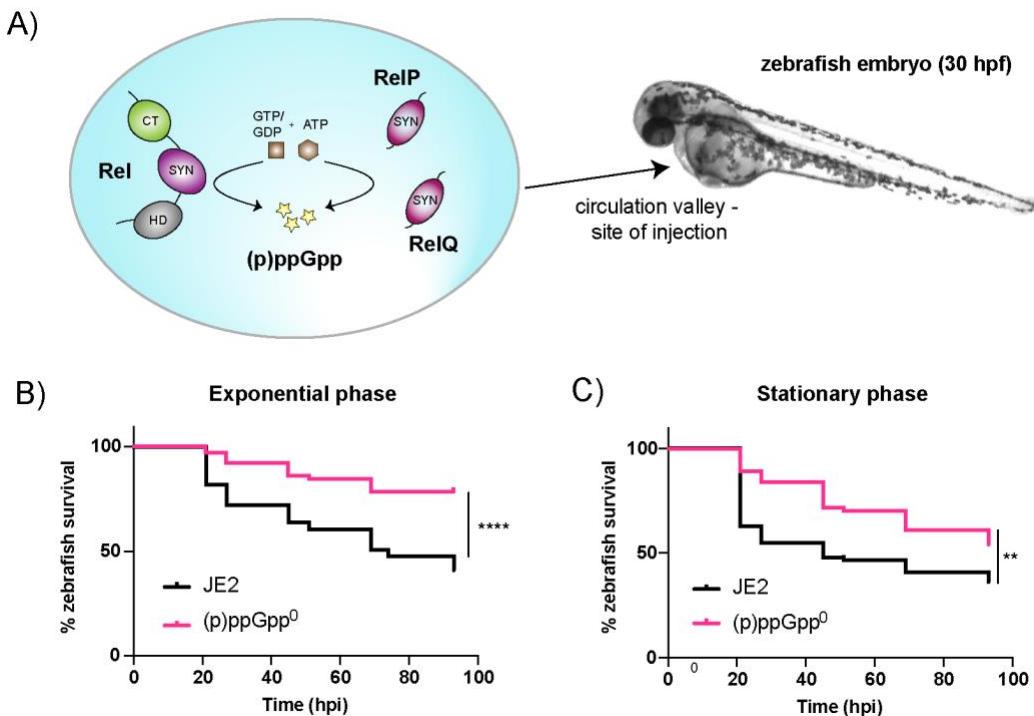
408 The requirement of (p)ppGpp to survive ROS stress has been noted previously [32]. We
409 extend this by showing that the stringent response is also necessary for tolerating itaconic acid,
410 which may contribute to survival within macrophages. *In vivo*, itaconic acid has functions in
411 addition to modulating the pH. It can have antimicrobial effects by inhibiting isocitrate lyase,
412 a major component of the glyoxylate shunt that is an important pathway for optimal growth of
413 bacteria [45-47]. Moreover, the charged conjugate base itaconate acts to reduce inflammation
414 during *S. aureus* ocular infection by modulating NRF2/HO1 signalling and inhibiting the
415 NLRP3 inflammasome [48]. Thus, future work is necessary to understand how the stringent
416 response is required to modulate the anti-inflammatory roles of itaconic acid.

417 Previous transcriptome analysis has revealed that the *S. aureus* phenol-soluble modulin
418 (PSM) cytotoxins are regulated via Rel independently of CodY [20], which, because of the role
419 of PSMs in phagolysosomal escape [49], may contribute to the necessity of (p)ppGpp for
420 survival in macrophages. Thus, it appears that the requirement for (p)ppGpp may be multi-
421 factorial, where it could be needed for both surviving ROS and pH stress within the
422 macrophage and for promoting escape via the PSMs. In the future it would be interesting to
423 use microscopy to visualise the formation of the phagolysosome via recruitment of lysosome-
424 associated membrane glycoproteins (LAMP) proteins. This would allow for visualisation of
425 the bacteria within the phagolysosome and could be coupled with live-cell imaging to visualise
426 phagolysosome escape.

427 This study demonstrates that all three (p)ppGpp synthetases contribute to the virulence
428 of *S. aureus*. The importance of Rel, revealed by Geiger and colleagues [11, 20], is corroborated
429 by our studies where we show that both the expression of *rel* in a (p)ppGpp⁰ mutant, and the
430 presence of *rel* alone in a $\Delta relQP$ mutant, is sufficient to maintain wildtype levels of virulence
431 (Fig. 3). This is then extended to show that both RelP and RelQ were sufficient for virulence
432 (Fig. 3) and partial survival within macrophages in the absence of Rel (Fig. 4C). Due to the
433 roles of RelP and RelQ in responding to cell wall and pH stress [4], and the fact that low pH is
434 a condition encountered by pathogens following phagocytosis, it is not surprising that RelP and
435 RelQ may play an important role in producing the (p)ppGpp required for the survival of *S.*
436 *aureus* *in vivo*.

437 The impact of the stringent response on antimicrobial therapy outcomes in clinical
438 settings has been demonstrated recently with the identification of MRSA and *Enterococcus*
439 isolates from cases of persistent bacteraemia with constitutively active stringent responses [35,
440 50]. These two clinical isolates had reduced (p)ppGpp hydrolysis, reduced growth and
441 increased antibiotic tolerance. Here, we observed that the overproduction of (p)ppGpp
442 increased the tolerance of *S. aureus* to acid and ROS stress *in vitro* (Fig. 6A-C), however excess
443 (p)ppGpp reduced *S. aureus* virulence (Fig. 6D). Likewise, Gao and colleagues found that a
444 Rel hydrolase domain mutation led to a permanently activated stringent response in a clinical
445 *S. aureus* strain isolated from a persistent infection. When the mutation was recapitulated in
446 the laboratory, the strain also displayed attenuated virulence in a *Galleria mellonella* model
447 [35]. This highlights the importance of regulating levels of (p)ppGpp within bacteria, and
448 supports the idea that while (p)ppGpp overproduction may increase long-term persistence *in*
449 *vivo* [35], it has a negative impact on virulence. Infection models lasting longer than 93 hpi
450 would be required to delve into the role of (p)ppGpp in chronic infection further [36, 37].

451 Regulation by (p)ppGpp is interlinked with the transcription factor CodY. Previous
452 studies have reported that introducing a *codY* deletion into *rel* mutant strains of both *S. aureus*
453 and *Listeria monocytogenes* enhanced the ability of the strains to survive within phagocytes
454 [11, 51]. Similarly, we revealed that both the JE2 *codY*::Tn and (p)ppGpp⁰ *codY*::Tn mutants
455 were better able to withstand exposure to itaconic acid and H₂O₂ (Fig. 7A, 7B). Interestingly,
456 this did not improve virulence (Fig. 7C). This is noteworthy, given that CodY regulates many
457 virulence-associated genes, for example the virulence regulator *agr* [52, 53]. In *E. faecalis* and
458 *Streptococcus agalactiae*, the absence of CodY resulted in reduced virulence in mice [9, 54].
459 However, when a *codY* deletion was introduced to a (p)ppGpp⁰ mutant, virulence was restored
460 [9]. It is still unclear why some studies report hypervirulent Δ *codY* mutants while others report
461 attenuated virulence. This is likely due to differences in species, strain and the infection models
462 tested. As the (p)ppGpp and CodY regulatory networks are complex and intertwined, it may be
463 necessary to investigate the expression of the CodY regulon during infection of zebrafish larvae
464 to further understand this.


465 Altogether, this study has demonstrated that (p)ppGpp produced by all three synthetases
466 contributes to *S. aureus* virulence, most likely through a need for surviving and escaping the
467 harsh conditions within a phagolysosome. This work develops our understanding of the
468 complexities of the (p)ppGpp regulatory pathways, which can inform the development of more
469 effective stringent response inhibitors for the treatment of infections caused by strains such as
470 MRSA.

471

472

473 **Acknowledgements:** The work was supported by a Sir Henry Dale Fellowship jointly funded
474 by the Wellcome Trust and the Royal Society (104110/Z/14/A to R.M.C.) and a Lister Institute
475 Research Prize 2018 (to R.M.C.). The NHS Blood and Transplant have provided material in
476 support of the research. This report is independent research. The views expressed in this
477 publication are those of the author(s) and not necessarily those of NHS Blood and Transplant.
478 The authors thank the Bateson Centre aquaria staff for their assistance with zebrafish
479 husbandry. Josie Gibson, Joshua Sutton, Amy Tooke and Amy Lewis are acknowledged for
480 help and advice on zebrafish work.

481 **FIGURES**

482

483

484 **Fig. 1. (p)ppGpp⁰ *S. aureus* strains have attenuated virulence in a systemic infection**

485 **model. A)** Schematic overview of the (p)ppGpp turnover enzymes in *S. aureus*. (p)ppGpp is

486 produced by three enzymes, Rel, RelP and RelQ via the synthetase (SYN) domain. Rel is also

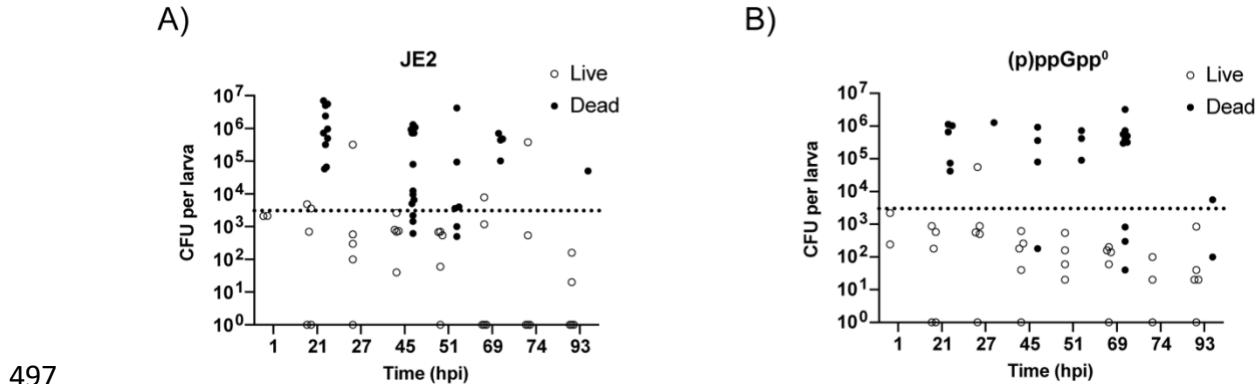
487 capable of hydrolysing (p)ppGpp via the HD domain. Interactions between Rel and the

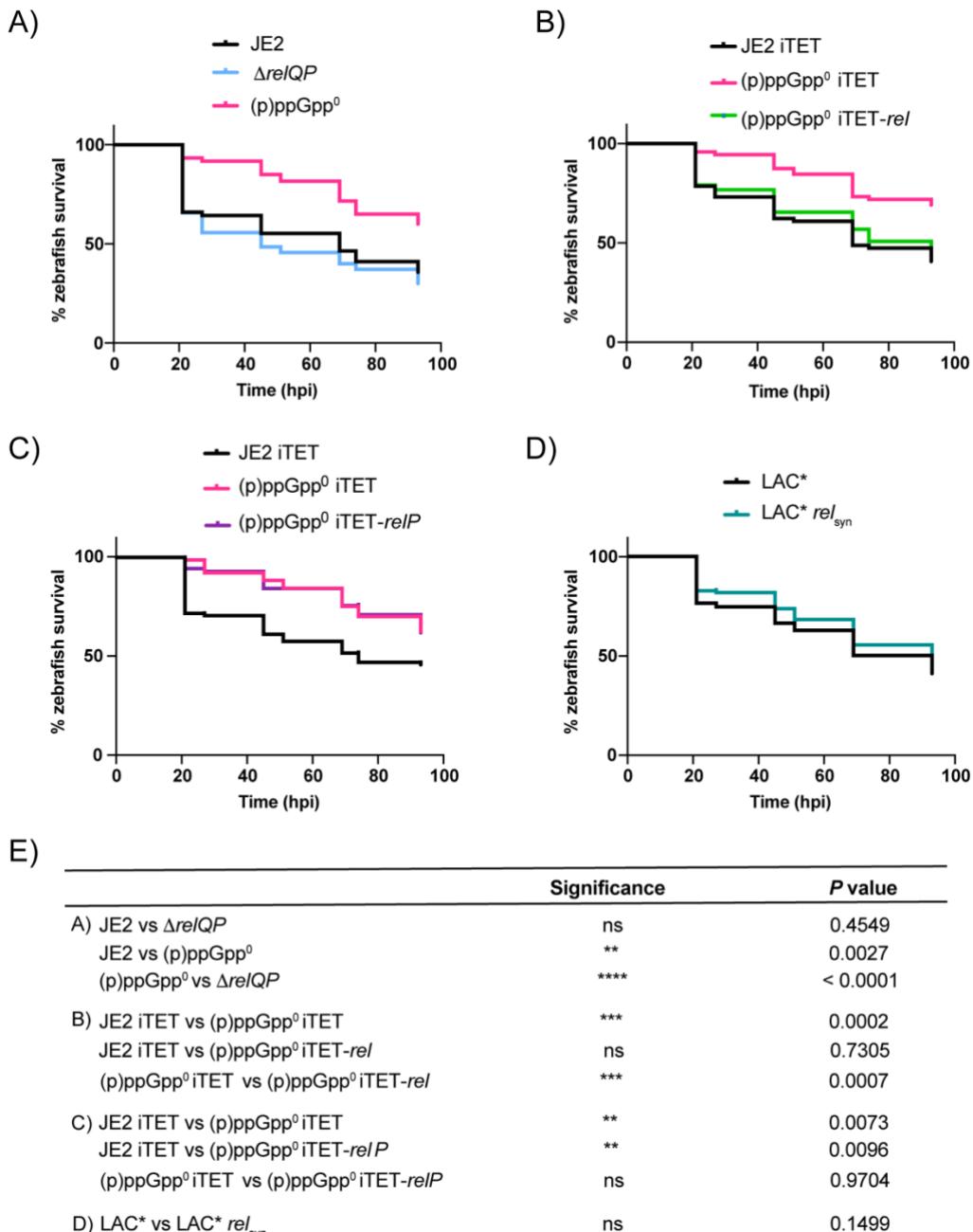
488 ribosome occur via the C-terminal (CT) domain. *S. aureus* (blue circle) is injected into the yolk

489 sac circulation valley of zebrafish embryos at 30 hpf. **B & C)** Survival of zebrafish larvae

490 injected with *S. aureus* JE2 (black) and JE2 (p)ppGpp⁰ (pink) grown to **(B)** exponential and

491 **(C)** stationary phase. Doses of 3000-4000 CFU of each strain were injected into the yolk sac

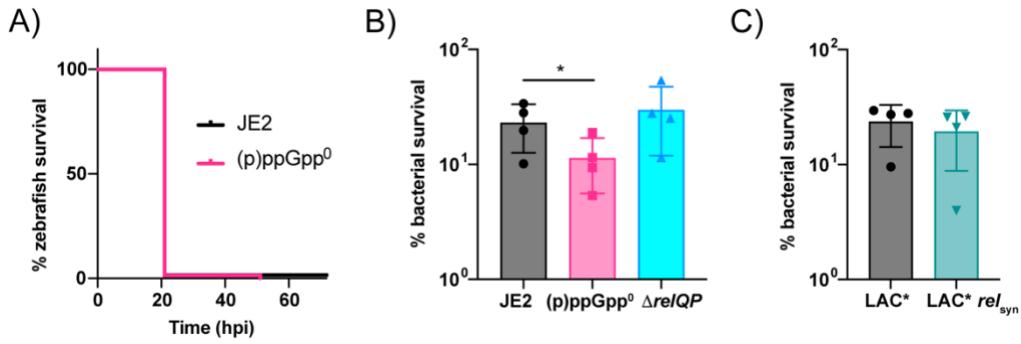

492 circulation valley at 30 hpf to initiate a bloodstream infection. Survival was monitored until 93


493 hpi when the larvae reached 5.2 dpf. Pairwise comparisons (log-rank (Mantel-Cox) test) were

494 as follows: B) (p)ppGpp⁰ versus wildtype, **** $P < 0.0001$, C) (p)ppGpp⁰ versus wildtype, **

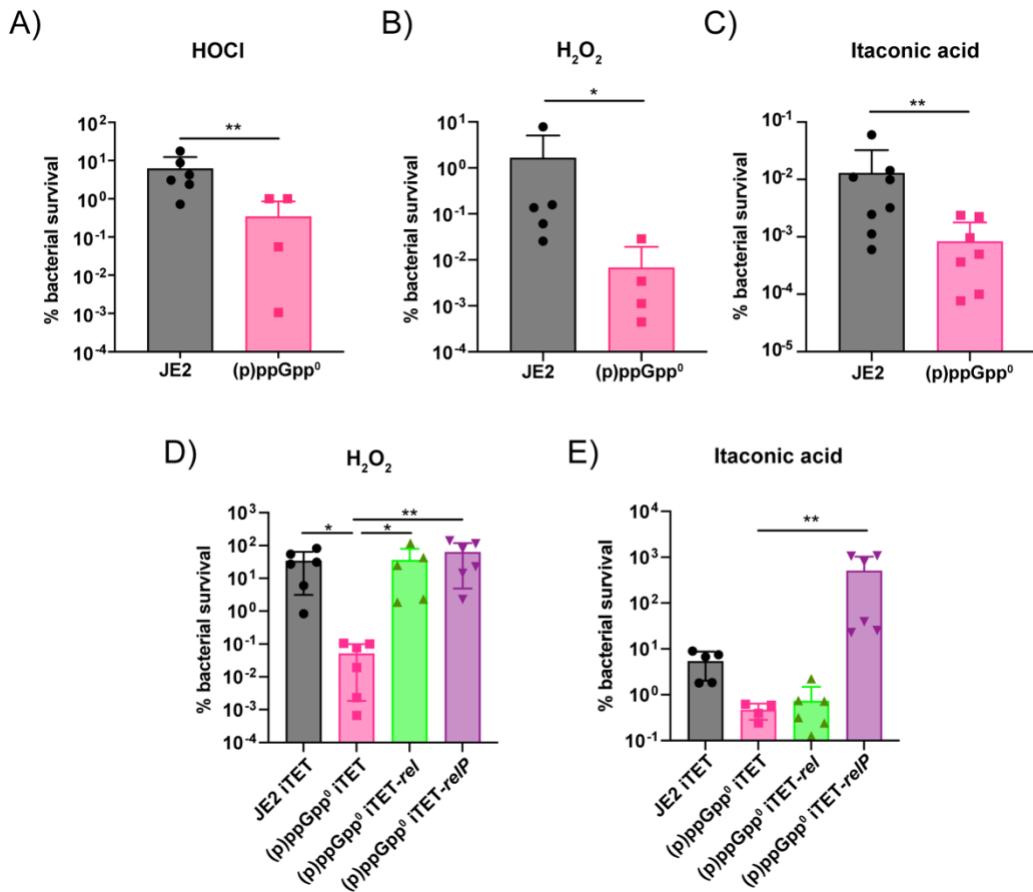
495 $P = 0.0048$. Experiments were performed in quadruplicate for **(B)** and in triplicate **(C)**.

496



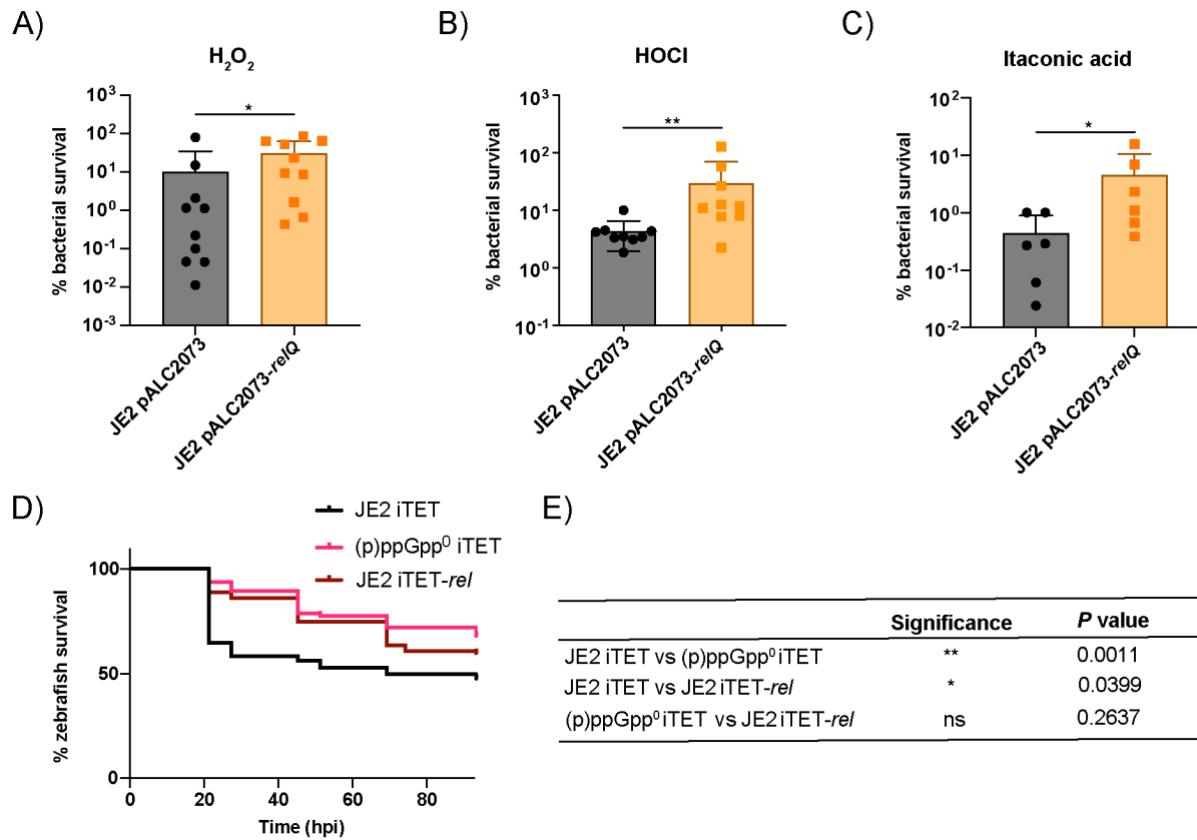
506

507 **Fig. 3. All three (p)ppGpp synthetases contribute to *S. aureus* virulence in a systemic**
 508 **zebrafish infection model.** Survival of zebrafish larvae injected with *S. aureus* at 30 hpf.
 509 Survival was monitored until 93 hpi when the larvae reached 5.2 dpf. **A)** Injection of JE2
 510 ($\Delta relQP$) (blue) (dose 3000-4000 CFU). **B)** Injection of JE2 iTET
 511 ($(p)ppGpp^0$ iTET) (pink) and ($(p)ppGpp^0$ iTET-*rel*) (green) (dose 3000-4000 CFU). **C)**
 512 Injection of JE2 iTET ($\Delta relQP$) (blue) (dose 3000-4000 CFU). **D)** Injection of LAC* (black) and LAC* *rel*_{syn} (teal) (dose 1500 CFU). **E)**


514 Statistical significance of A-D was determined by Log-rank (Mantel-Cox) test: ns, $P > 0.05$;
515 ** $P < 0.01$; *** $P < 0.001$; **** $P < 0.0001$. For A, B and C, experiments were performed in
516 triplicate, while D was performed in quadruplicate.

517
518 **Fig. 4. Macrophages are required to control *S. aureus* infection in a (p)ppGpp-dependent**
519 **manner. A)** Survival of Pu.1 knockdown zebrafish larvae injected with JE2 (black) and
520 (p)ppGpp⁰ (pink) at doses of 3000-4000 CFU at 30 hpf into the circulation valley. 1 pmol of
521 the Pu.1 morpholino was injected into the yolk of one-cell stage embryos. Survival was
522 monitored until 93 hpi when the larvae reached 5.2 dpf. The experiment was performed in
523 triplicate. Statistical significance was determined by Log-rank (Mantel-Cox) test: ns, $P =$
524 0.5275. **B, C)** Bacterial survival within human MDMs at 6 hpi. MDMs were infected with
525 bacteria at MoI 10 for 30 min, before addition of 100 μ g/ml gentamicin for 30 min to kill
526 extracellular bacteria. Infected MDMs were lysed at 1 and 6 hpi and intracellular CFUs were
527 used to calculate percentage bacterial survival at 6 h. Two technical repeats were performed
528 using MDMs from each donor, with a total of 4 donors. The statistical significance of B was
529 determined by one-way ANOVA with Dunnett's multiple comparisons test: * $P < 0.05$.

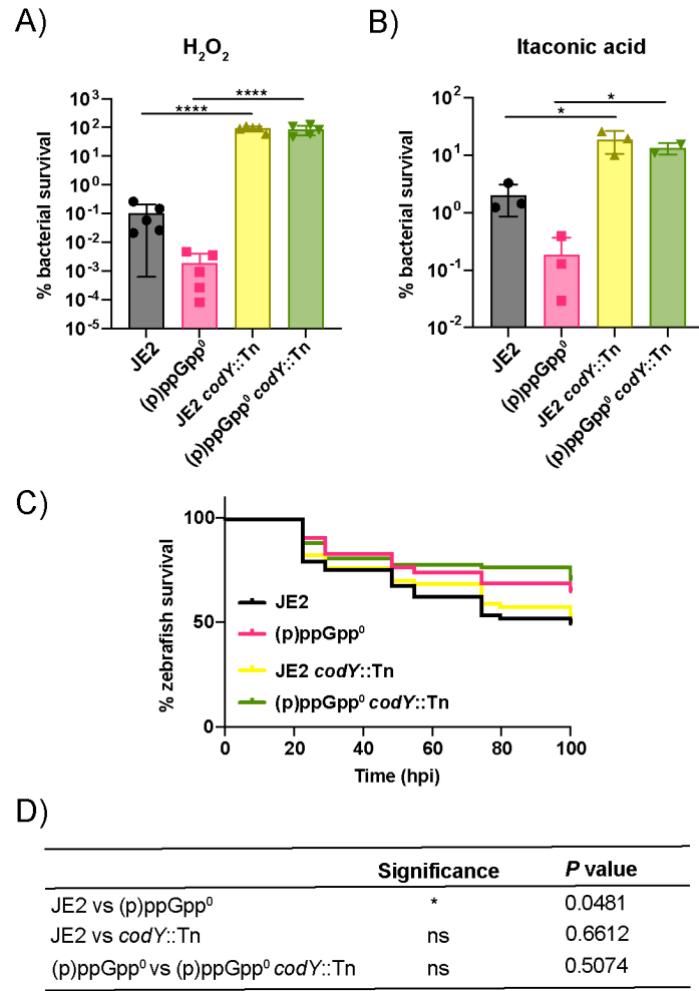
530


531

532

533 **Fig. 5. The (p)ppGpp⁰ mutant is less tolerant to stressors found within professional**
534 **phagocytes. JE2 (black) and (p)ppGpp⁰ (pink) were grown to OD₆₀₀ 0.35 in TSB. Cells were**
535 **washed twice in PBS and exposed to A) 32 μM HOCl, B) 100 mM H₂O₂, or C) 20 mM Itaconic**
536 **acid for 1 hr at 37°C before CFU determination. Percentage bacterial survival with mean and**
537 **standard deviation are plotted. Statistical analysis performed using Mann-Whitney test. * P <**
538 **0.05, ** P < 0.01. D, E) JE2 iTET (black), (p)ppGpp⁰ iTET (pink), (p)ppGpp⁰ iTET-rel (green)**
539 **and (p)ppGpp⁰ iTET-relP (purple) were grown to an OD₆₀₀ of 0.35 in the presence of 50 ng/ml**
540 **Atet. Cultures were washed twice in PBS and exposed to D) 100 mM H₂O₂ or E) 20 mM**
541 **itaconic acid for 30 min at 37°C and the CFU/ml was determined. Percentage bacterial survival**
542 **with mean and standard deviation are plotted. Statistical analysis performed using a Kruskal-**
543 **Wallis test followed by a Dunn's multiple comparison test, * P < 0.05, ** P < 0.01.**

544



545 **Fig. 6. The tolerance of *S. aureus* to stressors found within professional phagocytes is**
 546 **increased in the presence of excess (p)ppGpp *in vitro* but virulence is reduced. A - C)** JE2
 547 pALC2073 (black) and JE2 pALC2073-*relQ* (orange) were grown to an OD₆₀₀ of 0.35 in the
 548 presence of 50 ng/ml Atet. Cultures were washed twice in PBS and exposed to **A)** 100 mM
 549 H₂O₂, **B)** 32 μM HOCl or **C)** 20 mM itaconic acid for 30 min at 37°C after which the CFU/ml
 550 was determined. Percentage bacterial survival with mean and standard deviation are plotted.
 551 Statistical analysis performed using Mann-Whitney test. * P < 0.05, ** P < 0.01. **D, E)**
 552 Survival of zebrafish larvae injected with *S. aureus*, JE2 iTET (black), (p)ppGpp⁰ iTET (pink),
 553 and the (p)ppGpp overproduction strain JE2 iTET-*rel* (brown) at doses of 3000-4000 CFU at
 554 30 hpf into the circulation. Experiments were performed in triplicate. Statistical significance
 555 (E) was determined by Log-rank (Mantel-Cox) test: ns, P > 0.05; * P < 0.05, **P < 0.01.

557

558

559

560

561 **Fig. 7. Deleting codY restores tolerance *in vitro* but does not affect virulence. A, B)**
562 Susceptibility of JE2 (black), (p)ppGpp⁰ (pink), JE2 codY::Tn (yellow) and (p)ppGpp⁰
563 codY::Tn (light green) to **A**) 100 mM H_2O_2 or **B**) 20 mM itaconic acid. Percentage bacterial
564 survival with mean and standard deviation are plotted. Statistical analysis was performed using
565 one-way ANOVA with Tukey's multiple comparisons test. * $P < 0.05$, **** $P < 0.0001$. **C, D)**
566 Survival of zebrafish larvae injected with *S. aureus*, comparing JE2 (black), (p)ppGpp⁰ (pink),
567 JE2 codY::Tn (yellow) and (p)ppGpp⁰ codY::Tn (light green) at doses of 3000-4000 CFU at 30
568 hpf into the circulation. Survival was monitored until 93 hpi when the larvae reached 5.2 dpf.
569 Statistical significance (D) was determined by Log-rank (Mantel-Cox) test: ns, $P > 0.05$; * $P <$
570 0.05. The experiment was performed in triplicate.

571 **References**

- 572 1. Cashel M. The control of ribonucleic acid synthesis in *Escherichia coli*. IV. Relevance
573 of unusual phosphorylated compounds from amino acid-starved stringent strains. *J Biol
574 Chem.* 1969;244(12):3133-3141.
- 575 2. Jimmy S, Saha CK, Kurata T, Stavropoulos C, Oliveira SRA, Koh A, et al. A
576 widespread toxin-antitoxin system exploiting growth control via alarmone signaling. *Proc
577 Natl Acad Sci U S A.* 2020;117(19):10500-10510.
- 578 3. Geiger T, Kastle B, Gratani FL, Goerke C, Wolz C. Two small (p)ppGpp synthases in
579 *Staphylococcus aureus* mediate tolerance against cell envelope stress conditions. *J Bacteriol.*
580 2014;196(4):894-902.
- 581 4. Irving SE, Choudhury NR, Corrigan RM. The stringent response and physiological
582 roles of (pp)pGpp in bacteria. *Nat Rev Microbiol.* 2021:256-271.
- 583 5. Horvatek P, Salzer A, Hanna AMF, Gratani FL, Keinhorster D, Korn N, et al.
584 Inducible expression of (pp)pGpp synthetases in *Staphylococcus aureus* is associated with
585 activation of stress response genes. *PLoS Genet.* 2020;16(12):e1009282.
- 586 6. Sanchez-Vazquez P, Dewey CN, Kitten N, Ross W, Gourse RL. Genome-wide effects
587 on *Escherichia coli* transcription from ppGpp binding to its two sites on RNA polymerase.
588 *Proc Natl Acad Sci U S A.* 2019;116(17):8310-8319.
- 589 7. Pizarro-Cerda J, Tedin K. The bacterial signal molecule, ppGpp, regulates *Salmonella*
590 virulence gene expression. *Mol Microbiol.* 2004;52(6):1827-1844.
- 591 8. Dahl JL, Kraus CN, Boshoff HI, Doan B, Foley K, Avarbock D, et al. The role of
592 RelMtb-mediated adaptation to stationary phase in long-term persistence of *Mycobacterium
593 tuberculosis* in mice. *Proc Natl Acad Sci U S A.* 2003;100(17):10026-10031.
- 594 9. Colomer-Winter C, Flores-Mireles AL, Kundra S, Hultgren SJ, Lemos JA. (p)ppGpp
595 and CodY Promote *Enterococcus faecalis* Virulence in a Murine Model of Catheter-
596 Associated Urinary Tract Infection. *mSphere.* 2019;4(4).
- 597 10. Mansour SC, Pletzer D, de la Fuente-Nunez C, Kim P, Cheung GYC, Joo HS, et al.
598 Bacterial Abscess Formation Is Controlled by the Stringent Stress Response and Can Be
599 Targeted Therapeutically. *EBioMedicine.* 2016;12:219-226.
- 600 11. Geiger T, Goerke C, Fritz M, Schafer T, Ohlsen K, Liebeke M, et al. Role of the
601 (p)ppGpp synthase RSH, a RelA/SpoT homolog, in stringent response and virulence of
602 *Staphylococcus aureus*. *Infection and immunity.* 2010;78(5):1873-1883.
- 603 12. Majerczyk CD, Dunman PM, Luong TT, Lee CY, Sadykov MR, Somerville GA, et al.
604 Direct targets of CodY in *Staphylococcus aureus*. *J Bacteriol.* 2010;192(11):2861-2877.
- 605 13. Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, et al. The
606 zebrafish reference genome sequence and its relationship to the human genome. *Nature.*
607 2013;496(7446):498-503.
- 608 14. Teame T, Zhang Z, Ran C, Zhang H, Yang Y, Ding Q, et al. The use of zebrafish
609 (*Danio rerio*) as biomedical models. *Anim Front.* 2019;9(3):68-77.
- 610 15. Herbomel P, Thisse B, Thisse C. Ontogeny and behaviour of early macrophages in the
611 zebrafish embryo. *Development.* 1999;126(17):3735-3745.
- 612 16. Lieschke GJ, Oates AC, Crowhurst MO, Ward AC, Layton JE. Morphologic and
613 functional characterization of granulocytes and macrophages in embryonic and adult
614 zebrafish. *Blood.* 2001;98(10):3087-3096.
- 615 17. Kaito C, Murakami K, Imai L, Furuta K. Animal infection models using non-
616 mammals. *Microbiol Immunol.* 2020;64(9):585-592.
- 617 18. Prajsnar TK, Cunliffe VT, Foster SJ, Renshaw SA. A novel vertebrate model of
618 *Staphylococcus aureus* infection reveals phagocyte-dependent resistance of zebrafish to non-
619 host specialized pathogens. *Cell Microbiol.* 2008;10(11):2312-2325.

620 19. Prajsnar TK, Renshaw SA, Ogryzko NV, Foster SJ, Serror P, Mesnage S. Zebrafish as
621 a novel vertebrate model to dissect enterococcal pathogenesis. *Infection and immunity*.
622 2013;81(11):4271-4279.

623 20. Geiger T, Francois P, Liebeke M, Fraunholz M, Goerke C, Krismer B, et al. The
624 stringent response of *Staphylococcus aureus* and its impact on survival after phagocytosis
625 through the induction of intracellular PSMs expression. *PLoS Pathog.* 2012;8(11):e1003016.

626 21. Nüsslein-Volhard C, Dahm R. *Zebrafish: a practical approach*. New York: Oxford
627 University Press; 2002.

628 22. Rhodes J, Hagen A, Hsu K, Deng M, Liu TX, Look AT, et al. Interplay of Pu.1 and
629 gata1 determines myelo-erythroid progenitor cell fate in zebrafish. *Developmental Cell*.
630 2005;8(1):97-108.

631 23. Carrilero L, Urwin L, Ward E, Choudhury NR, Monk IR, Turner CE, et al. Stringent
632 Response-Mediated Control of GTP Homeostasis Is Required for Long-Term Viability of
633 *Staphylococcus aureus*. *Microbiol Spectr*. 2023:e0044723.

634 24. Corrigan RM, Bowman L, Willis AR, Kaever V, Grundling A. Cross-talk between two
635 nucleotide-signaling pathways in *Staphylococcus aureus*. *J Biol Chem.* 2015;290(9):5826-
636 5839.

637 25. Fey PD, Endres JL, Yajjala VK, Widholm TJ, Boissy RJ, Bose JL, et al. A genetic
638 resource for rapid and comprehensive phenotype screening of nonessential *Staphylococcus*
639 *aureus* genes. *mBio*. 2013;4(1):e00537-00512.

640 26. Crowhurst MO, Layton JE, Lieschke GJ. Developmental biology of zebrafish myeloid
641 cells. *Int J Dev Biol*. 2002;46(4):483-492.

642 27. Burda P, Laslo P, Stopka T. The role of PU.1 and GATA-1 transcription factors during
643 normal and leukemogenic hematopoiesis. *Leukemia*. 2010;24(7):1249-1257.

644 28. Herbomel P, Thisse B, Thisse C. Zebrafish early macrophages colonize cephalic
645 mesenchyme and developing brain, retina, and epidermis through a M-CSF receptor-
646 dependent invasive process. *Dev Biol*. 2001;238(2):274-288.

647 29. Renshaw SA, Loynes CA, Trushell DM, Elworthy S, Ingham PW, Whyte MK. A
648 transgenic zebrafish model of neutrophilic inflammation. *Blood*. 2006;108(13):3976-3978.

649 30. Horn J, Stelzner K, Rudel T, Fraunholz M. Inside job: *Staphylococcus aureus* host-
650 pathogen interactions. *Int J Med Microbiol*. 2018;308(6):607-624.

651 31. Coelho C. Itaconate or how I learned to stop avoiding the study of
652 immunometabolism. *PLoS Pathog*. 2022;18(3):e1010361.

653 32. Fritsch VN, Loi VV, Busche T, Tung QN, Lill R, Horvatek P, et al. The alarmone
654 (p)ppGpp confers tolerance to oxidative stress during the stationary phase by maintenance of
655 redox and iron homeostasis in *Staphylococcus aureus*. *Free Radic Biol Med*. 2020;161:351-
656 364.

657 33. Nanamiya H, Kasai K, Nozawa A, Yun CS, Narisawa T, Murakami K, et al.
658 Identification and functional analysis of novel (p)ppGpp synthetase genes in *Bacillus subtilis*.
659 *Mol Microbiol*. 2008;67(2):291-304.

660 34. Gao W, Cameron DR, Davies JK, Kostoulias X, Stepnell J, Tuck KL, et al. The RpoB
661 H(4)(8)(1)Y rifampicin resistance mutation and an active stringent response reduce virulence
662 and increase resistance to innate immune responses in *Staphylococcus aureus*. *J Infect Dis*.
663 2013;207(6):929-939.

664 35. Gao W, Chua K, Davies JK, Newton HJ, Seemann T, Harrison PF, et al. Two novel
665 point mutations in clinical *Staphylococcus aureus* reduce linezolid susceptibility and switch
666 on the stringent response to promote persistent infection. *PLoS Pathog*. 2010;6(6):e1000944.

667 36. Li L, Bayer AS, Cheung A, Lu L, Abdelhady W, Donegan NP, et al. The Stringent
668 Response Contributes to Persistent Methicillin-Resistant *Staphylococcus aureus*

669 Endovascular Infection Through the Purine Biosynthetic Pathway. *J Infect Dis.*
670 2020;222(7):1188-1198.

671 37. Peyrusson F, Varet H, Nguyen TK, Legendre R, Sismeiro O, Coppee JY, et al.
672 Intracellular *Staphylococcus aureus* persisters upon antibiotic exposure. *Nat Commun.*
673 2020;11(1):2200.

674 38. Bhawini A, Pandey P, Dubey AP, Zehra A, Nath G, Mishra MN. RelQ Mediates the
675 Expression of beta-Lactam Resistance in Methicillin-Resistant *Staphylococcus aureus*. *Front*
676 *Microbiol.* 2019;10:339.

677 39. Mwangi MM, Kim C, Chung M, Tsai J, Vijayadamar G, Benitez M, et al. Whole-
678 genome sequencing reveals a link between beta-lactam resistance and synthetases of the
679 alarmone (p)ppGpp in *Staphylococcus aureus*. *Microb Drug Resist.* 2013;19(3):153-159.

680 40. Salzer A, Keinhorster D, Kastle C, Kastle B, Wolz C. Small Alarmone Synthetases
681 RelP and RelQ of *Staphylococcus aureus* Are Involved in Biofilm Formation and
682 Maintenance Under Cell Wall Stress Conditions. *Front Microbiol.* 2020;11:575882.

683 41. Dasgupta S, Das S, Biswas A, Bhadra RK, Das S. Small alarmones (p)ppGpp regulate
684 virulence associated traits and pathogenesis of *Salmonella enterica* serovar Typhi. *Cellular*
685 *Microbiology.* 2019;21(8).

686 42. Sugisaki K, Hanawa T, Yonezawa H, Osaki T, Fukutomi T, Kawakami H, et al. Role
687 of (p)ppGpp in biofilm formation and expression of filamentous structures in *Bordetella*
688 *pertussis*. *Microbiology-Sgm.* 2013;159:1379-1389.

689 43. Åberg A, Shingler V, Balsalobre C. (p)ppGpp regulates type 1 fimbriation of
690 *Escherichia coli* by modulating the expression of the site-specific recombinase FimB.
691 *Molecular Microbiology.* 2006;60(6):1520-1533.

692 44. McGuinness WA, Kobayashi SD, DeLeo FR. Evasion of Neutrophil Killing by
693 *Staphylococcus aureus*. *Pathogens.* 2016;5(1).

694 45. Zhu X, Guo Y, Liu Z, Yang J, Tang H, Wang Y. Itaconic acid exerts anti-inflammatory
695 and antibacterial effects via promoting pentose phosphate pathway to produce ROS.
696 *Scientific Reports.* 2021;11(1).

697 46. Ahn S, Jung J, Jang I-A, Madsen EL, Park W. Role of Glyoxylate Shunt in Oxidative
698 Stress Response. *Journal of Biological Chemistry.* 2016;291(22):11928-11938.

699 47. Lorenz MC, Fink GR. The glyoxylate cycle is required for fungal virulence. *Nature.*
700 2001;412(6842):83-86.

701 48. Singh S, Singh PK, Jha A, Naik P, Joseph J, Giri S, et al. Integrative metabolomics
702 and transcriptomics identifies itaconate as an adjunct therapy to treat ocular bacterial
703 infection. *Cell Reports Medicine.* 2021;2(5).

704 49. Grosz M, Kolter J, Paprotka K, Winkler AC, Schafer D, Chatterjee SS, et al.
705 Cytoplasmic replication of *Staphylococcus aureus* upon phagosomal escape triggered by
706 phenol-soluble modulin alpha. *Cell Microbiol.* 2014;16(4):451-465.

707 50. Honza ES, Cooper VS, Mhaissen MN, Frank M, Shaker J, Iverson A, et al. RelA
708 Mutant *Enterococcus faecium* with Multiantibiotic Tolerance Arising in an
709 Immunocompromised Host. *mBio.* 2017;8(1).

710 51. Bennett HJ, Pearce DM, Glenn S, Taylor CM, Kuhn M, Sonenshein AL, et al.
711 Characterization of *relA* and *cody* mutants of *Listeria monocytogenes*: identification of the
712 CodY regulon and its role in virulence. *Mol Microbiol.* 2007;63(5):1453-1467.

713 52. Majerczyk CD, Sadykov MR, Luong TT, Lee C, Somerville GA, Sonenshein AL.
714 *Staphylococcus aureus* CodY negatively regulates virulence gene expression. *J Bacteriol.*
715 2008;190(7):2257-2265.

716 53. Sonenshein AL. CodY, a global regulator of stationary phase and virulence in Gram-
717 positive bacteria. *Curr Opin Microbiol.* 2005;8(2):203-207.

718 54. Pellegrini A, Lentini G, Fama A, Bonacorsi A, Scoffone VC, Buroni S, et al. CodY Is
719 a Global Transcriptional Regulator Required for Virulence in Group B *Streptococcus*. *Front*
720 *Microbiol*. 2022;13:881549.

721 55. Bateman BT, Donegan NP, Jarry TM, Palma M, Cheung AL. Evaluation of a
722 tetracycline-inducible promoter in *Staphylococcus aureus* in vitro and in vivo and its
723 application in demonstrating the role of *sigB* in microcolony formation. *Infection and*
724 *immunity*. 2001;69(12):7851-7852.

725 56. Corrigan RM, Campeotto I, Jeganathan T, Roelofs KG, Lee VT, Grundling A.
726 Systematic identification of conserved bacterial c-di-AMP receptor proteins. *Proc Natl Acad*
727 *Sci U S A*. 2013;110(22):9084-9089.

728 57. Boles BR, Thoendel M, Roth AJ, Horswill AR. Identification of genes involved in
729 polysaccharide-independent *Staphylococcus aureus* biofilm formation. *PLoS One*.
730 2010;5(4):e10146.

731

732 SUPPLEMENTAL

733 **S1 Table. Bacterial strains used in this study**

Strain	Relevant features	Reference
<i>Escherichia coli</i> strains		
XL1-Blue	Cloning strain: TetR	Stratagene
RMC0139	pALC2073 in XL1-Blue: multi-copy vector: CarbR	[55]
RMC0546	pALC2073- <i>relQ</i> in XL1-Blue: CarbR	This study
RMC0116	pCL55iTETr862 (iTET) in XL1-Blue: single-copy, integrative vector: CarbR	[56]
RMC0468	pCL55iTETr862- <i>rel</i> in XL1-Blue: CarbR	This study
RMC0469	pCL55iTETr862- <i>relP</i> in XL1-Blue: CarbR	This study
<i>Staphylococcus aureus</i> strains		
JE2	CA-MRSA USA300 strain LAC derivative, lacking plasmids p01 and p03. Erm sensitive	[25]
RMC903	JE2 Δ <i>relQP</i> JE2 with in-frame deletions in <i>relQ</i> , and <i>relP</i>	[23]
RMC905	JE2 Δ <i>relQPA</i> : JE2 with in-frame deletions in <i>relQ</i> , <i>relP</i> and <i>rel</i> : ((p)ppGpp ⁰)	[23]
RMC1856	JE2 pCL55iTETr862 (iTET): CamR	This study
RMC1858	JE2 (p)ppGpp ⁰ iTET: CamR	This study
RMC1870	JE2 (p)ppGpp ⁰ iTET- <i>rel</i> : CamR	This study
RMC1871	JE2 (p)ppGpp ⁰ iTET- <i>relP</i> : CamR	This study
RMC1836	JE2 pALC2073: CamR	This study

RMC1861	JE2 pALC2073- <i>relQ</i> : CamR	This study
RMC2010	JE2 iTET- <i>rel</i> : CamR	This study
LAC*	CA-MRSA USA300 strain LAC derivative, lacking plasmid p03. Erm sensitive	[57]
NE1555	JE2 <i>codY</i> ::Tn. Strain with transposon insertion in <i>codY</i> : [25] ErmR	
RMC1783	JE2 <i>codY</i> ::Tn – transduced into fresh JE2: ErmR	This study
RMC2014	JE2 (p)ppGpp ⁰ <i>codY</i> ::Tn: ErmR	This study

734 Antibiotics were used at the following concentrations - for *E. coli* cultures: carbenicillin
735 (CarbR) 50-150 µg/ml. IPTG was used at 1 mM. For *S. aureus* cultures: chloramphenicol
736 (CamR) 7.5 or 10 µg/ml for pCL55iTETr862 or pALC2073 respectively; erythromycin (ErmR)
737 10 µg/ml; Atet 50 ng/ml.

738 **S2 Table. Primers used in this study**

Number	Name	Sequence
RMC211	F-KpnI-RelQ	GGGG <u>GGTACCC</u> ATTGAATAAAGCGGGGTGAAG CACTC
RMC212	R-SacI-RelQ	GGGG <u>GAGCT</u> TTAGTGATGGTGATGGTGATGAC CATCATTTCATGTTTTAGAACG
RMC165	F-AvrII-Rel	AAAC <u>CTAGGC</u> CTAAATCATTGTTAAGGCG
RMC166	R-SacII-Rel	AAAC <u>CGCGG</u> CTAGTTCCAAACTCTGTTACTG
RMC161	F-AvrII-RelP	AAAC <u>CTAGG</u> TATCGGAGGTTAGTATAAAAATG
RMC162	R-SacII-RelP	AAAC <u>CGCGG</u> CTACTCTGTTATTCAGAATG

739 Restriction sites in primer sequences are underlined.

740

741