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Abstract

Assigning cell identity to clusters of single cells is an essential step towards extracting biological
insights from many genomics datasets. Although annotation workflows for datasets built with a
single modality are well established, limitations exist in annotating cell types in datasets with
multiple modalities due to the need for a framework to exploit them jointly. While, in principle,
different modalities could convey complementary information about cell identity, it is unclear to
what extent they can be combined to improve the accuracy and resolution of cell type
annotations.

Here, we present a conceptual framework to examine and jointly interrogate distinct modalities
to identify cell types. We integrated our framework into a series of vignettes, using immune cells
as a well-studied example, and demonstrate cell type annotation workflows ranging from using
single-cell RNA-seq datasets alone, to using multiple modalities such as single-cell Multiome
(RNA and chromatin accessibility), CITE-seq (RNA and surface proteins). In some cases, one
or other single modality is superior to the other for identification of specific cell types, in others
combining the two modalities improves resolution and the ability to identify finer subpopulations.
Finally, we use interactive software from CZ CELLXGENE community tools to visualize and
integrate histological and spatial transcriptomic data.
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1. Introduction

Advancements in single-cell genomics have revolutionized our ability to examine characteristics
of heterogeneous cell populations with remarkable precision (Nomura 2021; Gawad, Koh, and
Quake 2016; Sandberg 2014). Initially, single-cell RNA-sequencing (scRNA-seq) enabled the
investigation of transcriptomic states of individual cells by measuring RNA molecules at the
whole transcriptome level (Macosko et al. 2015; Klein et al. 2015). This technology has
facilitated the identification, classification, and examination of most cell populations in various
organisms, including developmental and disease states, based on their differences in gene
expression (Tabula Muris Consortium et al. 2018; Lange et al. 2023; Saunders et al. 2022; Sur
et al. 2023; Delorey et al. 2021; Smillie et al. 2019; The COVID Tissue Atlas Consortium et al.
2022).

However, cellular identity is multifaceted and involves multiple regulatory aspects across
biological processes, including chromatin accessibility at the genome level, gene expression
profile at the transcriptome level, and protein abundance at the proteome level (Figure 1a and
b). Measuring RNA levels in situ via spatial transcriptomics provides orthogonal and valuable
information as cell identity is defined in the context of tissue organization and cell-cell
interactions. Access to these multiple layers of molecular states in single cells and tissues
should increase the resolution and accuracy of cell type annotations (Figure 1c), and enable the
discovery of new cell populations.

In recent years, new single-cell multi-omics technologies have emerged that allow for the
simultaneous measurement across multiple regulatory regimes including RNA, chromatin
accessibility, and protein (Figure 1b) (Ma et al. 2020; W. Xu et al. 2022; Stoeckius et al. 2017;
Moses and Pachter 2022b). As a result, accurate annotation of cell populations should
encompass all aspects of this multi-dimensional feature space that defines the state of a cell
(Figure 1c). While various workflows for cell clustering and annotation for single-cell
transcriptomics datasets exist (Luecken and Theis 2019; Clarke et al. 2021), there is a need for
standard practices when annotating cell types from multi-omics datasets based on their multi-
dimensional molecular states.

Single-cell multi-omics techniques usually measure two different aspects of cell identity
simultaneously. Although the specifics of each technology may differ, they essentially provide
paired measurements for each cell across two sets of features (Figure 1d - top). Each
expression matrix, representing cells-by-features, can be analyzed independently by applying
feature extraction, dimensionality reduction, and clustering (Luecken and Theis 2019). This
results in two independent two-dimensional (2D) embeddings of the same set of cells (Figure
1d, center). However, the resolution of cellular groupings may differ between modalities since
each provides complementary information about the cellular states (Figure 1d, bottom). For
example, some cell types can be better resolved in the protein feature space than RNA feature
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space. In other cases, chromatin accessibility can be used to define fine subtypes of cells
whose transcriptional profiles are not yet distinct but whose chromatin accessibilities have been
differentiated (ltokawa et al. 2022; Ma et al. 2020). Alternatively, modalities that are highly
correlated for specific cell populations may provide redundant information.

The extent to which different modalities provide complementary or redundant information that
can be used to annotate cell types is largely unknown (Miao et al. 2021). Although the
technologies for generating multimodal datasets are now broadly available, analyzing these
datasets often requires proficiency in programming languages such as Python or R (Figure 1e)
(Wolf, Angerer, and Theis 2018; Satija et al. 2015; Stuart et al. 2019, 2021). These challenges
can be overcome by interactive software that democratizes the analysis of multimodal datasets,
leveraging the diverse knowledge base of researchers without formal training in programming
languages (Figure 1f).

In this tutorial, we present a guideline for exploring and annotating single-cell multi-omics
datasets using interactive tools. While there are several interactive tools available for exploring
single-cell datasets, most are focused on the RNA modality, and only a few support multimodal
datasets. We use a suite of interactive CZ CELLXGENE tools, including exCELLXGENE and
Cellxgene VIP, designed for visualizing, exploring, and annotating single-cell transcriptomics
datasets (Megill et al. 2021; K. Li et al. 2020). These tools allow users to load their datasets,
explore gene expression patterns and annotate cells using a lasso tool (Megill et al. 2021; K. Li
et al. 2020).

We provide four vignettes with step-by-step instructions, code, and documentation for
annotating cell types. First, we start with a scRNA-seq dataset, then we expand to multi-omics
datasets such as CITE seq (RNA + ADT) and single-cell Multiome (RNA + ATAC). We provide
examples in which different modalities offer different depths of information regarding cell
identities and discuss best practices for identifying novel populations. Finally, we demonstrate
how Cellxgene VIP can be used to integrate histologically-stained tissue samples with spatial
transcriptomic data obtained using the 10X Visium (RNA + spatial) system.
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Figure 1. A conceptual framework for cell type annotation in multi-omics datasets. a) A
schematic showing distinct cell types and states. b) A schematic showing different layers of
gene expression regulation (modalities) along the Central Dogma (chromatin accessibility,
transcription, and translation) and example assays to measure these modalities. ¢) A
conceptual schematic showing the resolution of cell types in multi-omics datasets. Each axis
represents the aforementioned “modality”, and cell identity can be abstracted as coordinates in
3D modality space. 2D projections represent the clusters of cells resolved by two modalities. d)
A workflow of multi-omics data exploration: (top) two count matrices generated from multi-omics
datasets: cells by features1 (modality1) and cells by features2 (modality2), where the cells are
shared between the two modalities. (middle) Each modality is processed independently (Quality
Control, dimensionality reduction, clustering, 2D embedding, etc.) giving rise to two 2D
embeddings from each modality. (bottom) cluster-cluster relationships between the two
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modalities examined by interactive software tools, illustrated by a Sankey diagram. e) A
summary of the tools/packages used for each step in (d). f) Different scenarios for the cluster-
cluster relationships between the two modalities. (top) redundant, the clustering from the two
modalities are 1:1 match, giving redundant information about the resolution of cell types.
(middle) higher-resolution, one modality gives a higher resolution of clusters than the other.
(bottom) complementary, the resolution of cell types is complementary, meaning that some cell
types (clusters) can be revealed by utilizing both modalities.

Results

2. Cell type annotation of a scRNA-seq dataset using
interactive features

Automated cell type annotation has become increasingly common in scRNA-seq data analysis
workflows due to its fast turn-around time and scalability; however, manual curation by experts
is still required (C. Xu et al. 2021; Dominguez Conde et al. 2022; Ji et al. 2023; Pasquini et al.
2021; Clarke et al. 2021). The usual workflow for manual cell type annotation involves
unsupervised clustering of dimensionality-reduced data based on transcriptional similarity,
followed by tuning clustering resolution and manually checking marker genes. This is, however,
often challenging because no single resolution parameter works across all cell types, and cell
annotation typically requires collaboration between multiple researchers followed by collation of
annotations. Therefore, efficient cell type annotation requires a platform that does not depend
on specific programming languages or data formats, while enabling users to perform at least
three key tasks: 1) to define clusters based on expression levels of a marker gene or
combinations of marker genes, 2) to explore the data at finer resolution by subsetting and re-
embedding (Figure 2a), and 3) to switch the embeddings between different modalities for a
comprehensive analysis of cell identity within each context. These three functionalities are the
key features of exCELLXGENE (https://github.com/czbiohub-sf/excellxgene), an interactive tool
for single-cell sequencing analysis and visualization developed by the Chan Zuckerberg Biohub
- San Francisco that extends the functionality of CZ CELLXGENE Annotate (Box 1) (Megill et al.
2021).

For this and the following vignettes, we used public datasets from Bone Marrow Mononuclear
cells (BMMC). We focus on immune cell subtypes because their markers are well-established
and have been used successfully to identify distinct populations in blood and bone marrow. In
our annotation workflow, we start with a pre-computed UMAP, and a list of canonical marker
genes from the literature (Figure 2a) (Luecken et al. 2022). In principle, a simplified workflow to
annotate a cell type within a scRNA-seq dataset would consist of three key steps (Figure 2b,
icons correspond to actions in exCELLXGENE interface): 1) Visual inspection of known marker
genes of interest in the 2D embedding, 2) Identification of a cluster showing enrichment of the
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markers, and 3) Labeling of the cluster according to the cell type associated with those markers.
For example, a cluster localized at the bottom of the UMAP shows high expression of CD3E, a
marker gene for T cells (Figure 2c¢) (Dedarnette et al. 1998). If high-resolution marker genes for
subtypes are available, one can identify such populations by looking at the expression of these
genes within the cluster in the 2D embedding (Figure 2D). For example, T cell subtype marker
genes such as CD4 (CD4+ T cells), CD8A (CD8+ T cells), and GNLY (Natural Killer T cells)
mark subtypes of T cells based on the surface proteins these genes encode (Figure 2d)
(Maecker, McCoy, and Nussenblatt 2012).

Dimensionality reduction algorithms, such as UMAP, face challenges in projecting cell
transcriptomes into 2D space while preserving global and local relationships embedded within
the underlying data, which can obscure the detection of certain cell types (Becht et al. 2018;
Kobak and Berens 2019). This is particularly problematic when annotating small populations with
similar transcriptional profiles, such as immune progenitor cells. In these cases, subsetting the
data for the specific population and re-computing the embedding for the subset (re-embedding)
can help to resolve local structures of neighborhoods for such populations. To address this, the
annotation workflow includes additional steps (Figure 2e): 1) Visual inspection of known marker
genes of interest in the 2D embedding, 2) Identification of a cluster showing overlapping
enrichment of marker genes from several cell types, 3) Subsetting and re-embedding the cluster
to reveal local structures, 4) Visual inspection of known marker genes again in the newly
generated 2D embedding, and 5) Labeling of the new clusters according to the cell types
associated with those markers.

For example, the immune progenitor cells show an overlapping expression of multiple subtype
markers, likely because of their potential to differentiate (Figure 2f) (Zhang et al. 2014).
However, their exact identity depends on the expression of specific subtype markers.
Granulocyte/Macrophage progenitors (G/M prog) express MPO, while Lymphocyte progenitors
(Lymph prog) express IGLL1, but their expression overlaps in the UMAP (Figure 2f). In this
example, subsetting and re-embedding the progenitor populations revealed a more detailed
structure in the subset UMAP, where expression of the marker genes further separated when
compared to the global UMAP (Figure 2g,h) revealing local structures that would be otherwise
obscured by larger global cell differences (Figure 2I).

In summary, we showcased a workflow to annotate cell types using interactive software for a
single modality in scRNA-seq datasets. In the following sections, we will explore how to
annotate datasets with multiple modalities, namely CITE-seq (RNA+ADT) and single-cell
Multiome (RNA+ATAC).
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Figure 2. Annotation workflow for single-cell (nucleus) RNA-sequencing dataset with
known cell types and marker genes corresponding to each cell type. a) Summary of
features and corresponding workflow for easier cell type annotation in exCELLXGENE (icons
correspond to action buttons on the user interface). b) A basic workflow of cell type annotation
in exCellxgene using marker genes, as depicted by the action icons shown in (a). ¢) An
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example of cell type annotation for T cells using CD3E as a marker gene following the workflow
in (b), using the action icons introduced in (a). d) Annotation of T cell subtypes using the
subtype marker genes. e) An advanced workflow of cell type annotation for populations with
overlapping gene expression from multiple subtypes. f) A global UMAP showing overlapping
marker expression. g) subsetted/re-embedded progenitor cells within the lasso in (f). h) Fine
annotation of progenitor cell types on subsetted/re-embedded UMAP. i) Representation of fine-
annotated cell types on the global UMAP. G/M prog: Granulocyte/Monocyte progenitors, HSC:
Hematopoietic Stem Cells, Lymph prog: Lymphocyte progenitors, MK/E prog:
Megakaryocyte/Erythroid progenitors, pDC: plasmacytoid Dendritic Cells.

3. Annotation of the CITE-seq dataset shows the
complementary power of RNA and ADT modalities in
resolving finer cell subtypes

While single-cell RNA seq has revolutionized how we understand cell identity, the correlation
between cellular RNA levels and their corresponding proteins can vary across cell types,
tissues, organisms, and conditions (Reimegard et al. 2021). The CITE-seq assay
simultaneously measures gene expression (RNA) and surface protein abundance as targeted
by Antibody-derived DNA Tags (ADT) for individual cells (Stoeckius et al. 2017) (Figure 3a).
Notably, while the RNA feature space covers the whole transcriptome, the protein feature
space, which focuses only on surface-expressed proteins and depends on the size of the ADT
panel spanning from tens to hundreds (Nettersheim et al. 2022), provides only a targeted subset
of the proteome. After pre-processing, CITE-seq data can be represented as two matrices: a
cell-by-gene matrix for RNA and a cell-by-protein matrix for ADT (Figure 3a). For each modality,
dimensionality reduction and clustering can be performed separately, resulting in two
independent UMAP embeddings (Figure 3a).

In principle, quantifying RNA and protein abundance should increase the information available
to classify and label cell populations (Hao et al. 2021). In this section, we used a CITE-seq
BMMC dataset that captures immune cell populations, as described in the previous section
(Luecken et al., 2022). For example, ADT could provide additional information to split an RNA
cluster into three distinct clusters (Figure 3b, CD3E gene expression for T cells). To understand
whether the ADT panel provides complementary or redundant information relative to RNA about
cell identity, we independently analyzed and computed the Leiden clusters for RNA and ADT
using the same resolution parameters (Figure 3a, color labels). We then compared the Leiden
clusters from the two modalities using the Sankey diagram functionality of exCELLXGENE. A
Sankey diagram represents the flow of data from one category to another. In the context of
CITE-seq, the Sankey diagram shows the similarities and differences between the two
modalities by connecting clusters using flow lines and visualizing the proportion of data points
(cells) within each cluster (Figure 3c). In this section, we will focus on RNA cluster 0, which
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represents the T cell population, that maps to three ADT clusters 1, 4, and 5, to see how we can
utilize multiple modalities to define fine subtypes of T cells easily.

Using exCELLXGENE’s switch-embedding feature(Figure 3d) along with the Sankey diagram
functionality, we observed that RNA cluster 0 (blue) split into three clusters in the ADT
embedding (1,4,5), suggesting that ADT data might achieve a higher resolution in identifying
these cell populations (Figure 3c). The top differentially expressed genes were used to identify
the RNA cluster 0 as T cells due to the high expression of CD3E (Figure 3b). To assess whether
the three ADT subclusters represent distinct T cell sub-populations, we analyzed the ADT signal
for marker genes associated with T cell subtypes (Figure 2d). Each cluster was enriched for a
different marker gene, supporting our observation that ADT offers higher resolution to
distinguish T cell subtypes than RNA (Figure 3e, lasso tool was used to highlight the enrichment
of each antibody).

While the ADT feature space provided a higher resolution than the RNA data for annotating T
cell subtypes, the opposite was true for annotating the erythroblast population. In this case,
three RNA clusters (3,4,5) mapped to one ADT cluster (0) (Figure 3c), which we identified as
different erythroblast subtypes, proerythroblasts, erythroblasts, and reticulocytes. Therefore,
RNA and ADT modalities complement each other in resolving cellular heterogeneities within the
immune cell populations.

Differences in RNA and protein expression levels can explain the complementary nature of the
RNA and ADT modalities. To assess the contrast between the two modalities, we computed the
Pearson correlation between RNA and ADT expression across single cells for each of the 113
RNA:ADT pairs, where each RNA(gene) encodes the corresponding ADT (protein) (Figure 3f,
blue). 39 genes showed relatively high correlations (Pearson coefficients > 0.5), including
CDB8A:CD8 (Figure 3g, Pearson coefficient = 0.79); however, the majority of genes showed poor
correlations (Pearson coefficient< 0.5), including CD4:CD4 (Figure 3h, Pearson coefficient =
0.48). Pairs with high correlation are redundant since we expect them to provide only a
marginal amount of extra information about cell identity. In contrast, pairs with low correlation
are expected to provide more information than either modality for these genes.

To establish a baseline for noise, we computed the correlation for all non-pairs of RNA and ADT
molecules, which corresponds to a null distribution, and compared it with the distribution from
the correct RNA:ADT pairs (Figure 3f, yellow). 12/113 pairs showed low correlation coefficients
(below the 75th percentile in the null distribution, shown in Figure 3f, dotted line), indicating that
RNA and ADT measurements together provide complementary information that can improve
resolution (e.g., CD47). Next, we looked for any trend in RNA:ADT pairs’ correlation.
Interestingly, the correlation coefficients tend to increase as the expression levels of RNA
increase (Figure 31). One explanation is that the higher the RNA expression, the easier it is to
distinguish the cells expressing the corresponding gene from those showing only noise-level
expression. Thus, the signal-to-noise ratio of both RNA and ADT signals could impact the
correlation of RNA:ADT expression.
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To further explore the accuracy of cell type annotations within a modality, we quantified the
fraction of different cell type labels within the nearest neighborhoods of individual cells. For a
cell type, if most of the nearest neighbors are from the same cell type, then the cell type is very
well separated from the others. As an example, we computed the fraction of cell types within the
neighborhoods of CD4 T cells, which showed a better separation in 2D embeddings in ADT than
RNA. We used a stacked bar plot to visualize the composition of cell types within the nearest
neighbor for each CD4 T cell for RNA and ADT, respectively (Figure 3j). We found that the
fraction of homogenous cell type labels (CD4 T cells) is significantly higher in ADT than in RNA.
Together, these examples show the power of interactive tools such as exCELLXGENE for
accurate annotation of cell types in multi-omic datasets.
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Figure 3. Annotation of a BMMC CITE-seq dataset using both RNA and ADT modalities. a)
(Top) A schematic for CITE-seq data format. (Bottom) UMAP visualization of each modality with
Leiden clustering (resolution = 0.5) b) RNA expression for a marker gene for the T cell
population, CD3E, in RNA and ADT UMAPs. ¢) Sankey diagram between the RNA clusters and
ADT clusters shown in (a). Clusters representing T cells are highlighted with the same colors as
in (a) d) A workflow for cell type annotation from multi-omics datasets using dynamic switching
between embeddings from each modality. €) An RNA cluster representing the T cell population
(left), and zoomed-in ADT UMAP for the T cell population colored with subtype markers. Cells
with high expression of each ADT marker are encircled by a black dotted line for annotation and
labeling. f) A histogram showing the Pearson correlation between RNA and ADT expression at
the single-cell level. Histogram consists of 113 pairs of either RNA:ADT pairs (blue) or all non-
specific pairs (yellow) to show the background distribution. The dotted line represents the 75
percentile of the distribution from non-specific pairs. g,h) Scatter plots for RNA (x-axis) and ADT
(y-axis) expression for (g) a pair of CD8A:CD8, and (h) a pair of CD4:CD4, where each dot
represents a single cell. Pearson correlation coefficients are shown at the bottom right of the
scatter plots. Histograms for each modality (RNA or ADT) are also shown at the top and right of
each scatter plot. i) A scatter plot for the mean levels of RNA expression across single cells and
the Pearson correlation coefficients for each RNA:ADT pair. j) Fraction of cell types for each cell
(bar) within the nearest neighbors for CD4 T cells for RNA neighborhood (Left) and ADT
neighborhood (Right).

4. Annotation of Multiome (scRNA+scATAC) dataset shows the
complementary power of RNA and ATAC modalities in
resolving finer cell subtypes

Transcription factors enable gene activation by binding to regulatory DNA regions and recruiting
transcriptional machinery, which in turn initiates transcription (Figure 1a) (He et al. 2013;
Nogales, Louder, and He 2017; Levine 2010). ATAC-seq (Assay for Transposase-Accessible
Chromatin with sequencing) enables the genome-wide identification of DNA regions accessible
to transcription factors (Buenrostro et al. 2013; Yan et al. 2020). Single-cell ATAC-seq
(scATAC-seq) reveals heterogeneity across cell populations based on differential chromatin
accessibilities, and it can be used to reconstruct the continuum of cellular differentiation for
different cell types during the development of multicellular organisms (Buenrostro et al. 2015;
Cusanovich et al. 2015; Cusanovich, Reddington, et al. 2018; Cusanovich, Hill, et al. 2018;
Domcke et al. 2020).

In this section, we continued our exercise using the same dataset introduced in Section 2, which
encompasses both RNA and ATAC measurements obtained from the identical group of cells
(Luecken et al. 2022). To understand the extent to which these different modalities complement
each other for identifying cell types, we processed each modality independently and compared
the resulting clusters (Figure 4a). In addition to the individual UMAPs, we computed the joint
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embedding using Seurat v4 (Figure 4b), which applies the weighted nearest-neighbor graph
approach using both genes and peaks (Hao et al. 2021). From these three embeddings, we
generated a Sankey diagram to compare the Leiden clusters from each modality and the joint
embedding (Figure S1). Multiple clusters showed a 1:1 agreement between RNA and ATAC
modalities (Figure S1), suggesting that their cell identities can be, in principle, resolved using
either modality. However, we noticed cases in which two modalities defined clusters in a
complementary fashion. For example, we found a non-1:1 mapping between RNA clusters 5
and 9 and ATAC clusters 7 and 9 (Figure 4c). Although there are two clusters for each modality,
three distinct populations emerged when visualizing the flows between RNA and ATAC
modalities. We computed the Leiden clusters from the joint embedding, which apparently
resolved these three populations. These three Leiden clusters, which can only be identified in
the joint embedding (Figure 4c), correspond to the ground-truth annotations for three B cell
subtypes (i.e. B1 B cells, Naive CD20+ B cells, and Transitional B cells; Figure SlI) with 93.5%
match.

We projected these three subtypes back into the individual embeddings (RNA or ATAC, Figures
4d and e, respectively) and found that the RNA embedding failed to split Transitional B cells
from the immune progenitor cells (highlighted by a dotted line in Figure 4d, annotated in Section
2). Conversely, Naive CD20+ B cells appeared scattered in the ATAC UMAP. However, in the
joint embedding, all the B cell subtypes clustered into distinct regions of the UMAP (Figure 4f).
To quantify the accuracy in cell annotations in Transitional B cells in each modality, we
computed the fraction of cells in single-cell neighborhoods corresponding to each cell type
annotation (Figure 4g). We found that Transitional B cells show the highest homogeneity in the
nearest neighbors in the joint embedding compared to individual modalities (Figure 4h). In
contrast, the RNA embedding showed the highest heterogeneity in the neighborhoods, mostly
due to confusion with progenitor cells, suggesting that the Transitional B cells’ chromatin
accessibility could be already differentiated from the progenitor cells, but their gene expression
profiles have yet to be differentiated. Therefore, by combining ATAC with RNA modalities, we
were able to resolve the subtype populations that would have been obscured in the individual
modalities.
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Figure 4. Annotation of a BMMC single-cell multiome dataset (RNA for gene expression
and ATAC for chromatin accessibility). a) (Top) A schematic for single-cell multiome (scRNA-
seq and scATAC-seq) data format. (Bottom) UMAP visualization of each modality with Leiden
clustering. b) joint embedding (UMAP) from Seurat v4, which applies the weighted nearest
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neighbor graph approach using both genes and peaks. ¢) Sankey diagram between the RNA
clusters and ATAC clusters shown in (a). Only clusters representing B cell subtypes are shown
here. d) RNA UMAP colored by three subtypes of B cells. The center region outlined by a dotted
line represents the immune progenitor cells introduced in Section 2. e) ATAC UMAP colored by
three subtypes of B cells. f) joint UMAP colored by three subtypes of B cells. g) A schematic
showing the cell type composition in the nearest neighbors of cell i. h) Fraction of cell types for
each cell (bar) within the nearest neighbors for Transitional B cells in RNA (left), ATAC (center),
and joint (right) embeddings.

5. Annotation of Spatial Transcriptomics dataset guided by the
tissue histology image reveals region-specific pathways

Recently, several spatial transcriptomics technologies have emerged, enabling researchers to
investigate cell-cell communication, ligand-receptor interactions, and other questions that
require the spatial information of cells within the tissue context (Lein, Borm, and Linnarsson
2017; Longo et al. 2021; Burgess 2019; Rao et al. 2021; Moses and Pachter 2022c). Most
spatial transcriptomics technologies accompany imaging data from the same tissue, such as
H&E images or immunofluorescence images for nuclei and cell membranes. For tissues where
spatial regions are visually identifiable based on cellular morphology, biologists can start
cell/tissue annotation directly from the images, without clustering based on transcriptomes
(Figure 5a). This advantage offers an orthogonal way of annotating the cells, which can then be
verified by an exploration of the gene expression profiles.

In this section, we introduce a vignette using a mouse glioblastoma (brain tumor) dataset
acquired with the Visium platform from 10x Genomics. Visium offers sequencing-based
transcriptomics covering the whole transcriptome in an unbiased manner. It is, however, limited
by the spatial resolution of a unit bearing the same spatial barcodes, called “spot”, whose
diameter is 55 pym that typically captures multiple cells with potentially different cell types
(Moses and Pachter 2022a). In this sample dataset, there are two distinct regions that
correspond to healthy tissue (left, light purple) and the tumor (right, dark purple) (Figure
5a)(Echle et al. 2021; Ru et al. 2023).

Notably, the distinction between healthy and tumor regions is also clear from the sequencing
metrics including the number of transcripts per spot, as previously reported (Figure 5b) (Echle et
al. 2021; Ru et al. 2023). Based on the overlaid histology image, we annotated the spots as
“healthy” or “tumor” using the Cellxgene VIP’s lasso tool (Figure 5c, d). In the gene expression
UMAP, the spots are clearly distinguished between healthy and tumor conditions (Figure 5e).
However, some spots appeared scattered between the two clusters, possibly due to a mixture of
healthy and tumor cells within a spot, or the presence of intermediate cell states (Figure 5e,
outlined by a dotted line). When mapping these spots back to their spatial coordinates, they
were indeed localized to the border between healthy and tumor regions (Figure 5f).
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Next, we identified genes that are differentially expressed between healthy or tumor regions and
checked their spatial gene expression patterns (Figure 5g and h). Gene Set Enrichment
Analysis (GSEA) (Fang, Liu, and Peltz 2023) showed enrichment of neuronal pathways in the
healthy region, and enrichment of pathways related to cell proliferation (transcription,
translation, splicing, transport, etc.) in the tumor region (Figure 5i). Together, we showed a

workflow of annotating the spatially resolved transcriptomics data using both spatial and gene
expression information complementarily.
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Figure 5. Annotation of a mouse glioblastoma Visium dataset using tissue histology
image. a) H&E stained image of the tissue region. b) the number of transcripts per spot shown
in spatial coordinates. ¢) A workflow to annotate spatial transcriptomics datasets. d) manual
annotation of spots based on H&E image in (a). Blue color represents the healthy region and
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orange color represents the tumor region. The green dotted line highlights the interface (border)
between tumor and healthy regions. e) UMAP based on gene expression profiles
(transcriptomics) colored by the annotation in (d). The spots between tumor and healthy clusters
are outlined by a dotted line. f) A zoomed-in version of the H&E image overlaid with spots
between the tumor and healthy clusters highlighted by a dotted line in UMAP from (e). g) Dot
plot showing the top 10 differentially expressed genes in healthy and tumor regions,
respectively, by t-test. h) Spatial plots for marker gene expression identified from (f). (Top)
healthy, and (Bottom) tumor region-specific genes. i) Top five pathways from Gene Set
Enrichment Analysis (GSEA) from differentially expressed genes identified by t-test in (f). (Top)
healthy, and (Bottom) tumor-specific pathways.

6. Discussion

We introduced four vignettes to guide scientists through cell-type annotations for single-cell
multi-omics datasets of their interest. Interactive software tools such as CZ CELLXGENE
facilitate the cell-type annotation procedure with their ability to dynamically switch between
embeddings from multiple modalities and utilize multiple modalities jointly. We provided
examples of each scenario presented in Figure 1f, where two modalities can provide redundant
information (Section 5; Figure 1f, top), one modality can have a superior resolution than the
other (Section 3; Figure 1f, center), or two modalities can reveal a hidden population only when
both modalities were considered together (Section 4; Figure 1f, bottom). We also showed
examples where the degree of complementarity between modalities depends on the cell type of
interest.

What is the source of this complementarity between modalities? Overall, the complementarity
might stem from two primary sources - technical and biological. First, technical differences exist
between the experimental assays of each modality. For example, scRNA-seq is known to have
a significant level of dropouts (Kharchenko, Silberstein, and Scadden 2014), whereas CITE-
seq’s ADT modality (for surface protein) shows high levels of background protein signal due to
non-specific binding of antibodies (Stoeckius et al. 2017; Mule, Martins, and Tsang 2022).
Second, even with perfect measurements, the information flow along the central dogma might
not be consistent for different cellular states, resulting in one modality having more importance
when defining these cell types (G.-W. Li and Xie 2011). For example, the immune progenitor
subtypes are known to have similar transcriptomic profiles while their epigenetic profiles have
distinct characteristics, as chromatin accessibility precedes gene expression (Ma et al. 2020).

In principle, multi-omic technologies can facilitate the identification of heterogeneous
populations whose subtle differences were hidden under the lens of uni-modal datasets. We
expect that more multi-omics technologies will emerge at the intersection of proteomics and
metabolomics, opening new avenues for understanding cellular states at the functional level.
We believe that our framework of utilizing complementary information from multiple modalities
will be broadly applicable beyond the modalities mentioned in this article.
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Lastly, we hope our article will serve as a guideline for biologists, especially those without
specific bioinformatics training who seek to analyze their own datasets. The set of tutorials
illustrated in this article, together with the accompanying slide decks demonstrating these
workflows using the CZ CELLXGENE platform, will equip bench scientists with the tools to
interface with their data. This will allow them to explore and annotate cell types by harnessing
their domain knowledge in specific biological systems.

7. Methods

All Jupyter notebooks used to process the public datasets and generate figures are
available in the public Github repository (https://github.com/czbiohub-
sf/celltype_annotation_tutorial). We used exCELLXGENE (https://github.com/czbiohub-
sf/excellxgene) version 2.9.2 and Cellxgene VIP
(https://github.com/interactivereport/celixgene VIP) following the installation guidelines.

1) Data preprocessing notes
a. Both single-cell Multiome and CITE-seq datasets are downloaded from GEO
(GSE194122). For both single-cell Multiome and CITE-seq datasets, we subsetted
for one dataset specified as “site 1 donor 1” using the “batch” key.

b. snRNA-seq: We used only the RNA modality of the single-cell Multiome dataset
(“site 1 donor 17”), which is used again in Section 4. The count matrix was log-
normalized for gene expression quantification.

c. CITE-seq: The count matrix was already combined between RNA and ADT
modalities, and we transformed the RNA counts using log-normalization and ADT
counts using CLR-transformation (Centered-Log Ratio), respectively.

d. Single-cell Multiome: The count matrix was already combined between RNA and
ATAC modalities.

e. Spatial Transcriptomics: We used a mouse glioblastoma dataset acquired via
10xGenomics’ Visium platform, which captured both tumor and healthy regions of
the mouse brain. The dataset was provided by the Genomics platform from Chan
Zuckerberg Biohub, SF and Arantxa Tabernero’s lab at the University of
Salamanca.

Resources

1. Tutorial slides are deposited in CZ CELLXGENE’s Documentation page with the
following link :
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https://cellxgene.cziscience.com/docs/05__Annotate%20and%20Analyze%20Your%20D
ata/5_8 Multimodal%20Annotations
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Box 1

Name Active Maintenance | subsetting/ Spatial Differential Open Source
development re-embedding | transcriptomics | Expression

Cz Yes Yes No No Yes Yes

CELLxGENE

exCELLxGENE | No Yes Yes Yes Yes Yes

Cellxgene_VIP | Yes Yes No Yes Yes Yes

Partek Flow Yes Yes Yes Yes Yes No

Cell Annotation | Yes Yes No No No Yes

Platform

Single-cell Yes Yes No Yes No Yes

Portal

Box 1. Comparison between interactive software for single-cell genomics data analysis
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Supplementary Material

RNA clusters joint clusters ATAC clusters

Figure S1. Sankey diagram between Leiden clusters of RNA (Left), ATAC (Right), and
joint embeddings (Center) from single-cell Multiome dataset (Figure 4).
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