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ABSTRACT

RNA molecules play a crucial role as intermediaries in diverse biological processes. Attaining a
profound understanding of their function can substantially enhance our comprehension of life’s
activities and facilitate drug development for numerous diseases. The advent of high-throughput
sequencing technologies makes vast amounts of RNA sequence data accessible, which contains
invaluable information and knowledge. However, deriving insights for further application from
such an immense volume of data poses a significant challenge. Fortunately, recent advancements in
pre-trained models have surfaced as a revolutionary solution for addressing such challenges owing to
their exceptional ability to automatically mine and extract hidden knowledge from massive datasets.
Inspired by the past successes, we developed a novel context-aware deep learning model named
Uni-RNA that performs pre-training on the largest dataset of RNA sequences at the unprecedented
scale to date. During this process, our model autonomously unraveled the obscured evolutionary
and structural information embedded within the RNA sequences. As a result, through fine-tuning,
our model achieved the state-of-the-art (SOTA) performances in a spectrum of downstream tasks,
including both structural and functional predictions. Overall, Uni-RNA established a new research
paradigm empowered by the large pre-trained model in the field of RNA, enabling the community to
unlock the power of Al at a whole new level to significantly expedite the pace of research and foster
groundbreaking discoveries.

1 Introduction

Ribonucleic acids (RNAs) are a group of macromolecules that perform a multitude of functions, acting not only as
intermediaries in the flow of genetic information, but also as key regulators and structural components. The backbone
of the central dogma contains 3 major RNA components: the messenger RNA (mRNA), ribosomal RNA (rRNA), and
transfer RNA (tRNA). The mRNA conveys genetic information from DNA to protein. The rRNA forms the core of the
ribosome, providing the catalytic activity of protein synthesis, while tRNA serves as an adaptor molecule that translates
the nucleotide sequence of mRNA into amino acid sequences.

In recent years, the discovery of numerous non-coding RNAs (ncRNAs) has expanded our understanding of RNA
functions and their impact on cellular processes [1]. Among these, microRNA (miRNA) emerged as a major class
of small regulatory RNA that modulates gene expression post-transcriptionally, playing a crucial role in various
physiological and pathological processes[2]. Small nuclear RNA (snRNA) is another type of ncRNA that, together with
proteins, forms the spliceosome complex responsible for the splicing of pre-mRNA[3]]. In addition, long non-coding
RNA (IncRNA) has been found to participate in diverse cellular processes such as chromatin remodeling, transcriptional
regulation, and RNA processing [4].

The study of RNA presents several challenges from both structural and functional perspectives. One of the main diffi-
culties in studying RNA structures arises from their dynamic nature, which makes them highly mobile in physiological
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conditions, akin to intrinsically disordered proteins[S)]. This characteristic often leads to the existence of multiple
conformations, conformational exchanges, and transient interactions that are difficult to capture using traditional
experimental techniques such as X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopyl[l6] .
Furthermore, unlike proteins, RNA molecules share much less sequence and structural similarities, complicating the
identification of homologous RNA families and the computational prediction of secondary and tertiary structures [7]].

Functionally, RNA molecules exhibit remarkable diversities, serving roles that span from catalytic activity to gene
regulation, resulting in distinct mechanisms and interactions that are often challenging to investigate experimentally. For
instance, the study of mRNA requires intricate techniques to analyze processes such as alternative splicing, RNA editing,
and mRNA decay([8H10]. Similarly, the more versatile yet less understood long non-coding RNAs (IncRNAs) also
necessitate in-depth examination to decipher their complex mechanisms|[11}[12]. The inherent difficulty in performing
experiments on RNA systems, particularly in vivo, may introduce substantial noise and lead to limited availability
of high-quality data. These factors, combined with the vast diversity of RNA molecules and their cellular functions,
highlight the pressing need for a unified and adaptable computational framework capable of systematically addressing
the challenges associated with the structural and functional study of RNA.

However, conventional experimental and computational approaches encounter obstacles when it comes to comprehen-
sively exploring the immense sequence and structural space of RNA[14H16]. The high-dimensional nature of RNA
systems surpasses the capabilities of traditional research methodologies, limiting our ability to capture the complete land-
scape of RNA. Notably, large-scale pre-train models have exhibited remarkable efficacy in addressing high-dimensional
problems in natural language processing[13117] and scientific fields such as physics[18]], chemistry[19] and protein[20],
where different "languages’ are used. The rationale of pre-training is leverage a large amount of data to learn general
features and representations that can be fine-tuned or adapted for specific tasks more efficiently. These achievements
along with the similarities between RNA and the aforementioned scenarios, suggest that by employing appropriate
mathematical descriptions for extensive data and sophiscated model architectures, the pre-train approach holds great
potential in the field of RNA.

Preliminary studies have been performed with certain success([21} [22]], but the effectiveness of these pre-trained models
were questioned. To be specific, in one recent study, the pre-train model was found to be worse than even one-hot
representation in the downstream tasks[23]]. Considering the limited datasets and inadequate model structures used in
the previous study, we believe significant more work can be done to delineate the true boundary of pre-train schemes in
the realm of RNA. Therefore, we have developed a series of context-aware deep learning models, called Uni-RNA.
Based on the well-developed BERT architecture[13], advanced techniques such as rotary embedding, flash attention,
and fused layernorm were integrated for optimal performance in terms of training efficiency and representational
capabilities. These models performed pre-training using 1 billion RNA sequences from different species and categories
(See Figure [Th). By fine-tuning Uni-RNA on a wide range of downstream tasks, including those with limited data
available, related to RNA structure and functions, we have achieved SOTA results in all of them, demonstrating the
extraordinary and omniscient ability of Uni-RNA (See Figure [Ip). Moreover, we demonstrated the model indeed
extracts useful hidden information, paved way for future in-depth applications to decipher the mysteries of life. The
advent of Uni-RNA models heralds a paradigm shift in RNA science, liberating researchers from the limitation of
traditional methods, unlocking substantial advancements by harnessing the comprehensive knowledge embedded within
the model, and demonstrating the immense potential of large-scale pre-trained models in solving the complexities of
RNA.

2 Results

2.1 Uni-RNA extract hidden structural information

In the field of RNA science, accurately predicting RNA structures, including both secondary and tertiary structures,
is of paramount importance. High-precision predictions of RNA structures form the basis for understanding RNA
functions and revealing the complex interactions between RNA and small-molecule ligands or other bio-macromolecules.
However, the expenses and difficulties in precisely characterizing RNA structures by conventional web-lab experiments
hindered the accessibility to extensive RNA structure data. To tackle these problems, numerous computational methods
have been proposed and extensively investigated[24H30]]. In the following section, we will investigate the potential of
Uni-RNA models in the prediction of RNA structures and demonstrate its superior performance.

RNA secondary structure prediction improved by Uni-RNA models. Accurate prediction of RNA secondary
structure carries broad implications, including the understanding of RNA folding mechanisms, dynamics of RNA-
protein interactions, and the development of RNA-based therapeutics. Here, we conducted experiments on established
benchmarks with the same datasets from E2Efold[31], UFold[32], and RNA-FM[33]]. By directly fine-tuning on
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Figure 1: Overview of Uni-RNA models and application in RNA science. a. The training set for Uni-RNA models
comprises sequences from five well-known RNA databases, covering both coding and non-coding RNAs. To remove
sequence redundancy, MMseqs2 clustering is employed. For expediting training and scaling up the models, Flash
attention and fused layernorm are utilized. The training strategy is similar with BERT[13]]. After pretraining, Uni-RNA
is fine-tuned on various downstream tasks, such as structure and function prediction. b. Uni-RNA outperforms previous
SOTA and one-hot encoding methods in the downstream tasks, demonstrating superior performance.

Uni-RNA(see Methods), several experiments were conducted to evaluate the performance of Uni-RNA presented in
Table T]and Figure Zh. Benchmarks of other methods were directly adopted from RNA-FM paper[33]]. Considering the
imbalance of classes, we chose macro averages of precision score, recall score, and F1-score as metrics to better evaluate
model performance, same as previous work[33]]. The Uni-RNA demonstrated outstanding performance compared to all
other methods across all metrics[[34-43]]. Notably, in comparison to the previous SOTA model RNA-FM, Uni-RNA
exhibited substantial improvements, surpassing RNA-FM by 18.3% in F1-score, 10.4% in recall score, and 30.7 % in
precision score.

Uni-RNA benefits RNA tertiary structure prediction. The tertiary structure of RNA is essential for understand-
ing the mechanisms involved in RNA-mediated processes, such as gene expression, protein synthesis and cellular
regulation[44]. Unlike the secondary structure, which primarily reveals local base pair interactions, the contact map
provides additional information in the three-dimensional space[45]. While the secondary structure can impose strict
constraints on structure modeling, the contact map offers more loose yet global constraints that can be critical for
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Figure 2: Uni-RNA’s application on RNA structure prediction tasks. We evaluated on commonly used RNA
secondary structure dataset: bpRNA-1m and PDB data. a. The bar chart compares the performance of different
methods on the test dataset, with F1-score, precision, and recall as our metrics. Uni-RNA model outperforms all
previous methods on all three metrics. b. We compared the contact maps predicted by Uni-RNA and the structures
predicted by the classical one-hot encoding method. In contrast to the commonly used one-hot encoding, the predicted
structures obtained by the Uni-RNA model better capture long-range dependency relationships.

accurate modeling. Here we represented contact map as a two-dimensional matrix where each point corresponds to the
pairwise inter-nucleotide distance in the tertiary structure. The distances were measured between the center of mass of

any two bases, and a threshold of 8 A was set.

To conduct a comprehensive evaluation of Uni-RNA’s performance in predicting RNA contact maps, we constructed a
dataset based on 658 curated high quality experimental RNA structures. Table [2]illustrates the long-range top precision
of different methods on the test set. To enable a fair comparison, we employed the same network for contact map
prediction but utilized different representation methods. Uni-RNA demonstrated a significant improvement in prediction
accuracy on the test set compared to one-hot encoding. Particularly, in several test cases, we observed that Uni-RNA
can capture the off-diagonal long range contacts where one-hot representation cannot (Figure [2b). This superior
performance can be attributed to the hidden structural and functional information extracted by the pre-trained model.
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Table 1: Uni-RNA based RNA secondary structure prediction performance. Uni-RNA extracts latent information
from billions of RNA sequences, which enables highly accurate RNA secondary structure prediction. Our model
outperforms the other 13 methods with respect to all three metrics. The benchmarks of other methods were adopted
from RNA-FM paper|33]

Methods Metric

Precision Recall F1-Score
Uni-RNA" 0.894 0.801 0.821

RNA-FM 0.684 0.725 0.694
UFold 0.607 0.741 0.654
E2Efold 0.140 0.129 0.130
LinearFold 0.561 0.581 0.550
Mfold 0.501 0.627 0.538
RNAstructure 0.494 0.622 0.533
RNAfold 0.494 0.631 0.536

CONTRAfold 0.528 0.655 0.567
SPOT-RNA 0.594 0.693 0.619
RNAsoft 0.497 0.626 0.535
MXfold2 0.519 0.646 0.558
Contextfold 0.529 0.607 0.546
Eternafold 0.516 0.666 0.563

* Uni-RNA L24 model.

Table 2: Uni-RNA performance on RNA contact map prediction. The structure information extracted by Uni-RNA
models significantly enhances the prediction accuracy, surpassing the commonly used one-hot encoding by over 20%
. The top precision metric calculates the percentage of correctly predicted contacts among the top L, L/2, and L/5
predicted contacts compared to the true contacts. The predicted contacts are ranked based on their confidence scores,
and the top L, L/2, and L/5 contacts are selected for evaluation. Furthermore, long-range evaluation refers to the
assessment of contacts where the sequence separation between two residues exceeds 24. It focuses on evaluating the
accuracy of long-range contacts specifically.

Long-Range Top Precision
L L2 L/5

Uni-RNA" 0.435 0.612 0.709
One-hot encoding 0.364  0.537 0.647

* Uni-RNA L16 model.

Methods

2.2 Uni-RNA facilitates the development of mRNA therapeutics

In the past decade, there has been a rising trend in the research and clinical development to manipulate mRNA to achieve
diverse physiological functions[46, 47]. In this section, we will explore the potential applications of the Uni-RNA
model in mRNA related tasks. Based on the evolutionary information learned from extensive RNA data, we aimed to
employ the Uni-RNA model to investigate some of the most critical dark corners within the untranslated regions(UTRs),
besides the coding regions. The results suggest our models present novel opportunities for advancing research in
mRNA-based therapy.

Ribosome load prediction based on 5’UTR sequence The sequence of 5’UTR plays a pivotal role in governing
translation efficiency. Mean Ribosome Load (MRL) is used to reflect the translational activities and protein synthesis
levels of mRNA under specific conditions. Precise prediction of ribosome load capacities based on the 5’UTR sequence
offers invaluable guidance for mRNA sequence design towards optimal protein expression outcomes, especially to go
beyond the framework of existing 5’UTR templates towards novel sequence designing. We conduct experiments on
benchmarks used in previous work[48]]. This work employed Massively Parallel Reporter Assays (MPRAS) to construct
a library comprising 280,000 gene sequences and calculated the corresponding ribosome loading. Based on those data,
we fine-tuned the Uni-RNA to predict the MRL from the 5’UTR sequences (see Methods). Besides, we also utilized
the datasets employed by RNA-FM|[33]], which include random data (Random 7600) and human data (Human 7600).
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To further validate the robustness of our approach, we conducted additional experiments involving the evaluation of
different coding sequences (CDS) replacements including EGFP and mCherry and chemically modified RNA sequences.
We conducted tests on these sets of experimental data to evaluate the performance of Uni-RNA by R?(See Figure ).
In different experiments, Uni-RNA demonstrates potent representational capabilities and achieves better results across
all tasks shown in Table 3l

Table 3: Uni-RNA performance (??) on 5’UTR sequence MRL prediction. EGFP and mCherry are two different
methods of replacing coding sequences (CDS), based on a library containing 280,000 sequences. ¥ and m W represent
two types of RNA modification. Repl and Rep2 are evaluations performed on two independent polysome profiling
experimental data. Furthermore, we conducted experiments to compare our approach with RNA-FM, using the same
dataset Random 7600 and Human 7600. Uni-RNA consistently demonstrated better prediction accuracy and robust
performance in different datasets, CDS replacing methods, and modification types.

Model EGFP mCherry Human dataset
Unmodified v m1 W
Repl Rep2 Repl Rep2 Repl Rep2 Repl Rep2 Random 7600 Human 7600
UniRNA" 0.96 0.92 0.82 0.92 0.80 0.88 087 0.86 0.91 0.85
Optimus 5-Prime 091  0.87 0.78  0.82 0.77  0.81 0.85 0.84 0.84 0.78
RNA-FM - - - - - - - - 0.85 0.79

* Uni-RNA L16 model.

EGFP; EGFP, mC;

Ugps Uz ¥ ¥, mv;m'¥y,

(/9% 0.956

Cross-lib Experiment

-4

WHAMMP2 All_data
31 R2=63 31 Ri=91

Figure 3: Uni-RNA preformance on 5’ UTRs ribosome load and APA isoform type prediction. a. Model perfor-
mance (R?) with training and testing on different 5> UTR MRL prediction datasets. Uy, Ugo, ¥1, ¥o, m' Wy, m! Uy
represent different RNA modifications. EGF P, EGF Py, mCy, mC5 represent different CDS sequences combined
with the same collection of 5"UTR sequences. b. Model performance (R?) with training and testing on different APA
isoform prediction datasets. HSPE1, SNHG6, and WHAMMP?2 represent three held out test sets. All-data stands for
randomly split test set.

Isoform percentage prediction based on 3’UTR sequence Alternative polyadenylation (APA) is a widespread
phenomenon observed in various organisms, playing a crucial role in gene expression regulation and cellular processes.
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It facilitates the generation of mRNA isoforms with different characteristics, thereby enabling precise modulation of
gene expression levels and diversification of protein functions. Here, we followed APARENT[49] to train a model
to predict the proximal APA isoform ratio for each variant 3‘UTR sequence. To assess the generalization ability
of the models, we conducted experiments on different datasets (see Methods), including 9 libraries spliting into
train, validation and test and three held-out datasets (HSPE1, SNHG6, WHAMMP?2) for addtional stand-alone tests
(See Figure [3p right). In comparison to the previous SOTA method, Uni-RNA consistently demonstrated superior
performance as shown in Table 4]

Table 4: Uni-RNA performance (R?) on isoform percentage prediction based on 3’UTR sequence. The isoform
percentage prediction task utilizes the 3°UTR sequence embeddings obtained through Uni-RNA extraction to predict
isoform abundance. The training was performed using a combined dataset comprising approximately 2.5 million
sequences from 9 libraries. To valid the robustness of our model, we did further cross-lib tests. The Total metric
represents the 122 on the all test sets combined. Mean and Min represent the average and minimum values of the 9
libs, respectively, represented by the diagonal entries in the cross-library test (Figure[3p left). The Uni-RNA model
outperforms previous SOTA on both the combined data and the individual libraries. Moreover, Uni-RNA exhibited
improved generalization capabilities on 3 independent test libraries.

9 libs 3 held-out libs
Model
Total Mean Min HSPE1 SNHG6 WHAMMP2
Uni-RNA* 091 0.81 0.63 0.72 0.45 0.63
APARENT 088 0.68 0.50 0.69 0.45 0.59

* Uni-RNA L16 model.

2.3 Uni-RNA reveals potential relationships between sequence and function

Predicting RNA functional attributes from its sequence holds special meaning in the field of RNA. Through correct
predictions of these attributes, scientists can obtain deep understanding of diverse biological mechanisms and effectively
alter and create RNA molecules for various purposes. Nevertheless, the resource-demanding and elaborate experimental
methodologies have difficulties in conducting such functional studies on a large scale, while the existing computational
approaches straggled to decode the complicated nature of RNA with limited data. Encouragingly, Uni-RNA leverages
the strength of pre-training to augment sequence representation, consequently allowing for improved performance in a
wide range of downstream tasks without additional datasets.

Cross-species splice site prediction. Splicing, a regulatory mechanism of gene expression, involves the removal of
introns and the joining of exons during precursor mRNA transcription, to produce the mature mRNA molecules. Accu-
rate identification of splice sites is critical for proper splicing, as it directly influences the integrity of subsequent protein
translation. In this study, we used Uni-RNA models to predict splice sites on mRNA sequences. To comprehensively
evaluate the model’s performance, we conducted comparative analyses with several established methods, including
DNABERTI50], Spliceator[51]], SpliceFinder[52], DSSP[53]], MaxEntScan[54], NNSplice[55], and SpliceBERT[56]].
F1-score was used as the evaluation metric, and the results are presented in Table[5] The SOTA performance of our
model demonstrates its remarkable generalization capabilities across multiple species. This can be attributed to the
power of pre-training on one billion high-quality RNA sequences from various sources.

Classification of ncRNA functional families. The ncRNAs represent a class of transcripts that do not encode proteins
but exert critical regulatory functions across diverse biological processes and diseases. Despite their significance, the
understanding of their biological functions remains highly incomplete. While certain existing methods show promise in
predicting the function of ncRNAs based on secondary structures, here we employed sequence-based approaches based
on Uni-RNA to offer a computationally efficient solution with exceptional representation capabilities for different types
of ncRNAs. We followed the work from ref[59] and evaluated the model performance on ncRNA family classification
tasks. Additionally, we examined the model’s accuracy when confronted with uncertainty regarding the start and
end positions of ncRNA sequences. This uncertainty can arise from the noises introduced during the next-generation
sequencing process, or the natural mutations. To simulate this scenario, we introduced varying amounts of boundary
noises to each sequence. The boundary noises consisted of a random number of nucleotides added to both ends of the
sequence, while maintaining the same single-nucleotide and di-nucleotide frequencies to the original sequence. We
explored noise lengths ranging from 0% to 200% of the original sequence length.
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Table 5: Uni-RNA facilitates cross-species prediction of splice sites. Efficient prediction of splice sites will be
beneficial in uncovering the intricacies of gene regulation and the molecular mechanisms of diseases. The Uni-RNA
model achieves SOTA performance on test sets from four different species, further highlighting its strong generalization
capabilities.

Methods Species

zebrafish fruitfly worm  arabidopsis

Uni-RNA“  0.9635  0.9498 0.9394 0.9362
SpliceBERT  0.9568  0.9461 0.9343 0.9361
DNABERT 0.9505  0.9307 0.9094 0.9094

Spliceator 0.935 0.929 0.916 0.929

DSSP 0.94 0.927 0.86 0.852
MaxEntScan 0.899 0.91 0.884 0.896
SpliceFinder 0. 901 0.857  0.794 0.793

NNSplice 0.743 0.762  0.635 0.648

* Uni-RNA L16 model.

Table 6: Highly accurate prediction of short non-coding RNA functions by utilizing Uni-RNA models. The
Uni-RNA model demonstrated SOTA performance compared to other methods at various levels of boundary noise. The
3-mer, 2-mer, and 1-mer methods are different approaches for sequence representation. Hibert [57], Morton [58]], and
Snake [S9] refer to three distinct types of 2D space-filling curves. EdeN[60]] and nRC[61] are two deep learning-based

architectures.
Methods Accuracy
0% boundary noise  200% boundary noise

Uni-RNA" 0.98 0.98
3-mer 0.89 0.84
2-mer 0.88 0.84
1-mer 0.87 0.81
Snake 0.82 0.70
Morton 0.82 0.68
Hibert 0.83 0.67
EdeN 0.88 0.68
nRC 0.90 0.64

* Uni-RNA L16 model.

Compared with existing methods, our model achieved SOTA performance on both noise-free and noisy data (see Table
@). Furthermore, the classification performance of the Uni-RNA model remained stable across different levels of
boundary noise (see Figure ). These results further validate the robust and excellent performance of the Uni-RNA
model, especially in the sense of extracting evolutionary information.

Prediction of RNA modification sites. Post-transcriptional RNA modifications play a crucial role in the regulation
of the epi-transcriptome across all types of RNA. Accurate identification of RNA modification sites is of paramount
importance for elucidating the functional implications and regulatory mechanisms underlying RNA molecules. In this
study, we fine-tuned the Uni-RNA model to predict RNA modification sites. Predicting the full-length RNA sequence
is of greater biological significance, yet prior approaches, constrained by their limited model capacity, struggled to
effectively handle longer RNA sequences. Uni-RNA, however, is capable of accommodating RNA sequences of varying
lengths due to its advanced model design, enabling direct prediction of modifications across full-length sequences. This
advancement provides a more comprehensive understanding of RNA modifications and their functional implications.
As to the evaluation metric, consistent with the previous studies[62]], we computed the AUROC using positive samples
and their corresponding negative samples for each modification. The results are summarized in Table[5] Uni-RNA
outperformed one-hot encoding in all 12 modification types, demonstrating superior performance.
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Figure 4: Uni-RNA models empower RNA function prediction. The classification accuracy of different methods
was evaluated by introducing boundary noise at various levels. As the level of boundary noise increased, Uni-RNA
demonstrated consistent and robust performance.

Table 7: Uni-RNA improves the accurate prediction of multiple RNA modification sites. Uni-RNA demonstrates
excellent predictive performance across 12 artificial and natural RNA modification categories, exhibiting significant
performance improvement compared to the commonly used one-hot encoding method.

Species
Am Cm Gm Tm m'A m°C mPU mbfA mfAm m'G v 1

Uni-RNA" 0.929 0.968 0.986 0.959 0954 0976 0.958 0.994 0.978 0956 0.942 0.993
One-hot encoding  0.648 0.617 0.571 0.658 0.699 0.681 0.752 0.689 0.621 0.592 0.687 0.980

* Uni-RNA L16 model.

Methods

3 Discussion

In summary, we have developed Uni-RNA, a large-scale pre-training model for RNA sequences. It has been trained on
one billion RNA sequences and demonstrated SOTA performance in various downstream tasks related to RNA structure
and function predictions. We observed that as the training data and model parameters increased, the performance
of the Uni-RNA model in downstream tasks also improved, which aligns with the observation that large-scale pre-
training enables the training of deeper models with greater predictive potential. However, when the model parameters
exceeded 400M, the performance in downstream tasks reached plateau with the current architectures and datasets. The
accurate prediction of RNA structures by Uni-RNA establishes the physical foundation for studying RNA functions.
Furthermore, its ability to predict mRNA-related tasks expedites the research and development of mRNA therapies. It’s
worth mentioning the Uni-RNA model exhibited extraordinary classification performance for different categories of
RNA, including pre-mRNA and non-coding RNA (ncRNA), indicating the Uni-RNA begins to understand the nature of
RNA molecules facilitating different biological functions. Consequently, the direct predictions of RNA function from
sequences were achieved at high accuracies, which can help researchers in exploring novel RNA mechanisms. With
future studies, we envision the Uni-RNA can help enabling efficient RNA therapy development, including ASO[63]],
SiRNA[64]], Aptamer[65] and RNA targeting small molecules[66], given more corresponding experimental data and
further training.

In the foreseeable future, the RNA research will inevitable play a more and more important role towards decrypting the
enigma of life. It is anticipated as the fast advancement of biotechniques, a surge of data in various form will continue
to emerge at an exponential rate, which calls for sophisticated and automated frameworks to gather and process to
convey valuable information and knowledge. We believe the Uni-RNA stands as a groundbreaking prototype of such
framework, as our investigation demonstrates its universal capabilities. Moreover, the large language models (LLM)
like GPT-4 have profoundly changed our life, including the scientific research, since the majority of our information and
knowledge is carried by natural languages. However, there still exists a huge gap between LLMs and biological science,
because the biological science speaks different languages mainly in amino acid or nucleotide sequences. We believe the
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Uni-RNA can serve as the nexus to bridge between the biological context and our knowledge, through techniques such
as cross modality feature alignments, to ultimately help us unravel the laws of the RNA universe.

Applications and codes will be provided via Bohrium® Apps and Bohrium® notebooks (https://bohrium.dp.tech/).
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4 Methods

4.1 Training Dataset

The development of robust and efficient pre-training models hinges upon the availability of large-scale and high-quality
data. In this study, we present a comprehensive RNA sequence database with sheer scale and high quality, serving as
the cornerstone for the success of our model.

Database Construction and Data Collection To construct this database, we embarked on an exhaustive data
collection process, aggregating RNA-related nucleic acid databases from various sources, similar to one recent seminal
work[67]]. We incorporated non-coding RNA sequences from RNAcentral[[68], nucleic acid data from NCBI’s database
(nt)[69]], and genomic data from repositories such as Genome Warehouse (GWH).[70] This extensive integration ensures
a diverse and representative collection of RNA sequences, thereby maximizing the utility and generalizability of our
database.

Data Alignment and Refinement In order to maintain consistency and facilitate downstream analyses, we aligned all
gathered sequences to a standardized DNA alphabet. We then performed length-based statistical analyses on the aligned
sequences. To ensure optimal data quality and manageability, we excluded sequences exceeding 4096 nucleotides in
length. The remaining sequences were systematically classified according to their respective origins, enabling a more
granular understanding of the data.

To further refine our database and reduce redundancy, we employed the mmseqs2 clustering algorithm [[71]. This
approach allowed us to distill our dataset into a collection of high-quality and unique RNA sequences. Following
rigorous quality control measures, we curated approximately 1 billion valid data points to formulate the database.

4.2 Model

In this work, we introduce a transformer-based architecture to unravel the underlying patterns of RNA sequences. We
devise a masked nucleic acid modeling framework to pre-train the architecture, which enables the model to learn robust
representations of the intricate biological structure.

Sequence Tokenization In this study, we encoded each nucleotide (A, G, C, T/U) as a token to facilitate the extraction
of hidden states and attention weights for individual nucleotides. We used "N" to represent other rare bases. Considering
that some RNA sequences were not converted to the RNA alphabet, during training, we transformed all "U" bases to
"T," which aligns with the common practice of converting RNA to cDNA during actual RNA sequencing. Additionally,
a "[CLS]" (classification) token and a "[SEP]" (separator) token were added at the beginning and the end of the input
sequence to Uni-RNA models.

Model Architecture Analogous to the ESM, we employ a BERT-style encoder-only transformer to model complex
dependencies among input features. As we scale the UniRNA model, we judiciously modify the number of layers,
attention heads, hidden size, and feed-forward network (FFN) hidden size Table[’gjillustrates the nuances of our proposed
architecture.

A transformer encoder layer comprises two primary components: multi-head attention and feed-forward network (FFN),
adept at capturing both local and global contextual information. The multi-head attention mechanism is responsible for
capturing different aspects of the input by computing the scaled-dot product between query ¢ € R"*% key k € R"* %
and value v € R"*9" representations, where n represents the length of a sequence and dj, represents the hidden size of
multi-head attention. The FFN consists of two fully connected layers, which enable the model to introduce complex
non-linearity to the input. Owing to the position-agnostic nature of the transformer architecture, we integrate rotary
embedding[72] to encapsulate positional information into the model.

These modules are interconnected via residual connections and layer normalization operations to facilitate seamless
information flow and gradient propagation. Equation [5|formally delineates the computational process of the transformer
encoder layer.
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Table 8: Model architecture parameters of different Uni-RNA models. To cater to the requirements of various
downstream tasks, we have trained a range of Uni-RNA models with different sizes. The table provides a detailed list of
the number of layers, embedding size, model parameter size, attention heads, and training set sequence count for the
Transformer models. Notably, the hidden size of FFN is three times of the embedding size.

Parameters
Models
Number of layers Embedding size  Attention heads Params Training data

Uni-RNA-L8 8 512 8 25M 100M

Uni-RNA-L12 12 768 12 85M 100M

Uni-RNA-L16 16 1024 16 16OM 500M

Uni-RNA-L24 24 1280 20 400M 500M
RotaryEmbedding(xz) = x ® [cos(wz), sin(wx)] (1)
¢,k v = RotaryEmbedding(q), RotaryEmbedding(k), RotaryEmbedding(v) 2)

' q/k/'l' ,
Attention(q', k',v") = softmax < v 3)
) Vi

FFN(z) =maz(0, W1 + b1) W + by 4)
Encoder Layer(x) = Norm(z + FFN(Norm(x + Attention(x,x,x)))) Q)

Implementation Details In the pursuit of enhancing the efficacy of our proposed model, we have employed the
[0-aware Flash Attention mechanism[73]] in place of the traditional MultiHead Attention. The conventional MultiHea-
dAttention, which involves multiple dot products, often suffers from reduced efficiency when dealing with elongated
sequences. Flash Attention, on the other hand, leverages the concept of tiling to minimize the number of memory reads
and writes occurring between the GPU high bandwidth memory (HBM) and the GPU on-chip SRAM. This approach
enables us to attain a substantial five-fold acceleration in the processing speed, thereby allowing efficient training.

Training Details The network is trained using a comprehensive pipeline that incorporates several essential compo-
nents, such as a robust learning rate scheduling strategy and gradient clipping mechanisms. These elements work in
synergy to promote stable convergence and mitigate potential issues pertaining to exploding or vanishing gradients. We
trained our proposed network on 128 A100. The detailed training parameters for models with different scales is show
on Table

Table 9: Training parameters for Uni-RNA.

Training Paramters

Models
Peak learning rate  Step  Dropout  Weight Decay
Uni-RNA-L8 le-4 400K 0.1 0.00
Uni-RNA-L12 le-4 400K 0.1 0.00
Uni-RNA-L16 le-4 400K 0.1 0.01
Uni-RNA-L24 le-5 300K 0.1 0.01

4.3 Downstream Task Datasets

RNA Secondary Structure Dataset The benchmark dataset is built according to Ufold[32] and RNA-FM[33]] from
two sources: (1) The RNAStralign dataset[74]], encompassing 37,149 structures across eight RNA types, represents
one of the most extensive assemblages of RNA structures within the discipline. (2) bpRNA-1m dataset[75], which has
been preprocessed by eliminating sequence similarity through an 80% sequence-identity cut-off and constraining the
maximum sequence length to less than 500. The bpRNA dataset was partitioned randomly into three distinct datasets:
one for training purposes, another for validation (referred to as VLO0), and a third for testing (referred to as TS0). To
enhance the training process, the RNAStralign dataset was combined with the training set from the bpRNA dataset,
forming the training set denoted as TRO. Considering the issue of redundancy, we chose not to use the Archivell dataset
as our test set.
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RNA Contact Map Dataset Initially, all RNA-containing structures with a resolution of < 4 A were downloaded
from the PDB|[[76] website as of March 16, 2022. To ensure data quality, we removed non-RNA fragments and structures
affected by proteins, small molecules, or DNA. After these preprocess steps, redundant structures were removed using
CD-HIT-EST[77]. The dataset was then randomly divided into training, validation, and test sets in an 8:1:1 ratio.
Subsequently, CD-HIT-EST was applied to the validation and test sets to remove redundancy based on a similarity
threshold of 0.8. This process resulted in three datasets: TRO (526), VLO (65), and TS0 (67).

5’UTR Sequence Function Prediction Dataset The benchmark dataset for predicting MRL based on the 5’UTR
is derived from massively parallel reporter assays conducted by Paul et al[48]]. The experiments document mRNA
sequences along with their corresponding mean ribosomal loads. The original sequences include: (1) A library consisting
of 280,000 gene sequences (GSM4084779) containing a randomized 5’ UTR and a constant region comprising the
coding sequence for enhanced green fluorescent protein (eGFP) and a 3° UTR. (2) A separate 5° UTR mRNA library with
the CDS for eGFP replaced by the coding sequence for mCherry. (3) mRNA sequences modified with pseudouridine(z))
and 1-methylpseudouridine(m!4)). (4) A total of 7,600 sequences are randomly sampled from the RNA-FM dataset[33],
which consists of 83,919 5’UTRs of 75 different lengths (GSM3130435). These sequences are evenly distributed across
the length categories and used as the Random 7600 test set. The remaining sequences is adopted for train set. The
Human 7600 dataset consists of 7,600 held-out real human 5’UTRs, and its length distribution aligns with that of the
Random 7600 dataset.

Alternative Polyadenylation Dataset The benchmark dataset for predicting the proximal isoform ratio is obtained
from the extensive study conducted by Bogard et al.[49]. In their research, they systematically constructed and
transiently expressed minigene libraries comprising over 3 million distinct UTR sequences. The isoform and cleavage
data were subsequently extracted from the expressed RNA. We utilize a large-scale random 3’UTR libraries as the
dataset for this task. The dataset comprised 12 distinct libraries of different sizes, with 9 libraries allocated for training
and the remaining 3 libraries (HSPE1, SNHG6, WHAMMP2) held in reserve. Specifically, during the training phase,
95% of the data from these 9 libraries (~2.5M sequences) was utilized, with 2% (~50,000 sequences) for validation,
and 3% (~80,000 sequences) set aside for testing. In the cross-lib test, we followed the methodology described in the
original study to process the library, got six merged libraries and conduct followed experiments

Splice Site Prediction Dataset The training dataset for our model is obtained from Spliceator[51], which is built
upon the G3PO+ benchmark. This dataset consists of curated, confirmed error-free splice sites from over 100 eukaryotic
species. Additionally, Spliceator provides five independent test datasets from different organisms, including vertebrates
(human and zebrafish), invertebrates (fruit fly and worm), and plants (arabidopsis). Since the training data already
includes human splice sites, we focused our evaluation on the four non-human test datasets to assess the model’s
performance in cross-species splice site prediction.

Non-coding RNA Function Analysis Dataset The benchmark datasets were constructed based on the work reported
by Cerulo et al.[59] . Starting from the original Rfam dataset, this work deleted families whose clustering was highly
correlated with sequence length and families with too few RNA sequences to ensure data quality. Additionally, to
evaluate the algorithm’s generalization capability, each Rfam class in the dataset was randomly divided into three
subsets: training (84%), validation (8%), and testing (8%). To mitigate potential bias arising from an over-representation
of highly similar homologous sequences, the protocol ensured that all sequences in the validation and test sets for each
class exhibited a normalized Hamming distance of less than 0.50 with any sequence in the training set.

RNA Modification Sites Prediction Dataset The benchmark dataset for RNA modification is derived from the
study conducted by Song et al.[[62]] The investigation involved the acquisition of a comprehensive collection of 20
epi-transcriptome profiles, generated using 15 distinct base-resolution technologies, encompassing 12 diverse types
of RNA modifications (Am, Cm, Gm, Tm, m' A, m>C,m°U, m° A, m6 Am, m"G, U, I). These profiles encompass a
wide spectrum of RNA modification data, thereby providing extensive coverage. Negative sites within the dataset were
randomly selected from the unmodified bases present in the same transcript that harbors the positive sites.

4.4 Downstream Tasks

Applying Uni-RNA in Various Downstream Tasks After pretraining, we obtain the Uni-RNA model that encodes
RNA’s latent structural and functional information. This model can be integrated into various downstream applications
through two approaches: linear probing and fine-tuning. Linear probing is a common technique in deep learning that
utilizes pretrained models for downstream tasks. During this process, the weights of the pretrained model are typically
frozen, enabling the linear layer to learn task-specific features and make predictions. It offers a straightforward and
efficient approach to transferring knowledge from pretrained models to new tasks. Fine-tuning is another approach used
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to transfer knowledge from a pretrained model to specific tasks. Unlike the linear probing strategy that freezes the entire
model, fine-tuning enables adjustment of the pretrained model’s weights to better adapt to the new task. By updating
the parameters through a smaller number of training iterations, the model can learn task-specific features and enhance
its performance on the target task. In comparison to linear probing, fine-tuning consistently yields better performance
on downstream tasks.

Uni-RNA models have been trained on billions of high-quality RNA sequences, extracting latent structural and
functional patterns. The information embedded in the Uni-RNA model is expected to benefit a range of RNA-related
tasks, such as structure prediction and biological function prediction.

RNA High-order Structure Map Prediction RNA high-order structures, such as RNA secondary structure and RNA
contact map, can be represented by a two-dimensional matrix. The secondary structure reflects hydrogen bonds in
the primary sequence, while the contact map focuses on pairwise tertiary inter-nucleotide interactions. We employ a
simple strategy for structure map prediction. The representation from Uni-RNA will be outer concatenated into 2D
feature matrix. Subsequently, the feature map is passed through two layers of ResNet’s Bottleneck block. The task can
be viewed as pixel-level classification. In the case of secondary structure prediction, each base-pair point in the 2D
matrix is assigned one of two classes: 1 for paired bases and 0 for unpaired bases. Conversely, for side-chain contact
map prediction, the distances of pairwise inter-nucleotides are divided into 20 bins. Two classes are used for distances
exceeding 20A and smaller than ZA, while for distances ranging from 2A to 2010\, 18 classes are utilized. In total, there
are 20 classes for each pairwise point.

5’UTR Sequence Function Prediction For predicting the Mean Ribosome Load (MRL) value of SUTR sequences,
we take the entire sequence as input. First, we input the sequence into Uni-RNA to obtain a sequence representation.
For the Uni-RNA-L16 model, we obtain a 1024 dims embedding. Then we apply a linear projection to reduce the
embedding dimension from 1024 to 32. The dimensionality-reduced features are then fed into 6 layers 1D residual
network and a linear layer to obtain the predicted MRL. The 1D residual network was constructed as two convolutional
layers with 3 kernel sizes followed by an InstanceNorm layer and an ELU activation at each layer. The flattened
convolution output is passed to a linear layer of with 0.2x dropout to get the final prediction.

Alternative Polyadenylation Prediction For alternative polyadenylation prediction task, we utilize Uni-RNA-L16
model to accurately predict the isoform percentage. Our prediction pipeline aligns with the model APARENT proposed
by Bogard et al.[49], with the difference being the replacement of one-hot inputs with embedding obtained by Uni-
RNA model to demonstrate the extraction capability of our model for the biological semantics of 3’UTR sequences.
Specifically, to match the one-hot-coded matrix, we apply a linear projection that reduces the dimension of the unirna
embeddings from 1024 to 32. The APARENT model is comprised of a shared model and two separate logistic
regression layers, responsible for predicting isoform abundance and cleavage distribution respectively. The shared
model is constructed from two convolutional layers as a feature encoder and two fully connected layers. The first
convolutional layer has 96 convolutional kernels with a kernel size of 8. The second convolutional layer has 128
dimensional filters covering all 96 output channels from the previous layer, with a filter width of 6. BatchNorm layers
and ReLU activation functions are applied after each convolutional layer, and a maxPool layer is applied after the first
convolutional layer. The output of the shared model is then fed into two logistic regression layers, each with a bias
weight vector indexed by the source UTR library, to derive the final prediction results.

Splice Site, RNA Modification, and Non-coding RNA Classes Prediction We consider splice site, RNA modification
and nc-RNA family classification as a sequence-level classification task. The CLS token of the sequence is fed into a
two-layer fully connected neural network, and the cross-entropy loss function is used.
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