

1 **Seasonal influenza viruses decay more rapidly at intermediate humidity in droplets**
2 **containing saliva compared to respiratory mucus**

3

4 Authors: Nicole C. Rockey,¹ Valerie Le Sage,¹ Linsey C. Marr,² Seema S. Lakdawala^{1,3*}

5 1. Department of Microbiology & Molecular Genetics, The University of Pittsburgh,
6 Pittsburgh, Pennsylvania, USA

7 2. Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg,
8 Virginia, USA

9 3. Department of Microbiology & Immunology, Emory University, Atlanta, Georgia, USA

10

11 *Corresponding author

12

13 **Abstract**

14 Expulsions of virus-laden aerosols or droplets are an important source of onward
15 respiratory virus transmission and can originate from both the oral and nasal cavity of an infected
16 host. However, the presence of infectious influenza virus in the oral cavity during infection has
17 not been widely considered, and thus little work has explored the environmental persistence of
18 influenza virus in oral cavity expulsions that may facilitate transmission. Using the ferret model,
19 we detected infectious virus in the nasal and oral cavities, suggesting that virus can be expelled
20 into the environment from either anatomical site. We also assessed the stability of two influenza
21 A viruses (H1N1 and H3N2) in droplets of human saliva or respiratory mucus over a range of
22 relative humidities. We observed that influenza virus infectivity decays rapidly in saliva droplets
23 at intermediate relative humidity, while viruses in airway surface liquid droplets retain
24 infectivity. Virus inactivation was not associated with bulk protein content, salt content, or
25 droplet drying time. Instead, we found that saliva droplets exhibited distinct inactivation kinetics
26 during the wet and dry phases at intermediate relative humidity and that droplet residue
27 morphology may lead to the elevated first-order inactivation rate observed during the dry phase.
28 Additionally, distinct differences in crystalline structure and nanobead localization were
29 observed between saliva and airway surface liquid droplets. Together, our work demonstrates
30 that different respiratory fluids exhibit unique virus persistence profiles and suggests that
31 influenza viruses expelled from the oral cavity may contribute to virus transmission in low and
32 high humidity environments.

33 **Importance**

34 Determining how viruses persist in the environment is important for mitigating
35 transmission risk. Expelled infectious droplets and aerosols are composed of respiratory fluids,

36 including saliva and complex mucus mixtures, but how influenza viruses survive in such fluids is
37 largely unknown. Here, we find that infectious influenza virus is present in the oral cavity of
38 infected ferrets, suggesting that saliva-containing expulsions can play a role in onward
39 transmission. Additionally, influenza virus in droplets composed of saliva degrades more rapidly
40 than virus within respiratory mucus. Droplet composition impacts the crystalline structure and
41 virus localization in dried droplets. These results suggest that viruses from distinct sites in the
42 respiratory tract could have variable persistence in the environment, which will impact viral
43 transmission fitness.

44 **Introduction**

45 Influenza virus presents a substantial global disease burden, having caused most of the
46 major pandemics in the last century and being responsible for seasonal outbreaks that result in
47 significant morbidity and mortality (1). Understanding how influenza viruses can transmit
48 efficiently between hosts is therefore critical to better mitigating the circulation of these viruses
49 in future pandemics and ongoing seasonal epidemics.

50 Influenza virus is spread through the expulsion of virus-containing respiratory fluid
51 aerosols or droplets that remain infectious in the environment and reach the respiratory tract of a
52 new host to initiate a new round of viral replication (2, 3). Respiratory activities, such as
53 breathing, coughing, talking, and sneezing, all produce aerosols or droplets spanning a wide
54 range of sizes that may contain infectious virus (4, 5). Many studies have indeed confirmed the
55 presence of influenza virus RNA or infectious influenza virus in aerosols expelled from infected
56 individuals (6–10). These virus-containing aerosols or droplets are comprised of respiratory
57 fluids originating from distinct parts of the respiratory tract, including the lungs, trachea, oral
58 cavity, and nasal cavity (4). Importantly, the relative levels of infectious virus emitted from
59 different parts of the respiratory tract and their environmental persistence in distinct respiratory
60 fluids are not well understood.

61 To transmit efficiently, expelled viruses must retain infectivity in the environment. The
62 impact of certain environmental factors, such as humidity and temperature, on virus persistence
63 in droplets or aerosols has been studied extensively (11–18). Work to date has demonstrated an
64 overall reduction in persistence of enveloped viruses at intermediate humidities and ambient
65 temperatures in both aerosols and droplets (13, 14, 16–18), although the inverse phenomenon has
66 been observed in some work with nonenveloped viruses (11, 18). Unfortunately, these studies

67 have primarily been conducted using laboratory-derived solutions (e.g., cell culture medium,
68 phosphate buffered saline solution), limiting the relevance of these findings in informing real-
69 world transmission scenarios.

70 Some studies have recently begun to employ physiologically relevant aerosol or droplet
71 matrices. Influenza virus has been found to maintain infectivity in aerosols and droplets
72 comprised of human airway surface liquid collected from human bronchial epithelial cell
73 cultures differentiated at an air-liquid interface, representative of respiratory fluid from the lower
74 respiratory tract, at relative humidities (RH) ranging from ~ 20% to over 90% (19, 20).

75 Similarly, a recent publication using nebulized saliva microdroplets containing human virus
76 surrogates, including bacteriophages MS2, phiX174, and phi6, observed an overall increase in
77 persistence of virus in saliva droplets at all RHs compared to water or media after 14 hours (21).
78 However, studies of other mammalian viruses in saliva have found that viruses such as murine
79 coronavirus and vesicular stomatitis virus decay rapidly at intermediate RHs (22, 23). More
80 research is clearly required to understand how different respiratory viruses retain infectivity in
81 distinct respiratory fluid matrices under a variety of environmental conditions.

82 The differences in environmental virus inactivation exhibited across different RHs,
83 viruses, and compositions may be due to various factors, including salt or protein content,
84 evaporation kinetics, and/or pH. Prior research has focused on the influence of solutes and
85 proteins on environmental virus decay (11, 15), suggesting that protein may provide a protective
86 effect at intermediate relative humidity, while salt may inactivate viruses during the wet phase of
87 droplet drying (15). The role of pH in virus inactivation has been central to recent virus
88 persistence studies, although findings are not consistent. Modeling work demonstrated that rapid
89 acidification of aerosols that can render viruses such as SARS-CoV-2 or influenza virus inactive,

90 while another publication showed SARS-CoV-2 inactivation correlated with an increase in pH at
91 high RH (24, 25). Experiments in saliva have suggested model viruses are protected by
92 carbohydrates at low RH (22) or susceptible to antiviral proteins at intermediate RH (23).
93 Despite these efforts, the mechanisms driving virus inactivation in distinct respiratory fluid fluids
94 remain largely unknown and may vary depending on virus type. A better understanding of the
95 factors governing viral persistence is important to develop more informed interventions that limit
96 respiratory virus transmission.

97 In this study, we first established whether influenza virus is present in the oral cavity of
98 experimentally infected ferrets and found substantial levels of infectious virus present in saliva.
99 Given the potential for salivary particles to mediate transmission, we examined the impact of
100 saliva on the environmental stability of influenza virus. To this end, we assessed the persistence
101 of two influenza A viruses, an H3N2 virus (A/Perth/16/2009 (H3N2); H3N2) and the H1N1
102 2009 pandemic virus (A/California/07/2009 (H1N1); H1N1pmd09), in 1 μ L droplets comprised
103 of human saliva or airway surface liquid at low, medium, and high RH (i.e., 20%, 50%, and
104 80%) and ambient temperature over a two-hour period. We observed distinct virus decay and
105 droplet morphology patterns in saliva compared to airway surface liquid. Our findings
106 demonstrate the importance of using physiologically relevant matrices when assessing
107 environmental persistence and lend insights into the mechanisms driving virus persistence in
108 different respiratory fluids. Taken together, this information can ultimately be used to help
109 inform strategies for restricting the spread of influenza viruses.

110 **Results**

111 ***Oral swabs from infected ferrets contain infectious influenza virus.*** The concentrations
112 of infectious influenza virus found in the saliva of infected individuals over time has not been

113 widely characterized. We therefore assessed the infectious virus levels in the oral cavity of
114 ferrets infected intranasally with two seasonal influenza viruses, H1N1pdm09 and H3N2.
115 Specifically, we swabbed each ferret's tongue, cheeks, hard palate, and soft palate; importantly,
116 we did not swab the back of the throat, which could include virus from the lower respiratory
117 tract. In parallel, we sampled the ferret nasal cavity by nasal wash to observe the relative amount
118 of virus present in the proximal tip of the ferret nostril.

119 Influenza virus concentrations from oral swabs followed the same trends observed in
120 nasal wash levels over the course of infection for both H1N1pdm09 and H3N2 viruses, although
121 infectious virus in oral swabs fell below the limit of detection earlier in infection for H3N2
122 infection (Fig. 1). Infectious influenza virus was consistently detected in oral swabs from
123 intranasally infected ferrets on days one through five post-infection, with levels as high as $\sim 4\text{-}$
124 \log_{10} TCID₅₀/swab. Viral titers in the nasal wash of some ferrets were as high as $5.5\text{-}\log_{10}$
125 TCID₅₀/mL on days one or two post-infection. Together, these results demonstrate that infectious
126 influenza virus is present at elevated levels in saliva within the oral cavity during infection.
127 Expulsion of influenza viruses in saliva droplets or aerosols during breathing, talking, or
128 coughing may therefore act as a source of onward transmission.

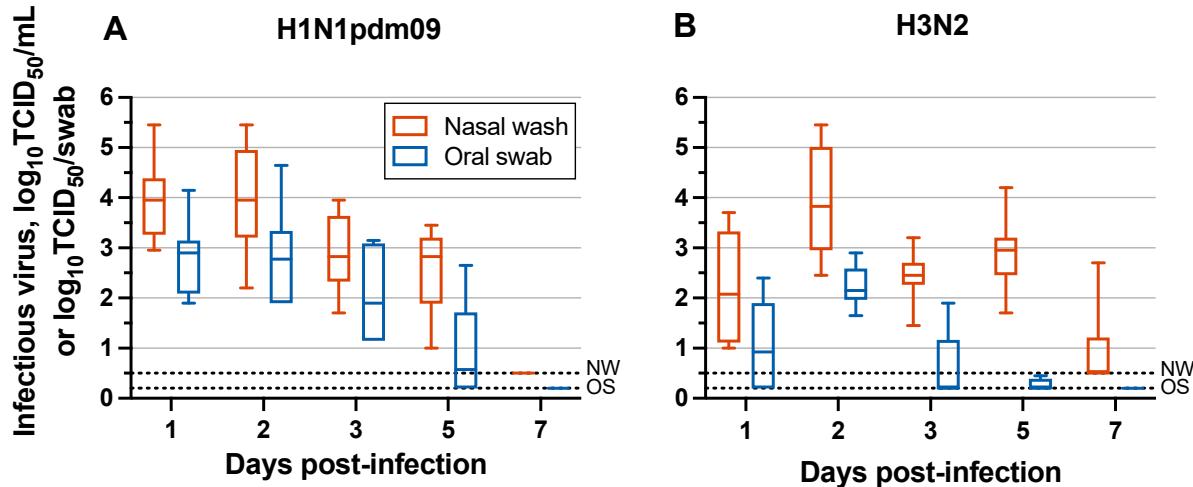


Figure 1. Infectious influenza A virus levels in the nasal (red) and oral (blue) cavities of ferrets following infection. Ferrets were infected via intranasal inoculation with (A) H1N1pdm09 or (B) H3N2. Individual replicates ($n = 8$) are included for each box and whisker plot. Dashed lines represent the limit of detection for nasal wash samples (NW) and oral swab samples (OS).

129 *Influenza A viruses decay rapidly at intermediate relative humidity in saliva droplets*
130 **but not in airway surface liquid droplets.** The presence of influenza virus in the host oral cavity
131 on multiple days in experimentally infected animals highlights the relevance of saliva in
132 transmission. However, the persistence of influenza virus in saliva has not been characterized.
133 We therefore investigated the environmental stability of two influenza A virus strains,
134 H1N1pdm09 and H3N2, in $10 \times 1 \mu\text{L}$ saliva droplets after one or two hours of exposure to 20%,
135 50%, and 80% RH and ambient temperature (i.e., $\sim 22^\circ\text{C}$) (Fig. 2 and Fig. S1). Virus decay in
136 saliva was compared to decay in airway surface liquid, which serves as a biological surrogate for
137 respiratory airway secretions. Our group has previously demonstrated reduced decay of human
138 seasonal influenza viruses in droplets and aerosols consisting of airway surface liquid as
139 compared to cell culture medium (19, 20).

140 Major trends in virus inactivation were similar for both influenza A virus strains
141 evaluated (Fig. 2). As expected, influenza viruses in airway surface liquid droplets were
142 protected from decay, never exceeding 1.1-log_{10} decay, on average, over two hours. We found
143 that influenza A virus persistence was greatest at 20% RH for both droplet compositions, with
144 maximum average decay for both strains reaching just 1-log_{10} after two hours (Fig. 2A and 2D).
145 Interestingly, we observed increased decay of influenza A virus in saliva droplets containing
146 saliva at 50% and 80% RH compared to airway surface liquid droplets (Fig. 2B – C; Fig. 2E –
147 F). At one hour of exposure to 50% RH, decay of infectious H1N1pdm09 and H3N2 in saliva
148 droplets was significantly greater than in airway surface liquid (Fig. 2B and 2E). At two hours,
149 virus decay differences for both strains at 50% RH varied significantly by droplet composition,
150 with average influenza virus degradation in saliva droplets exceeding 3-log_{10} , while virus decay
151 in airway surface liquid droplets was only $\sim 1\text{-log}_{10}$. Virus decay in saliva droplets at 80% RH
152 was intermediate, with average decay of 2.9-log_{10} and 1.7-log_{10} for H1N1pdm09 and H3N2
153 viruses, respectively (Fig. 2C and 2F). Our findings establish that influenza A virus persistence
154 in droplets is highly composition dependent. In addition, these two influenza A subtypes decay in
155 a similar manner for a given RH and droplet composition.

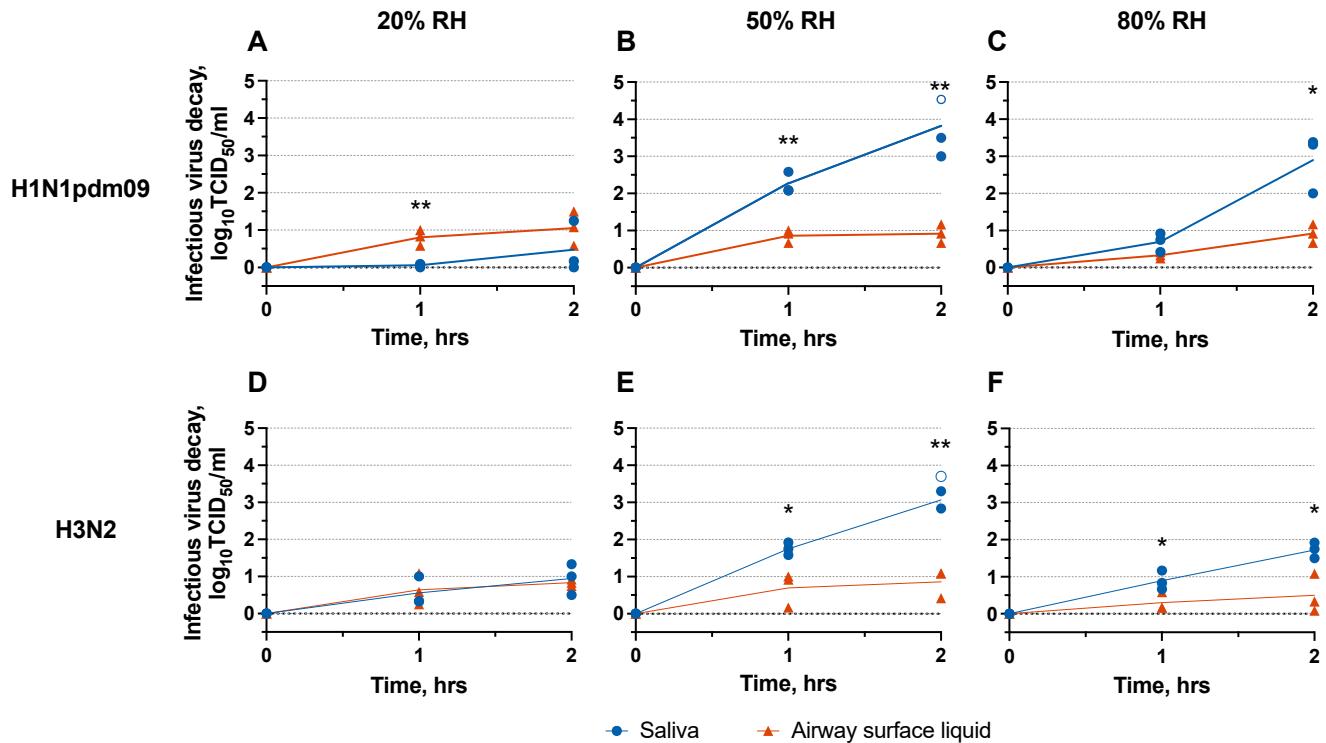


Figure 2. Reductions in infectious influenza A virus in droplets comprised of saliva or airway surface liquid. H1N1pdm09 or H3N2 \log_{10} decay at 20%, 50%, or 80% RH after one and two hours of exposure. Open circles indicate infectious virus decay beyond detection limits. Three technical replicates were conducted for three independent replicates, and the mean decay of three technical replicates is shown for each independent replicate. Unpaired t-tests were conducted to establish when influenza virus decay was significantly different between respiratory fluid droplets. * = $p < 0.05$; ** = $p < 0.005$.

156 To ensure the observed decay was not a side effect of poor virus recovery, we measured
157 RNA recovered from virus-laden droplets at 50% RH in saliva and airway surface liquid at zero
158 and one hour. Results demonstrate no significant loss in viral RNA levels over this period (Fig.
159 S2A; $p > 0.05$), suggesting that any loss of infectivity observed in our experiments is indeed a
160 result of virus inactivation in droplets (Fig. S2B). Because gene copy concentrations were similar
161 over the droplet drying period, but infectious virus levels were reduced, the gene copy to
162 infectious unit ratio increased with time (Fig. S2C). This is an important consideration when

163 using genome-based detection methods to study virus persistence, because genome copy levels
164 are likely to overestimate infectious virus levels following longer periods of environmental
165 exposure.

166 ***Influenza virus inactivation is not driven by phase, salt content, or protein***

167 ***concentration of the droplet.*** The inactivation mechanisms driving the differences in virus
168 persistence observed for distinct respiratory fluid droplets are not known. Protein concentration
169 has been suggested to impact virus decay in droplets (15); however, the airway surface liquid and
170 human saliva used in our current study have similar levels of total protein content (Table 1).
171 Therefore, differences in virus decay by droplet composition are not due to overall protein levels,
172 although specific proteins within saliva or airway surface liquid could be responsible. In
173 addition, protein partitioning (e.g., to the air-liquid interface or phase interphases within a
174 droplet) or aggregation could differ between saliva and airway surface liquid, which could also
175 contribute to the observed differences in persistence. Conductivity, a measure of dissolved ions,
176 was also assessed to establish the solute concentrations in these respiratory fluids. Human saliva
177 had lower conductivity, 3.54 mS/cm, than airway surface liquid, with a level of 16.52 mS/cm
178 (Table 1). Elevated salt (i.e., ion) concentrations have been linked to increased virus inactivation
179 (16). Here, we observed the inverse relation, suggesting that other factors were more important
180 in driving virus inactivation in saliva droplets at 50% RH.

181 Recent work has shown that acidification of droplet or aerosol pH significantly impacts
182 virus persistence (24, 25). All bulk solutions used in our droplet persistence experiments had a
183 pH that was neutral to slightly basic (Table 1), suggesting that pH levels may not be responsible
184 for the observed decay. Due to technical limitations, we did not measure pH in 1 μ L droplets
185 during drying, so we do not know how the pH might have changed during that time.

186 Additionally, the pH in small droplets may differ from that of the bulk solution (26), so we
187 cannot discern how pH might have affected virus inactivation in these experiments.

Table 1. Bulk properties of distinct respiratory fluids, phosphate buffer, and milliQ water.

Solution	Total protein mg/mL	Conductivity mS/cm	pH
Pooled human saliva	697.40 ± 30.96	3.54 ± 0.04	8.48 ± 0.02
Airway surface liquid	701.93 ± 136.45	16.52 ± 0.27	7.34 ± 0.15
Phosphate buffer saline ^a	0.00 ± 0.00	16.09 ± 0.18	7.32 ± 0.03
MilliQ water ^a	0.00 ± 0.00	0.00 ± 0.00	6.96 ± 0.62

Mean ± standard deviation of three replicate measurements is shown. Airway surface liquid measurements were conducted using airway surface liquid from three different

^aBCA protein analysis resulted in a negative value based on the standard curve. Total protein reported as 0 mg/mL.

188 Beyond salt and protein content of droplets, previous work has suggested virus
189 inactivation in droplets differs depending on whether the droplet is in the wet phase, when it is
190 still evaporating, or the dry phase, when the droplet is no longer losing water (13, 27). We
191 therefore assessed the drying time by measuring the mass of 10 x 1 µL droplets of saliva and
192 airway surface liquid containing H1N1pdm09 over time (Fig. 3) (13, 27). We also ascertained
193 the drying time of the droplets visually by identifying the time at which droplets began to
194 develop a visible white film (SI Videos S1 – S6).

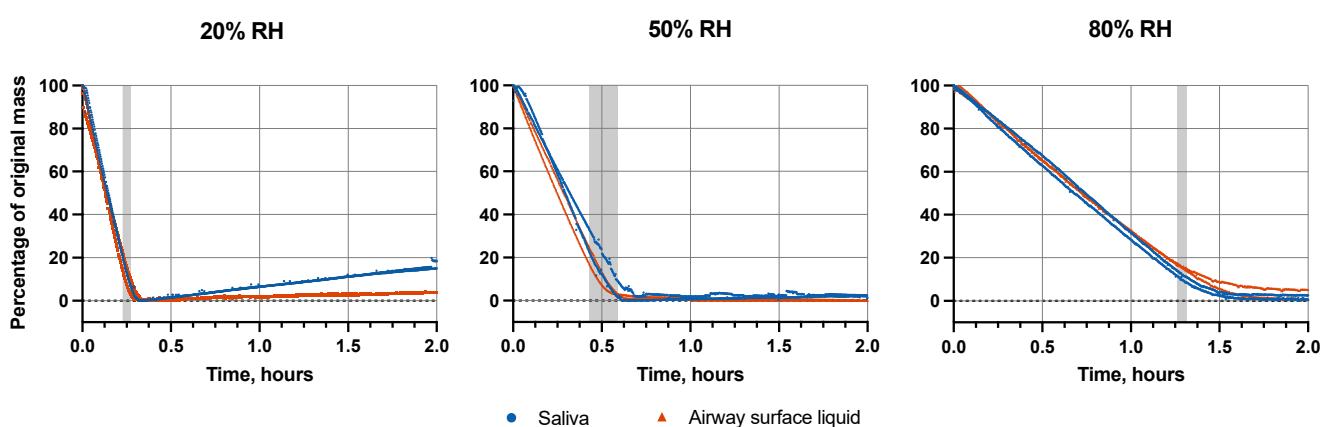


Figure 3. Change in droplet mass over time. Saliva or airway surface liquid droplets containing H1N1pdm09 were exposed to 20%, 50%, or 80% RH for two hours. Shaded regions designate the drying time. Two independent replicates are shown for each RH condition and droplet composition.

195 As expected, the drying time increased with rising RH. Evaporation kinetics were similar
196 in saliva and airway surface liquid droplets at all tested RHs (Fig. 3, Table S1). Specifically,
197 average drying times differed by at most 4.2 minutes between airway surface liquid and saliva
198 droplets for a given RH. Average drying time at 20% RH in airway surface liquid and saliva was
199 15 mins and 15.6 mins, respectively, while drying time at 50% RH was slightly greater, 28.2
200 mins for airway surface liquid and 32.4 mins for saliva. In some trials at 20% RH, droplet mass
201 reached a minimum and then gradually increased. We have observed this behavior before (27)
202 and believe it is due to uptake of water vapor by hygroscopic salts that are exposed upon drying.
203 At 80% RH, droplet mass stabilized after ~ 1.3 hours in both saliva and airway surface liquid.
204 The drying times defined by mass and visual inspection were similar. The only exception was at
205 80% RH, where droplets did not dry by observation within the two-hour exposure period. As
206 drying time across droplet matrices was similar (Fig. 3) while decay rates differed (Fig. 2), we
207 can conclude that virus inactivation is not solely a function of evaporation kinetics and that other
208 mechanisms are important.

209 ***Droplet composition influences influenza virus inactivation kinetics before and after***
210 ***drying***. To better understand influenza virus inactivation kinetics during the wet and dry phases,
211 we examined the short-term inactivation kinetics of H1N1pdm09 in droplets at 50% RH while
212 drying. Decay of influenza virus in saliva droplets after one hour at 50% RH was ~ 2-log₁₀, while
213 virus in airway surface liquid droplets exhibited significantly less overall decay, ~ 0.6-log₁₀ on
214 average (Fig. 4). Trends in saliva droplet virus decay were distinct across the wet and dry phases,

215 with degradation in each of these phases appearing to follow first-order kinetics, a model
216 commonly applied to describe virus inactivation (28). To accommodate the difference in
217 inactivation rates, we used saliva droplet drying time as the breakpoint to distinguish kinetics in
218 these two phases. Simple linear regression of the data prior to droplet drying indicates that
219 influenza virus in saliva does not decay significantly during the wet phase (slope = 0.010 ± 0.012
220 min^{-1} ; mean \pm 95% CI), but after drying, the inactivation rate increases to $0.036 \pm 0.020 \text{ min}^{-1}$.

221 In contrast to the trends observed in saliva droplets, decay in airway surface liquid
222 continued at a similar rate between the two phases, also following first-order kinetics. We were
223 not able to detect any differences in inactivation rates between the wet and dry phases for airway
224 surface liquid, likely due to the low level of inactivation observed over exposure period of one
225 hour. While decay of virus in airway surface liquid droplets was low, the virus inactivation rate
226 was significantly greater than zero, $0.010 \pm 0.0030 \text{ min}^{-1}$. Our findings confirm the protective
227 effect of airway surface liquid in comparison to saliva at intermediate RH. Additionally, they
228 highlight considerable differences in the inactivation of influenza virus in saliva during the wet
229 and dry phases and emphasize that the majority of decay at intermediate RH is driven by
230 mechanisms that occur during the dry phase.

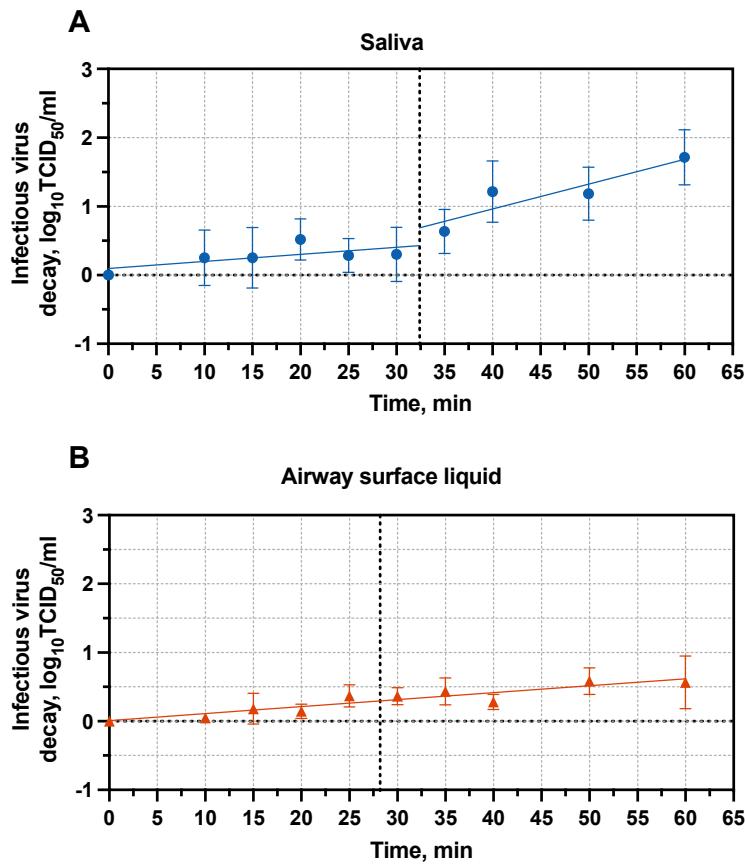


Figure 4. Inactivation kinetics of H1N1pdm09 at 50% RH in 1 μ L droplets. Droplets were comprised of (A) human saliva or (B) airway surface liquid. Three technical replicates were conducted for each independent replicate, and the mean and standard deviation of five independent replicates are shown. Simple linear regression analysis was used to generate inactivation curves. Breakpoints in inactivation curves were established by average droplet drying time from two independent replicates (Table S1) and are shown as dotted vertical lines.

231 ***Droplet composition and relative humidity influence droplet crystalline structure and***
232 ***nanobead location.*** It is possible the aggregation or interaction of viruses with other solutes in
233 droplets upon drying could impact virus inactivation. Any observed differences in the crystal
234 structure of airway surface liquid and saliva could therefore inform possible drivers of virus
235 persistence. To assess how crystal structures within droplets vary by RH and droplet type, we

236 captured microscopic images at 10x magnification of 1 μ L droplets containing H1N1pdm09
237 comprised of human saliva or airway surface liquid following a two-hour exposure to 20% RH,
238 50% RH, and 80% RH environments (Fig. 5). In line with our evaporation measurements,
239 droplets did not completely dry out at 80% RH, leading to a gelatinous solution without much
240 discernible structure. Droplets at 20% RH and 50% RH, on the other hand, exhibited extensive
241 crystalline structure. Dried airway surface liquid droplets had feather-like crystals once dry at
242 20% and 50% RH, while saliva displayed skinnier, line-like crystalline structures. These line-like
243 crystalline structures in the saliva droplets differed at 20% and 50% RH, with more densely
244 packed structures at 20% RH. In addition, a thick ring of structure was observed at the edge of
245 airway surface liquid droplets at 20% and 50% RH, referred to as a “coffee-ring” effect (i.e.,
246 movement of solutes within the droplet to the liquid-surface edge) (29, 30), while a thin coffee-
247 ring was present at the edge of saliva droplets at 20% and 50% RH.

248

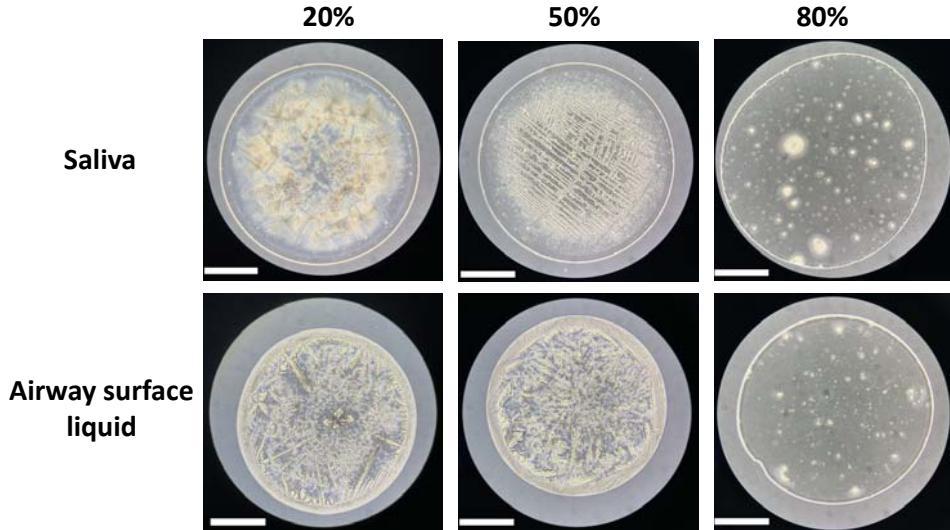


Figure 5. Bright field images of droplets comprised of human saliva or airway surface liquid containing H1N1pdm09 virus after exposure to 20%, 50%, and 80% RH for two hours. Images

were taken at 10x magnification. Scale bars, 500 μ m.

249 The differences in crystal structure formed at variable RH could play a role in virus
250 persistence if virus interaction or incorporation with these crystal structures impacts inactivation.
251 In situ virus particle visualization in droplets presents considerable challenges because of the
252 small size of virions. We therefore used fluorescent nanobeads similar in size to influenza virions
253 as a proxy for virus particles; these beads have a strong fluorescent signal that is easily detectable
254 using standard fluorescence microscopy techniques. In both respiratory fluids, nanobeads
255 clustered around the outer rim of the droplet upon drying, regardless of RH (Fig. 6, Fig. S3). At
256 80% RH, the coffee-ring distribution was more dispersed than at 20% RH and 50% RH. This is
257 likely due to the fact that the droplets had not completely dried by observation, leading to a
258 gelatinous solution lacking in crystalline structures that would allow for nanobead colocalization.
259 At 20% RH and 50% RH, extensive nanobead accumulation in the airway surface liquid droplets
260 was also observed in the interior of the droplet, where beads colocalized with crystalline
261 structures. To a lesser extent, this phenomenon was also observed in saliva. While the nanobeads
262 in the coffee-ring of the airway surface liquid droplets coincided with the thick crystalline
263 complex located around the perimeter of the droplet, the nanobeads in saliva droplets did not
264 appear to collocate with crystalline structures in the coffee-ring, but rather collocated with the
265 thin region around the perimeter of the droplet that appeared to be free of any crystalline
266 structures. Additional work to identify exactly which solutes or proteins are found in these
267 regions of the different droplets will be beneficial to uncovering potential interactions of virions
268 and particles that could play an important role in virus inactivation. Together, these data indicate
269 that distinct respiratory fluids exhibit composition-dependent differences that likely influence
270 influenza virus localization, interactions, and stability.

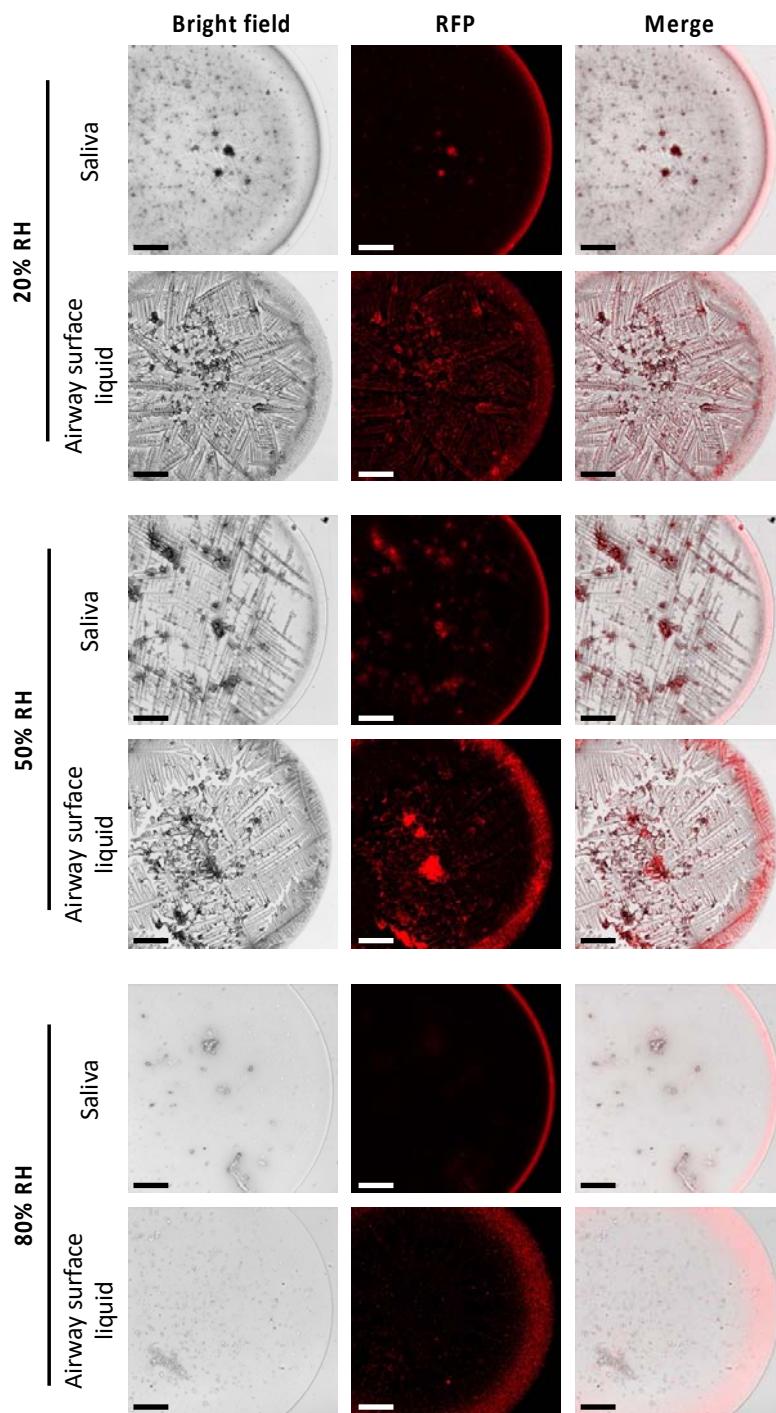


Figure 6. Fluorescence images of droplets comprised of human saliva or airway surface liquid with 100 nm fluorescent nanobeads (1:1000 dilution) after drying at 20%, 50%, or 80% RH for two hours. Images were taken at 10x magnification. RFP = red fluorescence protein. Scale

bars, 200 μ m.

271

272 **Discussion**

273 Little work to date has looked at infectious influenza virus levels present in the oral
274 versus nasal cavities of infected hosts over time, despite the fact that respiratory fluid particles
275 composed of saliva could contribute to onward spread. Limited clinical work has identified
276 influenza virus nucleic acid or antigen in oral specimens (31–33). Another study focused on
277 culture-based detection of influenza in humans did consistently find nose and throat samples
278 positive for infectious virus (34). Here, we consistently detected infectious virus in oral swabs, as
279 opposed to oropharyngeal swabs, sampled from ferrets during influenza A virus infection. Our
280 findings confirm that influenza virus present in the oral cavity of an infected host is likely to be
281 infectious, lending experimental evidence for the possibility of onward transmission from both
282 nasal and oral cavity expulsions. Future work focused on the quantity, size distribution, and
283 composition of emissions from each cavity is needed to ascertain the relative contribution of
284 each anatomical site to virus-laden particles in the environment.

285 In this study, we also compared the environmental persistence of influenza virus in
286 droplets of saliva versus airway surface liquid, the latter being representative of mucus-
287 containing respiratory fluid. We demonstrated that two human seasonal influenza A virus strains,
288 H1N1pdm09 and H3N2, are more susceptible to decay at midrange humidity in saliva as
289 compared to in airway surface liquid. Influenza virus degradation in airway surface liquid
290 droplets was similar to the levels observed in previous studies from our laboratory (19). Recent
291 work investigating bacteriophage persistence in saliva microdroplets (i.e., particles ranging from
292 \sim 30 to \sim 600 μ m in diameter) deposited on a glass surface demonstrated robust stability, with

293 three different bacteriophages decaying by at most $1.5 \cdot \log_{10}$ after 14 hours over a broad range of
294 humidities (21). Phages exhibited more decay in a buffer solution and water compared to saliva
295 at all RHs, the inverse of what we observed here. Our use of larger droplet sizes (~ 1.3 mm),
296 distinct viruses, and/or dissimilar saliva sources could explain the differences observed, although
297 further investigation is required. On the other hand, work with vesicular stomatitis virus in $2 \mu\text{L}$
298 saliva droplets at variable RH resulted in the same U-shaped trend in virus decay that we
299 observed with influenza virus in saliva (23). Murine coronavirus in saliva aerosols also exhibited
300 reduced decay at 20% RH compared to at 50% or 80% RH (22). Taken together, these
301 observations suggest there may be substantial differences in virus fate depending on respiratory
302 fluid composition, RH, and droplet or aerosol size. Future work addressing these distinctions,
303 specifically identifying the composition of different sized respiratory particles (35), is needed to
304 accurately define transmission risks from viruses in the environment.

305 By more carefully examining the kinetics of droplet drying and virus decay in saliva and
306 airway surface liquid, we found that while both fluids demonstrated similar drying times, there
307 were distinct differences in influenza virus persistence patterns. At midrange humidity, virus in
308 saliva droplets exhibited minimal inactivation during the wet phase, but upon drying, decay
309 increased significantly. In contrast to virus in saliva, virus decay occurred at sustained, low
310 levels in airway surface liquid regardless of droplet phase. From these data, we cannot be certain
311 that virus in airway surface liquid does not exhibit a shift in inactivation kinetics following
312 drying; rather the overall virus reductions were too low for us to dependably detect a change.
313 Distinct inactivation trends in different phases of droplet drying have also been observed for
314 influenza and other respiratory viruses in cell culture medium, although the trends are not
315 consistent (13, 27). The decay rates we detected for influenza virus in airway surface liquid and

316 saliva droplets during the dry phase were elevated compared to those from a recent study for
317 influenza virus in cell culture medium (27), which could be due to different droplet composition
318 and/or the timeframe measured. The differences we observed in virus inactivation between the
319 wet and dry phase of saliva droplets underscore the importance of the virus' microenvironment
320 in understanding the mechanisms governing virus persistence. Additionally, our results highlight
321 the need to study virus persistence in physiologically relevant solutions, as different matrices
322 clearly exhibit altered trends in virus decay.

323 Many factors have been proposed to drive environmental virus decay in droplets or
324 aerosols, but the true causes of inactivation remain unknown. Yang and Marr showed reduced
325 degradation of influenza virus in droplets with added protein at intermediate RH compared to
326 those without protein (15). Increased salt concentrations in aerosols have correlated to increased
327 inactivation of Langat virus but protection of poliovirus and T7 bacteriophage (11). Our work
328 provides additional insights; despite similar bulk protein levels across respiratory solutions,
329 influenza virus decay was strikingly distinct between airway surface liquid and saliva droplets. In
330 addition, the reduced salt concentrations in saliva as compared to airway surface liquid indicate
331 salt content does not explain the inactivating effect on influenza virus here, though it is possible
332 the differences in salt concentration from saliva to airway surface liquid were not sufficient to
333 significantly affect virus persistence. Indeed, Benbough et al. investigated the impact of
334 differences in salt content on the order of 50 ppt (11); saliva and airway surface liquid only had
335 differences of ~ 8 ppt. Our findings indicate bulk protein or salt content concentrations alone are
336 unlikely to have driven our virus inactivation results.

337 The exact composition of chemicals and proteins present in saliva and airway surface
338 liquid, however, could impact virus persistence. Specifically, the increased virus decay observed

339 in saliva could be due to the presence or absence of constituents with protective or antiviral
340 properties that differ from those in airway surface liquid. Previous work has described anti-
341 influenza virus activity in saliva acting by hemagglutination inhibition and virus neutralization
342 (36–38). This research identified specific antiviral salivary components, including protein-bound
343 sialic acid, salivary scavenger receptor cysteine-rich protein (gp-340), and gel-forming mucin 5B
344 (MUC5B), that display antiviral properties (36, 37, 39). A recent study focused on vesicular
345 stomatitis virus decay in saliva provided evidence for extensive antiviral protein-mediated decay
346 in droplets at intermediate RH that may be partially associated with lysozyme activity (23). The
347 protective and antiviral factors comprising airway surface liquid have not been as well-studied,
348 although proteomic analysis of airway surface liquid identified several dominant mucins, with
349 MUC5B being the most abundant (40). A comparative analysis of proteins in distinct respiratory
350 fluids would prove useful in characterizing constituents in these solutions with protective or
351 antiviral activity that may impact environmental virus persistence.

352 How these specific antiviral components of saliva play a role in the distinct patterns of
353 influenza virus decay observed in droplets at various RHs is currently unclear. Their potential
354 presence does not explain the reduced decay measured in saliva at 20% RH in our study, unless
355 more rapid evaporation of droplets at low RH resulted in reduced activity or interactions with
356 virus prior to and after dehydration. Interestingly, our controls of virus suspended in bulk saliva
357 solution at ambient temperature resulted in little to no reduction in infectious virus over the
358 experimental period (Fig. S4). This suggests that the concentrations of antiviral constituents in
359 bulk saliva were not sufficient alone to extensively reduce influenza virus infectivity during this
360 time period and that RH-mediated evaporation changes in small droplet volumes contribute
361 significantly to decay.

362 The different crystalline structures we observed in droplets and the corresponding virus
363 associations with those structures (or with other factors within them) could impact virus
364 inactivation in the dry phase. Indeed, we noted that the morphology of dried droplets and
365 distribution of 100 nm nanobeads, a proxy for influenza virus particles, differed considerably
366 across RHs and droplet compositions. Huang et al. previously described a relationship between
367 the coffee-ring effect and virus persistence, demonstrating that for different media-based droplet
368 solutions, a thicker coffee-ring upon drying was correlated with less overall decay of the
369 commonly used surrogate virus bacteriophage phi6 (29). In contrast, when spiking vesicular
370 stomatitis virus and lysozyme, an antiviral protein, into saliva droplets, Kong et al. observed
371 increased colocalization of virus and lysozyme in the coffee-ring of evaporated saliva droplets at
372 50% RH compared to 20% RH; this was hypothesized to explain the increased virus decay
373 observed at intermediate RH (23). While we observed the thickest coffee-ring was associated
374 with dried airway surface liquid droplets and their viral persistence, virus-containing saliva
375 droplets at 20% RH exhibited a minimal ring but viruses retained infectivity. Additionally, the
376 spatial distribution of our fluorescent nanobeads generally followed the coffee-ring effect,
377 although nanobeads were observed throughout the airway surface liquid droplets in complexes
378 that could be proteinaceous or solute-derived, particularly at 50% RH. Clearly the significance of
379 the coffee-ring of solutes may vary depending on the matrix composition and virus used.
380 Furthermore, not all droplets undergo the coffee-ring effect upon drying, and perhaps these
381 differences in particle colocalization explain the differences in influenza inactivation observed in
382 airway surface liquid and saliva droplets at variable RH. It is important to note that the
383 colocalization observed in this study and in other work does not confirm interactions of these
384 constituents in dried droplets. Future work characterizing the interactions between virions and

385 antiviral or protective constituents in distinct respiratory fluid droplet matrices will be critical to
386 establishing the mechanisms driving inactivation during the droplet's dry phase.

387 While we have established important differences in influenza virus persistence in droplets
388 comprised of distinct respiratory fluids, our work has limitations. We studied influenza virus
389 persistence in 1 μ L droplets, which are large (i.e., $\sim 1240 \mu\text{m}$ in diameter) compared to the range
390 of aerosol and droplet sizes that has been measured during respiratory activities (4). Past work
391 with influenza virus has shown similar stability trends in aerosols and droplets (19), however we
392 cannot be certain the results we have observed in 1 μ L droplets will hold in smaller droplets or
393 aerosols. Future research efforts should focus on representative droplet and aerosol particle sizes
394 using relevant respiratory fluids, like those used in this work, to ensure our findings are
395 generalizable across a range of particle sizes. In addition, while our work holds for the two
396 seasonal influenza A viruses assessed, persistence in respiratory fluids should be assessed for
397 other strains and additional important respiratory viruses, particularly for those with distinct
398 genome types and structures, including rhinoviruses, adenoviruses, and coronaviruses.

399 Environmental persistence of influenza viruses is hypothesized as one possible factor
400 contributing to sustained virus transmission in temperate regions during winter months (41, 42).
401 Our findings could help explain these seasonal trends. If onward transmission of influenza is
402 driven by aerosols and droplets predominantly comprised of saliva, then the decreased
403 persistence of influenza at midrange humidity would be in line with reduced transmission
404 observed in summer months, when indoor RH typically ranges from 40% to 60% RH (41).
405 Increased stability of influenza virus in saliva droplets at low RH would be consistent with
406 sustained transmission in winter months, when indoor RH is usually between 10% and 40% (41).
407 While our findings of influenza persistence in saliva align with observed seasonal trends, the

408 ubiquitous survival of influenza virus in airway surface liquid does not. Additional research
409 characterizing the relative proportion of different respiratory fluids in virus-laden aerosols or
410 droplets contributing to onward transmission is needed to understand whether environmental
411 persistence plays a significant role in influenza virus seasonality. In addition, characterization of
412 the aerosol size distribution expelled by the mouth versus the nose would help inform the use of
413 correct aerosol sizes and provide insight into the relative composition of aerosols from these
414 cavities. This work has important implications for developing robust interventions to mitigate
415 transmission during peak periods of influenza virus illness and spread.

416

417 **Materials and Methods**

418 *Influenza virus stocks and quantification.* Biological influenza virus
419 A/California/07/2009 (H1N1pdm09) and recombinant influenza virus A/Perth/16/2009 (H3N2)
420 were used in this study as previously described (20). Virus propagation was conducted by
421 growing 1:50,000 CP1 virus stocks on confluent Madin-Darby canine kidney (MDCK) cells,
422 kindly provided by Dr. Kanta Subbarao, in infection medium (Eagles' Minimum Essential
423 Medium (MEM) with L-glutamine (Lonza, Cat. No. BE12-611F) containing 2x antibiotic-
424 antimycotic (Gibco, Cat. No. 15240062), L-glutamine (Lonza, Cat. No. BE17-605E), and TPCK
425 trypsin (Worthington-Biochem, Cat. No. LS003750)) at 37°C. Virus was harvested after
426 significant cytopathic effect was observed. Cellular material was removed through centrifugation
427 at 2,000 x g for 10 minutes at 4°C. The H3N2 virus stock was concentrated through a 30%
428 sucrose cushion to increase the detectable range of virus decay in droplet experiments by
429 ultracentrifugation at 24,000 x rpm for 1.5 hours at 4°C after propagated virus was harvested
430 from cells. Following ultracentrifugation, H3N2 virus was resuspended in infection medium and
431 vortexed vigorously. Virus stocks were stored in aliquots at -80°C until use. Infectious virus
432 concentrations were quantified using the tissue culture infectious dose 50 (TCID₅₀) Spearman
433 Karber method, as previously described (43).

434 *Animal ethics statement.* Ferret experiments were conducted in a biosafety level 2
435 facility at the University of Pittsburgh in compliance with the guidelines of the Institutional
436 Animal Care and Use Committee (approved protocol 22061230). Animals were sedated with
437 isoflurane following approved methods for all nasal washing and oral swabbing.

438 *Animal work.* Ferrets were infected intranasally with ~ 10⁶ TCID₅₀/500 µL of influenza
439 virus (H3N2 or H1N1pdm09), 250 µL administered into each nostril. Ferret nasal cavities and

440 oral cavities were sampled for influenza virus on days 1, 2, 3, 5, and 7 post-inoculation.
441 Specifically, ferrets were anesthetized with isoflurane, and Floq Swabs (Copan, Cat. No.
442 525CS01) were used to swab each infected ferret's hard and soft palate, cheeks, and tongue.
443 Swabs were immediately placed in 500 μ L Eagles' Minimum Essential Medium (MEM) with L-
444 glutamine (Lonza, Cat. No. BE12-611F) containing 2x antibiotic-antimycotic and L-glutamine.
445 Following oral swab collection, nasal washes were conducted by collecting 1 mL Dulbecco's
446 phosphate-buffered saline (DPBS; Gibco, Cat. No. 14190250) through the ferret's nasal cavity
447 and collecting flushed nasal solution. Oral swab and nasal wash samples were stored at -80°C
448 until TCID₅₀ analysis.

449 ***Bulk respiratory fluid analyses.*** The total protein concentration in each respiratory
450 solution was determined by the bicinchoninic acid assay (BCA; Thermo Scientific, Cat. No.
451 23225), using bovine serum albumin (Thermo Scientific, Cat. No. 23210) as the protein standard.
452 Conductivity, total dissolved salt, salinity, and pH were quantified with a field probe
453 (ThermoFisher, Cat. No. 13-643-124).

454 ***Droplet generation.*** Pooled human saliva (Innovative Research, Cat. No. IR100044P) or
455 airway surface liquid (details of respiratory fluids provided below) was used for virus droplet
456 solutions. In each independent experiment, virus stocks were diluted 1:10 into each droplet
457 solution. 10 x 1 μ L droplets of each diluted suspension were deposited on polystyrene material
458 (6-well plates, Thermo Scientific, Cat. No. 140675) and exposed to ambient temperature and
459 variable RH (20%, 50%, or 80%) for one hour or two hours in a controlled environmental
460 chamber (Electro-Tech Systems, 5532 Series). A Hobo Temperature and Humidity Data Logger
461 (Onset, Cat. No. UX100-011) was used to monitor the temperature and RH for the duration of
462 each experiment (Fig. S2). After the exposure period, droplets were resuspended in 500 μ L of

463 MEM with L-glutamine and immediately stored at -80°C until analysis. Droplets were also
464 generated and collected at zero hours. Three independent replicates were completed with
465 technical triplicates conducted for each RH condition and droplet composition. Control samples
466 of the bulk droplet solution were collected at zero and two hours to ensure no significant
467 influenza virus occurred.

468 ***Respiratory fluids.*** Pooled human saliva was processed as specified by Innovative
469 Research. Briefly, saliva samples were stored at -80°C upon collection and pooled by thawing
470 samples and combining them. The pooled solution was then passed through a cheese cloth before
471 aliquoting and freezing at -80°C until purchase. Details regarding the number of samples and
472 information about saliva donors were not disclosed.

473 Human bronchial epithelial (HBE) cultures were grown at the air-liquid interface as
474 previously described (19). Airway surface liquid was collected periodically from the air-liquid
475 interface by adding 100 – 150 µL phosphate buffered saline to wells, incubating cells for 5 min
476 at 37°C, and harvesting the solution following incubation. Airway surface liquid was collected
477 from HBE cultures from multiple donor patients to capture potential heterogeneity in viral
478 persistence. Specifically, airway surface liquid droplet suspensions used in each independent
479 replicates were from a different donor HBE culture. Five different HBE cultures were used in
480 influenza virus persistence work (deidentified culture numbers: 0277, 0284, 0302, 0304, and
481 0305), and each independent replicate was performed in triplicate.

482 ***Examination of droplet drying kinetics.*** 10 x 1 µL droplets comprised of virus solutions,
483 generated as described above using H1N1pdm09 virus in either airway surface liquid or saliva,
484 were deposited on a 35 mm x 10 mm polystyrene petri dish (Falcon, Cat. No. 351008) and
485 placed on a microbalance (Sartorius Cubis I, Model MSE3.6P, readability = 0.0010 mg) within

486 the environmental chamber. The chamber was set at 20%, 50%, or 80% RH. The glass enclosure
487 of the microbalance was removed to ensure droplets were exposed to the desired RH within the
488 chamber. Droplet mass was recorded every 10 seconds for two hours. The time to droplet drying
489 was determined by assessing the point at which the droplet mass left the linear phase of
490 evaporation. Two independent replicates were conducted for each RH condition and droplet
491 composition. Images of the droplets were taken every 10 seconds to visually observe changes in
492 droplet morphology and drying and are available in supplemental videos S1 – S6. While the
493 microbalance was zeroed prior to each experiment, balance sensitivity immediately after droplet
494 addition often resulted in droplet masses dropping below zero. In these cases, the minimum mass
495 achieved over the two-hour experimental period was assumed to be the zeroed mass for
496 calculations of percentage original mass. This had no impact on the drying time, which was only
497 dependent on when the rate of mass loss diverged from the droplet's linear evaporation phase.
498 The percentage of original mass, shown in Fig. 3, was determined using the following equation:

$$499 \% \text{ original mass} = \frac{m_t}{m_0} \cdot 100\%$$

500 Where the initial droplet mass and droplet mass at time t were m_0 and m_t , respectively.

501 **Short-term inactivation kinetics.** $10 \times 1 \mu\text{L}$ droplets comprised of H1N1pdm09 diluted
502 1:10 in human saliva or airway surface liquid were deposited on 6-well cell culture plates.
503 Technical triplicates were carried out for each of five independent replicates. Droplets were
504 collected at 0, 10, 15, 20, 25, 30, 35, 40, 50, and 60 mins following exposure to 50% RH in the
505 environmental chamber. RH and temperature were logged with a Hobo Temperature and Data
506 Logger. One droplet exposure time was conducted at a time, and sample exposure times were
507 randomized. First-order decay was used to fit the data by the following equation:

508

$$\log_{10} \left(\frac{N_t}{N_0} \right) = kt$$

509 Where N_0 and N_t are the influenza virus concentrations in droplets at time zero and time t ,
510 respectively, and k represents the inactivation rate constant.

511 ***RNA recovery in droplets after drying.*** Experiments were conducted before and after
512 droplet drying to ensure droplet recovery was the same regardless of droplet desiccation state. 10
513 x 1 μ L droplets containing H1N1pdm09 diluted 1:10 in MEM or respiratory fluid were deposited
514 on 6-well tissue culture plates as described above. Droplets were collected following exposure to
515 50% RH for zero and one hour. Three independent replicates were conducted with each droplet
516 type. Droplets were collected in 500 μ L MEM and stored at -80°C until extraction. RNA
517 extractions were carried out with the QIAamp Viral RNA Mini Kit (Qiagen, Cat. No. 52904)
518 following the standard extraction protocol. Extracts were eluted in 60 μ L nuclease-free water and
519 stored at -80°C until RT-qPCR analysis. RT-qPCR targeting the matrix gene (primer and probe
520 sequences in Table S2; modified from previously published primers/probe (44)) was performed
521 using the BioRad iTaq Universal Probes One-Step Kit (BioRad, Cat. No. 1725140).
522 Thermocycling was performed on a BioRad CFX Connect Real-Time PCR Detection System
523 (BioRad, Cat. No. 1855201) with the following cycle settings: reverse transcription at 50°C for
524 10 min, initial denaturation at 95°C for 2 min, 40 cycles of denaturation and annealing/extension
525 at 95°C for 10 sec and at 60°C for 20 sec, respectively. In vitro transcribed RNA of the full-
526 length matrix gene was used as the standard.

527 ***Bright field microscopy of dried droplet structure.*** To visualize droplet morphology after
528 drying, 1 μ L droplets comprised of virus solutions, generated as described above using
529 H1N1pdm09 virus in either airway surface liquid or saliva, were deposited on polystyrene
530 chamber slides (Ibidi, Cat. No. 80826) and exposed to 20%, 50%, or 80% RH for two hours at

531 ambient temperature. Droplets were immediately visualized using an inverted microscope
532 (Olympus, Model CKX53) at 10x magnification.

533 ***Nanobead visualization in dried droplets.*** 100 nm carboxylate-modified, fluorescent,
534 polystyrene nanobeads (Invitrogen, Cat. No. F8801) were sonicated for 10 min and subsequently
535 spiked into airway surface liquid or saliva at a final 1:1000 dilution. 1 μ L droplets from these
536 solutions were then generated on polystyrene chamber slides. Droplets were immediately placed
537 in the environmental chamber and exposed to 20%, 50%, or 80% RH for two hours. The
538 chamber was kept dark during the exposure. Following the two-hour exposure, fluorescent
539 nanobeads in droplets were visualized using an inverted fluorescence microscope (Olympus,
540 Model IX73P2F) at 10x magnification. Saliva and airway surface liquid droplets without
541 nanobeads were used as negative controls.

542 ***Statistical analyses.*** All statistical analyses were conducted in Prism Version 9.2.0.

543 **Acknowledgments**

544 This work was funded in part with Federal funds from the National Institute of Infectious
545 Diseases, National Institutes of Health, Department of Health and Human Services, under
546 Contract No. 75N93021C0015 and the FluLab, Mitigate Flu Project. We thank Dr. Rachel Duron
547 and Lakdawala laboratory members for critical review and feedback.

548 **References**

549 1. Troeger CE, Blacker BF, Khalil IA, Zimsen SRM, Albertson SB, Abate D, Abdela J,
550 Adhikari TB, Aghayan SA, Agrawal S, Ahmadi A, Aichour AN, Aichour I, Aichour
551 MTE, Al-Eyadhy A, Al-Raddadi RM, Alahdab F, Alene KA, Aljunid SM, Alvis-Guzman
552 N, Anber NH, Anjomshoa M, Antonio CAT, Aremu O, Atalay HT, Atique S, Attia EF,
553 Avokpaho EFGA, Awasthi A, Babazadeh A, Badali H, Badawi A, Banoub JAM, Barac A,
554 Bassat Q, Bedi N, Belachew AB, Bennett DA, Bhattacharyya K, Bhutta ZA, Bijani A,
555 Carvalho F, Castañeda-Orjuela CA, Christopher DJ, Dandona L, Dandona R, Dang AK,
556 Daryani A, Degefa MG, Demeke FM, Dhimal M, Djalalinia S, Doku DT, Dubey M,
557 Dubljanin E, Duken EE, Edessa D, El Sayed Zaki M, Fakhim H, Fernandes E, Fischer F,
558 Flor LS, Foreman KJ, Gebremichael TG, Geremew D, Ghadiri K, Goulart AC, Guo J, Ha
559 GH, Hailu GB, Haj-Mirzaian A, Haj-Mirzaian A, Hamidi S, Hassen HY, Hoang CL,
560 Horita N, Hostiuc M, Irvani SSN, Jha RP, Jonas JB, Kahsay A, Karch A, Kasaeian A,
561 Kassa TD, Kefale AT, Khader YS, Khan EA, Khan G, Khan MN, Khang Y-H, Khoja AT,
562 Khubchandani J, Kimokoti RW, Kisa A, Knibbs LD, Kochhar S, Kosen S, Koul PA,
563 Koyanagi A, Kuate Defo B, Kumar GA, Lal DK, Lamichhane P, Leshargie CT, Levi M,
564 Li S, Macarayan ERK, Majdan M, Mehta V, Melese A, Memish ZA, Mengistu DT,
565 Meretoja TJ, Mestrovic T, Miazgowski B, Milne GJ, Milosevic B, Mirrakhimov EM,
566 Moazen B, Mohammad KA, Mohammed S, Monasta L, Morawska L, Mousavi SM,
567 Muhammed OSS, Murthy S, Mustafa G, Naheed A, Nguyen HLT, Nguyen NB, Nguyen
568 SH, Nguyen TH, Nisar MI, Nixon MR, Ogbo FA, Olagunju AT, Olagunju TO, Oren E,
569 Ortiz JR, P A M, Pakhale S, Patel S, Paudel D, Pigott DM, Postma MJ, Qorbani M, Rafay
570 A, Rafiei A, Rahimi-Movaghar V, Rai RK, Rezai MS, Roberts NLS, Ronfani L, Rubino S,

571 Safari S, Safiri S, Saleem Z, Sambala EZ, Samy AM, Santric Milicevic MM, Sartorius B,

572 Sarvi S, Savic M, Sawhney M, Saxena S, Seyedmousavi S, Shaikh MA, Sharif M, Sheikh

573 A, Shigematsu M, Smith DL, Somayaji R, Soriano JB, Sreeramareddy CT, Sufiyan MB,

574 Temsah M-H, Tessema B, Tewelde medhin M, Tortajada-Girbés M, Tran BX, Tran KB,

575 Tsadik AG, Ukwaja KN, Ullah I, Vasankari TJ, Vu GT, Wada FW, Waheed Y, West TE,

576 Wiysonge CS, Yimer EM, Yonemoto N, Zaidi Z, Vos T, Lim SS, Murray CJL, Mokdad

577 AH, Hay SI, Reiner RC. 2019. Mortality, morbidity, and hospitalisations due to influenza

578 lower respiratory tract infections, 2017: an analysis for the Global Burden of Disease

579 Study 2017. *Lancet Respir Med* 7:69–89.

580 2. Killingley B, Nguyen-Van-Tam J. 2013. Routes of influenza transmission. *Influenza*

581 *Other Respi Viruses* 7:42–51.

582 3. Leung NHL. 2021. Transmissibility and transmission of respiratory viruses. *Nat Rev*

583 *Microbiol* 19:528–545.

584 4. Bourouiba L. 2021. Fluid Dynamics of Respiratory Infectious Diseases. *Annu Rev*

585 *Biomed Eng* 23:547–577.

586 5. Pöhlker ML, Krüger OO, Förster J-D, Berkemeier T, Elbert W, Fröhlich-Nowoisky J,

587 Pöschl U, Pöhlker C, Bagheri G, Bodenschatz E, Huffman JA, Scheithauer S, Mikhailov

588 E. 2021. Respiratory aerosols and droplets in the transmission of infectious diseases.

589 arXiv.

590 6. Yan J, Grantham M, Pantelic J, Bueno de Mesquita PJ, Albert B, Liu F, Ehrman S, Milton

591 DK, null null, Adamson W, Beato-Arribas B, Bischoff W, Booth W, Cauchemez S,

592 Ehrman S, Enstone J, Ferguson N, Forni J, Gilbert A, Grantham M, Grohskopf L,

593 Hayward A, Hewitt M, Kang A, Killingley B, Lambkin-Williams R, Mann A, Milton D,

594 Nguyen-Van-Tam J, Noakes C, Oxford J, Palmarini M, Pantelic J, Wang J, Bennett A,

595 Cowling B, Monto A, Tellier R. 2018. Infectious virus in exhaled breath of symptomatic

596 seasonal influenza cases from a college community. *Proc Natl Acad Sci* 115:1081–1086.

597 7. Lindsley WG, Blachere FM, Beezhold DH, Thewlis RE, Noorbakhsh B, Othumpangat S,

598 Goldsmith WT, McMillen CM, Andrew ME, Burrell CN, Noti JD. 2016. Viable influenza

599 A virus in airborne particles expelled during coughs versus exhalations. *Influenza Other*

600 *Respi Viruses* 10:404–413.

601 8. Blachere FM, Lindsley WG, Pearce TA, Anderson SE, Fisher M, Khakoo R, Meade BJ,

602 Lander O, Davis S, Thewlis RE, Celik I, Chen BT, Beezhold DH. 2009. Measurement of

603 airborne influenza virus in a hospital emergency department. *Clin Infect Dis* 49: Off Publ

604 *Infect Dis Soc Am* 48:438–440.

605 9. Leung NHL, Chu DKW, Shiu EYC, Chan K-H, McDevitt JJ, Hau BJP, Yen H-L, Li Y, Ip

606 DKM, Peiris JSM, Seto W-H, Leung GM, Milton DK, Cowling BJ. 2020. Respiratory

607 virus shedding in exhaled breath and efficacy of face masks. *Nat Med* 26:676–680.

608 10. Lednicky JA, Loeb JC. 2013. Detection and Isolation of Airborne Influenza A H3N2

609 Virus Using a Sioutas Personal Cascade Impactor Sampler. *Influenza Res Treat*

610 2013:656825.

611 11. Benbough JE. 1971. Some Factors Affecting the Survival of Airborne Viruses. *J Gen*

612 *Virol* 10:209–220.

613 12. HARPER GJ. 1961. Airborne micro-organisms: survival tests with four viruses. *J Hyg*

614 (Lond) 59:479–486.

615 13. Morris DH, Yinda KC, Gamble A, Rossine FW, Huang Q, Bushmaker T, Fischer RJ,

616 Matson MJ, Van Doremalen N, Vikesland PJ, Marr LC, Munster VJ, Lloyd-Smith JO.

617 2021. Mechanistic theory predicts the effects of temperature and humidity on inactivation
618 of SARS-CoV-2 and other enveloped viruses. *Elife* 10:e65902.

619 14. Prussin AJ, Schwake DO, Lin K, Gallagher DL, Buttling L, Marr LC. 2018. Survival of
620 the Enveloped Virus Phi6 in Droplets as a Function of Relative Humidity, Absolute
621 Humidity, and Temperature. *Appl Environ Microbiol* 84:e00551-18.

622 15. Yang W, Elankumaran S, Marr LC. 2012. Relationship between Humidity and Influenza
623 A Viability in Droplets and Implications for Influenza's Seasonality. *PLoS One* 7:e46789.

624 16. Lin K, Marr LC. 2020. Humidity-Dependent Decay of Viruses, but Not Bacteria, in
625 Aerosols and Droplets Follows Disinfection Kinetics. *Environ Sci Technol* 54:1024–1032.

626 17. Casanova LM, Jeon S, Rutala WA, Weber DJ, Sobsey MD. 2010. Effects of air
627 temperature and relative humidity on coronavirus survival on surfaces. *Appl Environ
628 Microbiol* 2010/03/12. 76:2712–2717.

629 18. HEMMES JH, WINKLER KC, KOOL SM. 1960. Virus Survival as a Seasonal Factor in
630 Influenza and Poliomyelitis. *Nature* 188:430–431.

631 19. Kormuth KA, Lin K, Prussin II AJ, Vejerano EP, Tiwari AJ, Cox SS, Myerburg MM,
632 Lakdawala SS, Marr LC. 2018. Influenza Virus Infectivity Is Retained in Aerosols and
633 Droplets Independent of Relative Humidity. *J Infect Dis* 218:739–747.

634 20. Kormuth KA, Kaisen L, Zhihong Q, Myerburg MM, Marr LC, Lakdawala SS. 2019.
635 Environmental Persistence of Influenza Viruses Is Dependent upon Virus Type and Host
636 Origin. *mSphere* 4:e00552-19.

637 21. Fedorenko A, Grinberg M, Orevi T, Kashtan N. 2020. Survival of the enveloped
638 bacteriophage Phi6 (a surrogate for SARS-CoV-2) in evaporated saliva microdroplets
639 deposited on glass surfaces. *Sci Rep* 10:22419.

640 22. Nieto-Caballero M, Davis RD, Fuques E, Gomez OM, Huynh E, Handorean A, Ushijima
641 S, Tolbert M, Hernandez M. 2023. Carbohydrate vitrification in aerosolized saliva is
642 associated with the humidity-dependent infectious potential of airborne coronavirus.
643 PNAS Nexus 2:pgac301.

644 23. Kong Z-M, Sandhu HS, Qiu L, Wu J, Tian W-J, Chi X-J, Tao Z, Yang C-FJ, Wang X-J.
645 2022. Virus Dynamics and Decay in Evaporating Human Saliva Droplets on Fomites.
646 Environ Sci Technol <https://doi.org/10.1021/acs.est.2c02311>.

647 24. Oswin HP, Haddrell AE, Otero-Fernandez M, Mann JFS, Cogan TA, Hilditch TG, Tian J,
648 Hardy DA, Hill DJ, Finn A, Davidson AD, Reid JP. 2022. The dynamics of SARS-CoV-2
649 infectivity with changes in aerosol microenvironment. Proc Natl Acad Sci
650 119:e2200109119.

651 25. Klein LK, Luo B, Bluvstein N, Krieger UK, Schaub A, Glas I, David SC, Violaki K,
652 Motos G, Pohl MO, Hugentobler W, Nenes A, Stertz S, Peter T, Kohn T. 2022. Expiratory
653 aerosol pH is determined by indoor room trace gases and particle size. Proc Natl Acad Sci
654 119:e2212140119.

655 26. Wei H, Vejerano EP, Leng W, Huang Q, Willner MR, Marr LC, Vikesland PJ. 2018.
656 Aerosol microdroplets exhibit a stable pH gradient. Proc Natl Acad Sci 115:7272–7277.

657 27. French AJ, Longest AK, Jin P, Vikesland PJ, Duggal NK, Marr LC, Lakdawala SS. 2023.
658 Environmental Stability of Enveloped Viruses Is Impacted by Initial Volume and
659 Evaporation Kinetics of Droplets. MBio 14:e03452-22.

660 28. Hiatt CW. 1964. Kinetics of the Inactivation of Viruses. Bacteriol Rev 28:150–163.

661 29. Huang Q, Wang W, Vikesland PJ. 2021. Implications of the Coffee-Ring Effect on Virus
662 Infectivity. Langmuir 37:11260–11268.

663 30. Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA. 1997. Capillary flow
664 as the cause of ring stains from dried liquid drops. *Nature* 389:827–829.

665 31. Bilder L, Machtei EE, Shenhar Y, Kra-Oz Z, Basis F. 2011. Salivary Detection of H1N1
666 Virus: A Clinical Feasibility Investigation. *J Dent Res* 90:1136–1139.

667 32. Galar A, Catalán P, Vesperinas L, Miguens I, Muñoz I, García-España A, Sevillano José
668 A, Andueza Juan A, Bouza E, Muñoz P. 2021. Use of Saliva Swab for Detection of
669 Influenza Virus in Patients Admitted to an Emergency Department. *Microbiol Spectr*
670 9:e00336-21.

671 33. To KKW, Lu L, Yip CCY, Poon RWS, Fung AMY, Cheng A, Lui DHK, Ho DTY, Hung
672 IFN, Chan K-H, Yuen K-Y. 2017. Additional molecular testing of saliva specimens
673 improves the detection of respiratory viruses. *Emerg Microbes Infect* 6:1–7.

674 34. Covalciuc KA, Webb KH, Carlson CA. 1999. Comparison of Four Clinical Specimen
675 Types for Detection of Influenza A and B Viruses by Optical Immunoassay (FLU OIA
676 Test) and Cell Culture Methods. *J Clin Microbiol* 37:3971–3974.

677 35. Prussin AJII, Cheng Z, Leng W, China S, Marr LC. 2023. Size-Resolved Elemental
678 Composition of Respiratory Particles in Three Healthy Subjects. *Environ Sci Technol Lett*
679 10:356–362.

680 36. White MR, Helmerhorst EJ, Ligtenberg A, Karpel M, Tecle T, Siqueira WL, Oppenheim
681 FG, Hartshorn KL. 2009. Multiple components contribute to ability of saliva to inhibit
682 influenza viruses. *Oral Microbiol Immunol* 24:18–24.

683 37. Kobayashi K, Shono C, Mori T, Kitazawa H, Ota N, Kurebayashi Y, Suzuki T. 2022.
684 Protein-bound sialic acid in saliva contributes directly to salivary anti-influenza virus
685 activity. *Sci Rep* 12:6636.

686 38. Gilbertson B, Edenborough K, McVernon J, Brown LE. 2019. Inhibition of Influenza A
687 Virus by Human Infant Saliva. *Viruses* <https://doi.org/10.3390/v11080766>.

688 39. Hartshorn KL, Ligtenberg A, White MR, van Eijk M, Hartshorn M, Pemberton L,
689 Holmskov U, Crouch E. 2005. Salivary agglutinin and lung scavenger receptor cysteine-
690 rich glycoprotein 340 have broad anti-influenza activities and interactions with surfactant
691 protein D that vary according to donor source and sialylation. *Biochem J* 393:545–553.

692 40. Kesimer M, Kirkham S, Pickles RJ, Henderson AG, Alexis NE, DeMaria G, Knight D,
693 Thornton DJ, Sheehan JK. 2009. Tracheobronchial air-liquid interface cell culture: a
694 model for innate mucosal defense of the upper airways? *Am J Physiol Cell Mol Physiol*
695 296:L92–L100.

696 41. Moriyama M, Hugentobler WJ, Iwasaki A. 2020. Seasonality of Respiratory Viral
697 Infections. *Annu Rev Virol* 7:83–101.

698 42. Neumann G, Kawaoka Y. 2022. Seasonality of influenza and other respiratory viruses.
699 *EMBO Mol Med* 14:e15352.

700 43. Ramakrishnan MA. 2016. Determination of 50% endpoint titer using a simple formula.
701 *World J Virol* 5:85–86.

702 44. Spackman E, Senne DA, Myers TJ, Bulaga LL, Garber LP, Perdue ML, Lohman K, Daum
703 LT, Suarez DL. 2002. Development of a Real-Time Reverse Transcriptase PCR Assay for
704 Type A Influenza Virus and the Avian H5 and H7 Hemagglutinin Subtypes. *J Clin*
705 *Microbiol* 40:3256–3260.

706