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Abstract 17 

One of the main quests of plant biology is understanding how genes and metabolites 18 
work together to form complex networks that drive plant growth, development, and 19 
responses to environmental stimuli. However, the ever-growing volume and diversity of 20 
scientific literature make it increasingly challenging to stay current with the latest 21 
advances in gene function studies. Here, we tackle the challenge by deploying the text-22 

mining capacities of large language models to process over 71,000 plant biology 23 
abstracts. Our approach unveiled nearly 5 million functional relationships between a 24 
wide array of biological entities—genes, metabolites, tissues, and others—with a high 25 
accuracy of over 85%. We encapsulated these findings in PlantConnectome, a user-26 
friendly database, and demonstrated its diverse utility by providing insights into gene 27 
regulatory networks, protein-protein interactions, and stress responses. We believe this 28 
innovative use of AI in the life sciences will allow plant scientists to keep up to date with 29 

the rapidly growing corpus of scientific literature. PlantConnectome is available at 30 
https://plant.connectome.tools/.  31 
 32 
Introduction 33 

Despite decades of research, only ~15% of Arabidopsis thaliana’s genes have been 34 
comprehensively characterized, and the rate of new articles reporting gene functions 35 

has dropped to <30% in 2023 since the peak in 2008 (Sunil et al. 2024). Due to the 36 
time-consuming experiments and increased requirements to publish in premier journals, 37 
the time needed to characterize a gene can take several years. Thus, choosing which 38 
gene to start characterizing requires a strong hypothesis, which is typically based on 39 
previous work reported in the literature. However, staying up to date with the 40 
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continuously growing scientific literature, and integrating the numerous pieces of the 41 
gene function puzzle can be time-consuming and limit our ability to form strong 42 
hypotheses. 43 

Alternatively, computational gene function prediction can suggest which genes 44 

have a specific function and are invaluable in generating new gene function hypotheses 45 
(Brown et al. 2005; Persson et al. 2005). Predicting gene function requires two 46 
components: i) omics data that captures gene properties (e.g., coding sequence, 47 
expression patterns, and protein structure) and ii), gold standard data (i.e., genes with 48 
experimentally verified functions) (Radivojac et al. 2013; Rhee and Mutwil 2014). The 49 
omics data is firstly used to connect uncharacterized and characterized genes based on 50 

sequence or expression similarity. Then, uncharacterized genes are labeled according 51 
to the functions of the characterized genes (i.e., the gold standard data) to which they 52 
were connected (Rhee and Mutwil 2014).  53 

Nonetheless, gene function prediction remains highly challenging due to the 54 
complexity and vastness of biological data, plateauing our understanding of gene 55 
functions (Radivojac et al. 2013). Specifically, establishing the gold standard 56 

necessitates manual, work-intensive extraction of gene functional information from 57 
scientific articles (Oughtred et al. 2021), preventing public repositories that harbor the 58 
gold standard data, such as BioGRID (protein-protein interactions, or PPIs) and AGRIS 59 
(gene regulatory networks, or GRNs)(Yilmaz et al. 2011; Oughtred et al. 2021), from 60 
keeping up to date with state-of-the-art knowledge. Furthermore, such repositories are 61 
typically restricted to specific data types (e.g., PPI or GRNs), precluding the integration 62 

of various data kinds that is critical to deepening our understanding of plant biology. 63 
Several methods that extract gene functional information from literature have 64 

been developed to address these challenges. PL-PPF (Predicate Logic for Predicting 65 
Protein Functions) uses statistical methods to infer if a protein and a molecular term that 66 
describes protein function are semantically related (Taha et al. 2019). However, the 67 
method requires constructing complex statistical and linguistic models to link protein to 68 
function and only considers protein-function relationships. The EVEX database 69 

processes abstracts and full texts to identify regulatory relationships, posttranslational 70 
modifications, gene expression patterns and other features of genes (Landeghem et al. 71 
2013). However, the method also requires a manually constructed complex set of rules 72 
to extract and categorise the relationships, and the database has not been updated for 73 
a while. Another approach uses non-negative matrix factorization (NMF) for feature 74 
reduction and then classifies the function of genes using K-nearest neighbor 75 

(KNN)(Fodeh and Tiwari 2018). While the approach can reveal gene functions (e.g., 76 
gene A is a transcription factor), it does not reveal gene-gene relationships (e.g., gene A 77 
regulates gene B). STRING is a popular database that integrates protein-protein data, 78 
genomic features, co-expression and text mining to build gene co-function networks 79 
(Szklarczyk et al. 2023). However, the text mining approach only identifies genes that 80 
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are frequently mentioned together and cannot reveal the type of the relationship (e.g., 81 
interaction, regulation, activation) or identify relationships between genes and other 82 
entities (e.g., treatments, hormones). KnetMiner uses a rule-based approach to build 83 
knowledge graphs capturing relationships between various entities (Hassani-Pak et al. 84 

2016). However, the rule-based system requires the integration of multiple 85 
heterogenous datasets (e.g., 12 types of data)(Hassani-Pak et al. 2016), making it 86 
difficult to include new data, species and evidence types into the network. Furthermore, 87 
the database is gene-centric and does not allow searching the knowledge graph to 88 
understand how the different types of entities are related (e.g., traits and hormones). 89 

In this paper, we aim to address the two fundamental challenges in gene function 90 

prediction: integrating the burgeoning information from scientific literature and using it to 91 
generate gold standard data for gene function prediction approaches. To achieve this, 92 
we seized the recent developments in Large Language Models (LLMs) to process over 93 
71,000 research papers from leading journals in plant biology. Our approach excavated 94 
4.8 million functional relationships between more than 2.7 million entities comprising 95 
genes, metabolites, tissues, organs, and other biological components. The manual 96 

inspection of these relationships revealed not only their high accuracy but also their 97 
ability to identify functional relationships between biological entities, even doubling the 98 
amount of functional information relative to the current coverage of gene regulatory 99 
networks. To provide access to this data, we constructed PlantConnectome, a user-100 
friendly database containing knowledge graphs that can illuminate gene function, organ 101 
development, gene regulatory networks, protein-protein interactions, and other 102 

biological entities. PlantConnectome is available at https://plant.connectome.tools/. 103 
 104 
Materials and Methods 105 
Retrieval of articles 106 

Using BioPython version 1.81, we downloaded papers containing Arabidopsis thaliana 107 
species name and gene identifiers (e.g., At4g32410). For each gene identifier, we also 108 
searched with gene aliases (e.g., CESA1, RSW1) retrieved from www.arabidopsis.org 109 

(Table S1). The NCBI query was:  110 
query = f'(Arabidopsis thaliana[Title/Abstract] AND {query_term}[tw]) OR 111 
(Arabidopsis[Title/Abstract] AND {query_term}[tw]) OR (Thale cress[Title/Abstract] AND 112 
{query_term}[tw] OR (Mouse ear cress[Title/Abstract] AND {query_term}[tw] OR 113 
(Mouse-ear cress[Title/Abstract] AND {query_term}[tw])'. Query_term are the genes in 114 
Table S1, and other alternative names of Arabidopsis were included in the search. The 115 

code to perform this analysis is available in the Colab Notebook in Supplementary Data 116 
1. 117 
 118 
Large language model analysis of articles 119 
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We used GPT4 models to extract entities and relationships (GPT-4o), entity definitions 120 
(GPT-4o-mini) and to identify the species that the article uses as a model (GPT-4o). 121 
Furthermore, for each entity relationship, we asked GPT-4o to identify the evidence 122 
(e.g., yeast two-hybrid, bioinformatical prediction) underpinning the relationship. We 123 

iterated over several prompts to arrive at prompts that yielded consistently accurate 124 
results on selected papers, such as Brinngmann et al., 2012, and others. In total, 125 
71,136 articles were processed using OpenAI’s batch API (Application Programming 126 

Interface)(https://openai.com/api/pricing/). The code to perform this analysis is available 127 
as Colab Notebook in Supplementary Data 1. 128 
 129 
Entity and relationship disambiguation 130 

To disambiguate relationships (e.g., ‘caused’, ‘cause’, ‘causes’) and entities (e.g., 131 
‘Arabidopsis plants’, ‘Arabidopsis’, ‘Arabidopsis thaliana’), we identified the top 100 132 
most common relationships and entities and devised a rule-based method to map the 133 
various synonyms or variations to a canonical form. Passive edges (e.g., ‘is regulated 134 
by’) were converted to active form (‘regulates’). Entities that differed by casing (e.g., 135 

‘Genes’, ‘genes’) were represented by one canonical form. The code used for this 136 
section is available as Supplementary Data 1. 137 
 138 
Construction of PlantConnectome database 139 

The PlantConnectome is hosted on a Google Cloud server. The backend was 140 
implemented using the Python framework Flask and the Python packages networkx 141 

version 3.1, pickle version 3.11.4, json version 3.11.4, and regex version 3.11.4. We 142 
used JavaScript dependencies jQuery v3.6, Cytoscape.js v3.23, ChartJS v4.3, and 143 
FileSaver v2.0.5 to visualize the knowledge graphs. The GitHub repository containing 144 
the source code of the database is available at 145 
https://github.com/mutwil/plant_connectome_latest.git 146 
 147 
API for PlantConnectome 148 

PlantConnectome also has an application programming interface that allows users to 149 
conduct search queries remotely. The API accepts GET requests and is implemented 150 
using the same set of packages described earlier. For each successful call to 151 
PlantConnectome’s API, a JSON (JavaScript Object Notation) object is returned, 152 
containing the functional abbreviations, GO terms, other nodes, and text summaries 153 
associated with the search query. To perform searches using the API, users can add 154 

“/api/<search type>/<search query>” to the web address, where “<search type>” and 155 
“<search query>” are placeholders representing the type of search and user’s query, 156 
respectively.  157 
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 158 
Figure 1. Meta-analysis of the 71,136 article abstracts. Meta-analysis of plant159 

literature. A) Top 20 journals of the 71,136 articles analyzed in this study. The red and160 
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blue bars indicate the abstract-only or full-text articles, respectively. B) Clustermap of 161 
top 30 journals (rows) and topics (columns). The colormap corresponds to the fraction 162 
of a maximum value found in a row (journal) across the 71,136 articles. C) The number 163 
of abstracts (x-axis) with a given keyword (y-axis) of the analyzed papers. Each abstract 164 

can contain multiple keywords. D) Co-occurrence network of keywords in abstracts.  165 
Nodes represent keywords, while edges connect keywords found in at least 600 166 
abstracts. Edge width is proportional to the number of abstract where any two keywords 167 
are co-mentioned. E) t-SNE visualization of the abstracts with a focus on plant organs. 168 
Each point represents an article, and the colors indicate the different organs. The plots 169 
for F) ‘membranes’ and G) ‘RNA biosynthesis’ are shown to the right.  170 

 171 
Results 172 
Meta-analysis of 71,136 Paper Abstracts 173 

To retrieve articles that focus on Arabidopsis thaliana genes and how these genes are 174 
related to other biological entities, we searched for articles that mention Arabidopsis 175 
thaliana and gene IDs in the abstracts (code available in Supplementary Data 1, gene 176 

IDs Table S1). In total, 71,136 articles, of which 19,809 and 51,327 were accessible as 177 
full-text articles or abstracts only, respectively (Figure 1A, Table S2). The top 20 178 
journals comprise Plant Physiology, the Plant Journal and Plant Cell, for which most 179 
articles were not available for high-throughput download as full text (Figure 1A, red 180 
bars). Conversely, the open access policies and the option to programmatically 181 
download the articles of the Frontiers in Plant Science, PLOS One, New Phytologist, 182 

BMC Plant Biology and Scientific Reports allowed us to download full-text articles from 183 
these journals.     184 

To investigate whether the top 20 journals tend to publish specific topics, we 185 
determined the surveyed journals' discussion of cellular compartments, organs, and 186 
biological functions to assess their considered research topics. To this end, we defined 187 
a list of keywords pertaining to organs (e.g., roots = [root, hair, nodule, mycorrhizae]), 188 
biological processes (photosynthesis = [photosynthesis, photorespiration, 189 

photosystem]), and cellular compartments (e.g., nucleus = [nucleus, nucleolus, 190 
chromosome, nuclear pore])(Table S3). We counted the number of these keywords in 191 
each abstract (Supplementary Data 2). Most journals did not show particular specificity 192 
for any topic, except Development (focus on reproduction, red cell), Journal of Biological 193 
Chemistry (membranes) and Molecular Plant-Microbe Interactions (external stimuli 194 
responses)(Figure 1B-C). The most commonly studied organs were: roots, leaves, 195 

flowers and seeds, and the most studied pathways were: phytohormone action (how 196 
hormones work), external stimuli response (how plants respond to the environment), 197 
RNA biosynthesis (how gene expression is regulated) and plant reproduction and most 198 
studied subcellular compartments were: membranes, and Golgi apparatus (Figure 1B-199 
C). Next, we investigated which keywords tend to co-occur in abstracts (Table S4, 200 
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Supplementary Data 3), which revealed, e.g., that pathogen research focuses on 201 
salicylic acid and transcriptional responses and uses leaves and roots as model organs 202 
(Figure 1D).  203 

To visualize the relationships among the abstracts, we generated a two-204 

dimensional t-distributed Stochastic Neighbor Embedding (t-SNE) plot (Macosko et al. 205 
2015), of the keyword counts (Supplementary Data 2). This technique allows us to 206 
represent high-dimensional data in a way that preserves local similarities between 207 
abstracts. We used a perplexity value of 40, which balances the attention between local 208 
and global aspects of the data, and ran 1,000 iterations to ensure convergence to a 209 
stable configuration (Figure S1 shows the influence of t-SNE parameters). The resulting 210 

plot provided an interpretable layout that highlighted clusters of abstracts with similar 211 
content or themes. The plots demonstrate clear groupings by biological processes 212 
(Figure S2), subcellular compartments (Figure S3) and organs (Figure S4), providing a 213 
bird’s eye view of plant literature (Figure 1E).  214 
 215 
Text Mining Research Papers with Large Language Model Reveals 4,819,469 216 

Relationships between 2,771,008 Entities  217 

To extract information pertaining genes, metabolites, organs, environmental conditions, 218 
and other entities, we tasked OpenAI's GPT models with identifying functional 219 
relationships between pairs of entities (e.g., ‘gene A’ - interacts with - ‘gene B’)(Figure 220 
2A, prompt 1 with GPT-4o), and also identifying the types of each entity (genes, 221 
metabolites, organs, treatments, others)(Supplementary Data 1). The output of this 222 

analysis was a Knowledge Graph (KG), where nodes represent entities and edges 223 
represent relationships (e.g., ‘interacts with’, ‘regulates’, ‘causes’). To better understand 224 
which types of evidence underpin each relationship (e.g., ‘pull-down assay’, ‘co-225 
expression analysis’), we also asked GPT-4o model to reveal the relationship basis and 226 
species the experiments were performed in (Figure 2A, prompt 2 with GPT-4o). Finally, 227 
we tasked GPT-4o-mini model to annotate the extracted entities (e.g., ‘CESA’ - is - 228 
‘Cellulose Synthase A’)(Figure 2A, prompt 3 with GPT-4o-mini). The process yielded a 229 

large KG comprising 4,819,469 relationships between 2,771,008 entities 230 
(Supplementary Data 4, Table S5 contains the three prompts).  231 
 Large language models are known to hallucinate and misunderstand the text, 232 
and to evaluate the accuracy of the identified entity types, we randomly selected 300 233 
edges from the KG (code for random selection in Supplementary Data 1). We manually 234 
evaluated whether the identified entity types (e.g., ‘flavonol’ type is ‘metabolite’) are 235 

correct, by comparing the entity types with their known biological function. Overall, we 236 
observed >90% accuracy in entity type classification, with the exception of ‘subcellular 237 
compartment’ and ‘treatment’ (Figure 2B, Table S6). The incorrectly classified 238 
‘subcellular compartment’ entity types comprised genomic features such as ‘distal 239 
enhancer elements’, and protein domains (‘13 TM helices’)(Table S6), while incorrect 240 
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‘treatment’ types comprised methods and resources (e.g., ‘microsomal preparations’, 241 
‘Genbank’).  242 
 To evaluate the accuracy of the edges, we manually compared them to the text 243 
from which they were extracted. Furthermore, since GPT-4 models have an October 244 

2023 knowledge cutoff and could have been trained on the analysed articles, we chose 245 
edges from articles published before 2024 and from 2024. Overall, we observed a high 246 
accuracy of 85% (before 2024, Figure 2B red bar) and 93% (2024, orange bar), 247 
showing that the models can extract information from any text and not just regurgitate 248 
training data. The incorrect relationships typically misunderstood a hypothesis of the 249 
authors (source sentence: "(results) made us wonder whether this tissue-specific 250 

polarization of PINs is conserved in other bryophytes"), incorrectly producing a fact 251 
edge (‘tissue-specific polarization of PINs conserved in other bryophytes’)(Table S6). 252 
Since the analyzed articles were shortlisted by term ‘Arabidopsis thaliana’, the majority 253 
of the relationships were identified in the model plant, but we also identified other 254 
models and crops, such as rice, wheat, soybean, tobacco and even yeast (Figure S5). 255 
 To investigate the relationship between the number of articles and the number of 256 

identified entities and relationships, we randomly removed 10-90% of articles 100 times, 257 
and recounted the number of retrieved items. Overall, we observed a linear relationship 258 
between the number of articles and the retrieved data (Figure 2C), indicating that more 259 
articles would expand the KG further. The amount of information extracted from the 260 
introduction (median 50 and 63 relationships and entities extracted, Figure 2D-E), 261 
results (59, 63) and discussion (47, 57) was higher than from abstracts (16, 21). Thus, 262 

increasing the number of full text articles would further expand the KG.  263 
 Finally, we investigated which types of evidence are present in the top 20 264 
journals. We categorized the evidence into ‘literature’ (article citing findings from other 265 
articles), ‘advanced wet’ (article using advanced experimental approaches, such as pull-266 
down, transgenic lines), ‘high throughput’ (evidence based on, e.g., RNA-seq analysis, 267 
differential gene expression) and ‘bioinformatics’ (evidence based on sequence 268 
alignment, phylogenetic tree, Supplementary Data 1 contains the used code and 269 

keywords). Overall, the evidence profiles of the different journals were similar, with Plant 270 
Cell and Plant Physiology on average using more advanced wet lab methods (advanced 271 
wet > 0.35). Plant Science, Plant Physiology and Biochemistry contain extensive 272 
literature-based evidence. In contrast, Methods in Molecular Biology which focuses 273 
typically on one method, contained the least diversity of the used evidence types. 274 
  275 
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 276 
Figure 2. Evaluation of the plant knowledge graph.  A) The pipeline to extract: 1. the277 

knowledge graph from the literature, 2. species and relationship basis and 3. entity278 

definitions. B) The percentage of correct entities (blue bars) and relationships (red and279 
orange bars). The x-axis indicates the percentage of correct items inferred from manual280 
curation. C) The number of unique entities (red bars, left y-axis) and relationships (i.e.,281 
number of edges, blue bars, right y-axis) as a function of % articles removed (x-axis).282 
The error bars represent the standard deviation. The data was generated by randomly283 
removing a given percentage of articles 100 times. D) and E) the number of284 

relationships and entities extracted from abstracts, introductions, results and285 
discussions, respectively. F) Average score depicting the diversity of methods extracted286 
from the top 20 journals (Figure 1A). The method categories include ‘literature’ citations,287 
‘advanced wet’ lab techniques, ‘high throughput’ experiments and ‘bioinformatics’. A288 
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score of 1 indicates that a given journal has, on average, used all types of methods 289 
under one category, while a score of 0 indicates that no methods have been used. A 290 
method category is comprised of keywords. For example, ‘bioinformatics’ is comprised 291 
of: 'sequence', 'phylogenetic', 'genomic', 'alignment', and 'differential expression'. The 292 

code and keywords are available in Supplementary Data 4. 293 
 294 
Properties of the Connectome Network 295 

We used the KG to construct the Connectome network, and visual inspection of the 296 
whole graph revealed cluster-like structures of densely connected entities (Figure 3A). 297 
Certain networks, such as protein-protein interactions, display scale-free behavior, 298 

where most nodes have few connections, and few nodes have many connections 299 
(Broido and Clauset 2019). To investigate whether the Connectome is scale-free, we 300 
constructed a scatterplot of its log-transformed node frequency (p(k)) and node degree 301 
(k)(Figure 3B). The points formed a line with a negative slope, indicating a typical power 302 
law distribution (Mutwil et al. 2010), indicating that most entities have a few 303 
relationships, while a small number of entities act as hubs with a large number of 304 

connections. 305 
 We next investigated which entities and relationships are most important in the 306 
KG. General entities, such as ‘A. thaliana’ and ‘plants’, and general relationships, such 307 
as ‘had’, ‘show’ were most frequently observed (Figure 3C), but we also observed more 308 
specific entities (e.g., auxin, ABA) and relationships (regulate, interacts with). The most 309 
common entity types comprised ‘gene’ and ‘phenotype’, in line with our selecting articles 310 

containing gene names and ‘Arabidopsis thaliana’ (Figure 3D). A closer look at the 311 
entity types revealed the most common entities for genes (e.g., FT, FLC, PIF4), 312 
phenotypes (growth, flowering, germination, gene expression), organism (A. thaliana), 313 
metabolite (ABA, auxin, ethylene, ROS), protein (general transcription factors, 314 
phytochromes, enzymes), mutants (general ‘transgenic plants’), treatment (drought, 315 
ABA, salt stress), process (photosynthesis, DNA methylation, autophagy), organ (root, 316 
leaf) and subcellular compartment (nucleus, plasma membrane)(Figure 3E). Finally, we 317 

investigated how often the different entity types are connected in the network. We 318 
observed most connections between ‘gene’--’phenotype’, ‘mutant’--’phenotype’ and 319 
‘gene’--’treatment’ (Figure 3F), likely reflecting the typical function studies that 320 
characterize genes in terms of mutant phenotypes and responses to various treatments.  321 
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322 
Figure 3. Properties of the Connectome knowledge graph.  A) Gephi visualization of323 

the Connectome knowledge graph colored by node degrees. The ForceAtlas 2324 
algorithm was run until convergence with a stronger gravity law and a scaling factor of325 
0.5 to separate the graph’s nodes.  Light blue nodes represent nodes with the fewest326 
degrees, and light green nodes are the nodes with the highest degrees.  B) The degree327 
distribution of the knowledge graph, where nodes represent entities and edges328 

represent relationships between these entities. The x-axis (degree (k)) represents the329 
number of connections (relationships) each entity has. In contrast, the y-axis (frequency330 
P(k)) shows the frequency of an entity having exactly k connections. C) Top most331 
frequently-appearing entities (top) and relationship (bottom) types. The size of the332 
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lettering is proportional to the number of relationships. D) Top 10 entity types, with 333 
entities (x-axis) and their numbers (y-axis). E) Top 20 entities found in the top 10 entity 334 
types. F) The number of edges between the top 10 entity types. 335 
 336 
Evaluation of the coverage and accuracy of the PlantConnectome 337 

Our main motivation in this study was to expand the amount of the gold standard data 338 
capturing experimentally-verified gene functions. We, thus, investigated the overlap of 339 
relationships in our KG with data provided in the public repositories.   340 

To compare the coverage and the accuracy of gene regulatory networks (GRNs), 341 
we obtained the Arabidopsis thaliana gene regulatory network from AGRIS 342 

(https://agris-knowledgebase.org/downloads.html, updated March 2019) (Yilmaz et al. 343 
2011), comprising 4,409 confirmed transcription factor -> target edges. We also 344 
identified 3,695 edges from a study investigating responses to jasmonic acid (Zander et 345 
al. 2020). Next, we identified 15,009 transcription factor -> target edges in the 346 
Connectome (Supplementary Data 4). The edges shared between AGRIS and the 347 
Connectome comprised of ‘regulate’, ‘binds’, ‘activates’, ‘targets’, demonstrating the 348 

Connectome's ability to identify the various functions of transcription factors (Figure 4A). 349 
However, we observed a very minor overlap (e.g., 206 edges between AGRIS and the 350 
Connectome) between the three GRNs (Figure 4B), indicating the high dissimilarity 351 
between the GRNs. We identified 14,736 Connectome-specific edges between 352 
transcription factors and target genes, and while the most frequent association was 353 
‘interacts with’, we also identified typical transcription factor-related terms, such as 354 

‘regulate’, ’binds’, ’activates’, ’represses’, and others (Figure 4C). This indicates that the 355 
Connectome transcription factor networks seamlessly integrate protein-protein 356 
interactions (PPIs) and GRN networks.  357 

Furthermore, we compared the protein-protein (PPI) network from BioGRID to 358 
the Connectome’s network. We found 1,369 edges shared between BioGRID and the 359 
Connectome that were not of class ‘interacts with, forms a complex with’ (or similar), 360 
and found that the edges comprised of types such as ‘phosphorylates’, ’associates 361 

with’, but also ‘does not interact with’ (Figure 4D). This indicates that the Connectome 362 
can provide additional nuances to the PPIs or even contradictory information that should 363 
be investigated further. Overall, we also found a relatively poor overlap between 364 
BioGRID and Connectome, with only 2,783 ‘interacts with’ edges shared (Figure 4E), 365 
and the large majority of edges being specific to each database. 366 

To validate the accuracy of the Connectome-specific edges, we randomly 367 

sampled 100 GRN (out of 14,736) and 100 PPI (out of 8,234) edges (code in 368 
Supplementary Data 1), and inspected their accuracy by reading the corresponding text 369 
(Table S7). Overall, we observed 97% and 94% accuracy for the GRN and PPI 370 
networks, respectively (Figure 4F). In agreement with the misclassified entities and 371 
relationships (Figure 2B), GPT-4o confused future directions (e.g., ‘In this regard, it will 372 
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be interesting to investigate whether FUS3 interacts with IDD8 through the fourth ZF373 
domain.) as a fact (‘FUS3 interacts with IDD8’)(Table S7). These results indicate374 
Connectome's valuable companionship and alternative role to not only AGRIS but also375 
BioGRID.  376 

377 
Figure 4. Evaluation of the gene regulatory and protein-protein interaction378 
networks identified by the Connectome.  A) Word cloud of the 206 relationship types379 

shared between AGRIS and the Connectome. B) Venn diagram showing the overlap380 
between AGRIS, the Connectome and the Jasmonic Acid Gene Regulatory Network381 
(GRN). The numbers indicate edges found between transcription factors and putative382 
target genes. C) Word cloud of the 14736 Connectome-specific edges. D) Word cloud383 

of the 1369 edges shared between BIOGRID and the Connectome. The edges do not384 
belong to the ‘interacts with group’. E) The Venn diagram shows the overlap between385 
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BIOGRID and the Connectome. All gene-gene edges in Connectome are indicated with 386 
a green circle, while the blue circle shows genes connected by ‘interacts with’ 387 
relationships. F) Accuracy evaluation of the protein-protein interaction (PPI) and gene 388 
regulatory network (GRN) edges that are specific to the Connectome. The blue and red 389 

fields indicate correctly inferred or ‘future direction’ relationships, respectively.  390 
 391 
Features of PlantConnectome 392 

To provide access to the Connectome, we constructed dedicated database 393 
(https://plant.connectome.tools/), which offers numerous methods of searching for 394 
genes, metabolites, organs, and other entities by terms, author names, and PubMed 395 

IDs, alongside a catalogue page (accessible under the 396 
https://plant.connectome.tools/catalogue) listing all entities in the database.  An entire 397 
information page is also provided for each entity in the connectome, containing its 398 
definitions (e.g., CESA: ‘A large family of genes encoding cellulose synthases and 399 
related enzymes’) and source article. 400 

To detail PlantConnectome's search result page, we performed a standard query 401 

with the gene "Psad1" (‘Mutant affecting photosystem I complex in plants’, 402 
https://plant.connectome.tools/alias/psad1), which is involved in the formation of 403 
photosystem I (Ihnatowicz et al. 2004). The entity's landing page displays the number of 404 
nodes in the knowledge graph and the number of papers used to construct the KG, 405 
together with the extracted definitions of the entity (Figure 5A).  406 

The knowledge graph is represented as an interactive network, depicting the 407 

various relationships the search query shares with other entities in the database (Figure 408 
5B). Upon clicking on a node, the user is provided with a ‘Node properties’ tooltip 409 
displaying the node’s definitions, and a set of options enabling the removal of the node 410 
or isolation of the node’s neighborhood. Clicking on an edge opens an ‘Edge properties’ 411 
tooltip that displays the PubMed ID underpinning an edge and shows the experimental 412 
basis (if available) of the edge. Users can select the node and relationship types by 413 
clicking on the ‘Node select’ and ‘Edge select’ tools and thus focus on the entity and 414 

relationship types of interest (Figure 5B). The current network view can be downloaded 415 
as an image (SVG) or as a tab-delimited table, ready for further processing in, e.g., 416 
Cytoscape. The network is also available as a text summary (Figure 5C) and a table 417 
(Figure 5D), where clicking on a given PubMed ID will prompt a popup containing the 418 
corresponding abstract. The text summary adjusts its content to the selections specified 419 
in the ‘Node select’ and ‘Edge select’ tools. 420 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 26, 2024. ; https://doi.org/10.1101/2023.07.11.548541doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.11.548541
http://creativecommons.org/licenses/by-nc/4.0/


 

15

 421 
Figure 5. Outline of the Connectome entity page. A) The top of the page contains the422 
entity name and the graph size, comprising the number of nodes (entities) and papers423 
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that are used to build the current graph. Note that the graph size changes dynamically 424 
when the user adjusts the node and edge selection. The entity definitions extracted from 425 
the various papers mentioning the entity are found in the paginated table. B) The graph 426 
is visualized as an interactive network implemented in cytoscape.js, where the nodes 427 
can be moved around, and the different elements can be clicked on to open tooltips that 428 
display additional information. The entities in the network can be searched by writing the 429 
entity's name and clicking submit (blue button). The users can select the entity types 430 
(e.g., genes/proteins, metabolites) and edge types (e.g., regulates, interacts with) of 431 
interest by clicking on the Node and Edge select tools. The network can be downloaded 432 
as a vector graphic image and tab-delimited table. C) The text summary provides an 433 
organized, textual representation of the network and PubMed IDs that underpin each 434 
edge. The text summary is dynamic and responds to the node and edge selection 435 
performed by the user. D) The network is also summarized as a table, where each edge 436 
is found as a row in the table. 437 
 438 

Finally, PlantConnectome enables users to perform searches through an API, 439 

which returns a JSON object containing relevant network and functional information, 440 
extending its functionality to bioinformaticians who desire programmatic access to our 441 
database. As an example, an alias search on the PSAD1 gene may be performed by 442 
accessing the URL “https://plant.connectome.tools/api/alias/psad1”. 443 
 444 
Examples of how to use PlantConnectome 445 

We provide three case studies, comprising protein complexes, gene regulatory 446 
networks, and stress responses, to demonstrate how the Connectome can be used to 447 
rapidly summarize available knowledge.  448 
 449 
Example 1: Chloroplast Protein Translocation and Channel Member TOC75 450 
To exemplify how the Connectome can be used to study protein-protein interactions, we 451 
used TOC75 as a query for the ‘alias’ search 452 

(https://plant2.connectome.tools/alias/TOC75), which searched for entities labelled as 453 
TOC75 and it’s aliases: AT3G46740, MAR-01, TOC75-III. This identified a knowledge 454 
graph containing 355 nodes based on 80 papers. We then narrowed down the graph to 455 
genes/proteins with the ‘Node selection’ tool, resulting in 199 nodes based on 61 456 
papers. 457 

Translocase complexes on the outer and inner envelope membranes (TOC and 458 

TIC, respectively) are used to import proteins into the chloroplast (Stengel et al. 2009).  459 
We compared the TOP75 graph to a review on the translocase complexes (Richardson 460 
and Schnell 2020), which revealed known TOC75 interactions such as TOC 22, 34, 461 
159, and TIC236 (Figure 5A). The associated nodes also provide additional genes 462 
relevant for TOC75 function, such as dek5 mutant, which is reducing the levels of 463 
TOC75 (experimental organism: maize, evidence: proteomics analysis and 464 

immunoblotting of chloroplast envelope proteins)(Zhang et al. 2019), and chaperone 465 
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HSP90C that interacts with many of the translocon proteins (experimental evidence: 466 
Coprecipitation experiments with protein import components)(Inoue et al. 2013). Thus, 467 
the Connectome allows a rapid elucidation of protein-protein interactions, and provides 468 
source literature and evidence types supporting these interactions.  469 

 470 
Example 2: Secondary Cell Wall Master Regulator 471 
To demonstrate how our database can be used to study gene regulatory networks, we 472 
selected the secondary cell wall biosynthesis regulator, MYB46 473 
(https://plant.connectome.tools/alias/MYB46). The initial network contained 618 nodes 474 
based on 129 papers, but we selected edges capturing typical gene regulatory 475 

relationships (e.g., ‘regulate’, ‘directly activate’) from the ‘Edge filter’ menu, and arrived 476 
at a network comprising 211 nodes based on 75 papers (Figure 6B). A literature search 477 
on the gene regulatory network underlying secondary cell wall formation revealed a 478 
large overlap between the output of the Connectome and the figure in the review article 479 
(Xiao et al. 2021).  480 

Genes regulated by MYB46 included the secondary cell wall cellulose synthases 481 

(CESA4,7,8), lignin biosynthesis genes, and a panel of downstream transcription factors 482 
(MYB4, 7, 32, 43, 52, 54, 58, 63). Genes regulating MYB46 comprised transcription 483 
factor SND1 and micro-RNA miR395c (Figure 6B). Interestingly, our Connectome, but 484 
not the review, identified VND1-7 and NST2 (evidence: Direct target analysis using the 485 
estrogen-inducible system)(Zhong et al. 2008) and VNDs (evidence: Quantitative PCR 486 
analysis of VND1 overexpressors showing induction of MYB46 gene expression)(Zhou 487 

et al. 2014) as regulators of MYB46. On the other hand, our Connectome missed 488 
downstream MYB20, 42, 75, 103 (Xiao et al. 2021). 489 

Since the KnowledgeNetwork is summarized in a human- and machine-readable 490 
format, we investigated whether ChatGPT can generate publication-ready passages. To 491 
this end, the network summary (exemplified in Figure 5C) was fed into ChatGPT-4o with 492 
the following prompt:  493 

‘Summarize the function of MYB46, using the text below. Indicate which genes it 494 

regulates. Indicate which genes regulate it. Indicate which processes it regulates. For 495 
each statement, make sure to indicate the PubMed ID, for example: 'Gene A regulates 496 
gene B (PubMed ID)'. Use only the information provided by this text: 497 

 498 
<Network summary text pasted in here> 499 
 500 

Write the text as if it was a paragraph for a review paper. List ALL of the genes 501 
mentioned in text.’ 502 

 503 
The outcome is, in our opinion, on par with some review articles:  504 
 505 
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 506 
Figure 6. Usage examples of the Connectome database. A) Gene/protein507 
neighborhood of TOC75 Translocon at the outer envelope-membrane of chloroplasts 75508 
protein, found by alias search using ‘TOC75’. Nodes represent gene/protein entities,509 
while edges depict relationships. The node and edge legend indicate the different types510 
of entities and relationship types, respectively. B) Gene/protein neighborhood of511 
MYB46. Transcription factors regulating MYB46 are indicated with red stars. C)512 
Neighborhood of ‘heat stress’ entities. The nodes were selected to only comprise of513 
‘chemical’ entity type.  514 
 515 
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1) Function of MYB46 516 
MYB46 (At5g12870) is a transcription factor that functions as a master regulator in 517 
secondary cell wall (SCW) biosynthesis (PMID: 24984711, 24009617). It directly 518 
regulates the expression of genes involved in the biosynthesis of cellulose, 519 

hemicellulose, and lignin (PMID: 24984711, 34493336). MYB46 plays a key role in 520 
activating the secondary wall biosynthetic program (PMID: 25148240), promotes SCW 521 
thickening (PMID: 33086706), and is crucial for secondary wall formation in fibers and 522 
xylem vessels (PMID: 25535195, 34879821). Furthermore, MYB46 has been shown to 523 
drive differentiation of xylem vessel cells (PMID: 34971462), enhance resistance to 524 
Botrytis cinerea (PMID: 32214345), and regulate plant immune response (PMID: 525 

34208611). The protein also acts in abiotic and biotic stress responses, including its 526 
upregulation under stress (PMID: 31077628, 33826618). MYB46 functions in a 527 
transcriptional regulatory cascade (PMID: 19808805) and activates transcription of 528 
lignin, cellulose, and hemicellulose biosynthetic genes (PMID: 33537043). Its 529 
overexpression can induce ectopic secondary wall biosynthesis (PMID: 34493336), 530 
leading to stunted growth (PMID: 25535195). 531 

 532 
2) Genes Regulating MYB46 533 
MYB46 is regulated by several transcription factors. It is a direct target of SND1 534 
(secondary wall-associated NAC domain protein 1), NST1, NST2, VND6, and VND7, 535 
which are part of the NAC transcription factor family involved in secondary wall 536 
biosynthesis (PMID: 37372306, 29973639). The VND family members (VND1-7) also 537 

induce the expression of MYB46 (PMID: 25148240, 35154217). Additionally, third-tier 538 
SWNs (NAC TFs) regulate MYB46 (PMID: 24009617), while MPK6-mediated 539 
phosphorylation is involved in post-translational regulation of MYB46 (PMID: 540 
33826618). MYB46 is upregulated under stress by various stimuli (PMID: 33826618), 541 
and SnRK2.2/3/6 kinases regulate its expression during stress responses (PMID: 542 
33495344). GbTCP5 (PMID: 34880892) and ERF041-VP16 (PMID: 33995450) are also 543 
involved in the transcriptional regulation of MYB46. 544 

 545 
3) Genes Regulated by MYB46 546 
MYB46 regulates a wide array of downstream genes involved in secondary wall 547 
biosynthesis. These include cellulose synthase genes such as CESA4, CesA7, and 548 
CesA8 (PMID: 23726771, 26011122, 37372306), as well as xylan and lignin 549 
biosynthetic genes (PMID: 34493336, 24885077). It activates the expression of other 550 

transcription factors like MYB58, MYB63, MYB85, and MYB43, which further control 551 
SCW biosynthesis (PMID: 24009617, 31881731). MYB46 also regulates genes involved 552 
in hemicellulose synthesis, such as AtCSLA9 and GAUT12 (PMID: 24243147, 553 
25120548). Additionally, it directly activates secondary wall biosynthetic genes (PMID: 554 
22197883, 34862967), including mannan synthase and other SCW-associated enzymes 555 
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(PMID: 24879533, 32775951). MYB46 also influences genes linked to lignin 556 
biosynthesis, such as CSE and CCoAOMT7 (PMID: 27390589, 35154217), and 557 
promotes SCW-related gene expression (PMID: 36077531). 558 
 559 

Importantly, since ChatGPT was asked to use the existing PubMed IDs, it does not 560 
hallucinate non-existing references.  561 
 562 
Example 3: Heat stress 563 
To demonstrate how the Connectome can be used to study entities that are not 564 
necessarily genes, we investigated chemicals, hormones and metabolites involved in 565 

heat stress. We searched for ‘heat’ with ‘normal’ search, which took us to the page of 566 
entities containing ‘heat’ in their description 567 
(https://plant2.connectome.tools/normal/heat). The resulting large knowledge graph 568 
comprised 2069 nodes from 1294 papers, which is expected as heat stress is one of the 569 
most studied abiotic stresses in plants (Koh et al. 2024). We further focused the search 570 
by selecting ‘Chemical’ in the ‘Node filter’ tool, which shrank the graph to 103 nodes 571 

based on 57 papers (Figure 6C). This revealed two central ‘heat stress’ nodes, 572 
categorized as ‘phenotype’ and ‘treatment’. The graph revealed multiple chemicals that 573 
are important for heat stress tolerance, such as isoprene (found in Discussion in 574 
(Weraduwage et al. 2023), evidence: Transcriptomic studies on Arabidopsis thaliana 575 
fumigated with isoprene), trehalose (introduction in (Jin et al. 2016), no evidence 576 
available), AITC (Allyl isothiocyanate, found in Introduction of (Øverby et al. 2015), no 577 

evidence available) and flavonols and flavones (found in Discussion in (Liu et al. 2021), 578 
evidence: LC-MS measurements on QE HF-X coupled to Vanquish UHPLC). The graph 579 
also reveals compounds that change their levels under heat stress, such as 580 
triacylglycerols (Introduction of (Higashi et al. 2015), evidence: LC-MS-based lipidomic 581 
analysis), phosphatidic acid (Discussion in (Kocourková et al. 2021), no evidence 582 
available), reactive oxygen species (ROS, Discussion in (Cocetta et al. 2022), evidence: 583 
histochemical analysis using 3,3-diaminobenzidine (DAB) staining and literature 584 

references). The graph also mentions several hormones, such as salicylic acid (SA), 585 
auxin and ethylene, cellular structures such as cutin and starch content, and other 586 
entities that were classified as chemicals by GPT-4o. To conclude, the dynamic 587 
selection option of edge types in the network enables scrutinizing different relationship 588 
types between the entities found in PlantConnectome. 589 
 590 
Discussion  591 

We have illustrated GPT's text mining capacities in the context of scientific literature, 592 
processing over 71,000 research abstracts at a moderate cost (~5000 USD) and 593 
harvesting invaluable functional information therein. GPT could extract key entities and 594 
relationships from research paper abstracts with high accuracy (Figure 2B, 4E) and few 595 
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prompts (Table S5). The amount of functional information excavated from the abstracts 596 
increased the amount of machine-readable data, as demonstrated by our gene 597 
regulatory networks that nearly tripled the available data (Figure 4B). Moreover, 598 
PlantConnectome overcomes the limitations of typical databases that employ only one 599 

data type, as it draws upon numerous data sources in establishing gene functions, 600 
organ development, gene regulatory networks, protein-protein interactions, and other 601 
phenomena, all in a user-friendly manner. 602 

Our evaluation has shown that PlantConnectome is not only comprehensive and 603 
accurate but also complementary to existing databases (Figure 4). Comparing 604 
PlantConnectome's gene regulatory networks against AGRIS and its protein-protein 605 

interaction networks against BioGRID demonstrates that PlantConnectome's retrieved 606 
networks do not largely overlap with these reference databases. Rather, the GPT-607 
extracted networks complement them, showing the effectiveness of our text-mining 608 
approach in utilizing the vast amount of literature that has not been captured by manual 609 
curation.  610 

However, GPT’s outputs are not entirely accurate and still warrant manual 611 

verification, as GPT-4o models have a tendency to misidentify entities and relationships 612 
(Figure 2B, 4E), which is perhaps attributable to the varying language and content of the 613 
>71,000 processed articles. The correction of errors may be carried out by fine-tuning 614 
the models with manually curated examples containing the expected output (as, for 615 
instance, that found in Table S6). Thus, the users of our database and knowledge graph 616 
are encouraged to click on nodes and edges to further validate these entities' accuracy.    617 

In conclusion, PlantConnectome is an innovative tool, combining the power of a 618 
state-of-the-art language model with the comprehensive information embedded in a 619 
massive collection of research articles. The tool offers an efficient and diversified way to 620 
retrieve information for genes, metabolites, tissues, organs, and other biological 621 
components. The potential applications of PlantConnectome are wide-ranging and 622 
extend beyond those we have highlighted in this article. Furthermore, since we only 623 
analyzed articles mentioning Arabidopsis thaliana and it’s genes, the inclusion of all 624 

plant scientific literature together with the inclusion of more full-text papers is bound to 625 
increase the completeness of the knowledge graph, help us stay up to date with the 626 
plant literature, and provide gold standard data for gene function prediction studies. We 627 
anticipate that PlantConnectome will become a valuable resource for the plant science 628 
community to facilitate various research activities, from a preliminary investigation of 629 
gene functions to an in-depth study of a particular biological process. 630 
 631 
  632 
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Supplemental Figures 633 

634 
Figure S1. tSNE analysis of the abstracts at the different perplexity and iteration635 

values. The evolution of the plot at a perplexity of 5 (first row), 50 (second row) and 100636 

(third row) and different ranges of iterations: 10 (first column), 100 (second column) and637 
1000 (third column).  638 
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 639 
 640 
Figure S2. tSNE analysis of the abstracts of the different biological processes, as641 

defined by MapMan. A red point indicates an abstract that contains a keyword (e.g.,642 

pollen is a keyword for plant reproduction), while grey point indicates an absence of the643 
keyword match. 644 
 645 
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 646 
Figure S3. tSNE analysis of the abstracts of the different cellular compartments.  647 

 648 
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649 
Figure S4. tSNE analysis of the abstracts of the different major organs and cell650 
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types.  651 

 652 
Figure S5. Wordcloud depicts the species in which the relationships (edges) were 653 
reported in. 654 

 655 
 656 
Supplemental Tables 657 
Table S1. Gene IDs (column A) and aliases (column B) used to query the NCBI 658 
database for articles. 659 
Table S2. Journals used to construct the database. The columns indicate the journal 660 

name, article title, publication year, PubMed ID, and whether the article was analyzed 661 
as full text (yes/no). 662 
Table S3. The three categories, their sub-categories, and keywords used to 663 
perform topic analysis of paper abstracts. 664 
Table S4. Keyword co-occurrence analysis. The two keywords are in columns A and 665 

B, and the number of articles in which these keywords co-ocurred are shown in column 666 

C. 667 
Table S5. The prompts used to build the knowledge graph, extract entity 668 
definitions and edge basis. 669 
Table S6. Edge and entity type accuracy evaluation. Each row represents and edge 670 

in the knowledge graph. Each edge contains the PubMed ID, source and target nodes, 671 
source and target entity types and relationship description. The evaluations of the 672 
source types (column G), target types (Column J), and relationship (Column M) are 673 

indicated. The comments and the sentences that underpin the edge are found in the 674 
other columns. 675 
Table S7. Evaluation of the accuracies of the gene regulatory edges (top sub-676 
table) and protein-protein interactions (bottom sub-table). 677 
 678 
Supplementary Data 679 
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Supplementary Data 1. The code to download and process the papers, and 680 
generate the figures in the manuscript is available at 681 

https://colab.research.google.com/drive/1gENxLK2172Bq1sV_dO6JhvORsFgaq0fS?us682 
p=sharing 683 
Supplementary Data 2. Keywords present in each abstract analyzed in this study. 684 

The keywords are defined in Table S3. https://figshare.com/ndownloader/files/49392538 685 
Supplementary Data 3. Co-occurence network of keywords found in each 686 
abstract. The network can be viewed in Cytoscape. 687 

https://figshare.com/ndownloader/files/49392595 688 
Supplementary Data 4. The knowledge graph used to build the Plant Connectome. 689 

The edges and nodes have been disambiguated by the code found in Supplementary 690 
Data 1. https://figshare.com/ndownloader/files/49198933 691 
 692 
Data availability 693 

The Plant Connectome database source code is available at: 694 
https://github.com/mutwil/plant_connectome_latest/ 695 
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