bioRxiv preprint doi: https://doi.org/10.1101/2023.07.11.548534; this version posted July 12, 2023. The copyright holder for this preprint (which

0o N O u b~ W

10

11

12

13

14

15

16

17

18

19

20

21

22

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

An interpretable deep learning framework for genome-informed

precision oncology

Shuangxia Ren 1, Gregory F Cooper 12, Lujia Chen?, Xinghua Lu®.2"
1 Intelligent Systems Program, School of Computing and Information, University of Pittsburgh, Pittsburgh,
Pennsylvania, United States of America
2 Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania,
United States of America

* Correspond to: xinghua@pitt.edu

Abstract

Cancers result from aberrations in cellular signaling systems, typically resulting from driver
somatic genome alterations (SGAs) in individual tumors. Precision oncology requires
understanding the cellular state and selecting medications that induce vulnerability in cancer
cells under such conditions. To this end, we developed a computational framework consisting of
two components: 1) A representation-learning component, which learns a representation of the
cellular signaling systems when perturbed by SGAs, using a biologically-motivated and
interpretable deep learning model. 2) A drug-response-prediction component, which predicts
the response to drugs by leveraging the information of the cellular state of the cancer cells
derived by the first component. Our cell-state-oriented framework significantly enhances the
accuracy of genome-informed prediction of drug responses in comparison to models that
directly use SGAs as inputs. Importantly, our framework enables the prediction of response to
chemotherapy agents based on SGAs, thus expanding genome-informed precision oncology

beyond molecularly targeted drugs.
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Introduction

Precision medicine utilizes genomic and other advanced technologies to define diseases at a
more detailed level than before, enabling tailored therapies for individuals®?2. This approach
largely relies on understanding the impact of genomic alterations within cells and prescribing
medications to counteract aberrant signals caused by these alterations. The common practice of
genome-informed precision oncology is to examine the somatic genome alterations (SGAs) and
match patients with targetable SGAs to corresponding targeted drugs »>*. While of clinical
value, this approach is applicable to a relatively small number of molecularly targetable drugs,
patient coverage is relatively low, and prediction accuracy (positive predictive value) remains
modest >’. Marquart et al > reported that as of 2018, the percentage of patients who receive
genomic screening and could be matched with targeted therapies was only about 15%; the
median overall response rate to all genome-informed therapies was 54%; and the percentage of
all cancer patients estimated to benefit was about 7%. Thus, the current practice is insufficient

to meet the needs of precision oncology for the general cancer population.

Although chemotherapies remain the backbone of general oncology, their application is largely
not guided by genomic information. Recently, Liu et al & systematically studied mutation-
treatment interactions based on real-world patient data and discovered that certain mutations
are associated with responses to certain chemotherapy agents. Generally speaking, a
“mutation-to-treatment” rule for guiding molecularly targeted or chemotherapeutic agents fails
to consider that multiple SGAs in a cancer cell may influence the cellular state and, thereby,

drug responses, which may contribute to the observed low accuracy > of the current genome-
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informed precision oncology. Thus, there is an urgent, unmet need to develop comprehensive
clinical decision support systems (CDSSs) capable of utilizing genome-scale omics profiles of
tumors to guide the selection of effective anticancer drugs from the entire pool of FDA-

approved agents.

Developing a CDSS for guiding all anticancer drugs in pan-cancer patients using real-patient data
remains challenging because it would require large-scale randomized trials testing many drugs
in all cancer types, which is not feasible. To address the challenge, large-scale pre-clinical
models screening anticancer-drug sensitivity have been developed by the Genomics of Drug
Sensitivity in Cancer (GDSC) °1° and the Cancer Cell Line Encyclopedia '*. The GDSC project has
examined multi-omics profiles of close to a thousand cancer cell lines and recorded their
response to hundreds of drugs. This dataset fills the gaps for developing artificial intelligence
(Al) models for pan-cancer and pan-drug precision oncology. GDSC studies indicate that
transcriptomes of cell lines are more informative features than SGAS in predicting cell line drug
sensitivity. However, in clinical practice, genomic data are more readily available, and thus
effectively utilizing such information would be of high clinical value. Therefore, we set out to

develop a computational framework to predict drug sensitivity based on SGA data of cell lines.

Developing a genome-based CDSS faces several challenges: 1) Drug responses are usually
determined by the state of multiple signaling pathways in a cancer cell. Therefore, the genomic
status of individual genes considered in isolation is insufficient to predict drug sensitivity; 2) A

signaling pathway can be perturbed by SGAs affecting different member genes in the pathway
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that bear similar consequences on drug responses; and, 3) the SGAs perturbing a common
signaling pathway tend to be mutually exclusive in individual tumors %3, As such, the signal of
one SGA on a drug response may become noise when training a model learning the signal of

another SGA on the same drug.

To overcome the above challenges, we developed an Al system that first transforms the SGA
data of cancer cells into a representation of cellular signaling systems and then learns to predict
the drug responses of the cells based on the inferred cellular states. The framework consists of
two main modules: 1) A representation-learning module using the Residual Genome Impact
Transformer (ResGit) model (Fig. 1C), which infers the cellular states based on the SGAs of a
cancer cell line, and 2) a drug-response-prediction module (Fig. 1D), which predicts the cells’
responses to drugs based on the inferred cellular states. The combined system is referred to as
the ResGit-based Drug Response Prediction (ResGitDR) model (Fig. 1A). We show that by more
closely mimicking the cellular signaling systems, the ResGit model can learn interpretable and
biologically sensible representations of the impact of SGAs on cellular signaling systems. We
also show that by considering cellular states, the ResGitDR performs better in predicting drug
response to both molecularly targeted and chemotherapy agents than the models that only use
SGAs as inputs. Finally, we show that ResGitDR indeed takes advantage of the cellular states
learned within our framework and performs state-oriented predictions. The results presented
below support that the ResGitDR framework provides a new and promising direction for

developing biologically motivated and interpretable systems for predicting drug responses.
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Result

Overview of the ResGitDR model

Heterogeneous responses to a drug by different cancer cells can be attributed to the
heterogeneity of cellular states, which are driven by distinct causal SGAs that perturb cellular
signaling systems. Thus, the capability of inferring cell states of cancer cells based on their SGAs
lays a foundation for predicting drug responses. Based on the assumption that driver SGAs
eventually influence gene expression, we designed ResGit (Fig. 1C) to model the relationships
between SGAs and gene expression. It uses hierarchically organized latent variables to represent
the cellular signaling system of cells and encode the impact of SGAs'4. It then transforms the

encoded information to predict gene expression.

Specifically, for each tumor, a binary vector indicating which genes are perturbed by SGA events
is fed into ResGit to predict gene expression. Then four distinct embedding layers are applied to
convert the binary vector into four hidden-layer-specific SGA embedding matrices, which
represent the impact of SGAs in a tumor on the signal-encoding hierarchy. Each SGA embedding
matrix is fed through a multi-head self-attention component to derive tumor-specific signal
embedding (ej), representing the integrated impact of SGAs in a tumor on the signaling systems.
The state of an internal hidden layer (H;) is a function of signhal embedding (e;) and the state of
the previous layer (Hi.1). To incorporate the knowledge of transcription factors (TFs) on gene
expression, we instantiated the final hidden layer based on prior knowledge following the
example by Tao et al *°, such that the parameters associated with known TF-gene edges are

updated during training, and the rest is set to 0. ResGit is trained with SGA and expression data
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111 of TCGA tumors and GDSC cell lines. To predict the drug response, we trained an elastic

112  network model ¢ for each drug. We combined the inferred state of the latent variables

113  (reflecting cellular states) from ResGit and SGAs of cell lines as inputs and binarized drug

114  sensitivity as the target (Fig. 1D). In the testing phase, as shown in Fig. 1B, the trained ResGit
115  model is firstly used to obtain hidden representations by taking SGAs and cancer type as input,
116  no gene expression data is needed during this process. Then these hidden representations are
117  then combined with SGAs to predict drug response.

118

119  ResGit learns to encode the impact of SGAs and transforms it into the gene expression of
120  tumors and cancer cell lines.

121 We collected SGA and gene expression data from 8,586 TCGA tumors and 976 cancer cell lines
122  studied by GDSC. We trained the ResGit model using this combined dataset through a series of
123  experiments. We evaluated model performance using the Spearman correlation coefficients
124  between predicted and observed gene expression values of a gene as the performance metric.
125  The distributions for the coefficients in different cancer types are shown as box plots in Fig.
126  2A&B. The mean correlation in TCGA is 0.8, while in GDSC is 0.72. The results indicate that
127  ResGit can accurately map SGA input data to gene expression predictions. The results support
128  that the latent variables in the model encode the impact of SGAs on the cellular signaling

129  system and translate the information of SGAs to gene expression. Interestingly, when modeled
130 separately, the GDSC dataset exhibited lower Spearman correlations than the TCGA dataset,

131  which suggests that the larger sample size in the TCGA dataset made the prediction more
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132  robust, resulting in higher correlation values. From here on, we report the results of ResGit

133  trained with pooled TCGA and GDSC data.

134

135  ResGit captures biologically sensible representations of SGAs.

136  In the ResGit model, an SGA is designed to be connected to every latent variable in the signaling
137  hierarchy, and SGA embeddings represent the impact of the SGA on the system, and the model
138 learns “optimal” connections between SGA and hidden nodes that would predict gene

139  expression well. If two SGAs affect distinct members of a common pathway, their impact on the
140  cellular signaling system should be similar, i.e., their embedding should be similar. We

141  examined all pairwise similarities of SGA embeddings using cosine similarity. We identified the
142  top 10 neighbor SGAs for each SGA and examined whether they perturb a common signaling
143  pathway according to existing knowledge.

144

145  Sanchez-Vega et al.}” had reported SGAs perturbing ten major cancer pathways, which was used
146  as ground truth for evaluating our results. We constructed a connectivity graph among 64 SGAs
147  gene found in both our dataset and the reported cancer pathways gene by Sanchez-Vega et al.,
148  where an edge was added between a pair of SGAs if one (or both) of them was among the

149  neighbors of the other. We colored the edges with a pseudo-color corresponding to a pathway
150 if the connected SGAs were in a pathway (Fig. 2C). The learned embeddings of the members of
151  the PI3K pathway PIK3CA, PIK3R1, PTEN, and AKT1 are among the closest neighbors to each

152  other. The graph also shows similar results for other cancer pathways. The results indicate that
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ResGit has learned embeddings of SGAs reflecting their similar impact on cell signaling systems,

conforming to established knowledge.

Self-attention mechanism revealed the impact of SGAs in cancers.
ResGit employs self-attention mechanisms and assigns a tumor-specific attention weight to an
SGA observed in a cell line to reflect its relative importance. Collective attention assigned to an
SGA reflects its importance in influencing gene expression in cancers (Fig. 2D) or in different
cancer types (Fig. 2E). As shown in Fig. 2D, ResGit assigned high attention values to well-known
cancer drivers'®, such as TP53, PTEN, KRAS, BRAF, etc. Interestingly, some genes encoding
signaling proteins, such as G-proteins GNAQ and GNA11, are not well-known as “cancer drivers”
but were assigned with high attention weight, despite their relatively low frequencies. The
results suggest ResGit captures their impact on gene expression of cells and potential role in
cancers, which is supported by recent research indicating they may play an essential role in the
tumorigenesis 1°. Our analysis also revealed the importance of SGAs in different cancer types
(Fig. 2E). For example, the results show that SGA events in GATA3 play a significant role in breast
cancer (BRCA), as confirmed by Takaku et al. 2%, SGAs in DHX9 and KEAP1 appear to play a

21,22.

significant role in lung cancer (LUAD), aligning with previous studes*"#%; alterations in TP53 are

universally involved in most cancers, as demonstrated by earlier research?3.

The latent representation of the cellular system is informative of drug sensitivity.
The results above indicate that ResGit can encode the signals perturbed by the SGAs using the

latent variables in the deep learning model. We then set out to test whether the information


https://doi.org/10.1101/2023.07.11.548534
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.11.548534; this version posted July 12, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

175 represented by the latent variables can be used to predict cancer cell responses to anticancer
176  drugs.

177

178  As a baseline, we used SGAs and cancer-type labels as input to train an elastic network model
179  (EN, Supplementary Fig. S1A) and an end-to-end feedforward neural network (NN,

180 Supplementary Fig. S1B) model to predict cell sensitivity to each drug tested by GDSC. We

181  evaluated the performance of each model in 10-fold cross-validation experiments. The EN and
182 NN models for 367 drugs achieved moderate performance in terms of area under the receiver
183  operating curve (AUROC) (Fig. 3A), with median AUROC at 0.595 and 0.619 for the NN and EN,
184  respectively. We arbitrarily set the threshold that an AUROC of 0.7 indicates a potentially useful
185 model in the clinical setting. The total number of models with AUROC above 0.7 is 7 and 32 for
186 NN and EN, respectively. Interestingly, in this setting, the elastic network outperforms the

187  neural network model, suggesting it is more robust in a setting with a small training sample size.
188

189  We then examined whether the latent representation learned by ResGit is informative with

190 respect to drug sensitivity. In a 10-fold cross-validation experiment, we trained ResGit and

191 retrieved the estimated states of latent variables (H: — H3, and TF, Fig. 1C) for the GDSC cell line
192 inthe training dataset. We concatenated the states of the latent variables with the original SGAs
193  of each cell line as input features and trained an elastic network model for each drug (Fig. 1D).
194  We called these models the ResGit-based Drug Response prediction model (ResGitDR). To

195 examine the value of self-attention and other unique approaches of ResGit, we also trained a

196  conventional neural network to model the relationship between SGAs and gene expression
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without direct connections from SGAs to internal latent nodes or self-attention. We extract the
estimated hidden-node states to train an elastic net model, and we call this model the neural-
network-based drug response prediction model (NNDR, as shown in Supplementary Fig.S1C).
The median AUROCs of the models are 0.667 and 0.633 for ResGitDR and NNDR, respectively

(Fig. 3B), which are significantly higher than EN and NN (ResGitDR vs. each of the rest, p < 0.01).

The numbers of models with AUROC greater than 0.7 are 117 and 63 for the ResGitDR and
NNDR, respectively, and the detailed information about these drugs are listed in Supplementary
Table. S1. Compared to the EN model, which only uses the original SGAs and cancer type as
features, including the states of latent variables in ResGitDR and NNDR led to 3.7 and 2-fold
increases in the number of models with AUROC greater than 0.7. We further examined models'
performances for targeted therapy and chemotherapy drugs by the four methods as an
indication of what information is provided by input features and captured by the models (Fig.
3C). The number of ResGitDR models for targeted therapy agents with an AUROC larger than
0.7 is 72, which is 1.7-fold that of NNDR and 2.7-fold that of the EN model. Importantly, the
results show that for many chemotherapy drugs, ResGitDR achieved comparable performance
in terms of AUROC when compared with molecularly targeted drugs. The number of ResGitDR
models for chemotherapy drugs with AUROC above 0.7 is 45, which is 2.1-fold of NNDR and 9-
fold of the EN model. The results indicate that it is possible to perform genome-informed

precision chemotherapy, beyond molecularly targeted drugs.
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218 To examine the potential clinical utility of ResGitDR, we performed a simulated clinical decision
219  experiment of assigning FDA-approved drugs to cell lines based on FDA guidelines and

220 compared it with decisions by ResGitDR. There are 61 FDA-approved drugs (different drug_id in
221  GDSC), 39 are for targeted drugs, and 22 are for chemotherapy agents. We applied the FDA

222  guidelines based on cancer types and genomic biomarkers, with a preference for targeted

223  therapy over chemotherapy. For example, the targeted therapy lapatinib is assigned to LUAD
224  cell lines hosting SGAs in EGFR. If multiple drugs are eligible for a cell line, we select the one
225  with the highest response rate among cell lines of a given cancer type, with a preference for
226  targeted drugs over chemotherapy ones. We compared the positive predictive values (PPVs) of
227  simulated FDA-guideline-based decisions and ResGitDR decisions.

228

229  Asshown in Fig. 3D, in the majority of cancer types, such as MM, SKCM, LUAD, SCLC, NB, BRCA,
230  HNSC, KIRC, LAML, PAAD, PRAD, and OV, ResGitDR predictions would make better

231 recommendations on average. The FDA rules perform better than ResGitDR in a few cancer

232 types, such as CESE, LUSC, ESCA, LGG, THCA, LCML, and MESO. The average PPV across all

233 cancer types for ResGitDR and FDA rules are 0.761 and 0.549, separately. Interestingly, all OV
234  cell lines have BRCA1 and/or BRCA2 mutations, and rucaparib was assigned to these cell lines
235 per FDA rules, but these cell lines didn’t respond to this drug, leading to a PPV of zero. Similarly,
236  cell lines in STAD were assigned with sunitinib according to the above rules and got zero positive
237  predicted value.

238
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To illustrate the utility of our two-component framework of first learning representation of
cellular systems using gene expression as objectives and then performing cell-state-oriented
drug-response prediction, we also trained a model with the same architecture as ResGit to
predict drug sensitivity directly, referred to as SGA2DR model (Fig. 4A). The performance of
SGA2DR model was worse (mean AUROC 0.602) (Fig. 4C) than that of ResGitDR, indicating that
learning relationships between SGA and gene expression led to a better representation of
cellular states that enhanced the performance of downstream drug sensitivity prediction.
Further, we trained a multi-task learning model, which aimed to predict gene expression and
drug response simultaneously (Fig. 4B). Interestingly, this model performs better (mean AUROC
0.635) than the aforementioned SGA2DR model, indicating that including gene expression as an
object led to a better representation that enhanced drug response prediction. However, the
multi-task model's performance was inferior in predicting drug sensitivity compared to the two-
stage approach of ResGitDR (Fig. 4C). This could be due to the limited size of our dataset, which
consisted of only around 1000 samples. With its increased number of parameters, the multi-

task model is prone to overfitting.

Finally, as a control, we shuffled SGAs and cancer-type data and re-trained a ResGitDR to predict
drug sensitivity. As anticipated, the average AUROC dropped to 0.5, indicating that ResGitDR
captures the “true” impact of SGAs and cancer type, which is required for predicting drug

response (Supplementary Fig. S2).

ResGitDR predicts responses to molecularly targeted drugs in a cell-state-oriented fashion.
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Contemporary genome-informed precision oncology assigns treatment based on the genomic
status of targeted signaling proteins. We evaluated the utility of genomic biomarkers for drugs
targeting the PI3K/mTOR pathway, more specifically, PIK-93 and AKT inhibitor VIII, by examining
whether cell lines carrying SGAs in these member genes are more sensitive (lower IC50s) than
general cell lines (Fig. 5A&B). The results show that none of the SGAs in the pathway is
informative of the sensitivity of the drugs when measured by IC50, whereas the cell lines
predicted to be sensitive to the drugs by the ResGitDR models exhibit significantly lower IC50
(more sensitive). The results suggest that by considering the inferred cellular states, ResGitDR
performed better in predicting molecularly targeted drugs than the conventional genomic

biomarkers.

We then investigated whether ResGitDR utilized certain characteristic cellular states to predict
responses to drugs that share similar mechanisms of action (MOA), e.g., drugs targeting the
PI3K/mTOR pathway. We extracted the parameters from the models for three drugs, ATK
inhibitor VIII.1, PIK-93, and GSK690693, and we identified a union of the top 50 features based
on the absolute weights of drugs targeting on PI3K/mTOR pathway in the elastic net model,
which reflect the importance of a feature, including both hidden representations and SGAs. We
extracted the values of these features from GDSC cell lines and grouped them using clustering
analysis (Fig. 5C). The cell lines’ mutation status of genes in the PI3K/mTOR signaling pathway is
shown to illustrate whether they carry information with respect to drug sensitivity as
biomarkers. The figure shows that inferred cell states underlie cell line clusters consisting of

cells from diverse cancer types, and certain clusters (e.g., clusters 3, 10, and 11) are enriched
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with responders to the three drugs, supporting the notion that cell states influence the
response to drugs. The AURQOCs for the three models are 0.81, 0.78, and 0.76 for ATK inhibitor
VIII.1, PIK-93, and GSK690693, respectively. Similar results were observed for other molecularly
targeted drugs, such as anti-EGFR drugs (Supplementary Fig. $S3). The results indicate that
ResGitDR learns to predict drug response in a cell-state-oriented manner instead of relying on
the genomic status of the biomarker genes. Table. 1 shows the important SGAs gene in top 50
features in different pathways when predicting the drug response. For instance, in the
PI3K/MTOR pathway, PIK3CA and PTEN are identified as important genes. On the other hand, in

the ERK MAPK pathway, BRAF is recognized as a significant gene.

We further investigated the cell-state-oriented nature of ResGitDR from another perspective. If
a family of drugs shares a common MOA, it is expected that they will have a similar impact on
cells sharing similar cell states. For each drug, we extracted the parameter vectors of the elastic
net in ResGitDR model, which reflect the relative importance of features used by the model. We
call this representation "drug embeddings", and we performed pairwise cosine similarity
analysis of the drug embeddings. For each drug, we identified five drugs with the closest
embeddings and visualized the relationships among the drugs (Fig. 5D). The results show that
drugs targeting a common pathway share similar embeddings, supporting our assumption that
ResGitDR identified the features reflecting the cell states indicative of sensitivity to drugs

sharing MOAs.

Discussion
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In this study, we presented a novel framework for genome-informed precision oncology. Our
approach overcomes the limitations of the current rule-based precision oncology > or simple
machine learning approaches of directly using SGAs as inputs to predict drug responses °.
Instead, we designed the biologically-motivated ResGit model that learns to encode the
information of SGAs with respect to gene expression using hierarchically organized latent
variables, which mimic the cellular signaling systems of cancer cells. Hence, by transforming
genomic data into features reflecting the functional state of cellular signaling systems, the

integrated ResGitDR achieved significantly enhanced performance in predicting drug response.

Several novel designs in ResGitDR contribute to its utility. First, ResGit closely mimics the
processes by which SGAs perturb cellular signaling systems, eventually leading to cancer. The
cellular signaling system consists of hierarchically organized signaling proteins, and genomic
perturbation at the different levels of the hierarchy exert distinct effects on cellular systems. By
connecting SGAs to all latent variables, ResGit can learn the direct impact of an SGA on the
specific components of the signaling system and allow the neural network to transmit such
impact through the system. This makes the system transparent and interpretable, enabling
ResGit to capture more efficiently the shared functional implications of different SGAs that
perturb a common pathway in cells. Second, the self-attention mechanism enables the ResGit
to capture the instance-specific impact of SGAs on the cellular signaling system, enabling the
model to detect different roles of SGAs in individual tumors. Finally, explicitly including the
hidden representation in ResGitDR makes the state of latent variables transparent, which

enables ResGitDR to perform drug response prediction in a cell-state-oriented fashion.
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Conventional genome-informed precision oncology mainly uses genomic biomarkers to guide
the application of molecularly targeted drugs. As pointed out in previous studies >° and our
experiments, the accuracy of the rule-based or simple “black box” neural net models for guiding
molecularly targeted drugs has room to be improved. Here, we show that by learning a
representation of the cell signaling system, ResGitDR significantly outperforms simple models
such as elastic networks and feed-forward neural networks. Although the current model has
limited clinical utility because it is trained with pre-clinical data and not tested in real-world
patient data, we anticipate that our framework has the potential to improve the accuracy of
genome-informed targeted therapy in clinical settings if trained with large real-world data.
Moreover, our framework can be expanded to guide chemotherapies as demonstrated by our

24-26

results and other studies , which will significantly expand the scope of precision oncology

beyond the genome-informed application of molecularly targeted drugs.

Materials and methods

Somatic genomic alterations (SGAs) pre-processing

The mutation data of GDSC was downloaded from lorio et al. ° and the CNV data and cancer
type data were downloaded from Cell Model Passports
(https://cellmodelpassports.sanger.ac.uk). The mutation data of TCGA were downloaded from
the TCGA website (https://portal.gdc.cancer.gov), and the CNV data and cancer type data were
downloaded from the Xena portal (http://xena.ucsc.edu). We represent an SGA event in a gene

in a tumor as a binary variable, such that genes with mutations or somatic copy number


https://doi.org/10.1101/2023.07.11.548534
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.11.548534; this version posted July 12, 2023. The copyright holder for this preprint (which

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

alteration (deletion or amplification) were given a value of 1 and otherwise were given a value
of 0. Since the majority of SGAs observed in tumors are likely passenger events, we take the
union of 527 driver genes defined by the Cell Model Passports, 634 genes that are found to
causally influence gene expression in cancers identified by Cai et al 27, and 324 mutation genes

used in Foundation Medicine (https://www.foundationmedicineasia.com) to obtain the final set

of 1,084 SGAs.

Gene expression and TF-target gene matrix pre-processing

To take advantage of existing cancer big data, we combined both TCGA and GDSC RNA-Seq
data. The RNAseq data of GDSC was obtained from Garcia-Alonso et al. 22 and of TCGA from the
Xena portal. We selected the genes using the gene set described in Ding et al.?* with the
selection rule that genes with high variances were identified by medium variance analysis,
bimodal mixture fitting, and statistical significance of modes. We obtained the processed TF-
gene connectivity matrix from Tao et al *°. If a TF is known to regulate a gene, the
corresponding element in the connectivity matrix is 1; otherwise, it is 0. The final set contained

320 TFs and 1,613 genes and had 105,224 connections.

Drug sensitivity data pre-processing
Drug sensitivity data were downloaded from the GDSC website

(https://www.cancerrxgene.org), and activity area (AA) was used to evaluate drug responses. In

the GDSC1 dataset, there are a total of 367 drugs. Within this dataset, there are multiple drugs

that share the same name but have different drug IDs. We considered these drugs as distinct
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entities. To facilitate future application in clinical practice, we discretized the drug response of a
cell line with respect to a drug into two categories, sensitive (1) and resistant (0), by applying
the waterfall method to each drug which was described in Ding et al.?*. Specifically, the drug
sensitivity measurements of all cell lines to a specific drug are sorted to generate a waterfall
distribution. A linear regression is fitted to this distribution, and a Pearson correlation
determines the goodness of fit. If the correlation coefficient is <0.95, the major inflection point
is estimated as the point with maximal distance from a line drawn between the start and end
points. If the correlation coefficient is >0.95, the median value is used. This value serves as the

cutoff to separate sensitive and resistant cell lines to this drug.

ResGitDR architecture

The overall architecture of ResGitDR is shown in Fig. 1. The model has two modules: 1) The
Representation Learning Module (ResGit), which is a deep learning model that aims to encode
the impact of SGAs on cellular signaling system by performing the task of predicting gene
expression using SGAs and cancer type data as input. When trained, the model can be used to
infer the state of the cellular signaling system by feeding SGAs and cancer type into the model.
2) The Drug Response Prediction Module, which utilizes elastic net to predict drug sensitivity by

taking the hidden features learned in the first module and SGAs as input.

Representation Learning Module in ResGitDR
The residual genomic impact transformer (ResGit) is similar to the genomic impact transformer

(GIT) model developed by Tao et al.?° with several modifications of the architecture and
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393  procedures. Compared with GIT model, ResGit has more than one hidden layer and allows the
394  connection of the SGAs to both the first hidden layer and each additional hidden layer (Fig. 1C).
395 Through a series of hyperparameter tuning experiments, we set the number of hidden layers in
396  ResGit to 4 (H1, H2, H3, and TF) and the number of hidden nodes number in H1, H2, H3, and TF
397 layers to 200, 200, 200, and 320, respectively.

398

399 Input to the model consists of the cancer type label and m SGAs observed in a tumor. The inputs
400 s firstly converted into embeddings using the "torch.nn.Embedding" class in PyTorch. The

401  cancer type of the sample is transformed into a cancer-type embedding (e.) through an

402 embedding layer. To capture the diverse impacts of a specific gene m on different hidden nodes,
403  four distinct embedding layers are employed to convert the SGA gene m into four embedding
404  vectors (e}, e?,e3, et) . Additionally, instead of randomly initializing the SGA embeddings, we
405 applied the Word2Vec®® algorithm to the SGA data to “pre-train” the SGA embedding.

406 Embeddings learned in this fashion can capture the co-occurrence patterns of SGAs, so that the
407  SGAs affecting a common pathway share a similar embedding. After initializing the SGA

408 embedding with the pre-training gene embedding, the SGA embedding will further update with
409 the supervision of gene expression data in ResGit.

410

411  After obtaining SGAs embedding, we employed a multi-head self-attention mechanism, which
412  could distribute importance weights to SGAs in the training phase. Given a specific sample with

413  cancer type (C) and a set of SGAs events (M), we obtained the first signal embedding layer (e:)
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by the Equation (1), then applied a Relu activation function to get the first hidden
representation (H;) through Equation (2):
e, =e.+ al xel +aixel +-+ al xel (D
H, = Relu(e,) (2)

Where ai, al, ...a} are the attention weights for the first hidden layer.

The attention weights in our experiment were calculated using the method described in Tao et
al®. In brief, we calculated the attention weights (a{', aé, ...aL) for hidden layer H; by following

steps. First, the single-head (h) attention weights were calculated by Equation (3):

alp, abp, .k,
= softmax((8;)" tanh(W¢ - el), (0})T tanh(W{ - €), ..., (81)T tanh(W¢ - el)) (3

Where (9,"1)T is the single-head parameter for head h and Woi is the parameter matrix, both of
them are for hidden layer H;. Then we calculated the multi-head attention weights by adding all
the single head weights:
A = @y + iy + 0+ Ay @)
To obtain the subsequent signal embedding layer (ez-e4), only SGAs were used:
e;=al el +abxel+ -+ al, *el, (5)
In order to obtain the second hidden representation layer (H.), we performed an addition
operation to combine the initial hidden representation layer (H:) with the signal embedding
layer (e,). Subsequently, we applied a RelLu layer:
H, = Relu(H, + e;) (6)
Similarly, we obtained the third hidden representation layer (H;):

H; = Relu(H, + e3) (7)
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To obtain the last hidden layer, the transcription factor layer (TF layer), we used sigmoid
function instead:

TF = Sigmoid(H; + e,) (8)
We used the TF layer to represent the state of transcription factors (TFs) explicitly, and the last
linear layer learns the relationships between TFs and their target genes. This learning process
was guided by a sparse matrix of prior knowledge derived from a TF-gene connectivity matrix
(Pe 2**1) where k is number of TF and / is the number of gene. To predict the gene expression
values, the Equation (9) was used:

Vexp = Wrr—gene * TF 9
Where ¥,,,, is the predicted gene expression value, Wrg_g.n. share the same shape with prior
matrix P, and Wrr_gene,; j is allowed to be nonzero and updated during learning only when P;; =
1. The gene expression is a continuous value, and mean square loss was used as the loss

function:

n

Z(yexp - yexp)z (10)

i=1

Where n is the number of samples, and y,,, is the observed gene expression value.

To avoid overfitting and increase robustness, we applied the pruning technique on both hidden
layers and gene embeddings. For the weights matrix of the first three hidden layers, 90% of low-
ranking weights are removed. For the last TF-gene expression weights matrix, we used prior
knowledge, the TF-to-gene matrix, to regulate the weights, and the connections in this matrix

are about 20%. For the embedding pruning, for each layer, every gene has its own gene
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457  embedding (the dimension of the first three layers is 200, and of the last one is 320). We first
458  train the ResGit model without pruning any element in embedding, and after the model

459  converges, we rank the nodes of each embedding, only nodes with the top 60% high value will
460 be kept, and other elements will be changed into zero. Then, we re-train the ResGit module
461  again till it converges. We used 10-fold cross-validation to evaluate the performance.

462

463  Drug Response Prediction Module in ResGitDR

464  We used the elastic network model as the classifier for ResGitDR, which is a form of logistic
465  regression with a hybrid regularization term that combines lasso and ridge regularization. We
466  concatenated the original SGAs and latent variables derived by ResGit (H;, H,, H;, TF) of cell
467 lines as the input features for the classifier, and binary drug-sensitivity label as targets. We used
468 class sklearn.linear_model.LogisticRegression with penalty of elastic net. It contains two

469 hyperparameters, L1_ratio and C. L1_ratio defines the relative weight of the lasso and ridge
470 penalization terms, and C determines the regularization strength. We used grid search to select
471  L1_ratio and C for each drug. The elastic net was performed with 10-fold cross-validation. Since
472  ResGitDR model contains two modules, to avoid data leakage, we performed the cross-

473  validation experiment simultaneously, using the same training/testing dataset for ResGit and
474  elastic net.

475

476  To predict drug sensitivity, SGAs, Hy, H,, H;, TF were firstly concatenated together, then elastic
477  net was used:

478 5}drug = Wdrug * (SGASI Hll HZr H3J TF) (11)
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479  Where Y4, is the predicted drug sensitivity value and Wy, 4 is the weight matrix of elastic
480 net.

481

482  Since drug response is binarized, the cross-entropy loss was used as loss function:

483 _(ydrug log(ydrug) + (1 - ydrug) lOg(l - ?drug) (12)

484  Where Y44 is the observed drug sensitivity value.
485
486

487  Abbreviations

488 ACC Adrenocortical carcinoma

489 ALL  Acute lymphoblastic leukemia

490 BLCA Bladder Urothelial Carcinoma

491 LGG Brain Lower Grade Glioma

492  BRCA Breast invasive carcinoma

493 CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma
494 CHOL Cholangiocarcinoma

495 CLL  Chronic Lymphocytic Leukemia

496 COAD/READ Colon adenocarcinoma/Rectum adenocarcinoma
497 DLBC Lymphoid Neoplasm Diffuse Large B-cell Lymphoma
498 ESCA Esophageal carcinoma

499 GBM Glioblastoma multiforme

500 HNSC Head and Neck squamous cell carcinoma

501 KICH Kidney Chromophobe

502 KIRC Kidney renal clear cell carcinoma

503 KIRP Kidney renal papillary cell carcinoma

504 LAML Acute Myeloid Leukemia

505 LCML Chronic Myelogenous Leukemia

506 LGG Brain Lower Grade Glioma

507 LIHC Liver hepatocellular carcinoma

508 LUAD Lung adenocarcinoma

509 LUSC Lungsquamous cell carcinoma

510 MB Medulloblastoma

511 MESO Mesothelioma

512 MM Multiple Myeloma

513 NB Neuroblastoma

514 OV Ovarian serous cystadenocarcinoma

515 PAAD Pancreatic adenocarcinoma

516 PCPG Pheochromocytoma and Paraganglioma

517 PRAD Prostate adenocarcinoma
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518 SARC Sarcoma

519 SCLC Small Cell Lung Cancer

520 SKCM Skin Cutaneous Melanoma
521 STAD Stomach adenocarcinoma
522  TGCT Testicular Germ Cell Tumors
523 THYM Thymoma

524  THCA Thyroid carcinoma

525 UCS Uterine Carcinosarcoma
526 UCEC Uterine Corpus Endometrial Carcinoma
527 UVM Uveal Melanoma

528
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607 Table

608 Table 1. The top important SGA genes that were included as features when predicting the
609 response to specific signaling pathways drugs.

Top important SGA genes to predict drug response
PI3K/MTOR signaling PIK3CA, PTEN, ZFHX4, VPS13B, RELN, USH2A
ERK MAPK signaling BRAF, TTN
WNT signaling FLG, MUC16, ZNF208, VCAN, ATM, HRNR, CSMD3,
RSPH10B2, APOBEC3B
JNK signaling CSMD1, ROS1, VPS13B, TET1, FAT3
p53 pathway TP53, CDH10, SYNE1, TCHH, APC, PTPRC, DMBT1, VCAN
EGFR signaling KRAS, ERBB2, RELN, HRNR, LRP1B, EGFR
IGF1R signaling PTEN, RYR2, GLI1, XIRP2, MYH2, MUC16, RYR1, FANCM,
CSMD3, FAT1, DNAH14, IKZF3, IL7R

610
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3 Fig. 1 Flowchart of overall drug sensitivity prediction framework. (A). ResGitDR comprises two
4  modules: the Representation Learning Module, which employs the Residual Genome Impact
5 Transformer (ResGit) model, and the Drug Response Prediction Module, which utilizes an elastic
6 net. In the training phase, the Representation Learning Module uses SGAs and cancer types to
7  predict gene expression, and the Drug Response Prediction Module incorporates the hidden
8 representations learned in the Representation Learning Module and SGAs as input to predict
9  drug sensitivity. (B). In the testing phase, the trained ResGit model is used to obtain hidden

10 representations using SGAs and cancer type as input. These hidden representations are then

11  combined with SGAs as inputs to predict drug response. (C). The detailed diagram of the

12  Representation Learning Module. (D). The detailed diagram of the Drug Response Prediction

13

Module.
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Fig. 2 Evaluation of the performance of ResGit. The distribution of Spearman correlation
coefficients between predicted and observed gene expression values (A) in the TCGA dataset
and (B) in the GDSC datasets, respectively. (C). The connectivity map shows the similarity of SGA
embeddings among the SGAs perturbing common pathways. The weight vector connecting an
SGA to hidden nodes is used as an embedding of the SGA, and similarity between a pair of SGAs
is calculated with cosine similarity. If gene A is a neighbor of gene B, the arrow direction points
from gene B to gene A; a double-arrowed edge indicates that two SGAs are mutually among the
top 10 neighbors. The thickness of an arrow represents the degree of similarity. (D). The
attention weights of SGAs gene in a pan-cancer analysis. Genes with high overall attention
weights are shown in red font. (E). The attention weights of SGAs gene across different cancer

types.
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27  Fig. 3 The performance comparison in drug response prediction. (A). The performance of two
28  baseline models (EN and NN) which both use SGA and cancer type to predict drug sensitivity
29  directly. (B). The performance of two models (NNDR and ResGitDR), which both firstly use the
30 SGAs and cancer type to predict gene expression and obtain the hidden representations, then
31 concatenate SGA and hidden representations to predict drug sensitivity. (C). The number and
32  AUROC distribution of Targeted Therapy and Chemotherapy drugs with AUROC higher than 0.7
33  across EN, NN, NNDR and ResGitDR. (D). The Positive Predicted Value of ResGitDR and FDA rules
34  methods with error bar representing 95% confidence interval. The numbers in parentheses
35 indicate the corresponding cell line counts for each cancer type.
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Fig. 4 (A). The architecture of the SGA2DR model. It predicts drug sensitivity directly using the
same architecture of ResGit by taking the cancer type and SGAs as input. (B). The architecture
of the multi-task learning model. It aims to predict drug sensitivity and gene expression
simultaneously using the same architecture of ResGit by taking the cancer type and SGAs as
inputs. (C). The performance comparison of SGA2DR, multi-task learning, and ResGitDR models.
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Fig. 5 The distributions of drug sensitivity (represented as log IC50s) to (A) PIK-93 and (B) AKT
inhibitor VIl by cancer cell lines grouped according to the mutation status of genes involved in
the PI3K pathway. The distribution of drug sensitivity by the cell lines predicted by ResGitDR to
be sensitive to the drugs is also shown. (C). Cancer cell lines were clustered using the based on
the selected top 50 predictive features from ResGitDR models for 3 anti-PI3K PI3K/MTOR drugs:
AKT inhibitor VIII, PIK-93, and GSK690693. The features consist of hidden representations and
individual SGAs. The SGAs are represented as binary values. The hidden node values are
standardized within the range of 0 to 1. The binary drug responses to each of the three drugs by
cell lines are shown. Three red boxes highlight the clusters with enriched responder cell lines
(clusters 3, 10, and 11). The mutation status of genes in the PI3K/mTOR signaling pathway is
shown to illustrate their relationship with respect to drug sensitivity. (D). The connectivity map
shows the similarity of the embedding of drugs targeting common pathways. The top 50
important features of the ResGitDR for a drug are used as its embedding. The similarity of
embeddings of two drugs is measured with cosine similarity. Molecularly targeted drugs are
shown as nodes; an edge is added between a pair of drugs whose embeddings are among the
top 5 highest cosine similarities of each other. If drug A is a neighbor of drug B, the arrow
direction points from drug B to drug A; a double-arrowed edge indicates that a pair of drugs are
mutually among the top 5 neighbors of each other. The thickness of an arrow is proportional to
cosine similarity.
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Supplementary Fig. S1 The model architectures of (A) the elastic net (EN) and (B) neural
network (NN) models. Both models take SGAs and cancer type as inputs to directly predict drug
response. (C). The architecture of the NNDR model involves a four-layer neural network (NN)
that predicts gene expression using cancer type and SGAs as input. In the drug prediction phase,
the NN is used to infer the state of hidden nodes, which are further used as inputs for the drug
response prediction model.
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Supplementary Fig. S3 Cell-state-oriented prediction of sensitivity to anti-EGFR drugs.
Annotations are the same as Fig. 5 in the main text.

Supplementary Table

Supplementary Table S1. The targeted therapy drugs and chemotherapy drugs with AUROC
higher than 0.7 when using ResGitDR, NNDR and EN to predict drug response (please see the
excel file).
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