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Abstract 9 

Cancers result from aberra9ons in cellular signaling systems, typically resul9ng from driver 10 

soma9c genome altera9ons (SGAs) in individual tumors.  Precision oncology requires 11 

understanding the cellular state and selec9ng medica9ons that induce vulnerability in cancer 12 

cells under such condi9ons. To this end, we developed a computa9onal framework consis9ng of 13 

two components: 1) A representa9on-learning component, which learns a representa9on of the 14 

cellular signaling systems when perturbed by SGAs, using a biologically-mo9vated and 15 

interpretable deep learning model.  2) A drug-response-predic9on component, which predicts 16 

the response to drugs by leveraging the informa9on of the cellular state of the cancer cells 17 

derived by the first component. Our cell-state-oriented framework significantly enhances the 18 

accuracy of genome-informed predic9on of drug responses in comparison to models that 19 

directly use SGAs as inputs. Importantly, our framework enables the predic9on of response to 20 

chemotherapy agents based on SGAs, thus expanding genome-informed precision oncology 21 

beyond molecularly targeted drugs. 22 
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Introduc9on 23 

Precision medicine u9lizes genomic and other advanced technologies to define diseases at a 24 

more detailed level than before, enabling tailored therapies for individuals1,2. This approach 25 

largely relies on understanding the impact of genomic altera9ons within cells and prescribing 26 

medica9ons to counteract aberrant signals caused by these altera9ons. The common prac9ce of 27 

genome-informed precision oncology is to examine the soma9c genome altera9ons (SGAs) and 28 

match pa9ents with targetable SGAs to corresponding targeted drugs 1,3,4.  While of clinical 29 

value, this approach is applicable to a rela9vely small number of molecularly targetable drugs, 30 

pa9ent coverage is rela9vely low, and predic9on accuracy (posi9ve predic9ve value) remains 31 

modest 5-7.  Marquart et al 5 reported that as of 2018, the percentage of pa9ents who receive 32 

genomic screening and could be matched with targeted therapies was only about 15%; the 33 

median overall response rate to all genome-informed therapies was 54%; and the percentage of 34 

all cancer pa9ents es9mated to benefit was about 7%. Thus, the current prac9ce is insufficient 35 

to meet the needs of precision oncology for the general cancer popula9on.  36 

 37 

Although chemotherapies remain the backbone of general oncology, their applica9on is largely 38 

not guided by genomic informa9on. Recently, Liu et al 8 systema9cally studied muta9on-39 

treatment interac9ons based on real-world pa9ent data and discovered that certain muta9ons 40 

are associated with responses to certain chemotherapy agents. Generally speaking, a 41 

“muta9on-to-treatment” rule for guiding molecularly targeted or chemotherapeu9c agents fails 42 

to consider that mul9ple SGAs in a cancer cell may influence the cellular state and, thereby, 43 

drug responses, which may contribute to the observed low accuracy 5 of the current genome-44 
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informed precision oncology. Thus, there is an urgent, unmet need to develop comprehensive 45 

clinical decision support systems (CDSSs) capable of u9lizing genome-scale omics profiles of 46 

tumors to guide the selec9on of effec9ve an9cancer drugs from the en9re pool of FDA-47 

approved agents.   48 

 49 

Developing a CDSS for guiding all an9cancer drugs in pan-cancer pa9ents using real-pa9ent data 50 

remains challenging because it would require large-scale randomized trials tes9ng many drugs 51 

in all cancer types, which is not feasible.  To address the challenge, large-scale pre-clinical 52 

models screening an9cancer-drug sensi9vity have been developed by the Genomics of Drug 53 

Sensi9vity in Cancer (GDSC) 9,10 and the Cancer Cell Line Encyclopedia 11. The GDSC project has 54 

examined mul9-omics profiles of close to a thousand cancer cell lines and recorded their 55 

response to hundreds of drugs. This dataset fills the gaps for developing ar9ficial intelligence 56 

(AI) models for pan-cancer and pan-drug precision oncology.  GDSC studies indicate that 57 

transcriptomes of cell lines are more informa9ve features than SGAS in predic9ng cell line drug 58 

sensi9vity.  However, in clinical prac9ce, genomic data are more readily available, and thus 59 

effec9vely u9lizing such informa9on would be of high clinical value.  Therefore, we set out to 60 

develop a computa9onal framework to predict drug sensi9vity based on SGA data of cell lines.  61 

 62 

Developing a genome-based CDSS faces several challenges: 1) Drug responses are usually 63 

determined by the state of mul9ple signaling pathways in a cancer cell. Therefore, the genomic 64 

status of individual genes considered in isola9on is insufficient to predict drug sensi9vity; 2) A 65 

signaling pathway can be perturbed by SGAs affec9ng different member genes in the pathway 66 
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that bear similar consequences on drug responses; and, 3) the SGAs perturbing a common 67 

signaling pathway tend to be mutually exclusive in individual tumors 12,13. As such, the signal of 68 

one SGA on a drug response may become noise when training a model learning the signal of 69 

another SGA on the same drug.    70 

 71 

To overcome the above challenges, we developed an AI system that first transforms the SGA 72 

data of cancer cells into a representa9on of cellular signaling systems and then learns to predict 73 

the drug responses of the cells based on the inferred cellular states.  The framework consists of 74 

two main modules: 1) A representa9on-learning module using the Residual Genome Impact 75 

Transformer (ResGit) model (Fig. 1C), which infers the cellular states based on the SGAs of a 76 

cancer cell line, and 2) a drug-response-predic9on module (Fig. 1D), which predicts the cells’ 77 

responses to drugs based on the inferred cellular states. The combined system is referred to as 78 

the ResGit-based Drug Response Predic9on (ResGitDR) model (Fig. 1A). We show that by more 79 

closely mimicking the cellular signaling systems, the ResGit model can learn interpretable and 80 

biologically sensible representa9ons of the impact of SGAs on cellular signaling systems. We 81 

also show that by considering cellular states, the ResGitDR performs befer in predic9ng drug 82 

response to both molecularly targeted and chemotherapy agents than the models that only use 83 

SGAs as inputs.  Finally, we show that ResGitDR indeed takes advantage of the cellular states 84 

learned within our framework and performs state-oriented predic9ons.  The results presented 85 

below support that the ResGitDR framework provides a new and promising direc9on for 86 

developing biologically mo9vated and interpretable systems for predic9ng drug responses. 87 

 88 
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Result 89 

Overview of the ResGitDR model 90 

Heterogeneous responses to a drug by different cancer cells can be afributed to the 91 

heterogeneity of cellular states, which are driven by dis9nct causal SGAs that perturb cellular 92 

signaling systems.  Thus, the capability of inferring cell states of cancer cells based on their SGAs 93 

lays a founda9on for predic9ng drug responses. Based on the assump9on that driver SGAs 94 

eventually influence gene expression, we designed ResGit (Fig. 1C) to model the rela9onships 95 

between SGAs and gene expression. It uses hierarchically organized latent variables to represent 96 

the cellular signaling system of cells and encode the impact of SGAs14. It then transforms the 97 

encoded informa9on to predict gene expression.      98 

 99 

Specifically, for each tumor, a binary vector indica9ng which genes are perturbed by SGA events 100 

is fed into ResGit to predict gene expression. Then four dis9nct embedding layers are applied to 101 

convert the binary vector into four hidden-layer-specific SGA embedding matrices, which 102 

represent the impact of SGAs in a tumor on the signal-encoding hierarchy. Each SGA embedding 103 

matrix is fed through a mul9-head self-afen9on component to derive tumor-specific signal 104 

embedding (ei), represen9ng the integrated impact of SGAs in a tumor on the signaling systems. 105 

The state of an internal hidden layer (Hi) is a func9on of signal embedding (ei) and the state of 106 

the previous layer (Hi-1). To incorporate the knowledge of transcrip9on factors (TFs) on gene 107 

expression, we instan9ated the final hidden layer based on prior knowledge following the 108 

example by Tao et al 15, such that the parameters associated with known TF-gene edges are 109 

updated during training, and the rest is set to 0. ResGit is trained with SGA and expression data 110 
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of TCGA tumors and GDSC cell lines.  To predict the drug response, we trained an elas9c 111 

network model 16 for each drug. We combined the inferred state of the latent variables 112 

(reflec9ng cellular states) from ResGit and SGAs of cell lines as inputs and binarized drug 113 

sensi9vity as the target (Fig. 1D).  In the tes9ng phase, as shown in Fig. 1B, the trained ResGit 114 

model is firstly used to obtain hidden representa9ons by taking SGAs and cancer type as input, 115 

no gene expression data is needed during this process. Then these hidden representa9ons are 116 

then combined with SGAs to predict drug response. 117 

 118 

ResGit learns to encode the impact of SGAs and transforms it into the gene expression of 119 

tumors and cancer cell lines.  120 

We collected SGA and gene expression data from 8,586 TCGA tumors and 976 cancer cell lines 121 

studied by GDSC.  We trained the ResGit model using this combined dataset through a series of 122 

experiments. We evaluated model performance using the Spearman correla9on coefficients 123 

between predicted and observed gene expression values of a gene as the performance metric.  124 

The distribu9ons for the coefficients in different cancer types are shown as box plots in Fig. 125 

2A&B. The mean correla9on in TCGA is 0.8, while in GDSC is 0.72. The results indicate that 126 

ResGit can accurately map SGA input data to gene expression predic9ons. The results support 127 

that the latent variables in the model encode the impact of SGAs on the cellular signaling 128 

system and translate the informa9on of SGAs to gene expression. Interes9ngly, when modeled 129 

separately, the GDSC dataset exhibited lower Spearman correla9ons than the TCGA dataset, 130 

which suggests that the larger sample size in the TCGA dataset made the predic9on more 131 
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robust, resul9ng in higher correla9on values. From here on, we report the results of ResGit 132 

trained with pooled TCGA and GDSC data.   133 

 134 

ResGit captures biologically sensible representaEons of SGAs. 135 

In the ResGit model, an SGA is designed to be connected to every latent variable in the signaling 136 

hierarchy, and SGA embeddings represent the impact of the SGA on the system, and the model 137 

learns “op9mal” connec9ons between SGA and hidden nodes that would predict gene 138 

expression well.  If two SGAs affect dis9nct members of a common pathway, their impact on the 139 

cellular signaling system should be similar, i.e., their embedding should be similar.  We 140 

examined all pairwise similari9es of SGA embeddings using cosine similarity. We iden9fied the 141 

top 10 neighbor SGAs for each SGA and examined whether they perturb a common signaling 142 

pathway according to exis9ng knowledge.  143 

 144 

Sanchez-Vega et al.17 had reported SGAs perturbing ten major cancer pathways, which was used 145 

as ground truth for evalua9ng our results. We constructed a connec9vity graph among 64 SGAs 146 

gene found in both our dataset and the reported cancer pathways gene by Sanchez-Vega et al., 147 

where an edge was added between a pair of SGAs if one (or both) of them was among the 148 

neighbors of the other.  We colored the edges with a pseudo-color corresponding to a pathway 149 

if the connected SGAs were in a pathway (Fig. 2C).  The learned embeddings of the members of 150 

the PI3K pathway PIK3CA, PIK3R1, PTEN, and AKT1 are among the closest neighbors to each 151 

other.  The graph also shows similar results for other cancer pathways. The results indicate that 152 
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ResGit has learned embeddings of SGAs reflec9ng their similar impact on cell signaling systems, 153 

conforming to established knowledge.    154 

 155 

Self-aGenEon mechanism revealed the impact of SGAs in cancers.  156 

ResGit employs self-afen9on mechanisms and assigns a tumor-specific afen9on weight to an 157 

SGA observed in a cell line to reflect its rela9ve importance.  Collec9ve afen9on assigned to an 158 

SGA reflects its importance in influencing gene expression in cancers (Fig. 2D) or in different 159 

cancer types (Fig. 2E).  As shown in Fig. 2D, ResGit assigned high afen9on values to well-known 160 

cancer drivers18, such as TP53, PTEN, KRAS, BRAF, etc. Interes9ngly, some genes encoding 161 

signaling proteins, such as G-proteins GNAQ and GNA11, are not well-known as “cancer drivers” 162 

but were assigned with high afen9on weight, despite their rela9vely low frequencies. The 163 

results suggest ResGit captures their impact on gene expression of cells and poten9al role in 164 

cancers, which is supported by recent research indica9ng they may play an essen9al role in the 165 

tumorigenesis 19. Our analysis also revealed the importance of SGAs in different cancer types 166 

(Fig. 2E). For example, the results show that SGA events in GATA3 play a significant role in breast 167 

cancer (BRCA), as confirmed by Takaku et al. 20; SGAs in DHX9 and KEAP1 appear to play a 168 

significant role in lung cancer (LUAD), aligning with previous studes21,22; altera9ons in TP53 are 169 

universally involved in most cancers, as demonstrated by earlier research23.     170 

 171 

The latent representaEon of the cellular system is informaEve of drug sensiEvity. 172 

The results above indicate that ResGit can encode the signals perturbed by the SGAs using the 173 

latent variables in the deep learning model.  We then set out to test whether the informa9on 174 
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represented by the latent variables can be used to predict cancer cell responses to an9cancer 175 

drugs.   176 

 177 

As a baseline, we used SGAs and cancer-type labels as input to train an elas9c network model 178 

(EN, Supplementary Fig. S1A) and an end-to-end feedforward neural network (NN, 179 

Supplementary Fig. S1B) model to predict cell sensi9vity to each drug tested by GDSC. We 180 

evaluated the performance of each model in 10-fold cross-valida9on experiments. The EN and 181 

NN models for 367 drugs achieved moderate performance in terms of area under the receiver 182 

opera9ng curve (AUROC) (Fig. 3A), with median AUROC at 0.595 and 0.619 for the NN and EN, 183 

respec9vely.  We arbitrarily set the threshold that an AUROC of 0.7 indicates a poten9ally useful 184 

model in the clinical selng. The total number of models with AUROC above 0.7 is 7 and 32 for 185 

NN and EN, respec9vely.  Interes9ngly, in this selng, the elas9c network outperforms the 186 

neural network model, sugges9ng it is more robust in a selng with a small training sample size. 187 

 188 

We then examined whether the latent representa9on learned by ResGit is informa9ve with 189 

respect to drug sensi9vity.  In a 10-fold cross-valida9on experiment, we trained ResGit and 190 

retrieved the es9mated states of latent variables (H1 – H3, and TF, Fig. 1C) for the GDSC cell line 191 

in the training dataset. We concatenated the states of the latent variables with the original SGAs 192 

of each cell line as input features and trained an elas9c network model for each drug (Fig. 1D). 193 

We called these models the ResGit-based Drug Response predic9on model (ResGitDR). To 194 

examine the value of self-afen9on and other unique approaches of ResGit, we also trained a 195 

conven9onal neural network to model the rela9onship between SGAs and gene expression 196 
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without direct connec9ons from SGAs to internal latent nodes or self-afen9on. We extract the 197 

es9mated hidden-node states to train an elas9c net model, and we call this model the neural-198 

network-based drug response predic9on model (NNDR, as shown in Supplementary Fig.S1C).  199 

The median AUROCs of the models are 0.667 and 0.633 for ResGitDR and NNDR, respec9vely 200 

(Fig. 3B), which are significantly higher than EN and NN (ResGitDR vs. each of the rest, p < 0.01).  201 

 202 

The numbers of models with AUROC greater than 0.7 are 117 and 63 for the ResGitDR and 203 

NNDR, respec9vely, and the detailed informa9on about these drugs are listed in Supplementary 204 

Table. S1. Compared to the EN model, which only uses the original SGAs and cancer type as 205 

features, including the states of latent variables in ResGitDR and NNDR led to 3.7 and 2-fold 206 

increases in the number of models with AUROC greater than 0.7.  We further examined models' 207 

performances for targeted therapy and chemotherapy drugs by the four methods as an 208 

indica9on of what informa9on is provided by input features and captured by the models (Fig. 209 

3C).  The number of ResGitDR models for targeted therapy agents with an AUROC larger than 210 

0.7 is 72, which is 1.7-fold that of NNDR and 2.7-fold that of the EN model. Importantly, the 211 

results show that for many chemotherapy drugs, ResGitDR achieved comparable performance 212 

in terms of AUROC when compared with molecularly targeted drugs.  The number of ResGitDR 213 

models for chemotherapy drugs with AUROC above 0.7 is 45, which is 2.1-fold of NNDR and 9-214 

fold of the EN model. The results indicate that it is possible to perform genome-informed 215 

precision chemotherapy, beyond molecularly targeted drugs.   216 

 217 
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To examine the poten9al clinical u9lity of ResGitDR, we performed a simulated clinical decision 218 

experiment of assigning FDA-approved drugs to cell lines based on FDA guidelines and 219 

compared it with decisions by ResGitDR. There are 61 FDA-approved drugs (different drug_id in 220 

GDSC), 39 are for targeted drugs, and 22 are for chemotherapy agents. We applied the FDA 221 

guidelines based on cancer types and genomic biomarkers, with a preference for targeted 222 

therapy over chemotherapy. For example, the targeted therapy lapa9nib is assigned to LUAD 223 

cell lines hos9ng SGAs in EGFR.  If mul9ple drugs are eligible for a cell line, we select the one 224 

with the highest response rate among cell lines of a given cancer type, with a preference for 225 

targeted drugs over chemotherapy ones. We compared the posi9ve predic9ve values (PPVs) of 226 

simulated FDA-guideline-based decisions and ResGitDR decisions.   227 

 228 

As shown in Fig. 3D, in the majority of cancer types, such as MM, SKCM, LUAD, SCLC, NB, BRCA, 229 

HNSC, KIRC, LAML, PAAD, PRAD, and OV, ResGitDR predic9ons would make befer 230 

recommenda9ons on average. The FDA rules perform befer than ResGitDR in a few cancer 231 

types, such as CESE, LUSC, ESCA, LGG, THCA, LCML, and MESO. The average PPV across all 232 

cancer types for ResGitDR and FDA rules are 0.761 and 0.549, separately. Interes9ngly, all OV 233 

cell lines have BRCA1 and/or BRCA2 muta9ons, and rucaparib was assigned to these cell lines 234 

per FDA rules, but these cell lines didn’t respond to this drug, leading to a PPV of zero. Similarly, 235 

cell lines in STAD were assigned with suni9nib according to the above rules and got zero posi9ve 236 

predicted value.  237 

 238 
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To illustrate the u9lity of our two-component framework of first learning representa9on of 239 

cellular systems using gene expression as objec9ves and then performing cell-state-oriented 240 

drug-response predic9on, we also trained a model with the same architecture as ResGit to 241 

predict drug sensi9vity directly, referred to as SGA2DR model (Fig. 4A). The performance of 242 

SGA2DR model was worse (mean AUROC 0.602) (Fig. 4C) than that of ResGitDR, indica9ng that 243 

learning rela9onships between SGA and gene expression led to a befer representa9on of 244 

cellular states that enhanced the performance of downstream drug sensi9vity predic9on.   245 

Further, we trained a mul9-task learning model, which aimed to predict gene expression and 246 

drug response simultaneously (Fig. 4B). Interes9ngly, this model performs befer (mean AUROC 247 

0.635) than the aforemen9oned SGA2DR model, indica9ng that including gene expression as an 248 

object led to a befer representa9on that enhanced drug response predic9on.  However, the 249 

mul9-task model's performance was inferior in predic9ng drug sensi9vity compared to the two-250 

stage approach of ResGitDR (Fig. 4C). This could be due to the limited size of our dataset, which 251 

consisted of only around 1000 samples. With its increased number of parameters, the mul9-252 

task model is prone to overfilng.  253 

 254 

Finally, as a control, we shuffled SGAs and cancer-type data and re-trained a ResGitDR to predict 255 

drug sensi9vity. As an9cipated, the average AUROC dropped to 0.5, indica9ng that ResGitDR 256 

captures the “true” impact of SGAs and cancer type, which is required for predic9ng drug 257 

response (Supplementary Fig. S2). 258 

 259 

ResGitDR predicts responses to molecularly targeted drugs in a cell-state-oriented fashion. 260 
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Contemporary genome-informed precision oncology assigns treatment based on the genomic 261 

status of targeted signaling proteins.  We evaluated the u9lity of genomic biomarkers for drugs 262 

targe9ng the PI3K/mTOR pathway, more specifically, PIK-93 and AKT inhibitor VIII, by examining 263 

whether cell lines carrying SGAs in these member genes are more sensi9ve (lower IC50s) than 264 

general cell lines (Fig. 5A&B). The results show that none of the SGAs in the pathway is 265 

informa9ve of the sensi9vity of the drugs when measured by IC50, whereas the cell lines 266 

predicted to be sensi9ve to the drugs by the ResGitDR models exhibit significantly lower IC50 267 

(more sensi9ve). The results suggest that by considering the inferred cellular states, ResGitDR 268 

performed befer in predic9ng molecularly targeted drugs than the conven9onal genomic 269 

biomarkers.    270 

 271 

We then inves9gated whether ResGitDR u9lized certain characteris9c cellular states to predict 272 

responses to drugs that share similar mechanisms of ac9on (MOA), e.g., drugs targe9ng the 273 

PI3K/mTOR pathway.  We extracted the parameters from the models for three drugs, ATK 274 

inhibitor VIII.1, PIK-93, and GSK690693, and we iden9fied a union of the top 50 features based 275 

on the absolute weights of drugs targe9ng on PI3K/mTOR pathway in the elas9c net model, 276 

which reflect the importance of a feature, including both hidden representa9ons and SGAs.  We 277 

extracted the values of these features from GDSC cell lines and grouped them using clustering 278 

analysis (Fig. 5C).  The cell lines’ muta9on status of genes in the PI3K/mTOR signaling pathway is 279 

shown to illustrate whether they carry informa9on with respect to drug sensi9vity as 280 

biomarkers. The figure shows that inferred cell states underlie cell line clusters consis9ng of 281 

cells from diverse cancer types, and certain clusters (e.g., clusters 3, 10, and 11) are enriched 282 
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with responders to the three drugs, suppor9ng the no9on that cell states influence the 283 

response to drugs. The AUROCs for the three models are 0.81, 0.78, and 0.76 for ATK inhibitor 284 

VIII.1, PIK-93, and GSK690693, respec9vely. Similar results were observed for other molecularly 285 

targeted drugs, such as an9-EGFR drugs (Supplementary Fig. S3).  The results indicate that 286 

ResGitDR learns to predict drug response in a cell-state-oriented manner instead of relying on 287 

the genomic status of the biomarker genes. Table. 1 shows the important SGAs gene in top 50 288 

features in different pathways when predic9ng the drug response. For instance, in the 289 

PI3K/MTOR pathway, PIK3CA and PTEN are iden9fied as important genes. On the other hand, in 290 

the ERK MAPK pathway, BRAF is recognized as a significant gene. 291 

 292 

We further inves9gated the cell-state-oriented nature of ResGitDR from another perspec9ve.  If 293 

a family of drugs shares a common MOA, it is expected that they will have a similar impact on 294 

cells sharing similar cell states.  For each drug, we extracted the parameter vectors of the elas9c 295 

net in ResGitDR model, which reflect the rela9ve importance of features used by the model. We 296 

call this representa9on "drug embeddings", and we performed pairwise cosine similarity 297 

analysis of the drug embeddings.  For each drug, we iden9fied five drugs with the closest 298 

embeddings and visualized the rela9onships among the drugs (Fig. 5D). The results show that 299 

drugs targe9ng a common pathway share similar embeddings, suppor9ng our assump9on that 300 

ResGitDR iden9fied the features reflec9ng the cell states indica9ve of sensi9vity to drugs 301 

sharing MOAs.   302 

 303 

Discussion 304 
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In this study, we presented a novel framework for genome-informed precision oncology.  Our 305 

approach overcomes the limita9ons of the current rule-based precision oncology 5,8 or simple 306 

machine learning approaches of directly using SGAs as inputs to predict drug responses 9.  307 

Instead, we designed the biologically-mo9vated ResGit model that learns to encode the 308 

informa9on of SGAs with respect to gene expression using hierarchically organized latent 309 

variables, which mimic the cellular signaling systems of cancer cells. Hence, by transforming 310 

genomic data into features reflec9ng the func9onal state of cellular signaling systems, the 311 

integrated ResGitDR achieved significantly enhanced performance in predic9ng drug response.  312 

 313 

Several novel designs in ResGitDR contribute to its u9lity.  First, ResGit closely mimics the 314 

processes by which SGAs perturb cellular signaling systems, eventually leading to cancer.  The 315 

cellular signaling system consists of hierarchically organized signaling proteins, and genomic 316 

perturba9on at the different levels of the hierarchy exert dis9nct effects on cellular systems.  By 317 

connec9ng SGAs to all latent variables, ResGit can learn the direct impact of an SGA on the 318 

specific components of the signaling system and allow the neural network to transmit such 319 

impact through the system.  This makes the system transparent and interpretable, enabling 320 

ResGit to capture more efficiently the shared func9onal implica9ons of different SGAs that 321 

perturb a common pathway in cells.  Second, the self-afen9on mechanism enables the ResGit 322 

to capture the instance-specific impact of SGAs on the cellular signaling system, enabling the 323 

model to detect different roles of SGAs in individual tumors. Finally, explicitly including the 324 

hidden representa9on in ResGitDR makes the state of latent variables transparent, which 325 

enables ResGitDR to perform drug response predic9on in a cell-state-oriented fashion.  326 
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 327 

Conven9onal genome-informed precision oncology mainly uses genomic biomarkers to guide 328 

the applica9on of molecularly targeted drugs.  As pointed out in previous studies 5,9 and our 329 

experiments, the accuracy of the rule-based or simple “black box” neural net models for guiding 330 

molecularly targeted drugs has room to be improved.  Here, we show that by learning a 331 

representa9on of the cell signaling system, ResGitDR significantly outperforms simple models 332 

such as elas9c networks and feed-forward neural networks.  Although the current model has 333 

limited clinical u9lity because it is trained with pre-clinical data and not tested in real-world 334 

pa9ent data, we an9cipate that our framework has the poten9al to improve the accuracy of 335 

genome-informed targeted therapy in clinical selngs if trained with large real-world data.  336 

Moreover, our framework can be expanded to guide chemotherapies as demonstrated by our 337 

results and other studies 24-26, which will significantly expand the scope of precision oncology 338 

beyond the genome-informed applica9on of molecularly targeted drugs.    339 

 340 

Materials and methods 341 

SomaEc genomic alteraEons (SGAs) pre-processing 342 

The muta9on data of GDSC was downloaded from Iorio et al. 9 and the CNV data and cancer 343 

type data were downloaded from Cell Model Passports 344 

(hfps://cellmodelpassports.sanger.ac.uk). The muta9on data of TCGA were downloaded from 345 

the TCGA website (hfps://portal.gdc.cancer.gov), and the CNV data and cancer type data were 346 

downloaded from the Xena portal (hfp://xena.ucsc.edu). We represent an SGA event in a gene 347 

in a tumor as a binary variable, such that genes with muta9ons or soma9c copy number 348 
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altera9on (dele9on or amplifica9on) were given a value of 1 and otherwise were given a value 349 

of 0.  Since the majority of SGAs observed in tumors are likely passenger events, we take the 350 

union of 527 driver genes defined by the Cell Model Passports, 634 genes that are found to 351 

causally influence gene expression in cancers iden9fied by Cai et al 27, and 324 muta9on genes 352 

used in Founda9on Medicine (hfps://www.founda9onmedicineasia.com) to obtain the final set 353 

of 1,084 SGAs. 354 

 355 

Gene expression and TF-target gene matrix pre-processing 356 

To take advantage of existing cancer big data, we combined both TCGA and GDSC RNA-Seq 357 

data. The RNAseq data of GDSC was obtained from Garcia-Alonso et al. 28 and of TCGA from the 358 

Xena portal. We selected the genes using the gene set described in Ding et al.24 with the 359 

selection rule that genes with high variances were identified by medium variance analysis, 360 

bimodal mixture fitting, and statistical significance of modes. We obtained the processed TF-361 

gene connectivity matrix from Tao et al 15.  If a TF is known to regulate a gene, the 362 

corresponding element in the connectivity matrix is 1; otherwise, it is 0. The final set contained 363 

320 TFs and 1,613 genes and had 105,224 connections. 364 

 365 

Drug sensiEvity data pre-processing 366 

Drug sensi9vity data were downloaded from the GDSC website 367 

(hfps://www.cancerrxgene.org), and ac9vity area (AA) was used to evaluate drug responses. In 368 

the GDSC1 dataset, there are a total of 367 drugs. Within this dataset, there are mul9ple drugs 369 

that share the same name but have different drug IDs. We considered these drugs as dis9nct 370 
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en99es. To facilitate future applica9on in clinical prac9ce, we discre9zed the drug response of a 371 

cell line with respect to a drug into two categories, sensi9ve (1) and resistant (0), by applying 372 

the waterfall method to each drug which was described in Ding et al.24. Specifically, the drug 373 

sensi9vity measurements of all cell lines to a specific drug are sorted to generate a waterfall 374 

distribu9on. A linear regression is fifed to this distribu9on, and a Pearson correla9on 375 

determines the goodness of fit. If the correla9on coefficient is <0.95, the major inflec9on point 376 

is es9mated as the point with maximal distance from a line drawn between the start and end 377 

points. If the correla9on coefficient is >0.95, the median value is used. This value serves as the 378 

cutoff to separate sensi9ve and resistant cell lines to this drug. 379 

 380 

ResGitDR architecture 381 

The overall architecture of ResGitDR is shown in Fig. 1. The model has two modules: 1) The 382 

Representa9on Learning Module (ResGit), which is a deep learning model that aims to encode 383 

the impact of SGAs on cellular signaling system by performing the task of predic9ng gene 384 

expression using SGAs and cancer type data as input.  When trained, the model can be used to 385 

infer the state of the cellular signaling system by feeding SGAs and cancer type into the model. 386 

2) The Drug Response Predic9on Module, which u9lizes elas9c net to predict drug sensi9vity by 387 

taking the hidden features learned in the first module and SGAs as input. 388 

 389 

RepresentaEon Learning Module in ResGitDR 390 

The residual genomic impact transformer (ResGit) is similar to the genomic impact transformer 391 

(GIT) model developed by Tao et al.29 with several modifica9ons of the architecture and 392 
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procedures. Compared with GIT model, ResGit has more than one hidden layer and allows the 393 

connec9on of the SGAs to both the first hidden layer and each addi9onal hidden layer (Fig. 1C).   394 

Through a series of hyperparameter tuning experiments, we set the number of hidden layers in 395 

ResGit to 4 (H1, H2, H3, and TF) and the number of hidden nodes number in H1, H2, H3, and TF 396 

layers to 200, 200, 200, and 320, respec9vely.   397 

 398 

Input to the model consists of the cancer type label and m SGAs observed in a tumor. The inputs 399 

is firstly converted into embeddings using the "torch.nn.Embedding" class in PyTorch. The 400 

cancer type of the sample is transformed into a cancer-type embedding (𝑒!) through an 401 

embedding layer. To capture the diverse impacts of a specific gene m on different hidden nodes, 402 

four dis9nct embedding layers are employed to convert the SGA gene m into four embedding 403 

vectors (	𝑒"# , 𝑒"$ , 𝑒"% , 𝑒"& )	. Addi9onally, instead of randomly ini9alizing the SGA embeddings, we 404 

applied the Word2Vec30  algorithm to the SGA data to “pre-train” the SGA embedding.  405 

Embeddings learned in this fashion can capture the co-occurrence paferns of SGAs, so that the 406 

SGAs affec9ng a common pathway share a similar embedding.  Aver ini9alizing the SGA 407 

embedding with the pre-training gene embedding, the SGA embedding will further update with 408 

the supervision of gene expression data in ResGit.  409 

 410 

Aver obtaining SGAs embedding, we employed a mul9-head self-afen9on mechanism, which 411 

could distribute importance weights to SGAs in the training phase. Given a specific sample with 412 

cancer type (C) and a set of SGAs events (M), we obtained the first signal embedding layer (e1) 413 
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by the EquaOon (1), then applied a Relu ac9va9on func9on to get the first hidden 414 

representa9on (H1) through Equa9on (2):  415 

𝑒# = 𝑒! +	𝛼## ∗ 𝑒## 	+ 𝛼$# ∗ 𝑒$# 	+ ⋯+	𝛼"# ∗ 𝑒"# 		 (1) 416 

𝐻# = 𝑅𝑒𝑙𝑢(𝑒#)	 (2) 417 

Where 𝛼##, 𝛼$#, … 𝛼"# 	 are the afen9on weights for the first hidden layer.  418 

 419 

The afen9on weights in our experiment were calculated using the method described in Tao et 420 

al29. In brief, we calculated the afen9on weights (𝛼#' , 𝛼$' , … 𝛼"' ) for hidden layer Hi by following 421 

steps. First, the single-head (h) afen9on weights were calculated by Equa9on (3):  422 

𝛼#,)' , 𝛼$,)' , … , 𝛼",)'

= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥9(𝜃)' )* tanh9𝑊+
' ∙ 𝑒#'A , (𝜃)' )* tanh9𝑊+

' ∙ 𝑒$'A , … , (𝜃)' )* tanh9𝑊+
' ∙ 𝑒"' AA (3)

 423 

Where (𝜃)' )*  is the single-head parameter for head h and 𝑊+
'  is the parameter matrix, both of 424 

them are for hidden layer Hi. Then we calculated the mul9-head afen9on weights by adding all 425 

the single head weights: 426 

𝛼"' =	𝛼",#' + 𝛼",$' +⋯+ 𝛼",)' 	 (4) 427 

To obtain the subsequent signal embedding layer (e2-e4), only SGAs were used: 428 

𝑒' = 𝛼#' ∗ 𝑒#' + 𝛼$' ∗ 𝑒$' +⋯+ 𝛼"' ∗ 𝑒"' (5) 429 

In order to obtain the second hidden representa9on layer (H2), we performed an addi9on 430 

opera9on to combine the ini9al hidden representa9on layer (H1) with the signal embedding 431 

layer (𝑒$). Subsequently, we applied a ReLu layer: 432 

𝐻$ = 𝑅𝑒𝑙𝑢(𝐻# + 𝑒$) (6) 433 

Similarly, we obtained the third hidden representa9on layer (𝐻%): 434 

𝐻% = 𝑅𝑒𝑙𝑢(𝐻$ + 𝑒%) (7) 435 
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To obtain the last hidden layer, the transcrip9on factor layer (TF layer), we used sigmoid 436 

func9on instead: 437 

𝑇𝐹 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝐻% + 𝑒&) (8) 438 

We used the TF layer to represent the state of transcrip9on factors (TFs) explicitly, and the last 439 

linear layer learns the rela9onships between TFs and their target genes. This learning process 440 

was guided by a sparse matrix of prior knowledge derived from a TF-gene connec9vity matrix 441 

(PÎ 24k×l), where k is number of TF and l is the number of gene. To predict the gene expression 442 

values, the Equa9on (9) was used: 443 

𝑦O,-. =	𝑊*/01,2, ∗ 	𝑇𝐹 (9) 444 

Where 𝑦O,-. is the predicted gene expression value, 𝑊*/01,2,  share the same shape with prior 445 

matrix P, and 𝑊*/01,2,,',3 	is allowed to be nonzero and updated during learning only when Pi,j = 446 

1. The gene expression is a con9nuous value, and mean square loss was used as the loss 447 

func9on:  448 

R9𝑦,-. −	𝑦O,-.A
$	

2

'4#

	 (10) 449 

Where n is the number of samples, and 𝑦,-. is the observed gene expression value. 450 

 451 

To avoid overfilng and increase robustness, we applied the pruning technique on both hidden 452 

layers and gene embeddings. For the weights matrix of the first three hidden layers, 90% of low-453 

ranking weights are removed.  For the last TF-gene expression weights matrix, we used prior 454 

knowledge, the TF-to-gene matrix, to regulate the weights, and the connec9ons in this matrix 455 

are about 20%. For the embedding pruning, for each layer, every gene has its own gene 456 
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embedding (the dimension of the first three layers is 200, and of the last one is 320).  We first 457 

train the ResGit model without pruning any element in embedding, and aver the model 458 

converges, we rank the nodes of each embedding, only nodes with the top 60% high value will 459 

be kept, and other elements will be changed into zero. Then, we re-train the ResGit module 460 

again 9ll it converges. We used 10-fold cross-valida9on to evaluate the performance. 461 

 462 

Drug Response PredicEon Module in ResGitDR 463 

We used the elas9c network model as the classifier for ResGitDR, which is a form of logis9c 464 

regression with a hybrid regulariza9on term that combines lasso and ridge regulariza9on.  We 465 

concatenated the original SGAs and latent variables derived by ResGit (𝐻#, 𝐻$, 𝐻%, 𝑇𝐹) of cell 466 

lines as the input features for the classifier, and binary drug-sensi9vity label as targets.  We used 467 

class sklearn.linear_model.Logis9cRegression with penalty of elas9c net. It contains two 468 

hyperparameters, L1_ra9o and C. L1_ra9o defines the rela9ve weight of the lasso and ridge 469 

penaliza9on terms, and C determines the regulariza9on strength. We used grid search to select 470 

L1_ra9o and C for each drug. The elas9c net was performed with 10-fold cross-valida9on. Since 471 

ResGitDR model contains two modules, to avoid data leakage, we performed the cross-472 

valida9on experiment simultaneously, using the same training/tes9ng dataset for ResGit and 473 

elas9c net.   474 

 475 

To predict drug sensi9vity,	𝑆𝐺𝐴𝑠, 𝐻#, 𝐻$, 𝐻%, 𝑇𝐹 were firstly concatenated together, then elas9c 476 

net was used:	477 

𝑦O5671 = 𝑊5671 ∗ (𝑆𝐺𝐴𝑠, 𝐻#, 𝐻$, 𝐻%, 𝑇𝐹)	 (11)	478 
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Where 𝑦O5671 is the predicted drug sensi9vity value and 𝑊5671 is the weight matrix of elas9c 479 
net. 480 
 481 
Since drug response is binarized, the cross-entropy loss was used as loss func9on: 482 

−(𝑦5671 log9𝑦O5671A + 91 − 𝑦5671A log91 − 𝑦O5671A (12) 483 

Where 𝑦5671 is the observed drug sensi9vity value.  484 
 485 
 486 

AbbreviaEons 487 

ACC Adrenocor9cal carcinoma 488 
ALL Acute lymphoblas9c leukemia 489 
BLCA Bladder Urothelial Carcinoma 490 
LGG Brain Lower Grade Glioma 491 
BRCA Breast invasive carcinoma 492 
CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma 493 
CHOL Cholangiocarcinoma 494 
CLL Chronic Lymphocy9c Leukemia 495 
COAD/ READ Colon adenocarcinoma/Rectum adenocarcinoma 496 
DLBC Lymphoid Neoplasm Diffuse Large B-cell Lymphoma 497 
ESCA Esophageal carcinoma 498 
GBM Glioblastoma mul9forme 499 
HNSC Head and Neck squamous cell carcinoma 500 
KICH Kidney Chromophobe 501 
KIRC Kidney renal clear cell carcinoma 502 
KIRP Kidney renal papillary cell carcinoma 503 
LAML Acute Myeloid Leukemia 504 
LCML Chronic Myelogenous Leukemia 505 
LGG Brain Lower Grade Glioma 506 
LIHC Liver hepatocellular carcinoma 507 
LUAD Lung adenocarcinoma 508 
LUSC Lung squamous cell carcinoma 509 
MB Medulloblastoma 510 
MESO Mesothelioma 511 
MM Mul9ple Myeloma 512 
NB Neuroblastoma 513 
OV Ovarian serous cystadenocarcinoma 514 
PAAD Pancrea9c adenocarcinoma 515 
PCPG Pheochromocytoma and Paraganglioma 516 
PRAD Prostate adenocarcinoma 517 
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SARC Sarcoma 518 
SCLC Small Cell Lung Cancer 519 
SKCM Skin Cutaneous Melanoma 520 
STAD Stomach adenocarcinoma 521 
TGCT Tes9cular Germ Cell Tumors 522 
THYM Thymoma 523 
THCA Thyroid carcinoma 524 
UCS Uterine Carcinosarcoma 525 
UCEC Uterine Corpus Endometrial Carcinoma 526 
UVM Uveal Melanoma 527 
 528 
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Table 607 

Table 1. The top important SGA genes that were included as features when predic9ng the 608 
response to specific signaling pathways drugs. 609 

 Top important SGA genes to predict drug response 
PI3K/MTOR signaling PIK3CA, PTEN, ZFHX4, VPS13B, RELN, USH2A 
ERK MAPK signaling BRAF, TTN 

WNT signaling FLG, MUC16, ZNF208, VCAN, ATM, HRNR, CSMD3, 
RSPH10B2, APOBEC3B 

JNK signaling CSMD1, ROS1, VPS13B, TET1, FAT3 
p53 pathway TP53, CDH10, SYNE1, TCHH, APC, PTPRC, DMBT1, VCAN 

EGFR signaling KRAS, ERBB2, RELN, HRNR, LRP1B, EGFR 
IGF1R signaling PTEN, RYR2, GLI1, XIRP2, MYH2, MUC16, RYR1, FANCM, 

CSMD3, FAT1, DNAH14, IKZF3, IL7R 
 610 
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Figures 1 

 2 

Fig. 1 Flowchart of overall drug sensi6vity predic6on framework. (A). ResGitDR comprises two 3 
modules: the Representa6on Learning Module, which employs the Residual Genome Impact 4 
Transformer (ResGit) model, and the Drug Response Predic6on Module, which u6lizes an elas6c 5 
net. In the training phase, the Representa6on Learning Module uses SGAs and cancer types to 6 
predict gene expression, and the Drug Response Predic6on Module incorporates the hidden 7 
representa6ons learned in the Representa6on Learning Module and SGAs as input to predict 8 
drug sensi6vity. (B). In the tes6ng phase, the trained ResGit model is used to obtain hidden 9 
representa6ons using SGAs and cancer type as input. These hidden representa6ons are then 10 
combined with SGAs as inputs to predict drug response. (C). The detailed diagram of the 11 
Representa6on Learning Module. (D). The detailed diagram of the Drug Response Predic6on 12 
Module.  13 
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 14 

Fig. 2 Evalua6on of the performance of ResGit. The distribu6on of Spearman correla6on 15 
coefficients between predicted and observed gene expression values (A) in the TCGA dataset 16 
and (B) in the GDSC datasets, respec6vely. (C). The connec6vity map shows the similarity of SGA 17 
embeddings among the SGAs perturbing common pathways. The weight vector connec6ng an 18 
SGA to hidden nodes is used as an embedding of the SGA, and similarity between a pair of SGAs 19 
is calculated with cosine similarity. If gene A is a neighbor of gene B, the arrow direc6on points 20 
from gene B to gene A; a double-arrowed edge indicates that two SGAs are mutually among the 21 
top 10 neighbors. The thickness of an arrow represents the degree of similarity. (D). The 22 
aZen6on weights of SGAs gene in a pan-cancer analysis.  Genes with high overall aZen6on 23 
weights are shown in red font. (E). The aZen6on weights of SGAs gene across different cancer 24 
types. 25 
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 26 

Fig. 3 The performance comparison in drug response predic6on. (A). The performance of two 27 
baseline models (EN and NN) which both use SGA and cancer type to predict drug sensi6vity 28 
directly. (B). The performance of two models (NNDR and ResGitDR), which both firstly use the 29 
SGAs and cancer type to predict gene expression and obtain the hidden representa6ons, then 30 
concatenate SGA and hidden representa6ons to predict drug sensi6vity. (C). The number and 31 
AUROC distribu6on of Targeted Therapy and Chemotherapy drugs with AUROC higher than 0.7 32 
across EN, NN, NNDR and ResGitDR. (D). The Posi6ve Predicted Value of ResGitDR and FDA rules 33 
methods with error bar represen6ng 95% confidence interval. The numbers in parentheses 34 
indicate the corresponding cell line counts for each cancer type. 35 
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 36 
Fig. 4 (A). The architecture of the SGA2DR model. It predicts drug sensi6vity directly using the 37 
same architecture of ResGit by taking the cancer type and SGAs as input. (B). The architecture 38 
of the mul6-task learning model. It aims to predict drug sensi6vity and gene expression 39 
simultaneously using the same architecture of ResGit by taking the cancer type and SGAs as 40 
inputs. (C). The performance comparison of SGA2DR, mul6-task learning, and ResGitDR models.  41 
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 42 
Fig. 5 The distribu6ons of drug sensi6vity (represented as log IC50s) to (A) PIK-93 and (B) AKT 43 
inhibitor VIII by cancer cell lines grouped according to the muta6on status of genes involved in 44 
the PI3K pathway.  The distribu6on of drug sensi6vity by the cell lines predicted by ResGitDR to 45 
be sensi6ve to the drugs is also shown.  (C). Cancer cell lines were clustered using the based on 46 
the selected top 50 predic6ve features from ResGitDR models for 3 an6-PI3K PI3K/MTOR drugs: 47 
AKT inhibitor VIII, PIK-93, and GSK690693.  The features consist of hidden representa6ons and 48 
individual SGAs. The SGAs are represented as binary values. The hidden node values are 49 
standardized within the range of 0 to 1. The binary drug responses to each of the three drugs by 50 
cell lines are shown. Three red boxes highlight the clusters with enriched responder cell lines 51 
(clusters 3, 10, and 11). The muta6on status of genes in the PI3K/mTOR signaling pathway is 52 
shown to illustrate their rela6onship with respect to drug sensi6vity. (D). The connec6vity map 53 
shows the similarity of the embedding of drugs targe6ng common pathways. The top 50 54 
important features of the ResGitDR for a drug are used as its embedding.  The similarity of 55 
embeddings of two drugs is measured with cosine similarity.  Molecularly targeted drugs are 56 
shown as nodes; an edge is added between a pair of drugs whose embeddings are among the 57 
top 5 highest cosine similari6es of each other. If drug A is a neighbor of drug B, the arrow 58 
direc6on points from drug B to drug A; a double-arrowed edge indicates that a pair of drugs are 59 
mutually among the top 5 neighbors of each other. The thickness of an arrow is propor6onal to 60 
cosine similarity. 61 
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Supplementary Figures 

Supplementary Fig. S1 The model architectures of (A) the elas1c net (EN) and (B) neural 
network (NN) models.  Both models take SGAs and cancer type as inputs to directly predict drug 
response. (C). The architecture of the NNDR model involves a four-layer neural network (NN) 
that predicts gene expression using cancer type and SGAs as input. In the drug predic1on phase, 
the NN is used to infer the state of hidden nodes, which are further used as inputs for the drug 
response predic1on model.    
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Supplementary Fig. S2 Using ResGitDR to predict drug sensi1vity with shuffled data and Real 
Data 
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Supplementary Fig. S3 Cell-state-oriented predic1on of sensi1vity to an1-EGFR drugs. 
Annota1ons are the same as Fig. 5 in the main text.   
 
 
 
 
 
Supplementary Table 
 
Supplementary Table S1. The targeted therapy drugs and chemotherapy drugs with AUROC 
higher than 0.7 when using ResGitDR, NNDR and EN to predict drug response (please see the 
excel file). 
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