

1 An interpretable deep learning framework for genome-informed 2 precision oncology

3 Shuangxia Ren¹, Gregory F Cooper^{1,2}, Lujia Chen², Xinghua Lu^{1,2*},

4 **1 Intelligent Systems Program, School of Computing and Information, University of Pittsburgh, Pittsburgh,**
5 **Pennsylvania, United States of America**

6 **2 Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania,**
7 **United States of America**

8 * Correspond to: xinghua@pitt.edu

9 **Abstract**

10 Cancers result from aberrations in cellular signaling systems, typically resulting from driver
11 somatic genome alterations (SGAs) in individual tumors. Precision oncology requires
12 understanding the cellular state and selecting medications that induce vulnerability in cancer
13 cells under such conditions. To this end, we developed a computational framework consisting of
14 two components: 1) A representation-learning component, which learns a representation of the
15 cellular signaling systems when perturbed by SGAs, using a biologically-motivated and
16 interpretable deep learning model. 2) A drug-response-prediction component, which predicts
17 the response to drugs by leveraging the information of the cellular state of the cancer cells
18 derived by the first component. Our cell-state-oriented framework significantly enhances the
19 accuracy of genome-informed prediction of drug responses in comparison to models that
20 directly use SGAs as inputs. Importantly, our framework enables the prediction of response to
21 chemotherapy agents based on SGAs, thus expanding genome-informed precision oncology
22 beyond molecularly targeted drugs.

23 Introduction

24 Precision medicine utilizes genomic and other advanced technologies to define diseases at a
25 more detailed level than before, enabling tailored therapies for individuals^{1,2}. This approach
26 largely relies on understanding the impact of genomic alterations within cells and prescribing
27 medications to counteract aberrant signals caused by these alterations. The common practice of
28 genome-informed precision oncology is to examine the somatic genome alterations (SGAs) and
29 match patients with targetable SGAs to corresponding targeted drugs^{1,3,4}. While of clinical
30 value, this approach is applicable to a relatively small number of molecularly targetable drugs,
31 patient coverage is relatively low, and prediction accuracy (positive predictive value) remains
32 modest⁵⁻⁷. Marquart et al⁵ reported that as of 2018, the percentage of patients who receive
33 genomic screening and could be matched with targeted therapies was only about 15%; the
34 median overall response rate to all genome-informed therapies was 54%; and the percentage of
35 all cancer patients estimated to benefit was about 7%. Thus, the current practice is insufficient
36 to meet the needs of precision oncology for the general cancer population.

37

38 Although chemotherapies remain the backbone of general oncology, their application is largely
39 not guided by genomic information. Recently, Liu et al⁸ systematically studied mutation-
40 treatment interactions based on real-world patient data and discovered that certain mutations
41 are associated with responses to certain chemotherapy agents. Generally speaking, a
42 “mutation-to-treatment” rule for guiding molecularly targeted or chemotherapeutic agents fails
43 to consider that multiple SGAs in a cancer cell may influence the cellular state and, thereby,
44 drug responses, which may contribute to the observed low accuracy⁵ of the current genome-

45 informed precision oncology. Thus, there is an urgent, unmet need to develop comprehensive
46 clinical decision support systems (CDSSs) capable of utilizing genome-scale omics profiles of
47 tumors to guide the selection of effective anticancer drugs from the entire pool of FDA-
48 approved agents.

49

50 Developing a CDSS for guiding all anticancer drugs in pan-cancer patients using real-patient data
51 remains challenging because it would require large-scale randomized trials testing many drugs
52 in all cancer types, which is not feasible. To address the challenge, large-scale pre-clinical
53 models screening anticancer-drug sensitivity have been developed by the Genomics of Drug
54 Sensitivity in Cancer (GDSC)^{9,10} and the Cancer Cell Line Encyclopedia¹¹. The GDSC project has
55 examined multi-omics profiles of close to a thousand cancer cell lines and recorded their
56 response to hundreds of drugs. This dataset fills the gaps for developing artificial intelligence
57 (AI) models for pan-cancer and pan-drug precision oncology. GDSC studies indicate that
58 transcriptomes of cell lines are more informative features than SGAS in predicting cell line drug
59 sensitivity. However, in clinical practice, genomic data are more readily available, and thus
60 effectively utilizing such information would be of high clinical value. Therefore, we set out to
61 develop a computational framework to predict drug sensitivity based on SGA data of cell lines.

62

63 Developing a genome-based CDSS faces several challenges: 1) Drug responses are usually
64 determined by the state of multiple signaling pathways in a cancer cell. Therefore, the genomic
65 status of individual genes considered in isolation is insufficient to predict drug sensitivity; 2) A
66 signaling pathway can be perturbed by SGAs affecting different member genes in the pathway

67 that bear similar consequences on drug responses; and, 3) the SGAs perturbing a common
68 signaling pathway tend to be mutually exclusive in individual tumors^{12,13}. As such, the signal of
69 one SGA on a drug response may become noise when training a model learning the signal of
70 another SGA on the same drug.

71

72 To overcome the above challenges, we developed an AI system that first transforms the SGA
73 data of cancer cells into a representation of cellular signaling systems and then learns to predict
74 the drug responses of the cells based on the inferred cellular states. The framework consists of
75 two main modules: 1) A representation-learning module using the Residual Genome Impact
76 Transformer (ResGit) model (**Fig. 1C**), which infers the cellular states based on the SGAs of a
77 cancer cell line, and 2) a drug-response-prediction module (**Fig. 1D**), which predicts the cells'
78 responses to drugs based on the inferred cellular states. The combined system is referred to as
79 the ResGit-based Drug Response Prediction (ResGitDR) model (**Fig. 1A**). We show that by more
80 closely mimicking the cellular signaling systems, the ResGit model can learn interpretable and
81 biologically sensible representations of the impact of SGAs on cellular signaling systems. We
82 also show that by considering cellular states, the ResGitDR performs better in predicting drug
83 response to both molecularly targeted and chemotherapy agents than the models that only use
84 SGAs as inputs. Finally, we show that ResGitDR indeed takes advantage of the cellular states
85 learned within our framework and performs state-oriented predictions. The results presented
86 below support that the ResGitDR framework provides a new and promising direction for
87 developing biologically motivated and interpretable systems for predicting drug responses.

88

89 **Result**

90 **Overview of the ResGitDR model**

91 Heterogeneous responses to a drug by different cancer cells can be attributed to the
92 heterogeneity of cellular states, which are driven by distinct causal SGAs that perturb cellular
93 signaling systems. Thus, the capability of inferring cell states of cancer cells based on their SGAs
94 lays a foundation for predicting drug responses. Based on the assumption that driver SGAs
95 eventually influence gene expression, we designed ResGit (**Fig. 1C**) to model the relationships
96 between SGAs and gene expression. It uses hierarchically organized latent variables to represent
97 the cellular signaling system of cells and encode the impact of SGAs¹⁴. It then transforms the
98 encoded information to predict gene expression.

99

100 Specifically, for each tumor, a binary vector indicating which genes are perturbed by SGA events
101 is fed into ResGit to predict gene expression. Then four distinct embedding layers are applied to
102 convert the binary vector into four hidden-layer-specific SGA embedding matrices, which
103 represent the impact of SGAs in a tumor on the signal-encoding hierarchy. Each SGA embedding
104 matrix is fed through a multi-head self-attention component to derive tumor-specific signal
105 embedding (e_i), representing the integrated impact of SGAs in a tumor on the signaling systems.
106 The state of an internal hidden layer (H_i) is a function of signal embedding (e_i) and the state of
107 the previous layer (H_{i-1}). To incorporate the knowledge of transcription factors (TFs) on gene
108 expression, we instantiated the final hidden layer based on prior knowledge following the
109 example by Tao et al¹⁵, such that the parameters associated with known TF-gene edges are
110 updated during training, and the rest is set to 0. ResGit is trained with SGA and expression data

111 of TCGA tumors and GDSC cell lines. To predict the drug response, we trained an elastic
112 network model ¹⁶ for each drug. We combined the inferred state of the latent variables
113 (reflecting cellular states) from ResGit and SGAs of cell lines as inputs and binarized drug
114 sensitivity as the target (**Fig. 1D**). In the testing phase, as shown in **Fig. 1B**, the trained ResGit
115 model is firstly used to obtain hidden representations by taking SGAs and cancer type as input,
116 no gene expression data is needed during this process. Then these hidden representations are
117 then combined with SGAs to predict drug response.

118

119 **ResGit learns to encode the impact of SGAs and transforms it into the gene expression of**
120 **tumors and cancer cell lines.**

121 We collected SGA and gene expression data from 8,586 TCGA tumors and 976 cancer cell lines
122 studied by GDSC. We trained the ResGit model using this combined dataset through a series of
123 experiments. We evaluated model performance using the Spearman correlation coefficients
124 between predicted and observed gene expression values of a gene as the performance metric.
125 The distributions for the coefficients in different cancer types are shown as box plots in **Fig.**
126 **2A&B**. The mean correlation in TCGA is 0.8, while in GDSC is 0.72. The results indicate that
127 ResGit can accurately map SGA input data to gene expression predictions. The results support
128 that the latent variables in the model encode the impact of SGAs on the cellular signaling
129 system and translate the information of SGAs to gene expression. Interestingly, when modeled
130 separately, the GDSC dataset exhibited lower Spearman correlations than the TCGA dataset,
131 which suggests that the larger sample size in the TCGA dataset made the prediction more

132 robust, resulting in higher correlation values. From here on, we report the results of ResGit
133 trained with pooled TCGA and GDSC data.

134

135 **ResGit captures biologically sensible representations of SGAs.**

136 In the ResGit model, an SGA is designed to be connected to every latent variable in the signaling
137 hierarchy, and SGA embeddings represent the impact of the SGA on the system, and the model
138 learns “optimal” connections between SGA and hidden nodes that would predict gene
139 expression well. If two SGAs affect distinct members of a common pathway, their impact on the
140 cellular signaling system should be similar, i.e., their embedding should be similar. We
141 examined all pairwise similarities of SGA embeddings using cosine similarity. We identified the
142 top 10 neighbor SGAs for each SGA and examined whether they perturb a common signaling
143 pathway according to existing knowledge.

144

145 Sanchez-Vega *et al.*¹⁷ had reported SGAs perturbing ten major cancer pathways, which was used
146 as ground truth for evaluating our results. We constructed a connectivity graph among 64 SGAs
147 gene found in both our dataset and the reported cancer pathways gene by Sanchez-Vega *et al.*,
148 where an edge was added between a pair of SGAs if one (or both) of them was among the
149 neighbors of the other. We colored the edges with a pseudo-color corresponding to a pathway
150 if the connected SGAs were in a pathway (**Fig. 2C**). The learned embeddings of the members of
151 the PI3K pathway *PIK3CA*, *PIK3R1*, *PTEN*, and *AKT1* are among the closest neighbors to each
152 other. The graph also shows similar results for other cancer pathways. The results indicate that

153 ResGit has learned embeddings of SGAs reflecting their similar impact on cell signaling systems,
154 conforming to established knowledge.

155

156 **Self-attention mechanism revealed the impact of SGAs in cancers.**

157 ResGit employs self-attention mechanisms and assigns a tumor-specific attention weight to an
158 SGA observed in a cell line to reflect its relative importance. Collective attention assigned to an
159 SGA reflects its importance in influencing gene expression in cancers (**Fig. 2D**) or in different
160 cancer types (**Fig. 2E**). As shown in **Fig. 2D**, ResGit assigned high attention values to well-known
161 cancer drivers¹⁸, such as *TP53*, *PTEN*, *KRAS*, *BRAF*, etc. Interestingly, some genes encoding
162 signaling proteins, such as G-proteins *GNAQ* and *GNA11*, are not well-known as “cancer drivers”
163 but were assigned with high attention weight, despite their relatively low frequencies. The
164 results suggest ResGit captures their impact on gene expression of cells and potential role in
165 cancers, which is supported by recent research indicating they may play an essential role in the
166 tumorigenesis¹⁹. Our analysis also revealed the importance of SGAs in different cancer types
167 (**Fig. 2E**). For example, the results show that SGA events in *GATA3* play a significant role in breast
168 cancer (BRCA), as confirmed by Takaku *et al.*²⁰; SGAs in *DHX9* and *KEAP1* appear to play a
169 significant role in lung cancer (LUAD), aligning with previous studies^{21,22}; alterations in *TP53* are
170 universally involved in most cancers, as demonstrated by earlier research²³.

171

172 **The latent representation of the cellular system is informative of drug sensitivity.**

173 The results above indicate that ResGit can encode the signals perturbed by the SGAs using the
174 latent variables in the deep learning model. We then set out to test whether the information

175 represented by the latent variables can be used to predict cancer cell responses to anticancer
176 drugs.

177
178 As a baseline, we used SGAs and cancer-type labels as input to train an elastic network model
179 (**EN, Supplementary Fig. S1A**) and an end-to-end feedforward neural network (NN,
180 **Supplementary Fig. S1B**) model to predict cell sensitivity to each drug tested by GDSC. We
181 evaluated the performance of each model in 10-fold cross-validation experiments. The EN and
182 NN models for 367 drugs achieved moderate performance in terms of area under the receiver
183 operating curve (AUROC) (**Fig. 3A**), with median AUROC at 0.595 and 0.619 for the NN and EN,
184 respectively. We arbitrarily set the threshold that an AUROC of 0.7 indicates a potentially useful
185 model in the clinical setting. The total number of models with AUROC above 0.7 is 7 and 32 for
186 NN and EN, respectively. Interestingly, in this setting, the elastic network outperforms the
187 neural network model, suggesting it is more robust in a setting with a small training sample size.

188
189 We then examined whether the latent representation learned by ResGit is informative with
190 respect to drug sensitivity. In a 10-fold cross-validation experiment, we trained ResGit and
191 retrieved the estimated states of latent variables ($H_1 - H_3$, and TF , **Fig. 1C**) for the GDSC cell line
192 in the training dataset. We concatenated the states of the latent variables with the original SGAs
193 of each cell line as input features and trained an elastic network model for each drug (**Fig. 1D**).
194 We called these models the ResGit-based Drug Response prediction model (ResGitDR). To
195 examine the value of self-attention and other unique approaches of ResGit, we also trained a
196 conventional neural network to model the relationship between SGAs and gene expression

197 without direct connections from SGAs to internal latent nodes or self-attention. We extract the
198 estimated hidden-node states to train an elastic net model, and we call this model the neural-
199 network-based drug response prediction model (NNDR, as shown in **Supplementary Fig.S1C**).
200 The median AUROCs of the models are 0.667 and 0.633 for ResGitDR and NNDR, respectively
201 (**Fig. 3B**), which are significantly higher than EN and NN (ResGitDR vs. each of the rest, $p < 0.01$).
202
203 The numbers of models with AUROC greater than 0.7 are 117 and 63 for the ResGitDR and
204 NNDR, respectively, and the detailed information about these drugs are listed in **Supplementary**
205 **Table. S1**. Compared to the EN model, which only uses the original SGAs and cancer type as
206 features, including the states of latent variables in ResGitDR and NNDR led to 3.7 and 2-fold
207 increases in the number of models with AUROC greater than 0.7. We further examined models'
208 performances for targeted therapy and chemotherapy drugs by the four methods as an
209 indication of what information is provided by input features and captured by the models (**Fig.**
210 **3C**). The number of ResGitDR models for targeted therapy agents with an AUROC larger than
211 0.7 is 72, which is 1.7-fold that of NNDR and 2.7-fold that of the EN model. Importantly, the
212 results show that for many chemotherapy drugs, ResGitDR achieved comparable performance
213 in terms of AUROC when compared with molecularly targeted drugs. The number of ResGitDR
214 models for chemotherapy drugs with AUROC above 0.7 is 45, which is 2.1-fold of NNDR and 9-
215 fold of the EN model. The results indicate that it is possible to perform genome-informed
216 precision chemotherapy, beyond molecularly targeted drugs.
217

218 To examine the potential clinical utility of ResGitDR, we performed a simulated clinical decision
219 experiment of assigning FDA-approved drugs to cell lines based on FDA guidelines and
220 compared it with decisions by ResGitDR. There are 61 FDA-approved drugs (different drug_id in
221 GDSC), 39 are for targeted drugs, and 22 are for chemotherapy agents. We applied the FDA
222 guidelines based on cancer types and genomic biomarkers, with a preference for targeted
223 therapy over chemotherapy. For example, the targeted therapy lapatinib is assigned to LUAD
224 cell lines hosting SGAs in *EGFR*. If multiple drugs are eligible for a cell line, we select the one
225 with the highest response rate among cell lines of a given cancer type, with a preference for
226 targeted drugs over chemotherapy ones. We compared the positive predictive values (PPVs) of
227 simulated FDA-guideline-based decisions and ResGitDR decisions.

228

229 As shown in **Fig. 3D**, in the majority of cancer types, such as MM, SKCM, LUAD, SCLC, NB, BRCA,
230 HNSC, KIRC, LAML, PAAD, PRAD, and OV, ResGitDR predictions would make better
231 recommendations on average. The FDA rules perform better than ResGitDR in a few cancer
232 types, such as CESE, LUSC, ESCA, LGG, THCA, LCML, and MESO. The average PPV across all
233 cancer types for ResGitDR and FDA rules are 0.761 and 0.549, separately. Interestingly, all OV
234 cell lines have *BRCA1* and/or *BRCA2* mutations, and rucaparib was assigned to these cell lines
235 per FDA rules, but these cell lines didn't respond to this drug, leading to a PPV of zero. Similarly,
236 cell lines in STAD were assigned with sunitinib according to the above rules and got zero positive
237 predicted value.

238

239 To illustrate the utility of our two-component framework of first learning representation of
240 cellular systems using gene expression as objectives and then performing cell-state-oriented
241 drug-response prediction, we also trained a model with the same architecture as ResGit to
242 predict drug sensitivity directly, referred to as SGA2DR model (**Fig. 4A**). The performance of
243 SGA2DR model was worse (mean AUROC 0.602) (**Fig. 4C**) than that of ResGitDR, indicating that
244 learning relationships between SGA and gene expression led to a better representation of
245 cellular states that enhanced the performance of downstream drug sensitivity prediction.
246 Further, we trained a multi-task learning model, which aimed to predict gene expression and
247 drug response simultaneously (**Fig. 4B**). Interestingly, this model performs better (mean AUROC
248 0.635) than the aforementioned SGA2DR model, indicating that including gene expression as an
249 object led to a better representation that enhanced drug response prediction. However, the
250 multi-task model's performance was inferior in predicting drug sensitivity compared to the two-
251 stage approach of ResGitDR (**Fig. 4C**). This could be due to the limited size of our dataset, which
252 consisted of only around 1000 samples. With its increased number of parameters, the multi-
253 task model is prone to overfitting.

254
255 Finally, as a control, we shuffled SGAs and cancer-type data and re-trained a ResGitDR to predict
256 drug sensitivity. As anticipated, the average AUROC dropped to 0.5, indicating that ResGitDR
257 captures the “true” impact of SGAs and cancer type, which is required for predicting drug
258 response (**Supplementary Fig. S2**).

259
260 **ResGitDR predicts responses to molecularly targeted drugs in a cell-state-oriented fashion.**

261 Contemporary genome-informed precision oncology assigns treatment based on the genomic
262 status of targeted signaling proteins. We evaluated the utility of genomic biomarkers for drugs
263 targeting the PI3K/mTOR pathway, more specifically, PIK-93 and AKT inhibitor VIII, by examining
264 whether cell lines carrying SGAs in these member genes are more sensitive (lower IC50s) than
265 general cell lines (**Fig. 5A&B**). The results show that none of the SGAs in the pathway is
266 informative of the sensitivity of the drugs when measured by IC50, whereas the cell lines
267 predicted to be sensitive to the drugs by the ResGitDR models exhibit significantly lower IC50
268 (more sensitive). The results suggest that by considering the inferred cellular states, ResGitDR
269 performed better in predicting molecularly targeted drugs than the conventional genomic
270 biomarkers.

271
272 We then investigated whether ResGitDR utilized certain characteristic cellular states to predict
273 responses to drugs that share similar mechanisms of action (MOA), e.g., drugs targeting the
274 PI3K/mTOR pathway. We extracted the parameters from the models for three drugs, *ATK*
275 *inhibitor VIII.1*, *PIK-93*, and *GSK690693*, and we identified a union of the top 50 features based
276 on the absolute weights of drugs targeting on PI3K/mTOR pathway in the elastic net model,
277 which reflect the importance of a feature, including both hidden representations and SGAs. We
278 extracted the values of these features from GDSC cell lines and grouped them using clustering
279 analysis (**Fig. 5C**). The cell lines' mutation status of genes in the PI3K/mTOR signaling pathway is
280 shown to illustrate whether they carry information with respect to drug sensitivity as
281 biomarkers. The figure shows that inferred cell states underlie cell line clusters consisting of
282 cells from diverse cancer types, and certain clusters (e.g., clusters 3, 10, and 11) are enriched

283 with responders to the three drugs, supporting the notion that cell states influence the
284 response to drugs. The AUROCs for the three models are 0.81, 0.78, and 0.76 for ATK inhibitor
285 VIII.1, PIK-93, and GSK690693, respectively. Similar results were observed for other molecularly
286 targeted drugs, such as anti-EGFR drugs (**Supplementary Fig. S3**). The results indicate that
287 ResGitDR learns to predict drug response in a cell-state-oriented manner instead of relying on
288 the genomic status of the biomarker genes. **Table. 1** shows the important SGAs gene in top 50
289 features in different pathways when predicting the drug response. For instance, in the
290 PI3K/MTOR pathway, PIK3CA and PTEN are identified as important genes. On the other hand, in
291 the ERK MAPK pathway, BRAF is recognized as a significant gene.

292
293 We further investigated the cell-state-oriented nature of ResGitDR from another perspective. If
294 a family of drugs shares a common MOA, it is expected that they will have a similar impact on
295 cells sharing similar cell states. For each drug, we extracted the parameter vectors of the elastic
296 net in ResGitDR model, which reflect the relative importance of features used by the model. We
297 call this representation "drug embeddings", and we performed pairwise cosine similarity
298 analysis of the drug embeddings. For each drug, we identified five drugs with the closest
299 embeddings and visualized the relationships among the drugs (**Fig. 5D**). The results show that
300 drugs targeting a common pathway share similar embeddings, supporting our assumption that
301 ResGitDR identified the features reflecting the cell states indicative of sensitivity to drugs
302 sharing MOAs.

303

304 **Discussion**

305 In this study, we presented a novel framework for genome-informed precision oncology. Our
306 approach overcomes the limitations of the current rule-based precision oncology ^{5,8} or simple
307 machine learning approaches of directly using SGAs as inputs to predict drug responses ⁹.
308 Instead, we designed the biologically-motivated ResGit model that learns to encode the
309 information of SGAs with respect to gene expression using hierarchically organized latent
310 variables, which mimic the cellular signaling systems of cancer cells. Hence, by transforming
311 genomic data into features reflecting the functional state of cellular signaling systems, the
312 integrated ResGitDR achieved significantly enhanced performance in predicting drug response.

313

314 Several novel designs in ResGitDR contribute to its utility. First, ResGit closely mimics the
315 processes by which SGAs perturb cellular signaling systems, eventually leading to cancer. The
316 cellular signaling system consists of hierarchically organized signaling proteins, and genomic
317 perturbation at the different levels of the hierarchy exert distinct effects on cellular systems. By
318 connecting SGAs to all latent variables, ResGit can learn the direct impact of an SGA on the
319 specific components of the signaling system and allow the neural network to transmit such
320 impact through the system. This makes the system transparent and interpretable, enabling
321 ResGit to capture more efficiently the shared functional implications of different SGAs that
322 perturb a common pathway in cells. Second, the self-attention mechanism enables the ResGit
323 to capture the instance-specific impact of SGAs on the cellular signaling system, enabling the
324 model to detect different roles of SGAs in individual tumors. Finally, explicitly including the
325 hidden representation in ResGitDR makes the state of latent variables transparent, which
326 enables ResGitDR to perform drug response prediction in a cell-state-oriented fashion.

327

328 Conventional genome-informed precision oncology mainly uses genomic biomarkers to guide
329 the application of molecularly targeted drugs. As pointed out in previous studies ^{5,9} and our
330 experiments, the accuracy of the rule-based or simple “black box” neural net models for guiding
331 molecularly targeted drugs has room to be improved. Here, we show that by learning a
332 representation of the cell signaling system, ResGitDR significantly outperforms simple models
333 such as elastic networks and feed-forward neural networks. Although the current model has
334 limited clinical utility because it is trained with pre-clinical data and not tested in real-world
335 patient data, we anticipate that our framework has the potential to improve the accuracy of
336 genome-informed targeted therapy in clinical settings if trained with large real-world data.
337 Moreover, our framework can be expanded to guide chemotherapies as demonstrated by our
338 results and other studies ²⁴⁻²⁶, which will significantly expand the scope of precision oncology
339 beyond the genome-informed application of molecularly targeted drugs.

340

341 **Materials and methods**

342 **Somatic genomic alterations (SGAs) pre-processing**

343 The mutation data of GDSC was downloaded from Lorio *et al.* ⁹ and the CNV data and cancer
344 type data were downloaded from Cell Model Passports
345 (<https://cellmodelpassports.sanger.ac.uk>). The mutation data of TCGA were downloaded from
346 the TCGA website (<https://portal.gdc.cancer.gov>), and the CNV data and cancer type data were
347 downloaded from the Xena portal (<http://xena.ucsc.edu>). We represent an SGA event in a gene
348 in a tumor as a binary variable, such that genes with mutations or somatic copy number

349 alteration (deletion or amplification) were given a value of 1 and otherwise were given a value
350 of 0. Since the majority of SGAs observed in tumors are likely passenger events, we take the
351 union of 527 driver genes defined by the Cell Model Passports, 634 genes that are found to
352 causally influence gene expression in cancers identified by Cai et al²⁷, and 324 mutation genes
353 used in Foundation Medicine (<https://www.foundationmedicineasia.com>) to obtain the final set
354 of 1,084 SGAs.

355

356 **Gene expression and TF-target gene matrix pre-processing**

357 To take advantage of existing cancer big data, we combined both TCGA and GDSC RNA-Seq
358 data. The RNAseq data of GDSC was obtained from Garcia-Alonso *et al.*²⁸ and of TCGA from the
359 Xena portal. We selected the genes using the gene set described in Ding *et al.*²⁴ with the
360 selection rule that genes with high variances were identified by medium variance analysis,
361 bimodal mixture fitting, and statistical significance of modes. We obtained the processed TF-
362 gene connectivity matrix from Tao *et al*¹⁵. If a TF is known to regulate a gene, the
363 corresponding element in the connectivity matrix is 1; otherwise, it is 0. The final set contained
364 320 TFs and 1,613 genes and had 105,224 connections.

365

366 **Drug sensitivity data pre-processing**

367 Drug sensitivity data were downloaded from the GDSC website
368 (<https://www.cancerrxgene.org>), and activity area (AA) was used to evaluate drug responses. In
369 the GDSC1 dataset, there are a total of 367 drugs. Within this dataset, there are multiple drugs
370 that share the same name but have different drug IDs. We considered these drugs as distinct

371 entities. To facilitate future application in clinical practice, we discretized the drug response of a
372 cell line with respect to a drug into two categories, sensitive (1) and resistant (0), by applying
373 the waterfall method to each drug which was described in Ding *et al.*²⁴. Specifically, the drug
374 sensitivity measurements of all cell lines to a specific drug are sorted to generate a waterfall
375 distribution. A linear regression is fitted to this distribution, and a Pearson correlation
376 determines the goodness of fit. If the correlation coefficient is <0.95, the major inflection point
377 is estimated as the point with maximal distance from a line drawn between the start and end
378 points. If the correlation coefficient is >0.95, the median value is used. This value serves as the
379 cutoff to separate sensitive and resistant cell lines to this drug.

380

381 ***ResGitDR architecture***

382 The overall architecture of ResGitDR is shown in **Fig. 1**. The model has two modules: 1) The
383 Representation Learning Module (ResGit), which is a deep learning model that aims to encode
384 the impact of SGAs on cellular signaling system by performing the task of predicting gene
385 expression using SGAs and cancer type data as input. When trained, the model can be used to
386 infer the state of the cellular signaling system by feeding SGAs and cancer type into the model.
387 2) The Drug Response Prediction Module, which utilizes elastic net to predict drug sensitivity by
388 taking the hidden features learned in the first module and SGAs as input.

389

390 **Representation Learning Module in ResGitDR**

391 The residual genomic impact transformer (ResGit) is similar to the genomic impact transformer
392 (GIT) model developed by Tao *et al.*²⁹ with several modifications of the architecture and

393 procedures. Compared with GIT model, ResGit has more than one hidden layer and allows the
394 connection of the SGAs to both the first hidden layer and each additional hidden layer (**Fig. 1C**).
395 Through a series of hyperparameter tuning experiments, we set the number of hidden layers in
396 ResGit to 4 (H_1, H_2, H_3 , and TF) and the number of hidden nodes number in H_1, H_2, H_3 , and TF
397 layers to 200, 200, 200, and 320, respectively.

398
399 Input to the model consists of the cancer type label and m SGAs observed in a tumor. The inputs
400 is firstly converted into embeddings using the "torch.nn.Embedding" class in PyTorch. The
401 cancer type of the sample is transformed into a cancer-type embedding (e_c) through an
402 embedding layer. To capture the diverse impacts of a specific gene m on different hidden nodes,
403 four distinct embedding layers are employed to convert the SGA gene m into four embedding
404 vectors ($e_m^1, e_m^2, e_m^3, e_m^4$) . Additionally, instead of randomly initializing the SGA embeddings, we
405 applied the Word2Vec³⁰ algorithm to the SGA data to “pre-train” the SGA embedding.
406 Embeddings learned in this fashion can capture the co-occurrence patterns of SGAs, so that the
407 SGAs affecting a common pathway share a similar embedding. After initializing the SGA
408 embedding with the pre-training gene embedding, the SGA embedding will further update with
409 the supervision of gene expression data in ResGit.

410
411 After obtaining SGAs embedding, we employed a multi-head self-attention mechanism, which
412 could distribute importance weights to SGAs in the training phase. Given a specific sample with
413 cancer type (C) and a set of SGAs events (M), we obtained the first signal embedding layer (e_1)

414 by the Equation (1), then applied a Relu activation function to get the first hidden
415 representation (H_1) through Equation (2):

416
$$e_1 = e_c + \alpha_1^1 * e_1^1 + \alpha_2^1 * e_2^1 + \dots + \alpha_m^1 * e_m^1 \quad (1)$$

417
$$H_1 = \text{Relu}(e_1) \quad (2)$$

418 Where $\alpha_1^1, \alpha_2^1, \dots, \alpha_m^1$ are the attention weights for the first hidden layer.

419

420 The attention weights in our experiment were calculated using the method described in Tao *et*
421 *al*²⁹. In brief, we calculated the attention weights $(\alpha_1^i, \alpha_2^i, \dots, \alpha_m^i)$ for hidden layer H_i by following
422 steps. First, the single-head (h) attention weights were calculated by Equation (3):

423
$$\alpha_{1,h}^i, \alpha_{2,h}^i, \dots, \alpha_{m,h}^i \\ = \text{softmax}((\theta_h^i)^T \tanh(W_0^i \cdot e_1^i), (\theta_h^i)^T \tanh(W_0^i \cdot e_2^i), \dots, (\theta_h^i)^T \tanh(W_0^i \cdot e_m^i)) \quad (3)$$

424 Where $(\theta_h^i)^T$ is the single-head parameter for head h and W_0^i is the parameter matrix, both of
425 them are for hidden layer H_i . Then we calculated the multi-head attention weights by adding all
426 the single head weights:

427
$$\alpha_m^i = \alpha_{m,1}^i + \alpha_{m,2}^i + \dots + \alpha_{m,h}^i \quad (4)$$

428 To obtain the subsequent signal embedding layer (e_2 - e_4), only SGAs were used:

429
$$e_i = \alpha_1^i * e_1^i + \alpha_2^i * e_2^i + \dots + \alpha_m^i * e_m^i \quad (5)$$

430 In order to obtain the second hidden representation layer (H_2), we performed an addition
431 operation to combine the initial hidden representation layer (H_1) with the signal embedding
432 layer (e_2). Subsequently, we applied a ReLu layer:

433
$$H_2 = \text{Relu}(H_1 + e_2) \quad (6)$$

434 Similarly, we obtained the third hidden representation layer (H_3):

435
$$H_3 = \text{Relu}(H_2 + e_3) \quad (7)$$

436 To obtain the last hidden layer, the transcription factor layer (TF layer), we used sigmoid
437 function instead:

438
$$TF = \text{Sigmoid}(H_3 + e_4) \quad (8)$$

439 We used the TF layer to represent the state of transcription factors (TFs) explicitly, and the last
440 linear layer learns the relationships between TFs and their target genes. This learning process
441 was guided by a sparse matrix of prior knowledge derived from a TF-gene connectivity matrix
442 ($P \in \mathbb{R}^{24k \times l}$), where k is number of TF and l is the number of gene. To predict the gene expression
443 values, the Equation (9) was used:

444
$$\hat{y}_{exp} = W_{TF-gene} * TF \quad (9)$$

445 Where \hat{y}_{exp} is the predicted gene expression value, $W_{TF-gene}$ share the same shape with prior
446 matrix P , and $W_{TF-gene,i,j}$ is allowed to be nonzero and updated during learning only when $P_{i,j} =$
447 1. The gene expression is a continuous value, and mean square loss was used as the loss
448 function:

449
$$\sum_{i=1}^n (y_{exp} - \hat{y}_{exp})^2 \quad (10)$$

450 Where n is the number of samples, and y_{exp} is the observed gene expression value.

451
452 To avoid overfitting and increase robustness, we applied the pruning technique on both hidden
453 layers and gene embeddings. For the weights matrix of the first three hidden layers, 90% of low-
454 ranking weights are removed. For the last TF-gene expression weights matrix, we used prior
455 knowledge, the TF-to-gene matrix, to regulate the weights, and the connections in this matrix
456 are about 20%. For the embedding pruning, for each layer, every gene has its own gene

457 embedding (the dimension of the first three layers is 200, and of the last one is 320). We first
458 train the ResGit model without pruning any element in embedding, and after the model
459 converges, we rank the nodes of each embedding, only nodes with the top 60% high value will
460 be kept, and other elements will be changed into zero. Then, we re-train the ResGit module
461 again till it converges. We used 10-fold cross-validation to evaluate the performance.

462

463 **Drug Response Prediction Module in ResGitDR**

464 We used the elastic network model as the classifier for ResGitDR, which is a form of logistic
465 regression with a hybrid regularization term that combines lasso and ridge regularization. We
466 concatenated the original SGAs and latent variables derived by ResGit (H_1, H_2, H_3, TF) of cell
467 lines as the input features for the classifier, and binary drug-sensitivity label as targets. We used
468 class `sklearn.linear_model.LogisticRegression` with penalty of elastic net. It contains two
469 hyperparameters, `L1_ratio` and `C`. `L1_ratio` defines the relative weight of the lasso and ridge
470 penalization terms, and `C` determines the regularization strength. We used grid search to select
471 `L1_ratio` and `C` for each drug. The elastic net was performed with 10-fold cross-validation. Since
472 ResGitDR model contains two modules, to avoid data leakage, we performed the cross-
473 validation experiment simultaneously, using the same training/testing dataset for ResGit and
474 elastic net.

475

476 To predict drug sensitivity, $SGAs, H_1, H_2, H_3, TF$ were firstly concatenated together, then elastic
477 net was used:

$$478 \hat{y}_{drug} = W_{drug} * (SGAs, H_1, H_2, H_3, TF) \quad (11)$$

479 Where \hat{y}_{drug} is the predicted drug sensitivity value and W_{drug} is the weight matrix of elastic
480 net.

481

482 Since drug response is binarized, the cross-entropy loss was used as loss function:

483
$$-(y_{drug} \log(\hat{y}_{drug}) + (1 - y_{drug}) \log(1 - \hat{y}_{drug})) \quad (12)$$

484 Where y_{drug} is the observed drug sensitivity value.

485

486

487 Abbreviations

488	ACC	Adrenocortical carcinoma
489	ALL	Acute lymphoblastic leukemia
490	BLCA	Bladder Urothelial Carcinoma
491	LGG	Brain Lower Grade Glioma
492	BRCA	Breast invasive carcinoma
493	CESC	Cervical squamous cell carcinoma and endocervical adenocarcinoma
494	CHOL	Cholangiocarcinoma
495	CLL	Chronic Lymphocytic Leukemia
496	COAD/ READ	Colon adenocarcinoma/Rectum adenocarcinoma
497	DLBC	Lymphoid Neoplasm Diffuse Large B-cell Lymphoma
498	ESCA	Esophageal carcinoma
499	GBM	Glioblastoma multiforme
500	HNSC	Head and Neck squamous cell carcinoma
501	KICH	Kidney Chromophobe
502	KIRC	Kidney renal clear cell carcinoma
503	KIRP	Kidney renal papillary cell carcinoma
504	LAML	Acute Myeloid Leukemia
505	LCML	Chronic Myelogenous Leukemia
506	LGG	Brain Lower Grade Glioma
507	LIHC	Liver hepatocellular carcinoma
508	LUAD	Lung adenocarcinoma
509	LUSC	Lung squamous cell carcinoma
510	MB	Medulloblastoma
511	MESO	Mesothelioma
512	MM	Multiple Myeloma
513	NB	Neuroblastoma
514	OV	Ovarian serous cystadenocarcinoma
515	PAAD	Pancreatic adenocarcinoma
516	PCPG	Pheochromocytoma and Paraganglioma
517	PRAD	Prostate adenocarcinoma

518 SARC Sarcoma
519 SCLC Small Cell Lung Cancer
520 SKCM Skin Cutaneous Melanoma
521 STAD Stomach adenocarcinoma
522 TGCT Testicular Germ Cell Tumors
523 THYM Thymoma
524 THCA Thyroid carcinoma
525 UCS Uterine Carcinosarcoma
526 UCEC Uterine Corpus Endometrial Carcinoma
527 UVM Uveal Melanoma
528

529 **Acknowledgments**

530 This study is supported by the NIH grant 5R01LM01201.

531
532 **Reference**

533 1 Ashley, E. A. Towards precision medicine. *Nature Reviews Genetics* **17**, 507-522,
534 doi:10.1038/nrg.2016.86 (2016).
535 2 Tsimberidou, A. M., Fountzilas, E., Nikanjam, M. & Kurzrock, R. Review of precision
536 cancer medicine: Evolution of the treatment paradigm. *Cancer Treat Rev* **86**, 102019,
537 doi:10.1016/j.ctrv.2020.102019 (2020).
538 3 Milbury, C. A. *et al.* Clinical and analytical validation of FoundationOne(R)CDx, a
539 comprehensive genomic profiling assay for solid tumors. *PLoS One* **17**, e0264138,
540 doi:10.1371/journal.pone.0264138 (2022).
541 4 Malone, E. R., Oliva, M., Sabatini, P. J. B., Stockley, T. L. & Siu, L. L. Molecular profiling for
542 precision cancer therapies. *Genome Med* **12**, 8, doi:10.1186/s13073-019-0703-1 (2020).
543 5 Marquart, J., Chen, E. Y. & Prasad, V. Estimation of the Percentage of US Patients With
544 Cancer Who Benefit From Genome-Driven Oncology. *JAMA Oncol* **4**, 1093-1098,
545 doi:10.1001/jamaoncology.2018.1660 (2018).
546 6 Prasad, V. Perspective: The precision-oncology illusion. *Nature* **537**, S63,
547 doi:10.1038/537S63a (2016).
548 7 Flaherty, K. T. *et al.* Molecular Landscape and Actionable Alterations in a Genomically
549 Guided Cancer Clinical Trial: National Cancer Institute Molecular Analysis for Therapy
550 Choice (NCI-MATCH). *J Clin Oncol* **38**, 3883-3894, doi:10.1200/JCO.19.03010 (2020).
551 8 Liu, R. *et al.* Systematic pan-cancer analysis of mutation-treatment interactions using
552 large real-world clinicogenomics data. *Nat Med* **28**, 1656-1661, doi:10.1038/s41591-022-
553 01873-5 (2022).
554 9 Iorio, F. *et al.* A Landscape of Pharmacogenomic Interactions in Cancer. *Cell* **166**, 740-
555 754, doi:10.1016/j.cell.2016.06.017 (2016).
556 10 Garnett, M. J. *et al.* Systematic identification of genomic markers of drug sensitivity in
557 cancer cells. *Nature* **483**, 570-575, doi:10.1038/nature11005 (2012).

558 11 Barretina, J. *et al.* The Cancer Cell Line Encyclopedia enables predictive modelling of
559 anticancer drug sensitivity. *Nature* **483**, 603-607, doi:10.1038/nature11003 (2012).

560 12 Ciriello, G., Cerami, E., Sander, C. & Schultz, N. Mutual exclusivity analysis identifies
561 oncogenic network modules. *Genome Res* **22**, 398-406, doi:10.1101/gr.125567.111
562 (2012).

563 13 Vandin, F., Upfal, E. & Raphael, B. J. Finding driver pathways in cancer: models and
564 algorithms. *Algorithms Mol Biol* **7**, 23, doi:10.1186/1748-7188-7-23 (2012).

565 14 Chen, L., Cai, C., Chen, V. & Lu, X. Learning a hierarchical representation of the yeast
566 transcriptomic machinery using an autoencoder model. *BMC Bioinformatics* **17 Suppl 1**,
567 9, doi:10.1186/s12859-015-0852-1 (2016).

568 15 Tao, Y. *et al.* Interpretable deep learning for chromatin-informed inference of
569 transcriptional programs driven by somatic alterations across cancers. *Nucleic Acids Res*
570 **50**, 10869-10881, doi:10.1093/nar/gkac881 (2022).

571 16 Friedman, J., Hastie, T. & Tibshirani, R. Regularization Paths for Generalized Linear
572 Models via Coordinate Descent. *J Stat Softw* **33**, 1-22 (2010).

573 17 Sanchez-Vega, F. *et al.* Oncogenic Signaling Pathways in The Cancer Genome Atlas. *Cell*
574 **173**, 321-337 e310, doi:10.1016/j.cell.2018.03.035 (2018).

575 18 Bailey, M. H. *et al.* Comprehensive characterization of cancer driver genes and
576 mutations. *Cell* **173**, 371-385. e318 (2018).

577 19 Larribere, L. & Utikal, J. Update on GNA Alterations in Cancer: Implications for Uveal
578 Melanoma Treatment. *Cancers (Basel)* **12**, doi:10.3390/cancers12061524 (2020).

579 20 Takaku, M., Grimm, S. A. & Wade, P. A. GATA3 in Breast Cancer: Tumor Suppressor or
580 Oncogene? *Gene Expr* **16**, 163-168, doi:10.3727/105221615X14399878166113 (2015).

581 21 Singh, A. *et al.* Dysfunctional KEAP1-NRF2 interaction in non-small-cell lung cancer. *PLoS
582 Med* **3**, e420, doi:10.1371/journal.pmed.0030420 (2006).

583 22 Yan, X. *et al.* DHX9 inhibits epithelial-mesenchymal transition in human lung
584 adenocarcinoma cells by regulating STAT3. *Am J Transl Res* **11**, 4881-4894 (2019).

585 23 Olivier, M., Hollstein, M. & Hainaut, P. TP53 mutations in human cancers: origins,
586 consequences, and clinical use. *Cold Spring Harb Perspect Biol* **2**, a001008,
587 doi:10.1101/cshtperspect.a001008 (2010).

588 24 Ding, M. Q., Chen, L., Cooper, G. F., Young, J. D. & Lu, X. Precision Oncology beyond
589 Targeted Therapy: Combining Omics Data with Machine Learning Matches the Majority
590 of Cancer Cells to Effective Therapeutics. *Mol Cancer Res* **16**, 269-278, doi:10.1158/1541-
591 7786.MCR-17-0378 (2018).

592 25 Tao, Y., Ren, S., Ding, M. Q., Schwartz, R. & Lu, X. in *Machine Learning for Healthcare
593 Conference*. 660-684 (PMLR).

594 26 Ren, S. *et al.* De novo Prediction of Cell-Drug Sensitivities Using Deep Learning-based
595 Graph Regularized Matrix Factorization. *Pac Symp Biocomput* **27**, 278-289 (2022).

596 27 Cai, C. *et al.* Systematic discovery of the functional impact of somatic genome alterations
597 in individual tumors through tumor-specific causal inference. *PLoS Comput Biol* **15**,
598 e1007088, doi:10.1371/journal.pcbi.1007088 (2019).

599 28 Garcia-Alonso, L. *et al.* Transcription Factor Activities Enhance Markers of Drug
600 Sensitivity in Cancer. *Cancer Res* **78**, 769-780, doi:10.1158/0008-5472.CAN-17-1679
601 (2018).

602 29 Tao, Y., Cai, C., Cohen, W. W. & Lu, X. in *PACIFIC SYMPOSIUM ON BIOCOMPUTING 2020*.
603 79-90 (World Scientific).
604 30 Mikolov, T., Chen, K., Corrado, G. & Dean, J. Efficient estimation of word representations
605 in vector space. *arXiv preprint arXiv:1301.3781* (2013).
606

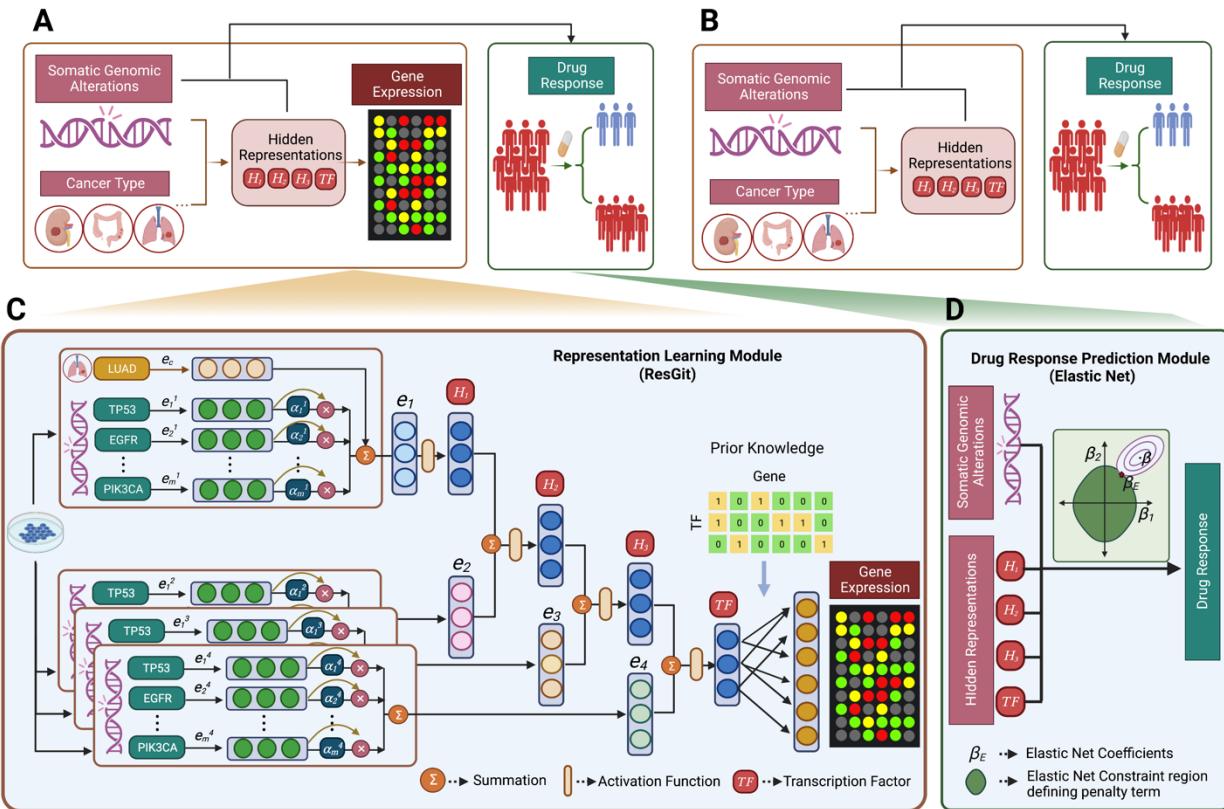
607 **Table**

608 **Table 1.** The top important SGA genes that were included as features when predicting the
609 response to specific signaling pathways drugs.

	Top important SGA genes to predict drug response
PI3K/MTOR signaling	PIK3CA, PTEN, ZFHX4, VPS13B, RELN, USH2A
ERK MAPK signaling	BRAF, TTN
WNT signaling	FLG, MUC16, ZNF208, VCAN, ATM, HRNR, CSMD3, RSPH10B2, APOBEC3B
JNK signaling	CSMD1, ROS1, VPS13B, TET1, FAT3
p53 pathway	TP53, CDH10, SYNE1, TCHH, APC, PTPRC, DMBT1, VCAN
EGFR signaling	KRAS, ERBB2, RELN, HRNR, LRP1B, EGFR
IGF1R signaling	PTEN, RYR2, GLI1, XIRP2, MYH2, MUC16, RYR1, FANCM, CSMD3, FAT1, DNAH14, IKZF3, IL7R

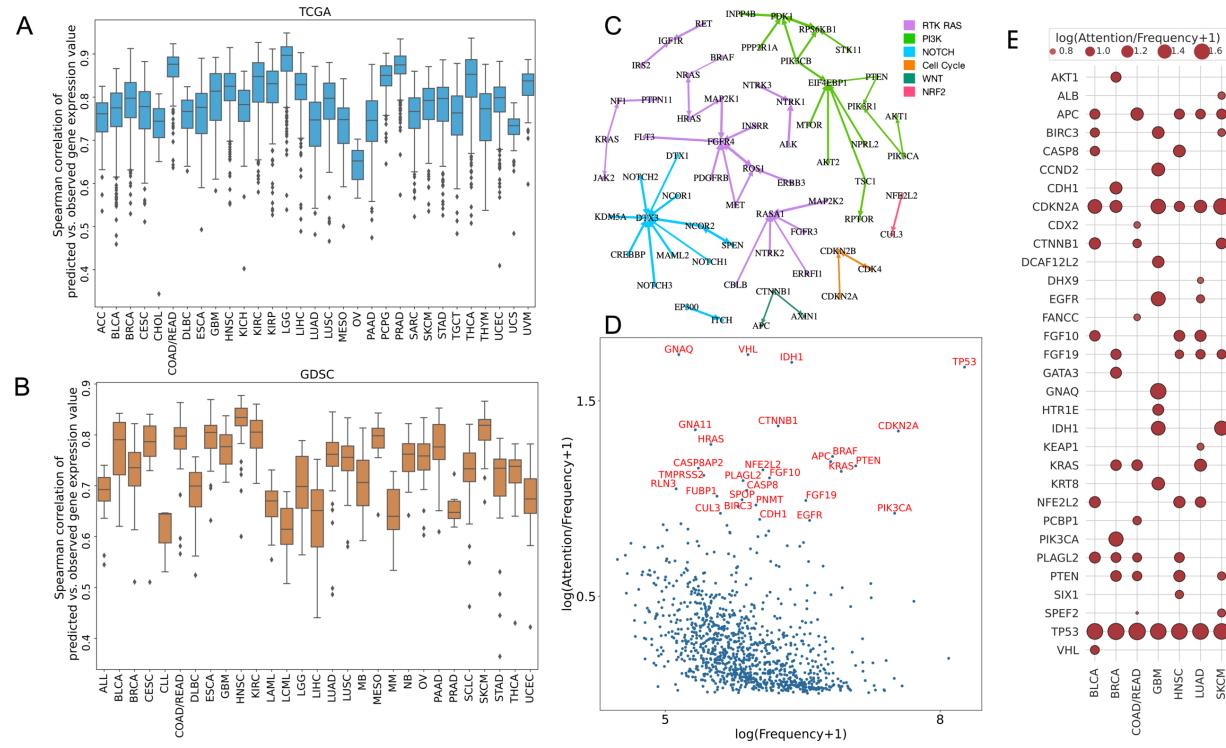
610

1 Figures



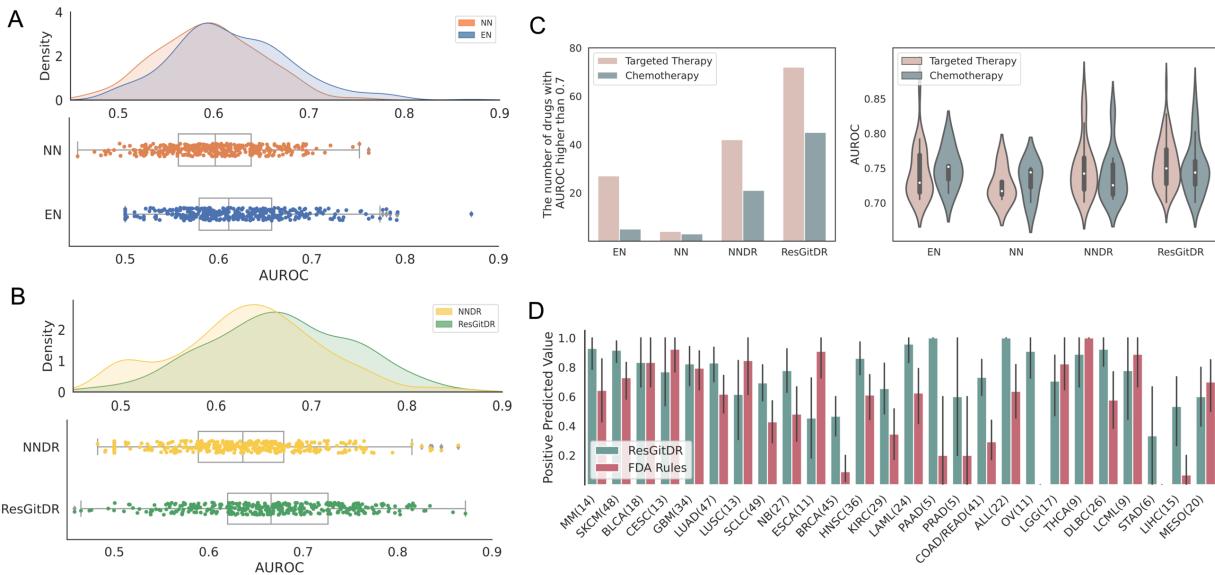
2

3 **Fig. 1** Flowchart of overall drug sensitivity prediction framework. **(A)** ResGitDR comprises two
4 modules: the Representation Learning Module, which employs the Residual Genome Impact
5 Transformer (ResGit) model, and the Drug Response Prediction Module, which utilizes an elastic
6 net. In the training phase, the Representation Learning Module uses SGAs and cancer types to
7 predict gene expression, and the Drug Response Prediction Module incorporates the hidden
8 representations learned in the Representation Learning Module and SGAs as input to predict
9 drug sensitivity. **(B)** In the testing phase, the trained ResGit model is used to obtain hidden
10 representations using SGAs and cancer type as input. These hidden representations are then
11 combined with SGAs as inputs to predict drug response. **(C)** The detailed diagram of the
12 Representation Learning Module. **(D)** The detailed diagram of the Drug Response Prediction
13 Module.



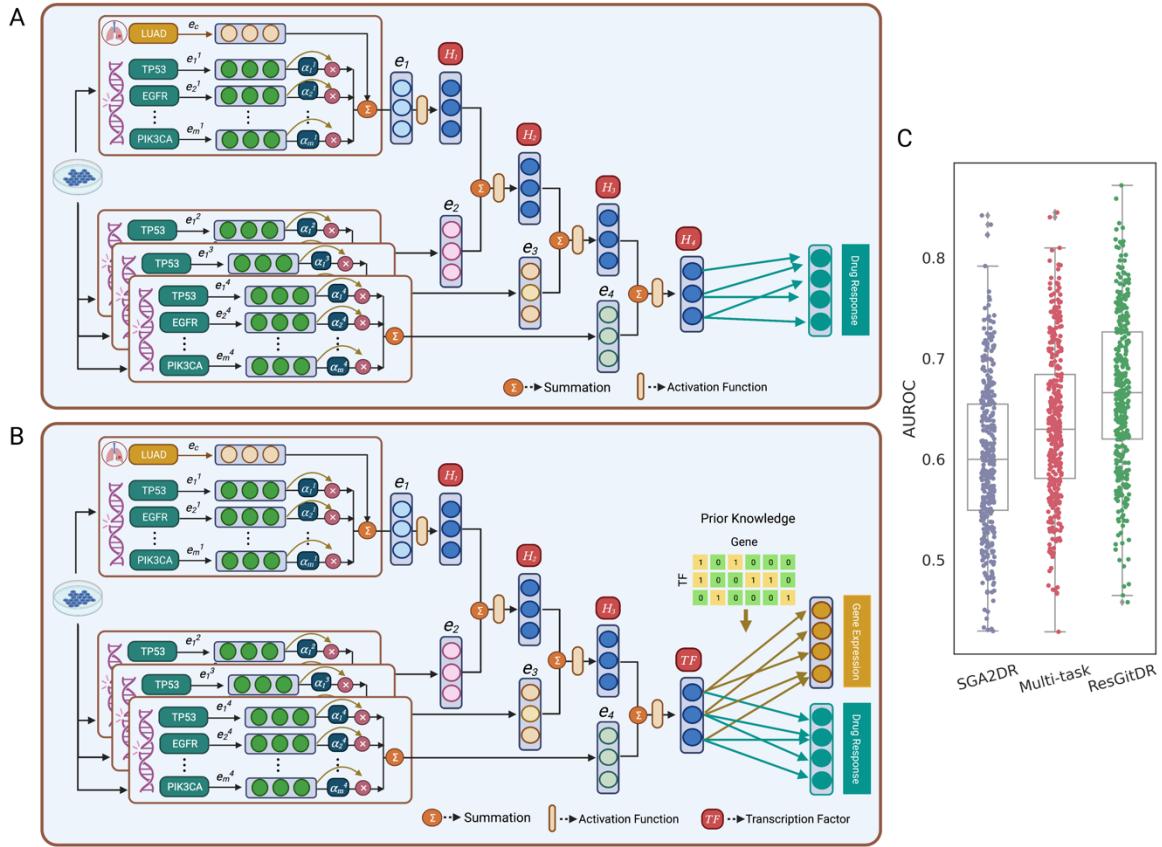
14

15 **Fig. 2** Evaluation of the performance of ResGit. The distribution of Spearman correlation
16 coefficients between predicted and observed gene expression values **(A)** in the TCGA dataset
17 and **(B)** in the GDSC datasets, respectively. **(C)**. The connectivity map shows the similarity of SGA
18 embeddings among the SGAs perturbing common pathways. The weight vector connecting an
19 SGA to hidden nodes is used as an embedding of the SGA, and similarity between a pair of SGAs
20 is calculated with cosine similarity. If gene *A* is a neighbor of gene *B*, the arrow direction points
21 from gene *B* to gene *A*; a double-arrowed edge indicates that two SGAs are mutually among the
22 top 10 neighbors. The thickness of an arrow represents the degree of similarity. **(D)**. The
23 attention weights of SGAs gene in a pan-cancer analysis. Genes with high overall attention
24 weights are shown in red font. **(E)**. The attention weights of SGAs gene across different cancer
25 types.

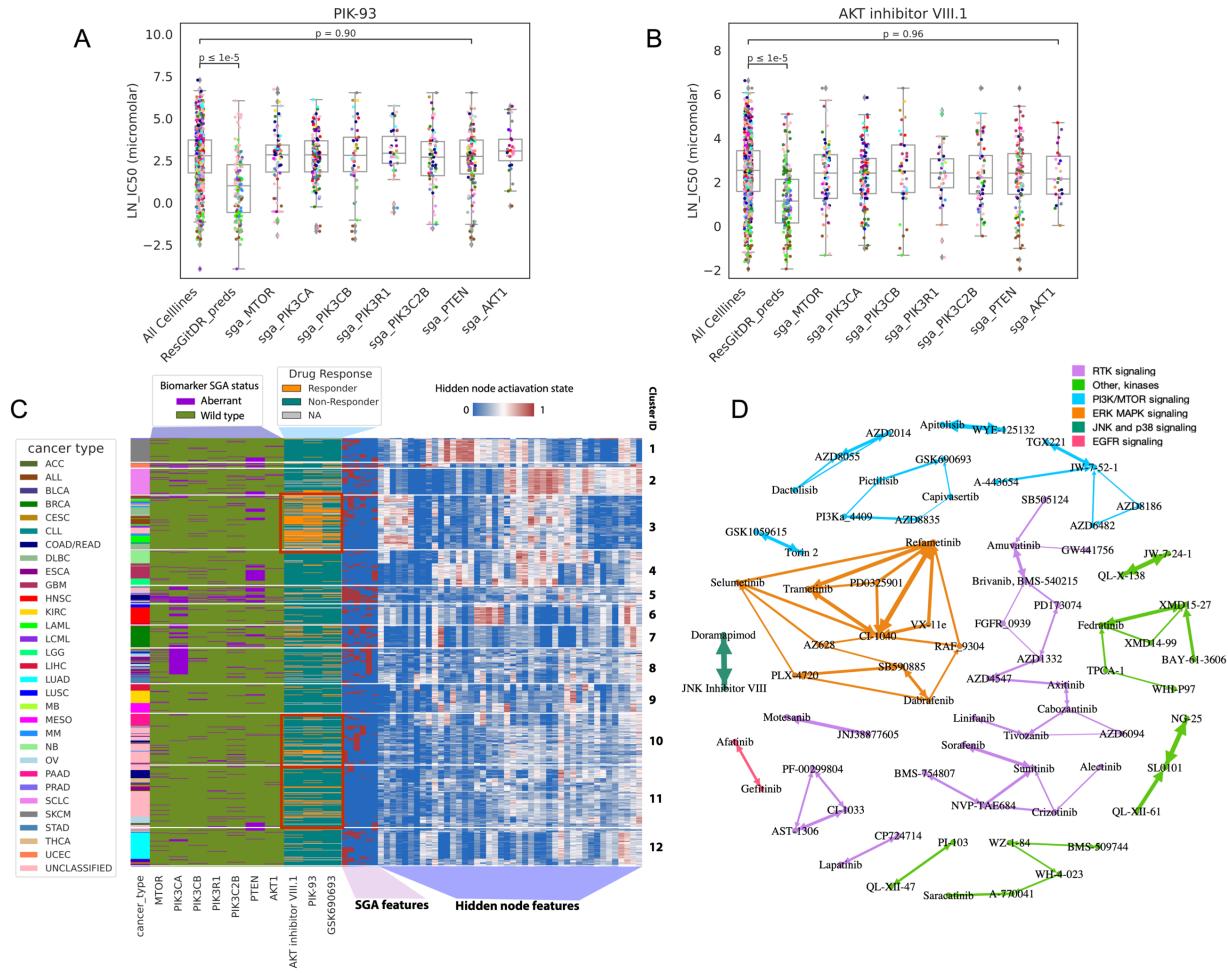


26

27 **Fig. 3** The performance comparison in drug response prediction. **(A)** The performance of two
28 baseline models (EN and NN) which both use SGA and cancer type to predict drug sensitivity
29 directly. **(B)** The performance of two models (NNDR and ResGitDR), which both firstly use the
30 SGAs and cancer type to predict gene expression and obtain the hidden representations, then
31 concatenate SGA and hidden representations to predict drug sensitivity. **(C)** The number and
32 AUROC distribution of Targeted Therapy and Chemotherapy drugs with AUROC higher than 0.7
33 across EN, NN, NNDR and ResGitDR. **(D)** The Positive Predicted Value of ResGitDR and FDA rules
34 methods with error bar representing 95% confidence interval. The numbers in parentheses
35 indicate the corresponding cell line counts for each cancer type.

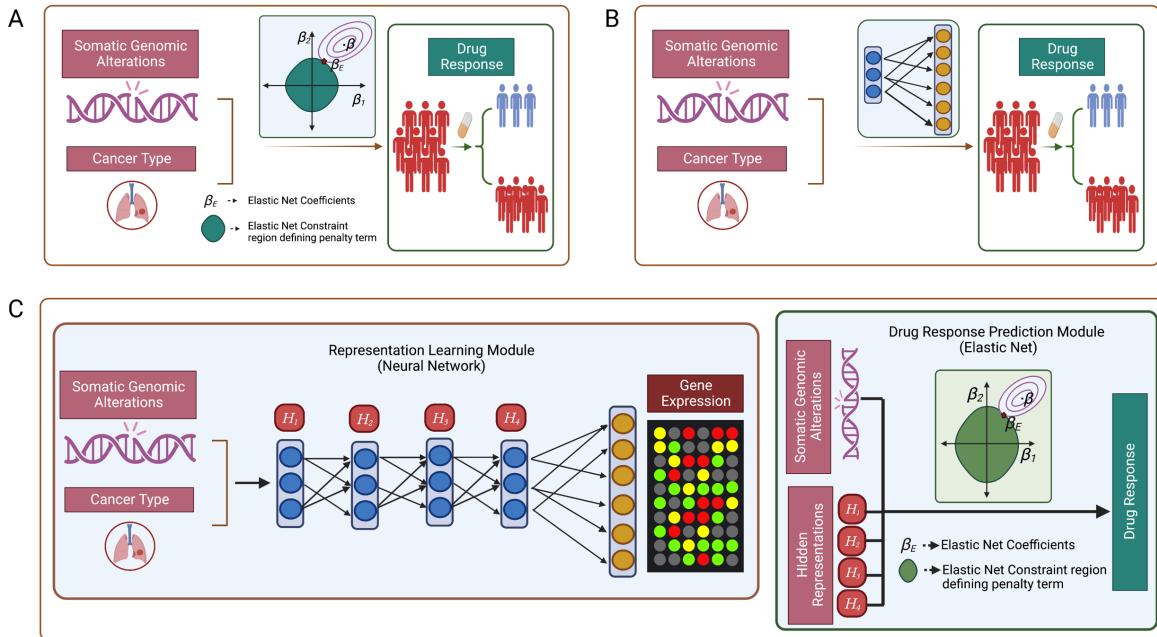


36
37 **Fig. 4 (A).** The architecture of the SGA2DR model. It predicts drug sensitivity directly using the
38 same architecture of ResGit by taking the cancer type and SGAs as input. **(B).** The architecture
39 of the multi-task learning model. It aims to predict drug sensitivity and gene expression
40 simultaneously using the same architecture of ResGit by taking the cancer type and SGAs as
41 inputs. **(C).** The performance comparison of SGA2DR, multi-task learning, and ResGitDR models.

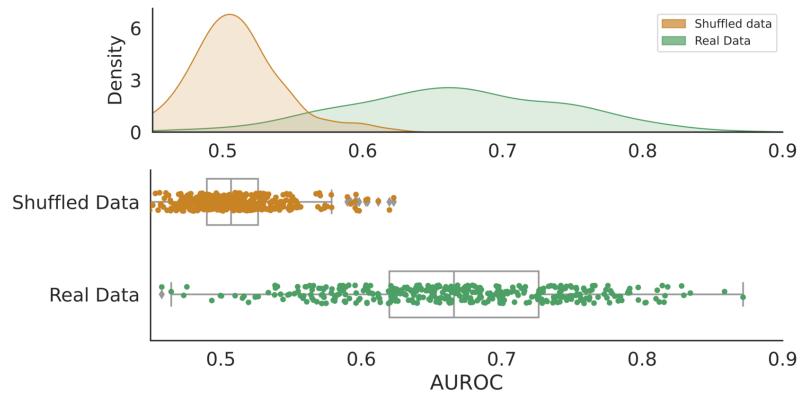


42
43 **Fig. 5** The distributions of drug sensitivity (represented as log IC50s) to (A) PIK-93 and (B) AKT
44 inhibitor VIII by cancer cell lines grouped according to the mutation status of genes involved in
45 the PI3K pathway. The distribution of drug sensitivity by the cell lines predicted by ResGitDR to
46 be sensitive to the drugs is also shown. (C). Cancer cell lines were clustered using the based on
47 the selected top 50 predictive features from ResGitDR models for 3 anti-PI3K PI3K/MTOR drugs:
48 AKT inhibitor VIII, PIK-93, and GSK690693. The features consist of hidden representations and
49 individual SGAs. The SGAs are represented as binary values. The hidden node values are
50 standardized within the range of 0 to 1. The binary drug responses to each of the three drugs by
51 cell lines are shown. Three red boxes highlight the clusters with enriched responder cell lines
52 (clusters 3, 10, and 11). The mutation status of genes in the PI3K/mTOR signaling pathway is
53 shown to illustrate their relationship with respect to drug sensitivity. (D). The connectivity map
54 shows the similarity of the embedding of drugs targeting common pathways. The top 50
55 important features of the ResGitDR for a drug are used as its embedding. The similarity of
56 embeddings of two drugs is measured with cosine similarity. Molecularly targeted drugs are
57 shown as nodes; an edge is added between a pair of drugs whose embeddings are among the
58 top 5 highest cosine similarities of each other. If drug A is a neighbor of drug B, the arrow
59 direction points from drug B to drug A; a double-arrowed edge indicates that a pair of drugs are
60 mutually among the top 5 neighbors of each other. The thickness of an arrow is proportional to
61 cosine similarity.

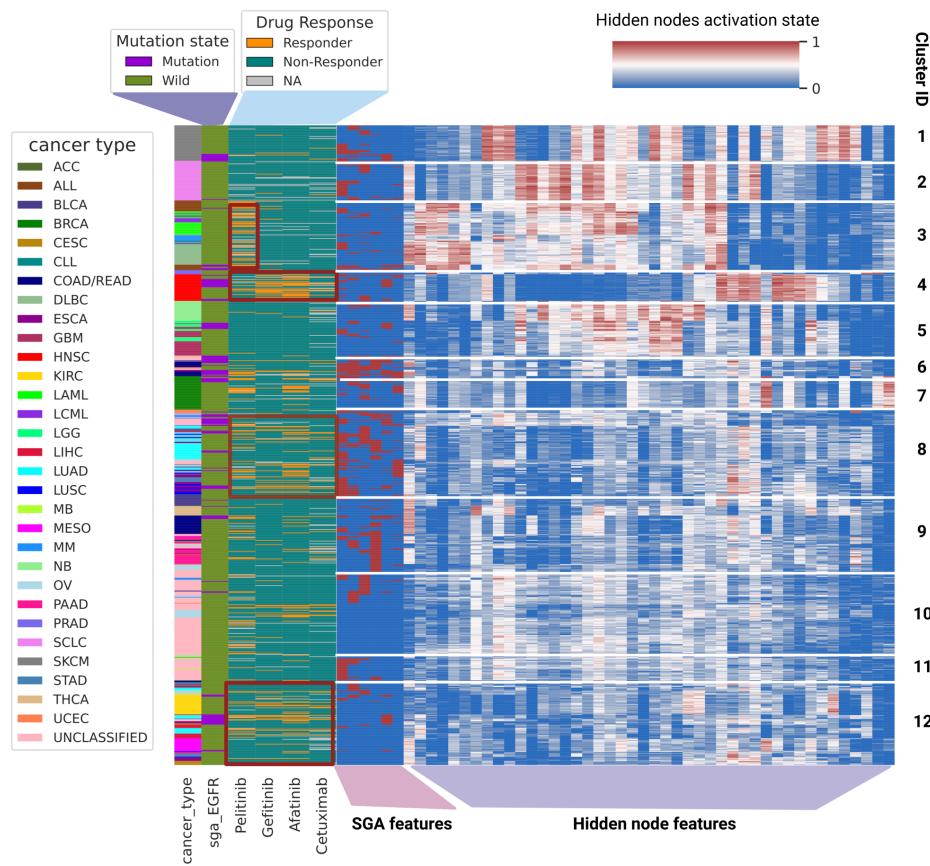
Supplementary Figures



Supplementary Fig. S1 The model architectures of **(A)** the elastic net (EN) and **(B)** neural network (NN) models. Both models take SGAs and cancer type as inputs to directly predict drug response. **(C)**. The architecture of the NNDR model involves a four-layer neural network (NN) that predicts gene expression using cancer type and SGAs as input. In the drug prediction phase, the NN is used to infer the state of hidden nodes, which are further used as inputs for the drug response prediction model.



Supplementary Fig. S2 Using ResGitDR to predict drug sensitivity with shuffled data and Real Data



Supplementary Fig. S3 Cell-state-oriented prediction of sensitivity to anti-EGFR drugs. Annotations are the same as Fig. 5 in the main text.

Supplementary Table

Supplementary Table S1. The targeted therapy drugs and chemotherapy drugs with AUROC higher than 0.7 when using ResGitDR, NNDR and EN to predict drug response (please see the excel file).