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Abstract 50 

Invasive non-typhoidal Salmonella (iNTS) disease is a serious bloodstream infection that 51 
targets immune-compromised individuals, and causes significant mortality in sub-Saharan 52 
Africa. Salmonella enterica serovar Typhimurium ST313 causes the majority of iNTS in Malawi, 53 
and we performed an intensive comparative genomic analysis of 608 isolates obtained from 54 
fever surveillance at the Queen Elizabeth Hospital, Blantyre between 1996 and 2018. We 55 
discovered that following the upsurge of the well-characterised S. Typhimurium ST313 lineage 56 
2 from 1999 onwards, two new multidrug-resistant sublineages designated 2.2 and 2.3, 57 
emerged in Malawi in 2006 and 2008, respectively. The majority of S. Typhimurium isolates 58 
from human bloodstream infections in Malawi now belong to sublineage 2.2 or 2.3. To identify 59 
factors that characterised the emergence of the prevalent ST313 sublineage 2.2, we performed 60 
genomic and functional analysis of two representative strains, D23580 (lineage 2) and D37712 61 
(sublineage 2.2). Comparative genomic analysis showed that the chromosome of ST313 62 
lineage 2 and sublineage 2.2 were broadly similar, only differing by 29 SNPs and small indels 63 
and a 3kb deletion in the Gifsy-2 prophage region that spanned the sseI pseudogene. Lineage 64 
2 and sublineage 2.2 have unique plasmid profiles that were verified by long read sequencing. 65 
The transcriptome was initially explored in 15 infection-relevant conditions and within 66 
macrophages. Differential gene expression was subsequently investigated in depth in the four 67 
most important in vitro growth conditions. We identified up-regulation of SPI2 genes in non-68 
inducing conditions, and down-regulation of flagellar genes in D37712, compared to D23580. 69 
Following phenotypic confirmation of transcriptional differences, we discovered that sublineage 70 
2.2 had increased fitness compared with lineage 2 during mixed-growth in minimal media. We 71 
speculate that this competitive advantage is contributing to the continuing presence of 72 
sublineage 2.2 in Malawi. 73 

74 
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Introduction 75 

Non-typhoidal Salmonella (NTS) is a major pathogen that threatens people across the world. 76 
Typhimurium and Enteritidis are the two serovars of Salmonella enterica that cause the highest 77 
levels of self-limiting gastrointestinal disease in Europe, the USA and other high-income 78 
countries (Zhang et al., 2003). In the industrialised world, NTS has largely been associated with 79 
intensive food production, animal husbandry, and global distribution systems (Majowicz et al., 80 
2010). Globally, the most common sequence type of S. Typhimurium associated with 81 
gastroenteritis is ST19. Diarrhoeal NTS disease (dNTS) is mainly foodborne and poses a 82 
significant burden to public health globally, causing approximately 153 million cases and 57,000 83 
deaths per annum (Kirk et al., 2015; Chirwa et al., 2023). 84 

In contrast, a lethal systemic disease called invasive non-typhoidal Salmonellosis (iNTS) has 85 
emerged in recent decades in low- and middle-income countries in sub-Saharan Africa. Cases 86 
of iNTS are characterized by bloodstream infections of immune-compromised individuals such 87 
as children under five years of age, and HIV-positive adults. Anaemia, malnutrition and malaria 88 
are some of the major risk factors (Feasey et al., 2012). In some countries of sub-Saharan 89 
Africa, Salmonella causes more cases of community-onset bloodstream infections than any 90 
other bacterial pathogen (Marchello et al., 2019). In 2017, 535,000 cases of iNTS disease were 91 
estimated worldwide, with about 80% of cases and 77,000 deaths occurring in sub-Saharan 92 
Africa (Stanaway et al., 2019) 93 

Clinically, the treatment of iNTS is complicated by multi-drug (MDR) resistance which limits 94 
therapeutic options (Crump et al., 2015). Widespread resistance of iNTS pathogens to first-line 95 
drugs such as chloramphenicol, ampicillin and cotrimoxazole has been seen in many countries 96 
(Kariuki et al., 2006). This MDR phenotype may be one of the reasons the case fatality rate 97 
associated with iNTS is amongst the highest in comparison to any infectious disease (15%) 98 
(Marchello et al., 2022) Resistance to second line drugs such as ceftriaxone, ciprofloxacin and 99 
azithromycin has been reported in a few African countries (Tack et al., 2020). Clearly, the 100 
problem of MDR Salmonella must be addressed urgently (Gilchrist and MacLennan, 2019). 101 

The African iNTS epidemic is mainly caused by two Salmonella pathovariants, S. Typhimurium 102 
sequence type 313 (ST313) and specific clades of S. Enteritidis (Kingsley et al., 2009; Okoro 103 
et al., 2012; Feasey et al., 2016). S. Typhimurium ST313 is responsible for about two-thirds of 104 
clinical iNTS cases that have been reported in Africa (Gilchrist and MacLennan, 2019).  105 

It is not certain how these pathogens are transmitted, but there is increasing evidence from 106 
case-control studies that ST313 strains are human-associated but not animal-associated within 107 
households (Post et al., 2019; Koolman et al., 2022). A recent summary concludes that the 108 
available data are consistent with the person-to-person transmission hypothesis for iNTS 109 
disease (Chirwa et al., 2023). Global efforts to combat iNTS infections are currently focused on 110 
vaccine development which is currently progressing to clinical trials (Piccini and Montomoli, 111 
2020).  112 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 12, 2023. ; https://doi.org/10.1101/2023.07.11.548493doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.11.548493
http://creativecommons.org/licenses/by-nc-nd/4.0/


Kumwenda	et.	al. 4

Since 1998, continuous sentinel surveillance for fever and bloodstream infections among adults 113 
and children has been undertaken at Queen Elizabeth Central Hospital (QECH). This tertiary 114 
referral hospital in Blantyre, Malawi, serves an urban population of about 920,000 with a high 115 
incidence of malaria, HIV and malnutrition (Musicha et al., 2017). Following blood-culture of 116 
samples collected from patients of all ages presenting with fever, whole genome sequencing 117 
identified the ST313 variant of S. Typhimurium (Kingsley et al., 2009). Phylogenetic analysis 118 
revealed that the chloramphenicol-sensitive ST313 lineage 1was clonally-replaced in Malawi 119 
by the chloramphenicol-resistant lineage 2 (Okoro et al., 2012). More recently, a ST313 120 
sublineage II.1 (2.1) emerged from lineage 2 in Democratic Republic of Congo (DRC) in Central 121 
Africa. Sublineage 2.1 had altered phenotypic properties including biofilm formation and 122 
metabolic capacity and resistance to azithromycin (Van Puyvelde et al., 2019).  123 

An initial suggestion that ST313 lineage 2 was undergoing evolutionary change in East Africa 124 
came from a small study that identified seven S. Typhimurium ST313 Malawian isolates, dated 125 
between 2006 and 2008, that differed from lineage 2 by 22 core-genome single nucleotide 126 
polymorphisms (SNPs) (Msefula et al., 2012). 127 

To begin to examine the evolutionary trajectory of S. Typhimurium in Malawi at a large scale, 128 
we conducted a comparative genomic analysis study focused on 680 isolates dating between 129 
1998 and 2018 (Pulford et al., 2021). We previously confirmed that ST313 lineage 1 (L1) was 130 
replaced by lineage 2 (here designated L2.0), and discovered an antibiotic-sensitive lineage 3 131 
(L3) that emerged in 2016 (Pulford et al., 2021). 132 

We performed a more intensive phylogenetic analysis of the same collection of S. Typhimurium 133 
ST313 isolates, most of which caused bloodstream infections in Malawi over two decades. We 134 
discovered two novel sublineages named 2.2 (L2.2) and 2.3 (L2.3) that have been replacing 135 
L2.0 since 2006.  136 

Here we present a comprehensive comparative genomic analysis of the most prevalent ST313 137 
L2.2 sublineage, and report the results of a functional genomic approach that identified key 138 
phenotypic characteristics that distinguish L2.2 from L2.0. 139 

140 

Results 141 

Identification of S. Typhimurium ST313 sublineages 2.2 and 2.3 in Malawi 142 

The S. Typhimurium ST313 L2 (Lineage II) was originally identified as the major cause of iNTS 143 
cases across sub-Saharan Africa in the early 2000’s (Kingsley et al., 2009; Okoro et al., 2012) 144 
(Okoro et al., 2015). Subsequently, an azithromycin-resistant variant of S. Typhimurium ST313 145 
was found in a single country, the Democratic Republic of Congo between 2008 and 2016, and 146 
was designated sublineage L2.1 (Van Puyvelde et al., 2019). 147 

To investigate the evolutionary dynamics of S. Typhimurium ST313 L2 in Malawi over a 22 year 148 
period, we focused on the large collection of 8,000 S. Typhimurium isolates derived from 149 
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bloodstream infection in hospitalised patients at the Queen Elizabeth Central Hospital, Blantyre, 150 
Malawi (Feasey et al., 2015). The collection was assembled by the Malawi–Liverpool–151 
Wellcome Trust Clinical Research Programme (MLW) between 1996 and 2018; the precise 152 
annual numbers of isolates are shown in Fig 1B. A random sub-sampling strategy was used to 153 
select 608 isolates selected for whole-genome sequencing which included 549 S. Typhimurium 154 
ST313 isolates (Pulford et al., 2021). 155 

156 

157 
Fig 1. Emergence of S. Typhimurium ST313 sublineages L2.2 and L2.3 in Malawi. (A) 158 
Evolutionary dynamics of S. Typhimurium lineages in Blantyre, Malawi from 1996 to 2018. The 159 
genomes of 549 S. Typhimurium ST313 isolates from bacteraemic patients at the Queen 160 
Elizabeth Hospital in Blantyre, Malawi were used for this analysis. The proportions of the five 161 
lineages/sublineages are shown. (B) The total number of isolates of each lineage/sublineage 162 
per year. (C) Phylogenetic comparison between representative strains of S. Typhimurium ST19 163 
and four ST313 lineages/sublineages (L1, L2.0, L2.2, L2.3) showing the presence and absence 164 
of plasmids, prophages and the spvD pseudogene. The complete phylogenetic analysis of 707 165 
S. Typhimurium genomes is shown in Fig.S1.166 

167 

Here, we used a core-gene SNP-based maximum likelihood (ML) phylogenetic tree to 168 
investigate the population structure of S. Typhimurium ST313 L2.0 in more detail (Fig. S1). As 169 
well as identifying members of the antibiotic-sensitive lineage 3 that we reported previously 170 
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(Pulford et al., 2021), we discovered that ST313 L2 could be split into three phylogenetically-171 
distinct sublineages that differed by 39 SNPs. The S. Typhimurium ST313 L2 reference strain 172 
D23580 (Kingsley et al., 2009) belonged to the first sublineage, which we have now designated 173 
as ST313 L2.0 (Fig 1C). As ST313 sublineage L2.1 has been defined previously (Van Puyvelde 174 
et al., 2019), the new sublineages were designated as L2.2 and L2.3, and belonged to different 175 
hierBAPS level 2 clusters (Fig 1C and Fig S1). We identified 151 L2.2 isolates and 74 L2.3 176 
isolates, against a backdrop of 350 L2.0 isolates. 177 

In Blantyre, Malawi, S. Typhimurium ST313 L2.2 was first detected in 2006, and L2.3 was 178 
initially observed in 2008 (Fig. 1A. Both L2.2 and L2.3 increased in prevalence at the Queen 179 
Elizabeth Central Hospital in Blantyre in subsequent years. By 2018, L2.2 and L2.3 had largely 180 
replaced L2.0 (Fig 1A-B). Our published Bayesian (BEAST) analysis (Pulford et al., 2021) 181 
estimated that the Most Recent Common Ancestor (MRCA) of ST313 lineage 2 dates back to 182 
1948 (95% HPD = 1929-1959). 183 

To understand the accessory gene complement of L2.2 and L2.3, we compared the genomes 184 
of seven L2.2 isolates and four L2.3 isolates with 17 L2.0 isolates, ST313 L1 and ST19 (Fig 185 
1C, Table S1). S. Typhimurium strain D23580 is the representative strain of L2.0 (Kingsley et 186 
al., 2009), for which we previously used long-read sequencing and other approaches to 187 
thoroughly characterise the chromosome and the plasmid complement (Canals et al., 2019b). 188 

189 

Antimicrobial Resistance 190 

AMR variants of S. Typhimurium with resistance to ampicillin and cotrimoxazole were detected 191 
at an early stage of the iNTS epidemic, from 1997 onwards (Gordon et al., 2008). Multidrug-192 
resistant variants of S. Typhimurium ST313 that were no longer susceptible to chloramphenicol, 193 
ampicillin and cotrimoxazole subsequently emerged in Malawi (Gordon et al., 2008) and have 194 
been reported elsewhere in sub-Saharan Africa by the GEMS study (Kasumba et al., 2021). 195 
The S. Typhimurium ST313 L2.0, L2.2 and L2.3 isolates shared the same MDR profiles 196 
(resistance to chloramphenicol, ampicillin and cotrimoxazole), and carried identical IS21-AMR 197 
gene cassettes within the pSLT-BT plasmid. 198 

199 

Comparative genomics of S. Typhimurium ST313 sublineage 2.2 200 

Because S. Typhimurium ST313 L2.2 was the predominant novel sublineage in Blantyre, 201 
Malawi, we focused on L2.2 for the remainder of this study. We used the phylogeny (Fig 1C) to 202 
select strain D37712 as a representative isolate of L2.2. D37712 was isolated from the blood 203 
of an HIV-positive Malawian male child and has been deposited in the National Collection of 204 
Type Cultures (NCTC). The initial genome sequence of D37712 was obtained in 2012 with 205 
Illumina technology, an assembly that comprised 27 individual contigs (Msefula et al., 2012). 206 
To generate a reference-quality genome, we resequenced D37712 with both long-read PacBio 207 
and Illumina short-read technologies. Our hybrid strategy generated a complete genome 208 
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assembly that included one circular chromosome and three plasmids (see Materials & Methods; 209 
GenBank CP060165, CP060166, CP060167 and CP060168). This high-quality genome 210 
sequence allowed us to conduct a detailed comparative genomic analysis of L2.2 strain D37712 211 
with L2.0 strain D23580 (accession number FN424405), summarised in Fig. 2 and Table S2. 212 

Overall, the two strains contain a similar number of genes. The D37712 and D23580 genomes 213 
shared 5,016 orthologous genes, including 4,729 protein-coding genes and pseudogenes as 214 
well as the 287 small RNA (sRNA) genes that we identified previously. The D23580 annotation 215 
contains 4,823 protein-coding and pseudogenes and 287 sRNAs (Canals et al., 2019b), while 216 
D37712 contains 4,821 protein-coding and pseudogenes and 287 sRNAs. 217 

Overview of D23580 and D37712 genomes  218 

The chromosomes of D23580 and D37712 are 4,879,402 and 4,876,060 bp, respectively, and 219 
similar in size to other S. Typhimurium genomes (Kingsley et al., 2009; Branchu et al., 2018). 220 
The D23580 and D37712 strains share a similar prophage profile, with both strains carrying 221 
five prophages (BTP1, Gifsy-2, ST64B, Gifsy-1, and BTP5) which were located at the same 222 
positions on the chromosome. Previously, we have established that just one of these 223 
prophages, BTP1, is functional (Owen et al., 2017). The BTP1 prophage of D23580 encodes 224 
the novel BstA phage defence system (Owen et al., 2021) and a particularly high level of viable 225 
BTP1 phages is produced by spontaneous induction (Owen et al., 2017). 226 

Comparison of D23580 and D37712 chromosomes  227 

The detailed genomic comparison of D37712 with D23580 showed that the two genomes were 228 
remarkably similar. Overall, the only differences between the genomes of the L2.0 and L2.2 229 
strains were 26 chromosomal SNPs and small indels, plus one large deletion, and an inversion 230 
of the hin switch. In-depth annotation of the nucleotide variants identified 3 putative loss-of-231 
function mutations (2 stop mutations, 1 frameshift insertion), 1 disruptive in-frame deletion, 4 232 
synonymous mutations, 13 missense mutations, and 5 intergenic variants, summarised in Fig 233 
2A.  234 

The 3,358 bp-long deletion of a Gifsy-2 prophage-associated region that spanned the sseI 235 
pseudogene of D23580 removed two coding sequences (STM1050-51; STMMW_10611-236 
STMMW_10631), and substantially truncated the STM1049 (STMMW_10601) gene (Fig 2E). 237 
The sseI gene encodes a cysteine hydrolase effector protein that modulates the directional 238 
migration of dendritic cells during systemic infection (Brink et al., 2018). In strain D23580, the 239 
insertion of a transposable element IS15DEV inactivated the sseI gene (Kingsley et al., 2009) 240 
causing increased dendritic cell-mediated dissemination of strain D23580 during infection 241 
(Carden et al., 2017). To confirm that the 3,358 bp deletion removed the sseI gene from the 242 
chromosome of strain D37712, we used an independent PCR-based approach (Fig S2). 243 

244 
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245 
246 

Fig 2. Key genetic similarities and differences between the chromosome and plasmid 247 
profiles of D23580 (lineage 2) and D37712 (L2.2). (A) A comparison of the D23580 (L2.0) 248 
and D37712 (L2.2) chromosomes. The dots around the chromosome are different kinds of 249 
SNPs identified. Phages and Salmonella pathogenicity islands are shown in blue and red 250 
respectively. (B) Plasmid profile of D37712 versus D23580. The pSLT-BT virulence plasmid is 251 
present in both D37712 and D23580, and carries the Tn-21 transposable element; (C) pCol1B9 252 
is present in D37712 and absent from D23580 (D) pBT3 is present in both D37712 and D23580. 253 
(E) Absence of sseI gene and the STM1050 coding sequence in L2.2 (D37712), as compared254 
to S. Typhimurium ST19 4/74 and S. Typhimurium ST313 L2.0 (D23580). (F) List of 255 
pseudogenes in D37712 and D23580, with reference to 4/74. The colour blue means 256 
pseudogene/disrupted gene while grey indicates functional genes. macB is a pseudogene in 257 
D23580 (L2.0) but not in L2.2, while spvD is a pseudogene in L2.2 but not in L2.0. All L2.2 258 
strains share similar pseudogenes.  259 

260 

Comparison of D23580 and D37712 plasmids  261 

ST313 L2.0 strain D23580 carries four plasmids, pSLT-BT, pBT1, pBT2 and pBT3 (Kingsley et 262 
al., 2009). In contrast, ST313 L2.2 carried a distinct plasmid complement (Fig 1C, Fig. 2BCD). 263 
In summary, strain D37712 carried pSLT-BT, pBT2 and pCol1B9 as detailed below. Both 264 
strains had a variant of the pSLT-BT virulence plasmid (Kingsley et al., 2009) that contains a 265 
Tn21-like transposable element with five antibiotic resistance genes. The D37712 version of 266 
pSLT-BT is similar to that of D23580, with two important differences (Fig 2B). Firstly, the Tn21-267 
like element is inserted in the opposite direction with regards to the rest of the plasmid, 268 
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suggesting that the transposable element remains active. Secondly, three nucleotide variants 269 
were identified in the pSLT-BT variant, two deletions in noncoding regions, and one frameshift 270 
insertion that generates a pseudogene of spvD. The SpvD effector protein, a cysteine protease, 271 
is translocated by the SPI2 type 3 secretion system and suppresses the NF-κB-mediated pro-272 
inflammatory immune response and contributes to virulence in mice (Grabe et al., 2016). 273 

 274 

Plasmid pCol1B9 was of particular interest because it was absent from D23580, but is present 275 
in S. Typhimurium ST19 strain 4/74 (Richardson et al., 2011). 4/74 is the parent of the S. 276 
Typhimurium SL1344 strain that has been used extensively for the study of S. Typhimurium 277 
pathogenesis and gene regulation since 1986 (Kröger et al., 2012;  Rankin & Taylor,  1966). 278 
Our annotation of the pCol1B9 plasmid included 95 distinct protein-coding genes, while the 279 
previously published annotation of pCol1B94/74 assigned 101 protein-coding genes. Some of 280 
these represent annotation discrepancies, while others represent true genetic differences (Fig. 281 
S3). Upon careful examination, 14 genes were unique to pCol1B9D37712, while 20 were unique 282 
to pCol1B94/74. There were 81 genes carried by both plasmids. Interestingly, pCol1B9D37712 283 
lacked the colicin toxin-antitoxin system that both gave pCol1B9 its name, and provides 284 
Salmonella with a competitive advantage in the gut (Nedialkova et al., 2014). The pCol1B9D37712 285 
plasmid carried a locus that was absent from pCol1B94/74, namely the impC-umuCD operon 286 
(Fig. S3) which encodes the error-prone DNA polymerase V responsible for the increased 287 
mutation rate linked to the SOS stress response in E. coli (Sikand et al., 2021). 288 

An 85 kb plasmid carried by D23580, pBT1, was previously shown by our laboratory to play an 289 
important role in Salmonella biology by encoding an orthologous cysS gene responsible for 290 
expressing the essential cysteinyl tRNA-synthetase enzyme (Canals et al., 2019b). This pBT1 291 
plasmid was completely absent from D37712, and from all isolates of sublineage L2.2 that were 292 
examined (Fig. 1C).  293 

 294 

Comparison of pseudogene status of D23580 and D37712  295 

Our comparative genomic analysis focused on the pseudogenes found in strains 4/74, D23580, 296 
and D37712 (Fig 2F, Table S3). The pseudogenisation of several D23580 genes, compared 297 
with strain 4/74, have been linked to the invasive phenotype of African Salmonella ST313 298 
(Kingsley et al., 2009). We found that the pseudogene complement of D23580 was largely 299 
conserved in D37712. We have recently reported the role of the MacAB-TolC macrolide efflux 300 
pump in the virulence of S. Typhimurium ST313, and showed experimentally that macB was 301 
an inactive pseudogene in D23580 (Honeycutt et al., 2020). Interestingly, the macB gene is 302 
functional in D37712. Compared with D23580, three additional D37712 genes were 303 
pseudogenised (spvD, yadE, and STMMW_42692). 304 

Overall the chromosomes of ST313 lineage 2 and sublineage 2.2 were highly-conserved and 305 
differed by just 29 SNPs/ small indels, and a 3kb deletion in the Gifsy-2 prophage region. The 306 
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ST313 lineage 2 and sublineage 2.2 have distinct plasmid profiles. 307 

Transcriptional landscape of S. Typhimurium ST313 sublineage L2.2 308 

Previously, we characterized the primary transcriptome of two other S. Typhimurium strains, 309 
4/74 and D23580, using a combination of multi-condition RNA-seq and differential RNA-seq 310 
(dRNA-seq) techniques (Canals et al., 2019b; Kröger et al., 2013). To identify the transcriptional 311 
start sites (TSS) of strain D37712, we analysed a pooled sample containing RNA from 15 in 312 
vitro conditions by dRNA-seq and RNA-seq as detailed previously (Kröger et al., 2013). The 313 
high similarity between the D23580 and D37712 chromosomes allowed us to map the curated 314 
set of TSS that were previously defined for D23580 (Hammarlof et al., 2018) onto a combined 315 
D37712/D23580 reference genome. To allow individual TSS to be examined in particular 316 
chromosomal or plasmid regions, data from both the dRNA-seq and pooled RNA-seq 317 
experiments can be visualised in our online genome browser 318 
(http://hintonlab.com/jbrowse/index.html?data=Combo_D37/data). 319 

Preliminary gene expression profiling of S. Typhimurium ST313 sublineage 320 
L2.2 321 

Given the high level of similarity between the genomes of L2.2 and L2.0, we went on to identify 322 
differences at the transcriptional level. We performed a multi-condition RNA-seq-based 323 
transcriptomic analysis of gene expression profiles of L2.2 strain D37712 without biological 324 
replicates.  325 

This comparative transcriptomic screen was based on our published approach (Canals et al., 326 
2019b). Specifically, we used 15 individual infection-relevant in vitro conditions (Kröger et al., 327 
2013) and did intra-macrophage transcriptome profiling using the protocol previously 328 
established for S. Typhimurium ST19 (Srikumar et al., 2015). The RNA-seq samples were 329 
mapped to a combined reference genome, which included the annotated D23580 chromosome 330 
(Canals et al., 2019b), as well as all the plasmids described earlier (pSLT-BT, pBT1, pBT3 and 331 
pCol1B9; see Methods). The initial RNA-seq assessment (detailed in Methods) involved 2-4M 332 
non-rRNA/tRNA reads per sample, allowing gene signatures specific for each in vitro condition 333 
to be identified. Although single replicate RNA-seq experiments of this type cannot be used for 334 
statistically-robust differential gene expression analysis, they do provide a useful screening 335 
approach for identifying growth conditions to be used for follow-up experiments. The individual 336 
RNA-seq experiments showed broad condition-specific similarities in gene expression between 337 
strains 4/74, D37712, and D23580 (Fig 3A). The gene expression values from each profiled 338 
condition are available as raw counts and TPMs in Tables S4 and S5.  339 

To select the ideal environmental conditions to use for subsequent experiments, we assessed 340 
the expression profiles of known Salmonella pathogenicity islands which were broadly similar 341 
in strains D37712, and D23580. Although the expression profile of the SPI2 pathogenicity island 342 
was broadly similar between D37712, D23580 and 4/74 in most growth conditions, the SPI2 343 
genes of D37712 were highly up-regulated in a single growth condition, NonSPI2 (Fig. 3B-C). 344 
NonSPI2 is a minimal medium with a neutral pH and a relatively high level of phosphate, in 345 
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which S. Typhimurium does not usually express the SPI2 pathogenicity island (Löber et al., 346 
2006; Kröger et al., 2013). This intriguing observation prompted us to perform the more 347 
discriminating set of transcriptomic experiments described below. 348 

349 
Fig 3. General comparison of expression profiles of strains 4/74, D23580, and D37712 350 
under 17 different in vitro conditions. (A) Principal component analysis (PCA) plot of the 351 
individual RNA-seq samples, indicating the overall similarity in gene expression between the 352 
three strains. The 17 growth conditions have been defined previously (Kröger et al., 2013). (B) 353 
Visualization of SPI-2 pathogenicity island expression with the Jbrowse genomic browser, 354 
under mid-exponential phase (MEP), InSPI2, and NonSPI2 in vitro conditions. (C) Boxplot 355 
visualization of SPI-2 gene expression under mid-exponential phase (MEP), InSPI2, and 356 
NonSPI2 in vitro conditions. The elevated expression of SPI-2 genes in strain D37712 cultured 357 
under NonSPI2 conditions is highlighted in a red box. 358 

359 

Differential gene expression analysis of S. Typhimurium D37712 versus D23580 in four 360 
in vitro conditions with multiple biological replicates 361 

To define the transcriptional signature of strain D37712 more accurately, we generated RNA-362 
seq data from D37712 grown in four in vitro conditions that stimulate expression of the majority 363 
of virulence genes: ESP, anaerobic growth, NonSPI2 and InSPI2, with multiple (3-4) biological 364 
replicates. We compared the results with our published transcriptomic data for S. Typhimurium 365 
strains 4/74 and D23580 (Canals et al., 2019b; Kröger et al., 2013). Differential expression 366 
analysis with DEseq2, with conservative cut-offs (fold change ≥ 2, FDR ≤0.001), showed that 367 
the gene expression profiles of D37712 and D23580 were broadly similar, and shared key 368 
differences to the transcriptional profile of strain 4/74 under each of the four in vitro conditions 369 
(Fig 4A). The differential expression results are summarized in Table S6. 370 
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371 

Fig 4. Differential gene expression of S. Typhimurium 4/74, D37712, and D23580 under 4 372 
in vitro conditions. (A) Boxplots indicating the number of differentially-expressed genes 373 
identified in the following in vitro growth conditions: early stationary phase, ESP; anaerobic 374 
growth, NoO2; SPI-2 inducing medium, InSPI2; SPI-2 non-inducing minimal medium, NonSPI2. 375 
Multiple (3 to 5) biological replicates were used for comparison. DESeq2 was used for 376 
differential analysis; only genes with |log2FC| ≥ 1 and with adjusted p-value ≤ 0.001 were 377 
retained. (B) Heatmap of the genes differentially expressed between D23580 and D37712. 378 
Functional groups and operons of interest are highlighted on the right of Panel B. 379 

380 

We specifically investigated transcription of the pgtE gene, which encodes the outer- membrane 381 
protease previously linked to the ability of African Salmonella ST313 to resist human serum 382 
killing (Hammarlöf et al., 2018). Compared to 4/74, the pgtE gene of both the D23580 and 383 
D37712 strains showed a similar pattern of up-regulation by a factor of 7 to 18 across all 384 
conditions. This finding is consistent with the fact that D37712 carries the same T nucleotide in 385 
the -10 region of the pgtE promoter that is responsible for increased expression of the pgtE 386 
transcript in strain D23580 (Hammarlöf et al., 2018).  387 

The majority (92%) of 4,729 orthologous coding genes of both D37712 and D23580 were 388 
expressed at similar levels. We identified a total of 364 genes that were differentially expressed 389 
in at least one growth condition between D37712 and D23580 as follows: ESP (69 differentially-390 
expressed genes), anaerobic growth (214 differentially-expressed genes), NonSPI2 (88 391 
differentially-expressed genes) and InSPI2 (17 differentially-expressed genes; Fig 4B).  392 

Overall, the differentially expressed genes that distinguished D37712 from D23580 were seen 393 
in a single growth condition and included flagellar genes (down-regulated), SPI2-associated 394 
genes(up-regulated), and genes involved in general and anaerobic metabolism (down-395 
regulated).  396 
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The SPI2 pathogenicity island genes play a key role in the intracellular replication of S. 397 
Typhimurium, and encode the type III secretion system that is responsible for translocation of 398 
key effector proteins into mammalian cells (Jennings et al., 2017). The RNA-seq data showed 399 
that SPI2 genes were expressed at similarly high levels in both D37712 and D23580 strains 400 
following induction (InSPI2 media; Fig 4B), and confirmed that the key SPI2 expression 401 
difference was only seen in strain D37712 under non-inducing growth conditions (NonSPI2 402 
media). It is important to put this differential SPI2 expression into context. D37712 expresses 403 
SPI2 genes at about a 10-fold higher level than D23580 during growth in non-inducing NonSPI2 404 
media, but the actual level of expression was 20-fold less than the level stimulated by growth 405 
in SPI2-inducing conditions (InSPI2 medium). 406 

The up-regulation of fljA and fljB and the down-regulation of fliC in D37712, compared to 407 
D23580 in all four growth conditions likely reflects the opposite orientation of the hin switch in 408 
the D37712 genome compared to D23580. This type of hin inversion occurs frequently in S. 409 
Typhimurium (Johnson and Simon, 1985). 410 

Another gene that was up-regulated in D37712 across all profiled conditions was the 411 
chromosomally-encoded cysSchr, that encodes cysteine-tRNA synthetase. Previously, we 412 
reported that transcription of the cysSchr of strain D23580 was uniformly down-regulated 413 
compared to 4/74, a defect that was compensated by the presence of a pBT1 plasmid-encoded 414 
cysteine-tRNA synthetase (Canals et al., 2019a). Increased expression of the chromosomal 415 
cysS gene in D37712 was consistent with the absence of the pBT1 plasmid. Our comparative 416 
transcripomic analysis showed that expression levels of cysS were similar in D37712 and 4/74 417 
under all growth conditions. 418 

Numerous virulence genes and operons were differentially expressed between D23580 and 419 
D37712. The SPI-16-associated gtrABCa operon (STM0557, STM0558, STM0559) is 420 
responsible for adding glucose residues to the O-antigen subunits of LPS that enhance the 421 
long-term colonisation of the mammalian gastrointestinal tract by S. Typhimurium ST19 422 
(Bogomolnaya et al., 2008). We found that the gtrABCa genes were significantly up-regulated 423 
in several conditions in D37712, compared to both D23580 and 4/74. 424 

The spvABCD operon of D37712 was up-regulated under non-SPI2-inducing growth 425 
conditions, compared to D23580. A signature pseudogene of ST313 L2.2 is the frameshift 426 
insertion in the spvD gene that generates a truncated version of the SpvD protein. The H199I 427 
mutation at position 199 and the associated 17 amino acid truncation is predicted to ablate the 428 
activity of the SpvD cysteine protease (Grabe et al., 2016). The functional consequences of the 429 
spvD variant of ST313 L2.2 strain D37712 and the up-regulation of the spvABCD operon remain 430 
to be established experimentally. 431 

The SalComD37712 community transcriptional data resource 432 
To allow scientists to gain their own biological insights from analysis of this rich transcriptomic 433 
dataset, the transcriptomic and gene expression data generated in this study are presented 434 
online in a new community resource, SalComD37712. The data resource shows the expression 435 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 12, 2023. ; https://doi.org/10.1101/2023.07.11.548493doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.11.548493
http://creativecommons.org/licenses/by-nc-nd/4.0/


Kumwenda	et.	al.	 	14 

levels of all D37712 coding and non-coding genes, including both chromosomal and plasmid-436 
encoded transcripts. The SalComD37712 website complements our existing SalComD23580 437 
(https://tinyurl.com/SalComD23580) resource, and adds an inter-strain comparison of gene 438 
expression profiles between D37712 and D23580 as well as normalized gene expression 439 
values (TPM), using an intuitive heat map-based approach. SalComD37712 included our 440 
published RNA-seq data (Canals et al., 2019b), re-analysed with an updated bioinformatic 441 
pipeline and a combined reference genome (see Methods). This online resource facilitates the 442 
intuitive interrogation of transcriptomic data as described previously (Perez-Sepulveda and 443 
Hinton, 2018). 444 

Additionally, we generated a unified genome-level browser that provides access to the S. 445 
Typhimurium L2.2 D37712 transcriptome, in the context of our previously published RNA-seq 446 
data for the L2.0 strain D23580 and the ST19 strain 4/74. This novel “combo” browser is 447 
available at http://hintonlab.com/jbrowse/index.html?data=Combo_D37/data. 448 

449 

Identification of phenotypes that distinguish ST313 sublineage L2.2 from L2.0. 450 

To explore the phenotypic impact of the transcriptomic signature of L2.2 (D37712), we 451 
performed a series of motility experiments, fluorescence-based gene expression experiments 452 
and mixed-growth assays. 453 

D33712 showed a significantly decreased level of motility on NonSPI2 minimal media, 454 
compared with both the ST19 strain 4/74 and the L2 D23580 strain (Fig. 5A). This finding was 455 
consistent with the transcriptomic data, which showed down-regulation of D37712 flagellar 456 
genes compared with D23580 in the NonSPI2 condition (Fig. 4). In contrast, no differential 457 
expression of flagellar genes was seen between D33712 and D23580 in the InSPI2 growth 458 
condition (Fig. 4). The decreased motility phenotype may be linked to the inversion of the hin 459 
element detailed above. The flagella system encodes a distinct type III secretion apparatus 460 
responsible for the dual functions of bacterial motility and activation of the mammalian innate 461 
immune system via TLR5 (Lai et al., 2013). 462 

A key transcriptomic finding for strain D33712 was the expression of SPI2 genes during growth 463 
in an unusual environmental condition (NonSPI2) (Fig. 3B-C and Fig. 4B). NonSPI2 media 464 
differs from InSPI2 media by having a higher pH (pH7.4 versus pH5.8) and a higher level of 465 
phosphate (Löber et al., 2006). This apparent differential expression of SPI2 genes at the 466 
transcriptomic level under non-inducing conditions led us to investigate the expression of SPI2 467 
at a single cell level using fluorescence transcriptional fusions. First, we introduced an ssaG-468 
GFP+ transcriptional fusion into the chromosome of strains D33712 and D23580 (Methods; 469 
Table S8) to interrogate expression of the key SPI2 operon with flow cytometry. Figure 5B 470 
shows that in NonSPI2 media, the ssaG promoter was expressed at a 62% higher level in 471 
D33712 than in D23580 confirming the results of the transcriptomic analysis.  472 
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473 

Fig 5. Phenotypes that distinguish ST313 L2.2 from ST313 L2.0. (A) Swimming motility 474 
assay of strains D23589, D37712 and 4/74, with a representative plate shown on the left. 475 
Average migration diameters were measured after 4 and 8 hours. Each bar represents the 476 
mean of three biological replicates, with error bars representing standard deviation. Significant 477 
difference (***) indicates P value (t test) < 0.001. In Panels B & C, comparison of ssaG 478 
expression by flow cytometry using D23580 and D37712 derivatives containing a chromosomal 479 
ssaG-GFP+ transcriptional fusion, strains SZS008 and SZS032, respectively. Cells were 480 
collected at 8 hours after inoculation in NonSPI2 media. Ten thousand events were acquired 481 
for each sample. (B) Mean fluorescent intensity signal of ssaG-GFP+ for D23580 (SZS008, dark 482 
grey) and D37712 (SZS032, , grey). Significant difference (***) indicates P value (t test) < 0.001. 483 
(C) Percentage of positive (green) and negative cells (white) for ssaG expression in each484 
sample. Each bar represents the mean of three biological replicates, error bars show standard 485 
deviation. Significant difference (***) indicates P value (t test) < 0.001. (D) Relative fitness of 486 
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wild-type D23580 and D37712 and their kanamycin resistant derivatives. Bacterial numbers 487 
were determined by overnight culture of a 1:1 mixture (wild-type versus KmR) in NonSPI2 (red), 488 
InSPI2 (blue) and LB (black) media. Each bar represents the mean of three biological replicates 489 
with error bars representing standard error. P values were determined by t test (***: P < 0.001; 490 
**: P < 0.01; *: P < 0.05; ns: no significance). A competitive index of 1 indicates the equal fitness 491 
of two strains, while a number higher than 1 reflects the increased fitness of kanamycin-492 
resistant derivatives. 493 

494 

Because only a proportion of S. Typhimurium cells express certain pathogenicity island-495 
encoded genes during in vitro growth (Ackermann et al., 2008; Hautefort et al., 2003), we 496 
determined whether the increased level of expression of SPI2 genes (Fig. 4B) was caused by 497 
a higher proportion of D33712 cells expressing SPI2 than D23580 cells. Using derivatives of 498 
the two strains that carried the ssaG-GFP+ construct, we determined the numbers of fluorescent 499 
and non-fluorescent cells with flow cytometry (Methods). Under non-inducing conditions, 500 
slightly more D37712 cells expressed the ssaG SPI2 promoter than D23580 cells (65% vs 60%, 501 
respectively) (Fig. 5C). However, this small difference did not account for the 62% increased 502 
level of non-induced SPI2 expression seen in Fig. 5B. 503 

SPI2 expression is controlled by a complex regulatory system that operates at both a negative 504 
and positive level, involving silencing via H-NS (Lucchini et al., 2006), activation by SlyA and 505 
SsrB (Fass and Groisman, 2009; Walthers et al., 2011) as well as input from OmpR and Fis 506 
under non-inducing conditions (Osborne and Coombes, 2011). The reason for the aberrant 507 
SPI2 expression in strain D37712 is worthy of further study. Possible explanations include the 508 
incomplete silencing of SPI2 transcription or the partial activation of the SPI2 virulence genes 509 
under non-inducing growth conditions.  510 

511 

Increased fitness of S. Typhimurium ST313 sublineage L2.2 compared with L2.0 in 512 
minimal media. 513 

It has become increasingly clear that distinct Salmonella pathovariants have evolved particular 514 
phenotypic properties that confer fitness advantages during infection of particular avian or 515 
mammalian hosts (Branchu et al., 2018). Because S. Typhimurium ST313 L2.2 appeared to 516 
have displaced S. Typhimurium ST313 L2.0 in Malawi, we speculated that S. Typhimurium 517 
ST313 L2.2 might have the competitive edge in some situations. Accordingly, we determined 518 
bacterial fitness using a mixed-growth competition assay (Wiser and Lenski, 2015; Lian et al., 519 
2023). The competitive index was calculated in three different growth media using pair-wise 520 
combinations of strains D37712 and D23580. Two independent approaches were used to 521 
phenotypically distinguish the two strains, one based on antibiotic resistance (Fig. 5D) and the 522 
other based on fluorescent tagging (Fig. S5). 523 

To confirm that strains engineered to be kanamycin-resistant or gentamicin-resistant did not 524 
impact on fitness (Methods), we first verified that the tagged variants of D37712 or D23580 did 525 
not confer a growth advantage in LB or NonSPI2 media (Fig. S7). Next, we used a mixed-526 
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growth assay to investigate fitness of S. Typhimurium ST313 L2.0 strain D23580 or S. 527 
Typhimurium ST313 L2.2 strain D37712 during growth in LB, or InSPI2 or NonSPI2 minimal 528 
media. The data show that both strains grew at similar levels following overnight mixed-growth 529 
in nutrient-rich LB media, but D37712 had a competitive advantage during mixed-growth in 530 
InSPI2 media (CI = 1.79; P<0.05) and a greater competitive edge in NonSPI2 media (CI = 2.20; 531 
P<0.0001).  532 

 We then used an independent fluorescence-based approach to assess the fitness of strains 533 
D23580 and D37712 during mixed-growth in NonSPI2 media. This time, the strains were 534 
engineered to carry either mScarlet or sGFP2 proteins and the mixed-growth experiments 535 
involved pair-wise comparisons of reciprocally-tagged strains. The flow cytometric data showed 536 
that in both cases D37712 had a significant competitive advantage in NonSPI2 media (Fig. S5 537 
and S6). 538 

This combination of antibiotic resistance-based and fluorescence-based competitive index 539 
experiments lead us to conclude that S. Typhimurium ST313 L2.2 strain D37712 had a clear 540 
fitness advantage over S. Typhimurium ST313 L2.0 strain D23580 during mixed-growth in two 541 
formulations of minimal media. The molecular basis of this fitness advantage remains to be 542 
established. 543 

544 
Perspective 545 

Here, we report that S. Typhimurium ST313 L2.0 has been clonally replaced by the ST313 546 
sublineages L2.2 and L2.3 as a cause of bloodstream infection in Blantyre, Malawi. In 2018, 547 
L2.2 represented the majority of the ST313 strains isolated from hospitalised patients in Malawi 548 
at the Queen Elizabeth Central Hospital. Our comparative genomic analysis of ST313 L2.3 549 
identified 30 chromosomal alterations, one of which generated a deletion of the sseI effector 550 
gene.  551 

Our RNA-seq-based analysis of ST313 L2.2 involved a detailed comparison versus ST313 L2.0 552 
which revealed a key difference involving SPI2 expression. Following initially observations at 553 
the transcriptomic level in the ST313 L2 and L2.2 strains grown in a pH-neutral minimal medium 554 
(NonSPI2), the increased expression of SPI2 was confirmed at the single cell level using an 555 
ssaG transcriptional fusion. 556 

A series of experiments showed that the ST313 L2.2 strain D37712 had a competitive 557 
advantage over L2 strain D23580 during mixed-growth in minimal media. We propose that this 558 
increased fitness of S. Typhimurium ST313 L2.2 has contributed to the replacement of ST313 559 
L2.0 in Malawi in recent years.  560 

Previously, we compared three virulence properties of the S. Typhimurium ST313 L2.0 D23580 561 
and ST313 L2.2 D37712 strains. First, experiments involving Mucosal Invariant T (MAIT) cells 562 
showed that both D37712 and D23580 fail to elicit the high level of activation of MAIT cells that 563 
characterises infection by S. Typhimurium ST19 4/74 (Preciado-Llanes et al., 2020). Second, 564 
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the D37712 and D23580 strains stimulate similar levels of up-regulation of IL10 gene 565 
expression upon infection of human dendritic cells (Aulicino et al., 2022). Third, we showed that 566 
both D37712 and D23580 express similarly high levels of the PgtE virulence factor that is 567 
responsible for the ability of S. Typhimurium ST313 to survive human serum-killing (Hammarlöf 568 
et al., 2018). These findings lead us to conclude that the comparative genomic and 569 
transcriptomic differences that distinguish S. Typhimurium ST313 L2.0 strain D23580 from 570 
ST313 L2.2 D37712 (Fig. 4) do not modulate the ability of the pathogens to activate human 571 
MAIT cells or dendritic cells, or to influence the PgtE-mediated serum survival phenotype of S. 572 
Typhimurium ST313. 573 

Ideally, the implications of the competitive advantage of ST313 L2.2 would be determined in 574 
the context of pathogenesis. However, we lack an informative infection model for S. 575 
Typhimurium ST313 (Lacharme-Lora et al., 2019), and it is not yet possible to experimentally 576 
determine whether the improved fitness of L2.2 significantly enhances the success of ST313 577 
during infection of humans. 578 

Here we have investigated the intricate interplay of gene function that is underpinning the 579 
success of S. Typhimurium ST313 L2.2. We hope that our findings might contribute to future 580 
therapeutic or prophylactic strategies for combatting iNTS infections in the African setting. 581 
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Materials and methods 582 

Bacterial strains 583 

The two S. Typhimurium ST313 strains that are the focus of this study are D23580 and D37712. 584 
D23580 was isolated from a Malawian 26-month-old child with malaria and anaemia in 2004. 585 
D37712 was isolated from the blood of an HIV-positive Malawian male child in 2006. These two 586 
African Salmonella strains have been deposited in the National Collection of Type Cultures 587 
(NCTC). The D23580 (lineage 2.0) strain is available as NCTC 14677. The ST313 sublineage 588 
2.2 strain D37712 is available as NCTC 14678. All bacterial strains are detailed in Table S8. 589 

Genome sequencing 590 

The assembled genome and annotation of D23580 (Kingsley et al., 2009; Canals et al., 2019b) 591 
(L2.0) was obtained from the European Nucleotide Archive (ENA) repository (EMBL-EBI) under 592 
accession PRJEB28511 (https://www.ebi.ac.uk/ena/data/view/PRJEB28511). For genome 593 
sequencing of D37712 (L2.2), DNA was extracted using the Bioline mini kit, and quality was 594 
assessed using gel electrophoresis (0.5% agarose gel, at 30 volts for 18 h). The genome was 595 
generated by a combination of long read sequencing with a PacBio RS II and short-read 596 
sequening on an Illumina HiSeq machine at the Center for Genome Research, University of 597 
Liverpool, United Kingdom.  598 

Sequence reads were quality checked using FastQC version 0.11.9 (Andrews, 2010) and 599 
MultiQC version 1.8 (Ewels et al., 2016), trimmed using Trimmomatic (Bolger et al., 2014). 600 
Hybrid assembly of the Illumina and PacBio sequence reads was done with Unicycler v0.4.7 601 
(Wick et al., 2017). 602 

The assembled genome of S. Typhimurium SDT313 L2.2 strain D37712 was deposited in 603 
Genbank (GCA_014250335.1, assembly ASM1425033v1). Raw sequencing reads were 604 
deposited for both PacBio and Illumina, under BioProject ID PRJNA656698. Sequence Read 605 
Archive (SRA) database IDs are: SRR12444880 for Illumina and SRR12444881 for PacBio.  606 

Comparative genomic analyses 607 

To generate the data summarised in Fig 1C, sequencing data of 29 S. Typhimurium ST313 608 
strains (Msefula et al., 2012) were downloaded from EMBL-EBI database 609 
(https://www.ebi.ac.uk, accession number ERA015722). Sequence reads were assembled 610 
using Unicycler v0.4.8 (Wick et al., 2017). The quality of the assemblies was assessed by Quast 611 
v5.0.2 (Gurevich et al., 2013). The N50 value of all assemblies was >20kb, and the number of 612 
contigs was <600. 613 

To construct the phylogenetic tree (Fig 1C), Salmonella Typhimurium strains D23580, D37712, 614 
LT2 (GCA_000006945.2), DT104 (GCA_000493675.1), 4/74 (GCA_000188735.1), and A130 615 
(GCA_902500285.1) were added as contextual genomes. Roary was used to make the core 616 
gene alignment, construct the gene presence/absence matrix and identify orthologous genes 617 
(Page et al., 2015). Phylogenetic trees were constructed using Randomized Accelerated 618 
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Maximum Likelihood (RAxML) (Stamatakis et al., 2005), and were visualised with the interactive 619 
Tree of Life online tool (iToL) (Letunic and Bork, 2006). 620 

The assembled genome and annotation of S. Typhimurium ST19 representative strain 4/74621 
(Richardson et al., 2011) were obtained from GenBank (Accession number GCF_000188735.1), 622 
while the raw sequencing data of 27 S. Typhimurium ST313 strains described in a previous 623 
study (Msefula et al., 2012) were downloaded from EMBL-EBI database (https://www.ebi.ac.uk, 624 
accession number ERA015722). The raw reads were assembled using Unicycler v0.4.8 (Wick 625 
et al., 2017). The quality of the assemblies was assessed by Quast v5.0.2 (Gurevich et al., 626 
2013). The N50 value of all assemblies was >20kb, and the number of contigs was <600. 627 

To identify SNPs, Snippy v4.4.0 (https://github.com/tseemann/snippy) was used to map the raw 628 
reads against the 4/74 genome. To detect pseudogene-associated SNPs/indels in each sub-629 
lineage, the SNPs/indels that caused nonsense or frameshifted mutations were filtered. The 630 
identifications and names of the disrupted genes were summarised, then the wild type gene 631 
sequences were extracted from the 4/74 genome. To validate the pseudogene-associated 632 
SNPs/indels, the wild type gene sequences were used to make a BLAST database with BLAST 633 
2.9.0+ (Camacho et al., 2009). The 29 genome assemblies were queried against the databases, 634 
using the BLASTn algorithm to confirm the nonsense and frameshifted mutations in all isolates. 635 

Phylogenetic analysis of African Salmonella Typhimurium isolates dating from 1966 - 636 
2018 637 

To examine the overall population structure of Salmonella Typhimurium responsible for blood 638 
infection in Malawi (Fig 1AB and Fig S1), the raw reads of 707 published genome sequences 639 
were downloaded (Table S7). Sequence reads were aligned to the S. Typhimurium D23580 640 
genome using Snippy v4.4.0. The recombination sites of the alignment were removed by 641 
Gubbins (Croucher et al., 2015), and the phylogenetic tree was built with Raxml-ng (Kozlov et 642 
al., 2019). The tree was rooted on Salmonella Typhi strain CT18 (GCA_000195995.1) as the 643 
outgroup. The tree was visualised with the interactive Tree of Life online tool (iToL) (Letunic 644 
and Bork, 2006). The sub-lineages were identified with rHierBAPS (Tonkin-Hill et al., 2018). 645 
The stacked-area chart and the bar chart showing the percentage and number of isolates from 646 
each sub-lineage were made in MS Excel. 647 

RNA purification and growth conditions 648 

Initially, a screen of transcriptomic gene expression was performed without biological 649 
replicates. Total RNA was purified using TRIzol from S. Typhimurium D37712 grown in 15 650 
different conditions as described previously (Kröger et al., 2013). To generate statistically-651 
robust gene expression profiles, total RNA was subsequently purified using TRIzol from S. 652 
Typhimurium D37712 grown in four in vitro growth conditions (ESP, anaerobic growth, 653 
NonSPI2, InSPI2) with three biological replicates as described previously (Kröger et al., 2013). 654 
RNA was isolated from intra-macrophage D37712 following infection of RAW264.7 murine 655 
macrophages using our published protocol (Srikumar et al., 2015). 656 
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RNA-seq of S. Typhimurium strain D37712 using Illumina technology 657 

For transcriptomic analyses, cDNA samples were prepared from S. Typhimurium RNA by Vertis 658 
Biotechnologie AG (Freising, Germany). RNA was first treated with DNase and purified using 659 
the Agencourt RNAClean XP kit (Beckman Coulter Genomics). RNA samples were sheared 660 
using ultrasound, treated with antarctic phosphatase and re-phosphorylated with T4 661 
polynucleotide kinase. RNA fragments were poly(A)-tailed using poly(A) polymerase and an 662 
RNA adapter was ligated to the 5'- phosphate of the RNA. First-strand cDNA synthesis was 663 
performed using an oligo(dT)-adapter primer and M-MLV reverse transcriptase. The resulting 664 
cDNA was PCR-amplified to about 10-20 ng/μl. The cDNA was purified using the Agencourt 665 
AMPure XP kit. The cDNA samples were pooled using equimolar amounts and size fractionated 666 
in the size range of 200-500 bp using preparative agarose gels. The cDNA pool was sequenced 667 
on an Illumina NextSeq 500 system using 75 bp read length.  668 

For the biological replicates of the four growth conditions (ESP, anaerobic growth (abbreviated 669 
as NoO2), NonSPI2, and InSPI2) and the intra-macrophage RNA, cDNA samples were 670 
generated as above with some improvements in library preparation. First, after fragmentation 671 
with ultrasound, an oligonucleotide adapter was ligated to the 3' end of the RNA molecules. 672 
Second, first-strand cDNA synthesis was performed using M-MLV reverse transcriptase and 673 
the 3’ adapter as primer, and, after purification, the 5' Illumina TruSeq sequencing adapter was 674 
ligated to the 3' end of the antisense cDNA. Sequencing of the cDNA was performed as 675 
described above. All raw sequencing reads were deposited to the Gene Expression Omnibus 676 
(GEO) database under accession GSE161403. 677 

RNA-seq and dRNA-seq read processing and visualization678 

RNA-seq data from S. Typhimurium 4/74 and D23580 were extracted from previously published 679 
experiments (Kröger et al., 2013; Srikumar et al., 2015; Canals et al., 2019b; GEO dataset 680 
GSE119724). A combined reference genome was generated that contained the D23580 681 
chromosome plus plasmids pBT1, pBT2, pBT3, pSLT-BT (from D23580) and the D37712 682 
plasmid pCol1B9D37712. All reads were aligned and quantified using Bacpipe v0.8a 683 
(https://github.com/apredeus/multi-bacpipe). Briefly, basic read quality control was performed 684 
with FastQC v0.11.8. RNA-seq reads were aligned to the genome sequence using STAR 685 
v2.6.0c using “--alignIntronMin 20 --alignIntronMax 19 --outFilterMultimapNmax 20” options. A 686 
combined GFF file was generated by Bacpipe, where all features of interest were listed as a 687 
“gene”, with each gene identified by a D37712 locus tag. Subsequently, read counting was 688 
done by featureCounts v1.6.4, using options “-O -M --fraction -t gene -g ID -s 1”. For 689 
visualization, scaled gedGraph files were generated using bedtools genomecov with a scaling 690 
coefficient of 109/(number of aligned bases), separately for sense and antisense DNA strands. 691 
Bedgraph files were converted to bigWig using bedGraphToBigWig utility 692 
(http://hgdownload.soe.ucsc.edu/admin/exe/linux.x86_64/). Coverage tracks, annotation, and 693 
genome sequence were visualized using JBrowse v1.16.6. Transcripts Per Million (TPM) were 694 
calculated for all samples and used as absolute expression values (Table S5). A conservative 695 
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cut-off was used to distinguish between expressed (TPM >10) and not expressed (TPM ≤10), 696 
as we previously described (Kröger et al., 2013). Relative expression values were calculated 697 
by dividing the TPM value for one condition in one strain by the TPM value for the same 698 
condition in a different strain. Before the calculation, all TPM values below 10 were set up to 699 
10. A conservative fold-change cut-off of 3 was used to highlight differences in expression700 
between strains. 701 

Differential gene expression analysis with multiple biological replicates 702 

For differential expression analysis of S. Typhimurium strains 4/74, D23580, and D37712, the 703 
raw counts (Table S4) from 3-5 biological replicates in four growth conditions were used (ESP, 704 
anaerobic growth (abbreviated as NoO2), NonSPI2, and InSPI2). Differential expression 705 
analysis was done using DESeq2 v1.24.0 with default settings. A gene was considered to be 706 
differentially expressed if the absolute value of its log2 fold change was at least 1 (i.e. fold 707 
change > 2), and adjusted p-value was< 0.001. 708 

The SalComD37712 community data resource, and the associated Jbrowse genome 709 
browser 710 

SalCom provides a user-friendly Web interface that allows the visualisation and compaison of 711 
gene expression values across multiple conditions and between strains. Particular genes can 712 
be selected through pre-defined lists of interest, such as all sRNAs or all genes belonging to a 713 
specific pathogenicity island. The resulting heatmap-style display highlights expression 714 
differences, and provides access to the rich, manually curated annotation of strains D37712 715 
and D23580. The actual values behind the display can be downloaded for further processing, 716 
and a link connects the current view to a genome browser interface. 717 

Visualisation of all the RNA-seq and dRNA-seq (TSS) coverage tracks in JBrowse 1.16.6 shows 718 
sequence reads mapped against the combined reference genome described above. Overall, 719 
the genomic distance between strains 4/74 and D23580 (approximately 1000 SNPs, or ~1 SNP 720 
per 5000 nucleotides), and between D37712 and D23580 (approximately 30 SNPs, ~1 SNP 721 
per 150,000 nucleotides) allowed the alignment of RNA-seq reads to the simplified combined 722 
reference genome without significant loss of reads. The combined reference genome facilitated 723 
a direct comparison of gene coverage as well as transcriptional start sites. The unified browser 724 
is hosted at http://hintonlab.com/jbrowse/index.html?data=Combo_D37/data. 725 

Phenotypic and mixed competitive growth experiments 726 

The swimming motility of S. Typhimurium strains D37712, D23580 and 4/74 was determined 727 
by a plate assay (Canals et al., 2019b), which involved spotting 3 μL overnight culture onto 728 
0.3% LB agar. Relative motility of the three strains was assessed by migration diameter after 729 
4h and 8h of incubation at 37OC. 730 

Relative expression of the ssaG SPI2 promoter in strains D23580 and D37712 was measured 731 
at the single cell level via GFP fluorescence. Following the construction of a kanamycin-732 
sensitive derivative of D23580 (strain JH4235), a PssaG::gfp+ transcriptional fusion was 733 
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incorporated into the chromosome of JH4235 and D37712 by inserting the gfp+ gene 734 
downstream of the ssaG gene, under the control of the PssaG promoter. The PssaG::gfp+ 735 
D23580 derivative (JH4692), and the PssaG::gfp+ D37712 derivative (JH4693) are listed in 736 
Table S8. 737 

The strains JH4692 and JH4693 were genome sequenced to confirm the integrity of the 738 
transcriptional fusions, and to verify that unintended nucleotide changes had not arisen. 739 
Following growth in 25 mL non-inducing NonSPI2 media in a 250 mL flask at 37°C with shaking 740 
at 220 rpm for approximately 8 hours until OD600=0.3, fluorescence was determined with a BD 741 
FACSAria Flow Cytometer. The relative fluorescence of the two strains JH4692 and JH4693, 742 
and the numbers of individual fluorescent bacteria that expressed the PssaG::gfp+ promoter, 743 
were determined with FlowJo VX software. 744 

The relative fitness of S. Typhimurium strains D37712 and D23580 was assessed in two 745 
independent mixed-growth experiments. First, kanamycin-resistant derivatives of each strain 746 
were constructed by inserting the aph kanamycin resistance gene into the chromosome at the 747 
intergenic region between the STM4196 and STM4197 genes, a region that we have previously 748 
shown to be transcriptionally silent (Canals et al., 2019b). The strains were designated 749 
D23580::KmR JH3794 and D37712::KmR, JH4232. Mixed cultures of wild-type or kanamycin-750 
resistant derivatives of each strain were grown overnight in LB, InSPI2 and NonSPI2 media in 751 
a 250 mL flask at 37°C with shaking at 220 rpm. Following plating on LB agar or LB + 752 
kanamycin, colonies were counted and the ratio of bacterial strains was determined. To confirm 753 
that the insertion of kanamycin resistance at the intergenic region between STM4196 and 754 
STM4197 did not impact upon fitness, a mixed-growth experiment was done in both LB and 755 
NonSPI2 media (Fig. S7). 756 

Second, to independently assess relative fitness, Tn7-based plasmids (Schlechter and Remus-757 
Emsermann, 2019) were used to construct chromosomal sGFP2 and mScarlet derivatives of 758 
S. Typhimurium strains D23580 (sGFP2 derivative: JH4694; mScarlet derivative: JH4695) and759 
D37712 (sGFP2 derivative: JH4696; mScarlet derivative: JH4697). The gene cassettes were 760 
inserted into the S. TyphimuriumTn7 insertion site between the gene STMMW_38451 and 761 
glmS. Mixed cultures of pairs of fluorescently-labelled strains were grown in NonSPI2 media at 762 
37°C with shaking at 220 rpm for approximately 8 hours until OD600=0.3. Levels of green and 763 
red fluorescence were determined with a BD FACSAria Flow Cytometer.764 
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Supporting information 765 

766 

Fig S1, Maximum-likelihood phylogeny of 707 African S. Typhimurium isolates. All 767 
genome sequences have been published (Msefula et al., 2012, Pulford et al., 2021, Canals et 768 
al., 2019b). Raw sequence reads were aligned to the S. Typhimurium D23580 genome 769 
(FN424405) using Snippy. The recombination sites of the alignment were removed by Gubbins, 770 
and the phylogenetic tree was built with Raxml-ng. The tree is rooted on Salmonella Typhi strain 771 
CT18 as the outgroup. The MLST sequence types, HierBAPS level 1 and level 2 clusters are 772 
shown in coloured concentric rings as indicated. The S. Typhimurium ST313 isolates are 773 
categorised as Lineage 1, Lineage 2 or Lineage 3 according to HierBAPS level 1 clustering. 774 
ST313 Lineage 2 was then sub- divided into 3 sub-lineages according to HierBAPS level 2 775 
clustering: ST313 L2.0, ST313 L2.2 and ST313 L2.3. The metadata and lineage designations 776 
of all the S. Typhimurium isolates are in Table S7. 777 
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784 

Fig S2. PCR-based confirmation of the deletion of the sseI gene from S. Typhimurium L2.2 785 
D37712. Arrows from left to right show the forward strand while the left strand is shown by 786 
arrows from right to left. However, sseI gene in D23580 is a pseudogene with a SNP 787 
indicated as a red line. 788 
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789 

Fig S3. Genomic comparison of plasmids pCol1B94/74 and pCol1B9D37712 using Artemis 790 
Comparison Tool (ACT). Bottom panel details the differences observed in the most divergent 791 
regions, including colicin toxin-antitoxin system (in pCol1B9) and impC-umuC-umuD operon (in 792 
pCol1B9). 793 

794 
795 
796 

797 

Fig S4. RDAR Phenotypes of 4/74, D23580, D37712 and BKQZM9. The top panel shows 798 
the RDAR morphology assay and the bottom panel shows a complementary experiment that 799 
involves the induction of biofilm formation on 1% tryptone agar (MacKenzie et al., 2019). 800 
Strain 4/74 was used as a RDAR-positive control, which has concentric rings and a wrinkled 801 
appearance (Pulford et al., 2021). The S. Typhimurium ST313 L3 strain BKQZM9 is shown for 802 
comparative purposes. 803 
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805 

Fig S5. Competitive index analysis of D23580 and D37712 using fluorescently-tagged S. 806 
Typhimurium strains (A) KmR-sGFP2 and GmR-mScarlet were inserted into the transposon 807 
Tn7 site of D23580 or D37712. Bent arrows represent promoters and directional arrows 808 
represent genes. (B) A 1:1 mix of KmR-sGFP2 and GmR-mScarlet marked strain was inoculated 809 
in NonSPI2 media, followed by an overnight incubation in 37℃. Percentage of sGFP2 (green) 810 
and mScarlet (Red) marked cells was measured by flow cytometry. Raw data are shown in 811 
Figure S7, 10,000 events were acquired for each sample. (C) Competitive index analysis of 812 
KmR-sGFP2 and GmR-mScarlet marked strain. Bacterial numbers were determined by counting 813 
CFU for overnight culture of a 1:1 mixture in NonSPI2 media. Each dot represents a single 814 
biological replicate and the lane represents mean value. A competitive index of 1 indicates the 815 
equal fitness of two strains, while a number higher than 1 reflects an increased fitness of 816 
D37712. 817 
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818 

Fig S6. Raw flow cytometric data related to Fig. S5B. (A) JH4695 + JH4698 and (B) 819 
JH4696 + JH4697.  A 1:1 mix of the KmR-sGFP2 and GmR-mScarlet marked strains were 820 
inoculated in NonSPI2 media, followed by growth at 37℃ until OD600 = 0.3. The X-axis 821 
(labelled FITC) shows the GFP level and the Y-axis (labelled PE Yell-Grn) indicates the 822 
mScarlet level. Quadrant gates were used to separate four populations, and the black 823 
numbers indicate the percentage of events in each quadrant. In total, 10,000 events were 824 
acquired for each sample. 825 

826 
827 
828 

829 

Fig S7. The insertion of GFP-Km or RFP-Gm did not impact on fitness. A 1:1 mix of KmR-830 
sGFP2 and GmR-mScarlet marked strains were inoculated in LB or NonSPI2 media, followed 831 
by overnight incubation in 37℃. The competitive index (CI) was calculated using the formula 832 
(CFUGm)/(CFUKm). Each dot represents the CI from a single replicate and the horizontal bars 833 
indicate the mean of each dataset. 834 

835 
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Supplementary data 836 
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