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Abstract20

Biological techniques for spatially resolved transcriptomics (SRT) have advanced21

rapidly in both throughput and spatial resolution for a single spatial location. This22

progress necessitates the development of efficient and scalable spatial dimension reduction23

methods that can handle large-scale SRT data from multiple sections. Here, we developed24

FAST as a fast and efficient generalized probabilistic factor analysis for spatially aware25

dimension reduction, which simultaneously accounts for the count nature of SRT data and26

extracts a low-dimensional representation of SRT data across multiple sections, while pre-27

serving biological effects with consideration of spatial smoothness among nearby locations.28

1

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 2, 2024. ; https://doi.org/10.1101/2023.07.11.548486doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.11.548486
http://creativecommons.org/licenses/by-nc-nd/4.0/


Compared with existing methods, FAST uniquely models the count data across multiple29

sections while using a local spatial dependence with scalable computational complex-30

ity. Using both simulated and real datasets, we demonstrated the improved correlation31

between FAST estimated embeddings and annotated cell/domain types. Furthermore,32

FAST exhibits remarkable speed, with only FAST being applicable to analyze a mouse33

embryo Stereo-seq dataset with >2.3 million locations in only 2 hours. More importantly,34

FAST identified the differential activities of immune-related transcription factors between35

tumor and non-tumor clusters and also predicted a carcinogenesis factor CCNH as the36

upstream regulator of differentially expressed genes in a breast cancer Xenium dataset.37
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Introduction38

Spatially resolved transcriptomics (SRT) encompasses a set of breakthrough technologies39

that enable gene expression profiling with spatial information on tissues. Spatial location40

information is of paramount significance in comprehending the mechanisms underlying processes41

such as cell biology [1], tumor biology [2], and developmental biology [3]. Among the many42

factors that influence the choice of these technologies [4, 5], throughput in profiling and spatial43

resolution are two of the most important. Technologies based on in situ hybridization (e.g.,44

MERFISH [6], seqFISH [7], and seqFISH+ [8]) and in situ sequencing (ISS) (e.g., FISSEQ [9],45

and Xenium) provide single-molecule/single-cell resolution, but are for targeted genes that46

require prior knowledge. While next-generation sequencing (NGS)-based technologies, such47

as Visium, Slide-seq [10, 11], and Stereo-seq [12], are unbiased and involve high-throughput48

expression measurements, most do not provide single-cell resolution. The diverse range of49

SRT technologies has enabled the exploration of intricate transcriptional structure across50

heterogeneous tissues and will revolutionize the worlds of cell biology and molecular biology51

and advance our understanding in many areas of biology [13, 14].52

For “high-dimensional”, often noisy, expression measurements obtained using SRT technolo-53

gies, dimensionality reduction is a key step in generating a low-dimensional data representation54

that enriches biological signals by aggregating gene expression relevant to biological effects [15].55

Moreover, transformation in dimension reduction circumvents the curse of dimensionality usu-56

ally present in “high-dimensional” expression profiles constructed in genomic studies, including57

those based on SRT [16, 17]. A plethora of dimension reduction methods have been developed,58

including the most popular method, principal component analysis (PCA) [18], which is routinely59

used in many software pipelines, such as Seurat [19] and Cell Ranger [20] for single-cell RNA60

sequencing (scRNA-seq) analysis and BayesSpace [21], SpaGCN [22], and SC-MEB [23] for SRT61

data analysis. However, PCA does not consider the spatial nature of SRT data in the process62

of estimating low-dimensional embeddings, omitting the influence of the microenvironment in63

neighboring locations.64

In SRT data analysis, expression patterns among neighboring locations exhibit the “similar-65

ity” induced by the shared microenvironment. Recently, SpatialPCA [17] and non-negative66

spatial factorization (NSF) [24] were proposed for spatially aware dimension reduction using67

Gaussian-type kernels over spatial locations. To reduce the computational burden, SpatialPCA68

applies a low-rank approximation, while NSF implements a sparse Gaussian process but is not69

applicable to spatial locations from multiple sections [24, 25]. With improved spatial resolution,70

the number of spatial locations profiled increases substantially, while multiple sections are71

needed to either generate a spatial map or recover the spatiotemporal transcriptomics atlas72

of a whole organ [12, 26, 27]. More recently, we proposed PRECAST as a method to unify73

the tasks of dimension reduction, cluster allocation, and embedding alignment for SRT data74

from multiple sections [28]. However, PRECAST did not model the count nature of SRT data,75

while it was designed for a unified task of dimension reduction and clustering. When facing76

downstream tasks other than clustering (e.g., trajectory inference and cell-cell interaction;77

CCI), PRECAST may not be optimal. Although the computational order for PRECAST is78

linear to location number n, it still takes a few days to complete the analysis if the number79

of spatial locations goes into the millions due to its unified framework. Ideally, an efficient80
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method that allows for spatial dimension reduction across multiple sections and is capable81

of capturing information for both biological effects and spatial correlation structure is also82

required. This method should also account for the count nature of SRT data, be applicable to83

multiple downstream tasks, and be scalable to millions of spatial locations.84

To address the limitations of existing methods and facilitate scalability, we proposed FAST85

as a generalized probabilistic factor analysis model for spatial transcriptomics that efficiently86

estimates embeddings across multiple sections intrinsic to biological effects, taking into account87

local expression similarities induced by the shared microenvironment. Uniquely, FAST explicitly88

allows simultaneous spatially aware dimensionality reduction across multiple sections while89

modeling the count nature of many existing SRT datasets. Moreover, scalability is promoted90

by modeling of local spatial dependence using a conditional autoregressive component with an91

improved computational complexity linear to n, facilitating its applicability to the analysis of92

multi-section high-resolution SRT data. FAST is versatile in analyzing various multi-section93

SRT datasets obtained from distinct spatial transcriptomics technologies and tissue structures.94

Results95

Spatial dimension reduction using FAST96

Similar to scRNA-seq analysis, dimension reduction is an essential step for many downstream97

analyses (Fig. 1a, left panel). We describe FAST in the “Methods” section and provide its98

technical details in the Supplementary Notes. Briefly, FAST is a generalized probabilistic factor99

analysis for spatially aware dimension reduction across multi-section spatial transcriptomics100

data with millions of spatial locations (Fig. 1b). Taking the normalized/count gene expression101

matrices from multiple sections as input data, FAST factorizes the expression matrices into102

factor matrices with a shared loading matrix, while assuming a conditional autoregressive103

(CAR) component for factors from each section (Fig. 1a, right panel). Instead of applying104

a global kernel for all spatial locations, FAST models local spatial dependence induced by105

neighboring microenvironments using CAR components. We showed that this consideration in106

FAST not only reduces the computational complexity in linear form to n, scalable to millions107

of spatial locations, but also estimates meaningful embeddings that correlate more closely with108

biological effects. Subsequently, by performing an integrative analysis to remove batch effects via109

iSC-MEB, the aligned embeddings can be paired with many existing software/tools developed110

in scRNA-seq studies to enhance the effectiveness of downstream analyses in SRT studies (Fig.111

1c). FAST is implemented as an R package available at https://github.com/feiyoung/FAST.112

Validation using simulated data113

We conducted extensive simulations to assess the performance of FAST and compare it to114

several other methods (Fig. 1d; Supplementary Fig. S1). The methods compared included115

a range of spatially aware and non-spatially aware dimension reduction methods such as116

SpatialPCA [17], PRECAST [28], DR-SC [29], scVI [30], PCA, multiBatchPCA [31], NMF117

and LIGER [32]. Among these methods, SpatialPCA provides a full-rank, SpatialPCA-F,118

and a low-rank approximation version, SpatialPCA-L. We performed simulations using three119
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sections from the human dorsolateral prefrontal cortex (DLPFC) Visium dataset with eight120

predefined spatial domains [33], comprising layers 1–6, whiter matter (WM), and unknown cells121

(Unknown). Supplementary Fig. S1a provides a visual representation of the spatial distribution122

of the eight domains for each section. The simulation details are provided in the “Methods”123

section. Briefly, we considered four simulation scenarios in combinations of high and low values124

for both biological effects and batch effects, reflecting both shared and section-specific effects.125

To quantify the performance of the embedding estimation, we calculated the adjusted126

McFadden’s pseudo R2 (adjusted R2
McF) between the estimated embeddings and the true127

labels for each section. As shown in Fig. 1d (top panel), FAST outperformed other spatially128

aware methods such as PRECAST and SpatialPCA, and performed much better than the129

non-spatially aware methods such as PCA and scVI, across all scenarios. In general, spatially130

aware methods performed better than the non-spatially aware methods. With biological effects131

between domains varying from strong to weak, the performance of all methods decreased, but132

the Poisson version of FAST, FAST-P, was the least sensitive compared with the other methods.133

However, all methods suffered slightly from the increased batch effects in each section. Despite134

its inferiority to FAST-P, the Gaussian version of FAST, FAST-G, was more computationally135

efficient. In all scenarios, both versions of FAST were more computationally efficient than136

other spatially aware methods such as SpatialPCA and PRECAST (Fig. 1d, bottom panel).137

By applying iSC-MEB, we aligned embeddings estimated using different methods to detect138

spatial domains. Not surprisingly, FAST-P achieved the highest adjusted Rand index (ARI)139

and normalized mutual information (NMI) across all scenarios (Supplementary Fig. S1b).140

To evaluate the scalability of FAST, we compared its computational efficiency by varying the141

number of spatial locations analyzed while fixing the number of genes to 2000 (Fig. 1e). Clearly,142

both FAST-P and FAST-G demonstrated superior computational efficiency. The computational143

complexity orders for both FAST and PRECAST were linear to the number of spatial locations144

while they both used less memory. In our study, SpatialPCA-F required approximately 19 hours145

and 287 GB of memory to analyze a dataset with around 20,000 locations, but experienced146

breakdowns when reaching 40,000 locations. Meanwhile, SpatialPCA-L took approximately147

6 hours and 108 GB of memory to analyze a dataset with 78,000 locations, but experienced148

breakdowns at 80,000 locations. However, FAST-P and FAST-G exhibited impressive scalability.149

FAST-P was able to analyze 200,000 locations in just 30 minutes with 7 GB of memory usage,150

while FAST-G achieved the same task in only 10 minutes with 5 GB of memory usage.151

Application to the human dorsolateral prefrontal cortex Visium152

dataset153

We applied FAST and the other methods to the analysis of four published datasets obtained via154

either Visium, Xenium, or Stereo-seq technologies (see “Methods”). The four datasets included155

a DLPFC dataset [33] and a hepatocellular carcinoma dataset [34] generated using 10× Visium,156

a breast cancer dataset [35] generated using 10× Xenium, and a mouse embryo dataset [12]157

generated using Stereo-seq. First, we examined the dimension reduction performance of FAST158

in comparison with SpatialPCA, PRECAST, DR-SC, scVI, PCA, multiBatchPCA, NMF, and159

LIGER, followed by the application of iSC-MEB to perform clustering analysis and align160

embeddings from multiple sections. For some or all four datasets, downstream analyses were161
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also performed, including DE analysis, CCI analysis, cell-type deconvolution, and somatic162

mutation.163

To quantify the ability of FAST to outperform existing methods for dimension reduction,164

we first analyzed the LIBD human DLPFC dataset generated using 10× Visium [33], which165

contained a total of 47,681 spatial locations across 12 tissue sections from three donors. Taking166

the manual annotations for the tissue layers based on the cytoarchitecture provided by the167

original study as ground truth, we were able to evaluate the performance of the dimension168

reduction. For this purpose, we used the adjusted McFadden’s pseudo R2 (adjusted R2
McF)169

between the estimated embeddings and manual annotations for each section. As shown in Fig.170

2a, FAST achieved the highest adjusted R2
McF while it was 50 times faster and required only 3%171

memory usage of SpatialPCA with a low-rank approximation, SpatialPCA-L. In detail, FAST-P172

required 661 seconds with 2 GB memory usage to complete the analysis compared with the173

37,172 seconds and 80 GB memory usage required by SpatialPCA-L. After obtaining estimated174

embeddings from a variety of dimension reduction methods, we performed integrative clustering175

analysis to detect spatial domains by applying iSC-MEB. For each method, we summarized176

the aligned embeddings using three components extracted from UMAP. We then visualized177

the resulting UMAP components using red/green/blue (RGB) colors in the RGB plot (Fig.178

2b, upper right panel; Supplementary Fig. S2), accompanied by the corresponding spatial179

heatmap of cluster assignment (Fig. 2b lower right panel; Supplementary Fig. S3) and the180

tSNE plot (Supplementary Fig. S4). The results using FAST embeddings exhibited stronger181

laminar patterns while presenting a harmonious blending of locations from various sections.182

These findings illustrated the utility of FAST for estimating embeddings of high-dimensional183

expression profiles among spatial locations. To evaluate the clustering accuracy of the methods,184

we used both ARI and NMI. As shown in Fig. 2c, FAST achieved the highest ARI and NMI,185

with median ARIs for FAST-P, FAST-G, SpatialPCA-L, for PRECAST, DR-SC, scVI, PCA,186

multiBatchPCA and NMF of 0.56, 0.52, 0.20, 0.45, 0.39, 0.45, 0.42, 0.42 and 0.41, respectively.187

A key feature of FAST is its ability to estimate low-dimensional embeddings for spatial188

locations across multiple sections, facilitating many downstream analyses requiring cross-section189

embedding alignment such as DE analysis and CCI analysis. First, we performed DE analysis190

for all 12 sections by removing unwanted variations between expression profiles in multiple191

sections (see “Methods”). In total, we detected 1069 differentially expressed genes (DEGs)192

with adjusted p-values < 0.001 among the eight domains identified by FAST-P, with 163 genes193

specific to Domain 1, which corresponds to layer 1 (Supplementary Data 1). A dot plot of194

normalized expression aligned across 12 sections showed good separation of the DEGs across the195

detected spatial domains, many of which are human layer-specific markers such as PCP4 [36],196

DIRAS2 [37], MBP [33], and MOBP [33] (Fig. 2d).197

Next, we performed CCI analysis for all spatial locations across multiple sections using198

CellChat [38] (see “Supplementary Notes”). We observed strong spatial patterns in both the199

number and the strength of interactions (Fig. 2e), with WM showing substantial interactions200

with other layers, consistent with its crucial role in transmitting messages between different201

regions of the brain [39]. We further examined the signaling pathways enriched in each layer202

during cell-cell communications and found that WM had the highest score in both incoming203

and outgoing signals, sending electrical signals across different layers via 11 signaling pathways204

(Supplementary Fig. S5). These pathways included somatostatin, a known presynaptic205
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modulator of glutamatergic signaling in the central nervous system, and the neuregulins206

signaling pathway, which is crucial in various aspects of the nervous system, including the207

development, maintenance, and repair processes [40]. Moreover, an estimated PAGA graph [41]208

generated using FAST-P embeddings demonstrated an almost linear development trajectory209

from WM to layer 1 in many of the 12 DLPFC sections (Fig. 2f, top panel; Supplementary Fig.210

S6). But, when employing PRECAST embeddings for the PAGA graph, the resulting topology211

showed a messy structure (Fig. 2f, bottom panel; Supplementary Fig. S7).212

Application to the breast cancer Xenium dataset213

We further applied FAST and the other methods to analyze two breast cancer sections generated214

using 10× Xenium [35] and containing a total of 72,651 spatial locations with expression profiling215

for 313 genes and their corresponding H&E images (Fig. 3a). In detail, we estimated 15-216

dimensional embeddings using FAST and the other methods followed by the application of217

iSC-MEB for clustering analysis and alignment of the embeddings for the two breast cancer218

sections. For each method, we summarized the aligned embeddings using three components219

extracted from UMAP. We then visualized the resulting UMAP components using RGB colors220

in the RGB plot (Fig. 3b and Supplementary Fig. S8). As shown in Fig. 3c and Supplementary221

Fig. S9, we detected a total of 17 domains in two sections using FAST-P, with the analysis222

completed in 133 seconds using 0.33 GB memory usage while SpatialPCA-L required 105,417223

seconds and 11.31 GB memory usage (Fig. 3d and Supplementary Fig. S10). The estimated224

cluster proportions matched well in two adjacent sections (Fig. 3e).225

After removing unwanted variations in expression profiles, we performed DE analysis for226

the two sections and detected a total of 1416 DEGs with adjusted p-values < 0.001 in all 17 of227

the spatial domains detected by FAST-P (Supplementary Data 2), including marker genes for228

breast cancer such as TACSTD2 and FOXA1 [35]. The dot plot of average expression levels229

across all 17 of the detected domains showed that many of the highly expressed genes specific230

to Domains 1–6 were marker genes for breast cancer (Fig. 3f). Further detailed examination231

revealed many marker genes for other cell types present in breast cancer, including MYLK [42]232

(Cluster 7, myoepithelial cells), KRT5, KRT14 [43] (Cluster 8, basal cells), KRT15 [44] (Cluster233

9, luminal progenitor cells), APOC1 [45] (Cluster 10, macrophages), FCER1A, MRC1 [46]234

(Clusters 11 and 12, dendritic cells), ADH1B [47], MMP2 [48] (Clusters 13–16, fibroblasts), and235

IL7R, CD3D [49] (Cluster 17, T cells). Further KEGG enrichment analysis revealed that genes236

specific to Clusters 1–6 were significantly enriched in many cancer-related pathways (Fig. 3g237

and Supplementary Fig. S11). For example, Clusters 1–3 were enriched in endocrine resistance,238

platinum drug resistance, and some cancer-related pathways. These findings provide valuable239

insights into the molecular mechanisms underlying cancer development and progression, and240

have important implications for the development of targeted therapies.241

To investigate the transcription factors that regulate gene expression, we performed aberrant242

protein activity analysis for the two sections. As shown in Fig. 3h and Supplementary Fig.243

S12, the activities of immune-related transcription factors, such as IL16, CD86, TNFRSF4, and244

POU2AF1, in non-tumor regions (Clusters 10–17) were significantly higher than those in tumor245

regions (Clusters 1–6). Among these transcription factors, the activity levels of POU2AF1 and246

TNFRSF4 were much higher in the T cell cluster (Cluster 17). This observation is consistent247
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with the active transcription of POU2AF1 [50] and the function of TNFRSF4 as a tumor248

necrosis factor [51] in activated T cells. Although CCNH was not measured among the 313 gene249

profiles, we still predicted a higher activity level for CCNH in tumor regions (Clusters 1–6).250

Further deconvolution analysis revealed that Clusters 1–6 were enriched for cancer cells, which251

was consistent with the H&E images (Fig. 3i&j and Supplementary Fig. S13&14). Moran’s I252

values of the top 15 components from FAST-P were on average 155% higher than those with no253

spatial consideration in estimating embeddings and 17% higher than those from SpatialPCA-L254

(Fig. 3k).255

Application to the hepatocellular carcinoma Visium dataset256

To study mutational patterns in tumor and tumor-adjacent tissues, we also analyzed four257

sections of the HCC dataset [34] generated using the 10× Visium platform, with two sections258

from tumors (HCC1 and HCC2) and two from tumor-adjacent tissues (HCC3 and HCC4)259

collected from a patient with HCC, containing a total of 9813 spatial locations with a median260

number of 3635 genes per location. Fig. 4a shows a histology image (top panel), accompanied261

by manual annotations made by a pathologist for tumor/normal epithelium (TNE) and stroma262

regions, and the spatial heatmap of nine spatial domains detected by FAST-P (bottom panel).263

By performing integrative clustering via iSC-MEB, we aligned embeddings across multiple264

sections and allocated domain labels for each location. The aligned embeddings were visualized265

using two components of tSNE for each method (Fig. 4b; Supplementary Fig. S15). Both FAST266

and PRECAST achieved better data integration performance, while the computational speed267

for FAST was much faster than that for PRECAST and SpatialPCA (Fig. 4c; Supplementary268

Fig. S16). For each method, we summarized the aligned embeddings using three components269

extracted from UMAP. We then visualized the resulting UMAP components using RGB colors270

in the RGB plot (Supplementary Fig. S17), with the one for FAST showing clear segregation271

of the TNE and stroma.272

After removing unwanted variations in the expression profiles, we performed DE analysis273

and detected a total of 2745 DEGs with adjusted p-values < 0.001 in all nine spatial domains274

detected by FAST-P (Supplementary Data 3). These DEGs included HCC marker genes such275

as GPC3 and CYP2A6 [52, 53]. The dot plot of the average expression levels across all nine276

detected domains revealed many genes specific to tumor regions in tumor/tumor-adjacent277

tissues and immune regions (Fig. 4d). In detail, Domains 1–3 comprised tumor regions present278

only in tumor tissues, among which CYP2A6 was downregulated, while THY1 [54], GPC3, and279

CYP3A7 [55] were upregulated. Domains 4–6 comprised tumor regions present primarily in280

tumor-adjacent tissues, among which SCD [56] and PCK1 [57] were upregulated. Domains 7-9281

were enriched in many immune-related marker genes, including IGLC1, IGHG3, and IGKC [58].282

To study the somatic mutation landscapes, we performed location-level mutation detection283

in the spatial transcriptomics data for all four sections (see “Supplementary Notes”). As284

shown in Fig. 4e, we detected more somatic mutations in TNE (Domains 1–6) than in stroma285

(Domains 7–9). In detail, we identified four genes containing the top four SNPs with somatic286

mutations and visualized their spatial expression across four HCC sections (Supplementary287

Fig. S18–20), in which CESR2 and ETS2 showed higher expression in TNE than in stroma288

(Fig. 4f). The Moran’s I values of the top 15 components of FAST-P were, on average, 19%289

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 2, 2024. ; https://doi.org/10.1101/2023.07.11.548486doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.11.548486
http://creativecommons.org/licenses/by-nc-nd/4.0/


higher than those of the other methods (Fig. 4g; Supplementary Fig. S21). In total, FAST-P290

completed the analysis in 110 seconds and used 0.31 GB memory, while SpatialPCA-F required291

3680 seconds and 1.37 GB of memory usage (Fig. 4c).292

Application to the mouse embryo Stereo-seq dataset293

The Stereo-seq technology was recently developed for high-resolution spatial transcriptomics294

using 0.22-µm-diameter DNA nanoball (DNB)-patterned arrays [12]. To demonstrate its295

scalability, we compared the application of FAST with other methods to learn a low-dimensional296

representation of all spatial locations from a large-scale spatial transcriptomics study on297

C57BL/6 mouse embryos. In the analysis, we first binned the data as 50bin, with manual298

annotations based on the expression of marker genes [12]. In total, we analyzed Stereo-seq data299

from 26 sagittal sections of mouse embryos collected at one-day intervals from E12.5 to E16.5,300

containing an average of 27,295 genes over a total of 2,323,044 spatial locations. Among all the301

methods capable of being used for spatial dimension reduction, only FAST was applicable to302

the analysis of this dataset, while SpatialPCA, PRECAST, and DR-SC were unable to analyze303

data at this scale. For the analysis of these data, we exclusively utilized FAST-G due to its high304

computational efficiency compared with the other methods. FAST-G completed the analysis in305

approximately 2 hours, requiring 94 GB of memory.306

First, we showed that FAST achieved the highest adjusted R2
McF (Fig. 5a), with a median307

of 0.79 for FAST-G, 0.71 for PCA and 0.67 for LIGER. To assess the accuracy of clustering, we308

conducted integrative clustering analysis using iSC-MEB to detect spatial clusters across sections.309

As shown in Fig. 5b, FAST-G achieved the highest ARI and NMI. FAST-G also provided310

a more accurate representation of the annotated spatial domains compared to alternative311

methods (Fig. 5c, left panel). Moreover, our summary of the aligned embeddings using three312

components from UMAP and their visualization as RGB colors in the RGB plot (Fig. 5c, right313

panel) further highlighted the superior performance of FAST.314

After removing unwanted variations in expression profiles, we detected DEGs and recovered315

the temporal patterns for all 26 sections across five time points (see “Supplementary Notes”).316

In the DE analysis, we identified a total of 3663 DEGs with adjusted p-values < 0.001 across317

the 20 spatial domains identified by FAST-G (Supplementary Data 4). Among these genes,318

194 were specific to Domain 1, corresponding to a brain-related subregion. The heatmap319

illustrates the findings and demonstrates the effective separation of DEGs across various spatial320

domains (Fig. 5d). By further investigation of mouse embryo spatial gene expression database,321

EMAGE [59], we detected marker genes for different cell types in mouse embryo, including322

Fabp7 [60], Hes5 [61], Nefl, Nefm [62] (Domains 1–6, brain), Ptgds, Slc6a13 [63] (Domain 7,323

meninges), Myl2, Myl3, Myl4, Myl7 [64] (Domains 8–10, heart), Alb, Afp [65] (Domain 11, liver),324

Sftpc [66], Tcf21 [67] (Domain 12, lung), Myh3, Myh8, Myl1 [68] (Domains 13–15, muscle),325

Col19a1, Col2a1, Igf1, Sfrp2 (Domains 16–17, trunk somite), Krt10, Krt15 [69] (Domain 18,326

epidermis/cavity), Trps1 [70], Wnt5a [71] (Domain 19, jaw and tooth), Krt1 [72] and Perp [73]327

(Domain 20, mucosal epithelium). Furthermore, we generated heatmaps to visualize the328

expression patterns of marker genes specific to the brain region based on spatial coordinates.329

These heatmaps confirmed the prominent expression levels within the corresponding brain330

region (Supplementary Fig. S22).331
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Next, we detected genes exhibiting temporal expression trends in the brain region (see332

“Supplementary Notes”; Supplementary Fig. S23). We observed decreased expression of Hbb-y,333

Hba-x, and Hbb-bh1, which plays a crucial role for cell development by enhancing oxygen334

transport and aligns with their expression patterns during the early stages of embryonic335

development [74]. We found an increasing trend in the expression of Cd44 and Cdk8, which336

encodes a protein that belongs to the cyclin-dependent protein kinase (CDK) family and is337

known to play a crucial role in regulating the progression of the cell cycle [75].338

By the DE genes of the six subclusters within the brain region, we were able to detect339

three cell types (astrocytes, oligodendrocytes1/2, neurons1/2/3). By inferring the trajectory340

using embeddings and cluster labels estimated by FAST, we identified the trajectory from glia341

cells (oligodendrocytes, astrocytes) to neurons (Fig. 5e), which is consistent with the findings342

in the existing literature [76]. By leveraging temporal information, we successfully detected343

genes that exhibit specific expression trends within each local region of the brain (Fig. 5f and344

Supplementary Fig. S24-S28). Notably, some of these genes serve as brain markers, such as345

Mt3, Dbi and Ina, while others are associated with the development of the nervous system,346

including Zic1 and Hes6. Among these, we observed that Mt3 initiates expression during347

embryo development in brain subcluster 1 at E13.5, suggesting a significant role for Mt3 in the348

differentiation process of subcluster 1 (astrocytes; Fig. 5f). These findings provide valuable349

information on the intricate mechanisms that govern brain development.350

Discussion351

We present FAST, a probabilistic generalized factor analysis for spatially aware dimension352

reduction of spatial transcriptomics across multiple sections. Uniquely, FAST takes into353

consideration the count nature of many existing SRT technologies and models the local spatial354

correlation structure for “factors” from a common loading matrix during dimension reduction355

across multiple sections, promoting its computational efficiency and enabling its scalability356

up to millions of spatial locations. As a result, the “factors” estimated in FAST can be357

taken as low-dimensional embeddings intrinsic to biological effects with preservation of spatial358

correlation structure and, thus, can be paired with many existing software/tools developed in359

scRNA-seq studies to facilitate downstream analyses in SRT studies. Notably, only FAST was360

found to be applicable to a mouse embryo Stereo-seq dataset across 26 sections varying from361

E12.5 to E16.5 with >2.3 million spatial locations. Moreover, the analysis was completed in362

approximately 2 hours, which cannot be achieved by other spatial dimension reduction methods.363

After obtaining low-dimensional embeddings, we applied iSC-MEB for integrative clustering364

analysis to align embeddings among multiple sections, followed by a module designed to remove365

unwanted variations prior to downstream analyses. Using the DLPFC Visium dataset with366

manual annotation as our benchmark, we have illustrated the benefits of using FAST for data367

visualization, DE analysis, CCI, and trajectory analyses across multiple sections.368

FAST provides a useful tool that can interconnect with aberrant protein activity and somatic369

mutation analyses to delineate the spatial genomic landscape of cancer. In our analysis of the370

breast cancer Xenium dataset, FAST not only identified biologically separable clusters for many371

cell types, such as subtypes for breast cancer cells, fibroblasts, and T cells, but also, through372

further analysis of aberrant protein activity, showed that these identified clusters presented373
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differential protein activities for immune-related transcription factors. Furthermore, FAST374

identified a carcinogenesis factor, CCNH, which plays an important role in carcinogenesis [77]375

and was shown to be associated with many signaling pathways in breast cancer [78]. When376

applied to a HCC Visium dataset, FAST provided estimated embeddings similar to those377

from PRECAST; however, the computational process was completed in only 142 seconds.378

Further mutation analysis showed that somatic mutations were more prevalent in TNE than in379

stroma and identified four genes containing top SNPs with somatic mutations. Among these380

genes, Cers2 plays a vital role in preserving hepatic chromosome polyploidization during cell381

division by regulating the expression of Mad2 in mouse [79], and is closely associated with382

the progression of liver cancer [80]. Takeda et al. [81] reported that ETS2 functions as a key383

downstream transcription factor and assembles a transcription complex with MLL in HCC cells384

that directly activates MMP1 and MMP3.385

FAST has some caveats that may require further exploration. First, it would be interesting386

to perform joint dimension reduction for both single-cell multimodal omic data and SRT data387

with single-cell resolution, thus promoting inference for cis-regulatory interactions and/or388

defining gene-regulatory networks for transcription factors. Second, FAST performs spatial389

dimension reduction in an unsupervised manner. When manual annotations are available for390

some sections, it may be preferable to adopt a semi-supervised method by utilizing partial391

information about annotation labels across all sections. Finally, in the era of deep learning,392

performing a deep spatial encoding for SRT datasets would help extract a low-dimensional393

representation capturing nonlinear biological effects. In this study, we demonstrate the potential394

of FAST as a prototype for scalable extraction of cross-section embeddings among a large395

variety of spatial locations. Future exploration of all these issues is warranted to further confirm396

the important value of FAST as a method for spatially aware dimension reduction.397

Methods398

FAST model399

Here, we present a basic overview of FAST; further details are available in the Supplementary400

Notes. For the M SRT sections, we observed a count expression matrix for each section. FAST401

has the ability to model these count matrices or log-normalized matrices of gene expressions402

using either a log link or identity link for multiple sections (Fig. 1a). We primarily focus on403

introducing the Poisson version of FAST (FAST-P) for count matrices, while details about the404

Gaussian version (FAST-G) can be found in the Supplementary Notes.405

Specifically, we observe an nm×p count expression matrix Xm = (xm1, · · · ,xmi, · · · ,xmnm)
T

406

for section m (= 1, · · · ,M), where xmi = (xmi1, · · · , xmip)
T
is a p-dimensional expression vector407

for each location smi ∈ R2 in the section m on square or hexagonal lattices, among others.408

FAST models the count expression level of gene j, xmij , with its latent low-dimensional features409

vmi via a log link as410

xmij|fmij ∼ Poisson(fmij), (1)

ln fmij = νmj +w
T

j vmi + εmij, εmij ∼ N(0, λmj), (2)

where fmij is an unknown Poisson rate that represents the underlying gene-expression level,411
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νm = (νm1, · · · , νmp) ∈ Rp is a sample-specified intercept term, W = (w1, · · · ,wp)
T ∈ Rp×q

412

is a sample-shared loading matrix that captures the shared information of sections, vmi is a413

q-dimensional factors that captures the biological information, and ϵmi = (εmi1, · · · , εmip)
T ∼414

N(0,Λm) is an error term that captures the overdispersion, and Λm = diag(λm1, · · · , λmp) is415

the covariance matrix of the error term. To account for the spatial dependence among spatial416

locations within each section, we adopted a continuous multivariate Hidden Markov Random417

Field (HMRF) model for the factor vmi, which captures spatial dependencies in the embedding418

space, referred to as a spatial factor. Specifically, we assumed an intrinsic CAR model [82] for419

vmi420

vmi|v[nm]\i ∼ N(µvmi
, L−1

miΨm), (3)

where subscript [nm] \ i denotes all locations but smi in the section m, Lmi is the number of421

neighbors of location smi in section m, µvmi
= L−1

mi

∑
i′∈Nmi

vmi′ is the conditional mean relevant422

to the neighbors of the location smi, and Ψm is a q × q conditional covariance matrix for the423

elements of vri. The intrinsic CAR model (3) models the local dependence of the spatial factor424

vmi for the location smi in section m via the factors of its neighboring locations (Fig. 1a).425

Embedding alignment and spatial clustering426

Once we obtained the uncorrected embeddings of FAST or other compared methods, we427

applied iSC-MEB [83] for joint embedding alignment and spatial clustering. However, before428

running iSC-MEB, we needed to determine the optimal number of clusters. Therefore, we first429

utilized Harmony to obtain batch corrected embeddings, followed by Louvain clustering to430

select the appropriate number of clusters. After determining the optimal number of clusters,431

we ran iSC-MEB; the implementation details can be found in the Supplementary Notes. After432

obtaining aligned embeddings and clusters, we compared the performance of FAST and other433

methods in visualization of the aligned embeddings, batch removal of the aligned embeddings,434

and spatial clustering.435

Unwanted variation removal for gene expressions436

To remove unwanted variations in gene expression from the multiple sections, we applied437

iSC-MEB [83] to V̂ , where V̂ is the combined unaligned embeddings obtained by FAST. By438

doing so, we obtained the posterior probabilities of the cluster labels, r̂mi. To further address439

unwanted variations, we used a set of housekeeping genes, which are not influenced by other440

biological factors [84], as negative control genes; for more information on the selection of441

housekeeping genes, please refer to the Supplementary Notes.442

Using the selected L housekeeping genes, we performed PCA and obtained the top 10443

principal components, ĥmi, which we used as covariates to adjust for unwanted variation. Let444

x̃mij be the log-normalized expression value for gene j of spot i in section m. Then, we applied445

a spatial linear model to the normalized expression level of gene j,446

x̃mij = r̂
T

miαj + ĥ
T

miγj + tmζj + umij + ϵmij, (4)

where αj is a K-dimensional vector for biological effects between cell/domain types, γj is a447

10-dimensional vector of regression coefficients associated with the unwanted factors, and ζj is448
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the regression coefficient denoting the temporal effect if the temporal information is available449

(e.g., in the embryo dataset), umij follows a univariate intrinsic CAR model for retaining the450

spatial dependence of locations in the same section such that umij|u[nm]\i,j ∼ N(µumij
, L−1

miϕmj),451

and ϵmij ∼ N(0, σ2
mj) is an i.i.d (with respect to i) error term.452

An ICM-EM algorithm was designed to solve the model parameters; details are provided

in the Supplementary Notes. After obtaining the parameter estimates in Eqn. (4), users can

remove batch effects from the original normalized gene expression using

̂̃xmij = x̃mij − ĥ
T

miγ̂j.

This strategy can also be applied to multiple sections from multiple biological conditions by453

adding additional covariates in the linear model when such information is available.454

Other analyses455

After removing unwanted variation in the gene expression matrices of multiple sections, we456

performed DE analysis for the combined sections. To present biological discovery in different457

tissues, we applied various analyses including KEGG pathway analysis, CCI analysis, transcrip-458

tion factor analysis, cell-type deconvolution analysis, somatic mutation analysis, and analysis459

to detect genes with temporal trend of expressions. Details of these analyses are provided in460

the Supplementary Notes.461

Comparison of methods462

Through simulations and with real-world data, we conducted a comprehensive comparison of463

FAST with existing methods for dimension reduction and spatial clustering.464

To evaluate the biological embedding estimation performance of FAST, we used a range465

of spatially aware and non-spatially aware dimension reduction methods as benchmarks.466

Specifically, we compared FAST with (1) SpatialPCA [17] implemented in the R package467

SpatialPCA (version 1.2.0); (2) PRECAST [28] implemented in the R package PRECAST468

(version 1.6.1); (3) DR-SC [29] implemented in the R package DR.SC (version 3.2); (4) scVI [30]469

implemented in the Python module scvi-tools (version 0.20.3); (5) PCA; (6) multiBatchPCA [31]470

implemented in the R package batchelor (version 1.10.0); (7) NMF implemented in the R package471

scater (version 1.25.1); and (8) LIGER [32] implemented in the R package rliger (version 1.0.0).472

The first two methods are for spatial dimension reduction, whereas the remaining methods are473

for dimension reduction without consideration of spatial information. SpatialPCA has both474

full-rank and low-rank versions, denoted as SpatialPCA-F and SpatialPCA-L, respectively. We475

extracted 15-dimensional embeddings for all datasets and methods for comparison. See the476

Supplementary Notes for the details of each method compared.477

To compare the clustering performance, after obtaining the low-dimensional embeddings for478

all methods except for LIGER, we applied iSC-MEB to conduct the joint embedding alignment479

and spatial clustering. Since LIGER had already addressed batch effects in its embeddings, we480

did not compare the spatial clustering performance using iSC-MEB.481
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Evaluation metrics482

McFadden’s adjusted R2. For DLPFC Visium and Embryo Stereo-seq datasets that have483

manual domain annotations serving as ground truth, we evaluated the performance of different484

methods in dimension reduction by measuring the association between the embeddings and485

ground truth for each section using a multinomial regression model with the ground truth as486

the response variable and the extracted embeddings as covariates for each slice. For the fitted487

model, we then calculated the adjusted R2
McF [85], which provides a measure of the amount488

of biological information contained in the extracted embeddings, and a higher value indicates489

better performance in dimension reduction.490

ARI and NMI. For the DLPFC Visium and Embryo Steore-seq datasets, we evaluated the491

performance of different methods in spatial domain clustering by comparing the detected spatial492

domains with the ground truth. For this purpose, we employed standard clustering evaluation493

metrics, including ARI [86] and NMI [87].494

Moran’s I As a reflection of spatial autocorrelation, Moran’s I was used to measure the spatial

information contained in the embeddings of each section obtained by FAST and other methods.

It is defined as

I =
n∑n

i=1

∑n
j wij

∑n
i=1

∑n
j wij(xi − x̄)(xj − x̄)∑n

i=1(xi − x̄)
,

where n is the number of spatial units indexed by i and j, x is the variable of interest, x̄ is495

the mean of x, and wij is the (i, j)-th element of a matrix of spatial weights with zero on the496

diagonal. During the evaluation, we assigned a value of 1 to wij if the spot i is a neighbor of497

the spot j, and otherwise wij was set to 0.498

Simulations499

We simulated three sections based on a single section of the human DLPFC Visium dataset500

(sample ID: 151672) with eight spatial domains [33], including layers 1-6, WM, and unknown501

cells (Unknown). Using these data, we initially established the spatial coordinates and spatial502

domains for the three sections. The first section was set using the same coordinates as the503

panel data. For the second section, the coordinates were selected such that the x coordinates504

were below the 90th percentile. For the last section, the coordinates were chosen such that505

the y coordinates were below the 90th percentile. The spatial domains for all three sections506

remained the same as the panel data; see Supplementary Fig. S1a.507

Subsequently, we used the R package splatter (version 1.18.2) [88] to simulate gene expressions508

at predefined spatial coordinates of each section. This package generates gene expression data509

based on a gamma-Poisson distribution. We explored four different scenarios by adjusting510

the parameters of both batch effects and biological effects to either low or high values (batch511

effect=low or high; biological effect=low or high). The splatter package offers two parameters,512

namely de facScale and de prop, that enable the control of batch effects and biological effects.513

To generate the four scenarios, we set de facScale=0.2 and de facScale=0.6 for batch514
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effect=low and high, respectively, and de prop=0.15 and de prop=0.3 for biological effect=low515

and high, respectively. The four scenarios tested were as follows: Scenario 1 (batch effect=low,516

biological effect=high), Scenario 2 (batch effect=low, biological effect=low), Scenario 3 (batch517

effect=high, biological effect=high), and Scenario 4 (batch effect=high, biological effect=low).518

Gene selection for multi-section analysis519

During the quality control (QC) process, we applied filtering criteria to eliminate genes with520

zero expression in multiple locations and locations with zero expression for numerous genes521

(see “Data resources”). For our analyses, we used the FindVariableFeatures function of the522

Seurat (version 4.1.1) R package, with the default settings, to identify highly variable genes523

(HVGs) in all four datasets. Specifically, we selected the top 2000 HVGs for each section. We524

then prioritized genes based on the frequency of their selection as HVGs across all sections and525

selected the top 2000 genes based on this criterion. These 2000 genes were used as input for526

the comparison of FAST with other analytical methods.527

Data resources528

Human dorsolateral prefrontal cortex Visium dataset529

We obtained spatial transcriptomic data for human DLPFC from the 10× Visium platform; data530

were downloaded from https://doi.org/10.5281/zenodo.4730634. The dataset comprised531

12 postmortem DLPFC tissue sections from three independent neurotypical adult donors, and532

the raw expression count matrix contained 33,538 genes for each section, with a total of 47,681533

spatial locations. To ensure data quality, we performed QC on each section, filtering genes with534

non-zero expression levels for ≤ 20 locations and locations with non-zero expression levels for ≤535

20 genes. This filtering step resulted in a set of 14,535 genes on average across a total of 47,680536

spatial locations. The spatial domains annotated in all 12 sections were layer 1 (n=5321), layer537

2 (n=2858), layer 3 (n=17,587), layer 4 (n=3547), layer 5 (n=7300), layer 6 (n=6201), WM538

(n=4514), and undetermined locations (n = 352), according to the cytoarchitecture of the539

original study [33]. In our analysis, we considered these manual annotations as the ground truth540

for evaluating the dimension reduction and clustering performance of the different methods.541

Human breast cancer Xenium dataset542

We collected a dataset from two tissue sections of a patient with breast cancer measured by543

Xenium In Situ technology [35]; data were downloaded from https://www.dropbox.com/s/t0544

5w7ccufh1v0h8/xenium_prerelease_jul12_hBreast_replicates.tar?dl=0. The dataset545
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consisted of 313 genes of interest, with 35,868 and 36,783 spatial locations from the two tissue546

sections, respectively. These target genes were selected and curated primarily based on single547

cell atlas data for human breast tissue [35]. To ensure data quality, we performed a QC step in548

which we filtered locations with non-zero expression levels for ≤ 15 genes. As a result, 35,015549

and 35,932 locations were retained in the two tissue sections, respectively. Aberrant protein550

activity was inferred by VIPER to assess protein activity from gene expression data and the551

regulatory network. The spatial deconvolution was then performed to examine the spatial552

distribution of the compositions of different cells using RCTD.553

Human hepatocellular carcinoma Visium dataset554

The HCC dataset used in this study was derived from two tissue sections, one from the tumor555

and the other from the tumor-adjacent regions of a patient with hepatocellular carcinoma [34].556

The dataset consisted of 36,601 genes from more than 9813 spatial locations. During the QC557

process, genes with non-zero expression levels for ≤ 20 locations and locations with non-zero558

expression levels for ≤ 20 genes were removed, resulting in a set of 14,851 genes on average559

from a total of 9813 locations. To identify the TNE and stroma regions, manual annotations560

were provided by a pathologist using the Visium companion H&E images. Somatic mutation561

analysis was performed to investigate differences in somatic mutations between the TNE and562

stromal regions.563

Mouse embryo Stereo-seq dataset564

We collected data for 26 mouse embryo Stereo-seq sections from https://db.cngb.org/stom565

ics/mosta/. The dataset comprised 27,295 genes on average, with 2,323,044 spatial locations566

recorded across the 26 sections, from embryo days E12.5 to E16.5. During the QC process, we567

initially eliminated genes with non-zero expression levels for ≤ 20 locations, as well as locations568

with non-zero expression levels for ≤ 20 genes. As a result, we were left with 14,307 genes on569

average, totaling 2,318,423 locations.570

Data availability571

The four datasets used in this study are publicly available. These include the 12 human DLPFC572

Visium datasets (https://doi.org/10.5281/zenodo.4730634), two human breast cancer573

Xenium datasets (https://www.dropbox.com/s/t05w7ccufh1v0h8/xenium_prerelease_ju574

l12_hBreast_replicates.tar?dl=0), four human HCC Visium datasets (Raw FASTQ data575

are available at https://www.ncbi.nlm.nih.gov/sra?linkname=bioproject_sra_all&fro576

m_uid=858545, and H&E images are available at https://doi.org/10.6084/m9.figshare.577
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21280569.v1 and https://doi.org/10.6084/m9.figshare.21061990.v1), and 26 mouse578

embryo Stereo-seq datasets (https://db.cngb.org/stomics/mosta/).579

Code availability580

The FAST methods were implemented in an open-source R package that is publicly available581

at https://github.com/feiyoung/FAST. The code to reproduce the analysis can be found at582

https://github.com/feiyoung/FAST_Analysis.583
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Qian, Eva Wärdell, Joaquin Custodio, Johan Reimegrard, Fredrik Salmén, et al. A668

spatiotemporal organ-wide gene expression and cell atlas of the developing human heart.669

Cell, 179(7):1647–1660, 2019.670

[27] I-Hao Wang, Evan Murray, Greg Andrews, Hao-Ching Jiang, Sung Jin Park, Elisa Donnard,671

Violeta Durán-Laforet, Daniel M Bear, Travis E Faust, Manuel Garber, et al. Spatial672

transcriptomic reconstruction of the mouse olfactory glomerular map suggests principles673

of odor processing. Nature neuroscience, 25(4):484–492, 2022.674

[28] Wei Liu, Xu Liao, Ziye Luo, Yi Yang, Mai Chan Lau, Yuling Jiao, Xingjie Shi, Weiwei675

Zhai, Hongkai Ji, Joe Yeong, et al. Probabilistic embedding, clustering, and alignment for676

integrating spatial transcriptomics data with precast. Nature Communications, 14(1):296,677

2023.678

[29] Wei Liu, Xu Liao, Yi Yang, Huazhen Lin, Joe Yeong, Xiang Zhou, Xingjie Shi, and Jin679

Liu. Joint dimension reduction and clustering analysis of single-cell rna-seq and spatial680

transcriptomics data. Nucleic acids research, 50(12):e72–e72, 2022.681

[30] Romain Lopez, Jeffrey Regier, Michael B Cole, Michael I Jordan, and Nir Yosef. Deep682

generative modeling for single-cell transcriptomics. Nature methods, 15(12):1053–1058,683

2018.684

[31] Laleh Haghverdi, Aaron TL Lun, Michael D Morgan, and John C Marioni. Batch effects685

in single-cell rna-sequencing data are corrected by matching mutual nearest neighbors.686

Nature biotechnology, 36(5):421–427, 2018.687

[32] Joshua D Welch, Velina Kozareva, Ashley Ferreira, Charles Vanderburg, Carly Martin,688

and Evan Z Macosko. Single-cell multi-omic integration compares and contrasts features689

of brain cell identity. Cell, 177(7):1873–1887, 2019.690

[33] Kristen R Maynard, Leonardo Collado-Torres, Lukas MWeber, Cedric Uytingco, Brianna K691

Barry, Stephen R Williams, Joseph L Catallini, Matthew N Tran, Zachary Besich, Madhavi692

Tippani, et al. Transcriptome-scale spatial gene expression in the human dorsolateral693

prefrontal cortex. Nature neuroscience, 24(3):425–436, 2021.694

[34] Mai Chan Lau, Yang Yi, Denise Goh, Chun Chau Lawrence Cheung, Benedict Tan, Jeffrey695

Chun Tatt Lim, Craig Ryan Joseph, Felicia Wee, Justina Nadia Lee, Xinru Lim, et al.696

Case report: Understanding the impact of persistent tissue-localization of sars-cov-2 on697

immune response activity via spatial transcriptomic analysis of two cancer patients with698

covid-19 co-morbidity. Frontiers in Immunology, 13:5376, 2022.699

20

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 2, 2024. ; https://doi.org/10.1101/2023.07.11.548486doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.11.548486
http://creativecommons.org/licenses/by-nc-nd/4.0/


[35] Amanda Janesick, Robert Shelansky, Andrew D Gottscho, Florian Wagner, Morgane700

Rouault, Ghezal Beliakoff, Michelli Faria de Oliveira, Andrew Kohlway, Jawad Abousoud,701

Carolyn A Morrison, et al. High resolution mapping of the breast cancer tumor microenvi-702

ronment using integrated single cell, spatial and in situ analysis of ffpe tissue. bioRxiv,703

pages 2022–10, 2022.704

[36] Hongkui Zeng, Elaine H Shen, John G Hohmann, Seung Wook Oh, Amy Bernard, Joshua J705

Royall, Katie J Glattfelder, Susan M Sunkin, John A Morris, Angela L Guillozet-Bongaarts,706

et al. Large-scale cellular-resolution gene profiling in human neocortex reveals species-707

specific molecular signatures. Cell, 149(2):483–496, 2012.708

[37] Shuo Chen, Yuzhou Chang, Liangping Li, Diana Acosta, Yang Li, Qi Guo, Cankun Wang,709

Emir Turkes, Cody Morrison, Dominic Julian, et al. Spatially resolved transcriptomics710

reveals genes associated with the vulnerability of middle temporal gyrus in alzheimer’s711

disease. Acta Neuropathologica Communications, 10(1):1–24, 2022.712

[38] Suoqin Jin, Christian F Guerrero-Juarez, Lihua Zhang, Ivan Chang, Raul Ramos, Chen-713

Hsiang Kuan, Peggy Myung, Maksim V Plikus, and Qing Nie. Inference and analysis of714

cell-cell communication using cellchat. Nature communications, 12(1):1088, 2021.715

[39] Huan Liu, Yuanyuan Yang, Yuguo Xia, Wen Zhu, Rehana K Leak, Zhishuo Wei, Jianyi716

Wang, and Xiaoming Hu. Aging of cerebral white matter. Ageing research reviews, 34:717

64–76, 2017.718

[40] Andrés Buonanno. The neuregulin signaling pathway and schizophrenia: from genes to719

synapses and neural circuits. Brain research bulletin, 83(3-4):122–131, 2010.720

[41] F Alexander Wolf, Fiona K Hamey, Mireya Plass, Jordi Solana, Joakim S Dahlin, Berthold721
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Figure 1: Schematic overview of FAST and simulation results. (a) Left panel: Workflow of
multi-section SRT data analysis comprising the following steps: count or log-count as input,
highly variable gene selection, spatial dimension reduction based on FAST, embedding alignment
and spatial clustering, unwanted variation removal for combing gene expressions from multi-
sections, and a series of downstream analyses. Right panel: FAST is a powerful generalized
probabilistic factor model that efficiently estimates embeddings while incorporating spatial
smoothness across multiple expression matrices. It has the flexibility to utilize either count or
log-normalized gene expression matrices as input via log or identity link, enabling it to project
all spots onto a shared low-dimensional space. This capability greatly enhances downstream
analyses by effectively utilizing information from all sections. (b) A comparative analysis of four
aspects: spatial awareness, multi-section applicability, count matrix utilization, and scalability
to millions of locations in FAST and other dimension reduction methods. (c) Representative
FAST downstream analyses: combined clustering analysis, temporally differential expression
analysis along differentiation path, and combined CCI analysis. (d) In the simulations, we
conducted tests in four different scenarios to assess the effectiveness of FAST by varying
the parameters of batch effects and biological effects between low and high values. The four
scenarios tested were as follows: Scenario 1 (batch effect=low, biological effect=high), Scenario 2
(batch effect=low, biological effect=low), Scenario 3 (batch effect=high, biological effect=high),
and Scenario 4 (batch effect=high, biological effect=low). Top panel: Bar plots of the adjusted
R2

McF values for FAST and other methods. Bottom panel: Bar plots of the running time
(seconds) for FAST and other methods. (e) Comparison of computational cost in terms of
running time and memory usage for FAST, SpatialPCA and PRECAST with regard to the
number of spots. Note that the lines of both versions of SpatialPCA were truncated due to
their inability to handle data of such scale.
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Figure 2: Analysis of human DLPFC data (n = 47, 680 locations over 12 tissue sections). (a):
Box/violin plot of adjusted R2

McF values for FAST and other methods, and bar plots of running
time (seconds) and memory usage (GB) for FAST and other methods. In the boxplot, the center
line and box lines denote the median, upper, and lower quartiles, respectively. (b): Left panel:
H&E image and manual annotation of sample ID 151674. Top panel: UMAP RGB plots of
sample ID 151674 for FAST, SpatialPCA-L, DR-SC, mutibatchPCA, and NMF. Bottom panel:
Clustering assignment heatmaps for these five methods. (c): Box/violin plots of ARI/NMI
values for FAST and other methods. In the boxplot, the center line and box lines denote the
median, upper, and lower quartiles, respectively. (d): Dot plot of the normalized expression
levels aligned across 12 sections for the marker genes of the layers detected by FAST-P. (e)
Combined cell-cell interaction analysis using the normalized expression levels aligned across 12
sections and layer labels obtained by FAST-P. Heatmap of the number/strength of interactions
among the different layers. (f) PAGA trajectory for sample ID 151507 using the embeddings
and layer labels obtained by FAST-P and PRECAST, respectively.
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Figure 3: Analysis of human breast cancer Xenium data (n = 72, 651 locations over two tissue
sections). (a): H&E images of the two sections. (b): UMAP RGB plots of these two sections
for FAST-P. (c): Clustering assignment heatmaps of these two sections for the 17 clusters
detected by FAST-P. (d): Bar plots of running time (seconds) and memory usage (GB) for
FAST, SpatialPCA-L and PRECAST. (e): Scatter plot of the proportions of the 17 clusters in
sections BC1 and BC2, with the fitted smoothing line and confidence band determined by the
linear regression. (f) Dot plot of the normalized expression levels aligned across two sections for
the marker genes of the 17 clusters detected by FAST-P. (g) Dot plot of the significant KEGG
pathways of the marker genes for the 17 clusters identified by FAST-P. (h) Violin plot of the
activity score for the regulatory protein CCNH in the 17 clusters. (i) Percentage of different
cell types in each domain detected by FAST-P with scaling to the summation of all cell types
across all domains equal to 100%. CAFs: cancer-associated fibroblasts; PVL: perivascular-like
cells. (j) Spatial heatmap of deconvoluted cell proportions in cancer cells. (k) Boxplots of
the Moran’s I for the 15-dimensional embeddings obtained by FAST and other methods. In
the boxplot, the center line, box lines and whiskers represent the median, upper, and lower
quartiles, and the 1.5-times interquartile range, respectively.
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Figure 4: Analysis of human hepatocellular carcinoma Visium data (n = 9, 813 locations over
four tissue sections). (a): Top panel: H&E images from four tissue sections; Bottom panel:
Clustering assignment heatmaps for four tissue sections by FAST-P. (b): tSNE plots of the
aligned embeddings of FAST-P. (c): Bar plots of running time (seconds) and Memory usage
(GB) for FAST, SpatialPCA and PRECAST. (d): Dot plot of the normalized expression levels
aligned across four sections for the marker genes of the nine clusters detected by FAST-P.
(e): Box plot of mutation count per spot for TNE1 (Domains 1-3), TNE2 (Domains 4-6) and
stroma (Doamins 7-9). (f): Spatial heatmap of the expression levels of CERS2 and ETS2
genes in HCC3, corresponding to the top two SNPs with somatic mutations. (g): Boxplots of
Moran’s I for the 15-dimensional embeddings obtained by FAST and other methods. We did
not plot Moran’s I for SpatialPCA because SpatialPCA produced almost identical embedding
for each spot and had a Moran’s I value of 1. In the boxplots, the center line, box lines and
whiskers represent the median, upper, and lower quartiles, and 1.5-times interquartile range,
respectively.
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Figure 5: Analysis of mouse embryo Stereo-seq data (n = 2, 323, 044 locations over 26 tissue
sections). (a): Box/violin plot of adjusted R2

McF values for FAST-G and four other methods. (b):
Box/violin plot of ARI/NMI values for iSC-MEB clustering based on the embeddings obtained
by FAST-G and three other methods. (c): Left panel: Clustering assignment heatmaps for
five sections (sample IDs: 1, 7, 11, 18, 23) from different embryo days (the first sample in
E12.5, E13.5, E14.5, E15.5 and E16.5, respectively) by manual annotation, FAST-G, PCA and
NMF. Right panel: UMAP RGB plots for these sections based on the aligned embeddings from
FAST-G, PCA and NMF. (d): Heatmap of differentially expressed genes for the 20 domains
identified by FAST-G. (e): Scatter plot of two-dimensional PCs from the embeddings of FAST-G
within the brain region. The depicted path corresponds to the inferred differentiation pathway
determined by Slingshot for the six distinct subregions within the brain. Astro: Astrocytes,
Olig: Oligodendrocytes. (f): Scatter plot of two-dimensional PCs from the embeddings of
FAST-G for the expression levels of gene Mt3 during embryo days ranging from E12.5 to E16.5.
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