

1 FAST: a fast and scalable factor analysis for spatially
2 aware dimension reduction of multi-section spatial
3 transcriptomics data

4 Wei Liu^{1,2†}, Xiao Zhang^{1†}, Xiaoran Chai³, Zhenqian Fan⁴, Huazhen Lin⁵,
5 Jinmiao Chen⁶, Lei Sun², Tianwei Yu¹, Joe Yeong^{7,8*}, and Jin Liu^{1*}

6 ¹School of Data Science, The Chinese University of Hong Kong-Shenzhen,
7 Shenzhen, China

8 ²Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School,
9 Singapore

10 ³Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore

11 ⁴Department of Endocrinology, the Second Hospital of Tianjin Medical
12 University, Tianjin, China

13 ⁵Center of Statistical Research and School of Statistics, Southwestern
14 University of Finance and Economics, Chengdu, China

15 ⁶Singapore Immunology Network, Agency of Science, Technology and Research
16 (A*STAR), Singapore

17 ⁷Institute of Molecular and Cell Biology (IMCB), Agency of Science,
18 Technology and Research (A*STAR), Singapore,

19 ⁸Department of Anatomical Pathology, Singapore General Hospital, Singapore

20 **Abstract**

21 Biological techniques for spatially resolved transcriptomics (SRT) have advanced
22 rapidly in both throughput and spatial resolution for a single spatial location. This
23 progress necessitates the development of efficient and scalable spatial dimension reduction
24 methods that can handle large-scale SRT data from multiple sections. Here, we developed
25 FAST as a fast and efficient generalized probabilistic factor analysis for spatially aware
26 dimension reduction, which simultaneously accounts for the count nature of SRT data and
27 extracts a low-dimensional representation of SRT data across multiple sections, while pre-
28 serving biological effects with consideration of spatial smoothness among nearby locations.

29 Compared with existing methods, FAST uniquely models the count data across multiple
30 sections while using a local spatial dependence with scalable computational complexity.
31 Using both simulated and real datasets, we demonstrated the improved correlation
32 between FAST estimated embeddings and annotated cell/domain types. Furthermore,
33 FAST exhibits remarkable speed, with only FAST being applicable to analyze a mouse
34 embryo Stereo-seq dataset with >2.3 million locations in only 2 hours. More importantly,
35 FAST identified the differential activities of immune-related transcription factors between
36 tumor and non-tumor clusters and also predicted a carcinogenesis factor *CCNH* as the
37 upstream regulator of differentially expressed genes in a breast cancer Xenium dataset.

38 Introduction

39 Spatially resolved transcriptomics (SRT) encompasses a set of breakthrough technologies
40 that enable gene expression profiling with spatial information on tissues. Spatial location
41 information is of paramount significance in comprehending the mechanisms underlying processes
42 such as cell biology [1], tumor biology [2], and developmental biology [3]. Among the many
43 factors that influence the choice of these technologies [4, 5], throughput in profiling and spatial
44 resolution are two of the most important. Technologies based on *in situ* hybridization (e.g.,
45 MERFISH [6], seqFISH [7], and seqFISH+ [8]) and *in situ* sequencing (ISS) (e.g., FISSEQ [9],
46 and Xenium) provide single-molecule/single-cell resolution, but are for targeted genes that
47 require prior knowledge. While next-generation sequencing (NGS)-based technologies, such
48 as Visium, Slide-seq [10, 11], and Stereo-seq [12], are unbiased and involve high-throughput
49 expression measurements, most do not provide single-cell resolution. The diverse range of
50 SRT technologies has enabled the exploration of intricate transcriptional structure across
51 heterogeneous tissues and will revolutionize the worlds of cell biology and molecular biology
52 and advance our understanding in many areas of biology [13, 14].

53 For “high-dimensional”, often noisy, expression measurements obtained using SRT technologies,
54 dimensionality reduction is a key step in generating a low-dimensional data representation
55 that enriches biological signals by aggregating gene expression relevant to biological effects [15].
56 Moreover, transformation in dimension reduction circumvents the curse of dimensionality usually
57 present in “high-dimensional” expression profiles constructed in genomic studies, including
58 those based on SRT [16, 17]. A plethora of dimension reduction methods have been developed,
59 including the most popular method, principal component analysis (PCA) [18], which is routinely
60 used in many software pipelines, such as Seurat [19] and Cell Ranger [20] for single-cell RNA
61 sequencing (scRNA-seq) analysis and BayesSpace [21], SpaGCN [22], and SC-MEB [23] for SRT
62 data analysis. However, PCA does not consider the spatial nature of SRT data in the process
63 of estimating low-dimensional embeddings, omitting the influence of the microenvironment in
64 neighboring locations.

65 In SRT data analysis, expression patterns among neighboring locations exhibit the “similarity”
66 induced by the shared microenvironment. Recently, SpatialPCA [17] and non-negative
67 spatial factorization (NSF) [24] were proposed for spatially aware dimension reduction using
68 Gaussian-type kernels over spatial locations. To reduce the computational burden, SpatialPCA
69 applies a low-rank approximation, while NSF implements a sparse Gaussian process but is not
70 applicable to spatial locations from multiple sections [24, 25]. With improved spatial resolution,
71 the number of spatial locations profiled increases substantially, while multiple sections are
72 needed to either generate a spatial map or recover the spatiotemporal transcriptomics atlas
73 of a whole organ [12, 26, 27]. More recently, we proposed PRECAST as a method to unify
74 the tasks of dimension reduction, cluster allocation, and embedding alignment for SRT data
75 from multiple sections [28]. However, PRECAST did not model the count nature of SRT data,
76 while it was designed for a unified task of dimension reduction and clustering. When facing
77 downstream tasks other than clustering (e.g., trajectory inference and cell-cell interaction;
78 CCI), PRECAST may not be optimal. Although the computational order for PRECAST is
79 linear to location number n , it still takes a few days to complete the analysis if the number
80 of spatial locations goes into the millions due to its unified framework. Ideally, an efficient

81 method that allows for spatial dimension reduction across multiple sections and is capable
82 of capturing information for both biological effects and spatial correlation structure is also
83 required. This method should also account for the count nature of SRT data, be applicable to
84 multiple downstream tasks, and be scalable to millions of spatial locations.

85 To address the limitations of existing methods and facilitate scalability, we proposed FAST
86 as a generalized probabilistic factor analysis model for spatial transcriptomics that efficiently
87 estimates embeddings across multiple sections intrinsic to biological effects, taking into account
88 local expression similarities induced by the shared microenvironment. Uniquely, FAST explicitly
89 allows simultaneous spatially aware dimensionality reduction across multiple sections while
90 modeling the count nature of many existing SRT datasets. Moreover, scalability is promoted
91 by modeling of local spatial dependence using a conditional autoregressive component with an
92 improved computational complexity linear to n , facilitating its applicability to the analysis of
93 multi-section high-resolution SRT data. FAST is versatile in analyzing various multi-section
94 SRT datasets obtained from distinct spatial transcriptomics technologies and tissue structures.

95 **Results**

96 **Spatial dimension reduction using FAST**

97 Similar to scRNA-seq analysis, dimension reduction is an essential step for many downstream
98 analyses (Fig. 1a, left panel). We describe FAST in the “Methods” section and provide its
99 technical details in the Supplementary Notes. Briefly, FAST is a generalized probabilistic factor
100 analysis for spatially aware dimension reduction across multi-section spatial transcriptomics
101 data with millions of spatial locations (Fig. 1b). Taking the normalized/count gene expression
102 matrices from multiple sections as input data, FAST factorizes the expression matrices into
103 factor matrices with a shared loading matrix, while assuming a conditional autoregressive
104 (CAR) component for factors from each section (Fig. 1a, right panel). Instead of applying
105 a global kernel for all spatial locations, FAST models local spatial dependence induced by
106 neighboring microenvironments using CAR components. We showed that this consideration in
107 FAST not only reduces the computational complexity in linear form to n , scalable to millions
108 of spatial locations, but also estimates meaningful embeddings that correlate more closely with
109 biological effects. Subsequently, by performing an integrative analysis to remove batch effects via
110 iSC-MEB, the aligned embeddings can be paired with many existing software/tools developed
111 in scRNA-seq studies to enhance the effectiveness of downstream analyses in SRT studies (Fig.
112 1c). FAST is implemented as an R package available at <https://github.com/feiyoung/FAST>.

113 **Validation using simulated data**

114 We conducted extensive simulations to assess the performance of FAST and compare it to
115 several other methods (Fig. 1d; Supplementary Fig. S1). The methods compared included
116 a range of spatially aware and non-spatially aware dimension reduction methods such as
117 SpatialPCA [17], PRECAST [28], DR-SC [29], scVI [30], PCA, multiBatchPCA [31], NMF
118 and LIGER [32]. Among these methods, SpatialPCA provides a full-rank, SpatialPCA-F,
119 and a low-rank approximation version, SpatialPCA-L. We performed simulations using three

120 sections from the human dorsolateral prefrontal cortex (DLPFC) Visium dataset with eight
121 predefined spatial domains [33], comprising layers 1–6, whiter matter (WM), and unknown cells
122 (Unknown). Supplementary Fig. S1a provides a visual representation of the spatial distribution
123 of the eight domains for each section. The simulation details are provided in the “Methods”
124 section. Briefly, we considered four simulation scenarios in combinations of high and low values
125 for both biological effects and batch effects, reflecting both shared and section-specific effects.

126 To quantify the performance of the embedding estimation, we calculated the adjusted
127 McFadden’s pseudo R^2 (adjusted R^2_{McF}) between the estimated embeddings and the true
128 labels for each section. As shown in Fig. 1d (top panel), FAST outperformed other spatially
129 aware methods such as PRECAST and SpatialPCA, and performed much better than the
130 non-spatially aware methods such as PCA and scVI, across all scenarios. In general, spatially
131 aware methods performed better than the non-spatially aware methods. With biological effects
132 between domains varying from strong to weak, the performance of all methods decreased, but
133 the Poisson version of FAST, FAST-P, was the least sensitive compared with the other methods.
134 However, all methods suffered slightly from the increased batch effects in each section. Despite
135 its inferiority to FAST-P, the Gaussian version of FAST, FAST-G, was more computationally
136 efficient. In all scenarios, both versions of FAST were more computationally efficient than
137 other spatially aware methods such as SpatialPCA and PRECAST (Fig. 1d, bottom panel).
138 By applying iSC-MEB, we aligned embeddings estimated using different methods to detect
139 spatial domains. Not surprisingly, FAST-P achieved the highest adjusted Rand index (ARI)
140 and normalized mutual information (NMI) across all scenarios (Supplementary Fig. S1b).

141 To evaluate the scalability of FAST, we compared its computational efficiency by varying the
142 number of spatial locations analyzed while fixing the number of genes to 2000 (Fig. 1e). Clearly,
143 both FAST-P and FAST-G demonstrated superior computational efficiency. The computational
144 complexity orders for both FAST and PRECAST were linear to the number of spatial locations
145 while they both used less memory. In our study, SpatialPCA-F required approximately 19 hours
146 and 287 GB of memory to analyze a dataset with around 20,000 locations, but experienced
147 breakdowns when reaching 40,000 locations. Meanwhile, SpatialPCA-L took approximately
148 6 hours and 108 GB of memory to analyze a dataset with 78,000 locations, but experienced
149 breakdowns at 80,000 locations. However, FAST-P and FAST-G exhibited impressive scalability.
150 FAST-P was able to analyze 200,000 locations in just 30 minutes with 7 GB of memory usage,
151 while FAST-G achieved the same task in only 10 minutes with 5 GB of memory usage.

152 Application to the human dorsolateral prefrontal cortex Visium 153 dataset

154 We applied FAST and the other methods to the analysis of four published datasets obtained via
155 either Visium, Xenium, or Stereo-seq technologies (see “Methods”). The four datasets included
156 a DLPFC dataset [33] and a hepatocellular carcinoma dataset [34] generated using 10 \times Visium,
157 a breast cancer dataset [35] generated using 10 \times Xenium, and a mouse embryo dataset [12]
158 generated using Stereo-seq. First, we examined the dimension reduction performance of FAST
159 in comparison with SpatialPCA, PRECAST, DR-SC, scVI, PCA, multiBatchPCA, NMF, and
160 LIGER, followed by the application of iSC-MEB to perform clustering analysis and align
161 embeddings from multiple sections. For some or all four datasets, downstream analyses were

162 also performed, including DE analysis, CCI analysis, cell-type deconvolution, and somatic
163 mutation.

164 To quantify the ability of FAST to outperform existing methods for dimension reduction,
165 we first analyzed the LIBD human DLPFC dataset generated using 10 \times Visium [33], which
166 contained a total of 47,681 spatial locations across 12 tissue sections from three donors. Taking
167 the manual annotations for the tissue layers based on the cytoarchitecture provided by the
168 original study as ground truth, we were able to evaluate the performance of the dimension
169 reduction. For this purpose, we used the adjusted McFadden's pseudo R² (adjusted R²_{McF})
170 between the estimated embeddings and manual annotations for each section. As shown in Fig.
171 2a, FAST achieved the highest adjusted R²_{McF} while it was 50 times faster and required only 3%
172 memory usage of SpatialPCA with a low-rank approximation, SpatialPCA-L. In detail, FAST-P
173 required 661 seconds with 2 GB memory usage to complete the analysis compared with the
174 37,172 seconds and 80 GB memory usage required by SpatialPCA-L. After obtaining estimated
175 embeddings from a variety of dimension reduction methods, we performed integrative clustering
176 analysis to detect spatial domains by applying iSC-MEB. For each method, we summarized
177 the aligned embeddings using three components extracted from UMAP. We then visualized
178 the resulting UMAP components using red/green/blue (RGB) colors in the RGB plot (Fig.
179 2b, upper right panel; Supplementary Fig. S2), accompanied by the corresponding spatial
180 heatmap of cluster assignment (Fig. 2b lower right panel; Supplementary Fig. S3) and the
181 tSNE plot (Supplementary Fig. S4). The results using FAST embeddings exhibited stronger
182 laminar patterns while presenting a harmonious blending of locations from various sections.
183 These findings illustrated the utility of FAST for estimating embeddings of high-dimensional
184 expression profiles among spatial locations. To evaluate the clustering accuracy of the methods,
185 we used both ARI and NMI. As shown in Fig. 2c, FAST achieved the highest ARI and NMI,
186 with median ARIs for FAST-P, FAST-G, SpatialPCA-L, for PRECAST, DR-SC, scVI, PCA,
187 multiBatchPCA and NMF of 0.56, 0.52, 0.20, 0.45, 0.39, 0.45, 0.42, 0.42 and 0.41, respectively.

188 A key feature of FAST is its ability to estimate low-dimensional embeddings for spatial
189 locations across multiple sections, facilitating many downstream analyses requiring cross-section
190 embedding alignment such as DE analysis and CCI analysis. First, we performed DE analysis
191 for all 12 sections by removing unwanted variations between expression profiles in multiple
192 sections (see "Methods"). In total, we detected 1069 differentially expressed genes (DEGs)
193 with adjusted *p*-values < 0.001 among the eight domains identified by FAST-P, with 163 genes
194 specific to Domain 1, which corresponds to layer 1 (Supplementary Data 1). A dot plot of
195 normalized expression aligned across 12 sections showed good separation of the DEGs across the
196 detected spatial domains, many of which are human layer-specific markers such as *PCP4* [36],
197 *DIRAS2* [37], *MBP* [33], and *MOBP* [33] (Fig. 2d).

198 Next, we performed CCI analysis for all spatial locations across multiple sections using
199 CellChat [38] (see "Supplementary Notes"). We observed strong spatial patterns in both the
200 number and the strength of interactions (Fig. 2e), with WM showing substantial interactions
201 with other layers, consistent with its crucial role in transmitting messages between different
202 regions of the brain [39]. We further examined the signaling pathways enriched in each layer
203 during cell-cell communications and found that WM had the highest score in both incoming
204 and outgoing signals, sending electrical signals across different layers via 11 signaling pathways
205 (Supplementary Fig. S5). These pathways included somatostatin, a known presynaptic

206 modulator of glutamatergic signaling in the central nervous system, and the neuregulins
207 signaling pathway, which is crucial in various aspects of the nervous system, including the
208 development, maintenance, and repair processes [40]. Moreover, an estimated PAGA graph [41]
209 generated using FAST-P embeddings demonstrated an almost linear development trajectory
210 from WM to layer 1 in many of the 12 DLPFC sections (Fig. 2f, top panel; Supplementary Fig.
211 S6). But, when employing PRECAST embeddings for the PAGA graph, the resulting topology
212 showed a messy structure (Fig. 2f, bottom panel; Supplementary Fig. S7).

213 Application to the breast cancer Xenium dataset

214 We further applied FAST and the other methods to analyze two breast cancer sections generated
215 using 10× Xenium [35] and containing a total of 72,651 spatial locations with expression profiling
216 for 313 genes and their corresponding H&E images (Fig. 3a). In detail, we estimated 15-
217 dimensional embeddings using FAST and the other methods followed by the application of
218 iSC-MEB for clustering analysis and alignment of the embeddings for the two breast cancer
219 sections. For each method, we summarized the aligned embeddings using three components
220 extracted from UMAP. We then visualized the resulting UMAP components using RGB colors
221 in the RGB plot (Fig. 3b and Supplementary Fig. S8). As shown in Fig. 3c and Supplementary
222 Fig. S9, we detected a total of 17 domains in two sections using FAST-P, with the analysis
223 completed in 133 seconds using 0.33 GB memory usage while SpatialPCA-L required 105,417
224 seconds and 11.31 GB memory usage (Fig. 3d and Supplementary Fig. S10). The estimated
225 cluster proportions matched well in two adjacent sections (Fig. 3e).

226 After removing unwanted variations in expression profiles, we performed DE analysis for
227 the two sections and detected a total of 1416 DEGs with adjusted *p*-values < 0.001 in all 17 of
228 the spatial domains detected by FAST-P (Supplementary Data 2), including marker genes for
229 breast cancer such as *TACSTD2* and *FOXA1* [35]. The dot plot of average expression levels
230 across all 17 of the detected domains showed that many of the highly expressed genes specific
231 to Domains 1–6 were marker genes for breast cancer (Fig. 3f). Further detailed examination
232 revealed many marker genes for other cell types present in breast cancer, including *MYLK* [42]
233 (Cluster 7, myoepithelial cells), *KRT5*, *KRT14* [43] (Cluster 8, basal cells), *KRT15* [44] (Cluster
234 9, luminal progenitor cells), *APOC1* [45] (Cluster 10, macrophages), *FCER1A*, *MRC1* [46]
235 (Clusters 11 and 12, dendritic cells), *ADH1B* [47], *MMP2* [48] (Clusters 13–16, fibroblasts), and
236 *IL7R*, *CD3D* [49] (Cluster 17, T cells). Further KEGG enrichment analysis revealed that genes
237 specific to Clusters 1–6 were significantly enriched in many cancer-related pathways (Fig. 3g
238 and Supplementary Fig. S11). For example, Clusters 1–3 were enriched in endocrine resistance,
239 platinum drug resistance, and some cancer-related pathways. These findings provide valuable
240 insights into the molecular mechanisms underlying cancer development and progression, and
241 have important implications for the development of targeted therapies.

242 To investigate the transcription factors that regulate gene expression, we performed aberrant
243 protein activity analysis for the two sections. As shown in Fig. 3h and Supplementary Fig.
244 S12, the activities of immune-related transcription factors, such as *IL16*, *CD86*, *TNFRSF4*, and
245 *POU2AF1*, in non-tumor regions (Clusters 10–17) were significantly higher than those in tumor
246 regions (Clusters 1–6). Among these transcription factors, the activity levels of *POU2AF1* and
247 *TNFRSF4* were much higher in the T cell cluster (Cluster 17). This observation is consistent

248 with the active transcription of *POU2AF1* [50] and the function of *TNFRSF4* as a tumor
249 necrosis factor [51] in activated T cells. Although *CCNH* was not measured among the 313 gene
250 profiles, we still predicted a higher activity level for *CCNH* in tumor regions (Clusters 1–6).
251 Further deconvolution analysis revealed that Clusters 1–6 were enriched for cancer cells, which
252 was consistent with the H&E images (Fig. 3i&j and Supplementary Fig. S13&14). Moran's I
253 values of the top 15 components from FAST-P were on average 155% higher than those with no
254 spatial consideration in estimating embeddings and 17% higher than those from SpatialPCA-L
255 (Fig. 3k).

256 Application to the hepatocellular carcinoma Visium dataset

257 To study mutational patterns in tumor and tumor-adjacent tissues, we also analyzed four
258 sections of the HCC dataset [34] generated using the 10 \times Visium platform, with two sections
259 from tumors (HCC1 and HCC2) and two from tumor-adjacent tissues (HCC3 and HCC4)
260 collected from a patient with HCC, containing a total of 9813 spatial locations with a median
261 number of 3635 genes per location. Fig. 4a shows a histology image (top panel), accompanied
262 by manual annotations made by a pathologist for tumor/normal epithelium (TNE) and stroma
263 regions, and the spatial heatmap of nine spatial domains detected by FAST-P (bottom panel).
264 By performing integrative clustering via iSC-MEB, we aligned embeddings across multiple
265 sections and allocated domain labels for each location. The aligned embeddings were visualized
266 using two components of tSNE for each method (Fig. 4b; Supplementary Fig. S15). Both FAST
267 and PRECAST achieved better data integration performance, while the computational speed
268 for FAST was much faster than that for PRECAST and SpatialPCA (Fig. 4c; Supplementary
269 Fig. S16). For each method, we summarized the aligned embeddings using three components
270 extracted from UMAP. We then visualized the resulting UMAP components using RGB colors
271 in the RGB plot (Supplementary Fig. S17), with the one for FAST showing clear segregation
272 of the TNE and stroma.

273 After removing unwanted variations in the expression profiles, we performed DE analysis
274 and detected a total of 2745 DEGs with adjusted *p*-values < 0.001 in all nine spatial domains
275 detected by FAST-P (Supplementary Data 3). These DEGs included HCC marker genes such
276 as *GPC3* and *CYP2A6* [52, 53]. The dot plot of the average expression levels across all nine
277 detected domains revealed many genes specific to tumor regions in tumor/tumor-adjacent
278 tissues and immune regions (Fig. 4d). In detail, Domains 1–3 comprised tumor regions present
279 only in tumor tissues, among which *CYP2A6* was downregulated, while *THY1* [54], *GPC3*, and
280 *CYP3A7* [55] were upregulated. Domains 4–6 comprised tumor regions present primarily in
281 tumor-adjacent tissues, among which *SCD* [56] and *PCK1* [57] were upregulated. Domains 7–9
282 were enriched in many immune-related marker genes, including *IGLC1*, *IGHG3*, and *IGKC* [58].

283 To study the somatic mutation landscapes, we performed location-level mutation detection
284 in the spatial transcriptomics data for all four sections (see “Supplementary Notes”). As
285 shown in Fig. 4e, we detected more somatic mutations in TNE (Domains 1–6) than in stroma
286 (Domains 7–9). In detail, we identified four genes containing the top four SNPs with somatic
287 mutations and visualized their spatial expression across four HCC sections (Supplementary
288 Fig. S18–20), in which *CESR2* and *ETS2* showed higher expression in TNE than in stroma
289 (Fig. 4f). The Moran's I values of the top 15 components of FAST-P were, on average, 19%

290 higher than those of the other methods (Fig. 4g; Supplementary Fig. S21). In total, FAST-P
291 completed the analysis in 110 seconds and used 0.31 GB memory, while SpatialPCA-F required
292 3680 seconds and 1.37 GB of memory usage (Fig. 4c).

293 Application to the mouse embryo Stereo-seq dataset

294 The Stereo-seq technology was recently developed for high-resolution spatial transcriptomics
295 using $0.22\text{-}\mu\text{m}$ -diameter DNA nanoball (DNB)-patterned arrays [12]. To demonstrate its
296 scalability, we compared the application of FAST with other methods to learn a low-dimensional
297 representation of all spatial locations from a large-scale spatial transcriptomics study on
298 C57BL/6 mouse embryos. In the analysis, we first binned the data as 50bin, with manual
299 annotations based on the expression of marker genes [12]. In total, we analyzed Stereo-seq data
300 from 26 sagittal sections of mouse embryos collected at one-day intervals from E12.5 to E16.5,
301 containing an average of 27,295 genes over a total of 2,323,044 spatial locations. Among all the
302 methods capable of being used for spatial dimension reduction, only FAST was applicable to
303 the analysis of this dataset, while SpatialPCA, PRECAST, and DR-SC were unable to analyze
304 data at this scale. For the analysis of these data, we exclusively utilized FAST-G due to its high
305 computational efficiency compared with the other methods. FAST-G completed the analysis in
306 approximately 2 hours, requiring 94 GB of memory.

307 First, we showed that FAST achieved the highest adjusted R^2_{McF} (Fig. 5a), with a median
308 of 0.79 for FAST-G, 0.71 for PCA and 0.67 for LIGER. To assess the accuracy of clustering, we
309 conducted integrative clustering analysis using iSC-MEB to detect spatial clusters across sections.
310 As shown in Fig. 5b, FAST-G achieved the highest ARI and NMI. FAST-G also provided
311 a more accurate representation of the annotated spatial domains compared to alternative
312 methods (Fig. 5c, left panel). Moreover, our summary of the aligned embeddings using three
313 components from UMAP and their visualization as RGB colors in the RGB plot (Fig. 5c, right
314 panel) further highlighted the superior performance of FAST.

315 After removing unwanted variations in expression profiles, we detected DEGs and recovered
316 the temporal patterns for all 26 sections across five time points (see “Supplementary Notes”).
317 In the DE analysis, we identified a total of 3663 DEGs with adjusted p -values < 0.001 across
318 the 20 spatial domains identified by FAST-G (Supplementary Data 4). Among these genes,
319 194 were specific to Domain 1, corresponding to a brain-related subregion. The heatmap
320 illustrates the findings and demonstrates the effective separation of DEGs across various spatial
321 domains (Fig. 5d). By further investigation of mouse embryo spatial gene expression database,
322 EMAGE [59], we detected marker genes for different cell types in mouse embryo, including
323 *Fabp7* [60], *Hes5* [61], *Neftl*, *Nefm* [62] (Domains 1–6, brain), *Ptgds*, *Slc6a13* [63] (Domain 7,
324 meninges), *Myl2*, *Myl3*, *Myl4*, *Myl7* [64] (Domains 8–10, heart), *Alb*, *Afp* [65] (Domain 11, liver),
325 *Sftpcc* [66], *Tcf21* [67] (Domain 12, lung), *Myh3*, *Myh8*, *Myl1* [68] (Domains 13–15, muscle),
326 *Col19a1*, *Col2a1*, *Igf1*, *Sfrp2* (Domains 16–17, trunk somite), *Krt10*, *Krt15* [69] (Domain 18,
327 epidermis/cavity), *Trps1* [70], *Wnt5a* [71] (Domain 19, jaw and tooth), *Krt1* [72] and *Perp* [73]
328 (Domain 20, mucosal epithelium). Furthermore, we generated heatmaps to visualize the
329 expression patterns of marker genes specific to the brain region based on spatial coordinates.
330 These heatmaps confirmed the prominent expression levels within the corresponding brain
331 region (Supplementary Fig. S22).

332 Next, we detected genes exhibiting temporal expression trends in the brain region (see
333 “Supplementary Notes”; Supplementary Fig. S23). We observed decreased expression of *Hbb-y*,
334 *Hba-x*, and *Hbb-bh1*, which plays a crucial role for cell development by enhancing oxygen
335 transport and aligns with their expression patterns during the early stages of embryonic
336 development [74]. We found an increasing trend in the expression of *Cd44* and *Cdk8*, which
337 encodes a protein that belongs to the cyclin-dependent protein kinase (CDK) family and is
338 known to play a crucial role in regulating the progression of the cell cycle [75].

339 By the DE genes of the six subclusters within the brain region, we were able to detect
340 three cell types (astrocytes, oligodendrocytes1/2, neurons1/2/3). By inferring the trajectory
341 using embeddings and cluster labels estimated by FAST, we identified the trajectory from glia
342 cells (oligodendrocytes, astrocytes) to neurons (Fig. 5e), which is consistent with the findings
343 in the existing literature [76]. By leveraging temporal information, we successfully detected
344 genes that exhibit specific expression trends within each local region of the brain (Fig. 5f and
345 Supplementary Fig. S24-S28). Notably, some of these genes serve as brain markers, such as
346 *Mt3*, *Dbi* and *Ina*, while others are associated with the development of the nervous system,
347 including *Zic1* and *Hes6*. Among these, we observed that *Mt3* initiates expression during
348 embryo development in brain subcluster 1 at E13.5, suggesting a significant role for *Mt3* in the
349 differentiation process of subcluster 1 (astrocytes; Fig. 5f). These findings provide valuable
350 information on the intricate mechanisms that govern brain development.

351 Discussion

352 We present FAST, a probabilistic generalized factor analysis for spatially aware dimension
353 reduction of spatial transcriptomics across multiple sections. Uniquely, FAST takes into
354 consideration the count nature of many existing SRT technologies and models the local spatial
355 correlation structure for “factors” from a common loading matrix during dimension reduction
356 across multiple sections, promoting its computational efficiency and enabling its scalability
357 up to millions of spatial locations. As a result, the “factors” estimated in FAST can be
358 taken as low-dimensional embeddings intrinsic to biological effects with preservation of spatial
359 correlation structure and, thus, can be paired with many existing software/tools developed in
360 scRNA-seq studies to facilitate downstream analyses in SRT studies. Notably, only FAST was
361 found to be applicable to a mouse embryo Stereo-seq dataset across 26 sections varying from
362 E12.5 to E16.5 with >2.3 million spatial locations. Moreover, the analysis was completed in
363 approximately 2 hours, which cannot be achieved by other spatial dimension reduction methods.
364 After obtaining low-dimensional embeddings, we applied iSC-MEB for integrative clustering
365 analysis to align embeddings among multiple sections, followed by a module designed to remove
366 unwanted variations prior to downstream analyses. Using the DLPFC Visium dataset with
367 manual annotation as our benchmark, we have illustrated the benefits of using FAST for data
368 visualization, DE analysis, CCI, and trajectory analyses across multiple sections.

369 FAST provides a useful tool that can interconnect with aberrant protein activity and somatic
370 mutation analyses to delineate the spatial genomic landscape of cancer. In our analysis of the
371 breast cancer Xenium dataset, FAST not only identified biologically separable clusters for many
372 cell types, such as subtypes for breast cancer cells, fibroblasts, and T cells, but also, through
373 further analysis of aberrant protein activity, showed that these identified clusters presented

374 differential protein activities for immune-related transcription factors. Furthermore, FAST
375 identified a carcinogenesis factor, *CCNH*, which plays an important role in carcinogenesis [77]
376 and was shown to be associated with many signaling pathways in breast cancer [78]. When
377 applied to a HCC Visium dataset, FAST provided estimated embeddings similar to those
378 from PRECAST; however, the computational process was completed in only 142 seconds.
379 Further mutation analysis showed that somatic mutations were more prevalent in TNE than in
380 stroma and identified four genes containing top SNPs with somatic mutations. Among these
381 genes, *Cers2* plays a vital role in preserving hepatic chromosome polyplloidization during cell
382 division by regulating the expression of Mad2 in mouse [79], and is closely associated with
383 the progression of liver cancer [80]. Takeda et al. [81] reported that *ETS2* functions as a key
384 downstream transcription factor and assembles a transcription complex with *MLL* in HCC cells
385 that directly activates *MMP1* and *MMP3*.

386 FAST has some caveats that may require further exploration. First, it would be interesting
387 to perform joint dimension reduction for both single-cell multimodal omic data and SRT data
388 with single-cell resolution, thus promoting inference for *cis*-regulatory interactions and/or
389 defining gene-regulatory networks for transcription factors. Second, FAST performs spatial
390 dimension reduction in an unsupervised manner. When manual annotations are available for
391 some sections, it may be preferable to adopt a semi-supervised method by utilizing partial
392 information about annotation labels across all sections. Finally, in the era of deep learning,
393 performing a deep spatial encoding for SRT datasets would help extract a low-dimensional
394 representation capturing nonlinear biological effects. In this study, we demonstrate the potential
395 of FAST as a prototype for scalable extraction of cross-section embeddings among a large
396 variety of spatial locations. Future exploration of all these issues is warranted to further confirm
397 the important value of FAST as a method for spatially aware dimension reduction.

398 Methods

399 FAST model

400 Here, we present a basic overview of FAST; further details are available in the Supplementary
401 Notes. For the M SRT sections, we observed a count expression matrix for each section. FAST
402 has the ability to model these count matrices or log-normalized matrices of gene expressions
403 using either a log link or identity link for multiple sections (Fig. 1a). We primarily focus on
404 introducing the Poisson version of FAST (FAST-P) for count matrices, while details about the
405 Gaussian version (FAST-G) can be found in the Supplementary Notes.

406 Specifically, we observe an $n_m \times p$ count expression matrix $\mathbf{X}_m = (\mathbf{x}_{m1}, \dots, \mathbf{x}_{mi}, \dots, \mathbf{x}_{mn_m})^T$
407 for section m ($= 1, \dots, M$), where $\mathbf{x}_{mi} = (x_{mi1}, \dots, x_{mip})^T$ is a p -dimensional expression vector
408 for each location $s_{mi} \in \mathbb{R}^2$ in the section m on square or hexagonal lattices, among others.
409 FAST models the count expression level of gene j , x_{mij} , with its latent low-dimensional features
410 \mathbf{v}_{mi} via a log link as

$$x_{mij} | f_{mij} \sim \text{Poisson}(f_{mij}), \quad (1)$$

$$\ln f_{mij} = \nu_{mj} + \mathbf{w}_j^T \mathbf{v}_{mi} + \varepsilon_{mij}, \quad \varepsilon_{mij} \sim N(0, \lambda_{mj}), \quad (2)$$

411 where f_{mij} is an unknown Poisson rate that represents the underlying gene-expression level,

412 $\nu_m = (\nu_{m1}, \dots, \nu_{mp}) \in \mathbb{R}^p$ is a sample-specified intercept term, $W = (\mathbf{w}_1, \dots, \mathbf{w}_p)^T \in \mathbb{R}^{p \times q}$
 413 is a sample-shared loading matrix that captures the shared information of sections, \mathbf{v}_{mi} is a
 414 q -dimensional factors that captures the biological information, and $\epsilon_{mi} = (\epsilon_{m1}, \dots, \epsilon_{mp})^T \sim$
 415 $N(\mathbf{0}, \Lambda_m)$ is an error term that captures the overdispersion, and $\Lambda_m = \text{diag}(\lambda_{m1}, \dots, \lambda_{mp})$ is
 416 the covariance matrix of the error term. To account for the spatial dependence among spatial
 417 locations within each section, we adopted a continuous multivariate Hidden Markov Random
 418 Field (HMRF) model for the factor \mathbf{v}_{mi} , which captures spatial dependencies in the embedding
 419 space, referred to as a spatial factor. Specifically, we assumed an intrinsic CAR model [82] for
 420 \mathbf{v}_{mi}

$$\mathbf{v}_{mi} | \mathbf{v}_{[n_m] \setminus i} \sim N(\mu_{v_{mi}}, L_{mi}^{-1} \Psi_m), \quad (3)$$

421 where subscript $[n_m] \setminus i$ denotes all locations but s_{mi} in the section m , L_{mi} is the number of
 422 neighbors of location s_{mi} in section m , $\mu_{v_{mi}} = L_{mi}^{-1} \sum_{i' \in N_{mi}} \mathbf{v}_{mi'}$ is the conditional mean relevant
 423 to the neighbors of the location s_{mi} , and Ψ_m is a $q \times q$ conditional covariance matrix for the
 424 elements of \mathbf{v}_{ri} . The intrinsic CAR model (3) models the local dependence of the spatial factor
 425 \mathbf{v}_{mi} for the location s_{mi} in section m via the factors of its neighboring locations (Fig. 1a).

426 Embedding alignment and spatial clustering

427 Once we obtained the uncorrected embeddings of FAST or other compared methods, we
 428 applied iSC-MEB [83] for joint embedding alignment and spatial clustering. However, before
 429 running iSC-MEB, we needed to determine the optimal number of clusters. Therefore, we first
 430 utilized Harmony to obtain batch corrected embeddings, followed by Louvain clustering to
 431 select the appropriate number of clusters. After determining the optimal number of clusters,
 432 we ran iSC-MEB; the implementation details can be found in the Supplementary Notes. After
 433 obtaining aligned embeddings and clusters, we compared the performance of FAST and other
 434 methods in visualization of the aligned embeddings, batch removal of the aligned embeddings,
 435 and spatial clustering.

436 Unwanted variation removal for gene expressions

437 To remove unwanted variations in gene expression from the multiple sections, we applied
 438 iSC-MEB [83] to \widehat{V} , where \widehat{V} is the combined unaligned embeddings obtained by FAST. By
 439 doing so, we obtained the posterior probabilities of the cluster labels, $\widehat{\mathbf{r}}_{mi}$. To further address
 440 unwanted variations, we used a set of housekeeping genes, which are not influenced by other
 441 biological factors [84], as negative control genes; for more information on the selection of
 442 housekeeping genes, please refer to the Supplementary Notes.

443 Using the selected L housekeeping genes, we performed PCA and obtained the top 10
 444 principal components, $\widehat{\mathbf{h}}_{mi}$, which we used as covariates to adjust for unwanted variation. Let
 445 \tilde{x}_{mij} be the log-normalized expression value for gene j of spot i in section m . Then, we applied
 446 a spatial linear model to the normalized expression level of gene j ,

$$\tilde{x}_{mij} = \widehat{\mathbf{r}}_{mi}^T \boldsymbol{\alpha}_j + \widehat{\mathbf{h}}_{mi}^T \boldsymbol{\gamma}_j + t_m \zeta_j + u_{mij} + \epsilon_{mij}, \quad (4)$$

447 where $\boldsymbol{\alpha}_j$ is a K -dimensional vector for biological effects between cell/domain types, $\boldsymbol{\gamma}_j$ is a
 448 10-dimensional vector of regression coefficients associated with the unwanted factors, and ζ_j is

449 the regression coefficient denoting the temporal effect if the temporal information is available
450 (e.g., in the embryo dataset), u_{mij} follows a univariate intrinsic CAR model for retaining the
451 spatial dependence of locations in the same section such that $u_{mij} | \mathbf{u}_{[n_m] \setminus i,j} \sim N(\mu_{u_{mij}}, L_{mi}^{-1} \phi_{mj})$,
452 and $\epsilon_{mij} \sim N(0, \sigma_{mj}^2)$ is an i.i.d (with respect to i) error term.

An ICM-EM algorithm was designed to solve the model parameters; details are provided in the Supplementary Notes. After obtaining the parameter estimates in Eqn. (4), users can remove batch effects from the original normalized gene expression using

$$\hat{x}_{mij} = \tilde{x}_{mij} - \hat{\mathbf{h}}_{mi}^T \hat{\boldsymbol{\gamma}}_j.$$

453 This strategy can also be applied to multiple sections from multiple biological conditions by
454 adding additional covariates in the linear model when such information is available.

455 Other analyses

456 After removing unwanted variation in the gene expression matrices of multiple sections, we
457 performed DE analysis for the combined sections. To present biological discovery in different
458 tissues, we applied various analyses including KEGG pathway analysis, CCI analysis, transcrip-
459 tion factor analysis, cell-type deconvolution analysis, somatic mutation analysis, and analysis
460 to detect genes with temporal trend of expressions. Details of these analyses are provided in
461 the Supplementary Notes.

462 Comparison of methods

463 Through simulations and with real-world data, we conducted a comprehensive comparison of
464 FAST with existing methods for dimension reduction and spatial clustering.

465 To evaluate the biological embedding estimation performance of FAST, we used a range
466 of spatially aware and non-spatially aware dimension reduction methods as benchmarks.
467 Specifically, we compared FAST with (1) SpatialPCA [17] implemented in the R package
468 *SpatialPCA* (version 1.2.0); (2) PRECAST [28] implemented in the R package *PRECAST*
469 (version 1.6.1); (3) DR-SC [29] implemented in the R package *DR.SC* (version 3.2); (4) scVI [30]
470 implemented in the Python module *scvi-tools* (version 0.20.3); (5) PCA; (6) multiBatchPCA [31]
471 implemented in the R package *batchelor* (version 1.10.0); (7) NMF implemented in the R package
472 *scater* (version 1.25.1); and (8) LIGER [32] implemented in the R package *rliger* (version 1.0.0).
473 The first two methods are for spatial dimension reduction, whereas the remaining methods are
474 for dimension reduction without consideration of spatial information. SpatialPCA has both
475 full-rank and low-rank versions, denoted as SpatialPCA-F and SpatialPCA-L, respectively. We
476 extracted 15-dimensional embeddings for all datasets and methods for comparison. See the
477 Supplementary Notes for the details of each method compared.

478 To compare the clustering performance, after obtaining the low-dimensional embeddings for
479 all methods except for LIGER, we applied iSC-MEB to conduct the joint embedding alignment
480 and spatial clustering. Since LIGER had already addressed batch effects in its embeddings, we
481 did not compare the spatial clustering performance using iSC-MEB.

482 Evaluation metrics

483 McFadden's adjusted R². For DLPFC Visium and Embryo Stereo-seq datasets that have
484 manual domain annotations serving as ground truth, we evaluated the performance of different
485 methods in dimension reduction by measuring the association between the embeddings and
486 ground truth for each section using a multinomial regression model with the ground truth as
487 the response variable and the extracted embeddings as covariates for each slice. For the fitted
488 model, we then calculated the adjusted R²_{McF} [85], which provides a measure of the amount
489 of biological information contained in the extracted embeddings, and a higher value indicates
490 better performance in dimension reduction.

491 ARI and NMI. For the DLPFC Visium and Embryo Stereo-seq datasets, we evaluated the
492 performance of different methods in spatial domain clustering by comparing the detected spatial
493 domains with the ground truth. For this purpose, we employed standard clustering evaluation
494 metrics, including ARI [86] and NMI [87].

Moran's I As a reflection of spatial autocorrelation, Moran's *I* was used to measure the spatial
information contained in the embeddings of each section obtained by FAST and other methods.

It is defined as

$$I = \frac{n}{\sum_{i=1}^n \sum_{j=1}^n w_{ij}} \frac{\sum_{i=1}^n \sum_{j=1}^n w_{ij}(x_i - \bar{x})(x_j - \bar{x})}{\sum_{i=1}^n (x_i - \bar{x})^2},$$

495 where *n* is the number of spatial units indexed by *i* and *j*, *x* is the variable of interest, \bar{x} is
496 the mean of *x*, and *w_{ij}* is the (*i*, *j*)-th element of a matrix of spatial weights with zero on the
497 diagonal. During the evaluation, we assigned a value of 1 to *w_{ij}* if the spot *i* is a neighbor of
498 the spot *j*, and otherwise *w_{ij}* was set to 0.

499 Simulations

500 We simulated three sections based on a single section of the human DLPFC Visium dataset
501 (sample ID: 151672) with eight spatial domains [33], including layers 1-6, WM, and unknown
502 cells (Unknown). Using these data, we initially established the spatial coordinates and spatial
503 domains for the three sections. The first section was set using the same coordinates as the
504 panel data. For the second section, the coordinates were selected such that the x coordinates
505 were below the 90th percentile. For the last section, the coordinates were chosen such that
506 the y coordinates were below the 90th percentile. The spatial domains for all three sections
507 remained the same as the panel data; see Supplementary Fig. S1a.

508 Subsequently, we used the R package *splatter* (version 1.18.2) [88] to simulate gene expressions
509 at predefined spatial coordinates of each section. This package generates gene expression data
510 based on a gamma-Poisson distribution. We explored four different scenarios by adjusting
511 the parameters of both batch effects and biological effects to either low or high values (batch
512 effect=low or high; biological effect=low or high). The *splatter* package offers two parameters,
513 namely *de_facScale* and *de_prop*, that enable the control of batch effects and biological effects.
514 To generate the four scenarios, we set *de_facScale*=0.2 and *de_facScale*=0.6 for batch

515 effect=low and high, respectively, and `de_prop=0.15` and `de_prop=0.3` for biological effect=low
516 and high, respectively. The four scenarios tested were as follows: Scenario 1 (batch effect=low,
517 biological effect=high), Scenario 2 (batch effect=low, biological effect=low), Scenario 3 (batch
518 effect=high, biological effect=high), and Scenario 4 (batch effect=high, biological effect=low).

519 Gene selection for multi-section analysis

520 During the quality control (QC) process, we applied filtering criteria to eliminate genes with
521 zero expression in multiple locations and locations with zero expression for numerous genes
522 (see “Data resources”). For our analyses, we used the `FindVariableFeatures` function of the
523 *Seurat* (version 4.1.1) R package, with the default settings, to identify highly variable genes
524 (HVGs) in all four datasets. Specifically, we selected the top 2000 HVGs for each section. We
525 then prioritized genes based on the frequency of their selection as HVGs across all sections and
526 selected the top 2000 genes based on this criterion. These 2000 genes were used as input for
527 the comparison of FAST with other analytical methods.

528 Data resources

529 Human dorsolateral prefrontal cortex Visium dataset

530 We obtained spatial transcriptomic data for human DLPFC from the 10 \times Visium platform; data
531 were downloaded from <https://doi.org/10.5281/zenodo.4730634>. The dataset comprised
532 12 postmortem DLPFC tissue sections from three independent neurotypical adult donors, and
533 the raw expression count matrix contained 33,538 genes for each section, with a total of 47,681
534 spatial locations. To ensure data quality, we performed QC on each section, filtering genes with
535 non-zero expression levels for ≤ 20 locations and locations with non-zero expression levels for \leq
536 20 genes. This filtering step resulted in a set of 14,535 genes on average across a total of 47,680
537 spatial locations. The spatial domains annotated in all 12 sections were layer 1 ($n=5321$), layer
538 2 ($n=2858$), layer 3 ($n=17,587$), layer 4 ($n=3547$), layer 5 ($n=7300$), layer 6 ($n=6201$), WM
539 ($n=4514$), and undetermined locations ($n = 352$), according to the cytoarchitecture of the
540 original study [33]. In our analysis, we considered these manual annotations as the ground truth
541 for evaluating the dimension reduction and clustering performance of the different methods.

542 Human breast cancer Xenium dataset

543 We collected a dataset from two tissue sections of a patient with breast cancer measured by
544 Xenium In Situ technology [35]; data were downloaded from https://www.dropbox.com/s/t05w7ccufh1v0h8/xenium_prerelease_jul12_hBreast_replicates.tar?dl=0. The dataset

546 consisted of 313 genes of interest, with 35,868 and 36,783 spatial locations from the two tissue
547 sections, respectively. These target genes were selected and curated primarily based on single
548 cell atlas data for human breast tissue [35]. To ensure data quality, we performed a QC step in
549 which we filtered locations with non-zero expression levels for ≤ 15 genes. As a result, 35,015
550 and 35,932 locations were retained in the two tissue sections, respectively. Aberrant protein
551 activity was inferred by VIPER to assess protein activity from gene expression data and the
552 regulatory network. The spatial deconvolution was then performed to examine the spatial
553 distribution of the compositions of different cells using RCTD.

554 **Human hepatocellular carcinoma Visium dataset**

555 The HCC dataset used in this study was derived from two tissue sections, one from the tumor
556 and the other from the tumor-adjacent regions of a patient with hepatocellular carcinoma [34].
557 The dataset consisted of 36,601 genes from more than 9813 spatial locations. During the QC
558 process, genes with non-zero expression levels for ≤ 20 locations and locations with non-zero
559 expression levels for ≤ 20 genes were removed, resulting in a set of 14,851 genes on average
560 from a total of 9813 locations. To identify the TNE and stroma regions, manual annotations
561 were provided by a pathologist using the Visium companion H&E images. Somatic mutation
562 analysis was performed to investigate differences in somatic mutations between the TNE and
563 stromal regions.

564 **Mouse embryo Stereo-seq dataset**

565 We collected data for 26 mouse embryo Stereo-seq sections from [https://db.cngb.org/stom](https://db.cngb.org/stomics/mosta/)
566 [ics/mosta/](https://db.cngb.org/stomics/mosta/). The dataset comprised 27,295 genes on average, with 2,323,044 spatial locations
567 recorded across the 26 sections, from embryo days E12.5 to E16.5. During the QC process, we
568 initially eliminated genes with non-zero expression levels for ≤ 20 locations, as well as locations
569 with non-zero expression levels for ≤ 20 genes. As a result, we were left with 14,307 genes on
570 average, totaling 2,318,423 locations.

571 **Data availability**

572 The four datasets used in this study are publicly available. These include the 12 human DLPFC
573 Visium datasets (<https://doi.org/10.5281/zenodo.4730634>), two human breast cancer
574 Xenium datasets (https://www.dropbox.com/s/t05w7ccufh1v0h8/xenium_prerelease_ju112_hBreast_replicates.tar?dl=0), four human HCC Visium datasets (Raw FASTQ data
575 are available at https://www.ncbi.nlm.nih.gov/sra?linkname=bioproject_sra_all&from_uid=858545, and H&E images are available at <https://doi.org/10.6084/m9.figshare.16>.

578 21280569.v1 and <https://doi.org/10.6084/m9.figshare.21061990.v1>), and 26 mouse
579 embryo Stereo-seq datasets (<https://db.cngb.org/stomics/mosta/>).

580 **Code availability**

581 The FAST methods were implemented in an open-source R package that is publicly available
582 at <https://github.com/feiyoung/FAST>. The code to reproduce the analysis can be found at
583 https://github.com/feiyoung/FAST_Analysis.

584 **Author contributions**

585 J.L. initiated and designed the study, W.L. implemented the model and developed the software
586 tool; W.L. and X.Z. performed the simulation studies and the benchmark evaluation; J.L. wrote
587 the manuscript, and W.L., X.Z., X.C., Z.F., H.L., J.C., L.S., T.Y., J.Y. and J.L. edited and
588 revised the manuscript.

589 **Competing Interests**

590 The authors declare no competing interests.

591 References

592 [1] Robert Foreman and Roy Wollman. Mammalian gene expression variability is explained
593 by underlying cell state. *Molecular systems biology*, 16(2):e9146, 2020.

594 [2] Andrew L Ji, Adam J Rubin, Kim Thrane, Sizun Jiang, David L Reynolds, Robin M
595 Meyers, Margaret G Guo, Benson M George, Annelie Mollbrink, Joseph Bergenstrrahle,
596 et al. Multimodal analysis of composition and spatial architecture in human squamous
597 cell carcinoma. *Cell*, 182(2):497–514, 2020.

598 [3] Chang Liu, Rui Li, Young Li, Xiumei Lin, Kaichen Zhao, Qun Liu, Shuowen Wang,
599 Xueqian Yang, Xuyang Shi, Yuting Ma, et al. Spatiotemporal mapping of gene expression
600 landscapes and developmental trajectories during zebrafish embryogenesis. *Developmental
601 Cell*, 57(10):1284–1298, 2022.

602 [4] Anjali Rao, Dalia Barkley, Gustavo S Francca, and Itai Yanai. Exploring tissue architecture
603 using spatial transcriptomics. *Nature*, 596(7871):211–220, 2021.

604 [5] Lambda Moses and Lior Pachter. Museum of spatial transcriptomics. *Nature Methods*, 19
605 (5):534–546, 2022.

606 [6] Kok Hao Chen, Alistair N Boettiger, Jeffrey R Moffitt, Siyuan Wang, and Xiaowei Zhuang.
607 Spatially resolved, highly multiplexed rna profiling in single cells. *Science*, 348(6233):
608 aaa6090, 2015.

609 [7] Eric Lubeck, Ahmet F Coskun, Timur Zhiyentayev, Mubhij Ahmad, and Long Cai. Single-
610 cell in situ rna profiling by sequential hybridization. *Nature methods*, 11(4):360–361,
611 2014.

612 [8] Chee-Huat Linus Eng, Michael Lawson, Qian Zhu, Ruben Dries, Noushin Koulena,
613 Yodai Takei, Jina Yun, Christopher Cronin, Christoph Karp, Guo-Cheng Yuan, et al.
614 Transcriptome-scale super-resolved imaging in tissues by rna seqfish+. *Nature*, 568(7751):
615 235–239, 2019.

616 [9] Je Hyuk Lee, Evan R Daugharty, Jonathan Scheiman, Reza Kalhor, Joyce L Yang,
617 Thomas C Ferrante, Richard Terry, Sauveur SF Jeanty, Chao Li, Ryoji Amamoto, et al.
618 Highly multiplexed subcellular rna sequencing in situ. *science*, 343(6177):1360–1363, 2014.

619 [10] Samuel G Rodrigues, Robert R Stickels, Aleksandrina Goeva, Carly A Martin, Evan
620 Murray, Charles R Vanderburg, Joshua Welch, Linlin M Chen, Fei Chen, and Evan Z
621 Macosko. Slide-seq: A scalable technology for measuring genome-wide expression at high
622 spatial resolution. *Science*, 363(6434):1463–1467, 2019.

623 [11] Robert R Stickels, Evan Murray, Pawan Kumar, Jilong Li, Jamie L Marshall, Daniela J
624 Di Bella, Paola Arlotta, Evan Z Macosko, and Fei Chen. Highly sensitive spatial transcriptomics
625 at near-cellular resolution with slide-seqv2. *Nature biotechnology*, 39(3):313–319,
626 2021.

627 [12] Ao Chen, Sha Liao, Mengnan Cheng, Kailong Ma, Liang Wu, Yiwei Lai, Xiaojie Qiu,
628 Jin Yang, Jiangshan Xu, Shijie Hao, et al. Spatiotemporal transcriptomic atlas of mouse
629 organogenesis using dna nanoball-patterned arrays. *Cell*, 185(10):1777–1792, 2022.

630 [13] Michaela Asp, Joseph Bergenstrrahle, and Joakim Lundeberg. Spatially resolved tran-
631 scriptomes—next generation tools for tissue exploration. *BioEssays*, 42(10):1900221,
632 2020.

633 [14] Giovanni Palla, David S Fischer, Aviv Regev, and Fabian J Theis. Spatial components of
634 molecular tissue biology. *Nature Biotechnology*, 40(3):308–318, 2022.

635 [15] F William Townes, Stephanie C Hicks, Martin J Aryee, and Rafael A Irizarry. Feature
636 selection and dimension reduction for single-cell rna-seq based on a multinomial model.
637 *Genome biology*, 20:1–16, 2019.

638 [16] Naomi Altman and Martin Krzywinski. The curse (s) of dimensionality. *Nat Methods*, 15
639 (6):399–400, 2018.

640 [17] Lulu Shang and Xiang Zhou. Spatially aware dimension reduction for spatial transcrip-
641 toomics. *Nature Communications*, 13(1):7203, 2022.

642 [18] Harold Hotelling. Analysis of a complex of statistical variables into principal components.
643 *Journal of educational psychology*, 24(6):417, 1933.

644 [19] Andrew Butler, Paul Hoffman, Peter Smibert, Efthymia Papalex, and Rahul Satija.
645 Integrating single-cell transcriptomic data across different conditions, technologies, and
646 species. *Nature biotechnology*, 36(5):411–420, 2018.

647 [20] Grace XY Zheng, Jessica M Terry, Phillip Belgrader, Paul Ryvkin, Zachary W Bent, Ryan
648 Wilson, Solongo B Ziraldo, Tobias D Wheeler, Geoff P McDermott, Junjie Zhu, et al.
649 Massively parallel digital transcriptional profiling of single cells. *Nature communications*,
650 8(1):14049, 2017.

651 [21] Edward Zhao, Matthew R Stone, Xing Ren, Jamie Guenthoer, Kimberly S Smythe, Thomas
652 Pulliam, Stephen R Williams, Cedric R Uytingco, Sarah EB Taylor, Paul Nghiem, et al.
653 Spatial transcriptomics at subspot resolution with bayesspace. *Nature Biotechnology*, 39
654 (11):1375–1384, 2021.

655 [22] Jian Hu, Xiangjie Li, Kyle Coleman, Amelia Schroeder, Nan Ma, David J Irwin, Edward B
656 Lee, Russell T Shinohara, and Mingyao Li. Spagcn: Integrating gene expression, spatial
657 location and histology to identify spatial domains and spatially variable genes by graph
658 convolutional network. *Nature methods*, 18(11):1342–1351, 2021.

659 [23] Yi Yang, Xingjie Shi, Wei Liu, Qiuzhong Zhou, Mai Chan Lau, Jeffrey Chun Tatt Lim,
660 Lei Sun, Cedric Chuan Young Ng, Joe Yeong, and Jin Liu. Sc-meb: spatial clustering
661 with hidden markov random field using empirical bayes. *Briefings in bioinformatics*, 23(1):
662 bbab466, 2022.

663 [24] F William Townes and Barbara E Engelhardt. Nonnegative spatial factorization applied
664 to spatial genomics. *Nature Methods*, 20(2):229–238, 2023.

665 [25] Felix Leibfried, Vincent Dutordoir, ST John, and Nicolas Durrande. A tutorial on sparse
666 gaussian processes and variational inference. *arXiv preprint arXiv:2012.13962*, 2020.

667 [26] Michaela Asp, Stefania Giacomello, Ludvig Larsson, Chenglin Wu, Daniel Fürth, Xiaoyan
668 Qian, Eva Wärdell, Joaquin Custodio, Johan Reimegrard, Fredrik Salmén, et al. A
669 spatiotemporal organ-wide gene expression and cell atlas of the developing human heart.
670 *Cell*, 179(7):1647–1660, 2019.

671 [27] I-Hao Wang, Evan Murray, Greg Andrews, Hao-Ching Jiang, Sung Jin Park, Elisa Donnard,
672 Violeta Durán-Laforet, Daniel M Bear, Travis E Faust, Manuel Garber, et al. Spatial
673 transcriptomic reconstruction of the mouse olfactory glomerular map suggests principles
674 of odor processing. *Nature neuroscience*, 25(4):484–492, 2022.

675 [28] Wei Liu, Xu Liao, Ziye Luo, Yi Yang, Mai Chan Lau, Yuling Jiao, Xingjie Shi, Weiwei
676 Zhai, Hongkai Ji, Joe Yeong, et al. Probabilistic embedding, clustering, and alignment for
677 integrating spatial transcriptomics data with precast. *Nature Communications*, 14(1):296,
678 2023.

679 [29] Wei Liu, Xu Liao, Yi Yang, Huazhen Lin, Joe Yeong, Xiang Zhou, Xingjie Shi, and Jin
680 Liu. Joint dimension reduction and clustering analysis of single-cell rna-seq and spatial
681 transcriptomics data. *Nucleic acids research*, 50(12):e72–e72, 2022.

682 [30] Romain Lopez, Jeffrey Regier, Michael B Cole, Michael I Jordan, and Nir Yosef. Deep
683 generative modeling for single-cell transcriptomics. *Nature methods*, 15(12):1053–1058,
684 2018.

685 [31] Laleh Haghverdi, Aaron TL Lun, Michael D Morgan, and John C Marioni. Batch effects
686 in single-cell rna-sequencing data are corrected by matching mutual nearest neighbors.
687 *Nature biotechnology*, 36(5):421–427, 2018.

688 [32] Joshua D Welch, Velina Kozareva, Ashley Ferreira, Charles Vanderburg, Carly Martin,
689 and Evan Z Macosko. Single-cell multi-omic integration compares and contrasts features
690 of brain cell identity. *Cell*, 177(7):1873–1887, 2019.

691 [33] Kristen R Maynard, Leonardo Collado-Torres, Lukas M Weber, Cedric Uytingco, Brianna K
692 Barry, Stephen R Williams, Joseph L Catallini, Matthew N Tran, Zachary Besich, Madhavi
693 Tippani, et al. Transcriptome-scale spatial gene expression in the human dorsolateral
694 prefrontal cortex. *Nature neuroscience*, 24(3):425–436, 2021.

695 [34] Mai Chan Lau, Yang Yi, Denise Goh, Chun Chau Lawrence Cheung, Benedict Tan, Jeffrey
696 Chun Tatt Lim, Craig Ryan Joseph, Felicia Wee, Justina Nadia Lee, Xinru Lim, et al.
697 Case report: Understanding the impact of persistent tissue-localization of sars-cov-2 on
698 immune response activity via spatial transcriptomic analysis of two cancer patients with
699 covid-19 co-morbidity. *Frontiers in Immunology*, 13:5376, 2022.

700 [35] Amanda Janesick, Robert Shelansky, Andrew D Gottscho, Florian Wagner, Morgane
701 Rouault, Ghezal Beliakoff, Michelli Faria de Oliveira, Andrew Kohlway, Jawad Abousoud,
702 Carolyn A Morrison, et al. High resolution mapping of the breast cancer tumor microenvi-
703 ronment using integrated single cell, spatial and in situ analysis of ffpe tissue. *bioRxiv*,
704 pages 2022–10, 2022.

705 [36] Hongkui Zeng, Elaine H Shen, John G Hohmann, Seung Wook Oh, Amy Bernard, Joshua J
706 Royall, Katie J Glattfelder, Susan M Sunkin, John A Morris, Angela L Guillozet-Bongaarts,
707 et al. Large-scale cellular-resolution gene profiling in human neocortex reveals species-
708 specific molecular signatures. *Cell*, 149(2):483–496, 2012.

709 [37] Shuo Chen, Yuzhou Chang, Liangping Li, Diana Acosta, Yang Li, Qi Guo, Cankun Wang,
710 Emir Turkes, Cody Morrison, Dominic Julian, et al. Spatially resolved transcriptomics
711 reveals genes associated with the vulnerability of middle temporal gyrus in alzheimer’s
712 disease. *Acta Neuropathologica Communications*, 10(1):1–24, 2022.

713 [38] Suoqin Jin, Christian F Guerrero-Juarez, Lihua Zhang, Ivan Chang, Raul Ramos, Chen-
714 Hsiang Kuan, Peggy Myung, Maksim V Plikus, and Qing Nie. Inference and analysis of
715 cell-cell communication using cellchat. *Nature communications*, 12(1):1088, 2021.

716 [39] Huan Liu, Yuanyuan Yang, Yuguo Xia, Wen Zhu, Rehana K Leak, Zhishuo Wei, Jianyi
717 Wang, and Xiaoming Hu. Aging of cerebral white matter. *Ageing research reviews*, 34:
718 64–76, 2017.

719 [40] Andrés Buonanno. The neuregulin signaling pathway and schizophrenia: from genes to
720 synapses and neural circuits. *Brain research bulletin*, 83(3-4):122–131, 2010.

721 [41] F Alexander Wolf, Fiona K Hamey, Mireya Plass, Jordi Solana, Joakim S Dahlin, Berthold
722 Göttgens, Nikolaus Rajewsky, Lukas Simon, and Fabian J Theis. Paga: graph abstraction
723 reconciles clustering with trajectory inference through a topology preserving map of single
724 cells. *Genome biology*, 20:1–9, 2019.

725 [42] Chris Jones, Alan Mackay, Anita Grigoriadis, Antonio Cossu, Jorge S Reis-Filho, Laura
726 Fulford, Tim Dexter, Susan Davies, Karen Bulmer, Emily Ford, et al. Expression profiling
727 of purified normal human luminal and myoepithelial breast cells: identification of novel
728 prognostic markers for breast cancer. *Cancer research*, 64(9):3037–3045, 2004.

729 [43] Hirotoshi Soyama, Miki Nishio, Junji Otani, Toshiko Sakuma, Shintaro Takao, Shigeo
730 Hara, Takaaki Masuda, Koshi Mimori, Shinya Toyokuni, John P Lydon, et al. Hippo-taz
731 signaling is the master regulator of the onset of triple-negative basal-like breast cancers.
732 *Proceedings of the National Academy of Sciences*, 119(29):e2123134119, 2022.

733 [44] Katharina Theresa Kohler, Nadine Goldhammer, Samuel Demharter, Ulrich Pfisterer,
734 Konstantin Khodosevich, Lone Rønnov-Jessen, Ole William Petersen, René Villadsen, and
735 Jiyoung Kim. Ductal keratin 15+ luminal progenitors in normal breast exhibit a basal-like
736 breast cancer transcriptomic signature. *NPJ Breast Cancer*, 8(1):81, 2022.

737 [45] Liwen Ren, Jie Yi, Yihui Yang, Wan Li, Xiangjin Zheng, Jinyi Liu, Sha Li, Hong Yang,
738 Yizhi Zhang, Binbin Ge, et al. Systematic pan-cancer analysis identifies apoc1 as an
739 immunological biomarker which regulates macrophage polarization and promotes tumor
740 metastasis. *Pharmacological Research*, 183:106376, 2022.

741 [46] Rongqun Guo, Mengdie Lü, Fujiao Cao, Guanghua Wu, Fengcai Gao, Haili Pang, Yadan
742 Li, Yinyin Zhang, Haizhou Xing, Chunyan Liang, et al. Single-cell map of diverse immune
743 phenotypes in the acute myeloid leukemia microenvironment. *Biomarker Research*, 9(1):
744 1–16, 2021.

745 [47] John A Grout, Philemon Sirven, Andrew M Leader, Shrisha Maskey, Eglantine Hector,
746 Isabelle Puisieux, Fiona Steffan, Evan Cheng, Navpreet Tung, Mathieu Maurin, et al.
747 Spatial positioning and matrix programs of cancer-associated fibroblasts promote t-cell
748 exclusion in human lung tumors. *Cancer Discovery*, 12(11):2606–2625, 2022.

749 [48] Liuyang Zhao, Yan Sun, Yixuan Hou, Qiongle Peng, Liyang Wang, Haojun Luo, Xi Tang,
750 Zongyue Zeng, and Manran Liu. Mirna expression analysis of cancer-associated fibroblasts
751 and normal fibroblasts in breast cancer. *The international journal of biochemistry & cell
752 biology*, 44(11):2051–2059, 2012.

753 [49] Hee Jin Lee, Jeong-Ju Lee, In Hye Song, In Ah Park, Jun Kang, Jong Han Yu, Jin-Hee Ahn,
754 and Gyungyub Gong. Prognostic and predictive value of nanostring-based immune-related
755 gene signatures in a neoadjuvant setting of triple-negative breast cancer: relationship to
756 tumor-infiltrating lymphocytes. *Breast cancer research and treatment*, 151:619–627, 2015.

757 [50] Félix Lombard-Vadnais, Julie Lacombe, Geneviève Chabot-Roy, Mathieu Ferron, and
758 Sylvie Lesage. Oca-b does not act as a transcriptional coactivator in t cells. *Immunology
759 and Cell Biology*, 100(5):338–351, 2022.

760 [51] Lindsay K Ward-Kavanagh, Wai Wai Lin, John R vSedè, and Carl F Ware. The tnf
761 receptor superfamily in co-stimulating and co-inhibitory responses. *Immunity*, 44(5):
762 1005–1019, 2016.

763 [52] Yukihiro Haruyama and Hiroaki Kataoka. Glypican-3 is a prognostic factor and an
764 immunotherapeutic target in hepatocellular carcinoma. *World journal of gastroenterology*,
765 22(1):275, 2016.

766 [53] Xiaojing Ren, Yuanyuan Ji, Xuhua Jiang, and Xun Qi. Downregulation of cyp2a6 and
767 cyp2c8 in tumor tissues is linked to worse overall survival and recurrence-free survival
768 from hepatocellular carcinoma. *BioMed research international*, 2018, 2018.

769 [54] Xin Chen, John Higgins, Siu-Tim Cheung, Rui Li, Veronica Mason, Kelli Montgomery,
770 Sheung-Tat Fan, Matt van de Rijn, and Samuel So. Novel endothelial cell markers in
771 hepatocellular carcinoma. *Modern Pathology*, 17(10):1198–1210, 2004.

772 [55] Nobuo Kondoh, Toru Wakatsuki, Akihide Ryo, Akiyuki Hada, Tsukasa Aihara, San-
773 kichi Horiuchi, Narihiko Goseki, Osamu Matsubara, Kenji Takenaka, Mizue Shichita,
774 et al. Identification and characterization of genes associated with human hepatocellular
775 carcinogenesis. *Cancer research*, 59(19):4990–4996, 1999.

776 [56] Wei Dong, Zhi-hui Dai, Fu-chen Liu, Xing-gang Guo, Chun-mei Ge, Jin Ding, Hui Liu,
777 and Fu Yang. The rna-binding protein rbm3 promotes cell proliferation in hepatocellular
778 carcinoma by regulating circular rna scd-circrna 2 production. *EBioMedicine*, 45:155–167,
779 2019.

780 [57] Meng-Xi Liu, Lei Jin, Si-Jia Sun, Peng Liu, Xu Feng, Zhou-Li Cheng, Wei-Ren Liu,
781 Kun-Liang Guan, Ying-Hong Shi, Hai-Xin Yuan, et al. Metabolic reprogramming by
782 pck1 promotes tca cataplerosis, oxidative stress and apoptosis in liver cancer cells and
783 suppresses hepatocellular carcinoma. *Oncogene*, 37(12):1637–1653, 2018.

784 [58] Ajit J Nirmal, Tim Regan, Barbara B Shih, David A Hume, Andrew H Sims, and
785 Tom C Freeman. Immune cell gene signatures for profiling the microenvironment of solid
786 tumorsimmune cell gene signatures for profiling solid tumors. *Cancer immunology research*,
787 6(11):1388–1400, 2018.

788 [59] Lorna Richardson, Shanmugasundaram Venkataraman, Peter Stevenson, Yiya Yang, Julie
789 Moss, Liz Graham, Nicholas Burton, Bill Hill, Jianguo Rao, Richard A Baldock, et al.
790 Emage mouse embryo spatial gene expression database: 2014 update. *Nucleic acids
791 research*, 42(D1):D835–D844, 2014.

792 [60] Yoko Arai, Nobuo Funatsu, Keiko Numayama-Tsuruta, Tadashi Nomura, Shun Nakamura,
793 and Noriko Osumi. Role of fabp7, a downstream gene of pax6, in the maintenance of
794 neuroepithelial cells during early embryonic development of the rat cortex. *Journal of
795 Neuroscience*, 25(42):9752–9761, 2005.

796 [61] Masuko Katoh and Masaru Katoh. Integrative genomic analyses on hes/hey family: Notch-
797 independent hes1, hes3 transcription in undifferentiated es cells, and notch-dependent hes1,
798 hes5, hey1, hey2, hey1 transcription in fetal tissues, adult tissues, or cancer. *International
799 journal of oncology*, 31(2):461–466, 2007.

800 [62] Ze-Kai Cui, Shen-Yang Li, Kai Liao, Zhi-Jie Wang, Yong-Long Guo, Luo-Sheng Tang,
801 Shi-Bo Tang, Jacey Hongjie Ma, and Jian-Su Chen. Characteristics of neural growth and
802 cryopreservation of the dorsal root ganglion using three-dimensional collagen hydrogel
803 culture versus conventional culture. *Neural Regeneration Research*, 16(9):1856, 2021.

804 [63] Adrian M Stankiewicz, Aneta Jaszczyk, Joanna Goscik, and Grzegorz R Juszczak. Stress
805 and the brain transcriptome: Identifying commonalities and clusters in standardized
806 data from published experiments. *Progress in Neuro-Psychopharmacology and Biological
807 Psychiatry*, 119:110558, 2022.

808 [64] Nobutoshi Ichise, Tatsuya Sato, Hiroyori Fusagawa, Hiroya Yamazaki, Taiki Kudo, Izaya
809 Ogon, and Noritsugu Tohse. Ultrastructural assessment and proteomic analysis in my-
810 ofibrillogenesis in the heart primordium after heartbeat initiation in rats. *Frontiers in
811 Physiology*, 13, 2022.

812 [65] Vincent W Keng, Hideshi Yagi, Masahito Ikawa, Takashi Nagano, Zaw Myint, Kazuya Ya-
813 mada, Takashi Tanaka, Ayuko Sato, Ikunobu Muramatsu, Masaru Okabe, et al. Homeobox
814 gene hex is essential for onset of mouse embryonic liver development and differentiation

815 of the monocyte lineage. *Biochemical and biophysical research communications*, 276(3):
816 1155–1161, 2000.

817 [66] Pimchanok Pimton, Shimon Lecht, Collin T Stabler, Gregg Johannes, Edward S Schulman,
818 and Peter I Lelkes. Hypoxia enhances differentiation of mouse embryonic stem cells into
819 definitive endoderm and distal lung cells. *Stem cells and development*, 24(5):663–676, 2015.

820 [67] Juwon Park, Malina J Ivey, Yanik Deana, Kara L Riggsbee, Emelie Sørensen, Veronika
821 Schwabl, Caroline Sjöberg, Tilda Hjertberg, Ga Young Park, Jessica M Swonger, et al.
822 The tcf21 lineage constitutes the lung lipofibroblast population. *American Journal of
823 Physiology-Lung Cellular and Molecular Physiology*, 316(5):L872–L885, 2019.

824 [68] Ruth Amann, Stefan Wyder, Anne M Slavotinek, and Beat Trueb. The fgfrl1 receptor is
825 required for development of slow muscle fibers. *Developmental biology*, 394(2):228–241,
826 2014.

827 [69] Mathilde Couteaudier, Laëtitia Trapp-Fragnet, Nicolas Auger, Katia Courvoisier, Bertrand
828 Pain, Caroline Denesvre, and Jean-François Vautherot. Derivation of keratinocytes
829 from chicken embryonic stem cells: establishment and characterization of differentiated
830 proliferative cell populations. *Stem Cell Research*, 14(2):224–237, 2015.

831 [70] Ikumi Michikami, Toshiya Fukushi, Shiho Honma, Seisuke Yoshioka, Shunji Itoh, Yasuteru
832 Muragaki, Kojiro Kurisu, Takashi Ooshima, Satoshi Wakisaka, and Makoto Abe. Trps1 is
833 necessary for normal temporomandibular joint development. *Cell and tissue research*, 348:
834 131–140, 2012.

835 [71] Minkui Lin, Lu Li, Chao Liu, Hongbing Liu, Fenglei He, Fuhua Yan, Yanding Zhang,
836 and YiPing Chen. Wnt5a regulates growth, patterning, and odontoblast differentiation of
837 developing mouse tooth. *Developmental Dynamics*, 240(2):432–440, 2011.

838 [72] Taishi Komori, Mitsuaki Ono, Emilio Satoshi Hara, Junji Ueda, Ha Thi Thu Nguyen,
839 Ha Thi Nguyen, Tomoko Yonezawa, Takahiro Maeba, Aya Kimura-Ono, Takeshi Takarada,
840 et al. Type iv collagen $\alpha 6$ chain is a regulator of keratin 10 in keratinization of oral mucosal
841 epithelium. *Scientific reports*, 8(1):2612, 2018.

842 [73] Rebecca A Ihrie, Michelle R Marques, Bichchau T Nguyen, Jennifer S Horner, Cristian
843 Papazoglu, Roderick T Bronson, Alea A Mills, and Laura D Attardi. Perp is a p63-regulated
844 gene essential for epithelial integrity. *Cell*, 120(6):843–856, 2005.

845 [74] Andrew J King, Duantida Songdej, Damien J Downes, Robert A Beagrie, Siyu Liu,
846 Megan Buckley, Peng Hua, Maria C Suciu, A Marieke Oudelaar, Lars LP Hanssen, et al.
847 Reactivation of a developmentally silenced embryonic globin gene. *Nature communications*,
848 12(1):4439, 2021.

849 [75] Zsolt Szilagyi and Claes M Gustafsson. Emerging roles of cdk8 in cell cycle control.
850 *Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms*, 1829(9):916–920,
851 2013.

852 [76] Sanjay R Srivatsan, Mary C Regier, Eliza Barkan, Jennifer M Franks, Jonathan S Packer,
853 Parker Grosjean, Madeleine Duran, Sarah Saxton, Jon J Ladd, Malte Spielmann, et al.
854 Embryo-scale, single-cell spatial transcriptomics. *Science*, 373(6550):111–117, 2021.

855 [77] Yuchan Wang, Fang Liu, Feng Mao, Qinlei Hang, Xiaodong Huang, Song He, Yingying
856 Wang, Chun Cheng, Huijie Wang, Guangfei Xu, et al. Interaction with cyclin h/cyclin-
857 dependent kinase 7 (ccnh/cdk7) stabilizes c-terminal binding protein 2 (ctbp2) and
858 promotes cancer cell migration. *Journal of Biological Chemistry*, 288(13):9028–9034, 2013.

859 [78] Ying-Nan Yu, George Wai-Cheong Yip, Puay-Hoon Tan, Aye Aye Thike, Ken Matsumoto,
860 Masafumi Tsujimoto, and Boon-Huat Bay. Y-box binding protein 1 is up-regulated in
861 proliferative breast cancer and its inhibition deregulates the cell cycle. *International
862 journal of oncology*, 37(2):483–492, 2010.

863 [79] Mingjun Cao, Shaohua Zhang, Sin Man Lam, and Guanghou Shui. Hepatic loss of cers2
864 induces cell division defects via a mad2-mediated pathway. *Clinical and Translational
865 Medicine*, 12(1), 2022.

866 [80] Mengmeng Zhang, Zhangyun Li, Yuwei Liu, Xiao Ding, Yanyan Wang, and Shaohua
867 Fan. The ceramide synthase (cers/lass) family: Functions involved in cancer progression.
868 *Cellular Oncology*, pages 1–21, 2023.

869 [81] Shugaku Takeda, Han Liu, Satoru Sasagawa, Yiyu Dong, Paul A Trainor, Emily H Cheng,
870 James J Hsieh, et al. Hgf-met signals via the mll-ets2 complex in hepatocellular carcinoma.
871 *The Journal of clinical investigation*, 123(7):3154–3165, 2013.

872 [82] Julian Besag. Spatial interaction and the statistical analysis of lattice systems. *Journal of
873 the Royal Statistical Society: Series B (Methodological)*, 36(2):192–225, 1974.

874 [83] Xiao Zhang, Wei Liu, Fangda Song, and Jin Liu. isc. meb: an r package for multi-sample
875 spatial clustering analysis of spatial transcriptomics data. *Bioinformatics Advances*, 3(1):
876 vbad019, 2023.

877 [84] Davide Risso, John Ngai, Terence P Speed, and Sandrine Dudoit. Normalization of rna-seq
878 data using factor analysis of control genes or samples. *Nature biotechnology*, 32(9):896–902,
879 2014.

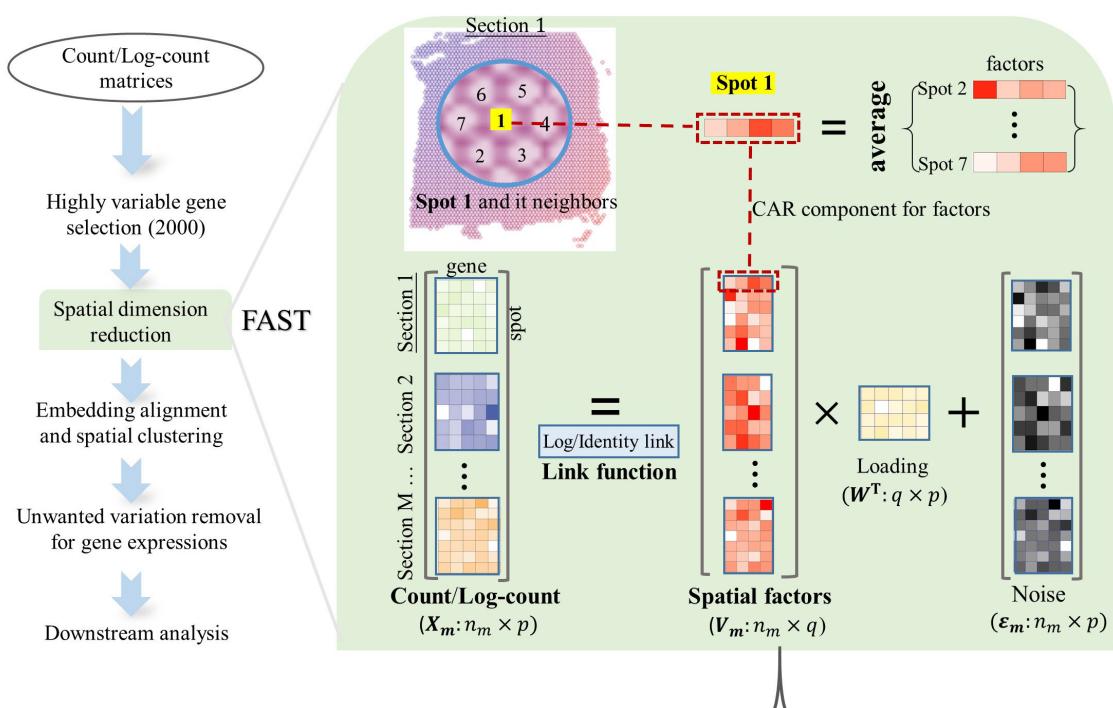
880 [85] Daniel McFadden. Regression-based specification tests for the multinomial logit model.
881 *Journal of econometrics*, 34(1-2):63–82, 1987.

882 [86] Lawrence Hubert and Phipps Arabie. Comparing partitions. *Journal of classification*, 2
883 (1):193–218, 1985.

884 [87] Thomas M Cover and Joy A Thomas. *Elements of information theory 2nd edition (wiley
885 series in telecommunications and signal processing)*. Wiley-Interscience, 2006.

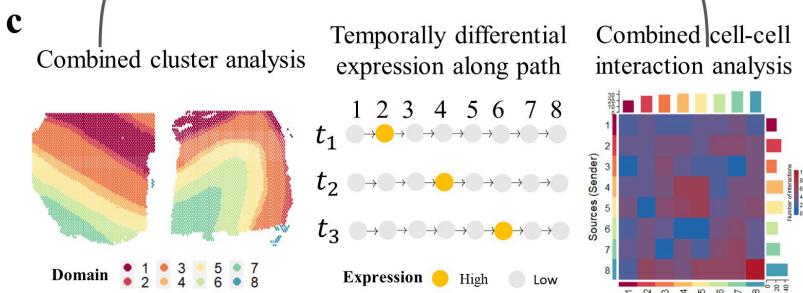
886 [88] Luke Zappia, Belinda Phipson, and Alicia Oshlack. Splatter: simulation of single-cell rna
887 sequencing data. *Genome biology*, 18(1):174, 2017.

a

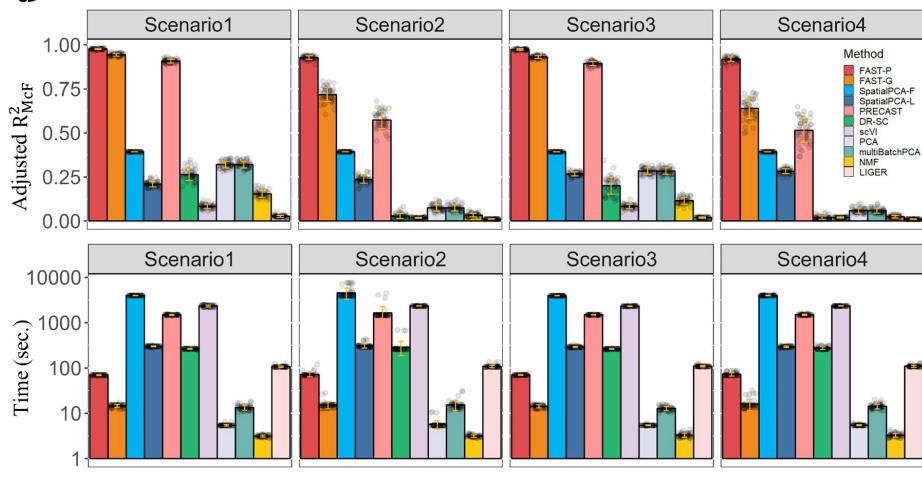


b

Method	Spatially aware	multiple sections	Count	millions locations
FAST	✓	✓	✓	✓
PRECAST	✓	✓	✗	✗
SpatialPCA	✓	✗	✗	✗
NSF	✓	✗	✓	✗
DR-SC	✗	✓	✗	✗
scVI	✗	✓	✗	✗
PCA	✗	✓	✗	✓
multiBatchPCA	✗	✓	✗	✓
NMF	✗	✓	✗	✓
LIGER	✗	✓	✗	✓



d



e

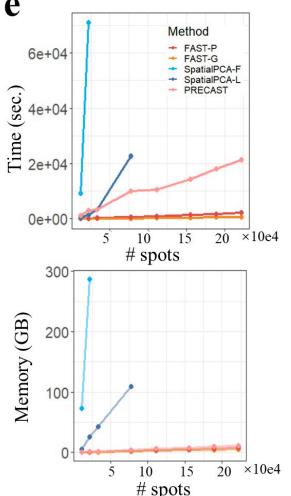


Figure 1: Schematic overview of FAST and simulation results. (a) Left panel: Workflow of multi-section SRT data analysis comprising the following steps: count or log-count as input, highly variable gene selection, spatial dimension reduction based on FAST, embedding alignment and spatial clustering, unwanted variation removal for combining gene expressions from multi-sections, and a series of downstream analyses. Right panel: FAST is a powerful generalized probabilistic factor model that efficiently estimates embeddings while incorporating spatial smoothness across multiple expression matrices. It has the flexibility to utilize either count or log-normalized gene expression matrices as input via log or identity link, enabling it to project all spots onto a shared low-dimensional space. This capability greatly enhances downstream analyses by effectively utilizing information from all sections. (b) A comparative analysis of four aspects: spatial awareness, multi-section applicability, count matrix utilization, and scalability to millions of locations in FAST and other dimension reduction methods. (c) Representative FAST downstream analyses: combined clustering analysis, temporally differential expression analysis along differentiation path, and combined CCI analysis. (d) In the simulations, we conducted tests in four different scenarios to assess the effectiveness of FAST by varying the parameters of batch effects and biological effects between low and high values. The four scenarios tested were as follows: Scenario 1 (batch effect=low, biological effect=high), Scenario 2 (batch effect=low, biological effect=low), Scenario 3 (batch effect=high, biological effect=high), and Scenario 4 (batch effect=high, biological effect=low). Top panel: Bar plots of the adjusted R^2_{McF} values for FAST and other methods. Bottom panel: Bar plots of the running time (seconds) for FAST and other methods. (e) Comparison of computational cost in terms of running time and memory usage for FAST, SpatialPCA and PRECAST with regard to the number of spots. Note that the lines of both versions of SpatialPCA were truncated due to their inability to handle data of such scale.

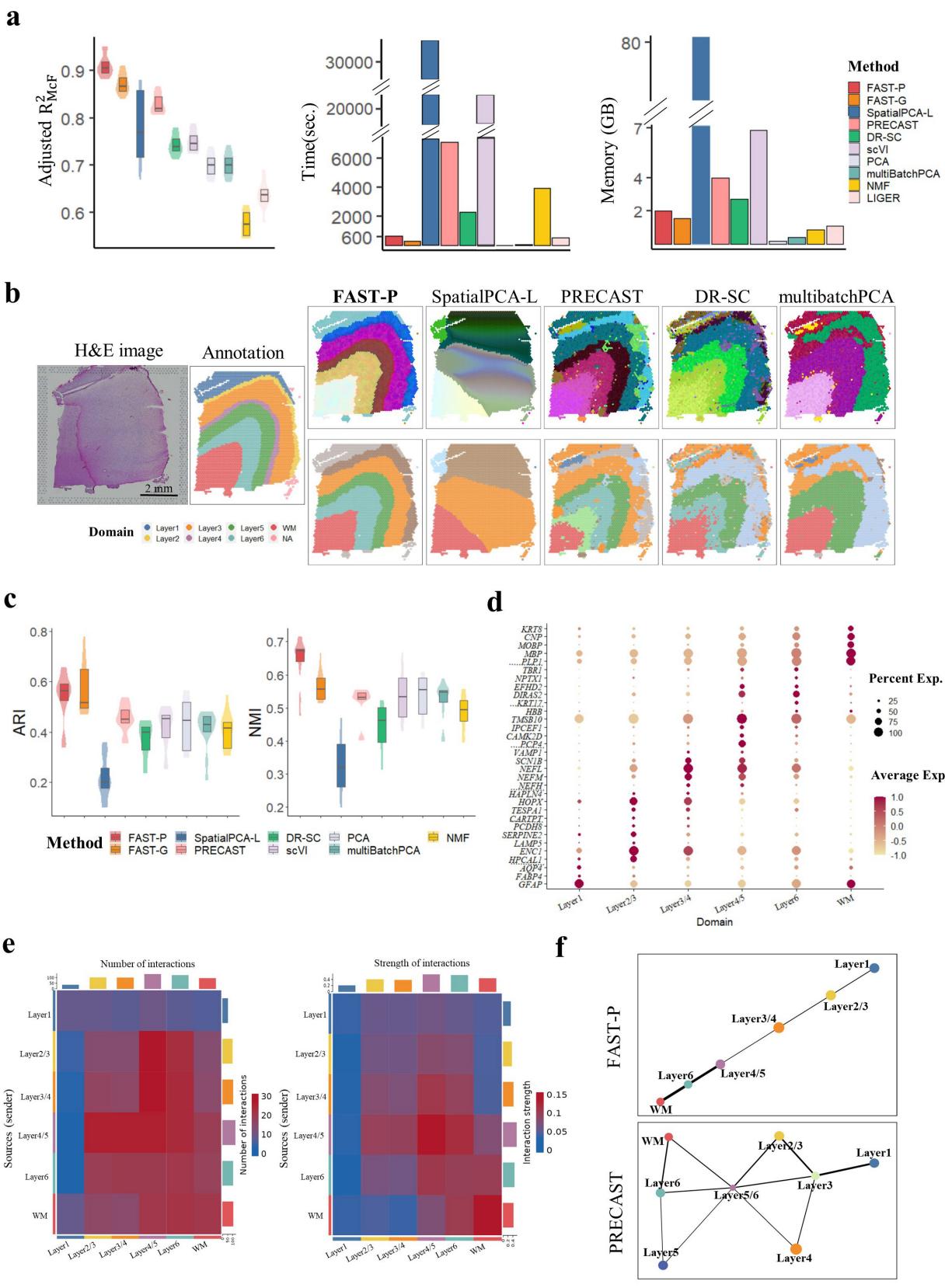


Figure 2: Analysis of human DLPFC data ($n = 47,680$ locations over 12 tissue sections). (a): Box/violin plot of adjusted R^2_{McF} values for FAST and other methods, and bar plots of running time (seconds) and memory usage (GB) for FAST and other methods. In the boxplot, the center line and box lines denote the median, upper, and lower quartiles, respectively. (b): Left panel: H&E image and manual annotation of sample ID 151674. Top panel: UMAP RGB plots of sample ID 151674 for FAST, SpatialPCA-L, DR-SC, mutibatchPCA, and NMF. Bottom panel: Clustering assignment heatmaps for these five methods. (c): Box/violin plots of ARI/NMI values for FAST and other methods. In the boxplot, the center line and box lines denote the median, upper, and lower quartiles, respectively. (d): Dot plot of the normalized expression levels aligned across 12 sections for the marker genes of the layers detected by FAST-P. (e) Combined cell-cell interaction analysis using the normalized expression levels aligned across 12 sections and layer labels obtained by FAST-P. Heatmap of the number/strength of interactions among the different layers. (f) PAGA trajectory for sample ID 151507 using the embeddings and layer labels obtained by FAST-P and PRECAST, respectively.

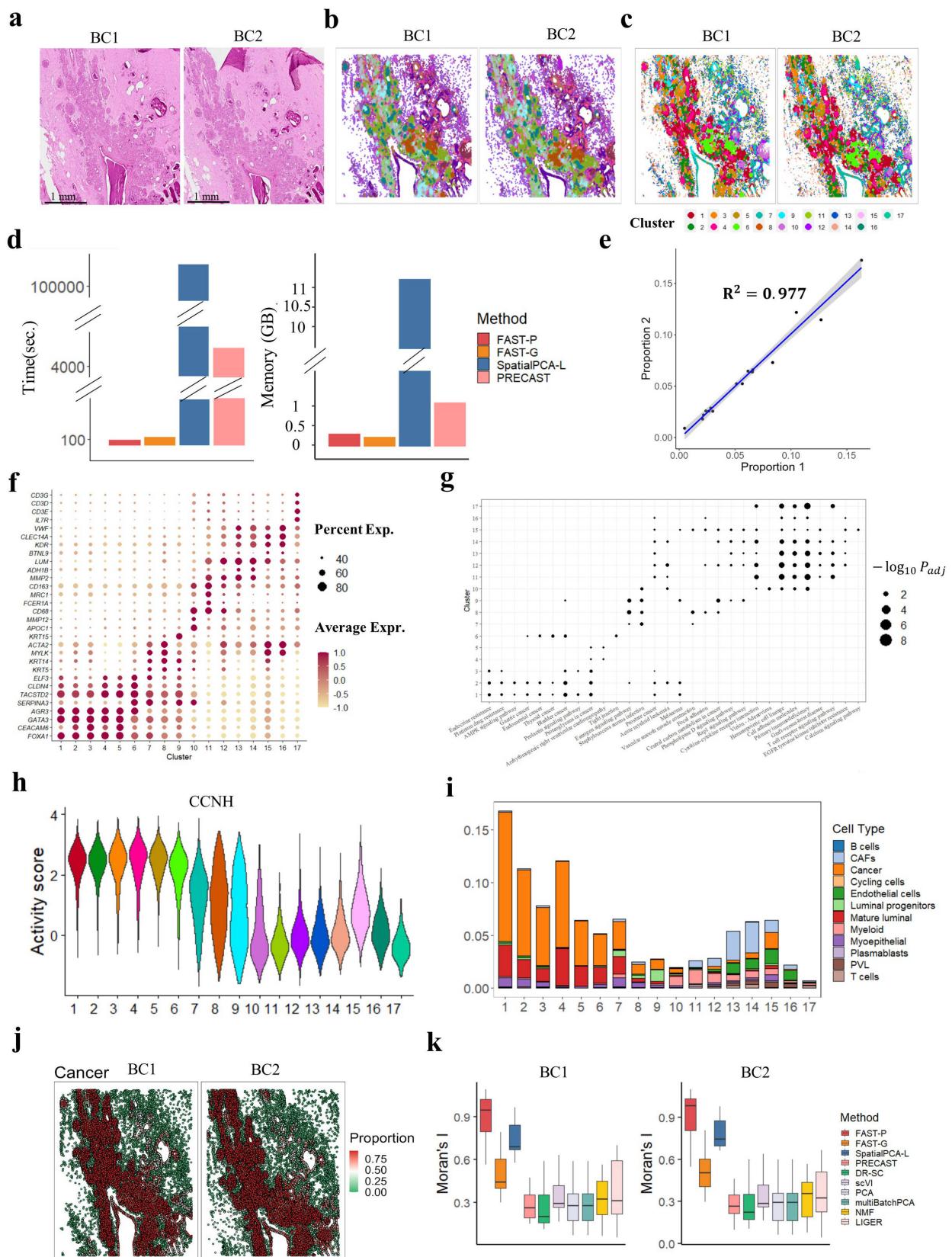


Figure 3: Analysis of human breast cancer Xenium data ($n = 72,651$ locations over two tissue sections). (a): H&E images of the two sections. (b): UMAP RGB plots of these two sections for FAST-P. (c): Clustering assignment heatmaps of these two sections for the 17 clusters detected by FAST-P. (d): Bar plots of running time (seconds) and memory usage (GB) for FAST, SpatialPCA-L and PRECAST. (e): Scatter plot of the proportions of the 17 clusters in sections BC1 and BC2, with the fitted smoothing line and confidence band determined by the linear regression. (f) Dot plot of the normalized expression levels aligned across two sections for the marker genes of the 17 clusters detected by FAST-P. (g) Dot plot of the significant KEGG pathways of the marker genes for the 17 clusters identified by FAST-P. (h) Violin plot of the activity score for the regulatory protein *CCNH* in the 17 clusters. (i) Percentage of different cell types in each domain detected by FAST-P with scaling to the summation of all cell types across all domains equal to 100%. CAFs: cancer-associated fibroblasts; PVL: perivascular-like cells. (j) Spatial heatmap of deconvoluted cell proportions in cancer cells. (k) Boxplots of the Moran's I for the 15-dimensional embeddings obtained by FAST and other methods. In the boxplot, the center line, box lines and whiskers represent the median, upper, and lower quartiles, and the 1.5-times interquartile range, respectively.

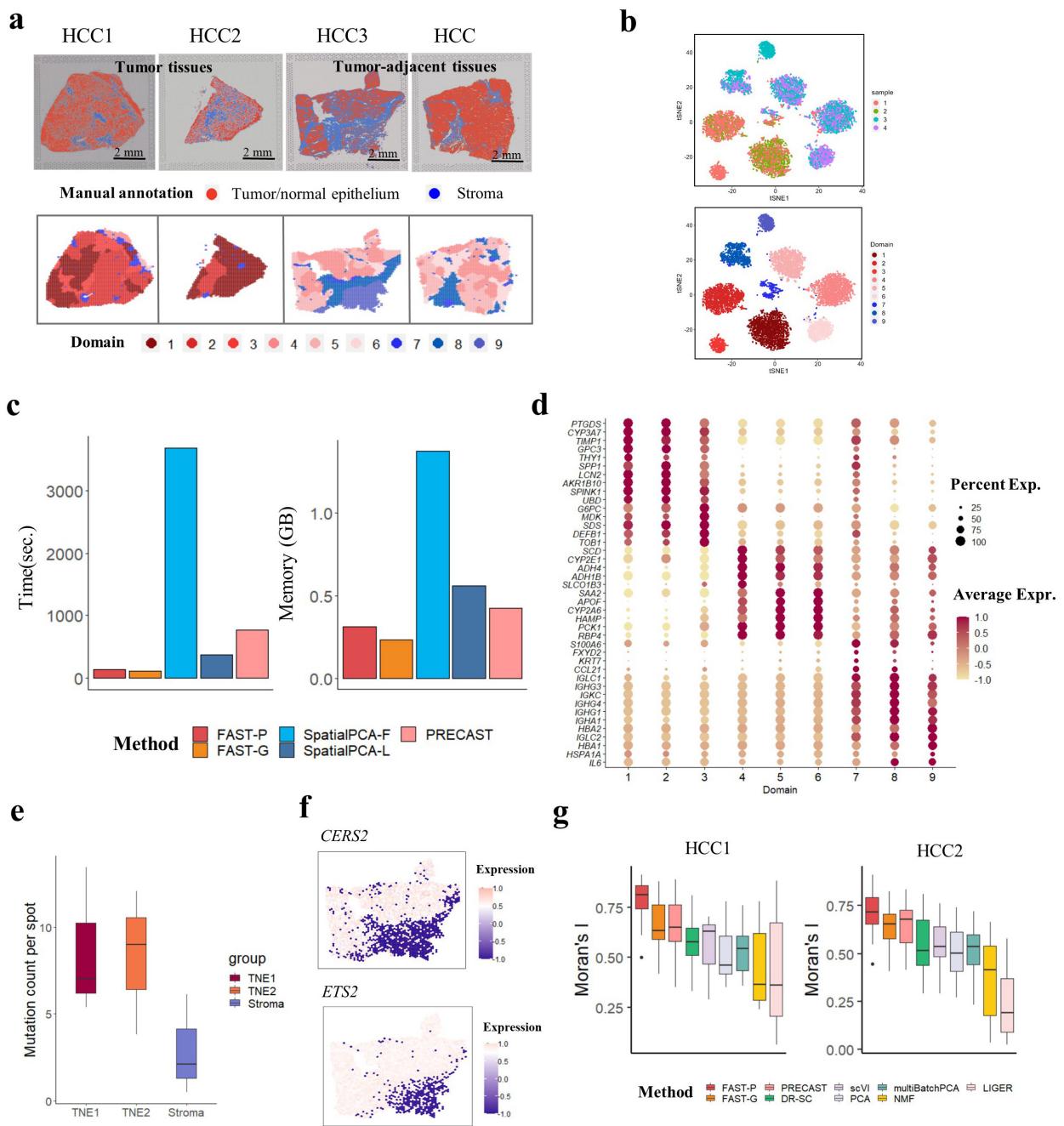


Figure 4: Analysis of human hepatocellular carcinoma Visium data ($n = 9,813$ locations over four tissue sections). (a): Top panel: H&E images from four tissue sections; Bottom panel: Clustering assignment heatmaps for four tissue sections by FAST-P. (b): tSNE plots of the aligned embeddings of FAST-P. (c): Bar plots of running time (seconds) and Memory usage (GB) for FAST, SpatialPCA and PRECAST. (d): Dot plot of the normalized expression levels aligned across four sections for the marker genes of the nine clusters detected by FAST-P. (e): Box plot of mutation count per spot for TNE1 (Domains 1-3), TNE2 (Domains 4-6) and stroma (Doamins 7-9). (f): Spatial heatmap of the expression levels of *CERS2* and *ETS2* genes in HCC3, corresponding to the top two SNPs with somatic mutations. (g): Boxplots of Moran's I for the 15-dimensional embeddings obtained by FAST and other methods. We did not plot Moran's I for SpatialPCA because SpatialPCA produced almost identical embedding for each spot and had a Moran's I value of 1. In the boxplots, the center line, box lines and whiskers represent the median, upper, and lower quartiles, and 1.5-times interquartile range, respectively.

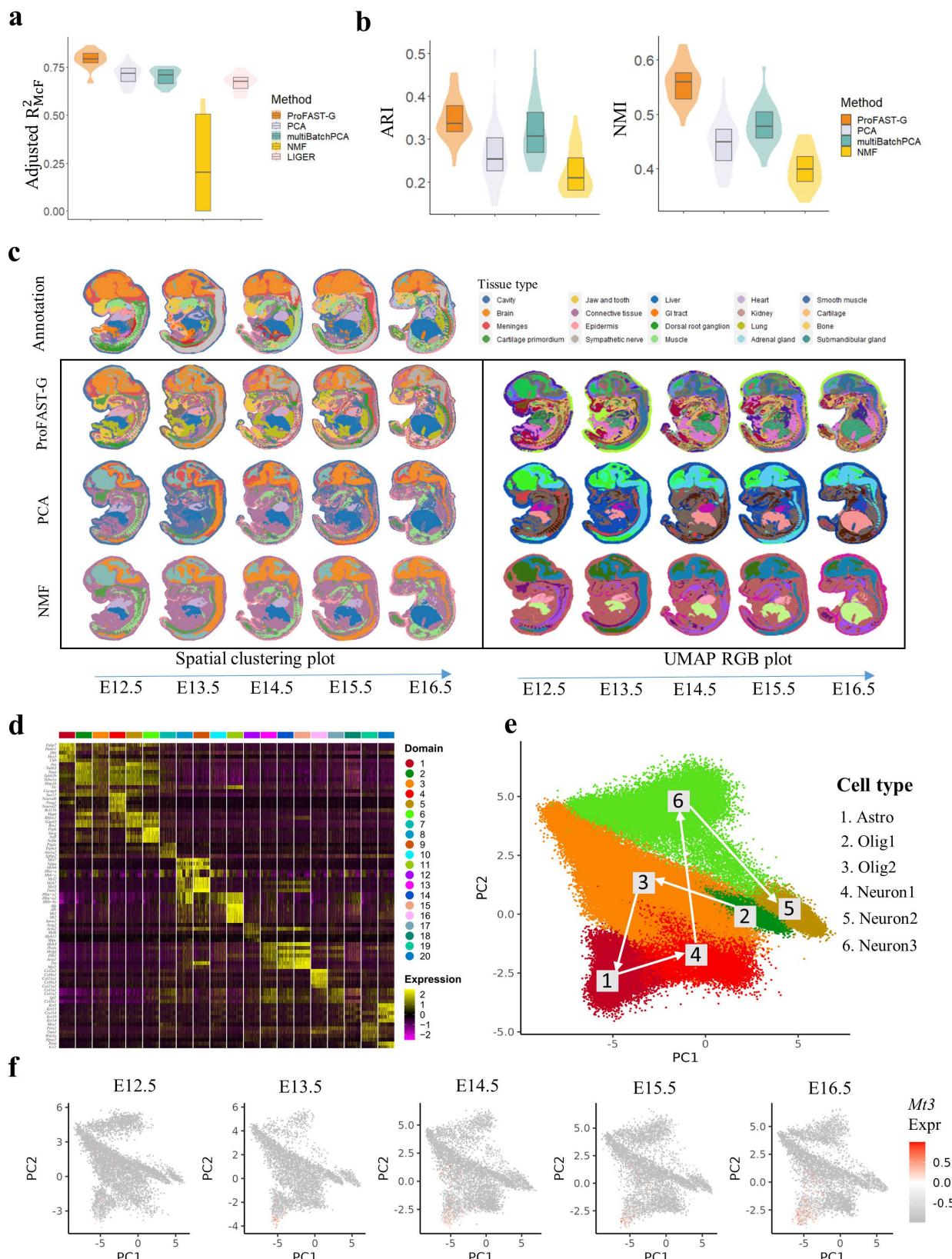


Figure 5: Analysis of mouse embryo Stereo-seq data ($n = 2,323,044$ locations over 26 tissue sections). (a): Box/violin plot of adjusted R^2_{McF} values for FAST-G and four other methods. (b): Box/violin plot of ARI/NMI values for iSC-MEB clustering based on the embeddings obtained by FAST-G and three other methods. (c): Left panel: Clustering assignment heatmaps for five sections (sample IDs: 1, 7, 11, 18, 23) from different embryo days (the first sample in E12.5, E13.5, E14.5, E15.5 and E16.5, respectively) by manual annotation, FAST-G, PCA and NMF. Right panel: UMAP RGB plots for these sections based on the aligned embeddings from FAST-G, PCA and NMF. (d): Heatmap of differentially expressed genes for the 20 domains identified by FAST-G. (e): Scatter plot of two-dimensional PCs from the embeddings of FAST-G within the brain region. The depicted path corresponds to the inferred differentiation pathway determined by Slingshot for the six distinct subregions within the brain. Astro: Astrocytes, Olig: Oligodendrocytes. (f): Scatter plot of two-dimensional PCs from the embeddings of FAST-G for the expression levels of gene *Mt3* during embryo days ranging from E12.5 to E16.5.