

1 **Title:** Genome-wide screen identifies new set of genes for improved heterologous laccase
2 expression in *Saccharomyces cerevisiae*

3 **Running Title** (max 54 characters): Genome-wide screen of higher protein producing strains

4

5 **Author List:** Garrett Strawn¹, Ryan Wong¹, Barry Young², Michael Davey³, Corey Nislow⁴,
6 Elizabeth Conibear³, Christopher Loewen², Thibault Mayor^{1*}

7

8 1. Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University
9 of British Columbia, Vancouver, BC, Canada

10

11 2. Department of Cellular and Physiological Sciences, University of British Columbia,
12 Vancouver, BC, Canada

13

14 3. Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver,
15 BC, Canada

16

17 4. Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada

18

19 * corresponding author: mayor@mail.ubc.ca

20

21

22

23

24 **Abstract** (Max 250 words: 249 words)

25 The yeast *Saccharomyces cerevisiae* is widely used as a host cell for recombinant protein
26 production due to its fast growth, cost-effective culturing, and ability to secrete large and complex
27 proteins. However, one major drawback is the relatively low yield of produced proteins compared
28 to other host systems. To address this issue, we developed an overlay assay to screen the yeast
29 knockout collection and identify mutants that enhance recombinant protein production,
30 specifically focusing on the secretion of the *Trametes trogii* fungal laccase enzyme. Gene ontology
31 analysis of these mutants revealed an enrichment of processes including vacuolar targeting, vesicle
32 trafficking, proteolysis, and glycolipid metabolism. We confirmed that a significant portion of
33 these mutants also showed increased activity of the secreted laccase when grown in liquid culture.
34 Notably, we found that the combination of deletions of *OCA6*, a tyrosine phosphatase, along with
35 *PMT1* or *PMT2*, two ER membrane protein-O-mannosyltransferases involved in ER quality
36 control, and *SKI3*, a component of the SKI complex responsible for mRNA degradation, further
37 increased secreted laccase activity. Conversely, we also identified over 200 gene deletions that
38 resulted in decreased secreted laccase activity, including many genes that encode for mitochondrial
39 proteins and components of the ER-associated degradation pathway. Intriguingly, the deletion of
40 the ER DNAJ co-chaperone *SCJ1* led to almost no secreted laccase activity. When we expressed
41 *SCJ1* from a low-copy plasmid, laccase secretion was restored. However, overexpression of Scj1p
42 had a detrimental effect, indicating that precise dosing of key chaperone proteins is crucial for
43 optimal recombinant protein expression.

44

45 **Importance** (150 words; 113 words)

46 Our study showcases a newly developed high throughput screening technique to identify yeast
47 mutant strains that exhibit an enhanced capacity for recombinant protein production. Using a
48 genome-wide approach, we show that vesicle trafficking plays a crucial role in protein production,
49 as the genes associated with this process are notably enriched in our screen. Furthermore, we
50 demonstrate that a specific set of gene deletions, which were not previously recognized for their
51 impact on recombinant laccase production, can be effectively manipulated in combination to
52 increase the production of heterologous proteins. This study offers potential strategies for
53 enhancing the overall yield of recombinant proteins and provides new avenues for further research
54 in optimizing protein production systems.

55

56 **Introduction**

57 The budding yeast, *Saccharomyces cerevisiae*, is a widely used host organism for the production
58 of recombinant proteins, which include insulin, vaccines against HPV and hepatitis B, as well as
59 various enzymes such as alpha-amylases and cellulases (1, 2). Even so, the historically low yields
60 of protein from *S. cerevisiae* compared to other host organisms, often on the scale of milligrams
61 of protein per liter of culture, potentially limits the value of such a system.

62 There are numerous bottlenecks which have the potential to severely hamper the capacity
63 for recombinant protein production in *S. cerevisiae*, which include gene expression, correct folding
64 of the protein within the ER, addition of post-translational modifications and trafficking for
65 secretion (3). Overexpression of a recombinant protein may also trigger certain cellular stress
66 responses such as the Unfolded Protein Response (UPR) and ER-associated degradation (ERAD)
67 due to the accumulation of protein within the ER. Additionally, the overall metabolic burden can
68 also limit the production of recombinant proteins. Engineering attempts to alleviate these

69 bottlenecks have had varied results, with the success of an individual modification being largely
70 dependent on the specific recombinant protein being expressed (4-6). Interestingly, recent work
71 shows that modeling of the secretion pathway can guide the engineering of strains to increase
72 recombinant expression (7). Nevertheless, no systematic screen has been done to confirm which
73 cellular pathways are the main bottlenecks for heterologous protein production in yeast.

74 In this study we have utilized a fungal laccase enzyme, *ttLCC1*, isolated from *Trametes trogii* as
75 our model recombinant protein (8). Laccases are multicopper oxidases with considerable
76 biotechnological potential that can be found naturally in plants, insects, bacteria and fungi (9, 10).
77 Their natural function varies depending on the organism, but can include lignification in plants
78 and delignification in white-rot fungal species. Laccases from this group of fungi have received
79 particular attention for their potential use in biotechnological applications due to their high redox
80 potentials at the T1 copper site (8). Laccase enzymes show substrate promiscuity, capable of
81 oxidizing a range of compounds including the common pollutant, Bisphenol-A, pesticides, and
82 phenolic dyes (8, 9, 11-13). In addition, they are “green” enzymes in that they use readily available
83 molecular oxygen and produce water as the only by-product. As a result of their many
84 advantageous properties, laccases have been extensively studied for potential uses, as well as
85 actual implementation in applications such as paper and pulp processing, synthetic chemistry,
86 wastewater treatment, biofuel production from second generation feedstocks, and biofuel cells
87 (14) and thus are of great interest for recombinant production.

88 To uncover additional potential engineering targets which can increase recombinant
89 protein production in *S. cerevisiae*, we screened a library of 4,790 single gene, non-essential
90 deletion mutants for effects on recombinant laccase expression and secretion using novel high
91 throughput methodology based on solid media growth. We identified a first set of gene deletions

92 that we further assessed in liquid cultures, resulting in several new gene deletions with significantly
93 increased secreted laccase activity compared to a reference strain. This study showcases the use of
94 novel high throughput methodology to identify novel engineering targets to increase recombinant
95 production of laccases in *S. cerevisiae*.

96

97 **Results**

98 **Screening of the laccase expressing single gene deletion mutants with the ABTS overlay
99 assay and enrichment analysis of identified hits.**

100 To screen the yeast knockout (YKO) collection for effects on recombinant laccase production, a
101 library of laccase-expressing single gene deletion mutants was generated using SGA methodology
102 (15). The codon optimized *LCC1* gene from the fungi *Trametes trogii* under the control of the
103 constitutively expressed and strong *GPD1* promoter with a N-terminal native secretion signal was
104 integrated into the *TRP1* locus of the SGA query strain (JHY716). We verified that the activity of
105 the secreted laccase could be readily assessed using a colorimetric assay, while no significant
106 signal was noted from the original strain (Figure S1A, B). This laccase-producing strain served as
107 the query strain for the SGA procedure and was mated to a collection of 4,790 unique gene
108 deletions spanning the *S. cerevisiae* genome (Figure 1A). Three independent sporulations were
109 performed in parallel before the multiple selection steps to generate the laccase-expressing deletion
110 mutants and the library was decondensed (from 1536 colonies/plate) onto 48 plates at a density of
111 384 colonies per plate to facilitate high-throughput screening.

112 To assess levels of recombinant laccase production and secretion from the generated
113 library, a colorimetric ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) overlay assay
114 was developed (Figure 1B, C). High density yeast arrays were first pinned onto a nitrocellulose

115 membrane overlaid on YPD media supplemented with copper (II) sulfate, which is necessary for
116 proper folding and activity of the laccase enzyme (Figure 1B). To assess the levels of secreted
117 laccase immobilized on the nitrocellulose membrane, cells were washed away from the membrane
118 before the addition of a soft agarose overlay containing the ABTS substrate. One-hour post
119 addition of the overlay, differing intensities were observed due to the varied activity levels of the
120 secreted recombinant laccase from each YKO strain (Figure 1C). A custom image analysis pipeline
121 incorporating densitometry was used to quantify the mean pixel intensity from each site on the
122 assayed plate (see Methods). Importantly, normalizations to allow for inter-plate comparisons and
123 corrections for the increased signal observed at sites near the peripheries of the plate were applied
124 for the calculation of a modified Z score. Using this approach, we identified 66 “positive hits” with
125 increase laccase activity and 208 “negative hits” with reduced activity among the 4,790 mutant
126 strains that we assessed (Table S1).

127 A large portion of positive hits were mapped to the secretory pathway (Figure 2A)
128 indicating their relevance during recombinant laccase production. In agreement with this
129 observation, gene ontology (GO) analysis of the positive hits showed that several related
130 processes; including Golgi retention, vacuole targeting, multivesicular body sorting pathway and
131 vesicle transport are significantly enriched (Figure 2B). These results suggest that missorting of
132 proteins could be a limiting factor in the production of recombinant laccase.
133 Glycophosphatidylinositol (GPI) anchor biosynthesis was also an enriched GO term, as well as
134 ATP export, autophagy and proteolysis. Intriguingly, deletion of the ER chaperone *LHS1* resulted
135 in the greatest mean modified Z score (Figure S2A). *Lhs1p* has been shown to be a nucleotide
136 exchange factor (NEF) of *Kar2p*, as well as being necessary for post-translational translocation
137 into the ER lumen (16, 17). As a result, *lhs1Δ* mutants show a constitutive activation of the UPR

138 (18). A constitutively active UPR could theoretically enhance the levels of recombinant laccase
139 production through upregulation of other ER chaperones, expansion of ER size, and promotion of
140 ER to Golgi transport. In contrast, deletion of *PET111* had the lowest mean modified Z score
141 (Table S1). Pet111p is a translational activator for *COX2* mRNA which encodes for subunit II of
142 Complex IV in the mitochondrial electron transport chain (19). Many genes involved in
143 mitochondrial processes are observed in the list of negative hits suggesting the importance of
144 functional mitochondria (Figure S2B). Correspondingly, there is an enrichment for numerous
145 mitochondria-related GO terms among the negative hits (Figure 2C). Defective mitochondria
146 could affect a variety of processes such as respiration and generation of ATP, maintenance of redox
147 state, amino acid and lipid metabolism, and synthesis of other metabolites including heme. Perhaps
148 the most obvious interpretation is that the ability of cells to perform respiration, which occurs after
149 glucose has been depleted in the growth media, is limited or abolished in these cells (20).
150 Interestingly, respiration after glucose depletion has been proposed to be a stage of growth where
151 protein folding, and thus recombinant protein production, is optimized due to elevated NADPH
152 levels from ethanol metabolism that can reduce oxidative stress produced during folding within
153 the ER (21). Interestingly, the ERAD pathway was also identified in the GO analysis (Figure 2C).
154 This includes *HRD1* and *UBC7* that encode, respectively, an E3 ligase and E2 enzyme involved in
155 targeting misfolded proteins (22), whose deletion was detrimental to laccase production. The effect
156 of modulating ERAD is likely specific to each heterologous protein, as it was previously shown
157 that deletion of these genes can be used to engineer cell factories (23). Taken together, results from
158 the ABTS overlay assay screen and subsequent enrichment analysis suggests that missorting
159 during vesicle trafficking is a potential major limiting factor, and thus engineering target, for
160 recombinant laccase production. It appears, from the negative hits, that functional mitochondria

161 are beneficial for the production of recombinant laccase, possibly by promoting conditions that
162 improve protein folding during respiration. Additionally, proteins involved in ERAD appear to be
163 potentially necessary to sustain high levels of secreted laccase.

164

165 **Characterization of hits from ABTS overlay assay with liquid cultures.**

166 To further assess the increased laccase production observed in the ABTS overlay assay screen, the
167 sixty-six identified positive hits were assayed in liquid culture, which is more similar to cultivation
168 conditions when recombinant proteins are produced in bioreactors. Sampling of the cleared
169 supernatant containing secreted laccase was performed at 96 hours post inoculation of the batch
170 culture in 96 deep-well plates and quantification of secreted laccase activity was accomplished
171 using a plate reader. A secreted laccase activity (μM oxidized ABTS / min) was calculated from
172 the rate of change in absorbance using the Beer-Lambert Law. The OD_{600} of the microvolume
173 cultures were measured in parallel and used to normalize the secreted laccase activity to account
174 for the number of cells in each culture. The three biological replicates of the sixty-six positive hits
175 were assayed alongside the reference query strain, JHY716_ttLCC1, to determine the change in
176 normalized laccase activity from that of the parent strain. Out of the 66 positive hits, 50 were
177 observed to have an increased normalized laccase activity in comparison to the reference strain,
178 including 17 gene deletions with significantly increased normalized laccase activities (Figure 3A).
179 Similar results were obtained when only the laccase activity was considered, regardless of the
180 culture density (Figure S3A). All 17 gene deletions with significantly increased normalized
181 activities had over a twofold increase in comparison to the reference strain with *ski3Δ*, *arv1Δ*,
182 *pmt2Δ* strains each having fold increases of 5.3, 5 and 4.3, respectively (Figure S3B). *Ski3p* is a
183 scaffold protein that is part of the cytosolic SKI complex that associates with the exosome to

184 facilitate 3'-5' mRNA degradation (24). Notably, we detected a significant increase of *LCC1*
185 transcript levels in *ski3Δ* cells (Figure S3C). Arv1p is an ER membrane-localized flippase that is
186 thought to be responsible for the transport of GPI intermediates into the ER lumen from the cytosol
187 and loss of Arv1p disrupts organelle integrity and induces the UPR (25). Pmt2p is an O-
188 mannosyltransferase that participates in ER protein quality control (26). Interestingly, deletion of
189 several genes involved in late-stage vesicle trafficking such as *STP22*, *SRN2*, *VPS27*, and *VPS28*
190 did not lead to an increase of laccase production in liquid culture while deletion of these genes
191 displayed the greatest laccase activity increase in the solid media assay (Figure 3A, Figure S2A).
192 Different cultivation conditions in the two assays may therefore differentially impact secretion of
193 the recombinant protein.

194 We next assayed a selected set of gene deletions from the 207 negative hits to validate their
195 detrimental effect on recombinant laccase production. Deletions of select genes involved in
196 mitochondrial processes were observed to have significant decreases in laccase activity, which
197 also coincided with a reduced fitness of these mutants (Figure 3B, S3D). We then investigated
198 negative hits with particular attention on proteins localized to the ER or involved in ER stress
199 response pathways. In this case, only the *vip1Δ* strain displayed a significantly lower cell growth
200 (Figure S3E) and most of the assessed mutant strains display a reduced activity, consistent with
201 the overlay screen results (Figure 3C). Notably, deletion of the ERAD E3 ligase Hrd1p led to
202 significantly reduced laccase activity. Similarly, deletion of several other genes associated with
203 ERAD (*SHP1*, *HRD3*, *YOS9*, *USA1*) showed a decrease of laccase activity, albeit not in a
204 significant manner. Deletion of two genes encoding for kinases involved in inositol processing,
205 *IPK1* and *VIP1*, resulted in significantly decreased normalized activity. The same observation was
206 made for deletion of HOPs and CORVET complexes subunit *VPS33*. Interestingly, deletion of

207 *SCJ1* that encodes the ER HSP40 DNAJ co-chaperone almost completely diminished normalized
208 laccase activity with no detrimental effect on cell fitness. This result suggests that the presence of
209 *Scj1p* may be necessary for the proper production of the recombinant laccase. Taken together,
210 these results indicate that most gene deletions that impact laccase activity in the overlay assay also
211 affect recombinant laccase production in liquid culture.

212

213 **Rescue experiments to confirm hits.**

214 We performed a series of validation experiments by rescuing the deletion phenotypes with a
215 plasmid-expressed form of the wild type gene. We first focused on *SCJ1* where the reintroduction
216 of the gene with endogenous flanking sequences (including promoter and terminator) on a low-
217 copy plasmid was sufficient to nearly restore the levels of the secreted laccase activity in
218 comparison to the reference strain (Figure 4A). Interestingly, overexpression of *SCJ1* by using a
219 high-copy 2μm plasmid only partially rescued the deletion phenotype (Figure 4B). Similarly,
220 overexpression of the co-chaperone in the reference strain that contains a wild-type copy of *SCJ1*
221 also resulted in a reduction of secreted laccase activity. This indicates that endogenous *SCJ1* likely
222 has an optimal expression level for recombinant laccase production, and higher expression of this
223 key gene was not able to increase the secreted laccase activity, but rather, limited it.

224 We next subcloned ten different genes (*ARVI*, *BST1*, *ENV9*, *LHS1*, *OCA1*, *OCA6*, *PMT1*,
225 *PMT2*, *SKI3*, *SND3*) into the low-copy plasmid and reintroduced them into the gene deletion
226 strains. From these complementation experiments, expression of *OCA1*, *OCA6*, and *SND3* fully
227 abrogated the gain of laccase activity in the mutant strains back to the reference strain levels
228 (Figure 4C). In addition, expression of *PMT2* led to a significant decrease of laccase activity when
229 compared to the *pmt2Δ* strain. The observed increase in secreted laccase activity could not be

230 rescued for the remaining six ORFs (data not shown). Mutations already present in the deletion
231 strains or accumulated during the library generation could be responsible for failure to rescue the
232 high secreted laccase activity phenotype observed in the deletion strains. Alternatively, improper
233 expression from the low-copy plasmid could result in a failure to reverse the observed phenotype.

234

235 **Double deletion screen.**

236 As several genes identified in our screen do not seemingly have overlapping functions, we sought
237 to determine which double deletion mutants could lead to a higher laccase secretion. Using the
238 JHY716_ttLCC1 query strain, we deleted a subset of eight target genes by homologous
239 recombination with the hygromycin drug resistance marker (hphMX). Using the SGA approach,
240 we mated the newly established deletion strains with nine original deletion strains from the YKO
241 selection then selected haploids cells with both deletions. We then assessed a subset of 50 different
242 double mutants for laccase production in liquid culture that we normalized to cell density (Figure
243 5A). The average laccase activity was in general higher in comparison to controls where the
244 hygromycin gene was integrated in the *HO* locus (first column) and several double mutants
245 displayed over a two-fold laccase activity in comparison to the reference strain. This was the case
246 for a cluster of strain combinations in which *OCA6*, *PMT1*, *PMT2* and *SKI3* were deleted (Figure
247 5A). In contrast, deletions of *ARV1* and *LHS1* often led to lower laccase activity in the double
248 mutant strains. Because the mini-array was assessed on multiple plates and lacked some controls,
249 we repeated this experiment with only a subset of the promising double mutants along with
250 appropriate single deletion controls. Deletion of *OCA6* with *PMT1* or *PMT2* led to significantly
251 higher laccase activity in several combinations in comparison to controls (Figure 5B). In contrast,
252 double deletion of *PMT1* and *PMT2* did not further impact laccase activity when compared to

253 single deletions. Deletion of *SKI3* also led to an increase of the average activity, albeit not always
254 in a significant manner. These results show how the SGA technology can be used to screen many
255 different combinations of mutations for strain optimization.

256

257 **Discussion**

258 In this study, we initially screened 4,790 unique gene deletions using the ABTS overlay assay and
259 identified a set of 66 gene deletions that increased secreted laccase activity. Subsequently, we
260 demonstrated that a significant proportion of these hits resulted in elevated activity of secreted
261 laccase in liquid culture. We validated a subset of these mutant strains using a plasmid
262 complementation approach. Lastly, we conducted a mini-array screen to identify double mutant
263 strains with enhanced laccase activity.

264 Several of our identified hits in the genome-wide screen have been previously identified in
265 other studies aiming to improve recombinant protein production or to study protein secretion in
266 yeast. These include deletions of *ARV1*, *PER1*, *SNF8*, *VPS3*, *VPS27*, and *VPS28* in a solid media-
267 based screen for increases in recombinant cellulase secretion (27). Additionally, *vps4Δ*, *vps8Δ*,
268 *vps13Δ*, and *vps36Δ* strains have been shown to exhibit increased secretion of an insulin fusion
269 protein (28). Deletion of the protein sorting receptor, *VPS10*, was identified in our screen and is
270 also a common engineering strategy that has been employed previously in *S. cerevisiae* (29).
271 Deletion of the negative regulator of lipid biosynthesis, *OPI1*, was also able to increase production
272 of full-length antibodies four-fold (30). A number of the identified gene deletions have also been
273 identified in screens that are not focused on recombinant protein production, but rather for defects
274 in the secretory pathway including improper vacuolar sorting and ER homeostasis (31, 32). Such
275 genes include the VPS genes identified in our screen (*VPS3*, 8, 13, 21, 27, 28, 36, 38) and others

276 (*ARL3*, *BRE5*, *BST1*, *GDA1*, *GLO3*, *LAS21*, *LHS1*, *PER1*, *PMT1*, *PMT2*) that have been identified
277 in a screen for mutants that secrete CPY due to defects in vacuolar protein sorting (31). This is
278 relevant as, under normal conditions, CPY is targeted to the vacuole for degradation suggesting
279 that deletions of the above genes could also result in rerouting the recombinant laccase from
280 vacuolar degradation to secretion. Additionally, *BRE5*, *BST1*, *LAS21*, *PMT1*, *PMT2*, *PER1* and
281 *SND3* were identified in a screen for gene deletions that result in improper ER retention and
282 secretion of the chaperone Kar2p (32). Along with the GO enrichment analysis, these results
283 confirm that alteration of genes involved in intracellular protein transport can play a major role in
284 heterologous protein expression in *Saccharomyces cerevisiae*.

285 We provided additional evidence to support the effect on laccase production of several
286 genes that have not been previously implicated in recombinant protein production including the
287 protein-O-mannosyltransferases *PMT1* and *PMT2*, a pair of phosphatases *OCA1* and *OCA6*, a
288 subunit of the cytoplasmic SKI complex, *SKI3*, and *SND3* involved in ER targeting. These genes
289 represent a set of engineering targets that could be applied in future studies. Most promising are
290 the combined deletions of *OCA6* and *PMT1* or *PMT2* that led to higher increase of activity of the
291 secreted laccase, and potentially the deletion of *SKI3*.

292 Oca1p and Oca6p are phosphatases that localize to the cytoplasm. Oca1p is known to
293 associate with other oxidant induced cell cycle arrest (OCA) proteins in a complex, while Oca6p
294 does not appear to be a part of the complex (33). Both their biological roles are relatively unknown;
295 however, recent investigations have uncovered links between inositol metabolism as well as
296 translation initiation when OCA genes are deleted.

297 Possible explanations of how deletion of *PMT2* results in an increase in recombinant
298 laccase production include the observation that deletion of *PMT2* results in the failure of functional

299 unfolded protein O-mannosylation (UPOM) (34, 35). A non-functional UPOM would presumably
300 allow for increased folding cycles of the recombinant laccase by the Kar2p chaperone.
301 Additionally, abolition of O-mannosylation through deletion of *PMT2* has been shown to result in
302 decreased cell wall integrity as the majority of cell wall proteins are heavily mannosylated (36).
303 Thus, if secreted laccase was unable to diffuse past the cell wall, decreased cell wall integrity could
304 increase levels of secreted laccase in the culture supernatant.

305 *Ski3p* serves as the scaffolding subunit of the SKI complex, a cytoplasmic complex that is
306 involved in the 3'-5' degradation of normal mRNAs, non-sense mediated decay, and non-stop
307 mediated decay (37-39). Consistent with a possible role of the SKI complex in regulating
308 expression of the recombinant protein, levels of *LCC1* mRNA were significantly higher in *ski3Δ*
309 cells. Interestingly, deletion of other SKI complex genes such as *SKI7* and *SKI8* led to increased
310 levels of secreted laccase by the ABTS overlay screen with *ski8Δ* having a mean modified Z-score
311 of greater than 2.5 but were not classified as hits due to variability between replicates. Deletion of
312 the last SKI complex gene, *SKI2*, which is an RNA helicase, only resulted in a slight increase of
313 secreted laccase activity, while deletion of the SKI2-like helicase, *SLH1*, resulted in secreted
314 laccase activity comparable to that of deletion of *SKI7* and *SKI8*, possibly suggesting a similar
315 effect to deletion of *SKI3*, *SKI7* and *SKI8*.

316 *SND3* encodes for a protein that is involved in SRP-independent post-translational
317 translocation (40). Therefore, the increased laccase activity in *snd3Δ* is potentially caused by an
318 overall decrease in the number of proteins within the ER and post ER vesicles. Alternatively, it
319 has been recently shown that Snd3p plays an essential role in mediating the expansion of
320 perinuclear ER-vacuole junctions (NVJs) during glucose starvation (40). Lipid droplet biogenesis
321 occurs at these NVJs upon glucose starvation (41). Abolition of NVJs by the deletion of *SND3*

322 could therefore prevent an increase of lipid droplet formation and limit the loss of phospholipids
323 from the ER membrane during glucose starvation, thus potentially allowing for increased vesicle
324 formation at ER exit sites and secretion of the recombinant laccase. Interestingly, deletions of
325 *VSP13* and *NVJ1*, which encode for a lipid transporters at membrane contact sites and a tether
326 protein that also mediates NVJs, respectively (42, 43), were also identified in our screen. This
327 suggests that abolishing NVJs is an effective strategy to increase recombinant laccase production
328 possibly through modulation of lipid droplet formation. In agreement with this possibility, deletion
329 of *ENV9*, which encodes for an oxidoreductase that is involved in lipid droplet morphology (44),
330 also led to higher laccase activity. Deletion of *ENV9* results in decreased lipid droplet size (45)
331 which, again, could allow for a higher proportion of the ER membrane to be utilized for vesicle
332 formation. Additionally, the *env9Δ* null mutant shows defective vacuole morphology, which could
333 also possibly explain the increase in enzyme laccase activity if a portion of the recombinant laccase
334 is normally directed towards the vacuole for degradation.

335 In addition to positive hits, we identified 207 negative hits that showed decreased laccase
336 activity. The majority of the negative hits were genes involved in mitochondrial processes, which
337 presumably resulted in decreased cell fitness, and thus was detrimental to recombinant protein
338 production. Several ER-localized genes involved in ERAD (e.g., *HRD1*, *SHP1*, *HRD3*, *YOS9*,
339 *USA1*), N-linked glycosylation (*ALG5*, *ALG8*, *DFG10*) translocation (*GET2*) and protein folding
340 (*MPD1* and *SCJ1*) were identified, suggesting the importance of these processes during
341 recombinant laccase production (46-49). Interestingly, while we could rescue the loss of laccase
342 activity in *scj1Δ* cells by expressing *SCJ1* on a low copy plasmid, higher expression of this gene
343 was detrimental. Indeed, it has also been previously observed that overexpression of *SCJ1* resulted
344 in a decrease in the production of recombinant human albumin in log phase *S. cerevisiae* cultures

345 (50). Therefore, careful dosage experiments should be performed when engineering host strains
346 with supplementary copies of chaperone proteins.

347

348 **Limitations of our study**

349 One limitation of the overlay screen is that yeast cells are most commonly grown in fed batch
350 fermenter tanks rather than on solid media. Indeed, a few positive and negative hits show opposite
351 results when re-assessed in liquid media (e.g., *VPS8* and *UBC7*). However, using the presented
352 assay, we were able to screen approximately 15,000 total strains for their level of recombinant
353 laccase production in just under a week once the library was generated (~5000 strains in 3
354 biological replicates).

355

356 **Methods**

357 **Plasmid and Yeast Strain Construction:**

358 All plasmids, yeast strains and oligos used or generated in this study are listed in Table S2. To
359 construct a query strain for the SGA procedure, the integration vector YIp-*TRP1*-natMX, a gift
360 from Dr. Hampton, was digested with BamHI and SacI to insert the codon optimized *ttLCC1* gene
361 flanked by the constitutive *GPD1* promoter and the *CYC1* terminator (CYC1t) from pRS314-
362 *ttLCC1*-natMX (BPM1768) to generate YIp-*TRP1*-*ttLCC1*-natMX (BPM1843) (51). The original
363 source of codon optimized *ttLcc1* with a N-terminal native secretion signal was a gift from Dr.
364 Sychrová (8). The YIp-*TRP1*-*ttLCC1*-natMX plasmid was linearized with the Bsu36I restriction
365 enzyme in the *TRP1* gene and integrated into the JHY716 strain (*MATA*, *can1Δ::STE2pr-Sp_his5*,
366 *lyp1Δ*, *his3Δ1*, *leu2Δ0*, *ura3Δ0*, *met15Δ0*, *cat5(I91M)*, *SAL1*, *mip1(A661T)*, *HAP1*, *mkt1(D30G)*,
367 *rme1(ins-308A)*, *tao3(E1493Q)*) at the *TRP1* gene via a high efficiency LiOAc transformation

368 protocol (52). Successful integration was confirmed *via* PCR using a primer pair specific to both
369 the genomic DNA 5' of the integration site and integrated DNA (Table S2) and the generated query
370 strain was named JHY716_ttLCC1 (YTM2204).

371 To create independent gene knockouts of selected hits, an hphMX drug resistance cassette
372 encoding for resistance against the antibiotic hygromycin B, was amplified from pAG32 (53).
373 Primers used included 40 bp of homology to the immediate 5' and 3' untranslated flanking
374 sequences, including the start and stop codons, of the targeted open reading frame (ORF) (Table
375 S2). The same high-efficiency LiOAc transformation protocol as above was used for integration
376 of PCR amplified DNA (52). Integration was confirmed *via* a colony PCR protocol using primers
377 specific to the surrounding genomic sequence and the integrated hphMX DNA (Table S2).

378 For complementation experiments, DNA was PCR amplified from JHY716 genomic DNA.
379 Primers were designed to specifically amplify the ORFs and flanking sequences, that included
380 annotated transcription start sites, TATA like elements, 5' UTRs, and 3' UTRs, from genomic DNA
381 (Table S2). Homologous sequences to modified pRS416 (BPM1745) and modified pRS426
382 (BPM1756), both containing hphMX instead of URA3, were used for Gibson Assembly following
383 manufacturer's instructions.

384

385 **Laccase Expressing Single Gene Deletion Library Generation and ABTS Overlay**

386 **Assay Screen**

387 To construct a genome wide library of laccase expressing single gene deletion mutants, the
388 synthetic genetic array (SGA) methodology was utilized (54). To start the SGA procedure, a 30
389 mL culture of the query strain, JHY716_ttLCC1 (YTM2204), was grown in Yeast Peptone
390 Dextrose (YPD) (2 % w/v) media at 30 °C with shaking overnight. The next day, a Singer Rotor

391 HDA robot was used to array the query strain from the liquid culture onto a YPD + clonNAT (100
392 µg/mL) Singer plate in 1536 colonies per plate (cpp) density. Simultaneously, a recently pinned
393 Deletion Mutant Array (DMA) collection also known as the YKO collection was condensed from
394 384 cpp to 1536 cpp on four YPD + G418 (200 µg/mL) Singer plates. Plates were incubated at 30
395 °C overnight. Next afternoon, the laccase expressing query strain was mated with each DMA plate
396 by first pinning the query strain onto four different YPD Singer plates. Cells from the condensed
397 DMA were then pinned on top of the query strain cells. Cells were allowed to mate for ~18 hours
398 before diploid selection by pinning cells onto YPD + G418 + clonNAT Singer plates. Cells were
399 grown for ~28 hours at 30 °C. Cells from each diploid selection plate were transferred onto 3
400 independent sporulation plates (1 % (w/v) Potassium Acetate, 0.1 % (w/v) Yeast Extract, 0.5 g/L
401 dextrose, 0.1 g/L amino acid supplement powder (0.5 g histidine, 2.5 g leucine, 0.5 g lysine, 0.5 g
402 uracil), 2 % (w/v) agar, 50 µg/mL G418) creating three biological replicates of the library (12
403 plates at 1536 cpp). Cells were grown on sporulation media for 5 days at 22 °C. Cells from the
404 sporulation plates were transferred onto synthetic defined (SD; without ammonium sulfate and
405 with 1 g/L MSG) – His/Arg/Lys + canavanine (100 µg/mL) + thialysine (100 µg/mL) Singer plates
406 and grown for 2 days at 30 °C. Double mutants were then selected for by transferring cells onto
407 SD – His/Arg/Lys + canavanine + thialysine + G418 + clonNAT plates. Plates were left at room
408 temperature for ~ 3 days. Cells were then transferred onto YPD + G418 (200 µg/mL) + clonNAT
409 (100 µg/mL) plates at a density for 1536 cpp density for storage. Decondensing of 1536 cpp arrays
410 to a density of 384 cpp on YPD + G418 (200 µg/mL) + clonNAT (100 µg/mL) plates was done to
411 facilitate screening of the generated library using the ABTS overlay assay.

412 A similar approach was used to generate double deletion mutants on a mini-array. Strains
413 were first spotted on two 384 cpp density YPD plates: one in which each column contains a

414 different hph-integrated strain, and the other with each row containing a different kan-integrated
415 deletion strain. Diploid selection was done on YPD + G418 (200 µg/mL) + clonNAT (100 µg/mL)
416 + hygromycin B (200 µg/mL), diploid cells were spotted on three separate plates for sporulation,
417 and following haploid selection, the final selection was done on SD – His/Arg/Lys + canavanine
418 + thialysine + G418 + clonNAT + hygromycin B plates. Colonies were then transferred on YPD
419 + G418 + clonNAT + hygromycin B plates before transferring cells to liquid cultures for the ABTS
420 liquid assay. For each biological replicate, cells were derived from a different sporulation plate.

421 An ABTS overlay assay was used to screen the generated library. Arrays from SGA library
422 preparation at a density of 384 cpp were pinned onto a nitrocellulose membrane (0.45 µm pore
423 size) overlaid on YPD + G418 (200 µg/mL) + clonNAT (100 µg/mL) + CuSO₄ (0.6 mM) media
424 in Singer PlusPlates using a Singer Rotor HDA robot. Equal amounts of media, 40 mL, were
425 deposited into plates to ensure equal focal length during imaging of the assay. Plates were
426 incubated at 30 °C for 48 hours before colonies were washed from nitrocellulose membrane with
427 a stream of phosphate buffered saline (PBS) solution. 40 mL of a heated solution (55 °C) of 0.5 %
428 (w/v) agarose, 50 mM Britton and Robinson Buffer (0.1 M each of Boric, Phosphoric and Acetic
429 Acid, brought to pH 4.0 with NaOH), and 0.5 mM ABTS was then administered onto the plate.
430 The plate was incubated at room temperature for one hour to allow the colorimetric reaction to
431 develop before images were taken with a digital camera (Canon Rebel EOS T3i, Manual Settings:
432 f 2.8, 100 ISO, and 1/80 s exposure). An imaging setup built into the BM3-BC robot (S&P
433 robotics) was utilized for consistent background illumination. Before images of the colorimetric
434 reaction were captured, a blank plate overlaid with a nitrocellulose membrane was used to focus
435 the camera. Images were stored as lossless RAW files (.CR2 file format) in addition to JPEG lossy
436 file formats for visual inspection.

437

438 **Image Analysis and Quantification of Colorimetric Signal**

439 A custom CellProfiler pipeline was used for image analysis and quantification of pixel intensity
440 using densitometry from the colorimetric reaction. First, RAW images were cropped to defined
441 dimensions, converted to grayscale, and then the pixel intensity was inverted for quantification
442 purposes. A pre-prepared background illumination function was prepared by imaging six
443 individual “blank” nitrocellulose plates overlaid with an agarose overlay. The images from these
444 six blank plates were analyzed using CellProfiler to generate a background illumination function.
445 Specifically, the minimum pixel intensity for each segmented section of the image (5 x 5-pixel
446 dimensions) was found. A median smoothing filter was applied which removes bright or dim
447 features that are imaging artifacts. The resulting background illumination function was subtracted
448 from pixel intensities of images to subtract the background illumination from the nitrocellulose
449 from the image. To quantify pixel intensity from the ABTS overlay assay, a 24 x 16 grid (384 total
450 segmented blocks corresponding to the number of cpp) was overlaid onto the image in order to
451 segment each site on the array for quantification. Within each segmented block a 101-pixel
452 diameter circle, centered in each box on the grid, was used to define the boundary for
453 quantification. The mean pixel intensity of pixels within the segmented circles was calculated for
454 each site and exported to a spreadsheet for further data processing. We used a custom-built R script
455 to correct for colony position due to the increase in signal intensity seen in the outer edges of the
456 array. Importantly, before normalization and correction was applied, images of arrays before
457 washing away of colonies were manually inspected to determine if growth occurred at each
458 individual site, with a value of 1 representing “normal growth”, while a value of 0 represented “no
459 growth” or “abnormal growth”. This manual inspection was necessary to prevent calculated plate

460 medians to be influenced by a large number of empty sites with little to no signal. The mean pixel
461 intensity for each site on an individual plate was then first normalized to the median mean pixel
462 intensity of the plate, excluding sites with “no growth” or “abnormal growth”. To correct for
463 increased signal of edge sites, a “zone correction” was then applied. This correction method
464 consists of dividing the array into zones, defined as a series of concentric rectangles starting from
465 the periphery of the plate and moving toward the center. If an individual zone had a median of the
466 normalized mean pixel intensity values above the median of the mean pixel intensity of the entire
467 plate (1.0 by definition), all normalized mean pixel intensity values within that zone will be divided
468 by the median value of the zone. This is similar to “row” and “column” corrections used during
469 the quantification of colony size in high density yeast arrays, however it is customized to the
470 unique pattern of increased signal seen in our assay, resembling concentric rectangles (55). After
471 normalization and zone correction of the mean pixel intensity for each site, modified Z-scores were
472 calculated for each site in an individual plate. First median absolute deviations (MAD) were
473 calculated using the formula $MAD = 1.4826 * Median(|x - median|)$. Modified Z-scores were
474 then calculated by subtracting the median normalized and zone corrected mean pixel intensity from
475 individual pixel intensity values and dividing by the calculated MAD. A threshold of modified Z
476 scores greater or equal to 2.5 for 2 or more replicates was used to identify hits from the screen.
477

478 **Gene Ontology enrichment analysis and other statistical analyses**

479 GO process enrichment analysis was performed using the online tool, GOrilla (56). The set of 66
480 positive hits and 207 negative hits were independently analyzed against a background list of the
481 4,790 gene deletions in the generated library using the Benjamini and Hochberg correction. All
482 the statistical tests were performed in PRISM. Unless specified, ONE way ANOVA analyses were

483 done with Dunnet's correction for multiple comparisons to the same reference strain, and with
484 Tukey's correction for multiple comparisons between all the different strains.

485

486 **ABTS Liquid Assays**

487 Selected hits from the previous screen were transferred from YPD + G418 + clonNAT source
488 plates onto a new YPD plate and grown for 2 days at 30 °C. Cells were then inoculated into 150
489 µL of expression media (YPD, 20 µg/mL adenine, 50 mM potassium phosphate (dibasic) (pH 6),
490 0.5 mM copper (II) sulfate) in a 96 well round bottom plate and grown in a microplate shaker
491 incubator at 30 °C with shaking at 900 rpm overnight. The next morning, culture density was
492 measured with a plate reader (BMG, Clariostar +). Overnight cultures were then used to inoculate
493 500 µL of expression media at a starting OD₆₀₀ of 0.2 in a 96 well 2 mL deep well plate. Deep well
494 plates were sealed with a breathable cover and grown for 4 days (96 hours) at 30 °C with shaking
495 at 900 rpm. At the end of 4 days, the OD₆₀₀ of the cultures were measured again in order to
496 normalize secreted laccase activity to the number of cells. The deep well plate was then spun down
497 in a swinging bucket centrifuge at 3,200 rcf for 5 minutes to separate secreted laccase in the
498 supernatant from the cells. 20 µL of supernatant containing the secreted laccase was then added to
499 80 µL of Britton and Robinson buffer (100 mM, pH 4) in a flat bottom 96 well plate. Immediately
500 prior to quantification, 100 µL of 2 mM ABTS in 100 mM Britton and Robinson buffer (pH 4)
501 was added to wells thus starting the colorimetric reaction. Secreted laccase activity was monitored
502 over the course of two hours using UV-Visual spectrophotometry at 420 nm, the absorbance
503 maximum of the oxidized ABTS product, with readings taking place every minute. Absorbance
504 was plotted against time in order to determine the range where a linear rate of change is observed.
505 Linear regressions were fitted to data with data points eliminated until a correlation coefficient of

506 at least 0.999 was obtained. Using the Beer-Lambert law, absorbance was used to calculate the
507 concentration of oxidized ABTS in μ moles. A laccase activity value (μ moles oxidized ABTS / min)
508 was then calculated. The activity of value was normalized to the cultures OD₆₀₀ (Activity / OD₆₀₀)
509 to control for differences in number of cells and were averaged across replicates for each strain.

510 To validate identified gene deletions, the replicate colony with the median normalized
511 activity value was transformed with a plasmid containing rescue DNA specific to that gene.
512 Simultaneously, an empty plasmid control, pRW113 (BPM1745), was transformed into the same
513 gene deletion strain. Transformants were selected for on YPD + hygB (200 μ g/mL) plates.
514 Transformants were pooled together and spotted onto another YPD + hygB (200 μ g/mL) plate as
515 a source for future inoculations. When possible, the number of transformants pooled together was
516 thirty. Assessment of secreted laccase activity was done as described above using expression
517 media + hygB (200 μ g/mL).

518

519 RT qPCR

520 Total RNA was extracted using the RiboPure Yeast RNA Prep Kit (Thermo Fisher Scientific
521 AM1926). RNA Integrity Number (RIN) and concentration was determined using the Bioanalyzer
522 2100 (Agilent G2939BA) and RNA 6000 Nano chip (Agilent 5067-1511). *ttLCC1* and *UBC6*
523 mRNA levels were determined using the Power SYBR® Green RNA-to-CT™ 1-Step Kit (Thermo
524 Fisher Scientific 4389986) using 70 ng of RNA and 10 μ M primers (Table S2). Three 20 μ L
525 replicates were pipetted into a 384-well PCR plate, then sealed with an optically clear seal. RT-
526 qPCR was run in a ViiA 7 Real-Time PCR System (Thermo Fisher Scientific 4453545) with cycle
527 settings following manufacturer's protocols for the RT-qPCR kit. Data was visualized and

528 exported to Excel using QuantStudio Real-Time PCR Software (Thermo Fisher Scientific v1.6.1).

529 Relative *ttLCC1* mRNA levels were calculated using the $\Delta\Delta Ct$ method (57).

530

531 **Availability of data and materials**

532 All data generated or analysed during this study are included in this published article and its
533 supplementary information files. Additional datasets generated during the current study are
534 available from the corresponding author on reasonable request. Plasmids and yeast strains listed
535 in the supplemental material with a BPM or YTM denomination are available upon request.

536

537 **Authors' Contribution**

538 GS designed, executed and analyzed the data of most experiments. RW generated some plasmids,
539 developed the liquid ABTS assay, designed and performed the RT-qPCR experiment and helped
540 analyze the data. BY helped design and perform the SGA experiments. MD and LC helped develop
541 the ABTS overlay assay. CN and CL provided access to critical infrastructure. TM helped design
542 the experiment and analyze the data. The manuscript was written by GS and TM with inputs from
543 RW and additional edits from CN and LC.

544

545 **Acknowledgement**

546 The YIp-*TRP1*-natMX plasmid was gifted by Dr. Randy Hampton, the codon optimized *ttLCC1*
547 with a native N-terminal secretion signal was a gift from Dr. Hana Sychrová and the JHY716 query
548 strain was a gift from Dr. Charlie Boone. We thank Ms. Michelle Moksa and Qi Cao from the lab
549 of Dr. Martin Hirst for help with the RT-qPCR experiment, Marjan Barazandeh, Hamid Gaikani
550 and Uche Joseph Ogbede from the Nislow lab for technical help and all members of the Mayor lab

551 for their input and discussion. This work is supported by a NSERC Discovery Grant (RGPIN-
552 2022-03787) and a CFI Innovation Fund (39914).

553

554 **References**

555

- 556 1. Huang M, Bai Y, Sjostrom SL, Hallstrom BM, Liu Z, Petranovic D, Uhlen M, Joensson
557 HN, Andersson-Svahn H, Nielsen J. 2015. Microfluidic screening and whole-genome
558 sequencing identifies mutations associated with improved protein secretion by yeast. *Proc
559 Natl Acad Sci U S A* 112:E4689-96.
- 560 2. Wang G, Huang M, Nielsen J. 2017. Exploring the potential of *Saccharomyces cerevisiae*
561 for biopharmaceutical protein production. *Curr Opin Biotechnol* 48:77-84.
- 562 3. Madhavan A, Arun KB, Sindhu R, Krishnamoorthy J, Reshma R, Sirohi R, Pugazhendi
563 A, Awasthi MK, Szakacs G, Binod P. 2021. Customized yeast cell factories for
564 biopharmaceuticals: from cell engineering to process scale up. *Microb Cell Fact* 20:124.
- 565 4. Jones EW. 1991. Tackling the protease problem in *Saccharomyces cerevisiae*. *Methods
566 Enzymol* 194:428-53.
- 567 5. Shusta EV, Raines RT, Pluckthun A, Wittrup KD. 1998. Increasing the secretory capacity
568 of *Saccharomyces cerevisiae* for production of single-chain antibody fragments. *Nat
569 Biotechnol* 16:773-7.
- 570 6. Tang H, Bao X, Shen Y, Song M, Wang S, Wang C, Hou J. 2015. Engineering protein
571 folding and translocation improves heterologous protein secretion in *Saccharomyces
572 cerevisiae*. *Biotechnol Bioeng* 112:1872-82.
- 573 7. Li F, Chen Y, Qi Q, Wang Y, Yuan L, Huang M, Elsemman IE, Feizi A, Kerkhoven EJ,
574 Nielsen J. 2022. Improving recombinant protein production by yeast through genome-
575 scale modeling using proteome constraints. *Nat Commun* 13:2969.
- 576 8. Antosova Z, Herkommerova K, Pichova I, Sychrova H. 2018. Efficient secretion of three
577 fungal laccases from *Saccharomyces cerevisiae* and their potential for decolorization of
578 textile industry effluent-A comparative study. *Biotechnol Prog* 34:69-80.
- 579 9. Claus H. 2003. Laccases and their occurrence in prokaryotes. *Arch Microbiol* 179:145-
580 50.
- 581 10. Kiiskinen LL, Ratto M, Kruus K. 2004. Screening for novel laccase-producing microbes.
582 *J Appl Microbiol* 97:640-6.
- 583 11. Abadulla E, Tzanov T, Costa S, Robra KH, Cavaco-Paolo A, Gubitz GM. 2000.
584 Decolorization and detoxification of textile dyes with a laccase from *Trametes hirsuta*.
585 *Appl Environ Microbiol* 66:3357-62.
- 586 12. Clark M, Tepper K, Petroll K, Kumar S, Sunna A, Maselko M. 2022. Bioremediation of
587 Industrial Pollutants by Insects Expressing a Fungal Laccase. *ACS Synth Biol* 11:308-
588 316.
- 589 13. Jin X, Yu X, Zhu G, Zheng Z, Feng F, Zhang Z. 2016. Conditions Optimizing and
590 Application of Laccase-mediator System (LMS) for the Laccase-catalyzed Pesticide
591 Degradation. *Sci Rep* 6:35787.
- 592 14. Mate DM, Alcalde M. 2017. Laccase: a multi-purpose biocatalyst at the forefront of
593 biotechnology. *Microb Biotechnol* 10:1457-1467.

594 15. Giaever G, Chu AM, Ni L, Connelly C, Riles L, Veronneau S, Dow S, Lucau-Danila A,
595 Anderson K, Andre B, Arkin AP, Astromoff A, El-Bakkoury M, Bangham R, Benito R,
596 Brachat S, Campanaro S, Curtiss M, Davis K, Deutschbauer A, Entian KD, Flaherty P,
597 Foury F, Garfinkel DJ, Gerstein M, Gotte D, Guldener U, Hegemann JH, Hempel S,
598 Herman Z, Jaramillo DF, Kelly DE, Kelly SL, Kotter P, LaBonte D, Lamb DC, Lan N,
599 Liang H, Liao H, Liu L, Luo C, Lussier M, Mao R, Menard P, Ooi SL, Revuelta JL,
600 Roberts CJ, Rose M, Ross-Macdonald P, Scherens B, et al. 2002. Functional profiling of
601 the *Saccharomyces cerevisiae* genome. *Nature* 418:387-91.

602 16. Steel GJ, Fullerton DM, Tyson JR, Stirling CJ. 2004. Coordinated activation of Hsp70
603 chaperones. *Science* 303:98-101.

604 17. Tyson JR, Stirling CJ. 2000. LHS1 and SIL1 provide a luminal function that is essential
605 for protein translocation into the endoplasmic reticulum. *EMBO J* 19:6440-52.

606 18. Craven RA, Egerton M, Stirling CJ. 1996. A novel Hsp70 of the yeast ER lumen is
607 required for the efficient translocation of a number of protein precursors. *EMBO J*
608 15:2640-50.

609 19. Green-Willms NS, Butler CA, Dunstan HM, Fox TD. 2001. Pet111p, an inner
610 membrane-bound translational activator that limits expression of the *Saccharomyces*
611 *cerevisiae* mitochondrial gene COX2. *J Biol Chem* 276:6392-7.

612 20. Malina C, Larsson C, Nielsen J. 2018. Yeast mitochondria: an overview of mitochondrial
613 biology and the potential of mitochondrial systems biology. *FEMS Yeast Res* 18.

614 21. Tyo KE, Liu Z, Petranovic D, Nielsen J. 2012. Imbalance of heterologous protein folding
615 and disulfide bond formation rates yields runaway oxidative stress. *BMC Biol* 10:16.

616 22. Bays NW, Gardner RG, Seelig LP, Joazeiro CA, Hampton RY. 2001. Hrd1p/Der3p is a
617 membrane-anchored ubiquitin ligase required for ER-associated degradation. *Nat Cell
618 Biol* 3:24-9.

619 23. Ignea C, Trikka FA, Kourtzelis I, Argiriou A, Kanellis AK, Kampranis SC, Makris AM.
620 2012. Positive genetic interactors of HMG2 identify a new set of genetic perturbations for
621 improving sesquiterpene production in *Saccharomyces cerevisiae*. *Microb Cell Fact*
622 11:162.

623 24. Halbach F, Reichelt P, Rode M, Conti E. 2013. The yeast ski complex: crystal structure
624 and RNA channeling to the exosome complex. *Cell* 154:814-26.

625 25. Shechtman CF, Henneberry AL, Seimon TA, Tinkelenberg AH, Wilcox LJ, Lee E,
626 Fazlollahi M, Munkacsy AB, Bussemaker HJ, Tabas I, Sturley SL. 2011. Loss of
627 subcellular lipid transport due to ARV1 deficiency disrupts organelle homeostasis and
628 activates the unfolded protein response. *J Biol Chem* 286:11951-9.

629 26. Xu C, Ng DT. 2015. Glycosylation-directed quality control of protein folding. *Nat Rev
630 Mol Cell Biol* 16:742-52.

631 27. Kitagawa T, Kohda K, Tokuhiro K, Hoshida H, Akada R, Takahashi H, Imaeda T. 2011.
632 Identification of genes that enhance cellulase protein production in yeast. *J Biotechnol*
633 151:194-203.

634 28. Zhang B, Chang A, Kjeldsen TB, Arvan P. 2001. Intracellular retention of newly
635 synthesized insulin in yeast is caused by endoproteolytic processing in the Golgi
636 complex. *J Cell Biol* 153:1187-98.

637 29. Holkeri H, Makarow M. 1998. Different degradation pathways for heterologous
638 glycoproteins in yeast. *FEBS Lett* 429:162-6.

639 30. de Ruijter JC, Koskela EV, Frey AD. 2016. Enhancing antibody folding and secretion by
640 tailoring the *Saccharomyces cerevisiae* endoplasmic reticulum. *Microb Cell Fact* 15:87.

641 31. Bonangelino CJ, Chavez EM, Bonifacino JS. 2002. Genomic screen for vacuolar protein
642 sorting genes in *Saccharomyces cerevisiae*. *Mol Biol Cell* 13:2486-501.

643 32. Copic A, Dorrington M, Pagant S, Barry J, Lee MC, Singh I, Hartman JL, Miller EA.
644 2009. Genomewide analysis reveals novel pathways affecting endoplasmic reticulum
645 homeostasis, protein modification and quality control. *Genetics* 182:757-69.

646 33. Decourty L, Malabat C, Frachon E, Jacquier A, Saveanu C. 2021. Investigation of RNA
647 metabolism through large-scale genetic interaction profiling in yeast. *Nucleic Acids Res*
648 49:8535-8555.

649 34. Nakatsukasa K, Okada S, Umebayashi K, Fukuda R, Nishikawa S, Endo T. 2004. Roles
650 of O-mannosylation of aberrant proteins in reduction of the load for endoplasmic
651 reticulum chaperones in yeast. *J Biol Chem* 279:49762-72.

652 35. Xu C, Wang S, Thibault G, Ng DT. 2013. Futile protein folding cycles in the ER are
653 terminated by the unfolded protein O-mannosylation pathway. *Science* 340:978-81.

654 36. Zatorska E, Gal L, Schmitt J, Bausewein D, Schuldiner M, Strahl S. 2017. Cellular
655 Consequences of Diminished Protein O-Mannosyltransferase Activity in Baker's Yeast.
656 *Int J Mol Sci* 18.

657 37. Anderson JS, Parker RP. 1998. The 3' to 5' degradation of yeast mRNAs is a general
658 mechanism for mRNA turnover that requires the SKI2 DEVH box protein and 3' to 5'
659 exonucleases of the exosome complex. *EMBO J* 17:1497-506.

660 38. Mitchell P, Tollervey D. 2003. An NMD pathway in yeast involving accelerated
661 deadenylation and exosome-mediated 3'-->5' degradation. *Mol Cell* 11:1405-13.

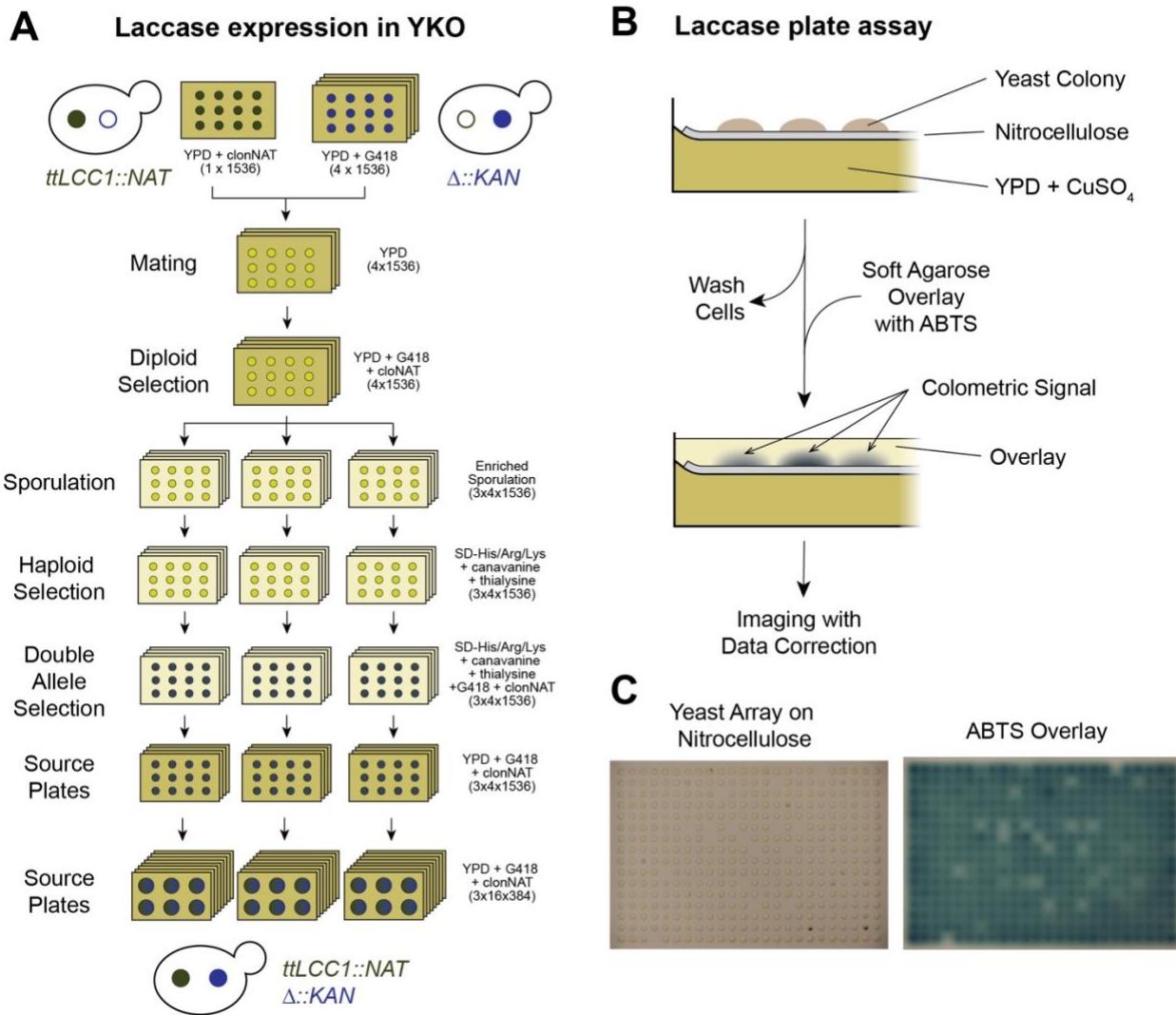
662 39. van Hoof A, Frischmeyer PA, Dietz HC, Parker R. 2002. Exosome-mediated recognition
663 and degradation of mRNAs lacking a termination codon. *Science* 295:2262-4.

664 40. Tosal-Castano S, Peselj C, Kohler V, Habernig L, Berglund LL, Ebrahimi M, Vogtle FN,
665 Hoog J, Andreasson C, Buttner S. 2021. Snd3 controls nucleus-vacuole junctions in
666 response to glucose signaling. *Cell Rep* 34:108637.

667 41. Hariri H, Rogers S, Ugrankar R, Liu YL, Feathers JR, Henne WM. 2018. Lipid droplet
668 biogenesis is spatially coordinated at ER-vacuole contacts under nutritional stress.
669 *EMBO Rep* 19:57-72.

670 42. Dziurdzik SK, Conibear E. 2021. The Vps13 Family of Lipid Transporters and Its Role at
671 Membrane Contact Sites. *Int J Mol Sci* 22.

672 43. Pan X, Roberts P, Chen Y, Kvam E, Shulga N, Huang K, Lemmon S, Goldfarb DS. 2000.
673 Nucleus-vacuole junctions in *Saccharomyces cerevisiae* are formed through the direct
674 interaction of Vac8p with Nvj1p. *Mol Biol Cell* 11:2445-57.


675 44. Siddiqah IM, Manandhar SP, Cocca SM, Hsueh T, Cervantes V, Gharakhanian E. 2017.
676 Yeast ENV9 encodes a conserved lipid droplet (LD) short-chain dehydrogenase involved
677 in LD morphology. *Curr Genet* 63:1053-1072.

678 45. Ricarte F, Menjivar R, Chhun S, Soreta T, Oliveira L, Hsueh T, Serranilla M,
679 Gharakhanian E. 2011. A genome-wide immunodetection screen in *S. cerevisiae*
680 uncovers novel genes involved in lysosomal vacuole function and morphology. *PLoS*
681 One 6:e23696.

682 46. Breitling J, Aebi M. 2013. N-linked protein glycosylation in the endoplasmic reticulum.
683 *Cold Spring Harb Perspect Biol* 5:a013359.

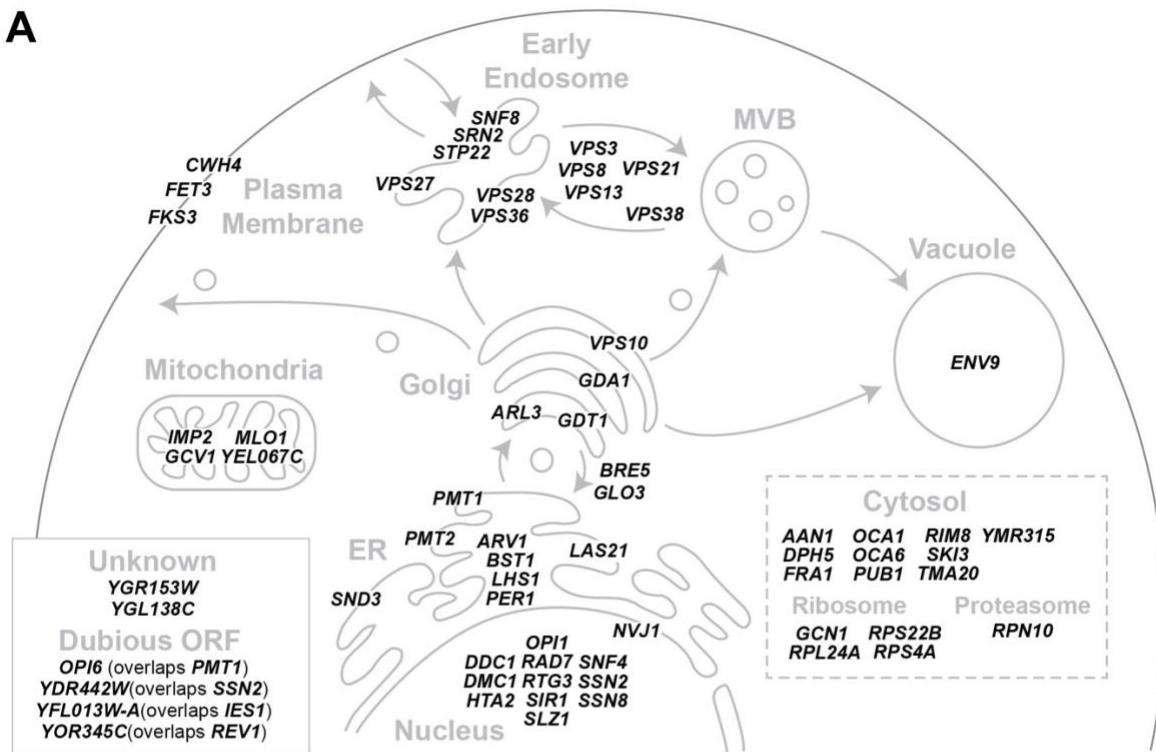
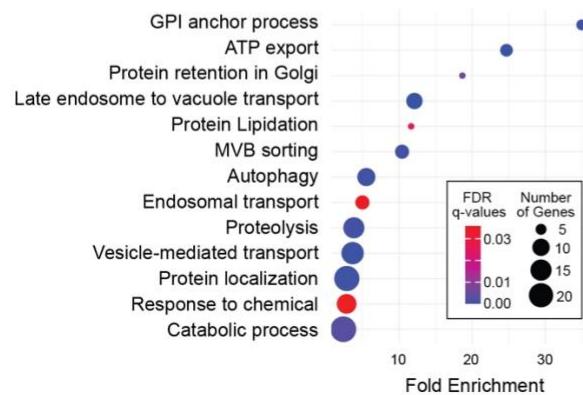
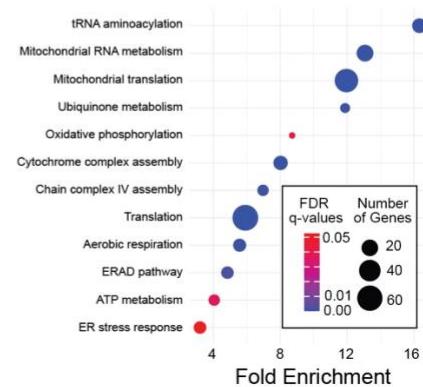

684 47. Delic M, Valli M, Graf AB, Pfeffer M, Mattanovich D, Gasser B. 2013. The secretory
685 pathway: exploring yeast diversity. *FEMS Microbiol Rev* 37:872-914.
686 48. Mariappan M, Mateja A, Dobosz M, Bove E, Hegde RS, Keenan RJ. 2011. The
687 mechanism of membrane-associated steps in tail-anchored protein insertion. *Nature*
688 477:61-6.
689 49. Norgaard P, Westphal V, Tachibana C, Alsoe L, Holst B, Winther JR. 2001. Functional
690 differences in yeast protein disulfide isomerasases. *J Cell Biol* 152:553-62.
691 50. Payne T, Finn C, Evans LR, Mead DJ, Avery SV, Archer DB, Sleep D. 2008.
692 Modulation of chaperone gene expression in mutagenized *Saccharomyces cerevisiae*
693 strains developed for recombinant human albumin production results in increased
694 production of multiple heterologous proteins. *Appl Environ Microbiol* 74:7759-66.
695 51. Flagg MP, Kao A, Hampton RY. 2019. Integrating after CEN Excision (ICE) Plasmids:
696 Combining the ease of yeast recombination cloning with the stability of genomic
697 integration. *Yeast* 36:593-605.
698 52. Gietz RD, Schiestl RH. 2007. High-efficiency yeast transformation using the LiAc/SS
699 carrier DNA/PEG method. *Nat Protoc* 2:31-4.
700 53. Goldstein AL, McCusker JH. 1999. Three new dominant drug resistance cassettes for
701 gene disruption in *Saccharomyces cerevisiae*. *Yeast* 15:1541-53.
702 54. Tong AH, Evangelista M, Parsons AB, Xu H, Bader GD, Page N, Robinson M,
703 Raghibizadeh S, Hogue CW, Bussey H, Andrews B, Tyers M, Boone C. 2001.
704 Systematic genetic analysis with ordered arrays of yeast deletion mutants. *Science*
705 294:2364-8.
706 55. Young BP, Loewen CJ. 2013. Balony: a software package for analysis of data generated
707 by synthetic genetic array experiments. *BMC Bioinformatics* 14:354.
708 56. Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z. 2009. GOrilla: a tool for discovery
709 and visualization of enriched GO terms in ranked gene lists. *BMC Bioinformatics* 10:48.
710 57. Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-
711 time quantitative PCR and the 2(-Delta Delta C(T)) Method. *Methods* 25:402-8.
712

Figure 1


Figure 2

A


B

GO Analysis of Positive Hits

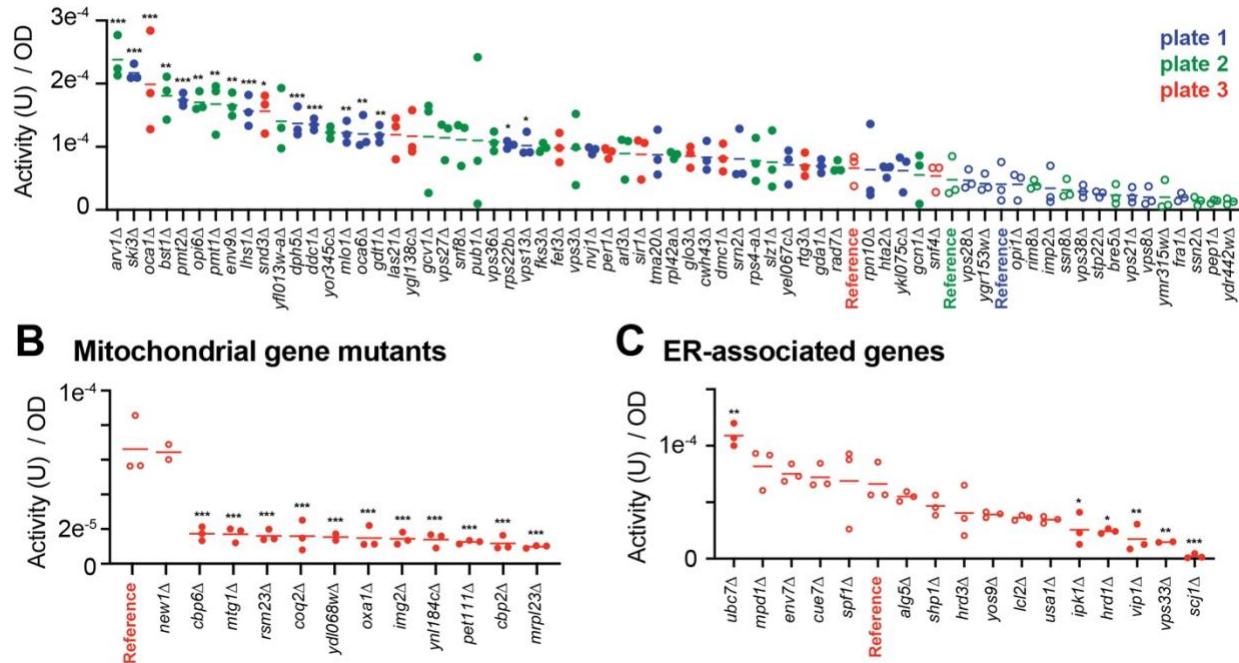
C

GO Analysis of Negative Hits

721

722 **Figure 2. Enrichment of genes involved in vesicle trafficking and mitochondria. A.**

723 Representation of *S. cerevisiae* secretory pathway showing the cellular location of identified

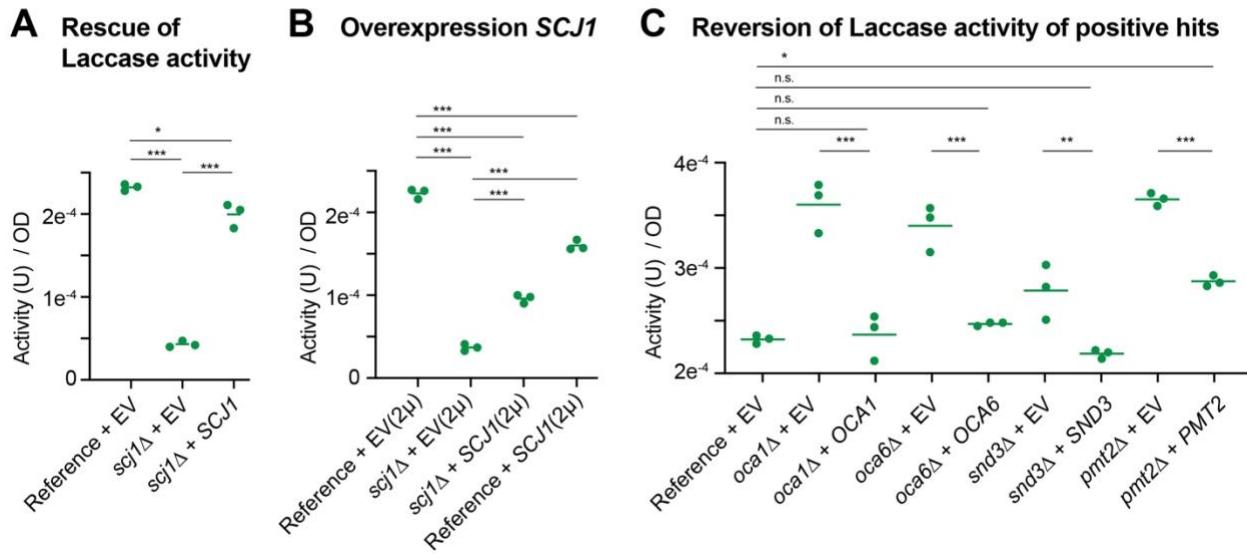

724 gene deletions that show an increase in recombinant laccase activity in the ABTS overlay screen.

725 **C and D.** Dot plots of the main pathways enriched in the GO analysis of genes that lead to

726 increase (C) or decrease (D) laccase activity in the YKO collection.

Figure 3

A Laccase activity from liquid cultures



727

728 **Figure 3. Change of laccase activity confirmed in liquid culture. A.** Positive hits identified in
729 the first overlay screen were assessed in liquid cultures. The strains were grown and assessed on
730 three separate sets (plates 1-3) and ranked based on the average laccase activity ($\mu\text{mol}/\text{min}$)
731 normalized to cell density. For each strain, three biological replicates were grown on the same
732 plate and laccase activity was compared to the respective parental query strain (i.e., grown on the
733 same plate) using ONE way ANOVA tests with Dunnett's corrections (adjusted p values; < 0.05 :
734 *; < 0.01 : **; < 0.005 : ***). **B and C.** A subset of negative hits were assessed in liquid cultures.
735 Three biological replicates for each strain were assessed and ranked based on the average laccase
736 activity normalized to cell density as in A.

737

Figure 4

738

739 **Figure 4. Rescue experiments in liquid culture. A-C.** Normalized laccase activity of the
740 indicated strains that contain either a CEN base plasmid (A and C) or a 2 μ high copy plasmid (B)
741 with the indicated genes subcloned with their 5' and 3' UTR regions or the empty vector (EV).
742 ONE way ANOVA tests were performed with Tukey's corrections (adjusted p values; < 0.05: *;
743 <0.01: **; <0.005: ***).

744

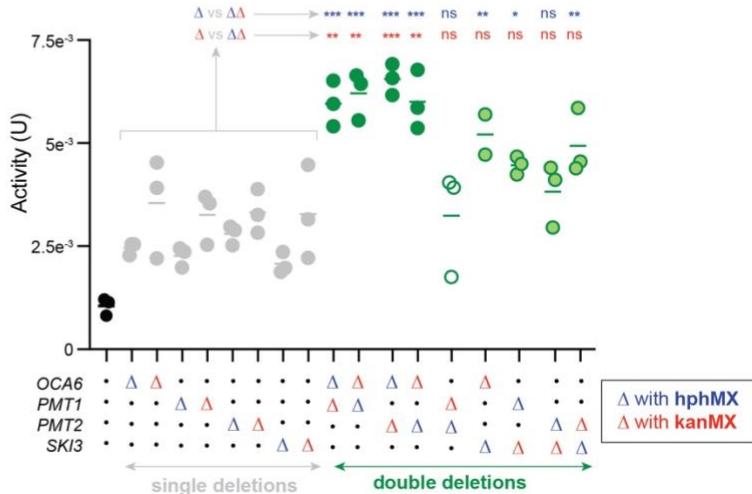
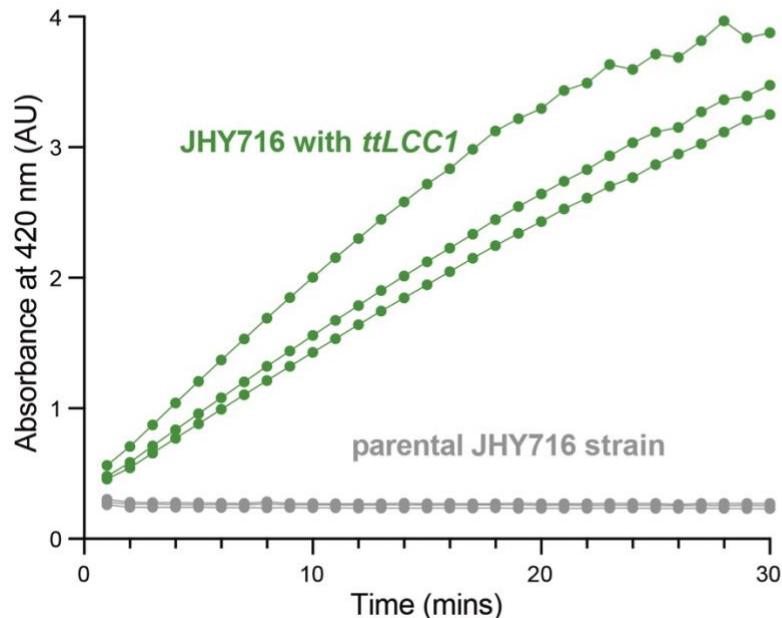

745

Figure 5

A Fold change in laccase activity

	Δ with hphMX								
	HO	<i>arv1</i> Δ	<i>bst1</i> Δ	<i>env9</i> Δ	<i>lhs1</i> Δ	<i>oca6</i> Δ	<i>pmt1</i> Δ	<i>ski3</i> Δ	<i>snd3</i> Δ
<i>arv1</i> Δ	1.5		1.2	1.4		1.7		1.5	
<i>bst1</i> Δ	1.6				1.7	1.5	2.0	1.3	1.8
<i>env9</i> Δ	1.5	1.2	1.5		1.7	1.7	1.9	2.0	1.2
<i>lhs1</i> Δ	1.8	1.2		1.6		2.4	1.9	1.8	
<i>oca6</i> Δ	1.3	0.9	1.8	2.4	1.3		2.6	2.1	1.8
<i>pmt1</i> Δ	1.5	0.8	1.3	1.8	1.5	2.3			1.8
<i>pmt2</i> Δ					2.1		2.9		2.3
<i>ski3</i> Δ	1.8	1.1	1.6	2.1	1.9	2.1	2.3		1.8
<i>snd3</i> Δ	1.4	0.7	1.4	1.9	1.5	1.3	2.1	1.8	

B Laccase activity in double deletion mutants


746

747 **Figure 5. Double deletion mutants with increased laccase activity. A.** Laccase activity of the
 748 indicated strains from a double deletion mini-array were assessed on three 96-well plates using
 749 the ABTS liquid culture assay after 4 days of growth. Three biological replicates were assessed
 750 for each double mutant with additional controls. Normalized laccase activity was averaged and
 751 compared to the activity levels from the reference strain. Gene deletions were either done by
 752 integrating the hygromycin (hph; blue) or kanamycin (kan; red) resistance modules. **B.** Laccase
 753 activity of the indicated strains grown on the same 96 well plate with three biological replicates.
 754 ONE way ANOVA tests with Tukey's correction were performed and adjusted p values are
 755 shown for comparisons between double deletion mutants and corresponding single deletion
 756 mutant strains integrated with either the hph (blue) or kan (red) modules (< 0.05: *; <0.01: **:
 757 <0.005: ***).

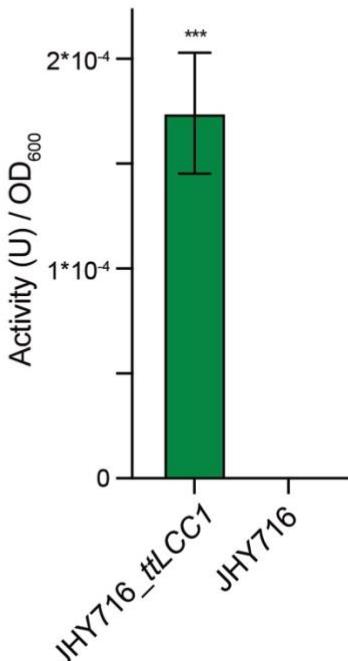
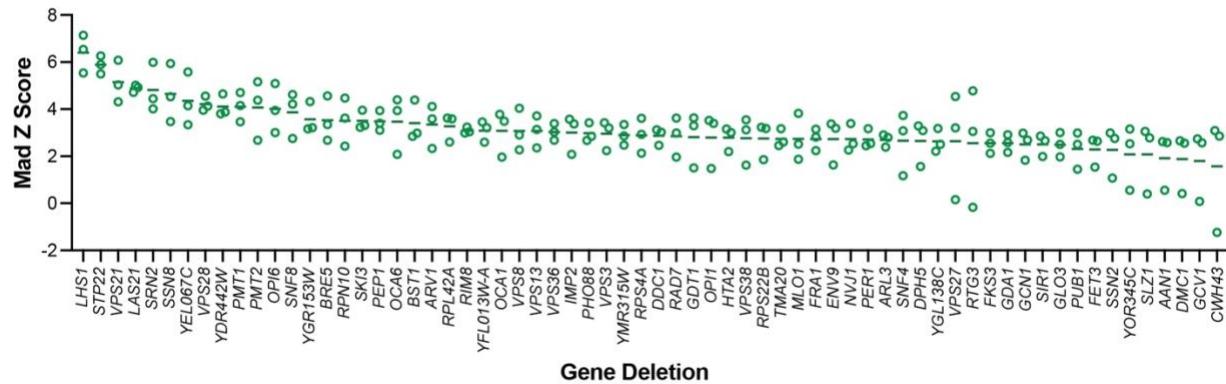

758 **Supplementary Material**

Figure S1

A

B


759

760 **Figure S1. A and B.** Assessment of secreted laccase activity in liquid cultures. Laccase activity
761 was assessed after collecting the supernatants of the indicated strains following 4 days of growth
762 (three biological replicates). The graph (A) shows the increased signal after the addition of
763 ABTS measured in the plate reader. The bar graph (B) shows the laccase activity (μmols
764 oxidized ABTS / min) normalized to cell density with a p-value of 0.0008 (unpaired t-test).


765

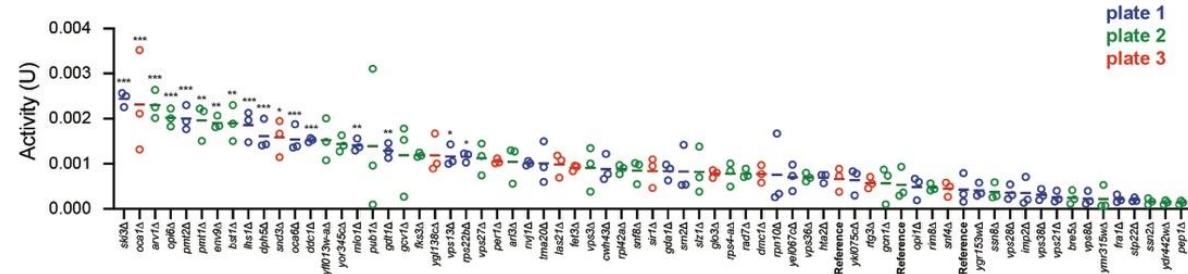
Figure S2

A Mean Z-scores of Positive Hits

B

766

767 **Figure S2. A.** Ranking of the mean MAD Z-scores of the positive hits from the overlay screen.


768 Circles show the individual MAD Z-scores for each replicate. **B.** Representation of *S. cerevisiae*
769 secretory pathway showing the cellular location of gene deletions that show a decrease in
770 recombinant laccase activity in the ABTS overlay screen.

771

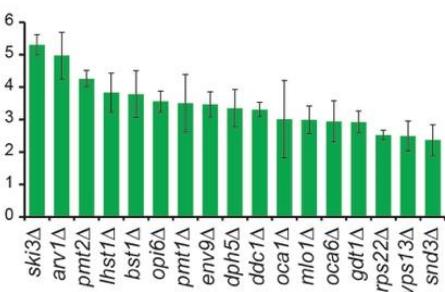
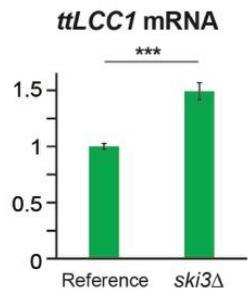
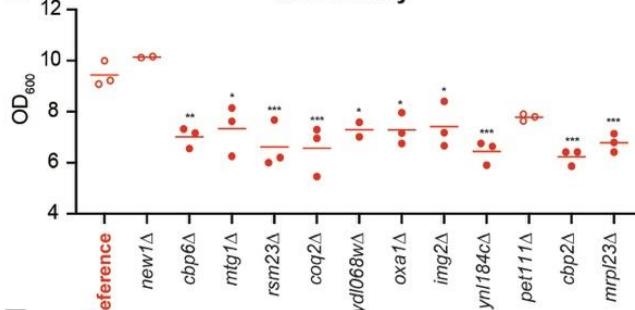
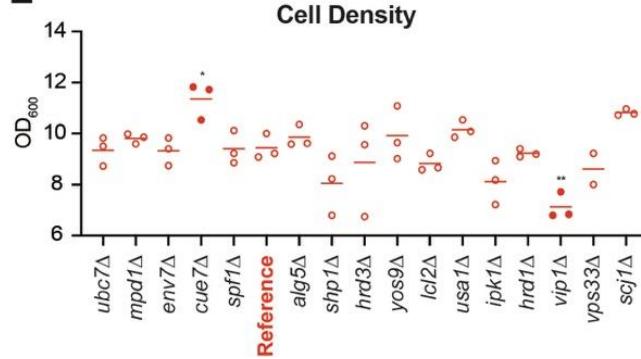

772

Figure S3


A Laccase activity from liquid cultures


B Fold increase of Laccase activity


C

D Cell Density

Reynolds et al. / *Yeast* 2004; 10: 103–110

773

774 **Figure S3 A.** Laccase activity ($\mu\text{mol}/\text{min}$) of positive hits identified in the overlay screen were
775 assessed in liquid culture. The strains were grown and assessed on three separate sets (plates 1-
776 3). Three biological replicates were grown on the same plate and laccase activity was compared
777 to the parental query strain that was grown on the same plate using ONE way ANOVA tests with
778 Dunnett's corrections (adjusted p values; < 0.05 : *; < 0.01 : **; < 0.005 : ***). The normalized
779 activity of these strains is shown in Figure 3A. **B.** Fold change of the normalized laccase activity
780 of the indicated strain in comparison to the reference strain of the cells analyzed in Figure 3A. **C.**
781 Levels of *ttLCC1* mRNA was quantified by RT qPCR in the indicated strains and normalized to

782 *UBC6* mRNA levels using three technical replicates (p-value: 0.004 with a Welch unpaired two
783 tails student t-test). **D and E.** Cell density of a subset of negative hits shown in Figure 3B and C.
784 Three biological replicates for each indicated strain were compared to the reference strain using
785 ONE way ANOVA tests with Dunnett's multiple comparison corrections.
786