High throughput functional profiling of genes at intraocular pressure loci
reveals distinct networks for glaucoma
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ABSTRACT

INTRODUCTION: Primary open angle glaucoma (POAG) is a leading cause of blindness
globally. Characterised by progressive retinal ganglion cell degeneration, the precise
pathogenesis remains unknown. Genome-wide association studies (GWAS) have uncovered
many genetic variants associated with elevated intraocular pressure (IOP), one of the key
risk factors for POAG. This study sought to investigate the morphological and transcriptional
consequences of perturbation of key genes at I0OP loci in trabecular meshwork cell (TMC);
the cellular regulators of IOP. We aimed to identify genetic and morphological variation that
can be attributed to TMC dysfunction and raised IOP in POAG.

METHODS: 62 genes across 55 loci were knocked-out in a primary human TMC line. Each
knockout group, including five non-targeting control groups, underwent single-cell
RNA-sequencing (scRNA-seq) for differentially-expressed gene (DEG) analysis. Multiplexed
fluorescent staining of key organelles, was coupled with high-throughput microscopy for
single-cell morphological analysis using CellProfiler image analysis.

RESULTS: Across many of the individual gene knockouts scRNA-seq highlighted genes
relating to matrix metalloproteinases and interferon-induced proteins. Our work has
prioritised genes at four loci of interest to identify gene knockouts that may contribute to
the pathogenesis of POAG, including ANGPTL2, LMX1B, CAV1, and KREMEN1. Three genetic
networks of gene knockouts with similar transcriptomic profiles were identified (ABO / CAV1
/ MYOC, ANGPT2 | PKHD1 / TNS1 / TXNRD2, and CAPZA1 / KALRN / LMO7 |/ PLEKHA7 /|
GNBIL / TEX41), suggesting a synergistic function in trabecular meshwork cell physiology.
TEK knockout caused significant upregulation of nuclear granularity on morphological
analysis, whilst knockout of TRIOBP, TMCO1 and PLEKHA?7 increased granularity and intensity
of actin and the cell-membrane.

CONCLUSION: High throughput analysis of cellular structure and function through multiplex
fluorescent single-cell analysis and scRNA-seq assays enabled the direct study of genetic
perturbations at the single-cell resolution. This work provides a framework for investigating
the role of genes in the pathogenesis of glaucoma and heterogenous diseases with a strong

genetic basis.



INTRODUCTION

Glaucoma is a heterogeneous group of diseases leading to irreversible blindness with
characteristic optic nerve damage. The most common glaucoma subtype is primary
open-angle glaucoma (POAG)."? Elevated intraocular pressure (IOP) is the only known
modifiable risk factor and plays a major role in the progression of POAG. The circulatory
system maintains IOP in the anterior segment of the eye ** Aqueous humor is produced by
the ciliary body and passes through the pupil before draining out to the episcleral blood
vessels via conventional or unconventional pathways."” The conventional outflow pathway
through the trabecular meshwork accounts for approximately 80% of total aqueous humor
outflow. Structural alterations observed in the trabecular meshwork are considered to

increase outflow resistance in POAG.*%7

Many POAG-associated loci have been identified through genome-wide association studies
(GWAS), with loci encompassing Caveolin 1 and 2 (CAV1/CAV2), Transmembrane and
coiled-coil domain-containing protein 1 (TMCO1), cyclin-dependent kinase inhibitor 2B
antisense RNA 1 (CDKN2B-AS1), ATB binding cassette subfamily A member 1 (ABCA1), actin
filament associated protein 1 (AFAP1), GDP-mannose 4,6-dehydratase (GMDS), Forkhead
Box C1 (FOXC1), thioredoxin reductase 2 (TXNRD2), and Ataxin 2 (ATXN2).°*? Furthermore,
protein altering variants in genes such as MYOC, LTBP2, FOXC1, GMDS and CYP1B1 have
been found to cause both congenital and juvenile onset glaucoma. These particular variants
are generally associated with abnormal development of the aqueous circulatory system and
Schlemm’s canal rather than maintenance, however some are also involved in maintenance

such as TEK.2*Y

More recently, a GWAS meta-analysis identified 85 novel SNPs associated with IOP using
data from the UK Biobank, the International Glaucoma Genetic Consortium, and the
Australian & New Zealand Registry of Advanced Glaucoma Cohort." Novel gene variants,
including ANGPT1, ANKH, MECOM and ETS1 were associated with POAG and IOP. However,
this study also identified SNPs at ADAMTS6, MYOF, ANAPC1, GLIS3, and FNDC3B that are
associated with phenotypes such as central corneal thickness and corneal hysteresis.”® This

highlights potential confounding factors in GWAS that make identification of genes
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implicated in the pathogenesis of POAG challenging. Furthermore, various SNPs identified in
IOP associated GWAS are associated with more than one gene, making it difficult to precisely

implicate the disease-causative gene.

Recent advances in clustered regularly interspaced short palindromic repeats (CRISPR) and
single-cell RNA sequencing (scRNA-seq) technology have allowed for high-throughput
genetic screens at single-cell transcriptome resolution. In CRISPR droplet sequencing
(CROP-seq), a guide-RNA (gRNA)-encoding vector makes gRNAs detectable in scRNA-seq,
and as such, these gRNAs can be used to tag individual cells.® To investigate the role of
POAG-associated loci in TMCs, we knocked out gene candidates in human TMC lines using
CROP-seq. We then performed single-cell RNA sequencing as well as morphological profiling
to identify the genotypic and phenotypic roles of each gene. The cell painting protocol
involves cultured cells being stained with fluorescent dyes to reveal eight cellular
substructures, thus allowing morphological features to be extracted from individual cells to
display the effects of genetic perturbation.?>?* Morphological profiling can then be
undertaken using CellProfiler, a high-throughput single-cell image analysis program designed
to extract and analyze over one thousand phenotypic features. Taken together, this study
screens gene candidates based on expression profiles and morphology profiles and helps
understand the pathway in which these genes are involved in the causation of elevated IOP

in TMCs. (Figure 1)
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RESULTS

Data overview

A total of 105,273 cells were captured with 25,879 (24.58%) cells passing quality control
filtering to be included in transcriptional profiling. Differentially-expressed gene (DEG)
analysis was performed to investigate the effects of gene knockout at select IOP-associated
loci. The Euclidean distance of DEG expression between each knockout group and controls
was computed to identify gene knockouts with similar expression patterns that may indicate
novel genetic networks involved in the pathogenesis of POAG. DEG analysis was also used to
prioritise multi-gene loci to identify a pathological variant. Ward’s hierarchical clustering
method was then used to generate a cluster tree for further analysis of genetic networks
(Figure 2). Gene knockout clusters were allocated based on branch thirty-two of the cluster
tree whereby the congenital (developmental) glaucoma genes were grouped with normal
controls. This is because many of the congenital glaucoma genes are hypothesised to
primarily affect the development of trabecular meshwork tissue rather than its maintenance

which is affected in POAG.?>™*

Key up- and downregulated DEGs of interest

DEG analysis revealed key genetic families that may play a role in the pathogenesis of POAG.
Volcano plots of all gene knockouts are displayed in Supplementary Figure 1. Matrix
metalloproteinases were widely upregulated across many of the gene knockouts. MMP1 was
upregulated in 71% (44/62) of knockout groups and downregulated in 9% (6/62). MMP3 was
similarly upregulated in 61% (38/62) and downregulated in 5% (3/62). Finally, MMP10 was
upregulated in 30% (19/62) of the knockout groups. The proteins encoded by these genes
are part of a family of proteins involved in the breakdown of extracellular matrix in
physiologic and pathologic processes. The matrix metalloproteinase family of proteins have
also been previously implemented in TMC function and the pathogenesis of POAG, with
upregulation of MMPs 1, 9, and 12 associated with POAG.”*" Another group of highly
upregulated DEGs were interferon-alpha (IFI27, IFI6) and interferon-induced proteins (IFI44L,
IFIH1, IFIT1, IFIT2, IFIT3, IFITM1, IFIM10). These genes were upregulated in 40 - 80% (25/62 -

50/62) of the knockout groups (Figure 3). These proteins are all generally involved in
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antiviral immunity, however, there have been minimal direct associations between glaucoma

and interferon-related proteins.

scRNAseq clustering allows prioritisation at multi-gene loci

DEG and morphological profiling analysis was used to prioritise the most likely pathological
gene at multi-gene loci (Table 1). On chromosome nine, there are four loci of interest which
involve ANGPTL2, RALGPS1 and LMX1B. The ANGPTL2 knockout group was shown to have
the highest Euclidean distance (18.79) as well as cluster independently from control groups.
Furthermore, ANGPTL2 also had the highest number of significant DEGs (23) which were
primarily involved in interferon alpha/beta signalling. The LMX1B knockout group had the
next highest Euclidean distance (14.06) and significant DEGs (11) which are primarily
involved in regulating cell proliferation. LMX1B also clustered independently from the
non-targeting control groups. Finally, the RALGPS1 knockout group showed a much lower
Euclidean distance (7.1) as well as the lowest number of DEGs (4) whilst also clustering with
the non-targeting controls’ gene expression profile. Furthermore, the morphological
profiling data revealed that RALGPS1 had almost no significant changes in cellular
morphology and was concordantly clustered with non-targeting controls’ gene expression
profile. The ANGPTL2 knockout, however, evoked a significant reduction of intensity and
granularity in both the mitochondrial and actin/cell membrane channels. As well as this, the
LMX1B knockout also induced a significant reduction in morphological intensity and
granularity across the mitochondrial and actin/cell membrane channels. (Figure 4A).

On chromosome seven three genes were involved at a locus of interest; CAV1, CAV2, and
TES. CAV1 was the only gene to cluster independently from normal controls whilst also
demonstrating a higher Euclidean distance and a slightly higher number of DEGs (4 vs 3 vs 2,
respectively). The DEGs in the CAV1 group did not cluster into a single transcriptional
pathway. Curiously, the CAV2 knockout was found to significantly upregulate the expression
of MYOC (encoding the myocilin protein) (Figure 5). Myocilin is one of the most
well-evidenced pathological factors contributing to the development of early-onset
POAG."?®73! This could infer that the knockout of CAV2 may induce cellular effects similar to
MYOC mutations. The CAV1 knockout resulted in a small reduction in mitochondrial
intensity. The CAV2 knockout produced a significant reduction in the intensity and

granularity of the mitochondrial and actin/cell membrane channels. The TES knockout
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produced minimal morphological change as supported by clustering with the non-targeting
control group (Figure 4B). Finally, on chromosome 22, a multi-gene locus of interest included
EMID1 and KREMEN1. KREMEN1 clustered separately to controls, unlike EMID1, resulting in
a higher Euclidean distance and a slightly higher number of DEGs (5 vs 4). The DEGs induced
by KREMEN1 knockout also did not cluster into a particular genetic pathway. However, the
EMID1 knockout produced slightly more morphological variation, primarily as intensity
reduction in the mitochondrial and actin/cell membrane channels (Figure 4C). The
remaining multi-gene loci all clustered independently from the control group and had similar

degrees of DEG expression, which makes it difficult to resolve the prioritised gene.

Identification of putative genetic networks involved in the pathogenesis of POAG.

Gene expression of normal control cells was analysed in a genetic network which highlighted
30 (58%) of the target genes were normally expressed in the control cells. This illustrates
that many of these genes play a role in TMC functioning. (Figure 6). Cluster analysis was
performed to identify any novel genetic networks that may be involved in the pathogenesis
of POAG. Using Ward’s method of hierarchical clustering, we were able to show clusters of
multiple genes with similar DEG profiles. Cluster two contained three genes that had a
similar DEG profile; ABO, CAV1, and MYOC. MYOC encodes myocilin and is one of the most
well-known genetic causes of POAG and is highly evidenced in the literature. CAV1 encodes
for caveolin 1, which is involved in cell membrane structure and has also been speculated to
regulate adhesion, endocytosis, and autophagy in TM cells.>> ABO encodes for proteins that
determine blood group has been speculated to be involved in POAG however the exact
mechanisms remain unknown. Each of these gene knockouts invoked several DEGs,
however, the most common were the upregulation of TAC1 and LCE1C. TAC1 (Tachykinin
precursor 1) encodes for peptides involved in neuronal excision and potent vasodilation.
TAC1 has previously been shown to be upregulated in specific MYOC mutations.*® LCEIC
(Late Cornified Envelope 1C), however, has been predicted to be involved in keratinisation
and has no links to glaucoma or trabecular meshwork function in the literature. The MYOC
knockout also induced upregulation of SPP1, which was not significantly present in CAV1 or
ABO. SPP1 (Secreted phosphoprotein 1) encodes for a protein primarily involved in
osteoclast function but has been further shown to act as a cytokine by enhancing the

production of interferon-gamma and interleukin-12. Previous transcriptome analysis has
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shown SPP1 is highly expressed during trabecular meshwork differentiation.** Furthermore,

SPP1 is involved in retinal ganglion cell survival in-vitro via secretion by Miiller cells.*

Cluster eight contained four genes with a similar DEG profile; ANGPT2, PKHD1, TNS1, and
TXNRD2. ANGPT2 encodes for angiopoietin and is critically involved in the development of
Schlemm’s canal, and abnormalities in the function of this protein are linked to raised
IOP.338 PKHD1 is a gene responsible for polycystic kidney and liver disease and has been
highlighted to be potentially related to POAG pathogenesis in a family-based genetic study.*
TNS1 encodes for tensin 1, which supports plasma membrane adhesion to the extracellular
matrix. However, there has been no previous association with glaucoma or TM function.
TXNRDZ2 encodes for a thioredoxin reductase 2, which is involved in redox homeostasis and
has also been associated with developing POAG." There were five significantly upregulated
DEGs (CXCL11, CST1, LCE1C, OASL, CD70) and three downregulated DEGs (STEAP4, CCN5,
Clorf87). However, none of these genes has previously been attributed to the pathogenesis

of POAG.

Cluster fourteen contained six genes, all with similar DEG profiles; CAPZA1, KALRN, LMO?7,
PLEKHA7, GNB1L, and TEX41. CAPZA1 is involved in cytoskeletal structure via interactions
with F-actin with no association with POAG. KALRN encodes for a protein crucial to the
development of Huntington’s disease, however, has not been previously linked to POAG.
LMO7 may be involved in protein-protein interactions and has been hypothesised to contain
a risk locus for developing POAG." PLEKHA7 encodes for pleckstrin homology domain
containing A7, which is primarily responsible for cell adherence and whilst being highly
associated with angle-closure glaucoma®, has no previous association with POAG. GNBI1L
encodes for G-Protein Subunit Beta-1 Like and is involved in the formation of protein
complexes. Variations in GNB1L have been demonstrated across geographically-distinct
populations and have been associated with IOP variation, and have been speculated to be
involved in the development of POAG™*. Finally, TEX41 is an RNA gene affiliated with the
long-non-coding RNA class and also has no previous correlation with POAG. There were two
key DEGs identified in this cluster, MT1G (upregulated) and STEAP4 (downregulated);

however, there was no previous association with POAG among these DEGs.
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Key morphological features

A heatmap was constructed showing gene knockouts with a difference of >1.5 or <-1.5
compared to non-targeting controls (p-value <1e-40) (Figure 7). This identified some key
genes of interest that had particular morphological changes. The TEK knockout group
particularly showed an increase in the outputs referring to nuclear granularity identified
with mitochondrial stain (Figure 8A). The LTBP2 knockout was the only group to show a
significant increase in the mean nuclear intensity as well as the standard deviation nuclear
intensity (Figure 8B). Finally, TRIOBP and TMCO1 both showed similar increases in actin / cell
membrane granularity and intensity which was greater than any other groups; TRIOBP and
PLEKHA?7 also demonstrated similar morphological profiles with similar degrees of feature

increase across mitochondrial and actin / cell membrane channels (Figure 8C).



DISCUSSION

GWAS have uncovered a large range of novel loci associated with many complex traits.**™

With such significant amounts of data generated from these studies, the challenge is posed
as to how to efficiently identify the most relevant gene(s) at each implicated locus.*” A
thorough understanding of the disease is required to identify new pathological pathways
and thus; new therapeutic interventions. This study sought to investigate the effects of
IOP-associated gene knockouts on the morphological and transcriptome profiles of primary
human TMCs. Applied in the context of POAG, this study aimed to identify genes associated
with I0OP to highlight potential TMC dysfunction with the goal of distinguishing new

therapeutic pathways for drug discovery.

In the gene knockout groups with genes related to congenital glaucoma, GMDS, FOXC1,
MYOC, LTBP2, TEK, and CYP1B1, no distinct patterns were observed in the transcriptome of
these gene knockout groups. Similarly, the morphological profiles of these gene knockout
groups demonstrated minimal change from non-targeting control groups. This highlights that
these genes may be more involved in the development of the trabecular meshwork rather
than the maintenance and as such, knocking out these genes may not significantly affect
gene function or cellular morphology. The reason these gene knockouts may not illustrate a
significant transcriptomic or morphological variation is that many of these genes are
primarily involved in the development of the trabecular meshwork and may have a lesser
role in the maintenance. Hence, a reduced response may be seen in adult human trabecular
meshwork cells. Furthermore, some of these gene mutations may be gain-of-function and
therefore will not exhibit a pathological response in gene knockout experiments. For
example, it has been previously highlighted that genes such as FOXC1 are primarily involved
in the development of the trabecular meshwork and ocular anterior segment with mutations
associated with congenital glaucoma and anterior segment dysgenesis.*® Similarly, studies
have shown that CYP1B1 and LTBP2 are also involved in modulating ocular development
with mutations resulting in abnormal development of the trabecular meshwork and anterior
ocular circulation.***® MYOC mutations are typically gain-of-function resulting in misfolded
proteins inducing endoplasmic reticulum stress and extracellular matrix dysfunction.®* As

such, loss of function MYOC mutations have been shown to not cause disease.>’
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When looking at gene groups of multi-gene loci, we expected to see a distinct pattern of
gene expression and morphology in individual genes when compared to the control group in
order to prioritise a pathogenic gene. Four of the seven knockouts were able to be
prioritised with ANGPTL2, LMX1B, CAV1, and EMID1 showed a higher degree of
transcriptomic and morphological variation from non-targeting control cell lines than other
genes associated with a given multi-gene locus. The remaining multi-gene groups all
clustered separately to non-targeting controls and showed similar levels of transcriptomic
and morphological variation; thus making gene prioritisation difficult. These findings allow
for resolution of multi-gene loci which may contribute to the regulation of IOP and
pathogenesis of POAG. Furthermore, this study presents a novel approach to resolving loci
identified via GWAS with multiple potential genes candidates; a known challenge of GWAS

interpretation.*

Hierarchical clustering was utilised to identify potential genetic networks of similar genes
contributing to IOP physiology. Three clusters containing between three and five distinct
gene knockouts produced similar DEG patterns indicating a potential interaction between
these genes and thus; a genetic network contributing to IOP physiology and the
pathogenesis of POAG. When analysing individual DEG expression across gene knockouts, it
was noted that genes related to matrix metalloproteinases and interferon-related proteins
were significantly up- or down-regulated. Matrix metalloproteinases have a distinct footprint
of evidence showing a role in the pathogenesis of POAG.*?"**** However, interferon-alpha
and interferon-induced proteins have minimal previous associations with POAG potentially
highlighting this as a novel pathological pathway in disease progression. Of note, IFIH1 was
the only interferon-related gene identified in DEG analysis which has been associated with
glaucoma in literature. Mutations in /FIH1 have been associated with Aicardi-Goutiéres
syndrome and Singleton-Merten syndrome, both of which have similar overlapping features

and are associated with glaucoma.>>™®°

One of the limitations of this study is that only trabecular meshwork cells have been
investigated ex vivo, however there are several other ocular structures implicated in POAG

such as the ciliary body, and Schlemm’s canal.* This highlights that further investigation
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could be carried out to investigate the roles of IOP-related genes in cells of other areas of
the eye. A further limitation of this study is that the CRISPR gene knockout results in
unpredictable effects on gene function ranging from downregulation to complete
silencing.®®* This may not be an accurate representation of the genetic complexity of POAG
as many genes may have abnormally functioning to varying degrees from gain-of-function to
deletions with complete silencing. One such example is MYOC in which gain-of-function
mutations result in accumulation of misfolded myocilin and obstruction of the trabecular
meshwork, leading to impaired outflow of aqueous humour and raised I0P.3°2%3%* On the
contrary, other studies have highlighted a link between particular genomic deletions and
POAG.® Furthermore, minimal association between a gene mutation and a particular
disease does not rule the gene out of playing a role in developing novel therapies. In the
case of neovascular age-related macular degeneration, the genetic contribution of vascular
endothelial growth factor is minimal, yet anti-VEGF agents have been remarkably successful
at controlling disease.®®®® This highlights that phenotypic effects from strong inhibitory
interventions (eg. CRISPR knockout) may be observed despite minor genetic contributions
made by a particular gene. Finally, in our study we knocked out a single gene to investigate
its effect on the pathogenesis of POAG and IOP regulation. However, disease processes are
often contributed to by a network of genes all functioning in unison indicating that the
knockout of a single gene may be insufficient to reproduce the complete disease

phenotype.®

In the field of modern genetics, this study highlights a high-throughput approach to
investigating the roles of genetic variants in disease pathogenesis. GWAS and other genomic
association methods have become increasingly accessible and powerful due to cost
reductions and improved computational capacity. The investigation of genetics requires
guantitative analysis from multiple avenues (such as transcriptomics and morphological
profiling) to fully investigate the complexities of cell biology in disease processes. This allows
for the identification of genetic components of disease and thus new potential therapeutic

avenues.
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CONCLUSION

In summary, this work is the first time that high-throughput multiplex morphological
profiling (CellProfiler) has been combined with scRNA-seq analysis. Together, these
platforms have uncovered unifying pathways involved in the homeostasis of TMCs, variation
in IOP, and the pathogenesis of glaucoma. Robust pipelines have been generated to create
transcriptomic and cell morphology profiles. These results demonstrate that gene
perturbation can be reflected in the cell morphology with corresponding regulatory
pathways, and as a consequence, this resource further improves our understanding of gene
function in disease. This comprehensive transcriptomic and morphological dataset of
trabecular meshwork cells represent the largest functional follow-up of genes implicated
through GWAS to date. In the gene expression comparison, different cell types may be
grouped according to their transcriptome patterns’, and the influence of the non-normal
distributions and outliers may be minimized. For the cell morphology, using the median
value of each feature, and adding features’ dispersion and covariances to the profiles may

increase the hit rates and reliability in finding positive genes related to the disease.
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METHODS

Cell culture

Primary human TMCs were isolated from donors through the Lions Eye Bank at the Royal
Victorian Eye and Ear Hospital (ethics approval reference: 13-1151H) before being
cryopreserved and delivered frozen to the Menzies Research Institute. TMCs were thawed
and cultured in Dulbecco’s Modified Eagle Medium (DMEM, Gibco, 11965118) with 10%
foetal bovine serum (FBS, Gibco, 16000044), and supplemented with 0.5%
antibiotic-antimycotic (Gibco, 15240-062). The culture medium was changed as per local
protocol after 72 hours or when cells reached 80% confluence. All cell lines were cultured at
37°C with 5% CO, in the incubator. Each fortnight cell lines were tested for mycoplasma

using the PCR Mycoplasma Test Kit (PromoKine, PK-CA91-1096).

Cloning and validation of the single-vector CROPseq system

To generate a single-vector system CROPseq plasmid expressing both SpCas9 and
sgRNA(CROPseq-EFS-SpCas9-P2A-EGFP; Addgene #99248), the EF1a promoter in the
CROPseq-Guide-Puro 124 (Addgene plasmid # 86708) was replaced with the EFS promoter to
drive the expression of SpCas9 using the Gibson Assembly method (NEBuilder HiFi DNA
Assembly master mix). The EFS-SpCas9-P2A fragment was amplified from lentiCRISPRv2 125
(Addgene plasmid # 52961) using Q5 high-fidelity DNA polymerase. The puromycin
resistance gene was then subsequently replaced with EGFP using an amplified fragment
from the pMLS-SV40-EGFP plasmid 126 (Addgene plasmid # 46919). The expression and
activity of the single-vector CROPseq plasmid was tested by cloning in a sgRNA targeting the
DNMT3B (sgRNA sequence: CAGGATTGGGGGCGAGTCGG) or LacZ control gene (sgRNA
sequence: TGCGAATACGCCCACGCGAT) using Gibson Assembly method and transformed into
NEBStable bacteria (NEB) as outlined by Datlinger and colleagues' and tested in HEK293A
cells (Life Technologies). EGFP expression was visualised using the Eclipse Ti-E inverted
fluorescence microscope (Nikon). The cleavage activity of the SpCas9 was measured through
the indel formation using SURVEYOR assay (Integrated DNA Technologies). Briefly, genomic
DNA was extracted (QlAamp DNA mini kit; Qiagen) from HEK293A cells transfected with
CROPseq-EFS-SpCas9-P2A-EGFP DNMT3B sgRNA plasmid using Fugene HD (Promega). PCR

fragment for SURVEYOR assay was amplified using Q5 high-fidelity polymerase using the
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primers F: 5-CAAGAGCATCACCCTAAGAATGC-3" and R: 5"-GTTGTCAGAGACTCTCCCCAAAG-3°

from Datlinger et al.”

. Q5 PCR conditions were as per the manufacturer's protocol with the
following thermocycling conditions: 98°C 30 secs; 35 cycles of 98°C 10 secs, 71°C 30 secs,

72°C 15 secs; 72°C 2 mins. PCR products were gel purified using the QlAquick gel extraction
kit (Qiagen). 200ng of purified PCR product was used in the SURVEYOR assay as outlined in

the manufacturer’s protocol.

Confirmation of sgRNA sequence via Sanger sequencing

In total, 134 sgRNAs sequences were designed to generate the 67 trabecular meshwork cell
lines (124 sgRNAs for 62 genes and 10 sgRNAs for human non-targeting control, 2 sgRNAs for
each cell line) (Supplementary Table 1). Each of the sgRNAs was cloned into
CROPseq-Guide-pEFS-SpCas9-p2a-puro backbone (Addgene: #99248). The sequences of all
sgRNAs templates were confirmed by in-house Sanger sequencing. Firstly, each template
was amplified by the BigDye Terminator Cycle v3.1 Sequencing kit (Applied Biosystems,
4337454). The 10 ul reaction system contained 1 pl template, 1 pl 10uM primer, 0.25 pl
Reaction Mix, 1.75 ul 5X Sequencing Buffer, and 6 ul nuclease-free water. Cycling was
performed using the following program: initial polymerase activation for 1 minute at 96°C
and 25 cycles of amplification (denaturation for 10 seconds at 96°C, annealing for 5 seconds
at 50°C, and extension for 4 minutes at 60°C), then held at 15°C. Samples were purified with
the CleanSEQ kit (Beckman Coulter, A29151) following the Agencourt CleanSEQ
Dye-Terminator Removal protocol. Briefly, 10 ul of vortexed CleanSEQ reagent and 42 pl of
85% ethanol was added to each 10 pl sample and gently mixed. The sample was placed on
the 96-well magnetic plate for 3-5 minutes until the magnetic beads formed a ring and the
solution was clear. The supernatant was removed and samples were washed twice with 100
ul 85% ethanol with 30 seconds of incubation and then air dried for five minutes. Lastly, 30
ul nuclease-free water was added to each sample and incubated for 3-5 minutes on the
magnetic tray to elute the purified DNA. Next, 15 ul of purified cycle sequencing product
was added to the sequencing plate, then denatured by incubating at 95°C for 5 minutes.
Sequencing Genetic Analyzer 3500, Applied Biosystems) was undertaken using the default
program for 850bp DNA length . Finally, the online alignment tool MAFFT (version 7) was
used to confirm whether the sequences of all the 134 sgRNAs were matched with reference

sequences.


https://paperpile.com/c/OiESly/wJTNf

Single-Cell RNA Sequencing

The cells were recovered in culture medium and single-cell capture was performed at the
Garvan-Weizmann Centre for Cellular Genomics. Single-cell suspensions from different wells
were pooled, centrifuged and resuspended in DPBS containing 1% BSA (Sigma-Aldrich,
A8806-5G), and filtered by 37 um strainer (STEMCELL, 27215). The estimated number of
cells in each well in the Chromium chip was optimized to capture about 16,000 cells. The
Chromium library was then generated following the protocol of the Chromium Single Cell 3’
v2 Library (10X Genomics). Briefly, individual cells were allocated into nanoliter-scale Gel
Bead-in-EMulsions, in which the bead carries the primers containing a read 1 primer
sequence, a 16 nt 10x barcode, a 10 nt Unique Molecular Identifier, and a poly-dT primer
sequence. A barcoded, full-length cDNA was produced from each poly-adenylated mRNA
after incubation with the Gel Bead-in-EMulsions. lIcDNAs were pooled and amplified by PCR.
In the library construction, P5, P7, a sample index, and read 2 primer sequences were added
to each of the cDNA by End Repair, A-tailing, Adaptor Ligation, and PCR. The region of P5 and
P7 allowed the library fragment to attach to the flow cell surface during the sequencing.
Read 1 and read 2 sequences are standard lllumina sequencing primer sites used in
paired-end sequencing. Then part of the library samples were sequenced on an lllumina
NovaSeq 6000 system using the S4 flowcell with a read depth of 16,785 reads per cell
resulting in a mean number of RNA features of 4,195 per cell. Following this, the cell
UMI-sgRNA sequence in the NGS library was also amplified and sequenced on an Illumina

MiSeq-based sequencing.

Cell Painting Immunohistochemistry

For each group, 4.0x10° puromycin-selected TMCs were seeded to 96-well plates by
fluorescence-activated cell sorting (FACS) via a Beckman Coulter MoFlo Astrios EQ with
three replicates of each knockout group allocated at random. The whole experiment was
performed in three batches of TMCs, thus, nine wells of cells were captured for each gene
knockout group. The plate layout can be assessed on GitHub. TMCs were stained and fixed
48 hours after FACS following the CellPainting protocol.”** TMCs were washed three times
with HBSS without final aspiration and then sealed with parafilm. All 96-well plates were

kept at 4°C in the dark before imaging.


https://paperpile.com/c/OiESly/A6vD0+qDy0E

Automated image acquisition

Images were captured at 20X magnification in Phase Gradient Contrast (PGC), and five
fluorescent channels, DAPI (385/465 nm), AF488(470/517 nm), AF514 (511/543 nm), AF594
(590/618 nm), AF647 (625/668 nm) on ZEISS Celldiscoverer 7 system. In each well, 25 sites

were imaged, with autofocus in the DAPI channel as the reference.

Morphological image feature extraction

CellProfiler (Version 3.1.9) was used to locate and segment the cells for single-cell feature
extraction. The pipelines in CellProfiler were set up to correct uneven illumination, flag
aberrant images and identify the nuclei from DAPI channel and the entire cell from AF594
channel, then measure the features of the size, shape, texture, intensity, and the local

density of the nuclei, cell and cytoplasm.

Establishing the CellProfiler pipeline

The CellProfiler image processing pipeline consists of three parts; illumination correction,
guality control and image analysis. The illumination correction pipeline begins by improving
fluorescence intensity measurement followed by the quality control pipeline to identify and
exclude aberrant images such as unfocussed images and debris. To identify cell components,
the nucleus was defined as the primary object with the cell body defined as the secondary
object, and the cytoplasm as the tertiary object. Subsequently, the features of size, shape,
granularity, colocalization, local density, and textures were measured, and the data was
saved in an SQLite database. Image analysis was carried out on a Nectar (The National

eResearch Collaboration Tools and Resources project) Cloud workstation instance.

Data Curation and Analysis

Data preparation was performed using R (Version 3.6.3) as described by Caicedo et al.”,
which included feature transformation, normalization and batch-effect correction. Firstly, all
the negative controls were selected to explore the distribution of the features and the batch
effects. Two transformation methods were applied, generalized logarithmic function’? and
Box-Cox transformation.” To avoid nonpositive values, generalized logarithmic function used

a shrinkage strategy while Box-Cox transformation used a shift strategy.”* The


https://paperpile.com/c/OiESly/a9RSe
https://paperpile.com/c/OiESly/kEwD
https://paperpile.com/c/OiESly/b4Pd
https://paperpile.com/c/OiESly/a9RSe

Anderson-Darling test was performed to evaluate the normality of each feature.” Next, the
value of each feature was normalized by subtracting the median value of each feature from
the control group and dividing by the corresponding median absolute deviation (MAD)
*1.4826 in each plate, respectively. The single-cell data was aggregated by the median value
of each well to create profiles of each replicate. The Spearman’s correlation was calculated
for all replicates within a plate and across different plates. The replicates are selected with

Spearman’s correlation score > 0.2.

Computational analysis of single cell sequencing data

All gene knockout groups underwent hierarchical clustering and were plotted as a cluster
tree. The optimal number of clusters was determined by the silhouette method. To annotate
each of the clusters, the top features and tail features were extracted. The library was
mapped to the GRCH38 Homo sapiens genome, and the resulting mapped counts between
all samples were depth-equalized via the cellranger aggr pipeline. Peter Tran performed the
MiSeqg-based sequencing, and Anne Senabouth from Garvan built up the repository for the
processing and analysis of single-cell RNA-seq data. In the repository, our designed gRNAs
are assigned to their respective cells. Then the scRNA-seq data was loaded into R via the
Seurat package (Version 3.0), and SCTransform function was used to normalise the data. All
cells targeted by sgRNAs were visualised in a uniform manifold approximation and projection
(UMAP) plot and were clustered with the Louvain method. The differentially expressed
genes (DEGs) of each gene knockout group were selected with log2 fold change > 2
compared to the human non-targeting controls. Then a hierarchical clustering was
performed on the subset of all DEGs of all gene knockout groups. The optimal number of
clusters was determined by the silhouette method. DEGs to the human non-targeting

controls were selected to present each cluster.

Data & code availability

Single-cell RNA sequencing and single-cell imaging data is available at the European
Bioimage Archive (Accession Numbers: S-BSST840 & S-BSST841 respectively).
GitHub: https://github.com/PeterLu0403/CROP seq Cellpainting and

https://github.com/powellgenomicslab/CROP-seq
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Figure 1: Schematic Overview of the Study. Primary human TMC lines were cultured and
split into 62 groups, each with a single gene knockout at IOP-associated loci. A further 5 cell
lines were maintained as control groups. All groups underwent transcriptional profiling and
morphological profiling analysis to identify the transcriptomic and morphological effects of
particular gene knockouts. This demonstrated genes that may play a role in the pathogenesis
of POAG, identified novel genetic networks in IOP regulation as well as prioritising genes at
multi-gene loci.
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Figure 2: Wards cluster tree displaying the hierarchical clustering of each cell line based on
the RNA expression profiles. The method of ward.D2 was applied, the distance between




each group within one branch was closer than those located in different branches. The
bottom grid shows the multi-gene loci groups, the potential positive genes (blue) associated
with congenital glaucoma, and the non-targeting control group (red).
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Figure 3: Heatmap illustrating significant up-regulation of matrix metalloproteinases (MMP1,
MMP3, MMP10) and interferon-related proteins (IFI27, IFI6, IFI44L, IFIH1, IFIT1, IFIT2, IFIT3,

IFITM1, IFITM10).



Al) A2)
o
0]
<
o
°
©

| * ANGPTLZ
== LMX1B
,'E * RALGPS1
o Oitver groups
=
=
@
—
(DI
o
Q

- 25 0.0 i5 50
Cell_Granularity_5_corMito
B1) B2)
o
O]
<
Q b
°
LOI
= *EA:
= = TES
E Olbver groups
3
= o
1]
—
OI
I
Qo
[ 1 2
Nuclei_Intensity_StdIntensity_corMito

C1) C2)
2
=
o
2l
2
@
g
T .;FIEI?JEM
ﬁ ther groups
9, 4
z
c f
a /
= !
| -z
o]
O z 3

Cytoplasm_Intensity_StdIntensity_corAGP

y_6_corAGP

Cell_Granularit

y_StdIntensity_corMito

Nuclei_Intensit

Cytoplasm_Intensity_StdIntensity corAGP

]

20

20

o ‘S-E. _ =

=l= - |
Targeling  ANGPTLZ LMXIB F
#- —_f ._.=.—J__._‘—— s

MenTargeting

--------

KREMEN1T

Figure 4: Cell features of selected genes at multi-gene loci: A: ANGPTL2, LMX1B, and
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Figure 5: CAV2 knockout differentially expressed genes

CAV2 knockout evoked a significant upregulation of myocilin (encoded by MYOC). Significant
upregulation defined as Log, Fold Change greater than 2 and a p-value less than 10°. There
were no significantly downregulated genes in the CAV2 knockout transcriptional analysis.



Figure 6: Gene expression network in non-targeting control cells.

A gene expression network for non-targeting control trabecular meshwork cells was
generated to highlight target genes that are normally expressed in TMCs. 30 (58%) of the 62
target genes were identified as illustrated above. Closer proximity between the genes
indicate similar degrees of co-expression and the size of the node corresponds to the node
centrality of PAGErank.”
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Figure 7: Heatmap displaying variation in TMC morphological features for knockout of genes
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at I0P-associated loci. The X-axis shows morphological features extracted by CellProfiler

grouped by organelles of the same fluorescent channel and the Y-axis lists all gene

knockouts. Red on the heatmap refers to increase in a particular morphological feature (eg.
nuclear intensity) whereas blue refers to a decrease. Features extracted are based on pixel

intensities and calculations based on area and appearance.
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Table 1: Breakdown in number of differentially expressed genes from the individual knockout
of genes at overlapping loci.

Multi-gene locus Overlapping | Dendrogram | Euclidean # significant DEGs compared to control
genes cluster distance (P-value <10e-6, log2 fold change >2)
chrl bp:165714416 ALDHY9A1 5 13.98 22
TMCO1 12 12.96 7
chr9 bp:129367398 ANGPTL2 9 18.79 23
chr9 bp:129369971 LMX1B 22 14.06 11
chr9 bp:129373110 RALGPS1 10 7.1 4

chr9 bp:129863168

chr7 bp:115810676 CAV1 2 8.93 4
chr7 bp:116151338 CAV2 10 6.19 3
TES 10 5.57 2
chr22 bp:29620325 EMID1 10 7.29 4
KREMEN1 13 11.51 5
chr22 bp:19860977 GNBIL 14 10.34 4
TXNRD2 8 10.44 5
chrll bp:86406159 ME3 23 16.51 28

PRSS23 28 18.03 28
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GCTGCCCACTGCATACACGA
AACATCAGTGAAGTTATCCA
CAGTGGTGTCGGGAACACCG
GTTCGGTAAAGGTCCTTGTG
TGGCAAAAAGGTTTCCATCG
CGAAAGAAGATAATTACAAG
AGAGGTACCAGATGGGACTG
CATGGCGGAAGCATTCTGGA

EMID1
EMID1
ETS1
ETS1
FBX032
FBX032
FER

FER
FERMT2
FERMT2
FMNL2
FMNL2
FNDC3B
FNDC3B
GAS7
GAS7
GNB1L
GNB1L
KALRN
KALRN
KREMEN1
KREMEN1
LMO7
LMO7
LMX1B
LMX1B
ME3

ME3
MECOM
MECOM
MYOF
MYOF
PARD3B
PARD3B
PDE7B
PDE7B
PKHD1
PKHD1
PLEKHA7
PLEKHA7
PRSS23
PRSS23
PTPRJ
PTPRJ
RALGPS1
RALGPS1
RUNX2
RUNX2

1
13
13

26
25
17
15
23
24
31
30
19
18

59
56

34
35

18
14
24
20
56
58
24
25
11
12
20
16
28
25

26
24
25
1

1

Collagen
Collagen
Ets
SAM_PNT

Pkinase
Pkinase
PH

PH

FH2
FH2

fn3

fn3

WD40
PH
RhoGEF
WSC
WSC
LIM

LIM
Homeobox
LIM
Malic_M
Malic_M
zf-C2H2

PDEase_|
PDEase_|

Trypsin

Trypsin
Y_phosphatase
Y_phosphatase
PH

RasGEF

Runt

Runxl|

0.633805274
0.50154336

0.590477455
0.507782957
0.680491123
0.665922839
0.744231001
0.666176654
0.635135622
0.496718402
0.656016612
0.52306371

0.726749897
0.69274705

0.715444147
0.692490099
0.656080017
0.572759585
0.713929927
0.590046749
0.732200895
0.660612633
0.767439497
0.666458078
0.713403988
0.675803927
0.711900963
0.683948993
0.69054325

0.638498746
0.689398449
0.68114604

0.748915706
0.687131379
0.63710316

0.626787508
0.721146822
0.648027027
0.733493753
0.727012157
0.707785666
0.589826381
0.752294442
0.742428198
0.63983389

0.632295378
0.707376125
0.681198759



GUIDES_sg093
GUIDES_sg094
GUIDES_sg095
GUIDES_sg096
GUIDES_sg097
GUIDES_sg098
GUIDES_sg099
GUIDES_sg100
GUIDES_sg101
GUIDES_sg102
GUIDES_sg103
GUIDES_sg104
GUIDES_sg105
GUIDES_sg106
GUIDES_sg107
GUIDES_sg108
GUIDES_sg109
GUIDES_sg110
GUIDES_sg111

GUIDES_sg112
GUIDES_sg113
GUIDES_sg114
GUIDES_sg115
GUIDES_sg116
GUIDES_sg117
GUIDES_sg118
GUIDES_sg119
GUIDES_sg120
GUIDES_sg121
GUIDES_sg122
GUIDES_sg123
GUIDES_sg124

NonTargeting
Human_0001

NonTargeting
Human_0002

NonTargeting
Human_0003

NonTargeting
Human_0004

NonTargeting
Human_0005

NonTargeting
Human_0006

NonTargeting
Human_0007

NonTargeting
Human_0008

NonTargeting
Human_0009

TGGAATTCCCTACCACAGCG
TCAGTCTTAACCATTCCCAT
GGGCTGGCTATGATAAACTG
CCATGAGTTGTCTCCCAGAG
GAAGCTTCCGAGAGTCTCTG
CTATGATGGCAAGATGTACA
AGTCCTTGGATGTAAGAAAG
GAAACAATAACAGAGTCAGC
AGAGACTTTGAAGTGAACGA
CAGAAGGTGACAGTGTTGAG
GCCGACTGGTGACCTCATGG
GGGAGCAGGAGGCAGGAACG
TAAACCACTGGAGTTCACGG
TCATCATTGCTACTGGAGGG
GGTGAAGCTCCTGATTGCAG
GAAGAAAGTAAAAGAAGTTG
ATGGAGTTCCGCGACCACGT
CCGGTCCCCAGCGTCACGCG
CCACCTGGTACATCGCCTCA
AACTCAAGACATTGGAACCA
AATGTGGTAGCCCAAGACAG
GTGGCCACTGATCGGAAACG
GCAAGCCATGAGCCTGTACG
TCGTCGTCCCTGAGTCACGG
GATTGTGGTGAACTTCCGTG
GTTGCAGAATGATGAGCCGG
CCTCCCGCACGCGCACACAG
CAGGCAGACATAACCAGGCA
GGTCATACTCAAAAACCTGG
ATGCCAGTATACCTTCAGTG
TCTTGCGAAGGAAGTCCAGA
ATCTAATGAGACAATGCTGG

ACGGAGGCTAAGCGTCGCAA

CGCTTCCGCGGCCCGTTCAA

ATCGTTTCCGCTTAACGGCG

GTAGGCGCGCCGCTCTCTAC

CCATATCGGGGCGAGACATG

TACTAACGCCGCTCCTACAG

TGAGGATCATGTCGAGCGCC

GGGCCCGCATAGGATATCGC

TAGACAACCGCGGAGAATGC

SPTBN1
SPTBN1
TES

TES
TIMP3
TIMP3
TMCO1
TMCO1
TNS1
TNS1
TRIOBP
TRIOBP
TXNRD2
TXNRD2
ZNF280D
ZNF280D
ABO
ABO
TEX41
TEX41
CYP1B1
CYP1B1
FOXC1
FOXC1
GMDS
GMDS
LTBP2
LTBP2
MYOC
MYoC
TEK
TEK

10
35
31

17
22

PH
Spectrin
LIM
PET
TIMP
TIMP
DUF841
DUF841
PTB
PTB

Pyr_redox_dim
Pyr_redox_2

cDS
cDS
TRANSCRIPT
TRANSCRIPT
p450
p450

Epimerase
Epimerase
EGF
EGF_CA
OLF
Pkinase

Pkinase

0.712246448
0.683179693
0.774116567
0.735126362
0.703685264
0.591387438
0.652850785
0.622258097
0.715095311
0.675343539
0.713915639
0.656603289
0.785275668
0.706088692
0.700021186
0.599965492
0.6563
0.6687
0.6631
0.6251
0.775320729
0.726256031
0.747984594
0.730741126
0.727535334
0.65599947
0.755863507
0.708717
0.763937898
0.722928246
0.627785812
0.626682424



NonTargeting
Human_0010 ACGGGCGGCTATCGCTGACT
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